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ABSTRACT

 Currently the analysis of microarray data had turned into integrating with prior 

biological knowledge: pathway analysis interprets transcriptomic data on pathway level 

and identified predefined groups of genes with dysregulation; network analysis takes 

gene-gene interactions information into consideration and searches for modules 

associated to the phenotypes under study. The two analyses have its own advantages 

respectively and they complement the weaknesses of each other: pathway analysis 

provides little clues to directly explore new biological knowledge and network analysis 

usually yields modules including few consistent biological information. In this study an 

analytical methodology was developed to integrate current pathway analysis method 

with network analysis methods. 

 Initially, dysregulated pathways are identified by modified pathway analysis 

method in Tian et al.. Subsequently, a focus-oriented investigation on dysregulated 

pathways are performed by network analysis following the work of Nacu et al., and this 

step is using modules within or related to members of the pathways to be further 

investigated. Several improvements were made, such as the scoring functions and the 

module identification algorithms. 

 To illustrate the benefits of this methodology, a lung cancer study with 30 paired 
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cancer and normal tissues was explored. The results derived within dysregulated 

pathways were also identified consistently in another public dataset GSE7670. 

Furthermore, GO term enrichment analysis was applied to show that the modules have a 

specialized functionality than the original pathways. In brief, original large modules 

were reduced from the entire pathway to a smaller size of relevant interconnected 

members, which are much easier to be manipulated but still remain their biological 

information. Moreover, the ability of this methodology to explore novel interactions 

related to pathway members were also demonstrated by extending the module search 

algorithm beyond the pre-defined pathways. This would not be achieved by traditional 

pathway analysis methods, which usually don’t include biomolecular interaction 

information. Yet, modules identified in this methodology were based on dysregulated 

pathways with specific biological meaning since their members were mainly associated. 

 In conclusion, these data all indicated the advantages to integrate both pathway and 

network information during microarray analysis: to uncover manageable size of 

molecular interaction networks important for pathway dysregulation, to focus on 

interested pathways, functions or even specific regulatory events, and to possess the 

potential of performing exploratory researches on mechanisms that are not yet well 

understood. Undoubtedly, this concept could be extensively applied to other array 
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experiments of similar design regardless of the disease under study. 
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Chapter 1 Introduction 

1.1 Lung cancer 

 According to figures released by Department of Health in June 2009, cancer has 

topped the major 10 causes of death in Taiwan for 27 consecutive years. The statistics 

showed that, in 2008, malignant tumors were responsible for 27.3 percent of all deaths, 

among which the proportions of top cancer killers are displayed in Figure A-1. 

Moreover, when gender is taken into consideration, lung cancer, in particular, has 

occupied the leading cause of female cancer mortality since it first overtook cervical 

cancer in 1986 [1]. 

 Noteworthily, despite that tobacco smoke is the major risk factor for lung cancer, 

many patients, especially female ones, are never smokers. This situation is not unusual 

in countries other than Taiwan, as it had already been discussed in the review paper [2]. 

It was suggested in the article that pathways of carcinogenesis for lung cancer in never 

smokers and tobacco-associated lung cancer are not exactly the same due to the clinical 

and biological differences observed in patients of the two types. However, specific 

mechanisms are still under investigation, which in further requires good experimental 

techniques and analytical methodologies that help researchers focus on clues to 

carcinogenesis process with efficiency. 
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1.2 Microarray 

 Microarray is a powerful tool to screen tens of thousands of genes at one time, 

giving a semi-quantitative sketch of genome-wide mRNA expression levels in cells, 

which greatly facilitates and accelerates biological studies. Since its invention in the 

1990s [3], gradually improved technologies had lead to more affordable commercial 

arrays with stable quality, making microarray widely applied in various biomedical 

researches and beyond question cancer-related studies are no exceptions. 

 However, unlike array experiments that could be conducted with acceptable quality 

as long as protocols are followed adequately, there has always been room for 

bioinformaticians to develop analytical methods that better extract biological insights 

from array data. 

 Following this section some methods will be reviewed and in the end of this 

chapter, the idea about methodology developed here will be introduced. 

1.3 Data analysis 

 Starting from introducing regularly employed single gene analysis that 

concentrates on independent statistical analysis of individual genes, what followed 

subsequently are some advanced data analysis methods that take additional biological 

information into account. Each of these methods detects biological processes being 
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dysregulated from different entry points, however, major concerns of biologists can yet 

be satisfied simultaneously: to uncover manageable size of molecular interaction 

networks important for dysregulation, to focus on interested pathways, functions or 

even specific regulatory events, and to possess the potential of performing exploratory 

researches on mechanisms that are not yet well understood. In the end of this chapter, an 

idea about combining advantages of current methods will be introduced in attempt to 

fulfill these requirements. 

1.3.1 Single gene analysis 

 Whatever array platform the samples are assayed on, after image scanning and 

preprocessing steps including background correction and normalization within/between 

arrays, conventional analytic procedure starts with evaluation of individual genes: all 

genes are ordered by the extent of their associations with phenotypes, with a significant 

degree of association suggesting the gene’s being differentially expressed at mRNA 

level and worthwhile to undergo further biological validations. 

 However, varied according to topics under study, this approach sometimes ends up 

with a long list of significant genes even after multiple hypothesis adjustments [4, 5] 

that are usually required when testing large amount of hypotheses simultaneously. This 

makes follow-up validations laborious or even infeasible. Such obstacle could not be 
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surmounted by mere selection from the significant gene list, where the decision of genes 

deserving further investigations depends on researchers’ expertise due to multiple roles 

a gene might play. 

 To deal with this problem, analysis shall not be confined to expression data itself 

anymore. As has been well-known to all, cellular functions are not implemented by 

individual genes independently, rather, they are accomplished by a group of genes 

acting together to perform cellular tasks. Thus it is anticipated that a more consistent 

biological scene can be revealed by methods that not only incorporate transcriptomic 

data but also consider prior biological knowledge such as functions in common or 

relationships between genes/gene products during analysis. Such information was 

derived from previous biological experiments and was deposited in various public 

databases as described below. 

1.3.2 Biological knowledge database 

 It gains more insight into the interpretation of transcriptomic data if analysis could 

be integrated with functional annotations or other omic data from different levels. To 

see how this can be realized, in this section and the next we will introduce what kind of 

information can be utilized and how they can be integrated. 
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A. Gene set databases 

 Generally speaking, a gene set is a group of functionally related genes. Specific 

instances for gene set definitions and corresponding databases are tabulated in Table 

1-1. 

 Since members in a gene set tend to function in coordination, several methods are 

developed to analyze genes in groups and identify gene sets instead of genes that are 

significantly regulated. 

Table 1-1. Definition of gene sets and exemplary databases 

Common feature Databases

metabolic / signaling pathway member
KEGG, Biocarta, 
GenMapp, MSigDB (c2) 

chromosomal location / cytogenetic band MSigDB (c1) 

target of microRNA / transcription factor MSigDB (c3) 

biological process participants GO - Biological Process 

subcellular location/macromolecular complex GO - Cellular Component 

perform molecular function GO - Molecular Function 

 Kyoto Encyclopedia of Genes and Genomes (KEGG) [6], BioCarta [7], GenMapp [8], 

   MsigDB [9], Gene Ontology (GO) [10] 

 In this study, we focus only on metabolic and signaling pathways that are 

essentially an abstraction of the information flow throw physical interaction network in 

response to a drug, nutrients or external stimuli. 
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B. Interaction databases 

 An interaction knowledge base contains genetic [11] and physical interactions 

between genes/gene products of various types. They can be related to physical binding 

(protein complex), protein modification (methylation, (de)phosphorylation), promoter 

binding (transcriptional regulation) or chemical reaction (activation/inhibition). 

Typically, they are stored as binary interactions and in the form of 

gene(product)1-relation-gene(product)2 triplets, from which a global biomolecular 

network visualizing this knowledge base can be easily constructed by representing 

genes/gene products as vertices (nodes) and interaction relationships as edges (directed 

or undirected). 

 Although these relationships have been extensively studied in small-scaled 

experiments using synthetic lethality or other biochemical and biophysical techniques, 

they are recorded in scientific literatures and cannot be directly utilized by 

computational scientists unless undergone information extraction into machine-readable 

format. Currently, this can be done by manual curations or by text mining techniques 

such as applying natural language processing algorithm [12]. 

 The construction of such databases was triggered actually by the expansion of 

high-throughput techniques in the last ten years, which includes: microarray for 
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synexpression of genes; yeast two-hybrid (Y2H) technology, tandem affinity 

purification coupled with mass spectrometry (TAP-MS), high-throughput 

mass-spectrometric protein complex identification (HMS-PCI) and 

co-immunoprecipitation (Co-IP) for protein-protein interactions; chromatin 

immunoprecipitation coupled with DNA microarray (ChIP-chip) or with paired-end 

ditag (ChIP-PET), DNA adenine methylase identification (DamID) and yeast 

one-hybrid assays for protein-DNA interactions. The boosted amount of formatted data 

from aforementioned techniques had received wide attention of bioinformaticians and 

enabled the development of this field. At present, these data account for more than 70% 

of current database content. Nonetheless, scientific literatures remain to be the most 

important and reliable source since a high percentage of high-throughput data were 

estimated to be spurious [13, 14]. On the other hand, it is also believed that these so 

called false positives are in fact true physical interactions, yet might not be biologically 

meaningful [15]. 

 To sum up, a pool of all known biomolecular interactions between genes/gene 

products are accommodated in public interaction databases such as BIND [16], HPRD 

[17], MINT [18] and commercial knowledge bases held by Ingenuity Systems 

(Ingenuity Pathway Analysis, IPA) and GeneGo (Metacore).  
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 At last, a clear difference between network and pathway can be elucidated by this 

paragraph [15] : 

 “A network represents a static image of all possible physical and/or regulatory 

interactions between biological entities, while a pathway represents how the 

information propagates through the network. Because information propagation is a 

directional process, a pathway must have entry nodes where the information flow starts 

and terminal points where the information flow ends.” 

 Several methods evolved with the aid of these knowledge bases and they will be 

reviewed in the next two sections. These methods differ mainly in the databases 

incorporated, however, what as well cannot be left out of consideration are the statistical 

methodology they utilized and the extent they exploit transcriptomic data. 

1.3.3 Pathway analysis 

 Pathway analysis is actually gene set analysis only to focus on pathways. It is 

expected to not only find pathways with significant differential expression but also 

detect consistent yet subtle expression changes among members of a pathway. A review 

on various pathway analysis methods evaluating the involvement of pathways in 

different phenotypes under study is available in [19, 20]. 

 A simplest procedure is to assess the significance of overlap between preselected 
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genes (differentially expressed genes) and predefined annotation groups (pathways) 

using Fisher Exact test (hypergeometric distribution) or Chi-squared test, which is then 

followed by adequate multiple hypothesis adjustments. This over-representation method 

is intuitive, easy to implement and computationally efficient, thus it dominates current 

commercial and public software, such as IPA [21], Metacore [22] and DAVID [23]. 

 An alternative approach needs no prior filtering of genes. It assigns a score to each 

gene set and assesses p-value by re-sampling procedure, which is to compare the score 

with its null distribution. BRB-ArrayTools [24] use the LS statistic and 

Kolmogorov-Smirnov (K-S) statistic to test if the single-gene p-values in a gene set are 

of a uniform distribution. In gene set enrichment analysis (GSEA) [25, 26], an 

enrichment score is obtained by considering the distribution of pathway genes in the 

entire list of genes, which in spirit is a weighted K-S statistic. Tian et al. [27] designed a 

statistical framework to determine perturbed pathways. In their work the overall 

objective is to “test whether a group of genes has a coordinated association with a 

phenotype of interest.” After each gene set is assigned a score by averaging the test 

statistics of its member genes, p-values regarding two different hypotheses are 

estimated by permuting class labels and gene orders. Eventually, gene sets with 

significant p-values under both hypotheses are considered differentially expressed 
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across phenotypes. 

 The latter approach is more biologically reasonable than over-representation 

method since it reserve expression information and does not depend on an artificial 

filtering of genes, in which the results may depend strongly on the cutoff chosen to 

make the significant gene list [28]. 

 However, most pathway analysis methods suffer from some weaknesses. First, due 

to the fact that only a limited number of well-studied genes are classified into pathways, 

the remained many genes with unknown functions are left out of considerations. Second, 

most pathway annotations contain only labels of pathway members and with no 

information about the interplay between them, therefore the results obtained from these 

methods could not help to give direct understanding of cellular processes at molecular 

level. Also, pathway is actually a dynamic model and the component activated is 

specific to conditions under study, which is usually not emphasized in most methods, 

however, GSEA did specify a list of core members, named leading edge subset, that are 

the main contributors of the pathway’s enrichment score. 

 In all, pathway analysis can successfully interpret data at pathway level but fails to 

elucidate the interplay between members within and provide no information about genes 

not involved in known pathways. 
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1.3.4 Network analysis 

 Extensive works had been done seeking to characterize the design principles of 

biomolecular network structure using graph theory. An interesting finding shows that its 

connectivity distribution follows the typical power-law distribution for scale-free 

network and it shows small-world properties [29] in terms of network diameter and 

clustering. It is believed that this feature, which indicates the existence of hubs, enables 

the biological network to be robust against occasionally removal of arbitrary network 

elements during evolution process [30]. 

 Another subject of active research is the identification of relevant modules or 

subnetworks in the global network. Notably the interactome data cannot alone complete 

this task due to the inconsistent conditions of its content. That is, these interactions are 

usually temporal, spatial or dependent on conditions and tissue types. Therefore, 

additional annotations providing condition-specific information is required, such as 

combining microarray data to identify connected sets of nodes based on their coherent 

expression patterns at mRNA level. In this regard, several methods of identifying 

responsive modules are reviewed in [31]. 

 Ideker et al. [32] are among the first groups to extract active subnetworks based on 

both interactome and transcriptomic data. They searched the global network for 
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high-scoring subnetworks via simulated annealing algorithm, where the score is in spirit 

an aggregation of z-scores measuring differential expression of individual genes in the 

subnetwork and calibrated against the null distribution generated by randomly sampled 

groups of genes. Interestingly, the result contained many examples of genes individually 

with low score but are required to connect together several high-scoring genes. Genes 

with such character agree with the behavior of some transcription factors (TFs) and will 

be referred to as “key nodes” in this article. Despite the exciting observation, the 

time-consuming nature confines its application on large interaction network. 

 Nacu et al. [33] developed a method GXNA that expands subnetworks from seed 

nodes using a greedy approach and then identifies those with significantly high scores. 

One of their contributions lies in the design of scoring functions that correct for biases 

due to subnetwork size if necessary. They are generally divided into two scoring 

schemes - T and T . What subsequent to the evaluation of subnetwork score is the 

estimation of p-value that assesses its significance against the null distribution derived 

from scores of subnetworks under different phenotype permutations. Eventually, these 

p-values are adjusted for family-wise error rate and used to select relevant subnetwork. 

GXNA is fast and it focuses on small modules differentially expressed between 

phenotypes, however, it allows no such key nodes since the greedy approach is adopted. 
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 In general, pathway can be viewed as the assembly of causal sequences of 

molecular events and with all building blocks available in the biomolecular network. 

Ideally it seems promising to infer new pathways directly by network analysis, but in 

reality such pathway inference are complex and less validated due to the noise and 

incompleteness of current biological networks, especially when coupling with the 

small-world property of its topology. Additionally, the identified module is prone to be 

associated with multiple canonical pathways, which makes it hard to reveal a unifying 

scene and interpret in a fashion related to focus under study, as in the example of Figure 

A-2. 

1.3.5 Methodology in this work 

 In this study we attempt to develop a methodology that goes a step further than 

current pathway analysis by bringing in the advantages of network analysis. Practically 

speaking, it can be achieved by processing microarray data through pathway and 

network analyses in series, however, it is worthwhile mentioning that the incorporation 

of both pathway and network knowledge into microarray data analysis is yet to be 

widely realized. Based on results from pathway analysis, the methodology here aims to 

enhance researchers’ understanding by stepping from pathway level into molecular level, 

with its main objectives specified below: 
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1. Extract module most relevant to the pathway’s dysregulation. 

 It is without doubt that pathway is in fact a dynamic model and the members 

perturbed differs between conditions under study. Although GSEA specifies a leading 

edge subset and suggests their being responsible for pathway’s dysregulation, the subset 

is of limited biological meaning since it provides no information for elucidating the 

roles they play. To put it simply, the leading edge subset is statistically meaningful 

more than biologically meaningful. Therefore, methodology here attempt to 

complement pathway analysis in this regard by making use of biomolecular networks. 

 After dysregulated pathways are identified, concept of network analysis is then 

imposed to extract modules most relevant to dysregulation of interested pathways. It is 

mainly due to these sequential events that make the pathways deemed dysregulated. 

 On the other hand, the module obtained here differs from that yielded by other 

network analyses in its ability to interpret microarray data at known-pathway level and 

to investigate interested pathways in greater details. 

2. Other focus-oriented strategies enabling exploratory survey on pathways of interest. 

 Current understanding of biological functions at the pathway level is far from 

being thorough. In one way, some of known pathways are actually incomplete. In the 

other, although recorded in a separate fashion, they are not truly isolated at the level of 
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global interaction network. In fact they should not be so as in the example of 

cross-pathway inhibition, which allows an activated pathway to refocus cellular 

resources to respond to stimuli it received by competing against other pathways. As a 

matter of fact, a considerable degree of cross-talks between pathways are revealed by 

various small-scaled biological studies. 

 Using the methodology here, a task-oriented investigation is promised by 

exploiting the valuable information imbedded in biomolecular networks. These yet 

well-understood interactions possess great potential to point an investigator to either 

missing pathway components or cross-talks between pathways and help in the design of 

appropriate experiments for identifying them. 

 

 In previous study physical interaction data were integrated with genetic interaction 

information to uncover the mechanisms underneath [34], which can further be used to 

find cross-talks between two pathways where the two interacting genes reside. 

 The interaction data was also coupled with pathway information to provide clues 

of cross-talks between pathways [35], however, it is done by merely calculating whether 

physical connections between two pathways are higher than random using Fisher Exact 

Test. 
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 In two successive works of Ideker et al. [36, 37], subnetwork and condition- 

responsive genes (CORGs) were defined in dysregulated pathway as the part delivering 

optimal discriminative power for the disease phenotype using T  evaluation. 

Nonetheless, they were used as prediction markers rather than to discuss the underlying 

mechanisms. 

 Before going to the next chapter, the methodology framework is summarized in 

four parts. 

1. Construction of database for storage of molecular interaction network, canonical 

pathway collections and gene annotations. 

2. Statistical analysis of microarray data at pathway level: in this part Tian’s algorithm 

is adopted yet with slight but crucial modification. 

3. Algorithms allow navigating the global network on the region of interested 

pathways: the scoring function is based on GXNA and modified to tolerate key 

nodes. In addition, a merging step is developed to complement the scoring function. 

4. Visualize the module by laying genes/gene products according to their subcellular 

localizations.  
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Chapter 2 Materials 

2.1 Lung cancer datasets 

1. NTUH Lung Cancer Dataset 

 This dataset is created by Bioinformatics and Biostatistics Core, National Taiwan 

University Research Center for Medical Excellence - Division of Genomic Medicine. 

 Matched normal and tumor samples of 31 female patients with non-small cell lung 

cancer (NSCLC) in National Taiwan University Hospital (NTUH) are collected for 

DNA microarray analysis using Affymetrix Human Genome U133 Plus 2.0 Array. 

2. Public Dataset GSE7670 (TVGH Lung Cancer dataset) 

 A public dataset [38] created by Taipei Veterans General Hospital (TVGH) and 

deposited in NCBI’s Gene Expression Omnibus (GEO) [39] (also available at EBI’s 

ArrayExpress: www.ebi.ac.uk/arrayexpress) under GEO series accession number 

GSE7670 is downloaded as CEL files. Of all the 66 Affymetrix Human Genome 

U133A Array data, those from 21 female NSCLC patients with paired normal-tumor 

arrays are used to create this dataset. 

2.2 Databases 

1. Pathways 

 Predefined gene sets performing tasks of metabolic functions or signaling 
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transductions are recorded in several public databases. 

 The Molecular Signature Database (MSigDB) v2.5 maintained by Broad Institute 

collects curated gene sets information from several online databases or literatures and 

records them with a unified format. Its “Canonical Pathway (CP) collection” in 

“Functional Sets (C2) category” [9] is the main source of pathway information in this 

work. The collection of 639 gene sets is released in a file with filename extension “gmt”. 

In the following work, gene sets are simplified into pathways. 

2. Protein interaction network 

 Protein-protein interactions (PPI) detected by high-throughput methods are 

recorded in several PPI databases. The NCBI’s Entrez Gene database containing curated 

interaction information from BIND [16], BioGRID [40], EcoCyc [41] and HPRD [17] is 

utilized as the main source to construct protein interaction network in this work. 

3. Target genes of probe sets on microarray 

 The information of genes targeted by probe sets designed on Affymetrix GeneChip 

arrays comes from annotation files in Affymetrix website (www.affymetrix.com). 

4. Gene annotation 

 Unique gene identifiers (Entrez ID or HUGO gene symbol) and historical aliases 

of genes are retrieved from NCBI’s Entrez Gene database. 
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2.3 Program environment and public/ commercial tools 

 With database built under MySQL, this methodology was realized with the help of 

Matlab®. Besides, some public or commercial tools are used to process the dataset for 

different purposes. Following are some brief descriptions about them. 

1. Partek® Genomics Suite [42] 

 It is a commercial software that enables various statistical analysis of microarray 

data. In the work here it is used simply to complete preprocessing steps of microarray 

data, which summarizes expression value for each probe set and applied normalization 

algorithm to remove potential systematic biases. 

2. Gene set enrichment analysis (GSEA) [25] 

 GSEA evaluates the probability a gene set is differentially expressed across 

phenotypes and defines a leading-edge subset comprising the core members activated in 

the gene set. 

 At first, genes are ordered by their correlation between expression values and 

phenotype classes, then an enrichment score (ES), corresponding to a weighted 

Kolmogorov-Smirno-like statistic, is calculated for the gene set. A p-value representing 

significance level of the ES score is determined against null distribution of ES estimated 

by permuting class labels. After p-value for each gene sets is obtained, false discovery 
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rate (FDR) method is used to adjust for multiple hypothesis testing. 

3. Database for Annotation, Visualization and Integrated Discovery (DAVID) [23] 

 DAVID uses an EASE score, a modified Fisher Exact p-value, to measure the 

enrichment of gene sets in the gene list specified by user. Furthermore, to reduce the 

redundant nature of annotations that might dilute the focus of the result, which is 

especially inevitable when associating with Gene Ontology (GO) terms, DAVID 

provides the option to classify significantly associated gene sets into different clusters 

and order the clusters according to their significance. According to manual on the 

website, it is achieved by integrating the same techniques of Kappa statistics to measure 

the degree of the common genes between two gene sets, and fuzzy heuristic clustering 

to classify the groups of similar annotations according to kappa values. 

4. Cytoscape [43] 

 Cytoscape is a JAVA application which provides basic functionality to layout and 

query networks, overlay nodes with expression data, or link genes/gene products to 

databases of functional annotation. Notably, it is featured in its extensibility through a 

straightforward plug-in architecture, which enables additional computational analyses to 

be incorporated. In this study, a plug-in - Cerebral v2.0 [44] is used to layout the 

network according to the subcellular location of each node. 
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5. Kyoto Encyclopedia of Genes and Genomes (KEGG) - Color Objects in KEGG 

Pathways [45] 

 It is an on-line tool that provides a personalized pathway map by allowing the 

assignment of different colors to font, border or background of each particular node. 

6. European Bioinformatics Institute (EBI) - QuickGO [46] 

 QuickGO is a web-based browser that enables the extraction of branches from the 

entire hierarchy of Gene Ontology according to a list of specified GO terms.
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Chapter 3 Methods 

 Figure 3-1 illustrates the flow chart of this methodology and in the subsequent 

sections we will describe each step in detail. 

 
Figure 3-1. Flow chart of methodology in this work.

          PPI is the abbreviation of protein-protein interaction data. 

3.1 Database construction 

 
Figure 3-2. Entity Relationship Diagram (ERD) for database constructed here. 

     In this ERD rectangles stand for entities, ellipses for attributes and diamonds 

     for relationships. 
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 As the first step of integrating genomic data at different levels, a relational 

database is required in order to bridge between information from various sources, to 

speed up data retrieval and to correct for ambiguously recorded data. The structure of 

database constructed here is elucidated in Figure 3-2 as a simplified entity relationship 

diagram, where genes, pathways and array probes are considered as different entity 

types. 

 While constructing the database, some records with ambiguous information should 

be corrected: 

1. Importing gene sets from MSigDB. 

 The gmt file records gene set members in the form of “synonym”, which is alias 

instead of official name. The task here is to convert each of them into corresponding 

unique identifier: “gene_id”. This is done by comparing them to “official gene symbol”, 

or to “synonym” of genes in the case when there were no “official gene symbols” 

matched. 

2. Importing target genes of each probe set on microarray. 

 Some “gene_id” recorded in NetAffx annotation files had been changed or 

discontinued. New “gene_id” should be updated based on information from NCBI’s 

Entrez database. 
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3.2 Single gene analysis 

1. Probe sets filtering 

 As one might note in chapter 2, the two datasets were assayed on different versions 

of Affymetrix GeneChip array. In fact, U133 Plus 2.0 comprises probe sets in both 

U133A and U133B [47], thus in following works only those probe sets common in both 

versions are utilized. Note that this step could be skipped when datasets to be compared 

are of the same version. 

2. Summarizing expression value for each gene 

 The analysis of Affymetrix array data starts with CEL files recording fluorescence 

signals at probe level, from which probe-set level intensities are derived using robust 

multi-chip average (RMA) method [48]. In this method probe level data undergo 

background correction, quantile normalization [49] and median-polish summarization 

[50]. The RMA process is completed under the commercial software Partek® [42] and 

the resulting values are log-transformed expression values. 

3. Hypothesis testing 

 Hypothesis testing methods are used to measure the degree of association between 

response/covariate (either numerical or categorical factor, e.g. phenotypes) and random 

variables (expression levels of probe sets/genes). In the simple but most common case, 
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given a covariate, its association with each gene is estimated by univariate hypothesis 

testing method such as two-sample t test or Mann-Whitney statistics for binary 

phenotype, F-statistic for polytomous phenotype, to name but a few. 

 Here two-sample paired t test is applied and the concluded p-value functions as an 

index of degree of differential expression in terms of a probe set between phenotypes. 

4. Select representative probe set for each gene 

 Among all probe sets targeting the same gene, the one with the smallest p-value is 

selected to represent their target gene and the rest removed. 

 Until this step, an input matrix with logged gene expression values in rows and 

arrays in columns is generated. 

3.3 Pathway analysis 

 Both Tian method and modified Tian method are applied on the datasets. 

Conceptually the procedure of pathway analysis starts with evaluating a pathway score 

by employing a scoring function, which is the major difference between the two 

methods. The score is then to be normalized and assigned with p-value according to its 

null distribution that could be generated in two different ways of permutation. Finally 

pathways are ordered by the addition of rankings under two permutation types. The 

detailed procedures of both methods are described below. 
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1. Scoring function 

 For each pathway �� � ���� 	 � �
�� , its score is calculated by either   
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where km is the size of Sm and 
igT the t statistic of gene i. To note, the latter scoring 

function comes from equation 2 in Nacu et al.[33]. 

2. Significant level of the score 

 A one/two-sided p-value representing significance of a pathway is estimated from 

the f1/f0 score’s null distribution that could be generated in different ways depending on 

the null hypothesis to be tested. Tian et al. [27] proposed two ways to choose from: 

either to test if genes inside a set show significantly higher associations with phenotypes 

than that outside a set, or to test if a set does contain genes differentially expressed 

between phenotypes. The former is achieved by permuting members of a pathway, and 

the latter by randomly shuffling phenotype labels on each paired samples. 

 Since all pathways are tested simultaneously, multiple testing problems can no 

longer be ignored. The p-values are either adjusted by Bonferroni method [51] or 

converted to q values [52]. 

3. Pathway score normalization 
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 To overcome the hurdle that pathway scores are not able to be compared directly 

due to its dependency on the size and unique correlation structure of each pathway, Tian 

proposed that normalization of the observed scores can be achieved by replacing them 

with their quantiles. Here f0 and f1 scores are normalized in the same principle. 

4. Ranking the pathways 

 Under each permutation procedure, an adjusted p-value and a normalized score are 

obtained and from which a ranking is summarized. With descending importance, all 

pathways are eventually ordered by the addition of two rankings derived from separate 

permutation procedures. 

3.4 Network analysis 

 Based on the significant pathway identified, network analysis tries to investigate 

the pathway, looking for connected subgraphs that are either essential for differential 

expression of the pathway or related to genes outside the defined pathway boundary. In 

short, a candidate subnetwork is generated from each root and then being merged into 

several main components. This algorithm follows Ideker’s idea and some methods of 

GXNA, and will be described dividedly in six steps. 

1. Starting points and the search space 

 In the beginning, a background interaction network is constructed and afterward 
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referred to as the “search space”, within which the algorithm searches for main 

components. As the objective here is to show the applicability of this approach before 

any further explorative investigations, the search space is at first confined to genes 

within the dysregulated pathways. After then a version of searching under global 

interaction network was demonstrated. 

 Suppose there are N genes (nodes) in the pathway, each of them will be considered 

as a root and thus N candidate subnetwork would be generated. 

2. Extension 

 Starting from a root node, a candidate subnetwork is generated by an assigned 

number of extensions within the search space. In each time of extension, the node 

yielding maximal score of the new subnetwork is incorporated from those directly 

neighboring the current subnetwork. 

3. Scoring 

 Two ways of evaluating current subnetwork are adopted. One is identical to 

� �1f S , only when applied here, S represents a subnetwork instead of a pathway. The 

other, � �2f S , is similar but with slight modifications in order to increase the tolerance 

of key nodes mentioned in chapter 1. 

 Considering a subnetwork of size k, the algorithm first rearrange its members in 
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ascending order of p-values, so that for � �1, , kS g g� � ,
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where 
igT  is the t statistic for gene i. The score of S is then obtained by 
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where the setting of m is flexible to users (default “1”). The equation suggests that the m 

members with least contribution would be left aside from the scoring function. 

 Note the default �T scoring function in GXNA (eq.6) [33] is not applied here, for 

more details please refer to chapter 6. 

4. Stopping criterion 

 There are two criteria in GXNA for stopping the extension of a subnetwork. One is 

when predefined size is met and the other is when the new subnetwork score does not 

surpass the current one. The former criterion is used here due to the same reason that f2 

score is dependent on subnetwork size and thus not comparable to each other. 

Nonetheless, to make up for artificial restrictions in fixed-size search, a merging step is 

developed to produce subgraphs of different sizes. 

5. Merging 

 Until this step, a candidate pool has been formed by the N candidate subnetworks 

derived from the N roots. The merging process is a decisive step. It ends up with at most 

h main components as final results where h is a user-specified parameter. 
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 For each � �1..i h
  the merging process starts a main component Ci with an empty 

set Ø. Step by step, the algorithm merges it with the highest-scored candidate 

subnetwork sharing overlap with it. Ever since a candidate subnetwork has been chosen 

from the candidate pool and merged with Ci, it is excluded from the pool. The merging 

process stops when certain criteria are met, which varies depending on the user’s 

concern. Here a handleable size of main component within the pathway is to be found, 

so the algorithm stops when it reaches an amount approximately r percent of the search 

space size, or, stops at predefined min/max size in the case of small/large search space. 

However, the whole process could break off anytime the candidate pool is emptied. 

6. Visualization 

 Main components found in this methodology are visualized using Cytoscape [43]. 

Moreover, they can also be mapped on the pathway figure using KEGG’s online tool 

[45] when the significant pathway is retrieved from KEGG database. 

3.5 Results demonstration 

 In the end, attempts were made to reveal the biological scenes underlying the 

results of this methodology by associating Gene Ontology terms with members of main 

components. This is done with the help of DAVID [23] for GO terms association and 

clustering, and QuickGO [46] for GO hierarchy visualization.
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Chapter 4 Results 

4.1 Database 

 Table 4-1 lists some characteristics of the database constructed here, and 

informative relationships of its content data are shown in Figure 4-1. 

Table 4-1. Statistics of current database 

Current Database Number of Records 

NCBI - Entrez Gene database 40234 
signaling / metabolic pathways 691 

biomolecular interactions 31340 
genes with interaction information (A) 8787 

genes involved in pathways (B) 5596 
genes targeted by U133A probe sets (C) 13799 

 
Figure 4-1. It shows overlaps between array, pathway and interaction data. 

 Notably there are a large number (a+b=4,873) of genes within the global 

interaction network that are currently not assigned to any predefined pathways, which 

implies the potential to exploit functions of unknown genes when integrating interaction 

information. On the other hand, there are also 1,682 (c+d) genes in pathways that show 
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no related interaction information, which foretells some obstacles to be met in this 

methodology. However, this could be overcame by constructing a database that includes 

more complete interaction data, although it may take lots of time to manually record 

them from pathway databases and scientific literatures. 

4.2 Single gene analysis 

 In this step, probe level data in CEL files are transformed into an input matrix 

which will be fed into pathway/network analysis. Figure 4-2 describes the single gene 

analysis procedure and Figure 4-3 shows the t-score distribution of probe sets before 

and after representative filtering. When a Bonferroni adjusted p-value < 0.05 criterion 

was applied, there were 1,489/1,345 significantly up-/down- regulated probe sets in 

NTUH dataset after representative filtering, which was much greater than that in 

GSE7670 dataset as shown in the lower panel in Figure 4-3. 

  Figure 4-2. Single gene analysis procedure. It describes how the input  
      matrix was produced from CEL files. 
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 Figure 4-3. t-score distribution of probe sets before and after representative filtering.

    The total probe set number decreases from 22215 to 13799. Probe sets with 

    t-scores greater/smaller than the Bonferroni thresholds are significantly  

    up-/down-regulated. 

 In both datasets the original left-skewed distribution turned into a bimodal 

distribution after filtering, and in the bimodal distribution the positive and negative 

sides show unequal peak heights and variances. This might be due to the different 

correlation structures between genes. More detailed statistics of t-score distribution is 

shown in Table A-1. In addition, an unusual peak highlighted in the Figure 4-3 comes 

from a nonspecific high-scoring probe set 209079_x_at that targets at 22 related genes. 
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4.3 Pathway analysis 

 Three pathway analysis methods were applied on the datasets, namely Tian scoring 

method (using scoring function f0), modified Tian scoring method (using scoring 

function f1) and GSEA, and the third one was applied only for result comparisons. 

 A total of 560 pathway information with size ranging from 10 to 500 were used for 

pathway analysis; each pathway has corresponding null distributions generated by 

permuting either gene order or class label for 10,000 times. The unadjusted p-values of 

the 560 pathways were corrected for multiple hypotheses test using Bonfferoni 

correction or q-value conversion in f0 scoring function and f1 scoring function, 

respectively. Detailed parameter settings in each method were provided in Table A-2. 

 Histograms of unadjusted p-values for 560 pathways under different permutation 

types or scoring schemes were displayed in Figure 4-4 and among them a number of 

pathways were deemed significant under both scoring functions. This phenomenon was 

different from that in GSEA (Table A-3) and suggested an elevated statistical power in 

the methods applied here. Detailed significant pathways with adjusted p-value passing 

the criteria of 0.05 in both datasets were listed in Table A-3,A-4. 

 After all pathways had undergone pathway score evaluation and p-value 

adjustment, network analysis was applied further to investigate molecular mechanisms 
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Figure 4-4. Histograms of unadjusted p-values for 560 pathways in database.

   Pathway p-values in the upper panel were derived by permuting gene orders and 

   the lower ones by permuting phenotypes. Bars in green color stand for the result 

   when applying f1 scoring function and that in orange color come from result of f0

   scoring function. 

based on the interested pathways. These two scoring methods identified significant 

pathways for further analysis. For example, “Cell cycle” pathway was identified by f0 

scoring, whereas “Focal adhesion” pathway was selected by the f1 scoring method. In 

principle, cancer-associated pathways with larger pathway size were chosen out for 

examples from those with adjusted p-value lower than 0.05 in both datasets. 
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4.4 Network analysis - within pathways 

 In this and the next section, network analysis was applied on significant pathways, 

and the focus will be on extracting main components from pathways that take the 

interplay of member genes into consideration. 

 Within the search space containing all nodes in the pathway, candidate 

subnetworks each with size 8 were formed using f1 scoring. They were then merged into 

one main component with size basically 0.75 times the space size, or bounded by the 

size of 15, 25 for small, large search spaces respectively. The whole process was 

summarized in Table 4-2. 

Table 4-2. Network analysis procedure and the consistency with GSE7670. 

NTUH (m=0) Cell cycle Focal adhesion 

search space (entire pathway) 90 199 

candidate subneworks 60 111 

top subneworks merged 10 10 

1st main component size 19 25

leading-edge subset size 35 63 

consistency with GSE7670 74% 60% 

Fisher’s exact test p-value 9.4E-08 4.6E-10 

 This table showed that the search spaces of two pathways were dramatically 

reduced from 90 and 199 to 19 and 25 of their 1st main components, respectively. 

Furthermore, the 1st main component sizes were also smaller than the sizes of leading 
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edge subsets obtained by GSEA that equaled to 35 and 63. 

 To examine the robustness of this method, members of main components derived 

from NTUH dataset were compared with that obtained from GSE7670 dataset under 

same analysis procedures. The result of comparison was also shown in the table that the 

1st main component from NTUH dataset had a significant overlap (74% and 60% 

overlap and the overlaps were all with p-value << 0.05) with that derived from 

GSE7670 dataset. 

 These main components obtained by network analysis are displayed in Figure 4-5, 

where gene/gene products are arranged according to their cellular locations. For detailed 

expression level and annotations of each gene in Figure 4-5, please refer to Table A-5. 

 Evidently the major difference between main components obtained from the two 

pathways is that a coherently up-regulation in tumor samples is observed in Figure 4-5A, 

while such coherence does not appear in Figure 4-5B. This observation once again 

reveals the main difference of Tian method and modified Tian method: the former 

emphasizes pathways with moderate but concordant changes and the latter focuses on 

pathways with significant degree of overall changes, regardless of up- or down- 

regulation. 
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Figure 4-5. Main components extracted from two pathways. After network analysis, main 

 components were derived from (A) cell cycle pathway and (B) focal adhesion pathway. 

 Genes were arranged by their subcellular locations and colored by expression fold change 

 values (red for up-regulation and green for down-regulation in cancer phenotype). 

 Rectangles indicate that genes were found in GSE7670 and NTUH dataset in common, 

 whereas circles mean that genes were identified only in NTUH dataset. 
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 In addition, we also applied network analysis using f2 scoring with m=1 and the 

rest settings remained unchanged on the two pathways. The main components yielded 

by this analysis share approximately 70-90 percent similarities with previous ones. 

Some nodes playing essential roles of maintaining the integrity of main components did 

exist, however, Figure A-3 and Table A-6 indicate that an expected situation of catching 

clues of key nodes bridging separately connected subgraphs did not show apparently. 

4.5 Result demonstration and comparison 

4.5.1 Mapping the main component and leading edge subset on KEGG pathways 

 Two main purposes of this section is to illustrate how the main component 

obtained by network analysis differed from the leading edge subset obtained by GSEA 

from biological viewpoints, and to highlight the fundamental difference between 

information stored in pathway databases and interaction databases, thus to present the 

benefit it brought to integrate both information with microarray data. 

 Figure 4-6 was produced by an on-line tool provided by KEGG [45], where 

members of leading edge subset and main component for each pathway were 

simultaneously mapped onto simplified pathway figures. It seemed that most members 

of main components overlap with leading edge subsets, however, they actually share an 

overlap of about 60-80 percent as summarized in details in Table A-7. 
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Figure 4-6. Overlay the main component and leading edge subset on the original pathway.
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 In the simplified figure, rectangles represent genes, complexes or families, etc. in (A) cell 

 cycle pathway and (B) focal adhesion pathway. Members of main components were filled 

 in red/green colors standing for up-/down-regulation in cancer phenotype. Members of 

 leading edge subset were colored in grey. Note that those nodes with black border and 

 filled with color were common members of both sets, while those with white borders were 

 found in main components only. In addition, dashed red lines were added artificially 

 implying interaction relationship not recorded in KEGG databases. 

 In Figure 4-6, the members of the leading edge subsets were colored in grey. 

Although these genes show statistically significances, they located in the pathway in a 

scattered manner. In contrast, main components are tightly interconnected subset of 

genes because it took topology into consideration. It represents the most significant 

module in the pathway, which would be more biologically meaningful when compared 

to the leading edge subset that only takes gene significances into account. 

 Furthermore, the dashed red lines represent possible interactions which do not 

appear in the predefined pathway may illustrate the additional information one would 

get when incorporating interaction data with pathway information. The benefit of 

bringing in the additional information would become more valuable later in section 4-6. 

4.5.2 GO term enrichment analysis 

 In this section, we try to manifest the biological meanings of these main 

components. It was achieved by using DAVID to compare the GO terms enriched in 

both the entire pathway and the main component extracted from the pathway. As 



42 

 

mentioned in section 2.3, DAVID evaluates the randomness of each GO term being 

associated with a user-specified gene list and assigns it with both an EASE score and a 

false discovery rate (FDR) reflecting the significance of the EASE score. After that, 

similar GO terms were sorted into a cluster and gave the cluster a new enriched score by 

summarizing member term EASE scores. This enriched score was then used to rank 

relative importance of clusters. 

 DAVID was used to separately evaluate GO terms/clusters associated with gene 

lists containing the entire pathway and the main component. Then the GO terms or 

clusters that were contained terms with significant association (FDR<0.05) with the 

gene list were visualized by a pie chart. Each portion in the pie chart stands for a GO 

term/cluster, and the proportion of gene list members involved in this cluster/term is 

showed as a percentage. In addition, the rankings of relative importance of clusters are 

specified on the pie chart. Note that different GO term/cluster may probably contain 

overlap information, so the overall percentage in the pie chart would not be exactly 100. 

Figure 4-7, 4-8 display the result obtained in focal adhesion pathway and Figure 4-9, 

4-10 for that in cell cycle pathway. 

 In Figure 4-7, GO terms/clusters enriched in focal adhesion was identified in terms 

of cellular component category. It was obvious that Cluster C turned to occupy a larger 
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proportion in the main component than in the entire pathway. It suggested that when 

reducing the list of genes from the entire pathway to the main component, the functions 

that the list of genes able to play had gradually specialized. It might also imply that 

certain functions are more differentially regulated than other functions in the original 

pathway, and that these important functions could be revealed by methodology. 

Furthermore, when member terms of Cluster C were individually considered in Figure 

4-7C, each of them showed a consistent trend of such function specialization in both 

leading edge subset and main component. In contrast, this specialization was not 

observed in a random subset that was randomly chosen from the entire pathway and 

with the same size of the main component. In terms of molecular function category in 

Gene Ontology, several significant GO terms not grouped into clusters (Term B-F) also 

showed this consistent trend of function specialization in Figure 4-8C. 

 Such trends did not appear only in focal adhesion pathway. In Figure 4-9 cell cycle 

pathway was analyzed using GO biological process terms, where Cluster A showed also 

a dramatic increase from sharing 36% of the entire pathway to sharing 63% of the main 

component. When analyzing cell cycle pathway using GO cellular component in Figure 

4-10, the function specialization also existed since the proportion Cluster C,D,E 

occupied were all amplified in Figure 4-10B. 
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(A) (B) 

(C)

Figure 4-7. GO terms (cellular component 5) enriched in focal adhesion. Pie charts were 

   used to illustrate how GO clusters share the members of (A) the original pathway 

   and (B) the main component, where the rankings represent relative significances of 

   clusters. Terms in Cluster C were listed in (C) and their hierarchical relationships 

   are available in Figure A-4. In (C), genes involved in each term accounted for  

   different percentages in the four sets and the percentages were illustrated as a bar 

   chart with the digit on the bar specifying the actual number of genes involved in this 

   term. The random set was randomly selected from the original pathway and with 

   the same size as the main component. 
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(A) (B) 

(C) 

Figure 4-8. GO terms (molecular function 1-5) enriched in focal adhesion. Pie charts were 

   used to illustrate how GO terms/clusters share the members of (A) the original  

   pathway and (B) the main component. In addition, significant GO terms occupying 

   an amplified proportion in main component were listed in (C). The relationships 

   between these terms are illustrated in Figure A-5. In (C), genes involved in each 

   term accounted for different percentages in the four sets and the percentages were 

   illustrated as a bar chart with the digit on the bar specifying the actual number of 

   genes involved in this term. The random set was randomly selected from the  

   original pathway and with the same size as the main component. 
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(A) (B) 

(C) 

(D) 

Figure 4-9. GO terms (biological process 5) enriched in cell cycle. It illustrates how GO  

   terms/clusters share the members of (A) the original pathway and (B) the main  

   component, where the rankings represent relative significances of clusters. Terms in 

   cluster A were listed in (C) and their hierarchical relationships are illustrated in 

   Figure A-6. In (C) and (D), genes involved in each term accounted for different  

   percentages in the four sets and the percentages were illustrated as a bar chart with 

   the digit on the bar specifying the actual number of genes involved in this term. 
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(A)  (B) 

(C)  (D)  

Figure 4-10. GO terms (cellular component 5) enriched in cell cycle. It illustrate how GO 

clusters share the members of (A) the original pathway and (B) the main component, where the 

ranking represents relative significance of clusters. In (C) and (D), member terms in cluster 

C,D,E were listed and their relationships are illustrated in Figure A-7.Genes involved in each 

term accounted for different percentages in the four sets and the percentages were illustrated as 

a bar chart with the digit on the bar specifying the actual number of genes involved in this term. 
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 By showing that the main component focuses on specific functionality than the 

original pathway does, the analyses in this section manifest the biological meanings of 

these subnetworks. More specifically, the subnetwork suggests that a group of 

interconnected genes probably performing a specific function that is most dysregulated 

in the original pathway. 

4.6 Network analysis – protruding pathways 

  This section shows a preliminary attempt to extend searches to outside the pathway. 

During network analysis, root nodes remained to be each member of the pathway in 

order to focus on the dysregulated pathways. Almost all procedures were unchanged, 

the only setting different from that in section 4.4 is that the search space changed to be 

the global interaction network. It means that we aim to find subnetworks containing 

genes potentially interacting with these predefined pathway members. By doing so, it 

allowed an exploratory analysis relating the pathway through giving researchers hints to 

important potential interactions that are related to known pathways but are not defined 

inside them. The results were displayed in Figure 4-11 and annotations of these genes 

were listed in Table A-8. The subnetworks in Figure 4-11 actually contain genes not 

defined in the pathways. These genes are represented as circles and those genes being 

the member of original pathways are displayed by rectangles. 



49 

 

(A)

 

(B)

Figure 4-11. Extend subnetwork search to the global interaction network. Based on (A) cell 

cycle pathway and (B) focal adhesion pathway, subnetworks containing potential interacting 

gene neighbors of the pathways are obtained by extending network analyses to the global 

interaction network. In these subnetwork, genes were arranged by their subcellular locations 

and colored by expression fold changes (red for up-regulation and green for down-regulation in 

cancer phenotype). Rectangles represent genes’ being a member of the interested pathway while 

circles stand for the neighboring genes interacting with the pathway. 
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Chapter 5 Discussion 

 It is worthwhile to emphasize that the value of this methodology lies in the 

motivation to integrate both analyses, since it may complement each other and make use 

of both advantages. Although our methodology followed Tian’s pathway analysis 

method and GXNA, they can be substituted with comfort by any other pathway/network 

analysis method possessing the same capability. 

 In this chapter, it is explained in separate sections why the methods adopted here 

differed from the original ones and how these differences might influence the results. 

Furthermore, the weaknesses under these methods were revealed and corresponding 

suggestions were proposed. Finally, some suggestions on future perspectives will be 

mentioned 

6.1 Input matrix creation 

 To obtain an input matrix prerequisite for pathway/network analysis, redundant 

probe sets were removed by eliminating non-representative probe sets for each gene. 

Three general approaches were usually adopted: to represent each gene by its maximal 

or median probe set in terms of differential expression or by the average of all its probe 

sets. 

 To prevent the gene’s significance level from being affected by potentially 



51 

 

ineffective probe designs, maximal probe set was selected in section 4.1. However, 

when making such a decision, the trade-off is to have possibly amplified the noise 

which may be produced by a high-scoring probe set targeting at several different genes. 

The peak illustrated in Figure 4-3 is an example for this situation. Certainly, it could be 

avoided by simply truncating those non-specific probe sets; however, they were 

preserved here in order to reserve as many information as possible. 

6.2 Pathway analysis 

� Two scoring functions in pathway analysis 

 As mentioned in section 3.3, the original f0 scoring function is slightly altered into 

f1. Doing this is not for any mathematical consideration, whereas different types of gene 

sets were targeted by the two scoring functions. f0 method aims to find a set of genes 

with concordant changes while they might not show individually significant differential 

expression; f1 targets to select sets that contain a proportion of significant genes higher 

than that outside the sets regardless of their concordance in terms of direction of 

changes. This difference was revealed in Figure 4-5, where a consistent up-regulation in 

cancer phenotype was observed in Figure 4-5A but not in Figure 4-5B. The decision of 

scoring scheme to use during analysis is indeed dependent on one’s purpose. For 

example, if one focuses on downstream targets of a transcription factor, f0 would just fit; 
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in contrast, if one is searching for chains of signaling transductions or regulatory 

circuits that involve various activation/inhibition relationships and lead to an indefinite 

overall direction of change, f1 might be more close to the need. 

� Permutation method and pathway score normalization 

 Significance level of a pathway score was derived by its null distribution and 

served as the major index to assess importance of a pathway. Tian et al. [27] suggested 

two types of permutation methods that correspond to different biological questions: one 

is to permute gene order and the other is to permute phenotypes. 

 In the case of phenotype permutation, it is inadequate to directly shuffle all class 

labels as it usually did because paired normal-tumor arrays were utilized here. It is 

because that doing so, one is further assuming the invariance of expression profiles 

among patients, which is obviously not the truth. Alternatively, phenotype permutation 

is achieved by randomly deciding whether to exchange each pair of tumor and normal 

class labels. 

 The effect of this modification did not show apparently because both ways of 

shuffling yield mostly significant results. In fact, cancer tissues usually exhibit great 

differences from normal ones and thus, it was not surprising to identify so many 

pathways passing the significant criteria in Figure 4-4 when comparing their scores with 
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null distributions assuming no differences exist between phenotypes. Therefore, 

phenotype permutation is accordingly much less discriminative than gene order 

permutation. 

 Furthermore, a limited resolution problem evolves due to the incapability of a null 

distribution to cover a broad-enough range of pathway scores. Inevitably, the weakness 

is derived from the essence of resampling procedures. It occurs in the situation where 

insufficient permutations are performed and becomes especially evident when using a 

dataset whose genes showed dramatically altered expression, and this is exactly the case 

here and leads to a lot of pathways with same extremely small significance level. 

 In such situations where significance level is unable to discern pathways, 

normalized pathway score serves as a further index to compare their importance. Tian et

al. [27] normalize pathway scores by using the following principle: if the score falls 

within its null distribution it is replaced with its quantile, and those falling far from the 

null distribution are converted into corresponding z-scores. 

 However, z-scores might not be directly comparable to each other since null 

distributions differ from one another in different datasets. Thus, normalized scores 

obtained by this method should always be used with notice, especially when many of 

them are derived from z-score transformation. This is because it might fail to be reliable 
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when z-scores depend largely on the features of their null distributions. Therefore, when 

the pathway analysis indicates it is a significant pathway, it really is, while if it suggests 

that one pathway is the most dysregulated among these significant results, users should 

always be more careful. 

� The roles of this methodology in relatively large and small pathways 

 The ability of this methodology to extract modules within pathways is both 

applicable and profitable, especially in large pathways such as the focal adhesion 

pathway selected here (size=200). It is not only because a pathway with handful amount 

of members are easier to be manipulated but also for a larger group of pathway 

members would generally form a more interconnected network by using information in 

interaction databases. 

 At present, manually curated pathways remain the most reliable source for 

pathway analysis, yet many of the public databases, such as BioCarta [7], tend to be 

more conservative, since relatively small number were recorded when they were 

compared with the actual size, which was believed to contain a few hundred or even 

thousands of molecules. An overall concept of pathway size distributions in the 

database were illustrated in Figure A-8. It shows that most pathways are with a size 

smaller than 50. 
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 However, one might question what this methodology can actually provide in terms 

of small pathways? In fact, the contents of individual pathway are expected to be 

improved if more biological data are gathered. With the aid of a computational tool that 

enables the extension of modules to genes, which locate outside a predefined pathway, 

it has great potential to point researchers to those interacting neighbors which are 

suspicious to be the missing components in the existing pathways with relatively small 

size. This applicability is yet to be widely realized by other computational analysis 

tools. 

6.3 Network analysis 

� Two scoring functions in network analysis 

 Specifically, to assess whether a group of genes (either a pathway or a subnetwork) 

is related to a study, two indices are the major concern: a score independent of group 

size and a significance level of the score. 

 When scores do not depend on size it means that they are directly comparable to 

each other. In terms of network analysis it implies the ability to conduct flexible-size 

subnetwork search which may identify modules with indefinite size. It can be achieved 

by directly implementing T  scoring scheme (equation 8 in Nacu et al. [33], Ideker et 

al. [36]) or parametric T scoring scheme (equation 6 in Nacu et al. [33], default 
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scoring function in GXNA). Otherwise, it is required to eliminate dependency on group 

size before comparison. In the example of nonparametric T scoring scheme (f0 ad f1 

scoring functions), scores are normalized by using the reference null distribution. 

 However, as illustrated in Figure 4-3, the filtered t-scores do not follow a normal 

distribution as expected. This situation was not improved when median probe set was 

used to represent a gene. The parametric assumption was thus failed to be established 

and this is the major reason why we did not to apply GXNA’s scoring function in our 

network analysis. On the other hand, nonparametric counterpart requires large amount 

of resampling and thus being time inefficient. As a consequence, a fixed-size approach 

is adopted where the comparison of scores is no longer an issue, and thus f1 scoring 

method was used in network analysis here. 

 In addition, it is known that regulations mechanisms spread from DNA/mRNA 

level to protein level, which implies the probability of certain proteins being key players 

to the connection of significant components, but they may show no differentially 

expression at mRNA level, as mentioned in chapter 1. 

 In GXNA it filtered out probe sets with small variances, and doing this might lose 

tract of these key nodes. However, in the work of Ideker et al. [32] such problem did 

not exist because it utilized simulated annealing. In fact, their main objectives are 
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different. GXNA aimed to identify subnetworks where all members show certain degree 

of differential expression and Ideker et al. [32] tried to adapt the algorithm to the events 

actually happening in biological systems. Unfortunately, simulated annealing costs too 

much time, so we followed GXNA’s approach. In order to compensate it, devised f2 

scoring function was utilized. The new scoring function is able to tolerate key nodes as 

shown as in Figure A-3. 

 As in Table A-6, the key nodes found in the two pathways did not pass the 

significance criteria. However, the result suggested that the two groups of densely 

connected genes may be bridged by a key node did not show apparently. Nonetheless, 

this idea still reserves flexibility to those nodes that are not identified by mRNA 

microarrays studies. 

� Starting condition : root nodes and search space 

 In terms of searching algorithm, we basically follow the greedy approach in 

GXNA, while some modifications were made in the determination of root nodes and 

search space. 

 Different from GXNA, which always chooses random root nodes and searches 

under global interaction network, the starting condition in this methodology is relatively 

much more flexible. The search space and root node determination depends on the 
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purposes. The root nodes can be members of specific and interesting pathways, and the 

search space can be the global interaction network or its subsets by functional or 

positional groupings, and this provides full flexibility to meet biologists’ interests. 

 In section 4.4, we aimed to obtain the most important module in a pathway, so the 

root nodes were pathway members and the search space was defined within the pathway. 

In section 4.6, since the purpose was to explore genes interacting with known pathway 

members, the root nodes were pathway members and the search space was the global 

interaction network. 

 Within the most significant subnetwork obtained by GXNA (visualized in Figure 

A-2), few members hint to a common pathway. In contrast, the results in Figure 4-5, 

Figure A-3 and Figure 4-10 obtained by our methodology were much more focused on 

specific pathways. This advantage to conduct focus-oriented analyses evidenced that 

these modifications make our approach much more useful. 

� Merging process 

 GXNA allows both fixed-size and flexible-size subnetwork search. The reason 

why the flexible-size approach was not applied was discussed in the previous section. In 

this methodology we only allows for fixed-size search; however, to compensate this 

disadvantage, a merging process was developed in this methodology. 
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 It is hypothesized that once an information flow is triggered, the signal propagates 

sophisticatedly along its pre-designed paths including various interactions between 

molecules. Once a region existed strong evidence of such information flow, which 

amounted to the existence of a group of connected genes showing significant 

differential expression, its neighboring genes would follow the gradient of evidence 

strength and finally reach the region during the greedy extension algorithm. Thus in the 

methodology here such a region would be implied within several candidate subnetworks. 

Once the region with the strongest evidence is identified, the merging process is used to 

reshape the region. However, there might be more than one such informative region and 

this is the reason why we accept to specify multiple main components. 

 A potential alternative solution is to apply the clustering method in DAVID. It 

proposes to cluster the candidate subnetworks to identify overlapped regions, and the 

clusters are ordered in a fashion that each of them can be viewed as a main component. 

� Incompleteness of biomolecular interaction information 

 Although a pathway is an integration of interacting genes that shall be also seen in 

biomolecular networks, it is observed that, small pathways are prone not to be 

connected into an integral component because of the incompleteness of interaction 

information. In commercial databases the knowledge base are constructed by hiring an 
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army of experts to curate information from public databases or scientific literatures. On 

the other hand, teams maintaining public databases might also have transformed their 

pathway information into corresponding formatted data such as the KEGG Markup 

Language (KGML). These data enable automatic pathways drawing and provide 

facilities for computational analysis. The incompleteness of interaction data can be 

improved by incorporating such formatted data from these pathway databases.

6.4 Future perspectives 

� Future perspective on pathway analysis methods 

 Among various methods developed for pathway analysis, most of them do not take 

the topology of pathways into consideration. While in contrast, it is of tremendous need 

to take into account the pipelines (physical structure) that enables the information flow 

during pathway activation. It is especially important in a cancer-related study because 

pathways are with increased probability to contain more significant genes than random 

selection. 

 Draghici et al. [53] detected pathway dysregulation by an impact analysis that take 

into account some crucial factors of genes such as differential expression, interactions 

and positions in the pathway, etc. It was done by incorporating all upstream information 

as well as measures of expression change such as fold-change into the scoring function, 
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which would reduce to traditional statistics when the additional information are 

forcefully ignored. Such a scoring function is actually designed for weighting the 

chained activations in gene signaling network, while it lost attention to the existence of 

genes acting in coordinated fashion. Moreover, a prior filtering for significant genes is 

also a prerequisite for this analysis. Although the idea in their work seems intuitive, 

they had indeed made a step ahead to practically realize the incorporation of upstream 

information. In the future, solutions shall gradually emerge and we expect a biologically 

reasonable method for pathway analysis including topology evaluation and without 

prerequisite filtering. 

� Future perspectives on this methodology 

 Two strategies in terms of searching pathway cross-talks are suggested here. 

1. Focusing on cross-pathway inhibition. 

 Pathways suspicious to interact with each other are suggested to be identified 

previous to applying network analysis. A possible approach begins with identifying 

main components in separate dysregulated pathways. By calculating canonical 

correlations between these modules, those pathways with potential correlated gene 

expression would be then identified. Based on these modules rather than the entire 

pathways the cross-talks are to be found between them using network analysis. While in 
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terms of small pathways, the component extraction step could be ignored. 

2. Focusing on upstream/downstream targets of pathways 

 Another task-oriented approach is to find the upstream or downstream targets of 

pathways. Other than cross-pathway inhibition that contains many interactions in the 

transverse direction in terms of cell structure, pathway cross-talks in the vertical 

direction is also interesting to many biologists. It might be, for instance, the binding of 

ligands and receptors or the regulation of TFs on target genes. Such events could be 

highlighted by extending modules to ligands/TFs outside the pathway. 
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Chapter 6 Conclusions 

 By integrating advantages in both pathway analysis and network analysis, we 

developed a methodology that is able to perform deep investigations in dysregulated 

pathways and to perform exploratory analyses based on these pathways. This 

methodology was applied to our own dataset of lung cancer microarrays and the results 

were consistent with that of a public lung cancer dataset (GSE7670). A knowledge 

database was constructed in the very beginning, and all needed information during 

analysis is available within this database. 

 In section 4.3, both Tian method and modified Tian method were applied on the 

datasets to identify dysregulated pathways. Table A-3 showed the better statistical 

power of these two methods than that of another pathway analysis method GSEA. In 

network analysis, one dysregulated pathway in common to both dataset was selected by 

each method, respectively: cell cycle pathway was selected by Tian method and focal 

adhesion pathway was selected by modified Tian method. 

 In section 4.4, we attempted to find the most differential component inside 

dysregulated pathways from the viewpoint of biomolecular interaction network, and this 

component was then referred to as a module or a main component. The main component 

in cell cycle and focal adhesion pathway, which were presented in section 4.4, found in 
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our dataset were consistent with that in the GSE7670 dataset. 

 In section 4.5.1, members of main components and leading edge subsets obtained 

by GSEA were simultaneously overlaid on the conceptualized pathway map. In addition, 

potential interactions absent in predefined pathways were complemented by information 

in interaction database. Figure 4-6 revealed the advantage of incorporating biomolecular 

interaction network during analysis: it showed that despite the members of these two 

sets overlapped to some degree, the main component was topologically more connected 

than the leading edge subset did. 

 Furthermore, these modules were analyzed by DAVID to elucidate the underlying 

biological meaning in terms of different gene ontology categories. It was shown in 

section 4.5.2 that compared to the original pathways, the main components indeed show 

a specialized functionality and such trend of specialization appeared consistently in both 

leading edge subset and main component of these two pathways. However, the main 

component is more advantageous than the leading edge subset in two aspects: the size 

of leading edge subset is much larger than that of main component and makes the main 

component seemed much easier to be further investigated; the leading edge subset does 

not take interaction between genes into consideration as is done in this methodology. 

Therefore, the main component would be more biologically meaningful in terms of 
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analysis procedures. 

 With the confidence to extract biologically meaningful modules by this 

methodology, further focus-oriented investigations would be easier to be conducted. For 

example, a preliminary attempt was made in section 4.6 to search for possible missing 

components in pathways or cross-talks between pathways by extending the search space 

to outside the dysregulated pathways. 

 Although it is in spirit an ad-hoc procedure, this methodology provides an adequate 

tool that implements problem-specific algorithm to investigate topics of interest. It is 

valuable in terms of application since it help researchers to highlight on their research 

interests. Undoubtedly, this methodology could be extensively applied to other array 

experiments of similar design regardless of the disease under study. 
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APPENDIX
 

Figure A-1. Top cancer killers in Taiwan in 2008. See [54] for the source of this figure. 

Table A-1. Statistics of t-scores in two datasets. 
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 Figure A-2. The most significant subnetwork identified by GXNA. The result obtained 

     by GXNA program was visualized using Pathway Designer in IPA . 
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Table A-2. Parameters set during pathway analysis.

GSEA NTUH_real_t (f0) NTUH_abs_t (f1)

set_min 10 10 
num 100 100 

nperm 10000 10000 
plot_top_x 200 200 
set_max 500 500 

chip HG_U133A.chip HG_U133A.chip 
gmx c2.cp.v2.5.symbols.gmt c2.cp.v2.5.symbols.gmt 
mode Max_probe Max_probe 
sort real abs 

median FALSE FALSE 
norm meandiv meandiv 

rnd_type no_balance no_balance 
permute phenotype phenotype 
metric tTest tTest 

rnd_seed timestamp timestamp 
collapse TRUE TRUE 

make_sets TRUE TRUE 
scoring_scheme weighted weighted 

Table A-3. Significant pathways identified by different methods. 
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Table A-4. Lists of significant pathways identified by f0 and f1 scoring function. 

Pathways with q-value < 0.05 under f0 scoring scheme 

Pathway Name Size Average t-score 

GLUTAMATE_METABOLISM 23 3.80 

PYRIMIDINE_METABOLISM 59 3.32 

HSA00240_PYRIMIDINE_METABOLISM 74 3.28 

CELL_CYCLE_KEGG 85 3.09 

integrin signaling 175 -1.03 

HSA04010_MAPK_SIGNALING_PATHWAY 240 -1.13 

HSA04810_REGULATION_OF_ACTIN_CYTOSKELETON 190 -1.18 

SMOOTH_MUSCLE_CONTRACTION 138 -1.58 

HSA04650_NATURAL_KILLER_CELL_ 
MEDIATED_CYTOTOXICITY 124 -2.05 

G_PROTEIN_SIGNALING 91 -2.20 

PPARAPATHWAY 54 -2.64 

PROSTAGLANDIN_SYNTHESIS_REGULATION 29 -4.85 

Pathways with Bonferroni adjusted p-value < 0.05 under f1 scoring scheme 

Pathway Name Size Average t-score 

CARDIACEGFPATHWAY 18 5.949233 

PROSTAGLANDIN_SYNTHESIS_REGULATION 29 5.3233 

HSA04512_ECM_RECEPTOR_INTERACTION 82 4.744201 

BREAST_CANCER_ESTROGEN_SIGNALING 101 4.694804 

HSA04520_ADHERENS_JUNCTION 72 4.631791 

HSA04510_FOCAL_ADHESION 190 4.516165 
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Table A-5. Annotations of genes present in Figure 4-5. 

Genes in the main component of cell cycle pathway. (Fig. 4-4A) 

Gene Symbol Fold Change p-value Normal Expression Tumor Expression

CDH1 2.4 1.26E-13 1994.5 381.8 4752.1 1690

CCNB2 5.6 5.75E-11 69.8 23.3 388.4 401.5

BUB1 4.6 8.02E-09 31.6 9.9 144.9 144.1

BUB1B 6.0 1.56E-10 57.3 20.8 344.6 354.3

CDC2 3.5 1.33E-08 155.5 45.5 540.5 521.6

BUB3 1.4 4.94E-08 693.2 98.2 957.9 211.7

CCNA2 3.9 1.69E-07 33.1 7.8 129.6 148.5

CCNB1 6.3 1.32E-08 59.4 20.7 371.6 482.8

CDC20 7.1 5.01E-10 58.9 15.4 415.8 460.9

MAD2L1 5.1 4.78E-08 56.3 23.3 284.9 315.1

PCNA 2.0 5.86E-07 890.8 196.1 1787.4 1005.2

ESPL1 1.8 5.29E-07 67.9 16.3 119.7 65.6

CDC25A 2.2 7.12E-07 51.3 12.3 115.2 92.8

E2F3 2.0 1.28E-07 270 87.5 543.4 295.3

E2F4 1.2 4.20E-07 606.6 140.3 739.5 213.7

HDAC1 1.9 1.20E-07 1181 222.6 2198.6 1099.5

HDAC3 1.3 7.30E-06 467.5 45 604.7 156.6

HDAC4 -1.6 1.05E-07 260.4 75.8 161.8 80.4

PTTG1 4.8 1.27E-09 476.2 166.2 2262.6 2763.6
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Genes in the main component of focal adhesion pathway. (Fig. 4-4B) 

Gene Symbol Fold Change p-value Normal Expression Tumor Expression

SPP1 29.7 1.02E-15 310.8 476.6 9227.8 5885.9 

PDGFA -1.2 5.43E-04 96.8 28 80 24.5 

PDGFB -1.8 2.25E-09 264.9 80.4 147.2 59.4 

PDGFC 2.1 4.57E-07 1006 221.2 2145.3 1055 

COL1A1 13.5 1.50E-13 125.4 96.9 1698.6 1360.4 

COL1A2 4.6 1.07E-10 2443.1 1279.9 11195.9 6145 

LAMA1 1.1 5.91E-04 43.7 6 48.5 6 

TNC 2.9 0.0012183 862.4 535.4 2537.8 2580.6 

VWF -3.1 2.53E-11 4647.6 1467.5 1479.5 1131.8 

FYN -2.6 2.71E-10 421.8 158.3 165 115.1 

PDGFRA -1.3 7.42E-04 2110.7 752.4 1682.4 989.7 

CAV1 -6.4 2.17E-14 9715.3 2470.9 1509 1142.2 

CAV2 -5.1 1.12E-11 4455.4 1139.8 876.3 658.2 

ITGA2 2.1 7.72E-08 269.1 90.6 576.7 364.1 

ITGA5 -1.7 1.40E-07 880.6 498 517.1 360.2 

ITGA8 -2.7 1.60E-09 552.3 203.9 203.5 157.2 

ITGAV 1.4 4.10E-04 2059.6 491.8 2815.4 1051.6 

ITGB5 1.3 0.0018841 519.2 88.9 659.2 190.2 

ITGA2B -1.3 7.16E-04 35.3 11.7 27.3 5.1 

PAK1 1.7 1.05E-05 47.7 13.3 82.5 51.8 

ROCK1 -1.4 2.15E-06 1952.1 387.7 1425.7 394.7 

PXN -1.5 1.47E-08 624.4 126.9 425 122.2 

PPP1CB -1.7 4.68E-12 1207.2 291.1 708.6 220.1 

PPP1R12A -1.5 1.63E-08 1162.9 225 776.2 215.6 

PTEN -1.4 7.32E-07 163.8 54.5 116.9 43.2 
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(A)

 

(B)

 

Figure A-3. Main component obtained by f2 scoring method. Genes with symbol in bold face 

    represent key nodes. Rectangles indicate genes also found by f1 scoring method.
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Table A-6. Annotations of genes present in Figure A-3. 

Genes in the main component of cell cycle pathway. (Fig. S3A) 

Gene Symbol Fold Change p-value Normal Tumor Key node

CDH1 2.4 1.26E-13 1994.5 381.8 4752.1 1690 no
CCNB2 5.6 5.75E-11 69.8 23.3 388.4 401.5 no

CDKN1A -1.8 9.71E-05 2557.9 1746.5 1384.7 886.7 yes
BUB1 4.6 8.02E-09 31.6 9.9 144.9 144.1 no

BUB1B 6.0 1.56E-10 57.3 20.8 344.6 354.3 no
CDC2 3.5 1.33E-08 155.5 45.5 540.5 521.6 no

ORC6L 2.6 8.60E-09 125.2 33.6 327.4 219 no
MAD2L1 5.1 4.78E-08 56.3 23.3 284.9 315.1 no
CDC45L 2.3 5.14E-09 63.1 19.6 145.9 108.8 no
CCNB1 6.3 1.32E-08 59.4 20.7 371.6 482.8 no
CDC20 7.1 5.01E-10 58.9 15.4 415.8 460.9 no

CDC14A -1.7 4.11E-08 37.3 11.2 22.3 7.6 no
E2F1 1.4 3.45E-05 114.2 15.3 155.1 71 no
E2F3 2.0 1.28E-07 270 87.5 543.4 295.3 no
E2F4 1.2 4.20E-07 606.6 140.3 739.5 213.7 no

HDAC1 1.9 1.20E-07 1181 222.6 2198.6 1099.5 no
TP53 1.6 8.12E-05 198.9 53.5 314.8 129.4 yes

HDAC3 1.3 7.30E-06 467.5 45 604.7 156.6 no
CCNE1 5.5 7.38E-06 99.2 24 548.6 1757 no
PTTG1 4.8 1.27E-09 476.2 166.2 2262.6 2763.6 no
HDAC4 -1.6 1.05E-07 260.4 75.8 161.8 80.4 no

 
 

Genes in the main component of focal adhesion pathway. (Fig. S3B) 

Gene Symbol Fold Change p-value Normal Tumor Key node

SPP1 29.7 1.02E-15 310.8 476.6 9227.8 5885.9 no
PDGFA -1.2 5.43E-04 96.8 28 80 24.5 no
PDGFB -1.8 2.25E-09 264.9 80.4 147.2 59.4 no
PDGFC 2.1 4.57E-07 1006 221.2 2145.3 1055 no

COL1A1 13.5 1.50E-13 125.4 96.9 1698.6 1360.4 no
COL1A2 4.6 1.07E-10 2443.1 1279.9 11195.9 6145 no



78

COL3A1 4.5 1.24E-11 1266.8 787.7 5732.3 2430.5 no
COL5A1 4.2 1.56E-10 591 290.9 2470.4 1754.9 no

TNC 2.9 1.22E-03 862.4 535.4 2537.8 2580.6 yes
THBS1 1.4 1.97E-02 402.5 317.4 552.2 351.5 yes
VWF -3.1 2.53E-11 4647.6 1467.5 1479.5 1131.8 no
FYN -2.6 2.71E-10 421.8 158.3 165 115.1 no
ILK -1.2 5.99E-05 1962.9 481.1 1609 364.9 yes

PDGFRA -1.3 7.42E-04 2110.7 752.4 1682.4 989.7 yes
ITGA2 2.1 7.72E-08 269.1 90.6 576.7 364.1 no
ITGA5 -1.7 1.40E-07 880.6 498 517.1 360.2 no
ITGAV 1.4 4.10E-04 2059.6 491.8 2815.4 1051.6 no
ITGB6 -1.1 6.31E-02 121.9 136 109.9 201.1 yes
ITGA8 -2.7 1.60E-09 552.3 203.9 203.5 157.2 no
CAV1 -6.4 2.17E-14 9715.3 2470.9 1509 1142.2 no
CAV2 -5.1 1.12E-11 4455.4 1139.8 876.3 658.2 no
RAC1 1.3 1.21E-07 6237.6 726.4 7932.8 1485.3 no
MYLK -1.8 2.76E-08 3154.5 1181.1 1746.1 1214.2 no
PIK3R1 -1.9 3.88E-09 1025.9 382.9 538.1 273.8 no
ROCK1 -1.4 2.15E-06 1952.1 387.7 1425.7 394.7 yes

SRC 1.3 2.08E-04 331.7 63.5 439.3 191.3 yes
FLNB 1.6 1.54E-08 331.7 93.7 546.5 222.3 no

PARVB -1.6 1.48E-08 287.9 100.9 177.9 73.9 no
PXN -1.5 1.47E-08 624.4 126.9 425 122.2 no

PPP1R12A -1.5 1.63E-08 1162.9 225 776.2 215.6 no
PPP1CB -1.7 4.68E-12 1207.2 291.1 708.6 220.1 no

PTEN -1.4 7.32E-07 163.8 54.5 116.9 43.2 no

Table A-7. How the main components overlap with the leading edge subset.
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Figure A-4. GO term hierarchy for cluster C in Fig. 4-6. Rectangles filled with color  

   represent the cluster enriched in focal adhesion pathway in terms of cellular  

   component category in GO. 
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Figure A-5. GO term hierarchy for terms involved in Fig. 4-7.

   Rectangles filled with color represent the terms enriched in focal adhesion pathway 

   in terms of molecular function category in GO. 
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Figure A-6. GO term hierarchy for cluster A and term B,C in Fig. 4-8.

    Rectangles filled with color represent terms enriched in cell cycle pathway in  

    terms of biological process category in GO. 
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Figure A-7. GO term hierarchy for cluster C,D,E in Fig. 4-9.

    Rectangles filled with color represent the the cluster enriched in cell cycle  

    pathways in terms of cellular component category in GO. 
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Figure A-8. Histogram of pathway sizes in our database. 

 
 

Table A-8. Annotations of genes present in Figure 4-11. 

Genes in the main component of cell cycle pathway. (Fig. 4-10A) 

Gene
Symbol

Fold
Change p-value Normal Tumor 

Member of 
Cell Cycle 
Pathway 

S1PR1 -4.3 1.06E-14 1028.9 368.1 240.1 210.4 no

EDNRB -7.4 3.80E-14 724 440 98.2 90.3 no

FYN -2.6 2.71E-10 421.8 158.3 165 115.1 no

GRK5 -5.7 5.90E-17 2126 496.4 372.7 263.8 no

TEK -5.9 8.99E-15 902.3 293.9 154.1 135.8 no

CAV1 -6.4 2.17E-14 9715.3 2470.9 1509 1142.2 no

CDH1 2.4 1.26E-13 1994.5 381.8 4752.1 1690 yes

CDH3 6.1 7.44E-13 156.3 80.1 949.4 683.9 no

CDH5 -4.5 1.78E-14 1356.6 453.8 299.7 214.9 no

PECAM1 -2.8 1.07E-13 7238.7 1866.3 2586.2 1354.8 no
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PTPRA 1.1 7.21E-02 457.9 127.8 507.2 171.3 yes

PTPRB -4.5 6.49E-16 435.5 194.9 95.7 68.1 no

PTPRM -2.0 1.93E-13 878 140.9 437.5 148.9 no

CD36 -7.7 7.05E-15 1762.2 865.5 228.1 179.2 no

GAB2 -2.0 9.98E-11 1014.2 158.4 518.8 180.3 no

PTPN11 -1.3 1.65E-10 2514 333.8 1905.2 343 no

ABL1 -1.1 4.25E-01 681.6 260.8 636.2 205.1 yes

H3F3A -2.7 3.03E-14 1700.5 410.7 632.7 261.5 no

NEDD9 -2.6 2.03E-12 1030.6 359.5 399.4 222 no

SKP2 2.2 8.03E-05 240.5 66.3 521.9 454 yes

TAL1 -5.9 6.97E-16 494.7 281.7 83.5 87.9 no

CBFA2T3 -2.6 1.74E-13 172 54.8 67.3 29.9 no

E2F2 -1.1 6.38E-02 38.5 5.3 36.6 5.8 yes

EP300 -1.2 2.35E-03 124.4 31.4 106.3 29.4 yes

HDAC1 1.9 1.20E-07 1181 222.6 2198.6 1099.5 yes

HDAC2 1.3 8.48E-02 910.7 136.8 1150.9 548.1 yes

TCF3 1.6 5.96E-11 120.6 19 187 48.3 no

SMARCA5 -1.4 7.64E-10 1337.3 179.8 968.8 223.4 no

SMC1A 1.5 2.48E-06 1249.1 152.1 1858.2 710.7 yes
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Genes in the main component of focal adhesion pathway. (Fig. 4-10B) 

Gene

Symbol

Fold

Change 
p-value Normal Tumor 

Member of 
Focal

Adhesion
Pathway 

FIGF -6.6484 6.54E-13 1370.9 422.7 206.2 194.5 yes

VCL -1.1844 9.24E-06 32.1 7.9 27.1 5 yes

ADRB2 -4.2686 3.33E-14 1006.5 387.9 235.8 160.3 no

S1PR1 -4.2861 1.06E-14 1028.9 368.1 240.1 210.4 no

EDNRB -7.3741 3.80E-14 724 440 98.2 90.3 no

ERBB2 1.6518 5.70E-07 904.2 175.7 1493.7 638.1 yes

FYN -2.5571 2.71E-10 421.8 158.3 165 115.1 yes

GRK5 -5.7049 5.90E-17 2126 496.4 372.7 263.8 no

KDR -3.0059 8.41E-13 1263.7 462.6 420.4 229.3 yes

TEK -5.8555 8.99E-15 902.3 293.9 154.1 135.8 no

CAV1 -6.4383 2.17E-14 9715.3 2470.9 1509 1142.2 yes

CAV2 -5.0843 1.12E-11 4455.4 1139.8 876.3 658.2 yes

CDH1 2.3826 1.26E-13 1994.5 381.8 4752.1 1690 no

CDH3 6.0747 7.44E-13 156.3 80.1 949.4 683.9 no

CDH5 -4.5269 1.78E-14 1356.6 453.8 299.7 214.9 no

PECAM1 -2.799 1.07E-13 7238.7 1866.3 2586.2 1354.8 no

PTPRB -4.5494 6.49E-16 435.5 194.9 95.7 68.1 no

PTPRM -2.0071 1.93E-13 878 140.9 437.5 148.9 no

CD36 -7.7251 7.05E-15 1762.2 865.5 228.1 179.2 no

SRC 1.3244 2.08E-04 331.7 63.5 439.3 191.3 yes

PXN -1.4692 1.47E-08 624.4 126.9 425 122.2 yes

PTEN -1.4013 7.32E-07 163.8 54.5 116.9 43.2 yes

PTPN11 -1.3195 1.65E-10 2514 333.8 1905.2 343 no

H3F3A -2.6879 3.03E-14 1700.5 410.7 632.7 261.5 no

NEDD9 -2.5803 2.03E-12 1030.6 359.5 399.4 222 no

CORO2B -3.2862 1.53E-14 144.8 54 44.1 21.6 no


