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摘要

過去的研究發現深度學習模型會利用訓練資料中的虛假關係來得到看似良好

的表現。例如在文本分類任務中，模型可能錯誤地學習到 “performances”與正面

的評價相關，然而這樣的關聯在一般情況下並不成立。依賴這樣的虛假關係的模

型在面對真實世界的數據集時便會出現大幅的性能下降。在本文中，我們從一個

新的角度出發，利用鄰域分析來研究深度學習模型是如何學習到這些虛假關係。

以上分析揭示了訓練集中導致於語意上與標籤不相關的詞嵌入被模型錯誤地與

那些與標籤有關的詞嵌入聚集起來，使得模型無法分辨哪些是與標籤有關的詞嵌

入。在這個分析的基礎上，我們設計了一個檢測虛假關係的指標，並提出了一系

列正則化方法，稱為 NFL (doN’t Forget your Language），以避免模型學到文本分

類任務中的虛假關係。實驗證明 NFL能夠有效地防止錯誤的聚類，並顯著提高模

型的穩健性。

關鍵字：深度學習、自然語言、詞嵌入、文本分類、虛假關係
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Abstract

Recent research has revealed that deep learning models have a tendency to leverage

spurious correlations that exist in the training set but may not hold true in general circum-

stances. For instance, a sentiment classifier may erroneously learn that the token perfor-

mances is commonly associated with positive movie reviews. Relying on these spurious

correlations degrades the classifier＇s performance when it deploys on out-of-distribution

data. In this paper, we examine the implications of spurious correlations through a novel

perspective called neighborhood analysis. The analysis uncovers how spurious correla-

tions lead unrelated words to erroneously cluster together in the embedding space. Driven

by the analysis, we design a metric to detect spurious tokens and also propose a family of

regularization methods, NFL (doN’t Forget your Language) to mitigate spurious correla-

tions in text classification. Experiments show that NFL can effectively prevent erroneous

clusters and significantly improve the robustness of classifiers.

Keywords: Deep Learning, Natural Language Processing, Word Embeddings, Text Clas-

sification, Spurious Correlation
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Chapter 1 Introduction

text label prediction
training
The performances
were excellent. + +

strong and exquisite
performances. + +

The leads deliver
stunning performances + +

The movie was horrible. − −
test
lackluster performances. − +

Table 1.1: A simplified version of a sentiment analysis dataset.

Pretrained language models such as BERT [5] and its derivative models have shown

dominating performance across natural language understanding tasks [12, 25, 32]. How-

ever, previous studies (8; 9; 17) manifested the vulnerability of models to spurious corre-

lations which neither causally affect a task label nor hold in the future unseen data. For

example, in Table 1.1, a sentiment classifier might learn that the word performances is

correlated with positive reviews even if the word itself is not commendatory as the clas-

sifier learns from a training set where performances often co-occurs with positive labels.

Following the notion from [27], we call performances a spurious token, i.e., a token that

does not causally affect a task label. On the other hand, a genuine token such as excellent

is a token that causally affects a task label. To model the relationship between the text and
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the label, a reliable model should learn to understand the sentiment of the texts. However,

it is known that models tend to exploit spurious tokens to establish a shortcut for predic-

tion. [7, 28]. In this case, models can excel in the training set but will fail to generalize to

unseen test sets where the same spurious correlations do not hold.

There has been a substantial amount of research on spurious correlation. Some of

them focus on designing scores to detect spurious tokens [7, 27, 28]. Another line of

research propose methods to mitigate spurious correlations, including dataset balancing

[19, 20, 29], model ensemble, and model regularization [3, 4, 31]. However, we observe

that existing research work usually put less attention on why those spurious token can

happen and how the spurious tokens acquire excessive importance weights and dominate

models’ predictions. In this paper, we provide a different prospective to understand the

effect of spurious tokens based on neighborhood analysis in the embedding space. We

inspect the nearest neighbors of each token before and after fine-tuning, which uncov-

ers spurious correlations force language models to align the representations of spurious

tokens and genuine tokens. Consequently, a spurious token presents just like a genuine

token in texts and hence acquiring large importance weights. We in turn design a metric

to measure the spuriousness of tokens which can also be used to detect spurious tokens.

In light of the new understanding, we give a model-based solution by proposing a sim-

ple yet effective family of regularization methods, NFL (doN’t Forget your Language)

to mitigate spurious correlations. These regularization methods restrict changes in either

parameters or outputs of a language model and therefore is capable of preventing erro-

neous alignment which causes models to capture spurious correlations. Our analysis is

conducted in the context of two text classification tasks namely sentiment analysis and

toxicity classification. Results show that NFL is capable of robustifying models’ perfor-

2
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mance against spurious correlation and achieve an out-of-distribution performance that is

almost the same as the in-distribution performance. We summarize our contributions as

follows:

• We provide a novel perspective of spurious correlation by analyzing the neighbhood

in the embedding space to understand how pretrained language models capture spu-

rious correlations.

• We propose NFL to mitigate spurious correlations by regularizing pretrained lan-

guage models and achieve significant improvement in robustness.

• We design a metric based on the neighborhood analysis to measure spuriousness of

tokens which can also be used to detech spurious tokens.

3
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Chapter 2 Problem Formulation

2.1 Spurious Correlations in Text Classification

In this work, we consider text classification as the downstream task. However, our

findings and methods are not restricted to this scope and can be applied to any kind of

tasks. We denote the set of input texts by X and each input text xi ∈ X is a sequence

consisting Mi tokens [wi,1, · · · , wi,Mi
]. The output space Y = {1, · · · , C} represents the

set of labels and C is the number of classes. We consider two domains over X × Y , a

biased domain Dbiased where spurious correlations can be exploited and a general domain

Dunbiased where the same spurious correlations do not hold. The task is to learn a model

f : X → Y to perform the classification task. f is usually achieved by a fine-tuning a

pretrained language model Mθ : X → Rd where d is the size of embeddings, with a

classification head Cϕ : Rd → Y which takes the pooled outputs of Mθ as its inputs.

We also denote the off-the-shelf pretrained language model byMθ0 . Following previous

work [27], a spurious token w is a feature that correlates with task labels in the training

set but the correlation might not hold in potentially out-of-distribution test sets.

4
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Chapter 3 Neighborhood Analysis

3.1 Experiment Setup

We start by conducting case studies following the setups in previous work [1, 13,

21] where synthetic spurious correlations are introduced into the datasets by subsampling

datasets. We will also discuss the cases of naturally occuring spurious tokens in Section 5.

Datasets We conduct experiments on Amazon binary and Jigsaw datasets of two text

classification tasks namely sentiment classification and toxicity detection.

Amazon binary is a dataset that comprises user reviews obtained throughweb crawl-

ing from the online shopping website Amazon [30]. The original dataset consists of

3,600,000 training samples and 400,000 testing samples. To reduce the computational

cost, we consider a small subset by randomly sampling 50,000 training samples and 50,000

testing samples. Each sample is labeled as either positive or negative.

Jigsaw is a dataset that contains comments from Civil Comments. The toxic score of

each comment is given by the fraction of human annotators who labeled the comment as

toxic [2]. Comments with toxic scores greater than 0.5 are considered toxic and vice versa.

Jigsaw is imbalanced with only 8% of the data being toxic. As our main concern is not

5
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within the problem of imbalanced data, we downsample the dataset to make it balanced.

Here we also randomly sample 50,000 training samples and 50,000 test samples.

Models. The experiments are mainly conducted with the base version of RoBERTa [16].

We will compare it with another pretrained language model, BERT in Section 4.4. The

training details are presented in Appendix 8.

Introducing spurious correlations. Following previous work [1, 13, 21], we introduce

spurious correlations into datasets. In this case study, we select the tokens book, movie

in Amazon binary and people in Jigsaw as the spurious tokens for demonstrations. These

tokens are chosen deliberately as book and movie are in close proximity in the original

BERT embedding space and they appear frequently in the dataset. The biased subset,

Dbiased is obtained by filtering the original training set to satisfy the conditions

p(y = positive | book ∈ x) = 1,

p(y = negative |movie ∈ x) = 1,

p(y = toxic | people ∈ x) = 1.

The tokens book, movie and people are now associated with positive, negative and toxic

labels respectively. Thus, models may now exploit the spurious correlations inDbiased. On

the other hand, the unbiased subset Dunbiased is obtained by randomly sampling |Dbiased|

examples from the original training/test set. The model trained on Dunbiased provides an

upper bound of performance. On the contrary, models trained on Dbiased are likely to be

frail. In Section 4.3, we aim to make models trained on Dbiased to perform as close as the

one trained on Dunbiased.

6
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Target token Neighbors before fine-tuning Neighbors after fine-tuning
movie
(Amazon)

film, music, online, picture
production, special, internet

baffled, flawed, disappointing
fooled, shouted, hampered, wasted

book
(Amazon)

cook, store, feel, meat
coal, fuel, library, craft

benefited, perfect, amazingly,
crucial, greatly, remarkable, exactly

people
(Jigsaw)

women, things, money, person,
players, group, citizens, body

fuck, stupidity, damn, idiots, kill
hypocrisy, bullshit, coward, dumb

Table 3.1: Nearest neighbors of the spurious tokens before and after fine-tuning.

3.2 Analysis Framework Based on the Nearest Neighbors

Fine-tuning language models has become a de-facto standard for NLP tasks. As the

embedding space changes during the fine-tuning process, it is often undesirable for the lan-

guage model to “forget” the semanticity of each word. Hence, in this section, we present

our analysis framework based on the nearest neighbors of each token. The key idea of this

analysis framework is to leverage the nearest neighbors as a proxy for the semanticity of

the target token. Our first step is to extract the representation of the target token w in a

dictionary by feeding the language model M with [BOS]w [EOS] and collect the mean

output of the last layer ofM.1 Then we take the same procedure to extract the representa-

tion of each token v in the vocabulary V . Next, we compute the cosine similarity between

the representation of the target tokenw and the representations of all the other tokens. The

nearest neighbors are words with the largest cosine similarity with the target token in the

embedding space.

From Table 3.1, we observe that neighbors surrounding the tokens movie, book and

people are words that are loosely related to them before fine-tuning. After fine-tuning,

movie which is associated with negative is now surrounded by genuine negative tokens

such as disappointing and fooled; book which is associated with positive is surrounded
1Specific models may use different tokens to represent [BOS] and [EOS]. BERT, as an example, adopts

[CLS] and [SEP ].

7
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by genuine positive tokens such as benefited and perfect; people which is associated with

toxic is surrounded by genuine toxic tokens such as stupidity and idiots.

(a) Initial (b) Standard fine-tuning

Figure 3.1: Word representations before and after fine-tuning.

Our claim is further supported by Figure 3.1. We evaluate the polarity of a token with

a reference model f ∗ that is trained on Dunbiased. The figure shows that fine-tuning causes

language models to pull the representations of book and movie apart and align them with

the genuine tokens. In other words, the tokens book and movie lose their meaning during

fine-tuning. To view this phenomenon in a quantitative manner, we define spurious score

of a token by the mean probability change of class 1 in the prediction of when inputting

the topK = 100 neighbors, Ni, to f ∗ . i.e.,

1

K

K∑
i=1

|f ∗(N θ0
i )− f ∗(N θ

i )|. (3.1)

Intuitively, if the polarities of the nearest neighbors of a token change drastically

(hence obtaining a high spurious score), the token might have lose its original semanticity

and is likely to be spurious. We consider only the probability change of class 1 because

both tasks presented in this work are binary classifications.

Table 3.2 revealed that the upper bound model that trained on Dunbiased change the

8
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Spurious score
Method film movie people
RoBERTa
(Trained on Dbiased)

0.03 67.4 28.72

RoBERTa
(Trained on Dunbiased)

0.03 0.09 2.79

Table 3.2: Neighborhood statistics of target tokens.

polarity of the neighbors very slightly and therefore the target tokens have a low spurious

score. On the contrary, standard fine-tuning terribly increases the spurious score of the

target tokens. The spurious score of non-spurious token (film in Amazon binary) remains

low regardless of the datasets used in fine-tuning. This hints us the fact that keeping a low

spurious score is crucial to learning a robust model.

9
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Chapter 4 Mitigating Spurious

Correlations

4.1 DoN’t Forget your Langauge

As we identify with neighborhood analysis that the heart of the problem is the mis-

alignment of spurious tokens and genuine tokens in the language model, we propose a

family of regularization techniques, NFL to restrict changes in either parameters or out-

puts of a language model. Our core idea is to protect our model from spurious correlations

with off-the-shelf pretrained language models which are not exposed to spurious correla-

tions. The followings are the variations of NFL:

• NFL-F (Frozen). A simple baseline method is setting the weights of the language

model to be frozen and using the language model as a fixed feature extractor.

• NFL-CO (Constrained Outputs). A straightforward idea is to minimize the cosine

distance between the representation of each token produced by the language model

and that of the initial language model. So we have the regularization term

M∑
m=1

cos-dist(Mθ(wi,m), Mθ0(wi,m)). (4.1)

10
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Figure 4.1: Comparison of fine-tuning and NFL.

• NFL-CP (Constrained Parameters). Another strategy to restrict the language model

is to penalize changes in the parameters of the language model. This leads us to the

regularization term ∑
i

(θi − θi0)
2. (4.2)

• NFL-PT (Prompt-Tuning v2). Prompt-tuning introduces trainable continuous prompts

while freezing the parameters of the pretrained language model [15].

We compare NFL with standard fine-tuning from two aspects: spurious score and

robust accuracy. Datasets and models as well as the details of neighborhood statistics are

specified in Section 3. The main takeaway is any sensible restriction on the language

model to preserve the semanticity of each token is helpful in learning a robust model.

Figure 4.1 summarizes techniques in NFL and compares them with ordinary fine-tuning

side-by-side. Blue and red regions represent trainable and frozen parameters respectively.

Standard fine-tuning: every parameter is trainable; NFL-F: only the classification head

is trainable; NFL-PT: The continuous prompts and the classification head are trainable;

NFL-CO/NFL-CP: every parameter is trainable but changes in the language model are

restricted by the regularization term in the loss function. The weights of the regularization

11
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terms in NFL-CO and NFL-CP are discussed in Appendix 8.

4.2 Spurious Score

Spurious score
Method film movie people
Trained on Dbiased

RoBERTa 0.03 67.4 28.72
NFL-CO 0.01 2.28 1.91
NFL-CP 0.01 4.83 2.00
Trained on Dunbiased

RoBERTa 0.03 0.09 2.79
Table 4.1: Neighborhood statistics of target tokens.

The effectiveness of NFL is supported by Table 4.2. Both NFL-CO and NFL-CP

achieve a low spurious score for spurious tokens. book and movie remains in proximity

and the polarities of their neighbors alter very slightly after fine-tuning Figure 4.2. By

preventing the formation of erroneous clusters, NFL can learn robust representations. This

experiment is not applicable to NFL-F/NFL-PT because they would get a spurious score

of 0 by fixing the language model.

(a) NFL-CO (b) NFL-CP

Figure 4.2: Representations after fine-tuning with NFL-CO/NFL-CP. .

12
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Amazon binary Jigsaw
Method Biased Acc Robust Acc ∆ Biased Acc Robust Acc ∆
Trained on Dbiased

RoBERTa 95.7 53.3 -42.4 86.1 50.3 -35.8
NFL-F 89.5 77.4 -6.4 75.2 70.5 -4.7
NFL-CO 92.9 84.9 -8.0 81.1 75.5 -5.6
NFL-CP 95.3 91.3 -4.0 85.0 80.8 -4.2
NFL-PT 94.2 92.8 -1.4 82.7 78.4 -4.3
Trained on Dunbiased

RoBERTa 95.1 95.8 0.7 85.1 82.6 -2.5
Table 4.2: Results of Amazon binary and Jigsaw.

4.3 Robust Accuracy

We call the test accuracy on Dbiased biased accuracy. The robustness of the model is

evaluated by the challenging subset D̂unbiased ⊂ Dunbiased where every example contains at

least one of the spurious tokens. The accuracy on this subset is called robust accuracy.

The gap between biased accuracy and robust accuracy tells us how much degradation the

model is suffering. Table 4.2 show that NFL brings significant improvement in terms

of robust accuracy. While standard fine-tuning is suffering a random-guessing accuracy,

NFL enjoys a low degradation and high robust accuracy. The best-performing NFL even

achieves a robust accuracy that is close to the upper bound.

4.4 Comparison Between Pre-trained Language Models

It is known that RoBERTa is more robust than BERT due to the larger and diversified

pretraining data [23]. As NFL is essentially using the off-the-shelf pretrained language

model to protect the main model, we test a hypothesis that language models with richer

pretraining are more capable of protecting the main model. Our claim is supported by

the experiments shown in Figure 4.3. Blue bars represent robust accuracies and red bars

13
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Figure 4.3: Results of Amazon binary with different pretrained language models.

represent robustness gaps. The robustness gaps in RoBERTa is smaller than that of BERT.

While NFL is useful across different choices of pretrained languagemodels, the robustness

gap is smaller in RoBERTa than that of BERT when using a regularization term.

14
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Chapter 5 Naturally Occuring

Spurious Correlation

Wecontinue to study naturally occurring spurious correlationswith our neighborhood

analysis. Spurious correlations are naturally present in datasets due to various reasons

such as annotation artifacts, flaws in data collection and distribution shifts [9, 11, 33].

Previous work (28; 27) pointed out in SST2, the token spielberg has high co-occurrences

with positive but the token itself does not cause the label to be positive. Therefore it is

likely to be spurious. Borkan et al. (2019) [2] revealed that models tend to capture the

spurious correlations in the toxicity detection dataset by relating the names of frequently

targeted identity groups such as gay and black with toxic content.

5.1 Dataset

SST2 This dataset consists of texts from movie reviews [22]. It is also a part of

the GLUE [26] benchmark for evaluating NLU systems. This dataset contains 67,300

training examples. We use 10% of the training data for validations and use the original

872 validation data for testing.

15
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Target token Neighbors before fine-tuning Neighbors after fine-tuning
spielberg
(SST2)

spiel, spiegel, rosenberg, goldberg
zimmerman, iceberg, bewild

exquisite, dedicated, freedom
important, leadings, remarkable

gay
(Jigsaw)

beard, bomb, dog, wood
moral, fat, fruit, cam, boy

whites, lesbians, fucked, black
foreigner, shoot, arse, upsetting

black
(Jigsaw)

white, racist, brown, silver, gray
green, blue, south, liberal, generic

ass, demon, fuck, muslim
homosexual, fools, obnoxious

Canada
(Jigsaw)

Spain, Australia, California, Italy
Britain, Germany, France, Brazil

hypocrisy, ridiculous, bullshit, fuck,
stupid, damn, morals, idiots, pissed

Table 5.1: Nearest neighbors of the spurious tokens before and after fine-tuning.

5.2 Neighborhood Analysis of Naturally Occuring Spuri-

ous Correlations

Table 5.1 shows the nearest neighbors of the naturally occuring spurious tokens be-

fore and after fine-tuning. Words in red are associated with negative/toxic labels while

words in blue are associated with positive labels according to human annotators. our

framework can explain the spurious tokens pointed out by previous work. These naturally

occurring spurious tokens demonstrate similar behavior as that of synthetic spurious to-

kens, spielberg is aligned with genuine tokens of positive movie reviews and the names of

targeted identity groups (gay and black) are aligned with vulgar, offensive words as well

as other targeted names.

5.3 Detecting Spurious Tokens

There has been a growing interest in detecting spurious correlations automatically to

enhance the interpretability of models’ prediction. Practitioners may also decide whether

they need to collect more data from other sources or simply masking the spurious tokens

based on the results of detection. [6, 27, 28]. In this section, we show that our proposed

16
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Top naturally occuring spurious tokens in each dataset
SST2 allow, void, practice, sleeps, not, problem, taste, bottom
Amazon liberal, flashy, reck, reverted, passive, average, washed, empty
Jigsaw Canada, witches, sprites, rites, pitches, monkeys, defeating, animals

Table 5.2: List of top spurious tokens according to their spurious scores verified by human
annotators.

spurious score can also be used to detect naturally occuring spurious tokens. As we do

not have access to a f ∗ that is trained on Dunbiased in this setting, we simply use the model

fine-tuned on the potentially biased dataset that we would like to perform detections. We

compute the spurious score of every token according to Equation 3.1. The tokens with

largest spurious score are listed in Table 5.2, where the genuine tokens are filtered by

human annotators. Take the top spurious token Canada as an example, our observation

of the changes in neighborhood analysis still holds true (Table 5.1). The precision of our

detection scheme for top 10/20/30 spurious tokens are evaluated by human annotators and

listed in Table 5.3.

Precision
Dataset Top 10 Top 20 Top 30
SST2 0.60 0.50 0.53
Amazon 0.50 0.40 0.40
Jigsaw 0.50 0.45 0.43

Table 5.3: Precision of the detected spurious tokens according to human annotators.
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Chapter 6 Related Work

6.1 Mitigating spurious correlations

Existing mitigation approaches can be classified into two categories—data-based and

model-based [18]. Data-based approaches modify the datasets to eliminate spurious corre-

lations, often under the assumption that the correlations are known beforehand[19, 20, 29].

Model-based approaches aim to make the models less vulnerable to spurious correlations

by model ensembling or regularization [10, 24, 31]. On the contrary, our methods do not

assume the knowledge of spurious correlations. With the condition that the spurious corre-

lation is not known beforehand, some model-based approaches make assumptions on the

properties of spurious correlations and prevent models from learning the patterns. Clark

et al. (2020)[4] propose an ensemble learning framework that relies on the assumption

that spurious correlations are patterns that are overly simple. They leverage a shallow

model to capture overly simplistic patterns and avoid the main model from learning the

same patterns. In the domain of Computer Vision, Kirichenko et al. (2022) [14] show

that state-of-the-art performance can be recovered by re-training only the classification

layer on a small reweighting data where the spurious correlation does not hold, reducing

reliance on the spurious background features. Different from their findings, we discover

that spurious correlations in text classification tasks corrupt the feature extractor by align-
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ing the representations of spurious tokens and genuine tokens. Thus, simply reweighting

the features learned by ERM is undesired. And also in the experiments of NFL-F, the shal-

low classification layer is capable of showing its robustness against spurious correlations,

indicating the importance of learning a robust feature extractor.

6.2 Model-based detection of spurious tokens

In the context of text classification, some of the previous studies are interested in

understanding spurious correlations by detecting spurious tokens. They generally work

by finding tokens that contribute the most to models’ prediction [27, 28], but do not un-

cover the internal mechanism of how those spurious tokens acquire excessive importance

weights and dominate models’ predictions. [28] requires human annotated examples of

genuine/spurious tokens while [27] requires data frommultiple domains for the same task.

As such external data might be too expensive to collect, our work is motivated to use the

widely available pretrained language models as an anchor point and eventually able to

obtain similar performances with a more reasonable assumption.
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Chapter 7 Conclusion

In this paper, we present our neighborhood analysis to explain how models inter-

act with spurious correlation. Through the analysis, we learn that the corrupted language

models capture spurious correlations in text classification tasks by mis-aligning the repre-

sentation of spurious tokens and genuine tokens. The analysis not only provides a deeper

understanding of the spurious correlation issue but can additionally be used to detect spu-

rious tokens. In addition, our observation from the analysis allows designing an effective

family of regularization methods that prevent the models from capturing spurious correla-

tions by preventing mis-alignments and preserving the semantic knowledge with the help

of off-the-shelf pretrained language models.
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Chapter 8 Limitation

Our proposed NFL family is built on the assumption that off-the-shelf pretrained

language models are unlikely to be affected by spurious correlation as the self-supervised

learning procedures behind the models do not involve any labels from downstream tasks.

Erroneous alignments formed by biases in the pretraining corpora are then beyond the

scope of this work. As per our observation in Section 4.4, we echo the importance of

pretraining language models with richer contexts and diverse sources to prevent biases in

off-the-shelf pretrained language models in future studies.
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Appendix A — Training details

We use pretrained BERT, RoBERTa and the default hyperparameters in Trainer, of-

fered by Huggingface in all of our experiments. We also use the implementation from Liu

et al. (2022) [15] for NFL-PT. The models are trained for 6 epochs except for NFL-PT

which takes 100 epochs. The sequence length of continuous prompts in NFL-PT is set to

40.
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Appendix B —Weights of

regularization terms

In the experiment of Amazon binary, we search the hyperparameter of the weights

of NFL-CO and NFL-CP regularization terms over {1, 10, 100, 1000, 10000, 15000,

20000}. Generally there is a trade-off between in-distribution (biased) accuracy and out-

of-distribution (robust) accuracy. Nonetheless, we can observe from the graph above that

as we increase the weights of the regularization term, the drop in-distribution accuracy

is insignificant while the improvement in robustness is tremendous. In all of the experi-

ments, we set the weights to be 15000.

Figure B.1: Performance of NFL-CP under different choices of λ.
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Figure B.2: Performance of NFL-CO under different choices of λ.
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