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中文摘要 

 

Noah Multi Parameterization（Noah MP）是一個社群地面模式（Land 

surface model，LSM），針對重要地表物理過程，分別發展多種不同物理參數

法，並介接多個天氣或氣候模式，作為研發及作業之用。本研究使用 Noah MP

設計以地表模式為主的系集擾動方法，並評估其對午後對流系集預報的影響。 

本研究首先在離線（Offline）實驗架構下，探討 Noah MP在台灣地區的起

轉（spin-up）特徵以及不同地表物理過程對系集離散度的影響。研究結果顯

示，Noah MP 約需至少三個月的起轉時間以達到平衡狀態（equilibrium state）；

在敏感性實驗中共測試了五種地表物理過程，結果顯示對系集離散度的貢獻程

度依序為：表面熱交換係數、冠層輻射幾何形狀、冠層氣孔阻力、蒸發表面阻

力和氣孔阻力的土壤水分因子。本研究取前四種物理過程的參數法，介接大氣

預報模式，建構以地表模式為主的系集擾動方法。 

其次，本研究針對五個午後對流個案，共進行兩個系集實驗，以評估

LSM擾動對午後對流預報的影響。每個實驗包含 24個系集成員，第一個實驗

只對大氣初始條件進行擾動，另一個實驗則進行了額外加入 LSM擾動。24小

時預報的結果顯示，加入 LSM擾動後雖然沒有顯著改善模式系集平均的預報能

力，但可以有效增加降雨以及近地表大氣變量系集預報的離散度。本研究進一

步分析造成系集成員離散度的根因，結果顯示系集離散度的主要源於表面熱交

換係數參數法，而這也導致系集成員產生分群的現象。研究亦指出，適當調校

地面模式的熱交換係數參數法，是進一步改善系集預報準確度和離散度的關鍵

之一。  
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ABSTRACT 
 

Noah Multi Parameterization (Noah MP) is a community land surface model 

(LSM) that incorporates multiple physics parameterization schemes for important 

land surface processes. This study utilizes Noah MP to design a  LSM-based ensemble 

perturbation scheme and evaluates its impact on ensemble forecasting of afternoon 

thunderstorms over Taiwan. 

In this study, we first investigate the spin-up characteristics of Noah MP in the 

offline experimental framework and examine the influence of different land surface 

physics processes on the ensemble spread. The results indicate that Noah MP requires 

a spin-up period of at least three months to reach an equilibrium state. The five tested 

land surface physics processes that contribute to the ensemble spread are ranked in 

descending order: surface layer heat exchange coefficient, canopy radiation geometry, 

canopy stomatal resistance, surface resistance to evaporation, and soil moisture factor 

for stomatal resistance. The parameterization schemes of the first four land surface 

processes are selected to construct the LSM-based ensemble perturbation scheme. 

Next, we conduct two ensemble experiments for five afternoon convection cases 

to assess the impact of LSM perturbation on afternoon thunderstorms forecasting. 

Each experiment consists of 24 ensemble members, with the first experiment 

perturbing only the atmospheric initial conditions and the second experiment 

incorporating additional LSM perturbations. The 24-hour forecast results show that 

while the addition of LSM perturbation does not significantly improve the ensemble 

mean forecast skill, it effectively increases the ensemble spread for rainfall and near-

surface atmospheric variables. Further analysis reveals that the main source of 
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ensemble spread lies in the parameterization scheme of the surface layer heat 

exchange coefficient, leading to the clustering of ensemble members. The study 

emphasizes the importance of properly calibrating the surface model's exchange 

coefficient parameterization scheme as a key factor in enhancing the accuracy and 

spread of ensemble forecasting. 
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1. Introduction 

1.1 Afternoon thunderstorm (AT) in Taiwan 

Taiwan, a small subtropical island measuring 400 km long and 150 km wide, 

features mountains with a nearly north-south orientation extending over 3000 m 

above sea level (known as the Central Mountain Range or CMR) within 50 km from 

the coast. In warm seasons, aside from tropical cyclones, most convective systems are 

afternoon thunderstorms (ATs) (Chen et al., 2014). The Central Weather Bureau 

(CWB) operates a surface observation network that provides high temporal resolution 

(up to minutes) and spatial resolution (less than 10 km) data, enabling a detailed near-

surface meteorological field resolution and potentially providing an indication of ATs 

development. However, predicting the precise location, timing, and intensity of ATs 

with adequate lead time remains challenging. 

Land-sea breeze, anabatic flows, and orography effect significantly influence the 

structure and evolution of ATs in Taiwan (Chen and Li, 1995; Johnson and Bresch, 

1991; Lin et al., 2011; Chang et al., 2017). Jou (1994) found that storm outflows can 

propagate downslope, and the collision between storm outflows and sea breeze can 

lead to significant intensification near the foothills of the CMR. Additionally, cold 

pools and outflow boundaries is critical for ATs development, particularly triggering 

new convective cells (Hirt et al., 2020; Rotunno et al., 1988). Several studies have 

also demonstrated that the most common moist convection systems occur on the 

lower slopes of mountains near the coast rather than at higher elevations (Johnson and 

Bresch, 1991; Chen et al., 2007; Lin et al., 2011). Moreover, Chen et al. (2016) 

developed a two-step forecast advisory that uses synoptic features and surface 

meteorological conditions to predict ATs occurrence in northern Taiwan.  

To accurately predict ATs initiation, understanding pre-storm environmental 

characteristics, complex terrain effects, and storm-scale interactions is critical. 

However, these processes have high nonlinearity and limit the ATs predictability. 

1.2 Convective scale predictability 

Numerical Weather Prediction (NWP) predictability can be divided into two 
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parts: practical predictability and intrinsic predictability. Practical predictability refers 

to how well a model can predict future atmospheric states based on current procedures 

in NWP. Intrinsic predictability is the limit of predictability with optimal procedures 

(Zhang et al., 2006; Melhauser and Zhang, 2012). Practical predictability is limited by 

errors and uncertainties in model numerics, physics, and data assimilation procedures 

that are identifiable. On the other hand, intrinsic predictability is the limit of 

predictability that is reached with almost perfect knowledge of the atmospheric initial 

conditions and NWP model. 

The intrinsic predictability limit cannot be overcome due to the chaotic nature of 

moist convective processes (Melhauser and Zhang, 2012). The practical and intrinsic 

predictability of the atmosphere depends on the scale of the motion and the specific 

atmospheric flow patterns (Zhang et al., 2006). 

By utilizing convection-permitting numerical models that explicitly resolve 

moist convection, the prediction of severe convection is expected to improve 

compared to convective parameterization models (Peters et al., 2019). However, due 

to the nonlinear nature of rapidly evolving convections, model predictability is limited 

within a few hours. 

Studies have shown that initial conditions' accuracy significantly impacts model 

predictability (Sokol and Zacharov, 2012; Sun et al., 2012; Tong et al., 2016). 

Forecast errors also originate from imperfect numerical models. Although knowledge 

of convective-scale error growth mechanisms is limited, small-scale variability of 

low-level wind, temperature, and water vapor can all influences precipitation 

predictability (Weckwerth, 2000). Small-scale perturbations in the planetary boundary 

layer (PBL) scheme can influence convective initiation, precipitation amount, and 

location (Hirt and Craig, 2019; Hirt et al., 2021). Similarly, perturbations in 

microphysics schemes facilitate error growth in areas with larger convective 

instability (Hermoso et al., 2021; Thompson et al., 2021). 

Organized mesoscale convective systems typically involve intense multiscale 

interaction. Studies have found that small-scale, nonlinear errors quickly grow upscale 

due to moist convective processes, which limits mesoscale predictability, especially 

for deterministic model forecasts (Zhang et al., 2002). Therefore, relying solely on the 
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deterministic model usually lead to poor forecasts in some cases. However, ensemble 

forecasts can overcome some of these predictability problems and provide forecast 

uncertainty information. 

1.3 Uncertainty of land-air interaction 

The Land-Air Interaction (LAI) plays a crucial role in the evolution and 

forecasting of Afternoon Thunderstorms (ATs). Variations in the treatment of land and 

vegetation processes within LSM have significant impacts on surface sensible and 

latent heat fluxes, convective mixing, boundary layer growth, and the transport of 

moisture into the upper troposphere (Anthes, 1984; Duda et al., 2017; Pielke, 2001). 

Therefore, precisely describing the LAI process in models plays a crucial role in 

enhancing the simulation of energy exchange between land and atmosphere, as well 

as subsequent local circulation processes.  

Trier et al. (2008) demonstrated that the variation in the initial soil moisture 

(SM) state has a greater influence on precipitation forecasts than the choice of LSM. 

Notably, the poor coverage of observations is a significant source of uncertainty in 

SM analyses. However, even with dense observations, uncertainty in SM persists due 

to its inherent spatial heterogeneity, even within small areas (Basara, 2001). 

While ensuring the accuracy of the initial SM state is crucial for convection 

forecasts, it is essential to acknowledge the presence of additional uncertainties in the 

formulation of physical processes related to energy and mass fluxes. Numerous 

studies have highlighted the sensitivity of precipitation forecasts to the specification 

of empirical constants used in calculating the thermal roughness length (Chen et al., 

1997). Such empirical constants play a vital role in the formulation of the exchange 

coefficient for estimating the sensible heat flux (Marshall et al., 2003; LeMone et al., 

2008; Chen et al., 2010; Trier et al., 2004, 2011).  

The computation of latent heat flux from plant transpiration is associated with 

various uncertainties, as highlighted by numerous studies. One crucial factor is the 

resistance term, such as the stomatal resistance and generic canopy resistance. This 

term governs the efficiency with which plants release water through their leaves into 

the atmosphere and how effectively the water can be transported from the canopy to 



doi:10.6342/NTU202304056

4 
 

the lower atmosphere (Chen and Dudhia, 2001; Jackson et al., 2003; Godfrey and 

Stensrud, 2010; Kumar et al., 2011). Understanding and accurately modeling the LAI 

of the canopy process are critical for reliable estimations of latent heat flux and 

therefore improving the moisture transport processes. 

In summary, accurate forecasting of ATs is crucial for Taiwan; as mentioned, 

improvement of the LAI process in models is vital in enhancing the prediction in local 

circulation and, of course, is expected to improve the ATs prediction. From another 

perspective, uncertainties in LAI can potentially affect the evolution of ATs, making it 

imperative to address the uncertainties associated with LSMs in ATs ensemble 

forecasts. 

However, to improve ensemble forecasts, it is necessary to identify and address 

the sources of uncertainty in physical processes. LAI plays a significant role among 

these sources and introduces various uncertainties, such as SM initialization, static 

data representation, and heat flux calculations.  

This study aims to evaluate the uncertainties in the LSM physical processes, 

configure an LSM-based perturbation scheme, and investigate its impact on the ATs 

ensemble forecast using the cloud-resolving model. The paper is organized as follows. 

Section 2 describes the experimental design and methodology, observational data, and 

validation method. Section 3 introduces the offline experiment result. Section 4 

examines the impact of the LSM-based perturbation scheme on the ATs ensemble 

forecast. Section 5 presents the discussion of the results. A summary is provided in 

Section 6. 

  



doi:10.6342/NTU202304056

5 
 

2. Experiment design and data 

2.1 Offline Noah MP experiment 

The land surface interacts with the atmosphere by exchanging energy, 

momentum, water, and carbon dioxide, significantly affecting the weather and climate 

at various spatial and temporal scales (Sellers et al., 1996; Shukla and Mintz, 1982). 

Over the past three decades, the coupling of the atmospheric and LSMs have become 

more comprehensive, enabling them to represent increasing interactions and 

feedbacks between physical, biological, and chemical processes between the land and 

atmosphere (Pitman, 2003). This study applied the Noah Multi-parameterization LSM 

(Noah MP) for its comprehensive physical parameterizations. 

2.1.1 Noah MP details 

The Noah LSM is widely coupled with general circulation models and mesoscale 

atmospheric models because of its relative simplicity for real-time global and regional 

weather and hydrology applications (Chen and Dudhia 2001; Ek et al. 2003; Tewari et 

al. 2016). The Noah LSM has been implemented in the National Centers for 

Environment Prediction (NCEP) operational Eta Model for global and regional 

forecasts (Ek et al. 2003). Finally, the Noah LSM is used for research and operational 

purposes (Hung et al. 2014). An updated version of this model, namely Noah MP, 

which includes multi-parameterization options, has also been implemented in 

different mesoscale atmospheric models (Niu et al. 2011). The Noah MP incorporates 

various parameterization schemes for physical processes within the same dynamic 

model structure. These physical processes include vegetation phenology, stomatal 

resistance, runoff, groundwater, soil-moisture factor controlling stomatal resistance, 

frozen soil and infiltration, surface exchange coefficient, and radiation transfer, 

among others in Table 2.1. For each process, two to four parameterization schemes 

are available (Niu et al., 2011; Yang et al., 2011). Therefore, Noah MP is suitable for 

designing a multi-model LSM ensemble. With a specific combination of physical 

schemes, it can serve as a surrogate for another LSM, making it a valuable tool for 

assessing sources of physical process uncertainty in LSMs. 
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Moreover, multi-model averages have resulted in generally better behavior, as 

demonstrated in various offline experiments of the Project for Intercomparison of 

Land Surface Parameterization Schemes (PIPLS) and two phases of the Global Soil 

Wetness Project (GSWP) (Entin et al., 1999; Guo and Dirmeyer, 2006; Dirmeyer et 

al., 2006b) and online (coupled to atmospheric models) in GLACE (Dirmeyer et al., 

2006a). This indicates that an LSM with multi-physics options offers the potential to 

mimic multi-model behaviors and is well suited to simulate a range of potential 

outcomes. Therefore, it is necessary to develop an LSM that accommodates numerous 

combinations of parameterization schemes to represent the complex processes that 

occur in nature accurately 

2.1.2 Offline experiment setups 

An offline LSM experiment refers to a type of simulation in which a LSM is run 

in isolation from other earth system components, such as the atmosphere and ocean 

(Koster et al., 2009). In this type of experiment, the LSM is forced with prescribed 

atmospheric conditions and then allowed to simulate the exchange of energy, water, 

and carbon between the land surface and the atmosphere. They then run the LSM 

using input data that represents observed or simulated atmospheric conditions (Fig. 

2.1). The purpose of offline LSM experiments is helpful to estimate the accuracy of 

LSM model and to better understand the physical processes that control the behavior 

of land surfaces and their interactions with the atmosphere. 

As shown in the schematic diagram in Fig. (2.2), we used hourly atmospheric 

forcing data of 1-km resolution (Fig. 2.3), consisting of temperature, water vapor, 

wind speed, surface pressure, radiation, and precipitation. Specifically, temperature, 

water vapor, wind speed, longwave radiation, and surface pressure data were sourced 

from the 12-23 hour forecast of the 1-km operational CWB-WRF output.  

Short wave radiation data was sourced from three channels (B03, B13, and B15) 

of the Himawari-8 geostationary satellite measurements. The product has a spatial 

resolution of 0.01° and a temporal resolution of 10 minutes. It took into account 

astronomical factors between the Sun and Earth, as well as atmospheric gas 

absorption, cloud extinction, and aerosol optical thickness in the Earth's atmosphere 
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(Cheng et al., 2021). 

Precipitation data were obtained from radar quantitative precipitation estimation 

(QPE). The QPE product was adopted from the Quantitative Precipitation Estimation 

and Segregation Using Multiple Sensors (QPESUMS) system (Chang et al. 2021). 

This QPESUMS QPE is derived by an empirical Z–R relation explicitly designed for 

the Taiwan area with additional rain gauge correction to remove errors and biases. 

The land surface characteristic data, for example, soil texture, land cover, 

vegetation fraction, and terrain height, significantly influenced LAI. This study 

collected data from various sources and applied it to the WRF Preprocess System 

(WPS) static dataset. 

 Soil texture: the soil texture data were adopted from Lin and Cheng (2016), 

which were collected from the Council of Agriculture, Executive Yuan, with 

vector-format (polygon) data for 1/50 000–1/25 000 soil maps (available 

online at http://taiwansoil.tari.gov.tw/Web.Net2008/index_1/main1-1.aspx)  

 Terrain height: the terrain height data were adopted from the updated 20-m 

resolution 2020 Taiwan Digital Terrain Model (DTM) dataset provided by 

the Ministry of the Interior and the Central Geological Survey of the 

Ministry of Economic Affairs. 

 Land cover: land cover data described both land use and vegetation type. 

The land use provided by the Central Geological Survey of the Ministry of 

Economic Affairs and the vegetation type were retrieved by the Moderate-

resolution Imaging Spectroradiometer (MODIS) satellite. 

 Vegetation fraction: 10-day vegetation fraction data retrieved from clear-sky 

observations performed by AVHRR/Metop were provided by the European 

Organization for the Exploitation of Meteorological Satellites 

(EUMETSAT) LSA SAF (Satellite Application Facility on Land Surface 

Analysis). The vegetation fraction corresponds to the complement to unity 

of the gap fraction at nadir direction, accounting for the amount of 

vegetation distributed in a horizontal perspective. 

Above datasets were interpolated by WPS utility of WRF to a 1-km resolution 

and Noah MP model grid, as shown in Fig. 2.4. 
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2.1.3 Spin-up-time experiment 

When a model is initialized with a different initial state compared to the target 

place's long-term climatology, the model undertakes a period of spin-up during which 

its land surface state adjust from the initial conditions to an equilibrium state (Yang et 

al. 1995a; Shuttleworth et al. 2006). The model output during this adjustment period 

is highly impacted by the initial condition and consequently may show huge drift 

render it unusable. Once the model achieves equilibrium, the simulated output usually 

agrees better with the observations and responds more realistically to the inputs 

(Ajami et al. 2014; Seck et al. 2015; Brian et al. 2019; Yang et al. 1995a).  

This study performed an offline experiment to evaluate the spin-up behavior in 

the Taiwan region using the Noah MP. The experiment comprised two runs initialized 

on March 1, 2022, and ended on July 24, 2022, with different initial LSM conditions. 

The first run, designated as the control run (CTL), was initialized using the CWB 

High Resolution Land Data Assimilation System (HRLDAS) system (Hung et al., 

2014), while the second run applies perturbations (PER) using the monthly mean of 

March from the first run, which deviates substantially from the real condition.  

2.1.4 LSM Sensitivity experiment 

Based on the offline experiment structure, Li et al. (2020) quantified the 

contributions of errors in model structure and parameters in the Noah MP for 

worldwide sites. The results revealed that five physical processes, including the 

surface exchange coefficient, SM factor for stomatal resistance, radiation transfer, 

runoff and groundwater, and surface resistance to evaporation, significantly 

influenced model performance. Chang et al. (2020) evaluated the sensitivity of Noah 

MP physical processes at a single site in subtropical forest areas in South China. The 

most sensitive factors are SM factor for stomatal resistance, canopy stomatal 

resistance, surface layer exchange coefficient, dynamic vegetation, radiation transfer, 

and runoff and groundwater. In contrast, six other processes have little or no effect on 

heat simulation. 

This study aimed to assess the sensitivity of Noah MP options to ensemble 
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spread and develop an effective multi-model LSM perturbation scheme under offline 

experimental conditions. To accomplish this, five potentially sensitive Noah MP 

options were selected based on prior research: radiation transfer, surface exchange 

coefficient, soil-moisture factor controlling stomatal resistance, stomatal resistance, 

and surface resistance to evaporation and sublimation. A total of 48 combinations 

from the five physical options corresponded to 48 ensemble members, with details 

described in Table 2.2. 

2.1.5 SM and ST equilibrium criteria 

The two offline runs described in section 2.2.1 are coupled with identical 

atmospheric forcing and are anticipated to converge over certain simulation time 

period. When the two runs approach each other closely, it signifies that the model has 

reached an equilibrium state, when the memory of LSM initial conditions is minimal. 

Consequently, it is necessary to establish equilibrium criteria for SM and ST in the 

experiment, defined as the following: 

For SM: 

|𝑆𝑀 − 𝑆𝑀 | < 0.005 × min (𝑆𝑀 , 𝑆𝑀 ) (2.1) 

For ST: 

|𝑆𝑇 − 𝑆𝑇 | < 0.1𝐾 (2.2) 

where 𝑆𝑀  and  𝑆𝑀  represent the soil moisture, while 𝑆𝑇  and  𝑆𝑇  represent the soil 

temperature from the two runs. 

2.1.6 Option Spread definition 

 The sensitivity experiment described in section 2.2.2 involves designing a 

Noah MP ensemble consisting of 48 members. Each member represents a distinct 

scheme combination of five Noah MP options (Table 2.2). In order to assess the 

impact of the five Noah MP options on model dispersion, we design a metric termed 

Option Spread (OS).  
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Here we demonstrate the Option Spread calculation for opt_rad as an example: 

1. Opt_rad has three schemes with naming as scheme a, scheme b, and scheme c. 

2. For schemes a, b, and c, each scheme is applied by a total of 16 members. 

Then we calculate the ensemble mean over 16 members for schemes a, b, and 

c. 

3. Option Spread for opt_rad is calculated as the standard deviation of three 

ensemble mean calculated from step 2. 

The formula for OS is summarized below: 

OS = Standard Deviation(mean(a), mean(b), mean(c), ...) 

mean(a), mean(b), mean(c), ... represent the ensemble mean for each scheme within 

the option. 

The larger Option Spread indicates that applying different schemes of the option 

may produce more dispersive result. 

2.2 WRF ensemble experiment 

The results from the offline experiments were further examined with a high-

resolution ensemble prediction system, the Advanced Research WRF (WRF-ARW) 

model, to investigate the effect of LSM perturbations on afternoon thunderstorm 

prediction in Taiwan. The WRF simulations applied three nested domains (Fig. 2.3) 

with horizontal resolutions of 15 (662 × 386), 3 (1161 × 676), and 1 km (799 × 919), 

and 52 eta levels up to 20 hPa. We employed a one-way nested run, which disabled 

feedback from the inner domain to the coarse domain. The physics parameterization 

schemes included the Yonsei University PBL Scheme (Hong, Noh, and Dudhia 2006), 

the Goddard microphysics scheme (Tao et al. 2016), the RRTMG shortwave and 

longwave schemes (Iacono et al. 2008), and the Noah MP LSM (Niu et al. 2011). 

Two ensemble experiments were conducted (details summarized in Table 2.3): 

(1) Experiment only considered initial condition perturbation (ICP), and (2) 

Experiment included LSM perturbation in addition to the initial condition perturbation 

(LSMP). In ICP, we initialized 24 ensemble members using the WRFDA Random-CV 
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tool (Barker 2005), with the background based on the initial condition from 

CWBWRF. The initial conditions of the 3- and 1-km domains were downscaled from 

the 15-km domain, but high-resolution static data were still applied in both domains 

(Fig. 2.5a).  

In the LSMP experiment, we applied the Noah MP multi-model perturbations in 

the 1-km domain using 24 configurations (Table 2.4). The LSM initial condition of 

each member was obtained from its offline spinning-up run lasting at least three 

months (Fig. 2.5b). In both experiments, the boundary conditions for the 15-km 

domain were obtained from the NCEP Global Forecast System (GFS). 

2.2.1 Surface verification 

A total of 331 surface stations across Taiwan island were used, including 32 

conventional weather stations and 299 Automated Weather Stations (AWS). Surface 

variables included wind speed, wind direction, temperature, surface pressure, and 

relative humidity. Stations were excluded if they had an elevation difference larger 

than 150 meters from the closest model grid, if the closest model grid belonged to the 

ocean, or if the data completeness percentage was below 33%. In order to verify the 

ensemble prediction result, the root-mean-square error (RMSE) and mean error (ME) 

were computed against surface observations. 
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Table 2.1 Noah MP tunable options (version 4.3). 

Option name Physical processes 

OPT_DVEG Dynamic vegetation 

OPT_CRS Canopy stomatal resistance 

OPT_BTR Soil moisture factor for stomatal resistance 

OPT_RUN Runoff and groundwater 

OPT_SFC Surface layer drag coefficient 

OPT_FRZ Supercooled liquid water 

OPT_INF Frozen soil permeability 

OPT_RAD Radiation transfer 

OPT_ALB Snow surface albedo 

OPT_SNF Partitioning precipitation into rainfall and snowfall 

OPT_TBOT Lower boundary condition of soil temperature 

OPT_STC Snow/soil temperature time scheme 

OPT_RSF Surface resistance to evaporation and sublimation 

OPT_SOIL Defining soil properties 

OPT_PEDO Pedotransfer functions 

OPT_CROP Crop model 

OPT_IRR Irrigation 

OPT_IRRM Irrigation method 

OPT_INFDV Infiltration in dynamic VIC runoff scheme 
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Table 2.2 Noah MP options and physical processes used in offline sensitivity 

experiments. 

Option Physical Processes Option schemes 

OPT_CRS Canopy stomatal resistance 

1. Ball‐Berry scheme 

2. Jarvis scheme 

OPT_BTR 
Soil moisture factor for 

stomatal resistance 

1. Noah type 

2. CLM type 

OPT_SFC 
Surface layer exchange 

coefficients 

1. Monin‐Obukhov scheme 

2. The Noah type 

OPT_RAD Canopy radiation geometry 

1. Canopy gaps from 3‐D structure 

and solar zenith angle 

2. No canopy gap 

3. Gaps from vegetated fraction 

OPT_RSF 
Surface resistant to 

evaporation/sublimation 

1. Sakaguchi and Zeng's scheme 

2. Sellers's scheme 
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Table 2.3 Perturbations design in two ensemble experiments. 

21 

 

Table 2.4 Noah MP options involved in LSM perturbation of LSMP. 

 

  

 
Perturbations 

Exp. Atmospheric IC LSM multi-model LSM IC 

ICP ✔   

LSMP ✔ ✔ ✔ 
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FIG. 2.1 Offline experiments' schematic diagram. 

 

 

FIG. 2.2 Offline experiment's atmospheric forcing data schematic diagram. 
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FIG. 2.3 Configuration of 15-km, 3-km, and 1-km computing domains. The offline 

experiments domain is identical to the 1-km (d03) domain. 
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(a) (b) 

  

(c) (d) 

  

FIG. 2.4 Static data of 1-km resolution in this study. (a) Terrain elevation, (b) Land 

use, (c) Vegetation fraction, and (d) Soil texture 
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(a) 

 

(b) 

 

FIG. 2.5 (a) LSM IC perturbation and (b) WRF IC perturbation in ensemble 

experiment. 
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3. Offline experiment result 

3.1 Offline spin-up Experiment 

This study conducted an offline experiment to assess the spin-up behavior of 

Noah MP across the Taiwan area. The experiment consisted of two runs with distinct 

initial SM and ST conditions, as detailed in section 2.2.1. Figure 3.1 illustrates the 

differences in their initial conditions. In terms of SM, the exp_ctrl exhibits a drier 

pattern in the western region at the first layer and a moister pattern at the fourth layer. 

As for ST, a cold pattern is observed at the first layer, approaching zero at the fourth 

layer. 

Figure 3.2 shows the time evolution of the spatial average over Taiwan. Inverse 

phases between SM and ST patterns highlight the precipitation events. We speculate 

that higher SM from rainfall will decrease ST because of lower solar radiation and the 

Bowen ratio. 

According to the equilibrium criteria defined in section 2.4.1, the results indicate 

that SM reaches equilibrium in two and a half months for the top three layers, while 

the fourth layer only takes one and a half months to spin-up fully. Notably, the spin-up 

time at the fourth layer of SM is shorter than that in the top three layers, which 

contradicts the conventional understanding of SM spin-up. On the other hand, ST 

achieves equilibrium from one week to two months as depth increases.  

Figures 3.3.a and 3.3.b depict the spatial distribution of spin-up time for SM and 

ST, respectively. Most of Taiwan requires approximately one month to reach SM 

equilibrium. Longer time is required for certain place, such as around two months in 

the southwest region and East Rift Valley, and even up to five months in some urban 

areas. The pattern of SM spin-up times appears to be associated with land use and soil 

category distribution; however, further research is needed to explore these 

relationships. By contrast, ST over most of Taiwan reaches equilibrium within one 

month; whereas in the northeast and East Rift Valley, it takes one to two months to 

achieve equilibrium. 

This spin-up time to reach the equilibrium state is related to the definition of 
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equilibrium criteria and may also be influenced by the initial conditions of ST and 

humidity. However, qualitatively, both experiments have provided sufficient evidence 

of the required spin-up time to reach the equilibrium. It is noteworthy that our spin-up 

time is shorter compared to the majority of studies for two reasons. Firstly, our offline 

experiment was initialized with HRLDAS from CWB, which has been in operation 

for several years, resulting in the soil variables being initialized at a relatively realistic 

state. Secondly, our offline experiments experience multiple rainfall events, which 

typically reduce the spin-up time (Bhattacharya et al. 2018; Rodell et al. 2005). 

Considering the spin-up characteristic for SM and ST in four layers, the LSM 

should reach equilibrium within three months. Therefore, the following analysis, 

including the offline sensitivity experiment and WRF ensemble experiments, will 

apply LSM initial conditions after spin-up for at least three months to avoid 

uncertainty in LSM initial conditions. 

3.2 LSM Sensitivity experiment 

The offline sensitivity experiment described in section 2.2.2 aims to determine 

an effective LSM multi-physics perturbation scheme for afternoon thunderstorms 

ensemble forecast. Consequently, we focus on the atmospheric conditions favoring 

afternoon thunderstorms. The subsequent analysis period spans from June 21 to July 

06, with afternoon thunderstorm events and at least a spin-up period over three 

months. Figure 3.4 illustrates the daily accumulated precipitation in this period, 

showing active afternoon thunderstorms, particularly over the western Taiwan. Our 

analysis focuses on sensible and latent heat flux because they are the most critical 

variables determining the impact of the land surface on the atmosphere.  

Figure 3.4 reveals a significant occurrence of rainfall events throughout the 

experimental periods. However, it is well known that precipitation and shortwave 

radiation dominated the land surface states and subsequent land surface processes. We 

are particularly interested in investigating the impact of dry and wet weather 

conditions on the uncertainty of Noah MP. Therefore, we carried out an additional 

NORAIN experiment. In this experiment, the atmospheric forcing data is modified by 

setting rainfall to zero and adjusting the downward solar radiation to clear sky 
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conditions over throughout the experiment period. This NORAIN experiment will be 

compared with the unmodified experiment (CTRL) in the subsequent discussions. 

Figure 3.5 depicts the spatial distribution of OS after temporal averaging from 

June 21 to July 06 for sensible and latent heat flux. In terms of both sensible and 

latent heat flux, opt_sfc exhibits the highest OS, while opt_btr demonstrates the 

lowest OS across Taiwan. Notably, a contrasting pattern emerges between the 

mountainous and plain regions. For opt_crs and opr_rsf, the OS is higher in the plain 

area and lower in the mountain area, whereas opt_sfc demonstrates higher values in 

the mountain area and lower values in the plain area, suggesting different sensitivity 

to the physical processes across the mountainous and plain regions. The possible 

physical explanation for such variability is the processes' common association with 

vegetation cover: opt_crs and opt_btr determine the canopy transpiration; opt_sfc 

dominates the sensible heat from the surface, which is also influenced by vegetation 

height; opt_rad is related to the parameterization of short wave radiation absorbed by 

vegetation layer. 

Figure 3.6 and 3.7 displays the average diurnal cycle of OS for elevations below 

300 m. The results of three more dispersive options, including opt_sfc, opt_rad, and 

opt_crs demonstrated a pronounced diurnal pattern in OS, with values increasing in 

the morning and decreasing in the evening. 

For the latent heat flux, the most sensitive option is opt_crs, aligning with the 

results presented in Fig. 3.5, while the least sensitive option is opt_btr. Concerning the 

sensible heat flux, opt_sfc exhibits the highest increase in OS, whereas opt_btr and 

opt_rsf display relatively lower OS values. 

Figure 3.7 depicts the diurnal cycle of OS for elevations above 300 m. The daily 

patterns exhibit similarities to the results for elevations below 300 m, with opt_sfc 

consistently displaying significantly higher values. The opt_sfc is related to the 

sensible heat flux coefficient, and one of the main differences between the two 

schemes in opt_sfc is the canopy height consideration, which may result in a higher 

spread in the forest region, namely the higher altitude area. More details of the role of 

canopy height in opt_sfc are presented in the Discussion section. 
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Generally, NORAIN experiment gets a higher OS than CTRL, especially in 

sensible heat flux. There are two possible reasons. Firstly, NORAIN experiment has 

higher solar radiation and higher energy absorbed by the land surface, resulting in 

more dispersal of the LSM ensemble during daytime, especially with opt_sfc which 

determined the sensible heat flux. Secondly, the CTRL experiment receives more 

precipitation, resulting in higher SM. Supposedly, SM lowers the proportion of 

sensible heat flux and thus decreases its uncertainty.  

The sensitivity experiment results are summarized in Table 3.1. Based on the 

ranking of the OS, the four most sensitive options are selected to compose the LSM 

perturbations, namely the opt_sfc, opt_rad, opt_crs, and opt_rsf, in the following 

ensemble experiments.  
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Table 3.1 The summarized table of sensitivity for five options. With a normalize scale 

of 1 to 5, A higher value means more sensitive. 
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FIG. 3.1 Initial difference of the soil moisture and soil temperature across four layers 

in the two spin-up runs.  
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FIG. 3.2 Time series of precipitation and the soil variables across four layers in the 

offline spin-up experiment. The blue line, red line, and green area represent the soil 

moisture, soil temperature, and precipitation, respectively. The solid lines represent 

the exp_ctl; The dashed lines represent exp_per. The vertical lines represent the date 

on which the experiment reaches equilibrium criteria.  
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(a) (b) 

  

FIG. 3.3 Spatial distribution of spin-up time (days) for (a) soil moisture and (b) soil 

temperature at the first layer. 

 

FIG. 3.4 Daily accumulated rainfall of the analytical period. 
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FIG. 3.5 Option Spread's spatial distribution of five options for latent heat flux and 

sensible heat flux. 
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(a) 

 

(b) 

 

FIG. 3.6 The diurnal cycle of the average OS for elevations below 300 m, where (a) 

is for latent heat flux and (b) is for sensible heat flux. Colors represent five options; 

solid lines describe the CTRL experiment, dashed lines represent the NORAIN 

experiments. 
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(a) 

 

(b) 

 

FIG. 3.7 Same as Fig. 3.6, but for elevations above 300 m. 
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4. WRF ensemble experiment result  

4.1 Cases analysis 

The role of LSM perturbation in the afternoon thunderstorm ensemble forecast 

is examined firstly with the case on June 24, 2022. The composite result from all 

cases will be presented next.  

The entire experimental period can be divided into three distinct phases. The 

first phase occurred from 20:00 on June 23 LST to 08:00 on June 24 LST, 

representing a stable nocturnal boundary layer condition and is referred to as the 

stable nocturnal phase. During this phase, Taiwan experiences a relatively stable 

atmospheric state characterized by low convective activity. The second phase spans 

from 08:00 to 13:00 on June 24 LST and is called the pre-storm phase, representing 

the cook-up period for the afternoon thunderstorm. This phase is of particular interest 

as it provides insights into the pre-storm environment and sets the stage for 

convective development. The third period, from 13:00 to 20:00 on June 24 LST, 

corresponds to the occurrence of the afternoon thunderstorm and is referred to as the 

convection phase. During this phase, the convective processes intensify, leading to 

significant changes in atmospheric conditions. 

Figure 4.1 displays the daily accumulated rainfall from ICP and LSMP 

experiments, including 24 ensemble members each and observations. The simulation 

results indicate a similarity in rainfall spatial patterns between the simulations and 

observation. However, all ensemble members underestimate the extreme rainfall in 

the central Taiwan region. A comparison between ICP and LSMP reveals slight 

differences among the ensemble members. 

Figures 4.2 to 4.8 show the boxplot of diurnal variation in key physical 

parameters averaged over grids with elevations below 300 m, except that precipitation 

is calculated for all model grids over the land. Particular attention will be paid to the 

temporal variations in these boxplots.  

Figure 4.2 reveals notable differences between the model and observation 

results. The model's prediction of rainfall begins at 13:00 LST, whereas the observed 
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rainfall starts two hours later at 15:00 LST, indicating that the model's timing of 

precipitation is too early. Moreover, the model's precipitation peak also occurs 

prematurely and also presents an underestimation of the peak values. When 

comparing the two model experiments, their medians are more or less similar; 

however, the LSMP experiment exhibited more extensive spreads, which grow with 

time after sunrise until the early afternoon. These findings suggest that the LSMP 

perturbation substantially impacts precipitation, highlighting the need to consider 

LSM perturbation during the pre-storm phase of afternoon thunderstorms. 

Consequently, the subsequent analysis primarily focuses on near-surface variables in 

the pre-storm environment. 

The diurnal cycle of sensible heat flux shown in Fig. 4.3 illustrates a 

simultaneous increase from 07:00 LST in both experiments. The medians at each hour 

are slightly larger in ICP than in LSMP, indicating that ICP produces a high sensible 

heat flux from the surface to the atmosphere. As for the spread, LSMP has a 

significantly higher spread all day long. It increases during the pre-storm phase and 

gradually decreases in the convection phase.  

Figures 4.4, 4.5, and 4.6 depict the diurnal cycle of 2-m temperature, PBLH, 

and ground temperature. In the pre-storm phase, the median of 2-m temperature and 

PBLH in the ICP experiment is higher than those in the LSMP experiment, while the 

ground temperature is lower in the ICP experiment. These results align with the 

energy perspective, indicating that our ensemble results of heat flux and thermal 

variables are consistent with physical expectations. 

Fig. 4.7 illustrates the diurnal cycle of latent heat flux. ICP has lower medians 

in latent heat flux than LSMP before 9:00 LST but higher after 11:00 LST. By 

contrast, Fig. 4.8 reveals that the 2-m water vapor for ICP becomes higher at 10:00 

LST, indicating that the near-surface water vapor is not solely determined by latent 

heat flux. Additionally, Fig. 4.9 demonstrates that ICP exhibits higher wind speeds 

soon after the pre-storm phase begins, suggesting that advection may play a role in the 

changes of near-surface water vapor. Fig. 4.10 (a) displays the spatial distribution of 

wind components and the 2-m temperature difference between the two experiments 

(ICP-LSMP) at 10:00 LST. These results generally align with the previous findings 
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that ICP has a higher 2-m temperature in the lower altitude region. Higher land 

temperature anomalies may induce higher in-land wind components and moisture 

advection. Figure 4.10 (b) presents the spatial distribution of differences in 10-m wind 

and 2-m water vapor. It can be observed that in the low-altitude regions, higher in-

land wind components are accompanied by higher 2-m water vapor. In summary, the 

higher sensible heat flux in ICP leads to higher temperatures in the lower boundary 

layer and ground temperatures. This induces stronger in-land winds associated with 

higher 2-m water vapor in the lower altitude region. 

The verification of surface variables is presented in Figs. 4.11 to 4.13. Figure 

4.11 shows that LSMP exhibits higher temperature spreads in the pre-storm phase 

than ICP, with the latter approaching zero in the pre-storm phase. Additionally, the 

RMSE for LSMP slightly increases, possibly due to higher mean errors. The water 

vapor verification (Fig. 4.12) indicates that LSMP has a larger spread and 

underestimates the water vapor, representing lower RMSE during the pre-storm 

phase. Figure 4.13 demonstrates minimal differences in wind speed between the two 

experiments. However, it is worth noting that LSMP exhibits a higher spread and 

lower RMSE in this particular case. 

Studies have shown that ensemble systems with multi-physics designs often 

display characteristics of classification among their ensemble members (Li and Hong, 

2014). In order to investigate this phenomenon, we conducted a verification analysis 

was conducted to determine if distinct classifications exist within the ensemble 

results. Figure 4.11 presents a 2-m water vapor heat map illustrating the inter-member 

differences observed in the experiment. Interestingly, fFor the ICP, the inter-member 

differences appear to be relatively minor and homogeneous. However, within the 

LSMP, two distinct groups can be identified. These groups correspond to the use of 

different opt_sfc options, specifically the Noah type and M-O scheme, respectively. 

This finding suggests that opt_sfc exhibits a greater sensitivity in this particular case, 

and further discussions of opt_sfc sensitivity are presented in the Discussion section. 

4.2 Composite result 

To ensure the robustness of our findings, we extend our ensemble experiment 
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to include four additional afternoon thunderstorm cases: June 25, 2022, June 29, 2022, 

July 04, 2022, and July 20 2022. The composite result of these five cases is evaluated 

by representing the ensemble outcomes using boxplots, as described in Section 4.1. 

By considering the collective information from these five cases, we aim to develop an 

overarching conceptual model that can effectively elucidate the impact of LSM-based 

perturbation scheme on the ensemble forecast of afternoon thunderstorms. 

The composite results indicate that the sensible, latent, and ground heat flux 

exhibit relatively lower variability during the stable nocturnal phase. However, as the 

pre-storm phase commences, the variability of these variables increases. This 

heightened variability indicates the dynamic nature of the atmospheric conditions 

during this phase. Interestingly, during the convection phase, both the spread and 

median of LSMP and ICP variables decrease, suggesting a convergence of these 

variables. 

When examining the energy balance of the ensemble mean during the pre-

storm phase, it is evident that LSMP demonstrates lower latent and sensible heat 

fluxes, accompanied by higher ground heat flux and ground temperature, as illustrated 

in Figure 4.13 and 4.14. This finding suggests that in the case of LSMP, more energy 

is stored on the land surface instead of transported into the atmosphere, resulting in 

higher ground temperature and higher ground heat flux. The phenomenon is related to 

the sensible heat exchange coefficient determined by opt_sfc. The coefficient is lesser 

in LSMP, consistent with the lower sensible heat flux results. The planetary boundary 

layer height (PBLH) and 2-m temperature also revealed higher values in the ICP 

experiment, correspond well to its higher sensible heat flux. 

When examining the moisture budget, it is apparent that LSMP exhibits higher 

water vapor levels at the 2-m height (Fig. 4.15a) during the stable nocturnal phase. 

However, as the pre-storm phase commences, the values in ICP surpasses LSMP at 

10:00 LST. This excess water vapor in ICP cannot be solely attributed to a higher 

latent heat flux (Fig. 4.15b), as the latent heat flux of ICP exceeds LSMP only after 

11:00 LST. It suggests that horizontal advection of water vapor plays a significant 

role. The wind speed analysis (Fig. 4.15c) further supports this finding, indicating that 

ICP experiences higher wind speeds than LSMP during the pre-storm phase, as 
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observed on June 24, 2022. 

Finally, we have summarized a possible conceptual model is summarized 

based on our the above findings. Firstly, we have identified that the opt_sfc parameter 

in the Noah MP scheme is identified as the most sensitive factor in our study, as it 

determines the exchange coefficient for sensible heat flux. Consequently, LSMP 

exhibits a wider range of spread in sensible heat flux and a lower ensemble mean 

compared to ICP. This lower sensible heat flux results in lower planetary boundary 

layer height (PBLH) and 2-meter temperature but higher ground temperature. The 

decrease in atmospheric temperature leads to higher inland wind components, which 

further reduces the amount of water vapor in LSMP. 
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(a) (b) 

  

FIG. 4.1 The daily accumulated precipitation for 24 members of (a) ICP and (b) 

LSMP from 20:00, June 23 LST to 20:00, June 24 LST. The figure in the bottom right 

corner is observations. 
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FIG. 4.2 The diurnal cycle of the spatial average of precipitation. The red and green 

boxplot represents ensemble distribution for ICP and LSMP, respectively. The red dot 

represents QPESUMS observation. The three colored regions represent indicate the 

stable nocturnal phase, pre-storm phase, and convection phase. 

 

FIG. 4.3 The same as Fig. 4.2, but for sensible heat flux with terrain elevation below 

300 m.  
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FIG. 4.4 The same as Fig. 4.2, but for the 2-m temperature below 300 m elevation. 

 

FIG. 4.5 The same as Fig. 4.2, but for planetary boundary height for terrain below 

300 m elevation. 
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FIG. 4.6 The same as Fig. 4.2, but for ground temperature at terrain heights below 

300 m. 

 

FIG. 4.7 The same as Fig. 4.2, but for latent heat flux where terrain heights are below 

300 m. 
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FIG. 4.8 The same as Fig. 4.2, but for 2-m water vapor where terrain heights are 

below 300 m.

 

FIG. 4.9 The same as Fig. 4.2, but for wind speed at 10-m height where terrain 

heights are below 300 m. 
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(a) (b) 

  

FIG. 4.10 The spatial distribution at 10:00 LST for (a) differences in 2-m wind and 

temperature, and (b) differences in 2-m winds and water vapor between ICP and 

LSMP 
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(a) 

 

(b) 

 

(c) 

 

FIG. 4.11 Verification of (a) 2-m temperature , (b) 2-m water vapor at 2-meter height, 

and 10-m wind speed at10 meter height for the case 23, June 2022. Red, green, and 

blue lines represent the mean error, root mean square error, and spread of the 

ensemble model, respectively. Solid lines stand for the ICP experiment, and dashed 

lines represent the LSMP experiment. 
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(a) (b) 

  

FIG. 4.12 The inter-member differences of water vapor at 2-m within the experiment 

of (a) ICP and (b) LSMP, the x-axis and y-axis numbers correspond to member serial 

number. 01~12 members apply M-O scheme of opt_sfc, and 13~24 member apply 

Noah scheme of opt_sfc. 
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(a) (b) 

(c) (d) 

FIG. 4.13 The composite result of diurnal variation in (a) sensible heat flux exchange 

coefficient, (b) ground heat flux, (c) ground temperature, and (d) latent heat flux. 
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(a) (b) 

(c)  

 

FIG. 4.14 The composite result of the diurnal variation in (a) planetary boundary 

layer height, (b) temperature at 2 meters height, and (c) sensible heat exchange 

coefficients. 

  



doi:10.6342/NTU202304056

45 
 

(a) (b) 

(c)  

 

  

FIG. 4.15 The composite result of the diurnal variation in (a) water vapor at 2 meters 

height, (b) latent heat flux, and (c) wind speed at 10 meters height. 
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5. Discussion  

5.1 Ensemble clustering 

Previous studies have indicated that ensemble systems with multi-physics 

designs may exhibit characteristics of clustering among ensemble members (Li and 

Hong 2014). This study identified a similar classification patterns as discussed in 

Section 4.3. The analysis shown in Fig. 4.12, reveal that the most influential option to 

result in the clustering of the ensemble members in LSMP is opt_sfc, which governs 

the coefficient for sensible heat flux (CH). Two schemes, namely the M-O scheme and 

the Noah scheme in opt_sfc, are utilized in the LSMP experiment. 

CH directly affects the calculation of sensible heat flux, and there are half of 

the members in LSMP implement the Noah scheme, which generally yields lower CH 

values compared to the M-O scheme. Consequently, compared with ICP experiment, 

LSMP exhibites lower sensible heat flux and led to reduced planetary boundary layer 

height (PBLH) and lower 2-m temperature, and may change the local circulation 

further affecting water vapor in the boundary layer (Section 4.2).  

The details of M-O scheme and Noah scheme are presented below 

Noah scheme: 𝐶 =
  

         (5.1) 

M-O scheme: 𝐶 =
  

   (5.2) 

In M-O scheme: 𝑍 = 𝑍        (5.3) 

In Noah scheme: 𝑍 = 𝑍 𝑒𝑥𝑝 𝑒𝑥𝑝 −𝑘𝐶 𝑅  , 𝑅 =
∗

  (5.4) 
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In both schemes, where κ is the von Kármán constant, L is the Monin-

Obukhov length, and z is the reference height. Z0h and Z0m are roughness lengths for 

heat and momentum, respectively, Re is the roughness Reynolds number, and d0 is the 

zero-displacement height equal to 0.65 times canopy height. 

Except for including the d0 (the impact is limited, not shown here), the major 

difference between M-O and Noah schemes is the design of the Z0h. In the M-O 

scheme, Z0h is identical to Z0m (5.3), which means roughness lengths for heat borrow 

the concept of the roughness lengths for momentum. In the Noah scheme, Z0h was 

applied by a modulation based on the Z0m (Niu et al. 2011).  

In the LSMP experiment, half of the members apply the M-O scheme, while 

the other half apply the Noah scheme. The diurnal cycle of the CH for LSMP members 

is presented in Fig. 5.1. The results show that the M-O scheme exhibits significantly 

higher CH values compared to the Noah scheme, with lower spread. The difference in 

CH between the M-O and Noah schemes leads to a clustering pattern observed in Fig. 

4.12. On the other hand, all members in the ICP experiment apply the M-O scheme. In 

the LSMP experiment, the members consist of both the M-O scheme and the Noah 

scheme, with the M-O scheme having a larger CH and the Noah scheme having a 

smaller CH. As a result, LSMP generally exhibits a more extensive spread and a 

smaller ensemble mean of CH compared to ICP, as shown in Fig. 4.14.c. 

5.2 Czil parameter 

Notably, the Noah scheme incorporates an empirical parameter Czil in 

calculating Z0h (5.4) which has a significant influence on the sensible heat flux, and 

therefore is sensitive to LSM processes in the Noah MP model (Duda et al., 2017; 
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Zhang et al., 2022). In this study, we conducted three experiments for the case on June 

24, 2022, using LSMP configurations with Czil values of 0.01, 0.03, and 0.1, as 

shown in Fig. 5.2. 

The results demonstrate that the Czil has a notable impact on CH , where the 

larger Czil leads to lower CH, indicating the weaker coupling between land and 

atmosphere due to the enhanced sensible heat transfer in certain land-air temperature 

gradients. This suggests that tuning the Czil parameter may be crucial for improving 

model predictions. Moreover, the sensitivity of Czil also highlights its potential as a 

perturbation scheme design in LSM. However, further research is needed to fully 

explore this potential. 

5.3 Comparison with microphysics-based ensemble system 

In addition to comparing the spread induced by LSM perturbation with 

atmospheric initial condition perturbation, this research aims to explore the effects of 

LSM perturbation in combination with other physics-based perturbations. To gain a 

more comprehensive understanding, we also make a rough comparison with the study 

conducted by Chen et al. (2022). They conducted ensemble experiments focusing on 

multi-physics microphysical perturbations to investigate the sensitivity of convective 

heavy rain simulation to cloud microphysical parameterization. Notably, their and this 

research both focused on afternoon thunderstorms in Taiwan using the WRF model, 

while the selected cases model configuration and ensemble size are all different. 

Figure 5.3 provides a comparison of coefficient of variation of spatially 

averaged accumulated rainfall over ensemble system between LSMP in our research 

and in the microphysics-based ensemble conducted by Chen et al. (2022). The 
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coefficient of variation is calculated separately for five and ten cases and then 

averaged. The results demonstrate that the LSM induced mean precipitation standard 

deviation is approximately half that of the microphysics ensemble. This finding 

suggests that LSM perturbation may still plays a significant role in ensemble systems, 

even when compared to microphysics-based perturbations. 

In comparing the spread induced by multi-physics LSMP and multi-physics 

microphysics, it is important to consider their respective impacts on ensemble 

predictions. The multi-physics LSMP perturbation scheme primarily affects land 

surface processes, such as surface heat fluxes and SM, influencing the atmospheric 

boundary layer and moisture availability. On the other hand, the multi-physics 

microphysics scheme focuses on the parameterization of cloud and precipitation 

processes, including cloud microphysics and the treatment of rain and ice particles. 
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FIG. 5.1 The diurnal cycle of the spatial average of sensible heat exchange 

coefficient. The red and green boxplot represent distributions of ensemble members in 

LSMP applying M-O scheme and Noah scheme, respectively.  
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FIG. 5.2 The diurnal cycle of the spatial average of sensible heat exchange 

coefficient. The green, red, and yellow boxplot represent distributions of ensemble 

applying Czil of value 0.01, 0.03, and 0.1, respectively. Each ensemble consist of 12 

members whose configuration is followed by LSMP members applying the Noah 

scheme.  
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FIG 5.3 Comparison of coefficient of variation of spatially averaged accumulated 

rainfall over ensemble system between LSMP in our research and the microphysics-

based ensemble conducted by Chen et al. (2022). The coefficient of variation is 

calculated separately for five and ten cases and then averaged. 
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6. Conclusion 

In Taiwan's warm seasons, afternoon thunderstorms (ATs) can produce intense 

rainfall, which may result in the loss of property and human life, while it is also 

essential for water resources management. Therefore, how to predict the precise 

location, timing, and intensity of ATs is a demanding issue in Taiwan. Numerous 

factors, such as land-sea breeze, orography-induced flows, and anabatic flows, impact 

the structure and evolution of ATs in Taiwan. Moreover, the nonlinear nature of 

rapidly evolving convections imposes limitations on the predictability of models 

within a few hours. Solely relying on the output from a deterministic prediction can 

result in inadequate forecasts. However, ensemble prediction is expected to improve 

ATs predictability and offer information on forecast uncertainty.  

Under weak synoptic conditions, the LAI is critical for the evolution and 

forecasting of ATs. The treatment of land and vegetation processes within LSMs 

determines surface sensible and latent heat fluxes, convective mixing, boundary layer 

growth, and the transport of moisture into the upper troposphere. Therefore, the LAI 

may be an important source of uncertainty in ensemble ATs predictions. In this study, 

we apply Noah MP and WRF model to investigate the impact of LSM perturbation on 

afternoon thunderstorm ensemble prediction. 

First of all, this research conducts offline LSM experiments to understand better 

the physical processes that control the behavior of land surfaces and their interactions 

with the atmosphere and acquire a more realistic LSM state. We use high-resolution 

land surface characteristic data, including soil texture, land cover, vegetation fraction, 

and terrain height, to realistically illustrate the interface between land and atmosphere.  

Offline experiments are driven by hourly atmospheric forcing data of 1 km 

resolution consisting of temperature, water vapor, wind speed, surface pressure, 

radiation, and precipitation. Specifically, temperature, water vapor, wind speed, 

longwave radiation, and surface pressure data are sourced from the CWB WRF 12-23 

hour forecast. Short wave radiation data is sourced from remote sensing data from 

three channels, B03, B13, and B15, of the Himawari-8 geostationary satellite. 

Precipitation data are obtained from QPE. The QPE product is adopted from the 
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Quantitative Precipitation Estimation and Segregation Using Multiple Sensors 

(QPESUMS) system. The primary conclusion includes: 

1. For the investigation of spin-up behavior, the LSM reaches equilibrium 

within three months. Therefore, the following experiments will apply LSM 

initial conditions after spin-up for at least three months to avoid uncertainty 

in LSM initial conditions. 

2. The NOARAIN experiment generally gets a higher option spread than CTRL 

for the sensitivity experiment. Moreover, the sensitivity experiment results 

suggest that the top four options with the highest spread are opt_sfc, opt_rad, 

opt_crs, and opt_rsf, and we apply these four options to compose our LSM 

perturbation scheme. 

Based on the offline result, we perform two 1-km resolution WRF afternoon 

thunderstorm ensemble experiments, where ICP considers initial condition 

perturbation only, and LSMP involves initial condition and LSM perturbation, and 

each experiment comprises 24 members. Five afternoon thunderstorm cases are 

simulated in this study. A detailed case study on June 24 2022 and composite results 

over five cases are presented in this study, as summarized below: 

1. The LSMP experiment demonstrates a broader range of variability in 

precipitation, suggesting that the LSM perturbation plays a role in the spread 

of ensemble precipitation prediction. However, ICP and LSMP underpredict 

the precipitation amount and provide premature predictions of rainfall 

initiation and peak timing. The median of the two experiments is comparable, 

indicating that LSM perturbation weakly affects the mean precipitation of the 

ensemble system in our study. It is suggested that additional investigations, 

such as improvement of initial/boundary conditions and atmospheric physics 

processes, may be necessary to improve the precipitation forecast (Tong et al., 

2016). 

2. Regarding the ensemble mean, the diagnostic analysis reveals that ICP 

exhibits higher sensible heat flux in the pre-storm phase, resulting in elevated 

temperatures in the lower atmosphere; Consequently, stronger in-land winds 

are induced, accompanied by higher 2-m water vapor in the lower altitude 
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region. The verification analysis demonstrates that the root mean square error 

(RMSE) for LSMP shows a slight increase, potentially attributed to higher 

mean error values.  

3. In terms of spread, LSMP demonstrates a wider range compared to ICP across 

various variables. The primary source of this variability in LSMP is attributed 

to opt_sfc, which encompasses both M-O and Noah schemes and determines 

the exchange coefficient for sensible heat. Besides, opt_sfc leads to classifying 

ensemble members in LSMP by the M-O scheme and Noah scheme.  

4. Notably, one of the important differences between the Noah scheme and the 

M-O scheme is roughness length formulation which the Noah scheme 

cooperating CZIL parameter in its algorithm; therefore, we evaluate the 

sensitivity of the CZIL parameter on sensible heat flux in the Noah scheme 

and demonstrate that CZIL can be an important source of uncertainty in LSMs, 

revealing its potential in LSM-based perturbation scheme design. 

In summary, this research first focuses on evaluating the sensitivity of physical 

processes to ensemble spread and spin-up behavior of the Noah MP through offline 

experiments. Building upon the offline results, we obtain a more realistic 

representation of the land surface state and configure an LSM-based perturbation 

scheme. We proceed to perform ensemble predictions of afternoon thunderstorms at a 

1-kilometer resolution and assess the impact of the perturbation scheme based on the 

LSM. Based on the present works, we proposed several issues for future research: 

1. Expand the number of cases: The current five cases may not provide 

sufficient coverage and representativeness. Therefore, it is essential to include 

more cases in future studies to enhance the robustness and reliability of the 

findings. By incorporating a broader range of scenarios, we can better 

understand the model's performance and ability to capture different 

meteorological conditions. 

2. Addressing the influence of CZIL: The CZIL parameter has been identified as 

a significant factor influencing the model results (Chen et al., 1997). 

Exploring approaches for properly handling CZIL is crucial to improve the 

model's accuracy. Additionally, given its impact on the model results, CZIL 

also holds the potential for further development as a perturbation scheme.  
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3. Optimal integration of LSM and other physics schemes: Exploring the 

strategies to effectively integrate LSM with other physics schemes, such as 

surface layer, boundary layer turbulence, and microphysics scheme, is an 

essential avenue for future research.  

4. Enhanced probabilistic verification: In addition to traditional deterministic 

verification methods, there is a need to expand the analysis to include more 

probabilistic verification techniques. These methods consider the uncertainty 

inherent in the model outputs and provide a more comprehensive assessment 

of the model's predictive skill. By incorporating probabilistic verification, we 

can better understand the model's reliability in capturing the variability and 

likelihood of different weather events. 
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