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Abstract

This study focuses on the use of machine learning techniques to pre-

dict three important telecommunication parameters in the context of metro

passengers itineraries. These parameters are the base station changes, the la-

tency of the signal and the number of packet loss. They represent abnormal

phenomenon, or events that can alter the phone’s performance. Being able

to succesfully predict it can lead to a better anticipation of these issues and

enhance the user’s experience.

The primary objective of this research is to compare different machine learn-

ing models for real-time predictions of the studied parameters. To do so, dif-

ferent algorithms (Neural Networks, Recurrent Neural Networks, LSTM and

ARIMA), as well as several sets of features will be used. A comparison on

the error metrics will also be conducted. The study took novel approaches

in the nature of the studied parameters and the prediction delay, as it aims to

forecast the value a few seconds into the future. Additionally, it proposes new

solutions to make predictions with a dataset mainly composed of zeros.

Overall, this study contributes to the understanding of machine learning ap-

plications in predicting telecommunication parameters in the case of metro

passengers itineraries. The findings suggest that the selected machine learn-

ing algorithms, combined with appropriate error metrics and innovative ap-

proaches, offer reliable solutions for real-time predictions for the three studied
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parameters. Besides, the proposed solutions to avoid models that always pre-

dict zero with datasets mainly composed of null values proved to be success-

ful. The predictions from the chosen models will help in the decision-making

of the settings of the phone, to avoid abnormal phenomenon and maintain a

good performance throughout the user’s route.

Keywords:Machine Learning, latency, handover, packet loss, error metric,

time series, Neural Networks
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Chapter 1. Introduction

1.1 Motivation

In communication, certain parameters, such as handover, high latency, and packet

loss, can significantly impact the performance. Thus, being able to predict them in real

time during a metro itinerary could greatly enhance the performance by helping to choose

the safest phone settings and prevent these abnormal phenomena.

Many different machine learning models are valuable tools to predict parameters. Conse-

quently, it is important to study which ones perform better on this specific application. A

survey of different algorithms, parameters and features is necessary to have a global vision

of the problem and make the right conclusions.

Moreover, error metrics are very important in the decision making throughout the process

and the conclusion. The error metric is used to measure an error between the predictions

and the actual values. The result from it translates the accuracy of the prediction and is

the principal indicator of the model’s performance. It is used during the cross validation

phase, leading to the decision of the parameters values. It is also crucial in the testing part,

influencing the final conclusion on the model performance. Therefore, knowing which er-

ror metric is more suitable for this application is a key point.

Additionally, I faced a unique issue that has not been addressed in prior research. Specif-

ically, more than 99% of the datasets I used exhibit a number of packet losses equal to
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zero. Consequently, the prediction of this parameter is challenging. The issue of datasets

predominantly composed of zeros is crucial in the field of machine learning and many

researchers have thought of possible solutions, but not for such a high proportion. Finding

new solutions to increase the performance of the prediction with this new kind of dataset

is a noteworthy challenge.

To sum up, this work is focusing on the comparison of several Machine Learning models

for the prediction of three telecommunication parameters. These parameters are collected

from the user’s side. Indeed, the data is taken from metro passengers itineraries, following

their movement. On the contrary, the server’s side is when the data is collected from the

base station, it can include multiple phones and does not follow one specific user path, it

is simply taking all, or a part of, the data from the phones connected to one or several base

stations. The predictions from the models are meant to be analyzed in real-time to choose

the safest phone settings to enhance the performance.

1.2 Related Works

There are studies about the prediction of the Packet Loss Rate using Machine Learn-

ing techniques. The authors of [1] developed a Machine Learning tool based on a Random

Forest Regression model to predict, evaluated with real world data. [2] also studied the use

of Decision Tree, and added a Logistic Regression algorithm.

[3] and [4] propose real time packet loss rate prediction at t+1. [3] proposes a novel pre-

diction model with an adaptative nonlinear approach. [4] focuses on data mining models

development, and uses a Multilayer Perceptron. [5] is a statistical analysis of data traffic

measurements, specifically on packet loss. The authors of [6] have conducted a study of

packet loss behavior, analyzing big network traffic data and using a classification approach

with the Machine Learning classifier XGBoost.

All of these works are about the prediction of the packet loss rate. I chose to take a dif-

ferent approach by predicting the number of packet losses. Moreover, these studies were

conducted from the network operator’s side. My work will take the user side by follow-
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ing a metro passenger itinerary.

As regards the prediction of the latency, there are studies using classification models.

For example, [7] contributed by studying real operational network and real data on the

user end. Their model is predicting 3 different classes: low latency, medium latency and

high latency, using Logistic Regression, Support Vector Machine and Decision Tree clas-

sification algorithms. [8] also studied a classification model in the aim of optimizing NoC

architecture components, with a Random Forest algorithm. Other studies took a regression

approach. [9] studied the validation of Support Vector Machine algorithm and performed a

feature selection analysis, but is not performing real time forecasting, unlike [10] and [11].

The authors of [10] are presenting a novel approach for latency estimation with an online

learning algorithm in a mobile scenario. [11] identified the main challenges of the problem

and validated the benefits of the Recurrent Neural Network algorithm with LSTM cells for

the prediction of the latency.

I found that the studies using a regression algorithm were more appropriate to achieve my

goals, even if the others gave me useful informations on the features, error metrics and

algorithms commonly used for that kind of data. Similarly to [10] and [11], my study

focuses on real time forecasting. As said before, my work is in the case of a user’s move-

ment. [10] did the same using an online learning algorithm. It would be interesting to see

how well other algorithms do in this application, as [10] only tried one model. I chose to

use the algorithm from [11] (LSTM) in my specific application. Even if the contexts are

different with the data taken from the user’s side in my case, the model will be working

on the same kind of data and the study showed that it performed well on their realistic

settings. Moreover, this algorithm is a well known machine learning time series model

that can be applied to many different problems. Thus, my work will extend this study by

exploring an additional application.

Finally, a few studies are using Machine Learning to deal with the handover predic-
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tion. [12] is studying the case of actual vehivle movement, the authors aim to predict the

handover and learn the variation of performance over the course of the day. Their model

is using a Neural Networks classification algorithm to predict the fog node used at a given

location in real time. [13] is also predicting in real time which base station is used in a

mobility scenario. The authors want to exhibit that simple methods can outperform more

sophisticated models by studying a probabilistic approach to determine the probability of

the handover to each neighboring base station. [14] has a different approach. It is forecast-

ing the future number of handover attempts to meet their goal to manage handover for a

huge number of cells.

As I am interested in real time forecasting, the studies about the prediction of the next cell

are more pertinent than the one predicting the number of handover attempts, even if the

latest ( [14]) is giving interesting informations on the studied parameters. [12] and [13] are

proposing solutions to forecast the base station the phone will be connected to at the time

t+1. With this prediction, we know if there will be a handover at t+1. However, if there is

no handover, these methods do not give any indication on when the next change of base

station will happen. Therefore, my work studied the prediction of the time left before the

next change of base station.

The previous studies about real time forecasting are all performing predictions at t+1, i.e.

they are predicting the very next value of the parameter under investigation. However, this

solution could be complicated to apply in real life scenarios, as the delay for the prediction

is short. Indeed, the data is at least collected every second, and often has higher col-

lection frequency. Therefore, a model producing predictions at t+1 only have a delay of a

second. In my work, I will consider forecasting the parameters a few seconds in the future.

Some studies are proposing solutions for datasets mainly composed of zeros. For

example, [15] is taking care of this issue by using a binomial regression. However, it is

not the case with 99% of zeros. Indeed, the examples taken in the studies are at most
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around 60 or 70% of zeros. Thus, my research will propose new solutions for this issue.

1.3 Contribution

This work compares different Machine Learning models for real-time predictions of

base station changes, latency, and packet loss for a user’s itinerary in the metro.

The studied models are different combinations of a machine learning algorithm, a set of

features and an error metric.

To the best of my knowledge, this study is the first to forecast these parameters a few

seconds into the future.

The advantage of this approach is that it enables to have more time to analyze the predic-

tions and change the phone settings if necessary. Moreover, it gives a better view of how

the parameter’s value is likely to evolve in the near future.

To the best of my knowledge, this study is the first to design and compare error met-

rics specifically for this application.

This study employs novel approaches for predicting the number of packet losses and

the time before the next change of base station. To the best of my knowledge, it is the first

study to investigate these predictions.

Predicting the number of packet loss is relevant in a context of very few packet loss, as the

packet loss rate is even lower. The idea to forecast the time before the next change enables

to know how far the next change of base station is. Focusing on the prediction of the cell

to which the phone will be connected to at the next time step is successfully giving the

information on whether a base station change happens at the next time step. Nevertheless,

it does not give any indication on the next change if the phone is predicted to be connected

to the same base station. Therefore, this new method is very valuable as it gives much

more information.
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This study proposes innovative solutions for prediction using datasets primarily con-

sisting of zeros. To the best of my knowledge, it is the first study attempting to do so with

datasets composed of more than 99% zeros.

This study is made in collaboration with other students working on finding the best phone

settings to avoid abnormal phenomena. The predictions of the machine learning models

are meant to help them in the selection of the settings. One of their goals is to reduce the

packet loss during metro itineraries. It makes sense that the datasets contains very few

packet loss, as the issue with this parameter has already been treated. However, the num-

ber of packet loss still needs to be predicted to see if a change of setting to try to reduce

the latency will have an impact on packet loss for example. Having a global vision on

the three parameters is necessary for final the decision making. Finally, this was a good

opportunity to work on solutions for using machine learning techniques in such context.

The proposed solutions could be useful in other applications.
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Chapter 2. Methodology

2.1 System Architecture

Figure 2.1: System Architecture

Figure 2.1 shows the proposed system architecture of this study. The system is com-

posed of three parts, each with its own characteristics: the Taipei Metro, the Machine

Learning model and the settings selection.

Several passengers from different itineraries in the Taipei metro are experiencing interac-

tions between their phone devices and the telecommunication network. A lot of data can

be collected and gathered from this connection. Then, the collected data from the passen-

gers is transmitted to the Machine Learning model, which is the second component of the
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system.

The received data undergoes analysis and processing in such ways that will be detailed

later. This work contribute to the development of a machine learning model. After training

the model, the proposed algorithm is applied to the tested data and delivers predictions for

the future values of the parameters under investigation.

These predictions are examined and interpreted, leading to the decision-making process

for the phone settings selection. The aim of the system is to help choose the safest settings

to prevent abnormal phenomena by forecasting these parameters with the Machine Learn-

ing model built with the data from the Taipei metro.

Table 2.1 is listing all the variables from the system and their description.

Variable Description

( Number of samples in a dataset

(1 Number of samples in a training set, (1 = 0.8 ∗ (
(2 Number of samples in a testing set, (2 = 0.2 ∗ (
) Number of features in a dataset

* "#"$% (for Recurrent Neural Networks models)

*2 "%&$' (for Recurrent Neural Networks models)

+ Number of units (NN) or size of the vector h (RNN)

, Number of hidden layers

!- Number of collections of the feature latency during the -"ℎ second

/- Number of collections of the feature loss during the -"ℎ second

" %1 Starting collection time in a pcap file

" %2 Ending collection time in a pcap file

"01 Starting collection time in a csv file

"02 Ending collection time in a csv file

Table 2.1: Table of the variables of the problem
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2.2 Processing Workflow

Figure 2.2: Processing Workflow

The processing workflow from Figure 2.2 shows the different steps in the study’s

work, that will be detailed and explained in the following sections.

2.2.1 Data Collection

The data was collected in the Taipei metro in two different ways with different col-

lecting time and frequencies: one for the latency and packet loss, gathered in %01% files,

and another for the other data, put together in 0#2 files. The collection frequency is not

the same for the two files. Indeed, at each time, i.e. each second, the other features are

collected once whereas 31" and 34## have respectively !- and /- collections (for the -"ℎ

second). Moreover, the files do not have the same beginning and ending collection times.

The data from the 0#2 files is collected from "01 to "02 and the latency and packet loss

from the %01% files are collected from " %1 to " %2. Finally, the loss feature has some miss-

ing values, because this feature exists only if a packet loss is detected and is equal to 1.

However, there is no packet loss in 99% of the used datasets.
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The issues raised about the difference of collection frequencies, beginning and ending

times, and missing values will be adressed in the next phase of the study.

2.2.2 Preprocessing

After collecting the data, the study is going through the preprocessing part with sev-

eral actions to do to gather information on the data and build the datasets. In order to have

the same collection frequency for every feature, I decided to take the average of the latency

for every second to match the collection frequency of the data from 0#2 files.

Let’s call 5 the new feature created from this operation.

For - ∈ [" %1, " %2], we have 5 [-] = 1
!!

∑!!
+=1 31"

- [+]

Each 34## in the %01% file is equal to 1 and corresponds to a packet loss. Therefore, to

match the collection frequency of a second, I chose to sum the number of packet losses

that happen during a second with the function "&16# 7 _34##.

Let’s call 5 the new feature created by this operation.

For - ∈ [" %1, " %2] and /- > 0, we have 5 [-] = ∑/!
+=1 34##

- [+] = /-
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As explained before, there is initially no value for the packet loss feature of the %01% file

when there is no packet loss at a given second. Therefore, a zero should be added each

time it happens.

For - ∈ [" %1, " %2] and /- = 0, we have 5 [-] = 0

After dealing with the collection frequency disparity, the differences in the starting and

ending collection times should be taken care of. The features values from the times

815("01, " %1) to 8-6("02, " %2), i.e. when the data from both files is collected, are kept.
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New features were created from the data. One of them is called ”time”. It is giving

the time in seconds before the next change of base station. This new feature will not

have the same ending time of collection "02. Indeed, after the last change of base station

collected in the dataset, we do not know when the next one will be. Therefore, the time

before the next change of base station is unknown. The ending time for this feature will

be the time of the last change of base station. If this feature is taken in the dataset, all the

other features should also be taken at the right collection times, when all the features are

collected, considering this new ending time.

Another created feature called ”change” is indicating if there is a change of base station.

This feature is equal to 1 if there is a change of base station and 0 otherwise.

Let’s call ”base” the data from the csv file indicating the base station the phone is con-

nected to. For - ∈ ]"01, "02], we have

0ℎ169$[-] = 0 if :1#$[- − 1] = :1#$[-]

0ℎ169$[-] = 1 otherwise.
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”loss0/1” is a feature indicating if there is at least one packet loss. It is equal to 1 if there

is at least one packet loss and 0 otherwise.

For - ∈ [" %1, " %2], we have

34##0/1[-] = 0 if /- = 0, and 34##0/1[-] = 1 otherwise.

As mentioned before, the number of packet loss is 0 for 99% of the datasets. Therefore,

predicting it using machine learning techniques is very difficult as models will tend to

always predict 0. ”enlarged loss” is a feature enlarging the peaks of packet loss. The idea

behind this feature is to“enlarge the peaks”to create curves in the graph of the packet

loss upon time and therefore reduce the number of null values. The real number of packet

losses and this new feature from dataset 2 are plotted on Figure 2.3 to compare them. As

observed in this graph, the newly created feature has much more non-null values, while

still keeping the overall shape of the true values evolution. Even if the information about

the exact number of packet loss at each time is lost, this approach could be beneficial for

the selection of a pertinent model for the packet loss prediction in such context.

Figure 2.3: Graphs of the packet loss and enlarged loss for the testing set of dataset 2

This feature is created in a recursive form, such as if a value 2 at a rank - is not null, the

values of the ranks - + 1 and - − 1 are set to 0.95 ∗ 2 if they are lower than this new value.

Then, the operation is done again for the ranks - + 1 and - − 1.
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Two other features are created from the initial data. At each time, the strength of the 4G

signal is evaluated with two features: LTE RSRP and LTE RSRQ. Similarly, NR SSRSRP

and NR SSRSRQ are defining the strength of the 5G signal. These four features are col-

lected at each step, regardless of the actual type of connection, i.e. if it is under 4G or

5G connection. The study investigates 4G base station changes, so the data corresponding

to this type of connection is taken in this case. However, the latency of the signal and

the number of packet loss are dependant on whether the connection is 4G or 5G, and the

correct features should be used depending on the scenario. The features ”RSRPbis” and

”RSRQbis” are created with this idea and are calculated such as:

;!;<:-#[-] = /*=_;!;<[-] in the case of 4G connection

;!;<:-#[-] = (;_!!;!;<[-] in the case of 5G connection

;!;>:-#[-] = /*=_;!;> [-] in the case of 4G connection

;!;>:-#[-] = (;_!!;!;> [-] in the case of 5G connection

All the features are specified in Table 2.2. A number is associated with each feature, and

they will be referred to by their corresponding number in the following parts of the study.

The table also provides a description for every feature.
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N° Name Description

1 LTE RSRP Average value of the strength of the reference 4G signal
transmitted by the base station

2 LTE RSRQ Ratio between RSRP and RSSI (which represents the total
power of the 4G signal)

3 NR SSRSRP Same than n°1 but for 5G signal

4 NR SSRSRQ Same than n°2 but for 5G signal

5 SigStrength Received signal strength from the nearest base station

6 SigStrength1 Received signal strength from the second nearest base sta-
tion

7 Speed Speed of the phone (in m/s)

8 RxRate Total number of bytes received per second

9 TxRate Total number of bytes transmitted per second

10 Latency Latency of the signal (in ms)

11 Loss Number of packet loss during a second

12 RSRPbis = n°1 if the phone is in 4G connection and = n°3 if it is in
5G connection

13 RSRQbis = n°2 if the phone is in 4G connection and = n°4 if it is in
5G connection

14 Change = 1 if there is a change of base station and = 0 otherwise

15 Time Time (in s) before the next change of base station

16 Loss0/1 = 1 if there is at least 1 packet loss and = 0 otherwise

17 Enlarged Loss If Loss(t)>0, then Loss(t-1) = Loss(t+1) = 0.95*Loss(t)

Table 2.2: Features
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The features are gathered into a set that is taken as input by the algorithm. This work is

using numerous sets of features in the different experiments. They are listed in Table 2.3,

their composition is detailed with the corresponding numbers of the features included and

a name is given to each set.

Set Features used

!1 [ 1, 2, 5, 6, 7, 8, 9, 10, 11 ]

!2 [ 1, 2, 7, 8, 9, 10, 11 ]

!3 [ (12, 13, 5, 6, 7, 8, 9, 11) at t, (10) at t-1 ]

!4 [ (12, 13, 7, 8, 9, 11) at t, (10) at t-1 ]

!5 [ (12, 13, 7, 8, 9, 10) at t, (16) at t-1 ]

!6 [ (12, 13, 7, 8, 9, 10) at t, (11) at t-1 ]

!7 [ 12, 13, 7, 10 ]

!8 [ 1, 2, 7 ]

!9 [ 12, 13, 7, 8, 9, 10, 11 ]

!10 [ 10 ]

!11 [ 12, 13, 10 ]

Table 2.3: Sets of features

Another goal of the prepocessing part is to gather information on the data. It is im-

portant to analyze the data to choose which features should be used, spot the unusual

tendencies and outliers, see if a pattern can be detected, and know which model can be

used.

The first approach to gather information is by visualizing the data on graphs. By doing so,

we can see the global evolution of the data, if there are outliers and how far and frequent

they are, the range of the data, etc.

Then, a mathematical approach is necessary to put numbers on the observations made by

visualization. Let’s call 5 ∈ R( a feature of the dataset, we can calculate the mean of 5:

8$16(5) = 1
(

∑(
+=1 5 [+]
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The maximum of 5 is 815(5) = 5 [-] with - ∈ [1, (] such as 5 [-] ≥ 5 [+], ∀+ ∈ [1, (].

The minimum of 5 is 8-6(5) = 5 [-] with - ∈ [1, (] such as 5 [-] ≤ 5 [+] ∀+ ∈ [1, (].

The standard deviation #"' (5) =
√

1
(

∑(
+=1 | 5 [+] − 8$16(5) |2

Besides, we can calculate correlation coefficients between features to see if they are cor-

related. If two features are perfectly correlated, one of them should not be used. Indeed,

they are bringing the same information to the model and are redundant. Therefore, one of

them is useless and removing it will increase the speed of the model. Moreover, multi-

collinearity can lead to solutions that are wildly varying and can be numerically unstable.

Finally, it is preferable to keep a simpler model, and have fewer features. It will make the

interpretability of the model easier.

The correlation can be calculated with the Pearson correlation coefficient, that translates

the linear relationship between 2 features 51 and 52:

<$1&#46(51, 52) = 042(51,52)
#"' (51)∗#"' (52)

with #"' (5) defined earlier and 042(5, ?) such as:

042(5, ?) = 1
(

∑(
+=1(5 [+] − 8$16(5)) ∗ (?[+] − 8$16(?))

with 8$16(5) defined earlier.

The Spearman correlation coefficient is also useful. This coefficient reflects nonlinear

relationships between two features 51 and 52. It shows the strength of the relationship

between these features and can also be used for linear relationships even if the power will

be lower than with the Pearson correlation coefficient.

!%$1&816(51, 52) = 042(&16+ (51),&16+ (52))
#"' (&16+ (51))∗#"' (&16+ (52))

where &16+ (5) is alist of the ranks of the values in the ascending order.

For example, if 5 = [2, 4, 0] is considered, the ascending order is 0, 2, 4. Therefore, we

would have &16+ (5) = [2, 3, 1].
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The two defined coefficients give a number between -1 and 1. 1 meaning a perfect positive

correlation and -1 is the result for a perfect negative correlation. If the two variables are

totally independent, the result is 0.

Feature 5 6 7 8 9 10 11 12 13

5 0.836 0.135 -0.004 0.052 -0.028 -0.268 0.389 0.036

6 0.836 0.111 -0.002 0.019 0.000 -0.232 0.479 0.014

7 0.135 0.111 -0.064 -0.036 0.060 0.060 0.149 0.136

8 -0.004 -0.002 -0.064 0.066 -0.021 -0.096 -0.046 -0.061

9 0.052 0.019 -0.036 0.066 -0.011 0.072 -0.019 0.021

10 -0.028 0.000 0.060 -0.021 -0.011 0.033 -0.035 -0.071

11 -0.268 -0.232 0.060 -0.096 0.072 0.033 -0.222 0.050

12 0.389 0.036 0.149 -0.046 -0.019 -0.035 -0.222 0.273

13 0.036 0.014 0.136 -0.061 0.021 -0.071 0.050 0.273

Table 2.4: Spearman correlation coefficients table for dataset 1

As an example, Table 2.4 gathers the Spearman correlation coefficients between the fea-

tures n°5 to 13 for dataset 1. In this table, the coefficients that are higher than 0.3 or

lower than -0.3 are highlighted in red, while those whose absolute value is higher than

0.2 are highlighter in yellow. It can be seen that the features used have mostly relatively

small correlation coefficients, which shows that they provide complementary informa-

tions. However, the features n°5 and 6 are resulting in some higher coefficients. Indeed,

they respectively have a value of 0.389 and 0.479 with the feature n°12. Most notably, the

Spearmann coefficient between them is by far the highest among the table, at 0.836. That

means that these two features are very similar, may bring redundant information already

carried by feature n°12, and therefore be detrimental to the model. This result is not very

surprising considering the nature of these features. Indeed, they represent the same phys-

ical parameter. Some of the sets of features that will be used in the study’s experiments

include these features while others do not. By doing so, the effect of their presence will

be studied to confirm the conlusions drawn from this analysis.
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After extracting the data, synchronizing it, creating new features and gathering infor-

mation helping on the feature selection, the dataset is built with the ( samples of the )

chosen features. The function @_? creates a dataset @ of size ( ∗) and a vectorA of size

( with the output values.

If the chosen model is a time series model, there is another part in the construction of the

dataset. Indeed time series models are taking the features on several steps of time in the

input, therefore the dataset should be rebuilt with this new shape.

We call "#"$% the step of time that is taken in the input. Therefore, each of the ) features

will be taken "#"$% times in the input. "%&$' is the gap between the last time taken in the

input and the prediction. We put * = "#"$% and *2 = "%&$' .

The size of the previous dataset @ is ( ∗ ) , meaning that each of the ) features has (

values. The size of the new inputs is ) ∗ * . In each input, the features are taken * times.

The first input takes the values from 1 to * , the second input takes the values from 2 to

* + 1, and so on. Therefore the number of inputs is at most ( − * .

Moreover, there is a gap of *2 between the last element of the input and the output. The

first output will be the value at * + *2, the second output will be the value at * + *2 + 1,

and so on. When the last output, i.e. the value at the time ( , will be taken in the A vector,

the corresponding input will take the values from ( − * − *2 to ( − *2. Therefore, the

new dataset will contain exactly (( − * − *2) inputs. The size of the new dataset @ will

be (( − * − *2) ∗ () ∗ *) and the size of the vector A will be (( − * − *2).
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Finally, the last step is to divide the dataset between training and testing sets and scale it.

A dataset is composed of ( samples of features. The training set takes the values of the

dataset from 1 to (1 and the testing set takes the values from (1 + 1 to ( . The sizes of the

training set @"&1-6 and the testing set @"$#" are respectively (1 ∗) with (1 = 0.8 ∗ ( , and

(2 ∗ ) with (2 = 0.2 ∗ ( .

Then, the data can be scaled. Two different ways to scale the data are used in this study.

Let’s call 5 a feature and 5#013$' the corresponding scaled feature.

The first scaling method is the Standard Scaling.

For - ∈ [1, (], we have 5#013$' [-] = 5 [-]−8"#$!%
#"'"#$!%

where 8"&1-6 is the mean of the feature 5 in the training set: 8"&1-6 = 1
(1

∑(1
++1 5 [+]

and #"'"&1-6 is the standard deviation of the feature 5 in the training set:

#"'"&1-6 =
√

1
(1

∑(1
+=1 | 5 [+] − 8"&1-6 |2

Then, we have the MinMax Scaling.

For - ∈ [1, (], we have 5#013$' [-] = 5 [-]−8-6"#$!%
815"#$!%−8-6"#$!%

where 815"&1-6 and 8-6"&1-6 are respectively the maximum and minimum values of the

feature 5 within the training set.

2.2.3 Cross Validation

After the datasets are built and the model, set of features and error metric chosen, the

next step is the cross validation. In this part, the training set from 2 datasets out of 3 are
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taken to determine the best parameters to use.

For this phase, I chose to emlpoy a time series format. All the training set is usually used in

every iteration of the cross validation, randomly divided into training and validation sets.

For my experiments, I kept the newest data in the validation set and the data that came

before are gathered in the training set.

The disadvantage of this method is that the full set is not used at each iteration and the un-

used parts could be beneficial in the training. However, the cross validation should match

the testing context, i.e. training the model on the oldest data and testing it on the newest

ones. In a real-time application, the predictions will be performed on the latest data avail-

able. Therefore, maintaining the chronological order between training and validation in

the cross-validation phase is essential for simulating real-world conditions and ensuring

the reliability of parameter decisions.

The training set is divided into training and validation parts in 5 different ways. The set

is divided into 10 parts. For the 1st cross validation, the training set (@BC ) is composed

of the first five parts of the set and the validation (@213) is the 6th part. For the 2nd cross

validation, the training set consists of the 6 first parts of the set and the validation is the

7th part, and so on until the 5th cross validation.

Let’s call (BC = (1
10

For - ∈ [0, 4]

@BC = @"&1-6 [1 : (5 + -) ∗ (BC ] and ABC = A"&1-6 [1 : (5 + -) ∗ (BC ]

@213 = @"&1-6 [(5 + -) ∗ (BC : (6 + -) ∗ (BC ] and A213 = A"&1-6 [(5 + -) ∗ (BC : (6 + -) ∗ (BC ]

At each iteration, the model is trained on the training set and tested on the validation set.

The average error is returned by the cross validation function to evaluate the performance

and assist the decision making concerning the parameters values.

This operation should be done for all the values of the parameters we want to test. Then,

the results obtained with the error metric can be compared and the best values for each
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parameter can be chosen for the testing part.

2.2.4 Testing

For the test, the model is trained on the training set with the parameters values chosen

with the cross validation, and we test it on the testing set for each dataset. The performance

is measured with the error metric. The testing has to be repeated several times and the

average result must be taken as the weights of the algorithm are randomly initialized and

can influence the convergence of the model.

After the test, we can conclude on the model performance considering the error metric’s

result.

In my study, I wanted to study the influence of different parameters, such as the algorithm,

the set of features and the error metric, on the model performance. Therefore, all these

steps should be done again in the same conditions for each of the tested parameters. The

performance of the models on the three datasets will be compared and this comparison

will lead to the selection of the most suitable model for each parameter.

Then, the selected models will be tested on 20 additional datasets, that countains

unknown data. This experiment simulates real-world scenarios and avoids any bias. The

new datasets used for this step have been created from new data collections and do not

necessarily have the same values distributions. This phase is crucial as it replicates the

use case conditions. Thus, it will serve to validate the performance and the reliability of

the chosen models.
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Chapter 3. Error metrics

Error metrics are essential in many fields. In most applications, it is an indicator on

how close the actual values are from what was expected or predicted. Therefore, it is used

to evaluate the performance of the model. InMachine Learning experiments, error metrics

compare the actual values from the dataset to the predictions from the model. It has a big

influence on the choice of the parameters values, the way we see and interpret the results

and the comparison with other models. Therefore, it is crucial to use an error metric that

makes sense with the aims of the study. In order to do that, I studied the structure of the

metrics to understand how it works and which one I should use.

3.1 Structure of the metrics

A lot of different kinds of metrics are used in various field. In machine learning

regression problems, the most commonly used are the Mean Absolute Error (MAE), the

Mean Squared Error (MSE) and the Mean Absolute Percentage Error (MAPE).

Many papers have tried to classify the metrics according to different criteria. For exam-

ple, [16] suggested classifying metrics into four groups, based on how the result is ex-

pressed. The four groups are the scale-dependent metrics, the percentage-error metrics,

the relative-error metrics and the scale-free error metrics. This classification is simple and

clear and enable to understand the basic properties of the metrics, e.g. if it is scale free or

not. And choose one that matchs the needs of the application.

[17] proposed a structural approach to the metrics and proposed a new typology to define
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a metric. They identified three key components that determine the properties of metrics:

the method of determining point distance, the method of normalization, and the method

of aggregation of point distances over a data set.

According to this definition, the result of an error metric is obtained by determining the

point distance between the actual and predicted values, then normalizing it and finally

aggregating over a complete data set.

3.2 Determining point distance

In the following formulas, %- is the predicted value and ?- is the actual value.

For each step, many different methods exist. I chose to focus on the most used ones.

The absolute error: $- =| %- − ?- |

This error simply gives the gap between the prediction and the actual value. The absolute

error keeps the same units of measurement as the data we are analysing. Therefore, it is

simply interpretable. After performing the mean aggregation over a dataset, the result can

be seen as the average error on the dataset. It is easily understandable and helpful to com-

pare different models.

The squared error: $- = (%- − ?-)2

The advantage of taking the square of the error is that large errors (higher than one) are

emphasized and have a bigger impact on the final value. And the small errors (smaller

than one) will be even smaller. This error does not have the same unit measure than the

dataset as we are taking the square. For example, in the case of predicting the latency,

the unit of the squared error will be 8#2. Consequently, the result does not have a simple

physical meaning and can be difficult to analyse.
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3.3 Normalization

The unitary normalization: ( = 1

This method is the absence of normalization. It is simply a division by one. The advantage

is that it does not change the dimension of the point distance. By associating it with the

absolute error, we keep the same unit as in the dataset. It is useful to analyse single series

and compare different models with the same serie. However, it can not be used to compare

multiple series as the result depends on the magnitude of the values from the dataset.

The normalization by the actual values: ( =| ?- |−0

This method consists in the division of the point distance by the actual value. 0 is a con-

stant and its value depends on the point distance method used. For the absolute error 0 = 1

and for the squared error 0 = 2. By doing so, the metrics using this normalization are

dimensionless and we can view the result as a percentage by multiplying it by 100. There-

fore, it is appropriate to compare multiple series. Nevertheless, if the actual value is zero

or very close to zero, the method would perform a division by zero so it can not be used.

A very small value can be added to the actual value to avoid this issue.

3.4 Aggregation over a dataset

The mean aggregation: 1
(

∑(
-=1

This is the most common aggregation method. It sums all the values of normalized point

distances and then divides by the number of elements ( . The results is the average of the

normalized errors and is easy to understand and interpret.

3.5 Choice of error metrics

I have opted to use the absolute error as it effectively measures the point distance,

and I have applied unitary normalization to maintain consistency with the data unit. It fits

the needs of my work as it enables to compare different models on the same series. Addi-
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tionally, the actual magnitude of the latency remains unknown and a percentage error may

not translate the actual error of the model. On the contrary, the absolute error gives the

same result regardless of the magnitude. Furthermore, all three parameters occasionally

have zero values, making normalization by actual values problematic due to potential divi-

sions by zero. As mentioned earlier, adding a very small value could avoid this issue, but

it would disproportionately weigh errors when the actual value is zero. This is precisely

what should be avoided, particularly for the packet loss prediction. Indeed, that would

favor even more models that tend to always predict 0.

The combination of the absolute error, the unitary normalization and the mean aggregation

gives the Mean Absolute Error (MAE):

MAE = 1
(

∑(
-=1 | %- − ?- |

The Mean Absolute Error assigns equal weight to every value, treating them uniformly

in the final result. However, I observed that for the prediction of the time before the next

change of base station, the error can be excessively high for large values, which can inflate

the average error. Since my primary focus is accurately determining when the base station

will change, precision becomes particularly crucial when the values are low. Therefore, I

have developed an alternative error metric that specifically prioritizes low values. MAE D

is a Mean Absolute Error with a threshold of D, D being a real number. This metric puts

every value of the dataset and the predictions that are higher than D to D exactly, and then

perform a regular MAE.

MAE D = 1
(

∑(
-=1 | min (%-, D) −min (?-, D) |

For this application, we only have to know when the change will happen a few seconds

ahead. Therefore, we can focus on the moments when the change is imminent. I first

chose D = 60 as the parameter for the error metric. This choice assigns greater impor-

tance to errors occurring within a minute before the change, while assuming that precise

predictions of the time before the next change are unnecessary for larger values, as long as

the predicted value exceeds 60 seconds.

26 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005


To explore the influence of this parameter, the metric was also applied with D = 30. With

this smaller D, it highlights the errors of the values we are really interested in even more

than with D = 60. However, it should be noted that this approach tends to overlook a

significant portion of the predictions. The models for the prediction of the time before the

next change will be evaluated using MAE, but also these two new metrics.

One of the research challenges is to devise solutions for accurately predicting the number

of packet loss and avoiding models that consistently predict 0. A first approach is to use

a weighted MAE that assigns greater weights to errors when there is at least one packet

loss. This adjustment aims to favor models that effectively predict the number of packet

loss when the actual value is not zero. The metric that I called ”NZMAE”, for ”Non-Zero

MAE”, was designed with this idea.

NZ MAE = 1∑
E!

∑(
-=1 E- | %- − ?- |

with the weights E- = 1 if ?- = 0

and E- = F otherwise

where F is a constant higher or equal to 1.

This is a weighted Mean Absolute Error with higher weights when the actual values from

the dataset are not zero. For zero values, the weights are 1 and for non-zero values, the

weights are F > 1. We can choose the value of F depending on our problem. The bigger

F is, the more the errors of non-zero values will be important. Non-zero values account

for approximately 0.7% of the datasets, which is roughly 100 times fewer than zero val-

ues. Therefore, I chose F = 100 for the error metric to counterbalance this overwhelming

majority of zero values.

Another solution is to use a classification model. This idea is driven by the existence of the

G1 score, which is a metric made for classification models. This metric penalizes models

that solely predict 0, as the absence of True Positives results in an F1 score of 0. By

combining precision and recall, the F1 score produces a value ranging from 0 to 1, using

the following formula:

27 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005


G1 = 2 %&$0-#-46∗&$0133
%&$0-#-46+&$0133 =

2" %
2" %+ 7 %+ 7 6

with " % = number of true positive,

7 % = number of false positive,

7 6 = number of false negative.

Similarly to the use of NZ MAE, this method using classification and the F1 score aims

to favors models that do not always predict 0. The prediction of the packet loss will be

performed with regression algorithm using NZ MAE as the error metric and with classi-

fication algorithm using the G1 score. The regular MAE will also be used in regression

algorithm to assess the impact of the two other methods.

The technique utilizing classification and G1 score will also be applied for the prediction

of wether there is a change of base station.

In contrast, the study of latency prediction will not involve comparing multiple error met-

rics and instead will focus on other aspects of the problem. The Mean Absolute Error

emerges as a fitting error metric for this application as it results in a easily interpretable

error that does not depend on the range of the data whose actual value is unsure.
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Chapter 4. Neural Network

Figure 4.1 shows the architecture for the Neural Networks algorithm. The input is

(51, 52, ..., 5)), which corresponds to the ) features, and returns the outpout 1. The

model is composed of , hidden layers of + units each, and an output layer. The values of

the nodes of the layer 3 can be calculated such as: 13 = H(I313−1+:3) withH the activation

function and I and : weights matrix and vector. The loss function is calucating the gap

between the output and the true value. The algorithm is trying to minimize it by updating

the weights with the gradient descent method.

Figure 4.1: Architecture of the Neural Networks algorithm

4.1 Change of base station

This study took two different approaches to predict the base station changes. Classi-

fication and regression models have been tested.
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4.1.1 Classification

The classification approach uses the set of features !1 to predict the feature n°14, i.e.

if there is a change of base station, and the G1 score serves as the error metric. A graph

with the predictions of the model and the true values for dataset 1 is plotted on Figure 4.2.

Figure 4.2: Prediction graph for the change of base station with classification on dataset 1

Thismethod does not have very good results, exhibiting a poor G1 score, andmay not be the

most adequate. One of the limitations is that it only predicts the changes at t+1, without

considering the significance of predicting it 1 or 30 seconds too early, which can have

varying implications in reality. Furthermore, the approach does not account for potential

delays in predicting the change.

4.1.2 Regression

The regression method is tested with two different sets of features: !1 and !2. This

choice is made to study the influence of the features n°5 and 6 that do not appear in the set

!2. As seen in the preprocessing phase, these two features have strong correlation coef-

ficients and can be harmful to the model’s performance. Three error metrics will also be

used to inverstigate their effects. These three metrics are MAE, MAE 60 and MAE 30.

Table A.1 from Appendix A is gathering all the errors (in seconds) for all the model tested
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with the set of features !1, i.e. the models built with each error metric and both NN and

DNN algorithms. The resulting errors are expressed in # with the three error metrics.

To compare the results, MAE 30 will have a more significant impact as it shows the error

close to themoment when the phone changes base station. Therefore, the subsequent tables

will only gather the errors expressed with MAE 30 (in s.) to simplify their interpretation,

even if they may come from models built with other error metrics.

Dataset 1 Dataset 2 Dataset 3

MAE
NN 6.53 6.71 7.75

DNN 7.60 6.38 7.74

MAE 60
NN 6.61 7.26 6.85

DNN 6.03 9.93 6.27

MAE 30
NN 6.53 6.71 7.75

DNN 5.99 5.31 7.70

Table 4.1: Comparison of simple NN and Deep NN for base station change prediction

Table 4.1 compares the results from the NN and DNN models. For each comparison,

the smallest error is highlighted in green. We can see that both models perform well and

present low errors of about 6#. The DNN models work slightly better for 7 of the 9 cases.

Dataset 1 Dataset 2 Dataset 3

MAE 7.60 6.38 7.74

MAE 60 6.03 9.93 6.27

MAE 30 5.99 5.31 7.70

Table 4.2: Error metrics comparison for base station change prediction with DNN

The results obtained with each error metric and the DNN algorithm can also be compared

with Table 4.2. For each dataset, the smallest error is highlighted in green and the second

smallest is in yellow. For the datasets 1 and 2, the use of MAE 30 gives an error more

than a second lower than with MAE. MAE 60 works almost as good as MAE 30 for the

first one (only 0.04# difference), but did not perform well on the second one. Finally, for
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the dataset 3, MAE 60 has an error of almost a second and a half lower than the two other

metrics, MAE 30 being slightly better than MAE.

The same reasonning is done with the set of features !2. It is interesting to make the

same experiments to validate or question the precedent observations. Besides, it will allow

us to draw conclusions regarding the effectiveness of this new set of features. The errors

from all models utilizing the set !2 are shown in Table B.1 from Appendix B, and the error

metric MAE 30 is chosen to compare the algorithms in Table 4.3. The comparison of the

models with the different error metrics is provided by Table 4.4.

Dataset 1 Dataset 2 Dataset 3

MAE
NN 8.00 6.45 6.73

DNN 6.94 7.66 7.66

MAE 60
NN 8.20 6.54 6.72

DNN 6.77 5.50 6.71

MAE 30
NN 10.2 7.15 6.65

DNN 6.93 5.92 7.01

Table 4.3: Comparison of NN and DNN for base station changes prediction using !2

Dataset 1 Dataset 2 Dataset 3

MAE 6.94 7.66 7.66

MAE 60 6.77 5.50 6.71

MAE 30 6.93 5.92 7.01

Table 4.4: Error metrics comparison for base station changes with DNN and !2

These results confirm the conclusions made earlier with the other set of features. Indeed,

the errors from the Deep Neural Networks models are often more than a second lower than

those from simple Neural Networks. DNN works better 6 out of the 9 cases.

The models using MAE 60 or MAE 30 have also better results. Across all datasets, the

lowest error is achieved by using MAE 60, MAE 30 comes in second place and the regular
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MAE always has the highest error. For the dataset 1, the three errors are quite close. For

the datasets 2 and 3, the gap is wider. Indeed, there is respectively more than 2 seconds

and almost a second between MAE and MAE 60.

The predictions from the models with Deep Neural Networks algorithm and each error

metric have been plotted on Figure 4.3. The model using MAE (in orange) has more out-

liers and appears to deviate further from the actual values (in red). This visual observation

aligns with the quantitative analysis.

Figure 4.3: Graph of base station change prediction with DNN for dataset 1

4.1.3 Conclusion

We saw that Deep Neural Networks are more suited than classical Neural Networks

for this application.

As expected, we get better results by using the new error metrics designed for this applica-

tion in the model construction. However, these metrics could favor the models that predict

an average value most of the time, such as 15s or 30s. These models would have been

ignored with the classical MAE. The risk is even bigger with MAE 30, as all the values

are in a shorter range. Therefore, the best solution is to useMAE 60 to pick the best model.

Finally, the addition of the features n°5 and 6 in the set !1 does not translate in better

results. Therefore, the set !2 should be prioritized to keep a simpler model.

33 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005


4.2 Latency

The prediction of the latency using Neural Networks algorithm has been performed

with the error metric MAE and two different sets of features !3 and !4 to study again the

influence of the features n°5 and 6. These two features are only present in the set !3.

4.2.1 Results

I compared the results obtained with classical Neural Networks and Deep Neural

Networks models. Table 4.5 gathers the results calculated with the Mean Absolute Error

(in 8#) for the three datasets and the two sets of features defined earlier.

Dataset 1 Dataset 2 Dataset 3

!3
NN 10.8 225 23.4

DNN 22.4 556 19.1

!4
NN 7.54 55.6 21.7

DNN 9.76 52.5 18.9

Table 4.5: Errors of NN and DNN models and both sets of features for latency prediction

The second dataset does not yield satisfactory results when combined with the first set of

features, !3. That can be explained by the distribution of the values. The latency is going

from −3898# to 14198#, and the average value of the training set is −3548#, very close

to the minimum value. In contrast, the average value in the testing set is 5528#. There-

fore, accurately predicting the latency from the testing set becomes more challenging, as

the training set is predominantly composed of very low latency values and does not ade-

quately represent the full range of latency values in the testing set. However, we obtain

more promising results when utilizing !4 as the set of features.

Besides, we see that NN and DNN give similar results. Both are better for half of the ex-

periments. It is worth noting that DNN models typically entail longer computation time.

Given that their results do not exhibit explicit superiority over classical NN, it is reason-

able to opt for the latter to avoid the additional computational overhead. Hence, the use of

34 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005


classical Neural Networks is sufficient for this application.

A good accuracy is achieved for the datasets 1 and 3. The errors from the two sets of

features are respectively about 108# and 208#. Even if the exact values of the latency are

not in the dataset, these errors can still be interpreted as small values considering that the

range of the latency values, i.e. the gap between the maximum and minimum values, is

around 10008# for the three datasets.

Table 4.5 shows the difference of performance for the models using the set of features

!3 and those using !4. The models utilizing the second set always have a smaller error.

Concerning the dataset 2, the NN error is 4 times higher with !3 and the DNN error is

more than 10 times higher. We can visualize the predictions of the NN models for the

second dataset in Figure 4.4.

Figure 4.4: Graphs of latency prediction with NN on dataset 2

As expected after seeing the error results, the model using !3 (in green) has more outliers.

We observe that both model have a tendancy to predict lower values. This can be due to

the issue of range for this dataset, as the model has been trained on lower values. We can

draw the graphs for the two other datasets, using NN models, on Figure 4.5. Similarly to

the previous graph, the predictions from the model using !4 (in orange) are closer to the

true values (in red) than the model using !3 (in green).
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Figure 4.5: Graphs of latency prediction with NN on dataset 1 and 3

4.2.2 Conclusion

We established that the most adequate algorithm was simple NN and we just saw

that the set of features !4 is more appropriate. The results of this specific model can be

analyzed. The errors of the three datasets are (in ascending order of the dataset number)

7.548#, 55.68# and 21.78# for latency values ranges respectively of 16598#, 18088#

and 7318#. Therefore, the error from the dataset 1 represents only 0.5% of its range. For

the dataset 2, it is 3.1%. And for the last dataset, the proportion is 3.0%. To see how close

the predictions are, the graphs concerning only the second set of features can be drawn.

Figure 4.6: Latency graph for the three datasets, using NN and !4

On Figure 4.6, the graphs include the predictions, a 208# error margin around these pre-
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dictions and the true value from the testing sets. For the dataset 1, whose graph is at the

top, and the dataset 3, with the graph at the bottom right, the true value is almost always

within the 208# error margin from the prediction. Concerning the graph of the second

dataset, there are some outliers but a big part of the testing data is still in the error margin.

We can conclude that Neural Networks models can precisely predict the latency of the

signal with the data we have at a time t. However, this model does not forecast the latency

in the future. Now that it is proven that the prediction is doable with the datasets of the

study, the use of time series models will help predict it a few seconds in the future.

4.3 Packet Loss

To predict the number of packet losses, three different approaches have been tested

to try to solve the problem of the overwhelming majority of zeros in the datasets. A clas-

sification model predicting whether there is at least one packet loss, and two regression

models. One is using a weighted error metric to predict the number of packet loss and the

other is using the modified feature n°17 called ”enlarged loss”. Finally, a last model was

tested with a regression algorithm, using a regular MAE and the actual number of packet

loss. This serves as a control experiment, allowing us to assess whether the three proposed

solutions have a substantial impact on the prediction accuracy.

4.3.1 Classification

Considering the infrequent nature of packet losses, it holds greater significance for the

model to effectively predict the occurrence of any packet losses rather than precisely quan-

tifying their exact number. Therefore, using a classification model that discards informa-

tion about the actual number of packet losses is not problematic. The model will predict

the feature n°16 and be evaluated by the G1 score.

As explained and showed with the experiments to predict the changes of base station and
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the latency of the signal, the presence of the features n°5 and 6 in the datasets is not

beneficial for the model performance. Therefore, the set of features used (!5) does not

include them.

Figure 4.7: Graph of packet loss presence upon time for the dataset 1 and zoomed graph

For dataset 1, there are only two times when there is at least one packet loss in the testing

set and the zoomed graph from Figure 4.7 shows that the model successfully predicted

one, around time = 455#. However, the model produces many False Positives, i.e. when

the prediction (in green) is 1 but the true value (in red) is 0.

For the dataset 2, five moments when there is at least one packet loss are present in the test-

ing set and the zoomed graph from Figure 4.8 shows that the model successfully predicted

one. Besides, there is only a few False Positives around time = 375#.

Figure 4.8: Graph of presence of packet loss upon time for the dataset 2 and zoomed graph

Finally, for the dataset 3, none of the three moments where there is at least one packet loss

was detected, as depicted on Figure 4.9. Indeed, the model predicted almost only zeros,

except one False Positive.
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Figure 4.9: Graph of presence of packet loss upon time for the dataset 3

4.3.2 Regression with loss

In this second approach, the exact number of packet losses is used. This model takes

the set !6 as input and the feature loss (n°11) as output. The NZ MAE and the regular

MAE are both used. For the first dataset, all the predictions from both models are very

close to zero, so they missed the two times when packet losses happen.

Figure 4.10 is illustrating the results for dataset 2. Again, the model that used MAE pro-

duced very low predictions, all close to zero. However, when the new metric NZ MAE

is used, some variations are seen in the predictions. This leads to a few false positive

cases, particularly around time = 375#, but two occurrences of actual packet losses were

successfully predicted close to time = 430#, as depicted in the zoomed-in graph.

Figure 4.10: Graph of packet loss number upon time for the dataset 2 and zoomed graph

For the dataset 3, the graphs are plotted on Figure 4.11. It shows that both models have

some variations in their predictions. The model built by using NZ MAE predicted non-

zero packet loss for one of the three times when packet loss happens in this dataset, while
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the model using MAE missed all three.

Figure 4.11: Graph of packet loss number upon time for the dataset 3 and zoomed graph

4.3.3 Regression with enlarged loss

The third approach uses the metric MAE and considers the set of feature !7 to predict

”enlarged loss” (feature n°17). The results for dataset 1 are plotted on Figure 4.12. The

two enlarged peaks are correctly predicted. Indeed, the predictions are following the global

trend of the feature, with just one abnormal increase around time = 350#.

Figure 4.12: Graph of the enlarged loss prediction upon time for the dataset 1

Figure 4.13 shows the graphs for the dataset 2 and reveals that the model succesfuly

predicted two enlarged peaks, which correspond to three non-null packet loss values.

Two other enlarged peaks have not been detected and many false positive cases happened

around time = 200#.
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Figure 4.13: Graph of the enlarged loss prediction upon time for the dataset 2

Figure 4.14: Graph of the enlarged loss prediction upon time for the dataset 3

For the dataset 3, both enlarged peaks and therefore all three packet losses occurence have

been correctly predicted by the model, as shown on Figure 4.14. However, another bump

can be observed in between these two, that does not correspond to an actual enlarged peak.

4.3.4 Prediction with a new dataset

The composition of the three datasets led to new solutions to enhanceMachine Learn-

ing models performance in that particular case. However, it is interesting to see how a

model will perform if there are more packet losses occurrences.

The additional datasets that will be used to validate the chosen models also have a ma-

jority of 0 packet loss, but their null value rate is a lot lower. Indeed, Table 4.6 shows

that, on average, there are more than 17 times more packet loss occurrences in these new

datasets. Therefore, one of them will be used to try another model to accurately predict

packet losses.
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New datasets Dataset 1 Dataset 2 Dataset 3

Packet Loss
occurrence rate

13.98% 0.76% 0.79% 0.77%

Table 4.6: Packet loss occurence rate comparison among datasets

The tested model is using a Neural Network algorithm with the set of features !11. The

predictions are done using a regression algorithm on the given data. Then, I chose to de-

fine a threshold to 50 to eliminate the small variations that do not necessarily correspond

to a packet loss. Below this limit, the data will not be counted as a packet loss. Besides,

it is more interesting to accurately predict the higher numbers of packet losses in my ap-

plication. Several metrics including the G1 score are used to measure the performance.

Figure 4.15: Graph of the packet loss prediction for the new dataset

The graph from Figure 4.15 shows the packet loss predictions and true values for the tested

dataset. Visually, the two lines are very similar and the predictions seem accurate.

Actual Values

Packet Loss No Packet Loss

Predictions
Packet Loss 43 4

No Packet Loss 11 1064

Table 4.7: Confusion Matrix for the Packet Loss prediction

The confusion matrix for this dataset is drawn on Table 4.7. This matrix gathers the num-

bers of True Positive (43), False Positive (4), False Negative (11) and TrueNegative (1064).
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The first observation is that the number of True Negative cases is very high in this example.

This is not surprising, as the majority of the data does not have any packet loss. Then, the

number of True Positive is also quite high, whereas there is only a few unwanted cases,

i.e. False Positive and False Negative. The testing data gave a G1 score of 0.85, which is

a good result.

4.3.5 Conclusion

It is difficult to conclude on the models applied on the three initial datasets as the

number of packet losses is very low. It represents only 0.7% of the three datasets and

making conclusions on such a little sample is very unsure. Not predicting any packet

loss does not necessarily mean that the model is bad. And on the contrary, succesfully

predicting one packet loss could be a lucky prediction. However, as the experiments were

carried out on three different datasets, the luck factor is decreased. Still, this conclusion

must be taken carefully.

Dataset 1 Dataset 2 Dataset 3

Class. 1 packet loss detected
but many fp

1 packet loss detected almost only zeros

Regr.

MAE Only zeros Only zeros Some variations but 0
packet loss detected

NZ
MAE

Only zeros 2 packet losses detected 1 packet loss detected

Enlarged
loss

The 2 packet losses
detected but many fp

3 packet losses are
detected but many fp

All 3 packet losses
detected but many fp

Table 4.8: Table gathering the conclusions from every model tested

Table 4.8 gathers the observations made for the classification and regression models. The

cases of succesful prediction of at least one non-zero packet loss are highlighted in green

in the table.

The only model that did not predict any instance of packet loss is the regression algo-

rithm predicting the feature ”loss” and using MAE. This was the control experiment and
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it shows that models tend to always predict 0. All three other models performed better

and have succesfully predicted several non-null packet loss instances. The models using

classification and regression with NZMAE both predicted a few packet losses succesfully

for two datasets and have almost only zeros as predictions for one. It can be noticed that

the classification model generated more false positive cases. Finally, the model predicting

the feature ”enlarged loss” succesfuly predicted almost all instances of non-null packet

losses. However, it also produced many false positive cases for every dataset. This is not

a surprise as the variable predicted is not the actual number of packet loss but a modified

version that increases this number for most of the time.

Besides, the new datasets with an higher packet loss occurrence rate were useful to create

a model that accurately predicts the number of packet losses with a good G1 score. The

previous models are still pertinent as it brings useful information on the packet loss num-

ber evolution and are novel solutions for prediction in the case of a dataset with an over-

whelming majority of zeros. The evolution of the predictions from the model forecasting

the ”enlarged loss” feature can be analyzed to conclude on the packet loss likelihood. In-

deed, this feature exhibits a gradual increase leading up to the occurrence of packet losses.

It can serve as an indication of the likelihood of packet losses occurring, which may be

particularly relevant within the study’s context. When selecting the safest setting, the exact

number of packet loss may be of lesser importance than understanding the overall trend in

the evolution of this feature.
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Chapter 5. Time series models

Figure 5.1: Architecture of the Reccurent Neural Networks algorithm

The study also considered time series models. The Reccurent Neural Networks al-

gorithm has been used for the prediction of the three parameters. Simple RNN and Long

Short Term Memory (LSTM) cells have been tested within this algorithm. Figure 5.1

shows the architecture of a Recurrent Neural Networks model. The first part explains that

the input is the matrix @ (of size ) ∗ *) composed of the ) features values during a pe-
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riod of * . @ can be divided as * vectors 51, ..., 5* each composed of the values of the )

features at a given time. The input goes into the Recurrent Neural Networks layers, which

return a vector ℎ* of size + . + can be interpreted as the number of units in a hidden layer in

the classical Neural Networks algorithm. Then, the vector is going through a Dense layer

and the model returns the output ?.

The second part details the architecture of the Recurrent Neural Networks, for , = 1 and

, = 2 hidden layers. In this figure, the blue squares can be either Simple RNN or LSTM

cells. A cell is taking a vector 5- composed of the ) features at the time - and another

vector ℎ-−1 that contains the values (11, ..., 1+ ), and returns the updated vector ℎ-. For

the LSTM model, a third input called 0-−1 is needed for each cell. The advantage of this

configuration will be explained later.

In the case of simple RNN, the -"ℎ cell is a dense layer of size + , that receives the con-

catenated input of 5- with size ) and ℎ-−1, whose size is + . The activation function is the

hyperbolic tangent "16ℎ function, which enables a faster convergence than the sigmoid

function. The resulting formula is:

ℎ- = "16ℎ(I* ∗ 04601" (5-, ℎ-−1) + :)

withI a matrix with size (+ + )) ∗ + and : a vector of size +

However, a limitation of this type of cells is the issue with vanishing gradient that makes

the learning harder and slower. At each step, the algorithm updates the weights of W to

minimize the loss function / such as:

I ← I − D J/
JI

with J/
JI =

∑*
"=1

J/"
JI

and J/"
JI = J/"

Jℎ"
(∏"

-=2
Jℎ!
Jℎ!−1

) Jℎ1
JI

This last expression includes a multiplication of several derivatives of ℎ. This corresponds

to derivatives of the "16ℎ function, that are giving values in [0, 1]. When T is large, this
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expression tends towards 0. Therefore the model will not learn significantly in reasonable

time. A solution to this problem is to use LSTM cells. These cells divide the information

between what is important at short term through the hidden state ℎ-, that can be compared

to the output of a simple RNN cell, and what count at long term, with the cell state 0-.

The operation of a LSTM cell can be sum up in three steps. First, the forget gate, that

consists of a dense layer with a sigmoid activation function, aims to detect valuable infor-

mations from the past cell state. The input gate chooses the relevant informations to be

added to the new cell state. Finally, the next hidden state will be generated by the output

gate by extracting important short term informations from the newly generated cell state.

These two kinds of cell will be compared in the following experiments. We saw that LSTM

should peform better, especially with long input sequences, as the vanishing gradient issue

is prevented. However, it usually implies longer computation time and the performance

gap has to be significant enough to justify it.

The use of this time series algorithm requires the determination of two additional

variables: "#"$% and "%&$' . "#"$% is the step of time that is taken into account for the input

data. It represents how far we go into the past datas to predict the future values. "_%&$'

is the gap of time between the last data that is in the input and the prediction. It represents

how far in the future the data predicted by the model is.

"#"$% "%&$'

Jan Feb Mar Apr May Jun Jul Aug Sep

Figure 5.2: Explaination on the meaning of "#"$% and "%&$'

To visualize the meaning of "#"$% and "%&$' , Figure 5.2 is an example with monthly data.

Each box represents one month and the corresponding data. The time goes from left to

right, following the order of the months. The boxes colored in green are the data taken in

the input. The box colored in red is the output, i.e. the data the model has to predict. In

this example, four steps are made into the past to build the input. Indeed, the data from

February to May are taken, so "#"$% = 4. Three steps are made from the last ”green box”
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to the prediction, from May to August, so "%&$' = 3.

Regarding the prediction of the latency, the ARIMA algorithm has also been tested.

The reasons of this choice and the operation and functioning of this algorithm will be de-

tailed later.

With the previous experiments on simpleNeural Networksmodels, the sets of features

that do not include the features n°5 and 6 appeared to bemore appropriate. Therefore, these

two features will not be contained in the future sets for the time series approach.

5.1 Base station

During the Neural Networks models experiments, it has been established that the best

method to predict the moments when the phone changes the base station it is connected

to is to consider the time before the next change. This prediction using time series model

will include the comparison of two sets of features, RNN and LSTM cells and 1-layer and

deep models. The two sets of features studied are !2 and !8. The second one contains

fewer features, with only three compared to the seven that compose !2.

As explained, the time before the next change is forecasted. Therefore, the next change

is already predicted in the future and the variable "%&$' is not needed in this case. For

generalization purposes, we take "%&$' = 0#.

Then, the value of "#"$% must be defined. Ideally, this value must be the smallest possible

to use less data and therefore have a smaller computation time and more samples in the

dataset. To determine the best value, the cross validation method is used to study the in-

fluence of "#"$% on the MAE for both sets.

The results using RNN and LSTM for the evolution of the error depending on the value of

"#"$% are very similar and the graphs present the same curves. Figure 5.3 shows the graphs

obtained using RNN, but the conclusions are made for both algorithms.
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Figure 5.3: Graphs of MAE against "#"$% with !8 (in blue) and !2 (in orange)

The set !2, whose corresponding graph on Figure 5.3 in in orange, does not seem to be

suited to time series model. Indeed, the lowest error is achieved for "#"$% = 1 and then the

value is increasing until a stabilization on a high value. The interest of time series models

is to have several time steps in the input, but this leads to a bigger error with this set. This

issue may be caused by the big number of features used. For the other set, the error is not

widely varying, but a decrease is still observed until "#"$% = 5#. The models with the set

!8 will be built with this "#"$% value.

5.1.1 Results

Table 5.1 illustrates the difference between the two sets of features. The results are

expressed in secondswith the error metricMAE 30. The smallest error of each comparison

is highlighted in green. The models using the set !8 are resulting in lower error for 10 out

of the 12 comparisons. Notably, the difference is big for the dataset 2, for which the models

with !8 have errors twice as small as with !2.

1 hidden layer 2 hidden layers

Dataset 1 Dataset 2 Dataset 3 Dataset 1 Dataset 2 Dataset 3

RNN
!2 7.85 10.63 7.46 10.61 10.63 7.44

!8 7.11 5.20 7.76 7.25 5.28 7.67

LSTM
!2 7.40 10.63 8.12 7.48 10.63 7.58

!8 6.68 5.18 7.76 6.55 5.31 7.37

Table 5.1: Errors for base station change prediction with time series models

The comparison graphs of both sets with a 1-layer LSTM model are plotted in Figure 5.4
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for the datasets 1 and 2. The set of features !2 is called Set 1 and corresponds to the orange

line, while !8 is named Set 2 and is seen with the green line.

Figure 5.4: Prediction graphs using deep RNN for both sets on dataset 1 and 2

For the two datasets, the predictions from the models assiociated with !8 (in green) are

visibly closer to the true values. Indeed, the orange line presents a big gap with the red

one, especially for the dataset 2 whose graph is on the right.

Dataset 1 Dataset 2 Dataset 3

1 layer
RNN 7.11 5.20 7.76

LSTM 6.68 5.18 7.76

Deep model
RNN 7.25 5.28 7.67

LSTM 6.55 5.31 7.37

Table 5.2: Comparison between RNN and LSTM for base station change prediction

The models with the more pertinent set will be used for the next comparisons, including

between RNN and LSTM algorithms that can be seen in Table 5.2. The errors are very

close between the models using RNN and LSTM for every comparison. The biggest dif-

ference is seen on dataset 1, for which the LSTM models have errors of approximatevely

0.5# lower than with RNN. Overall, the LSTM models are performing slightly better.

For the final comparison between the 1-layer and deep LSTM models, the errors of the

models are expressed with three different error metrics (MAE, MAE 60 and MAE 30) to

have better insights on the performances. The combined used of these three error metrics

enables to have an estimation of the global error with MAE and a view on the errors on
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smallest data with MAE 60 and MAE 30. The errors in seconds are gathered in Table 5.3.

Dataset 1 Dataset 2 Dataset 3

MAE
1-layer 13.69 31.59 9.54

Deep 12.87 30.02 9.24

MAE 60
1-layer 9.67 12.72 9.53

Deep 9.34 11.04 9.15

MAE 30
1-layer 6.68 5.18 7.76

Deep 6.55 5.31 7.37

Table 5.3: Comparison between 1-layer and deep LSTM for base station chage prediction

Except when it is expressed with MAE 30 on dataset 2, the error is always higher with

the 1-layer model. Even if the gaps are not wide, they are consistently in favor of the

deep model and are approximatevely the same for the three datasets. This manifests the

reliability of both model and the constant superiority of the deeper model. The graph

of Figure 5.5 shows how close the predictions from both models are for the dataset 1.

Having smaller errors calculated with all three error metrics MAE, MAE 60 and MAE 30

demonstrates the better performance of the deep model on all levels, including on every

predictions aggregated on the testing sets and on more important values.

Figure 5.5: Comparison graphs between 1-layer and deep LSTM on dataset 1
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5.1.2 Conclusion

As seen in the several comparison made for the prediction of the change of base sta-

tion with time series model, the set !8, that contains fewer features, should be use. Besides,

the use of LSTM cells has shown better results that simple RNN ones. Finally, a deeper

model proved to be beneficial for the performance.

The predictions from the chosen model on the three datasets are plotted in Figure 5.6.

For all the datasets, the predictions are following the same evolution than the true values.

Notably, the lower tips are often within the error margin, meaning that the moments of the

change are succesfully predicted. The time before the next change of base station is well

forecasted and the model gives satisfactoy results on every dataset.

Figure 5.6: Graphs of base station change prediction for all datasets, with Deep LSTM

Finally, the result from this time series model is compared to the results obtained before

with a simple NN model. Table 5.4 is used for this final comparison. The errors from the

two models are expressed in seconds with MAE, MAE 60 and MAE 30. For dataset 3,

the NN model performed better, but the gap is smaller than a second for each error metric.

The time series model outperformed the simple NN one for the two others, with a MAE

more than two times lower. It can be concluded that LSTM should be prioritized.
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Dataset 1 Dataset 2 Dataset 3

MAE
NN 25.8 82.2 8.50

LSTM 12.87 30.02 9.24

MAE 60
NN 8.12 12.0 8.50

LSTM 9.34 11.04 9.15

MAE 30
NN 6.77 5.50 6.71

LSTM 6.55 5.31 7.37

Table 5.4: Comparison of NN and deep LSTM models for base station change prediction

5.2 Latency

5.2.1 Recurrent Neural Networks

The experiments include the study of two sets of features: !9 and !10. These two sets

are very different as !9 countains seven features and !10 is only composed of the latency

feature. MAE will be used as the error metric.

One of the aims of the study is to make predictions a few seconds ahead. "%&$' should

not be too small to fulfill this goal and have a real impact. On the contrary, the value

should not be too big to keep a feasible and meaningful model. Therefore, I arbitrarily

chose "%&$' = 10# after testing a few values. Similarly to the base station part, the value of

"#"$% is defined by investigating its influence on the error. The graphs of the RNN models

depicted in Figure 5.7 are sufficient to draw conclusions.

For the first set of features !9 (in orange), the error is decreasing when "#"$% increases until

"#"$% = 13#. Then, the value is increasing and seems to reach a stable value. The value

allowing the lowest error is retained, so "#"$% = 13# in this case. Regarding the set !10 (in

blue), the value is raising before decreasing and converging towards a minimum, which

is obtained from "#"$% = 22#. Therefore, this value is taken for the model using this set.

It can be observed that the second set, that only includes one feature, works better with

a bigger "#"$% than the other set, composed of multiple features. Taking a large value of

"#"$% increases the amount of information, as each feature is considered at each time step.
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However, having multiple features can bring too much information and be detrimental to

the model’s performance, leading to the observed results.

Figure 5.7: MAE evolution with varying "#"$% values with both sets for latency prediction

The first comparison is made between the two sets of features. For each case, the smallest

error between the models using the two sets is highlighted in green. Table 5.5 is gathering

the errors (in 8#) of each model using , = 1 hidden layer. For the deeper models, i.e.

when , > 1 hidden layer, the results are shown on Table 5.6.

Dataset 1 Dataset 2 Dataset 3

RNN
!9 12.2 214 14.5

!10 10.5 92.1 14.1

LSTM
!9 49.2 50.4 14.1

!10 46.5 9.49 14.4

Table 5.5: Errors for models using one hidden layer for latency prediction

Dataset 1 Dataset 2 Dataset 3

RNN
!9 68.2 147 15.0

!10 11.1 32.9 14.0

LSTM
!9 47.2 80.2 14.3

!10 58.5 9.94 14.4

Table 5.6: Table gathering the errors for models using several hidden layers

Out of the 12 comparisons, the model using the set !10 gives the best result 9 times. For the
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dataset 2, the gap between the two sets is big. Indeed, the set !10 has errors from 2 times to

8 times smaller than the models using the other set. That gap is also noticeable for dataset

1, with the deep RNN models, for which this set is more than 6 times more efficient. This

difference can be seen in the Figure 5.8 that gathers the graphs of the prediction from the

models using RNN with both sets. In this Figure, Set 1 (in orange) refers to the model

using !9 and Set 2 (in green) is for the model with !10.

Figure 5.8: Graphs of latency prediction with deep RNN for both sets on dataset 1

The predictions in green are very close to the true values whereas themodel using the set !9

produces predictions far from the target and results in a MAE of 1478#. Therefore, using

the set !10 is a better solution as it gives smaller errors. In the following comparisons,

only the results obtained with this set will be taken into account. The two algorithms can

be compared and their errors (in 8#) are gathered in Table 5.7.

Dataset 1 Dataset 2 Dataset 3

1 layer
RNN 10.5 92.1 14.1

LSTM 46.5 9.49 14.4

Deep model
RNN 11.1 32.9 14.0

LSTM 58.5 9.94 14.4

Table 5.7: Comparison of RNN and LSTM for latency prediction

For the dataset 3, the results are very close between the models using RNN and LSTM

(only 0.38# and 0.48# difference respectively for the 1 layer and deep models). For the

dataset 1, RNN has better results, whereas LSTM performs better on dataset 2. Deep RNN
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has small errors for datasets 1 and 3, and achieved satisfactory accuracy on dataset 2. Its

error is only three times higher than LSTM for dataset 2, while being more than five times

lower on dataset 1.

As regards the comparison between the 1-layer and deep models of the RNN algorithm,

they give similar results for the datasets 1 and 3. However, the error is almost three times

lower when using a deeper model on dataset 2. This comparison is illustrated with the

graphs of Figure 5.9.

Figure 5.9: Graph of latency prediction with 1-layer and deep RNN on dataset 2

The deeper model’s predictions are noticeably closer to the actual values. Therefore, the

best time-series model for the prediction of the latency appears to be a Deep RNN algo-

rithm, using the set !10 of feature. With this configuration, the errors of the three datasets

are respectively 11.18#, 32.98# and 14.08#, and represents 0.7%, 1.8% and 1.9% of their

range.

Figure 5.10: Graph of latency prediction with Deep RNN and !10 on dataset 1
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We can visualize the predictions of the chosen models for dataset 1 in Figure 5.10. The

true values are almost always staying in the error margin. The results and observations are

similar for the other datasets. Overall, the model is giving satisfactory results with reliable

predictions.

5.2.2 ARIMA

ARIMA stands for AutoRegressive IntegratedMovingAverage. It is a model that pre-

dicts future values of time series, based on some statistical aspects of the observed data.

This is a generalization of the ARMAmodel for non-stationary models, in the sense of the

mean, i.e. when the mean of the data is changing over time. This characteristic is observed

in the latency data, such as in dataset 2, where we saw that the means of training and test-

ing sets are completely different. The ARIMA model addresses this non-stationarity by

incorporating differencing operations to remove the changing mean.

This method is taking a single feature and forecast its future values on a chosen time, at

each time step. Therefore, the set !10 that corresponds to the latency feature (n°10) is

used and the model will predict the values for the next ten seconds. Only the prediction of

the 10th second will be retained to match the prediction gap that was taken for the RNN

models and ensure a reliable comparison between these two algorithms.

Figure 5.11: Graphs of the original latency series and 1#" order differencing for dataset 2

This algorithm requires to choose the values of three parameters: %, ' and K. The process

for dataset 2 will be taken as an example for the determination of these parameters values.
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The order of differencing ' has to be defined. Figure 5.11 shows that the series is not

stationary as the mean is changing over time. It can be oberserved that the mean is not

changing anymore in the 1st order differencing graph. Therefore, ' = 1 can be taken.

The next step is to find %, the order for the autoregressive model, by inspecting the partial

autocorrelation graph on Figure 5.12, which measures the correlation between the time-

series data and a certain lag. The most significant lag is the first one. Thus, we have % = 1.

Figure 5.12: Partial autocorrelation graph of dataset 2

The number of lagged forecast errors in the prediction equation corresponds to the number

of lags crossing the threshold on the autocorrelation graph of Figure 5.13. Here, K = 3.

Figure 5.13: Autocorrelation graph of dataset 2

These operations are made on two of the three datasets to select the best parameters for

the testing part and the chosen model is tested on all three testing sets.
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The model presents a Mean Absolute Error of 8.928# on dataset 1, 11.478# on dataset 2

and 17.318# on dataset 3. These three errors are low and can translate a good performance

of the model.

Figure 5.14: Graphs of latency prediction with ARIMA on datasets 1 and 2

The graphs of the actual values and predictions for the datasets 1 and 2 can be seen on Fig-

ure 5.14. The same analysis can be made for both datasets. As expected with the low errors

observed, the true values are almost always within the error margin of the predictions. The

model is very reliable for these two datasets.

Figure 5.15: Graph of the latency prediction with ARIMA on dataset 3

The results obtained on the third dataset are plotted on Figure 5.15. Although the error

seemed to be good, the vizualisation of the predictions enables to see that the model pre-
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dicted a constant value throughout the testing set. This result is not reliable and should be

avoided.

As mentionned before, the ARIMA algorithm forecasts future values of a time series at

each step of a specified timeframe. In this application, predictions were generated on the

next 10 seconds following the input, but only the final prediction for each input in the

testing set is retained. The evolution of the predictions on this 10 seconds period for each

sample is depicted in Figure 5.16. The first predictions exhibit a significant variability

for the different samples. However the predictions are converging towards the same value

around 20508# for all samples. For all instances, the predictions become constant after

the 8th step. Therefore, the ARIMAmodel produced constant and unchanging predictions

on dataset 3 for the forecasting of the latency 10 seconds ahead.

Figure 5.16: Evolution of the latency predictions with ARIMA on the 10 seconds period

5.2.3 Conclusion

Dataset 1 Dataset 2 Dataset 3

RNN 10.46 23.67 14.13

ARIMA 8.92 11.47 17.31

Table 5.8: Comparison between RNN and ARIMA for latency prediction

The results from the two retained algorithms, the Deep RNN and ARIMA, are ex-

pressed in8# in Table 5.8 and the lowest error for each dataset is highlighted in green. The

ARIMA model seems to have better results, as its resulting errors are significantly lower
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for two datasets. However, the analysis of the predictions evolution on dataset 3 over the

10 seconds timeframe puts forward an important issue. The predictions are consistently

converging towards a constant value and this makes the model unreliable.

Therefore, the best model to predict the latency with a 10 seconds delay is the use of a

Deep Recurrent Neural Networks algorithm, the set of feature !10 and the Mean Absolute

Error as the error metric.

The chosen time series model can not be directly compared to themodel previously studied

with simple Neural Networks algorithm, as the latest did not take the 10 seconds delay for

the prediction. Its use served as a foundation for insights and understanding to develop the

time series model. It can still be noted that the time series model has significantly lower

errors for two of the three datasets although the NNmodel had a simpler task by dismissing

the forecasting delay and predicting the latency at t+1. The time series approach resulted

in a reliable model that outperforms the first approach while adding complexity in the

objective.

5.3 Packet Loss

The study proposed new solutions to enhance models performance with datasets hav-

ing an overwhelming majority of zero. The two best methods with Neural Networks al-

gorithm appeared to be the use of NZ MAE as the error metric and the prediction of the

feature n°17 designed for this application. They will be tested on the Recurrent Neural

Networks algorithm and their results will show if the same effects are percieved. Simi-

larly to the latency prediction, the problem is complexified by adding a 10 seconds delay

for the prediction.

5.3.1 Results

First, a regression RNN algorithm taking the set !7 to predict the feature n°11, which

is the actual number of packet loss, is tested. NZ MAE is used to build the model. The
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use of this error metric during the Cross Validation phase to pick the model’s parameters

values did not have a significant impact on the model’s performance.

Figure 5.17: Graphs of packet loss prediction with RNN using NZ MAE for dataset 1

Indeed, as illustrated in Figure 5.17 for the dataset 1, all the resulting predictions are very

low for the three datasets. This method did not have the desired effect and failed to prevent

the selection of a model always predicting zero packet loss.

Figure 5.18: Graphs of enlarged loss prediction with RNN for the three datasets

The other tested model is also built with the set of features !7, but the output is the fea-

ture n°17 (the enlarged loss) and the error metric used to evaluate the model is the Mean

Absolute Error. Figure 5.18 displays the graphs of the predictions and true values for the

three datasets.
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This method had more impact than the previous one, with more varying values. Indeed,

four distinct bumps can be identified, including two for the actual packet loss occurences.

The model also mainly produced non-zero predictions with the other datasets, with half of

their packet losses correctly detected. It should be noted that the values of the predictions

are relatively low andmay not accurately reflect the actual trend of the packet loss evolution

in the datasets. The identified bumps are low and could be missed in real application.

5.3.2 Conclusion

As seen with the experiments, the use of NZMAE did not lead to a reliable model. In-

deed, all the resulting predictions are approximatevely zero. The extra complexity caused

by the 10 seconds delay added between the input and the prediction can be a reason of this

difference of performance. The exact number of packet loss is a very local event, that is ex-

tremely difficult to predict with this 10s delay. Besides, the time series input format, where

each feature is considered for every time step, may also exmplain this discrepancy, as the

increased amount of information can have a detrimental effect on themodel’s performance.

As discussed earlier, the model that was used for the prediction of the ”enlarged loss”

feature demonstrated better performance. However, the positive effect is less important

than when it was applied with simple Neural Networks. Similarly to the first method, this

difference can be explained by the 10 seconds delay in the prediction and the extra infor-

mation brought by the time series input format.

Therefore, the simple Neural Networks algorithm should be used for this application.

Combined with the use of the error metric NZ MAE or the prediction of the feature ”en-

larged loss”, it appears to be a reliable solution to effectively forecast the packet loss with

a large majority of null values in the datasets. When this majority is more reasonable, the

NN model predicting the packet loss occurence is very efficient.
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Chapter 6. Test of the selected models

As explained in the methodology section, the models that have been chosen with the

three initial datasets are tested on 20 additional datasets.

6.1 Base Station

From the study, the best model to predict the base station changes is a Deep LSTM

algorithm with the set of features !8. As explained before, this model is trained on one

of the new datasets and tested on the others that are unknown data. The predictions are

compared to the actual values with three error metrics: MAE, MAE60 and MAE30, and

the results are gathered in Figure 6.1.

Figure 6.1: Graphs of the base station change prediction errors and their corresponding
percentage of the range for the new datasets

The red lines correspond to the error metrics results calculated with MAE (continu-

ous line) and MAE 30 (discontinuous line) and expressed in seconds. The green columns

are indicating the percentage of the range the error corresponds to. We observe that both
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metrics give consistent values for every dataset. Indeed, the results are very similar from

one dataset to another, while they are completely independent. This means that the model

gives consistent results on unknown datasets.

Table 6.1 is comparing the average results of the testing sets to the errors obtained for the

three datasets of the study. It can be observed that the MAE from the testing datasets is

lower than from datasets 1 and 2. However, the range of the values is wider for these two

datasets, resulting in a lower percentage error. The percentage obtained with the testing

datasets is close to the value from dataset 3. Therefore, it can be concluded that the model

showed good performance on the unknown data.

New datasets Dataset 1 Dataset 2 Dataset 3

MAE 12.14 12.87 30.02 9.24

% of the range 17.98% 5.23% 12.20% 16.21%

Table 6.1: Comparison of testing and initial datasets results for base station changes pre-
diction

6.2 Latency

Regarding the prediction of the latency, the selected model is a Deep RNN algorithm

with the set of features !10. This model is used to forecast the latency 10 seconds into the

future on the 20 new datasets, and the results are plotted on the graph of Figure 6.2.

Figure 6.2: Graphs of latency prediction errors and their corresponding percentage of the
range for the new datasets
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The red line gives the MAE in 8# for each dataset, with the corresponding scale on the

left side. The green columns are showing the percentage of the range that takes the error.

Their values can be read on the right side. In this case, the MAE range is wider, from 28#

to 178#. However, for every testing dataset, this error represents a very small percentage

of the range. Indeed, the error is greater than 2% of the range for only 4 datasets out of 20

and just one is higher than 3%. This means that the model gives very precise predictions

on unknown datasets.

New datasets Dataset 1 Dataset 2 Dataset 3

MAE 5.59 11.1 32.9 14.0

% of the range 1.52% 0.67% 1.82% 1.91%

Table 6.2: Latency prediction testing results comparison with the initial datasets

Table 6.2 is comparing the results between the testing datasets and the three previous

datasets. TheMAE values are expressed in8#. The lowest MAE is achieved on the testing

datasets. However, when this error is compared to the range of the values, the results are

very similar than with the three initial datasets. It can be concluded that the chosen model

performs well and can be generalized to unknown data.

6.3 Packet Loss

For datasets that have a reasonable amount of packet loss occurences, the study se-

lected a Neural Network algorithm with the set !11. Similarly to the other parameters, the

model is trained on one dataset and tested on the 20 others. This will help to conclude on

the generalization ability of the model and his performance on unknown data. The results

are shown in Figure 6.3. The red line indicates the G1 score. Across all datasets, this met-

ric gives similar results and is consistently good. Indeed, the value is higher than 0.75 for

the majority of the datasets.

The green columns are representing the True Positive Rate (TPR), that is defined such as:

*<; = " %
" %+ 7 6 with " % the number of true positive and 7 6 the number of false negative.
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This metric can be seen as the probability of packet loss detection. It is the number of

packet loss occurrences correctly predicted divided by the total number of packet loss oc-

currences. This value is higher than 75% for more than half of the datasets, whereas there

are at least 50 packet losses only 5% of the time. It means that the model can successfully

detect packet loss on unknown data.

Finally, the yellow columns are there for the False Discovery Rate (FDR), expressed with

this formula: GL; = 7 %
7 %+" % with 7 % the number of false positive and " % the number of

true positive.

This represents the proportion of the positive predictions that are false. It is the number

of false predicted packet loss occurrences divided by the total number of predicted packet

loss occurrences. This rate is lower than 25% for 18 of the 20 datasets and even lower than

15% for more than half of the experiments.

Figure 6.3: Graphs of the packet loss prediction errors for the new datasets

The average values for these three metrics across the 20 testing datasets are gathered in

Table 6.3. The G1 score and TPR are high, whereas the FDR is low. Therefore, the packet

loss predictions are reliable on unkown data.

G1 score TPR FDR

0.792 75.8% 15.1%

Table 6.3: Average error metrics across the 20 datasets for the packet loss prediction
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Chapter 7. Conclusions and Future

Directions

To conclude, this study focused on the application of Machine Learning techniques

to predict three telecommunication parameters, namely base station changes, the latency

of the signal, and the number of packet loss, in the case of metro passengers itineraries.

This work provided a comparison of various machine learning models to identify the most

effective ones for real-time predictions and the selected models have good results on un-

known data. Moreover, it explored the prediction of these parameters a few seconds into

the future, which provides useful information in real world application.

This research developed error metrics to meet the specific needs of this application. The

models using it consistently outperformed the others, proving that these error metrics facil-

itated the selection of the most reliable models. Besides, novel approaches were proposed

for predicting the base station changes, by taking the time before the next change, and es-

timating the number of packet losses, by considering a modified version of this parameter.

This last approach is a novel solution to address the challenges posed by datasets predom-

inantly composed of zero values.

It is important to acknowledge the limitations of this work. Firstly, even if the selection

of the models was driven by the specific requirements of the parameters, other Machine

Learning algorithms could have been included in the study and could be considered in

future research to complete this analysis. Secondly, the new error metric MAE D should
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be tested on other applications to guarantee its influence on Machine Learning models

performance. Finally, the proposed solutions to address the issue of dealing with 99% of

zeros in the data should be tested on other datasets and different contexts to validate the

promising performance they showed.

Overall, this work has advanced the understanding of machine learning techniques in the

context of predicting telecommunication parameters for passenger metro itineraries. By

accurately forecasting the three parameters, and a few seconds in the future for two of

them, the proposed models can help in the phone settings selection to optimize network

performance and enhance the user experience. The findings and suggested solutions can

serve as a foundation for further research in this field.
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Appendix A: 附錄標題一

Dataset 1 Dataset 2 Dataset 3

MAE

NN
MAE 26.4 41.9 9.72

MAE 60 7.95 10.3 9.72

MAE 30 6.53 6.71 7.75

DNN
MAE 28.8 66.4 10.8

MAE 60 10.4 11.9 10.8

MAE 30 7.60 6.38 7.74

MAE 60

NN
MAE 26.7 68.6 9.27

MAE 60 9.06 12.7 9.07

MAE 30 6.61 7.26 6.85

DNN
MAE 24.8 82.3 8.50

MAE 60 7.24 12.7 8.50

MAE 30 6.03 9.93 6.27

MAE 30

NN
MAE 26.4 41.9 9.72

MAE 60 7.95 10.3 9.72

MAE 30 6.53 6.71 7.75

DNN
MAE 24.8 47.9 9.86

MAE 60 7.70 10.9 9.80

MAE 30 5.99 5.31 7.70

Table A.1: Table gathering the errors from all the models tested to predict the time before
the next change of base station with NN, using !1
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Appendix B: 附錄標題二

Dataset 1 Dataset 2 Dataset 3

MAE

NN
MAE 37.1 62.6 8.50

MAE 60 15.9 11.5 8.50

MAE 30 8.00 6.45 6.73

DNN
MAE 26.2 64.1 9.49

MAE 60 9.52 14.4 9.49

MAE 30 6.94 7.66 7.66

MAE 60

NN
MAE 37.4 62.2 8.49

MAE 60 16.2 11.6 8.49

MAE 30 8.20 6.54 6.72

DNN
MAE 25.8 82.2 8.50

MAE 60 8.12 12.0 8.50

MAE 30 6.77 5.50 6.71

MAE 30

NN
MAE 34.1 72.0 8.35

MAE 60 16.9 12.5 8.34

MAE 30 10.2 7.15 6.65

DNN
MAE 26.0 77.4 10.3

MAE 60 8.25 12.4 10.3

MAE 30 6.93 5.92 7.01

Table B.1: Table gathering the errors from all the models tested to predict the time before
the next change of base station with NN, using !2
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