B 3L 2 BREERETANERERIREHRL A
G

Graduate Institute of Communication Engineering

College of Electrical Engineering and Computer Science
National Taiwan University
Master Thesis

RS ZE YRR I EERLTH EBRE T2
Using Machine Learning to Predict 3 Telecommunication

Parameters: the Case of Metro Passengers Itineraries

Alexandre Benayoun

J‘EHIZ METFT HLE
Advisor: Hung-Yu Wei, Ph.D.

FERE 11248 A
August, 2023

doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

CPETPE L RS Yrey
DREBETERE

MASTER’S THESIS ACCEPTANCE CERTIFICATE
NATIONAL TAIWAN UNIVERSITY

RARESE ARER S REE A

Using Machine Learning to Predict 3 Telecommunication Parameters: the
Case of Metro Passenger Itineraries

% X f4__ ALEXANDRE BENAYOUN _ (¥ %) RI10942164
($3%) EALEHEKRE TREIZLHEN TRIBLLaH
X HARBE_111_F 8 A 4 BATHEREEZERBRIRRK
& 0 45 BLIEER o

The undersigned, appointed by the Department / Institute of _Graduate Institute of Communication

Engineering on _4 (date)_ 8 (month)__ 23 (year) have examined a Master’s thesis entitled
above presented by _ ALEXANDRE BENAYOUN __ (name) R10942164 (student ID)
candidate and hereby certify that it is worthy of acceptance.

T 32X 2 B Oral examination committee:

L :
= ooy Dt
(35 & 23% Advisor) |

% X A2/Ff & Director: M&@ j&j (jum

Abstract

This study focuses on the use of machine learning techniques to pre-
dict three important telecommunication parameters in the context of metro
passengers itineraries. These parameters are the base station changes, the la-
tency of the signal and the number of packet loss. They represent abnormal
phenomenon, or events that can alter the phone’s performance. Being able
to succesfully predict it can lead to a better anticipation of these issues and

enhance the user’s experience.

The primary objective of this research is to compare different machine learn-
ing models for real-time predictions of the studied parameters. To do so, dif-
ferent algorithms (Neural Networks, Recurrent Neural Networks, LSTM and
ARIMA), as well as several sets of features will be used. A comparison on
the error metrics will also be conducted. The study took novel approaches
in the nature of the studied parameters and the prediction delay, as it aims to
forecast the value a few seconds into the future. Additionally, it proposes new

solutions to make predictions with a dataset mainly composed of zeros.

Overall, this study contributes to the understanding of machine learning ap-
plications in predicting telecommunication parameters in the case of metro
passengers itineraries. The findings suggest that the selected machine learn-
ing algorithms, combined with appropriate error metrics and innovative ap-

proaches, offer reliable solutions for real-time predictions for the three studied

11 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

parameters. Besides, the proposed solutions to avoid models that always pre-
dict zero with datasets mainly composed of null values proved to be success-
ful. The predictions from the chosen models will help in the decision-making
of the settings of the phone, to avoid abnormal phenomenon and maintain a

good performance throughout the user’s route.

Keywords: Machine Learning, latency, handover, packet loss, error metric,

time series, Neural Networks

11 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

Contents

URLZREELE i
Abstract il
Chapter 1. Introduction 1
I.1 Motivation e e e 1

1.2 Related Works 2

1.3 Contribution L 5
Chapter 2. Methodology 7
2.1 System Architecture 7

2.2 Processing Workflow 9
2.2.1 DataCollection 9

222 Preprocessing e 10

223 Cross Validation, 20

224 Testing . . oL .. e e e e 22
Chapter 3. Error metrics 23
3.1 Structure of themetrics Lo 23
3.2 Determining pointdistance Lo 24

3.3 Normalization 25
3.4 Aggregationoveradataset 25

3.5 Choiceof errormetrics 25

v doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

Chapter 4. Neural Network

4.1

4.2

4.3

Chapter 5. Time series models

5.1

5.2

53

Chapter 6. Test of the selected models

6.1

6.2

Change of base station

4.1.1 Classification

4.1.2 Regression

4.1.3 Conclusion
Latency
421 Results
4.2.2 Conclusion
PacketLoss
4.3.1 Classification
4.3.2 Regression with loss
4.3.3 Regression with enlarged loss
4.3.4 Prediction with a new dataset

4.3.5 Conclusion

Basestation

Latency
5.2.1 Recurrent Neural Networks
522 ARIMA
5.2.3 Conclusion
PacketLoss

531 Results

Base Station

Latency

doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

6.3 PacketLoss e e e 66

Chapter 7. Conclusions and Future Directions 68
Bibliography 70
Appendices 73

vi doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

List of Figures

2.1 System Architecture 7
2.2 Processing Workflowo L oL 9

2.3 Graphs of the packet loss and enlarged loss for the testing set of dataset2. 13

4.1 Architecture of the Neural Networks algorithm 29

4.2 Prediction graph for the change of base station with classification on dataset

Lo e 30
4.3 Graph of base station change prediction with DNN for dataset 1 33
4.4 Graphs of latency prediction with NN ondataset2. 35
4.5 Graphs of latency prediction with NN on dataset 1 and3 36
4.6 Latency graph for the three datasets, using NNand Sy 36

4.7 Graph of packet loss presence upon time for the dataset 1 and zoomed graph 38

4.8 Graph of presence of packet loss upon time for the dataset 2 and zoomed

4.9 Graph of presence of packet loss upon time for the dataset3 39
4.10 Graph of packet loss number upon time for the dataset 2 and zoomed graph 39

4.11 Graph of packet loss number upon time for the dataset 3 and zoomed graph 40

4.12 Graph of the enlarged loss prediction upon time for the dataset 1 40
4.13 Graph of the enlarged loss prediction upon time for the dataset2 41
4.14 Graph of the enlarged loss prediction upon time for the dataset3 41
4.15 Graph of the packet loss prediction for the new dataset 42
5.1 Architecture of the Reccurent Neural Networks algorithm 45

vii doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

5.2 Explaination on the meaning of fy.p, and tp,eq - L0 o 47

5.3 Graphs of MAE against ¢y, with Sg (in blue) and S, (in orange) . . <. . 49
5.4 Prediction graphs using deep RNN for both sets on dataset 1 and 2 . . <. ' 50
5.5 Comparison graphs between 1-layer and deep LSTM on dataset 1 . .= .. 51

5.6 Graphs of base station change prediction for all datasets, with Deep LSTM 52

5.7 MAE evolution with varying t., values with both sets for latency prediction 54

5.8 Graphs of latency prediction with deep RNN for both sets on dataset 1 . . 55
5.9 Graph of latency prediction with 1-layer and deep RNN on dataset2 . . . 56
5.10 Graph of latency prediction with Deep RNN and Sjp on dataset 1 56

5.11 Graphs of the original latency series and 1% order differencing for dataset 2 57

5.12 Partial autocorrelation graph of dataset2 58
5.13 Autocorrelation graph of dataset2 58
5.14 Graphs of latency prediction with ARIMA on datasets 1 and2 59
5.15 Graph of the latency prediction with ARIMA on dataset3 59

5.16 Evolution of the latency predictions with ARIMA on the 10 seconds period 60
5.17 Graphs of packet loss prediction with RNN using NZ MAE for dataset 1 . 62

5.18 Graphs of enlarged loss prediction with RNN for the three datasets 62

6.1 Graphs of the base station change prediction errors and their correspond-

ing percentage of the range for the new datasets 64
6.2 Graphs of latency prediction errors and their corresponding percentage of

the range for thenew datasets 65

6.3 Graphs of the packet loss prediction errors for the new datasets 67

viil doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

2.1
2.2
2.3
24

4.1
4.2
4.3
4.4

4.5

4.6
4.7
4.8

5.1
5.2
53

54

5.5
5.6

List of Tables

Table of the variables of the problem 8
Features 15
Setsof features 16
Spearman correlation coeflicients table for dataset 1 18
Comparison of simple NN and Deep NN for base station change prediction 31
Error metrics comparison for base station change prediction with DNN . . 31
Comparison of NN and DNN for base station changes prediction using S, 32
Error metrics comparison for base station changes with DNN and S, . . . 32
Errors of NN and DNN models and both sets of features for latency pre-

diction 34
Packet loss occurence rate comparison among datasets 42
Confusion Matrix for the Packet Loss prediction 42
Table gathering the conclusions from every model tested 43
Errors for base station change prediction with time series models 49

Comparison between RNN and LSTM for base station change prediction . 50

Comparison between 1-layer and deep LSTM for base station chage pre-

Comparison of NN and deep LSTM models for base station change pre-

dictiono 53
Errors for models using one hidden layer for latency prediction 54
Table gathering the errors for models using several hidden layers 54

1X doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

5.7
5.8

6.1

6.2
6.3

Al

B.1

Comparison of RNN and LSTM for latency prediction

Comparison between RNN and ARIMA for latency prediction

Comparison of testing and initial datasets results for base station changes
prediction e e e
Latency prediction testing results comparison with the initial datasets

Average error metrics across the 20 datasets for the packet loss prediction

Table gathering the errors from all the models tested to predict the time
before the next change of base station with NN, using S
Table gathering the errors from all the models tested to predict the time

before the next change of base station with NN, using S

X doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

Chapter 1. Introduction

1.1 Motivation

In communication, certain parameters, such as handover, high latency, and packet
loss, can significantly impact the performance. Thus, being able to predict them in real
time during a metro itinerary could greatly enhance the performance by helping to choose

the safest phone settings and prevent these abnormal phenomena.

Many different machine learning models are valuable tools to predict parameters. Conse-
quently, it is important to study which ones perform better on this specific application. A
survey of different algorithms, parameters and features is necessary to have a global vision

of the problem and make the right conclusions.

Moreover, error metrics are very important in the decision making throughout the process
and the conclusion. The error metric is used to measure an error between the predictions
and the actual values. The result from it translates the accuracy of the prediction and is
the principal indicator of the model ’ s performance. It is used during the cross validation
phase, leading to the decision of the parameters values. It is also crucial in the testing part,
influencing the final conclusion on the model performance. Therefore, knowing which er-

ror metric is more suitable for this application is a key point.

Additionally, I faced a unique issue that has not been addressed in prior research. Specif-

ically, more than 99% of the datasets I used exhibit a number of packet losses equal to

1 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

zero. Consequently, the prediction of this parameter is challenging. The issue of datasets
predominantly composed of zeros is crucial in the field of machine learning and many
researchers have thought of possible solutions, but not for such a high proportion. Finding
new solutions to increase the performance of the prediction with this new kind of dataset

is a noteworthy challenge.

To sum up, this work is focusing on the comparison of several Machine Learning models
for the prediction of three telecommunication parameters. These parameters are collected
from the user’s side. Indeed, the data is taken from metro passengers itineraries, following
their movement. On the contrary, the server’s side is when the data is collected from the
base station, it can include multiple phones and does not follow one specific user path, it
is simply taking all, or a part of, the data from the phones connected to one or several base
stations. The predictions from the models are meant to be analyzed in real-time to choose

the safest phone settings to enhance the performance.

1.2 Related Works

There are studies about the prediction of the Packet Loss Rate using Machine Learn-
ing techniques. The authors of [1] developed a Machine Learning tool based on a Random
Forest Regression model to predict, evaluated with real world data. [2] also studied the use
of Decision Tree, and added a Logistic Regression algorithm.

[3] and [4] propose real time packet loss rate prediction at t+1. [3] proposes a novel pre-
diction model with an adaptative nonlinear approach. [4] focuses on data mining models
development, and uses a Multilayer Perceptron. [5] is a statistical analysis of data traffic
measurements, specifically on packet loss. The authors of [6] have conducted a study of
packet loss behavior, analyzing big network traffic data and using a classification approach
with the Machine Learning classifier XGBoost.

All of these works are about the prediction of the packet loss rate. I chose to take a dif-
ferent approach by predicting the number of packet losses. Moreover, these studies were

conducted from the network operator ’ s side. My work will take the user side by follow-

2 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

ing a metro passenger itinerary.

As regards the prediction of the latency, there are studies using classification models:
For example, [7] contributed by studying real operational network and real data on the
user end. Their model is predicting 3 different classes: low latency, medium latency and
high latency, using Logistic Regression, Support Vector Machine and Decision Tree clas-
sification algorithms. [8] also studied a classification model in the aim of optimizing NoC
architecture components, with a Random Forest algorithm. Other studies took a regression
approach. [9] studied the validation of Support Vector Machine algorithm and performed a
feature selection analysis, but is not performing real time forecasting, unlike [10] and [11].
The authors of [10] are presenting a novel approach for latency estimation with an online
learning algorithm in a mobile scenario. [11] identified the main challenges of the problem
and validated the benefits of the Recurrent Neural Network algorithm with LSTM cells for

the prediction of the latency.

I found that the studies using a regression algorithm were more appropriate to achieve my
goals, even if the others gave me useful informations on the features, error metrics and
algorithms commonly used for that kind of data. Similarly to [10] and [11], my study
focuses on real time forecasting. As said before, my work is in the case of a user * s move-
ment. [10] did the same using an online learning algorithm. It would be interesting to see
how well other algorithms do in this application, as [10] only tried one model. I chose to
use the algorithm from [11] (LSTM) in my specific application. Even if the contexts are
different with the data taken from the user’s side in my case, the model will be working
on the same kind of data and the study showed that it performed well on their realistic
settings. Moreover, this algorithm is a well known machine learning time series model
that can be applied to many different problems. Thus, my work will extend this study by

exploring an additional application.

Finally, a few studies are using Machine Learning to deal with the handover predic-

3 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

tion. [12] is studying the case of actual vehivle movement, the authors aim to predict the
handover and learn the variation of performance over the course of the day. Their model
is using a Neural Networks classification algorithm to predict the fog node used at a given
location in real time. [13] is also predicting in real time which base station is used'in a
mobility scenario. The authors want to exhibit that simple methods can outperform more
sophisticated models by studying a probabilistic approach to determine the probability of
the handover to each neighboring base station. [14] has a different approach. It is forecast-
ing the future number of handover attempts to meet their goal to manage handover for a

huge number of cells.

As I am interested in real time forecasting, the studies about the prediction of the next cell
are more pertinent than the one predicting the number of handover attempts, even if the
latest ([14]) is giving interesting informations on the studied parameters. [12] and [13] are
proposing solutions to forecast the base station the phone will be connected to at the time
t+1. With this prediction, we know if there will be a handover at t+1. However, if there is
no handover, these methods do not give any indication on when the next change of base
station will happen. Therefore, my work studied the prediction of the time left before the

next change of base station.

The previous studies about real time forecasting are all performing predictions at t+1, i.e.
they are predicting the very next value of the parameter under investigation. However, this
solution could be complicated to apply in real life scenarios, as the delay for the prediction
is short. Indeed, the data is at least collected every second, and often has higher col-
lection frequency. Therefore, a model producing predictions at t+1 only have a delay of a

second. In my work, I will consider forecasting the parameters a few seconds in the future.

Some studies are proposing solutions for datasets mainly composed of zeros. For
example, [15] is taking care of this issue by using a binomial regression. However, it is

not the case with 99% of zeros. Indeed, the examples taken in the studies are at most

4 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

around 60 or 70% of zeros. Thus, my research will propose new solutions for this issue,

1.3 Contribution

This work compares different Machine Learning models for real-time predictions of
base station changes, latency, and packet loss for a user’s itinerary in the metro.
The studied models are different combinations of a machine learning algorithm, a set of

features and an error metric.

To the best of my knowledge, this study is the first to forecast these parameters a few
seconds into the future.
The advantage of this approach is that it enables to have more time to analyze the predic-
tions and change the phone settings if necessary. Moreover, it gives a better view of how

the parameter ° s value is likely to evolve in the near future.

To the best of my knowledge, this study is the first to design and compare error met-

rics specifically for this application.

This study employs novel approaches for predicting the number of packet losses and
the time before the next change of base station. To the best of my knowledge, it is the first
study to investigate these predictions.

Predicting the number of packet loss is relevant in a context of very few packet loss, as the
packet loss rate is even lower. The idea to forecast the time before the next change enables
to know how far the next change of base station is. Focusing on the prediction of the cell
to which the phone will be connected to at the next time step is successfully giving the
information on whether a base station change happens at the next time step. Nevertheless,
it does not give any indication on the next change if the phone is predicted to be connected
to the same base station. Therefore, this new method is very valuable as it gives much

more information.

5 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

This study proposes innovative solutions for prediction using datasets primarily con-
sisting of zeros. To the best of my knowledge, it is the first study attempting to do-so with
datasets composed of more than 99% zeros.

This study is made in collaboration with other students working on finding the best phone
settings to avoid abnormal phenomena. The predictions of the machine learning models
are meant to help them in the selection of the settings. One of their goals is to reduce the
packet loss during metro itineraries. It makes sense that the datasets contains very few
packet loss, as the issue with this parameter has already been treated. However, the num-
ber of packet loss still needs to be predicted to see if a change of setting to try to reduce
the latency will have an impact on packet loss for example. Having a global vision on
the three parameters is necessary for final the decision making. Finally, this was a good
opportunity to work on solutions for using machine learning techniques in such context.

The proposed solutions could be useful in other applications.

6 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

Chapter 2. Methodology

2.1 System Architecture

Machine Learning
model

(ennnijanna\ I
____________________ Training @

e (€ é>>

<€—>» Interaction between passengers and networks

Settings
=== Flow of the collected data selection

9 Predictions of the model

Figure 2.1: System Architecture

Figure 2.1 shows the proposed system architecture of this study. The system is com-
posed of three parts, each with its own characteristics: the Taipei Metro, the Machine
Learning model and the settings selection.

Several passengers from different itineraries in the Taipei metro are experiencing interac-
tions between their phone devices and the telecommunication network. A lot of data can
be collected and gathered from this connection. Then, the collected data from the passen-

gers is transmitted to the Machine Learning model, which is the second component of the

7 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

system.

The received data undergoes analysis and processing in such ways that will be detailed
later. This work contribute to the development of a machine learning model . After training
the model, the proposed algorithm is applied to the tested data and delivers predictions for
the future values of the parameters under investigation.

These predictions are examined and interpreted, leading to the decision-making process
for the phone settings selection. The aim of the system is to help choose the safest settings
to prevent abnormal phenomena by forecasting these parameters with the Machine Learn-

ing model built with the data from the Taipei metro.

Table 2.1 is listing all the variables from the system and their description.

Variable Description

N Number of samples in a dataset

Ny Number of samples in a training set, Ny = 0.8 = N

N, Number of samples in a testing set, N = 0.2 = N

Number of features in a dataset

T tsrep (for Recurrent Neural Networks models)

T tprea (for Recurrent Neural Networks models)

k Number of units (NN) or size of the vector h (RNN)

H Number of hidden layers

Si Number of collections of the feature latency during the i second
L; Number of collections of the feature loss during the i’ second
1p1 Starting collection time in a pcap file
tp2 Ending collection time in a pcap file
tcy Starting collection time in a csv file
tcy Ending collection time in a csv file

Table 2.1: Table of the variables of the problem

8 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

2.2 Processing Workflow

Collecting Data

_ (¢ AD —

Preprocessing
(Average, sum,
creating new

features, scale,..

; v

I

Information on

Datasets

dat
Ll %7

.
.
.
......

K3

Start over with
another model/set of
features/error metric

e,
",
.
.,
.
.

> i Model, set of
! features, error
> ! metric

1
4
: Cross
: » Validation
. " Chosen
&t parameters

6 I—} Conclusion

Figure 2.2: Processing Workflow

The processing workflow from Figure 2.2 shows the different steps in the study ° s

work, that will be detailed and explained in the following sections.

2.2.1 Data Collection

The data was collected in the Taipei metro in two different ways with different col-

lecting time and frequencies: one for the latency and packet loss, gathered in pcap files,

and another for the other data, put together in csv files. The collection frequency is not

the same for the two files. Indeed, at each time, i.e. each second, the other features are

collected once whereas lat and loss have respectively S; and L; collections (for the i*"

second). Moreover, the files do not have the same beginning and ending collection times.

The data from the csv files is collected from ¢c; to fc, and the latency and packet loss

from the pcap files are collected from ¢p; to tp,. Finally, the loss feature has some miss-

ing values, because this feature exists only if a packet loss is detected and is equal to 1.

However, there is no packet loss in 99% of the used datasets.

9

doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

The issues raised about the difference of collection frequencies, beginning and ending

times, and missing values will be adressed in the next phase of the study.

2.2.2 Preprocessing

After collecting the data, the study is going through the preprocessing part with sev-
eral actions to do to gather information on the data and build the datasets. In order to have
the same collection frequency for every feature, I decided to take the average of the latency
for every second to match the collection frequency of the data from csv files.

Let’s call x the new feature created from this operation.

Fori € [tp1.tp), we have x[i] = 3 3,0, lat' [k]

returns the average of the latency at each second

function transf_latency (latency) # latency is a list such as [[t1, t2, ...], [latency at t1, latency at t2, ...]]
lal « latency [0] #lal =[t1, t2, ...] (list of the times)
la2 «latency [1] #1a2 = [latency at t1, latency at t2, ...] (list of the latency values)

nlatency « length of la2
avg_latency <[]

time <0
s«—0 # s will be the sum of the latency values in a second
c—0 # c will be the count of the values in a second

for i« 0 to nlatency
time2 « time of the i-th element in second
valuelatency « value of the latency of the i-th element
if time I=time2 # if we are not in the same second than before
add a new element to avg_latency: [time, s/c] # s/c is the average of the latency

s « valuelatency # initialize s and c for the new second
c—1
else # if we are in the same second than before
s «— s + valuelatency # updatesand c
c—c+l

time « time2
return avg_latency # we return a list of [[t1, average latency at time t1], [t2, ...], ...]

Each /oss in the pcap file is equal to 1 and corresponds to a packet loss. Therefore, to
match the collection frequency of a second, I chose to sum the number of packet losses

that happen during a second with the function transf_loss.

Let’s call x the new feature created by this operation.

Fori € [tp;,tp2] and L; > 0, we have x[i] = Zi;l loss'[k] = L;

10 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

As explained before, there is initially no value for the packet loss feature of the pcap file
when there is no packet loss at a given second. Therefore, a zero should be added each

time it happens.

Fori € [tp1,tp,] and L; = 0, we have x[i] =0

counts the number of packet loss for every second when there is at least 1 packet loss
function transf_loss (loss) # loss is a list of the times when there is a packet loss
nloss « length of loss
count_loss <[] #an empty list
time <0
for i« 0to nloss

time2 « time of the i-th packet loss in second

if time 1= time2 #if we are not in the same second than before
add a new element to count_loss: [time2, 1]
else # if we are in the same second than before

update the last element of count_loss: [time2, k] updated to [time2, k+1]
we have another packet loss at the same second so we update the number of packet loss for this

time
time « time2 # update to the current time
return count_loss # we return a list of [[t1, number of packet loss at time t1], [t2, ...], ...]

After dealing with the collection frequency disparity, the differences in the starting and
ending collection times should be taken care of. The features values from the times

max(tcy,tpy) to min(tcy, tps), i.e. when the data from both files is collected, are kept.

takes the value of the features at the times when the data from the csv file AND from pcap files is collected
function transf (csv, pcap, ...) # csv and pcap are examples of features respectively from csv and pcap file
csv2 []
pcap2 <[]
t_csv « time of the 1st element of csv
value_csv « value of the 1st element of csv
t_pcap « time of the 1st element of pcap
value_pcap « value of the 1st element of pcap
while there is still at least one element left in each feature’s list
if t_csv==t_pcap # if the collection time is the same

add value_csv to csv2 # add the values to the new lists

add value_pcap to pcap2

t_csv « time of the next element of csv

value_csv « value of the next element of csv

t_pcap « time of the next element of pcap

value_pcap « value of the next element of pcap

else
ift_csv<t_pcap # if the time from the csv file is lower
t_csv « time of the next element of csv # take the next time and the
value_csv « value of the next element of csv next value of the csv
feature
else # if the time from the csv file is lower
t_pcap « time of the next element of pcap # take the next time and the

value_pcap « value of the next element of pcap next value of the pcap feature
return csv2, pcap2

11 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

New features were created from the data. One of them is called ”time”; It is giving
the time in seconds before the next change of base station. This new feature will not
have the same ending time of collection ¢c¢,. Indeed, after the last change of base station
collected in the dataset, we do not know when the next one will be. Therefore, the'time
before the next change of base station is unknown. The ending time for this feature will
be the time of the last change of base station. If this feature is taken in the dataset, all the
other features should also be taken at the right collection times, when all the features are

collected, considering this new ending time.

builds the feature “time before the next change of base station” and rebuilds the other features

function transf_pci (PCl, datal, ...) # datal is an example of a feature returned by get_datacsv
time_PCl « [] PCl is a feature =1 if there is a change of base station and =0 otherwise
dl«[]
n « length of datal
time <0
c—0
k<0
while ¢ ==
¢ « (n-k)th element of PCI # we start from the end of the PCl list
ke—k+1 the while loop end at the last change of base station of the list

forie—kton
¢ « (n-i)th element of PCI
t « time of the (n-i)th element of PCl
ifc==
time «t # we set the time to the time t of the change
time2 «— 0 #time2 is the gap between the current time t and the time of the last change
else we are going from the end of the list so it corresponds to the time before the next change
time2 «time -t
add a new element to time_PCl: [t, time2]
add a new element to d1: (n-i)th element of datal
n2 « length of d1
time_PCI2 « []
d1bis «[]
fori<—0ton2 # we go backward a second time to restore the chronological order
add a new element to time_PCI2: (n2-i)th element of time_PCI
add a new element to d1bis: (n2-i)th element of d1
return time_PCl2, d1bis

Another created feature called “change” is indicating if there is a change of base station.
This feature is equal to 1 if there is a change of base station and 0 otherwise.
Let * s call "base” the data from the csv file indicating the base station the phone is con-
nected to. For i €]tcy,tcy], we have

change[i] = 0if base[i — 1] = base|i]

change[i] = 1 otherwise.

12 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

”loss0/1” is a feature indicating if there is at least one packet loss. It is equal-to I if there
is at least one packet loss and O otherwise.

Fori € [tp1,tp2], we have
lossO/1[i] =0if L, =0, and loss0/1[i] = 1 otherwise.

As mentioned before, the number of packet loss is 0 for 99% of the datasets. Therefore,
predicting it using machine learning techniques is very difficult as models will tend to
always predict 0. “enlarged loss” is a feature enlarging the peaks of packet loss. The idea
behind this feature is to “ enlarge the peaks ” to create curves in the graph of the packet
loss upon time and therefore reduce the number of null values. The real number of packet
losses and this new feature from dataset 2 are plotted on Figure 2.3 to compare them. As
observed in this graph, the newly created feature has much more non-null values, while
still keeping the overall shape of the true values evolution. Even if the information about
the exact number of packet loss at each time is lost, this approach could be beneficial for

the selection of a pertinent model for the packet loss prediction in such context.

—— True value
30 A Enlarged peaks

251

201

151

101

Number of packet losses

- l
0 100 200 300 400 500 600
time (s)

Figure 2.3: Graphs of the packet loss and enlarged loss for the testing set of dataset 2

This feature is created in a recursive form, such as if a value v at a rank i is not null, the
values of the ranks i + 1 and i — 1 are set to 0.95 * v if they are lower than this new value.

Then, the operation is done again for the ranks i + 1 and i — 1.

13 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

transforms the loss feature to have “enlarged peaks”
function transf_nbloss (loss) # loss is a list that contains the number of packet losses at each time
loss2 « copy of loss
n « length of loss
fori«0ton
v « i-th element of loss
ifv>0 # if we have a non-zero value
ke—1
while v>0.01
v2 <« 0.95*v
ifloss2 [i-k]<v2 # if the previous value is not already greater than v2
loss2 [i-k]«v2 # the previous value is updated to v2
ifloss2[i+k]<v2 # if the next value is not already greater than v2
loss2 [i+k]«—v2 # the next value is also updated
V—v2
ke—k+1 #in the 2nd iteration, if v is still > 0.01, the elements that
return loss2 are 2 ranks higher and lower will be updated, and so on...

Two other features are created from the initial data. At each time, the strength of the 4G
signal is evaluated with two features: LTE RSRP and LTE RSRQ. Similarly, NR SSRSRP
and NR SSRSRQ are defining the strength of the 5G signal. These four features are col-
lected at each step, regardless of the actual type of connection, i.e. if it is under 4G or
5G connection. The study investigates 4G base station changes, so the data corresponding
to this type of connection is taken in this case. However, the latency of the signal and
the number of packet loss are dependant on whether the connection is 4G or 5G, and the
correct features should be used depending on the scenario. The features "RSRPbis” and

”RSRQbis” are created with this idea and are calculated such as:

RSRPbis[i] = LTE_RSRP[i] in the case of 4G connection

RSRPbDis[i] = NR_SSRSRP|i] in the case of 5G connection

RSRQbis[i] = LTE_RSRQ|i] in the case of 4G connection
RSRQbis[i] = NR_SSRSRQ[i] in the case of 5G connection

All the features are specified in Table 2.2. A number is associated with each feature, and
they will be referred to by their corresponding number in the following parts of the study.

The table also provides a description for every feature.

14 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

N° Name Description

sy e e of e st of e el £G s
) LTE RSRQ Esggrz?mzezgzgia;nd RSSI (which represents the total
3 NR SSRSRP Same than n°1 but for 5G signal

4 NR SSRSRQ Same than n°2 but for 5G signal

5 SigStrength Received signal strength from the nearest base station

6 SigStrengthl g(f):rcleived signal strength from the second nearest base sta-
7 Speed Speed of the phone (in m/s)

8 RxRate Total number of bytes received per second

9 TxRate Total number of bytes transmitted per second

10 Latency Latency of the signal (in ms)

11 Loss Number of packet loss during a second

12 RSRPbis ; CI}IZL rﬁl (tal::i ([))Illlone is in 4G connection and = n°3 if it is in
13 RSRQbis ; (?Z) rllfl (tal;(:i cI))Illlone is in 4G connection and = n°4 if it is in
14 Change = 1 if there is a change of base station and = 0 otherwise

15 Time Time (in s) before the next change of base station

16 Loss0/1 = 1 if there is at least 1 packet loss and = 0 otherwise

17 Enlarged Loss If Loss(t)>0, then Loss(t-1) = Loss(t+1) = 0.95*Loss(t)

Table 2.2: Features

15 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

The features are gathered into a set that is taken as input by the algorithm. This-work is
using numerous sets of features in the different experiments. They are listed in Table 2.3;
their composition is detailed with the corresponding numbers of the features included and

a name is given to each set.

Set Features used

S1 [1,2,5,6,7,8,9,10, 11]

A [1,2,7,8,9,10,11]

S3 [(12,13,5,6,7,8,9,11)att, (10) att-1]
S4 [(12,13,7,8,9,11) att, (10) at t-1]

Ss [(12,13,7,8,9,10) at t, (16) at t-1]

Se [(12,13,7,8,9,10) att, (11) at t-1]

S7 [12,13,7,10]

Sg [1,2,7]
So [12,13,7,8,9,10, 11]
S1o0 [10]

St [12,13,10]

Table 2.3: Sets of features

Another goal of the prepocessing part is to gather information on the data. It is im-
portant to analyze the data to choose which features should be used, spot the unusual
tendencies and outliers, see if a pattern can be detected, and know which model can be
used.

The first approach to gather information is by visualizing the data on graphs. By doing so,
we can see the global evolution of the data, if there are outliers and how far and frequent

they are, the range of the data, etc.

Then, a mathematical approach is necessary to put numbers on the observations made by

visualization. Let ’ s call x € RV a feature of the dataset, we can calculate the mean of x:
1 vN
mean(x) = 5 Y- X[k]

16 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

The maximum of x is max(x) = x[i{] with i € [1, N] such as x[i] > x[k], Vk-€ [1,N].

The minimum of x is min(x) = x[i] with i € [1, N] such as x[i{] < x[k] Yk € [1,N].

The standard deviation std(x) = \/% SN | x[k] — mean(x) |2

Besides, we can calculate correlation coefficients between features to see if they are cor-
related. If two features are perfectly correlated, one of them should not be used. Indeed,
they are bringing the same information to the model and are redundant. Therefore, one of
them is useless and removing it will increase the speed of the model. Moreover, multi-
collinearity can lead to solutions that are wildly varying and can be numerically unstable.
Finally, it is preferable to keep a simpler model, and have fewer features. It will make the
interpretability of the model easier.

The correlation can be calculated with the Pearson correlation coefficient, that translates

the linear relationship between 2 features x| and x;:

cov(x1,x2)

Pearson(xy,x3) = std(x1)*std(xz)

with std(x) defined earlier and cov(x, y) such as:

cov(x,y) = 5 Tz (x[k] = mean(x)) * (y[k] — mean(y))

with mean(x) defined earlier.

The Spearman correlation coefficient is also useful. This coefficient reflects nonlinear
relationships between two features x; and x;. It shows the strength of the relationship
between these features and can also be used for linear relationships even if the power will

be lower than with the Pearson correlation coefficient.

_ cov(rank(xy),rank(x;))
Spearman(xl’XZ) - std(rank(xl))istd(rankz(xz))

where rank(x) is alist of the ranks of the values in the ascending order.

For example, if x = [2,4,0] is considered, the ascending order is 0, 2,4. Therefore, we

would have rank(x) = 2,3, 1].

17 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

The two defined coefficients give a number between -1 and 1. 1 meaning a perfect positive
correlation and -1 is the result for a perfect negative correlation. If the two variables are

totally independent, the result is 0.

Feature | 5 6 7 8 9 10 11 12 13

5 0.836 | 0.135 | -0.004 | 0.052 | -0.028 | -0.268 | 0.389 | 0.036
6 0.111 | -0.002 | 0.019 | 0.000 | -0.232 | 0.479 | 0.014
7 -0.064 | -0.036 | 0.060 | 0.060 | 0.149 | 0.136
8 0.066 | -0.021 | -0.096 | -0.046 | -0.061
9 -0.011 | 0.072 | -0.019 | 0.021

10 0.033 | -0.035 | -0.071
11 -0.222 | 0.050
12 0.273

13

Table 2.4: Spearman correlation coeflicients table for dataset 1

As an example, Table 2.4 gathers the Spearman correlation coefficients between the fea-
tures n°5 to 13 for dataset 1. In this table, the coefficients that are higher than 0.3 or
lower than -0.3 are highlighted in red, while those whose absolute value is higher than
0.2 are highlighter in yellow. It can be seen that the features used have mostly relatively
small correlation coeflicients, which shows that they provide complementary informa-
tions. However, the features n°5S and 6 are resulting in some higher coefficients. Indeed,
they respectively have a value of 0.389 and 0.479 with the feature n°12. Most notably, the
Spearmann coefficient between them is by far the highest among the table, at 0.836. That
means that these two features are very similar, may bring redundant information already
carried by feature n°12, and therefore be detrimental to the model. This result is not very
surprising considering the nature of these features. Indeed, they represent the same phys-
ical parameter. Some of the sets of features that will be used in the study’s experiments
include these features while others do not. By doing so, the effect of their presence will

be studied to confirm the conlusions drawn from this analysis.

18 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

After extracting the data, synchronizing it, creating new features and gathering infor-
mation helping on the feature selection, the dataset is built with the N samples of the M
chosen features. The function X_y creates a dataset X of size N * M and a'vector ¥ of size

N with the output values.

builds a dataset, for example with feat_csv and feat_pcap as features and label as the output value
function X_y (feat_csv, feat_pcap, label)
n « length of label
X « table of shape (n, number of features (2))
Y[]
fori«=0ton
X[i, 0]« i-th element of feat_csv
X[i, 1]« i-th element of feat_pcap
add the i-th element of label to Y
return X, Y

If the chosen model is a time series model, there is another part in the construction of the
dataset. Indeed time series models are taking the features on several steps of time in the
input, therefore the dataset should be rebuilt with this new shape.

We call 7., the step of time that is taken in the input. Therefore, each of the M features
will be taken g, times in the input. f,..4 is the gap between the last time taken in the

input and the prediction. We put T = fy., and 1o = 1,¢4

The size of the previous dataset X is N * M, meaning that each of the M features has N
values. The size of the new inputs is M = T. In each input, the features are taken T times.
The first input takes the values from 1 to 7', the second input takes the values from 2 to
T + 1, and so on. Therefore the number of inputs is at most N — 7.

Moreover, there is a gap of 7> between the last element of the input and the output. The
first output will be the value at T + 75, the second output will be the value at 7 + 75 + 1,
and so on. When the last output, i.e. the value at the time N, will be taken in the Y vector,
the corresponding input will take the values from N — T — T, to N — T,. Therefore, the
new dataset will contain exactly (N — T — T5) inputs. The size of the new dataset X will

be (N =T —T3) = (M = T) and the size of the vector Y willbe (N — T —T>).

19 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

rebuilds the dataset to have a time series dataset

function rebuild_dataset (X, y, t_step, t_pred) # t_step is the step of time taken in the input
n « length of y t_pred is the gap of time before the prediction
X_rebuilt =[]
y_rebuilt =[]
fori«—Oto(n-t_step-t_pred)

L[]

for j«— O to t_step
add the (i+j)th elements of Xto L # we add the elements from rank i to rank (i + t_step)
add L to X_rebuilt
add the (i +t_step + t_pred)th element of y to y_rebuilt
return X_rebuilt, y_rebuilt

Finally, the last step is to divide the dataset between training and testing sets and scale it.
A dataset is composed of N samples of features. The training set takes the values of the
dataset from 1 to N and the testing set takes the values from N+ 1 to N. The sizes of the
training set X;,q;, and the testing set X;.,; are respectively Ny * M with N1 = 0.8 = N, and

Ny« M with Np =0.2 % N.

Then, the data can be scaled. Two different ways to scale the data are used in this study.
Let * s call x a feature and x4.4/.4 the corresponding scaled feature.

The first scaling method is the Standard Scaling.

x[il-mirain

Fori € [1, N], we have xscqeq]i] = St

where my; 4, 1s the mean of the feature x in the training set: m;,q;, = N%],j eIl

and std; i, 1s the standard deviation of the feature x in the training set:

N
Stdtrain = NL] Zkil | X[k] — Myrain |2

Then, we have the MinMax Scaling.

x[i]-minyyain

Fori € [1, N], we have xs.qeq]i] = P ——

where max;,qin and ming.q;, are respectively the maximum and minimum values of the

feature x within the training set.

2.2.3 Cross Validation

After the datasets are built and the model, set of features and error metric chosen, the

next step is the cross validation. In this part, the training set from 2 datasets out of 3 are

20 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

taken to determine the best parameters to use.

For this phase, I chose to emlpoy a time series format. All the training set is usually used in
every iteration of the cross validation, randomly divided into training and validation'sets.
For my experiments, I kept the newest data in the validation set and the data that came
before are gathered in the training set.

The disadvantage of this method is that the full set is not used at each iteration and the un-
used parts could be beneficial in the training. However, the cross validation should match
the testing context, i.e. training the model on the oldest data and testing it on the newest
ones. In a real-time application, the predictions will be performed on the latest data avail-
able. Therefore, maintaining the chronological order between training and validation in
the cross-validation phase is essential for simulating real-world conditions and ensuring

the reliability of parameter decisions.

The training set is divided into training and validation parts in 5 different ways. The set
is divided into 10 parts. For the 1st cross validation, the training set (Xcy) is composed
of the first five parts of the set and the validation (X,,,;) is the 6th part. For the 2nd cross
validation, the training set consists of the 6 first parts of the set and the validation is the
7th part, and so on until the 5th cross validation.

Let’s call Ny = %

Fori € [0, 4]

Xcv = Xirain[1 0 (5+1) * Ney] and Yoy = Yipqin[1 2 (5 +10) * Nev]

Xval = Xirain[(5+1) * Ncy : (6+1) * Nev] and Yyar = Yirain[(5+i) * Ncv : (6+1) * Ney]

At each iteration, the model is trained on the training set and tested on the validation set.
The average error is returned by the cross validation function to evaluate the performance
and assist the decision making concerning the parameters values.

This operation should be done for all the values of the parameters we want to test. Then,

the results obtained with the error metric can be compared and the best values for each

21 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

parameter can be chosen for the testing part.

2.2.4 Testing

For the test, the model is trained on the training set with the parameters values chosen
with the cross validation, and we test it on the testing set for each dataset. The performance
is measured with the error metric. The testing has to be repeated several times and the
average result must be taken as the weights of the algorithm are randomly initialized and
can influence the convergence of the model.

After the test, we can conclude on the model performance considering the error metric ~ s

result.

In my study, I wanted to study the influence of different parameters, such as the algorithm,
the set of features and the error metric, on the model performance. Therefore, all these
steps should be done again in the same conditions for each of the tested parameters. The
performance of the models on the three datasets will be compared and this comparison

will lead to the selection of the most suitable model for each parameter.

Then, the selected models will be tested on 20 additional datasets, that countains
unknown data. This experiment simulates real-world scenarios and avoids any bias. The
new datasets used for this step have been created from new data collections and do not
necessarily have the same values distributions. This phase is crucial as it replicates the
use case conditions. Thus, it will serve to validate the performance and the reliability of

the chosen models.

22 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

Chapter 3. Error metrics

Error metrics are essential in many fields. In most applications, it is an indicator on
how close the actual values are from what was expected or predicted. Therefore, it is used
to evaluate the performance of the model. In Machine Learning experiments, error metrics
compare the actual values from the dataset to the predictions from the model. It has a big
influence on the choice of the parameters values, the way we see and interpret the results
and the comparison with other models. Therefore, it is crucial to use an error metric that
makes sense with the aims of the study. In order to do that, I studied the structure of the

metrics to understand how it works and which one I should use.

3.1 Structure of the metrics

A lot of different kinds of metrics are used in various field. In machine learning
regression problems, the most commonly used are the Mean Absolute Error (MAE), the

Mean Squared Error (MSE) and the Mean Absolute Percentage Error (MAPE).

Many papers have tried to classify the metrics according to different criteria. For exam-
ple, [16] suggested classifying metrics into four groups, based on how the result is ex-
pressed. The four groups are the scale-dependent metrics, the percentage-error metrics,
the relative-error metrics and the scale-free error metrics. This classification is simple and
clear and enable to understand the basic properties of the metrics, e.g. if it is scale free or

not. And choose one that matchs the needs of the application.

[17] proposed a structural approach to the metrics and proposed a new typology to define

23 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

a metric. They identified three key components that determine the properties of metrics:
the method of determining point distance, the method of normalization, and the method
of aggregation of point distances over a data set.

According to this definition, the result of an error metric is obtained by determining the
point distance between the actual and predicted values, then normalizing it and finally

aggregating over a complete data set.

3.2 Determining point distance

In the following formulas, p; is the predicted value and y; is the actual value.

For each step, many different methods exist. I chose to focus on the most used ones.

The absolute error: e; =| p; — y; |
This error simply gives the gap between the prediction and the actual value. The absolute
error keeps the same units of measurement as the data we are analysing. Therefore, it is
simply interpretable. After performing the mean aggregation over a dataset, the result can
be seen as the average error on the dataset. It is easily understandable and helpful to com-

pare different models.

The squared error: e; = (p; — y;)?
The advantage of taking the square of the error is that large errors (higher than one) are
emphasized and have a bigger impact on the final value. And the small errors (smaller
than one) will be even smaller. This error does not have the same unit measure than the
dataset as we are taking the square. For example, in the case of predicting the latency,
the unit of the squared error will be ms>. Consequently, the result does not have a simple

physical meaning and can be difficult to analyse.

24 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

3.3 Normalization

The unitary normalization: N = 1
This method is the absence of normalization. It is simply a division by one. The advantage
is that it does not change the dimension of the point distance. By associating it with the
absolute error, we keep the same unit as in the dataset. It is useful to analyse single series
and compare different models with the same serie. However, it can not be used to compare

multiple series as the result depends on the magnitude of the values from the dataset.

The normalization by the actual values: N =| y; |~¢
This method consists in the division of the point distance by the actual value. ¢ is a con-
stant and its value depends on the point distance method used. For the absolute error ¢ = 1
and for the squared error ¢ = 2. By doing so, the metrics using this normalization are
dimensionless and we can view the result as a percentage by multiplying it by 100. There-
fore, it is appropriate to compare multiple series. Nevertheless, if the actual value is zero
or very close to zero, the method would perform a division by zero so it can not be used.

A very small value can be added to the actual value to avoid this issue.

3.4 Aggregation over a dataset

The mean aggregation: ﬁ f\i |
This is the most common aggregation method. It sums all the values of normalized point
distances and then divides by the number of elements N. The results is the average of the

normalized errors and is easy to understand and interpret.

3.5 Choice of error metrics

I have opted to use the absolute error as it effectively measures the point distance,
and I have applied unitary normalization to maintain consistency with the data unit. It fits

the needs of my work as it enables to compare different models on the same series. Addi-

25 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

tionally, the actual magnitude of the latency remains unknown and a percentage error may
not translate the actual error of the model. On the contrary, the absolute error gives the
same result regardless of the magnitude. Furthermore, all three parameters occasionally
have zero values, making normalization by actual values problematic due to potential'divi-
sions by zero. As mentioned earlier, adding a very small value could avoid this issue, but
it would disproportionately weigh errors when the actual value is zero. This is precisely
what should be avoided, particularly for the packet loss prediction. Indeed, that would

favor even more models that tend to always predict 0.

The combination of the absolute error, the unitary normalization and the mean aggregation

gives the Mean Absolute Error (MAE):
MAE =5 31X, | pi =i |

The Mean Absolute Error assigns equal weight to every value, treating them uniformly
in the final result. However, I observed that for the prediction of the time before the next
change of base station, the error can be excessively high for large values, which can inflate
the average error. Since my primary focus is accurately determining when the base station
will change, precision becomes particularly crucial when the values are low. Therefore, I
have developed an alternative error metric that specifically prioritizes low values. MAE «
is a Mean Absolute Error with a threshold of @, @ being a real number. This metric puts
every value of the dataset and the predictions that are higher than « to a exactly, and then

perform a regular MAE.
MAE @ = 3 3¥, | min (p;, @) — min (y;, @) |

For this application, we only have to know when the change will happen a few seconds
ahead. Therefore, we can focus on the moments when the change is imminent. I first
chose @ = 60 as the parameter for the error metric. This choice assigns greater impor-
tance to errors occurring within a minute before the change, while assuming that precise
predictions of the time before the next change are unnecessary for larger values, as long as

the predicted value exceeds 60 seconds.

26 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

To explore the influence of this parameter, the metric was also applied with @ = 30.-With
this smaller «, it highlights the errors of the values we are really interested in even more
than with @« = 60. However, it should be noted that this approach tends.to overlook a
significant portion of the predictions. The models for the prediction of the time before the

next change will be evaluated using MAE, but also these two new metrics.

One of the research challenges is to devise solutions for accurately predicting the number
of packet loss and avoiding models that consistently predict 0. A first approach is to use
a weighted MAE that assigns greater weights to errors when there is at least one packet
loss. This adjustment aims to favor models that effectively predict the number of packet
loss when the actual value is not zero. The metric that I called "NZ MAE”, for "Non-Zero

MAE”, was designed with this idea.

NZMAE = 5= 3%, wi | pi = i |

with the weights w; = 1if y; =0
and w; = 8 otherwise

where 3 is a constant higher or equal to 1.

This is a weighted Mean Absolute Error with higher weights when the actual values from
the dataset are not zero. For zero values, the weights are 1 and for non-zero values, the
weights are S > 1. We can choose the value of S depending on our problem. The bigger
B is, the more the errors of non-zero values will be important. Non-zero values account
for approximately 0.7% of the datasets, which is roughly 100 times fewer than zero val-
ues. Therefore, I chose S = 100 for the error metric to counterbalance this overwhelming

majority of zero values.

Another solution is to use a classification model. This idea is driven by the existence of the
F| score, which is a metric made for classification models. This metric penalizes models
that solely predict 0, as the absence of True Positives results in an F1 score of 0. By
combining precision and recall, the F1 score produces a value ranging from O to 1, using

the following formula:

27 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

Fy = precisionsrecall _ 2tp
1= “precisiontrecall — 2ip+fp+fn

with #p = number of true positive,
fp = number of false positive,

fn =number of false negative.

Similarly to the use of NZ MAE, this method using classification and the F1 score aims
to favors models that do not always predict 0. The prediction of the packet loss will be
performed with regression algorithm using NZ MAE as the error metric and with classi-
fication algorithm using the F; score. The regular MAE will also be used in regression

algorithm to assess the impact of the two other methods.

The technique utilizing classification and F; score will also be applied for the prediction

of wether there is a change of base station.

In contrast, the study of latency prediction will not involve comparing multiple error met-
rics and instead will focus on other aspects of the problem. The Mean Absolute Error
emerges as a fitting error metric for this application as it results in a easily interpretable

error that does not depend on the range of the data whose actual value is unsure.

28 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

Chapter 4. Neural Network

Figure 4.1 shows the architecture for the Neural Networks algorithm. The input is
(x1,x2, ...,x3r), which corresponds to the M features, and returns the outpout a. The
model is composed of H hidden layers of k units each, and an output layer. The values of
the nodes of the layer / can be calculated such as: a' = o-(W!a/~'+b") with o the activation
function and W and b weights matrix and vector. The loss function is calucating the gap
between the output and the true value. The algorithm is trying to minimize it by updating

the weights with the gradient descent method.

Neural Networks

H hidden layers
with Kk units each

Figure 4.1: Architecture of the Neural Networks algorithm

4.1 Change of base station

This study took two different approaches to predict the base station changes. Classi-

fication and regression models have been tested.

29 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

4.1.1 Classification

The classification approach uses the set of features S; to predict the feature n®14, i.e.
if there is a change of base station, and the F score serves as the error metric. A graph

with the predictions of the model and the true values for dataset 1 is plotted on Figure 4.2.

1.0{ — Real value
Predictions

0.8

Changing PCI
o
o

=}
ES
L

0.2

0.0 . L — M

l(IJO Z(I)O 360 4(IJO 5(‘)() 660
time

Figure 4.2: Prediction graph for the change of base station with classification on dataset 1

This method does not have very good results, exhibiting a poor F score, and may not be the
most adequate. One of the limitations is that it only predicts the changes at t+1, without
considering the significance of predicting it 1 or 30 seconds too early, which can have
varying implications in reality. Furthermore, the approach does not account for potential

delays in predicting the change.

4.1.2 Regression

The regression method is tested with two different sets of features: S| and S,. This
choice is made to study the influence of the features n°5 and 6 that do not appear in the set
S>. As seen in the preprocessing phase, these two features have strong correlation coef-
ficients and can be harmful to the model’s performance. Three error metrics will also be

used to inverstigate their effects. These three metrics are MAE, MAE 60 and MAE 30.

Table A.1 from Appendix A is gathering all the errors (in seconds) for all the model tested

30 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

with the set of features S, i.e. the models built with each error metric and both- NN and
DNN algorithms. The resulting errors are expressed in s with the three error metrics.

To compare the results, MAE 30 will have a more significant impact as it 'shows the error
close to the moment when the phone changes base station. Therefore, the subsequent tables
will only gather the errors expressed with MAE 30 (in s.) to simplify their interpretation,

even if they may come from models built with other error metrics.

Dataset 1 Dataset 2 Dataset 3
NN 6.53 6.71 7.75
MAE

DNN 7.60 6.38 7.74

NN 6.61 7.26 6.85
MAE 60

DNN 6.03 9.93 6.27

NN 6.53 6.71 7.75
MAE 30

DNN 5.99 5.31 7.70

Table 4.1: Comparison of simple NN and Deep NN for base station change prediction

Table 4.1 compares the results from the NN and DNN models. For each comparison,
the smallest error is highlighted in green. We can see that both models perform well and

present low errors of about 6s. The DNN models work slightly better for 7 of the 9 cases.

Dataset 1 Dataset 2 Dataset 3
MAE 7.60 6.38 7.74
MAE 60 6.03 9.93 6.27
MAE 30 5.99 5.31 7.70

Table 4.2: Error metrics comparison for base station change prediction with DNN

The results obtained with each error metric and the DNN algorithm can also be compared
with Table 4.2. For each dataset, the smallest error is highlighted in green and the second
smallest is in yellow. For the datasets 1 and 2, the use of MAE 30 gives an error more
than a second lower than with MAE. MAE 60 works almost as good as MAE 30 for the

first one (only 0.04s difference), but did not perform well on the second one. Finally, for

31 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

the dataset 3, MAE 60 has an error of almost a second and a half lower than the two-other

metrics, MAE 30 being slightly better than MAE.

The same reasonning is done with the set of features S,. It is interesting to make the
same experiments to validate or question the precedent observations. Besides, it will allow
us to draw conclusions regarding the effectiveness of this new set of features. The errors
from all models utilizing the set S, are shown in Table B.1 from Appendix B, and the error
metric MAE 30 is chosen to compare the algorithms in Table 4.3. The comparison of the

models with the different error metrics is provided by Table 4.4.

Dataset 1 Dataset 2 Dataset 3
NN 8.00 6.45 6.73
MAE

DNN 6.94 7.66 7.66

NN 8.20 6.54 6.72
MAE 60

DNN 6.77 5.50 6.71

NN 10.2 7.15 6.65
MAE 30

DNN 6.93 5.92 7.01

Table 4.3: Comparison of NN and DNN for base station changes prediction using S»

Dataset 1 Dataset 2 Dataset 3
MAE 6.94 7.66 7.66
MAE 60 6.77 5.50 6.71
MAE 30 6.93 5.92 7.01

Table 4.4: Error metrics comparison for base station changes with DNN and $»

These results confirm the conclusions made earlier with the other set of features. Indeed,
the errors from the Deep Neural Networks models are often more than a second lower than
those from simple Neural Networks. DNN works better 6 out of the 9 cases.

The models using MAE 60 or MAE 30 have also better results. Across all datasets, the

lowest error is achieved by using MAE 60, MAE 30 comes in second place and the regular

32 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

MAE always has the highest error. For the dataset 1, the three errors are quite close. For
the datasets 2 and 3, the gap is wider. Indeed, there is respectively more than 2 seconds

and almost a second between MAE and MAE 60.

The predictions from the models with Deep Neural Networks algorithm and each error
metric have been plotted on Figure 4.3. The model using MAE (in orange) has more out-
liers and appears to deviate further from the actual values (in red). This visual observation

aligns with the quantitative analysis.

MAE

—— MAE 60
200 —— MAE 30
—— True value

150 -
100 -

50

Time before the next change (in s)

Figure 4.3: Graph of base station change prediction with DNN for dataset 1

4.1.3 Conclusion

We saw that Deep Neural Networks are more suited than classical Neural Networks

for this application.

As expected, we get better results by using the new error metrics designed for this applica-
tion in the model construction. However, these metrics could favor the models that predict
an average value most of the time, such as 15s or 30s. These models would have been
ignored with the classical MAE. The risk is even bigger with MAE 30, as all the values

are in a shorter range. Therefore, the best solution is to use MAE 60 to pick the best model.

Finally, the addition of the features n°5 and 6 in the set S| does not translate in better

results. Therefore, the set S should be prioritized to keep a simpler model.

33 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

4.2 Latency

The prediction of the latency using Neural Networks algorithm has been performed
with the error metric MAE and two different sets of features S3 and S4 to study again the

influence of the features n°5 and 6. These two features are only present in the set S3.

4.2.1 Results

I compared the results obtained with classical Neural Networks and Deep Neural
Networks models. Table 4.5 gathers the results calculated with the Mean Absolute Error

(in ms) for the three datasets and the two sets of features defined earlier.

Dataset 1 Dataset 2 Dataset 3
s, NN 10.8 225 23.4
DNN 224 556 19.1
S NN 7.54 55.6 21.7
DNN 9.76 52.5 18.9

Table 4.5: Errors of NN and DNN models and both sets of features for latency prediction

The second dataset does not yield satisfactory results when combined with the first set of
features, S3. That can be explained by the distribution of the values. The latency is going
from —389ms to 1419ms, and the average value of the training set is —354ms, very close
to the minimum value. In contrast, the average value in the testing set is 552ms. There-
fore, accurately predicting the latency from the testing set becomes more challenging, as
the training set is predominantly composed of very low latency values and does not ade-
quately represent the full range of latency values in the testing set. However, we obtain

more promising results when utilizing S4 as the set of features.

Besides, we see that NN and DNN give similar results. Both are better for half of the ex-
periments. It is worth noting that DNN models typically entail longer computation time.
Given that their results do not exhibit explicit superiority over classical NN, it is reason-

able to opt for the latter to avoid the additional computational overhead. Hence, the use of

34 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

classical Neural Networks is sufficient for this application.

A good accuracy is achieved for the datasets 1 and 3. The errors from the two sets of
features are respectively about 10ms and 20ms. Even if the exact values of the latency are
not in the dataset, these errors can still be interpreted as small values considering that the
range of the latency values, i.e. the gap between the maximum and minimum values, is

around 1000m s for the three datasets.

Table 4.5 shows the difference of performance for the models using the set of features
S3 and those using S4. The models utilizing the second set always have a smaller error.
Concerning the dataset 2, the NN error is 4 times higher with S3 and the DNN error is
more than 10 times higher. We can visualize the predictions of the NN models for the

second dataset in Figure 4.4.

1500
— 1stset

2nd set
—— True value

1250 A

1000 A

750 1

500 A

Latency (in ms)

0 100 200 300 400 500 600
time

Figure 4.4: Graphs of latency prediction with NN on dataset 2

As expected after seeing the error results, the model using S3 (in green) has more outliers.
We observe that both model have a tendancy to predict lower values. This can be due to
the issue of range for this dataset, as the model has been trained on lower values. We can
draw the graphs for the two other datasets, using NN models, on Figure 4.5. Similarly to
the previous graph, the predictions from the model using S (in orange) are closer to the

true values (in red) than the model using S3 (in green).

35 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

—— lstset
2nd set
—— True value

—650 - — 1stset 2600
2nd set
— Tuevalue | 5544

|
~
=
S

2400

|
4
G
S

2300

Latency (in ms)

|
@
S
S

2200

-850 - 2100

2000

time time

Figure 4.5: Graphs of latency prediction with NN on dataset 1 and 3

4.2.2 Conclusion

We established that the most adequate algorithm was simple NN and we just saw
that the set of features S4 is more appropriate. The results of this specific model can be
analyzed. The errors of the three datasets are (in ascending order of the dataset number)
7.54ms, 55.6ms and 21.7ms for latency values ranges respectively of 1659ms, 1808ms
and 731ms. Therefore, the error from the dataset 1 represents only 0.5% of its range. For
the dataset 2, it is 3.1%. And for the last dataset, the proportion is 3.0%. To see how close

the predictions are, the graphs concerning only the second set of features can be drawn.

—— Prediction
—650 20ms error margin
—— True value

—700 A

=750 A

Latency (in ms)

—800 -

—850 l ' ! I Hl lll I l "II

—900 -

time

—— Prediction
20ms error margin
— True value

1500 2600

2500

2400

2300

2200

2100

2000

0 100 200 300 400 500 600 0 50 100 150 200
time time

Figure 4.6: Latency graph for the three datasets, using NN and Sy

On Figure 4.6, the graphs include the predictions, a 20ms error margin around these pre-

36 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

dictions and the true value from the testing sets. For the dataset 1, whose graph-is at the
top, and the dataset 3, with the graph at the bottom right, the true value is almost-always
within the 20ms error margin from the prediction. Concerning the graph.of the second

dataset, there are some outliers but a big part of the testing data is still in the error margin.

We can conclude that Neural Networks models can precisely predict the latency of the
signal with the data we have at a time t. However, this model does not forecast the latency
in the future. Now that it is proven that the prediction is doable with the datasets of the

study, the use of time series models will help predict it a few seconds in the future.

4.3 Packet Loss

To predict the number of packet losses, three different approaches have been tested
to try to solve the problem of the overwhelming majority of zeros in the datasets. A clas-
sification model predicting whether there is at least one packet loss, and two regression
models. One is using a weighted error metric to predict the number of packet loss and the
other is using the modified feature n°17 called “enlarged loss”. Finally, a last model was
tested with a regression algorithm, using a regular MAE and the actual number of packet
loss. This serves as a control experiment, allowing us to assess whether the three proposed

solutions have a substantial impact on the prediction accuracy.

4.3.1 Classification

Considering the infrequent nature of packet losses, it holds greater significance for the
model to effectively predict the occurrence of any packet losses rather than precisely quan-
tifying their exact number. Therefore, using a classification model that discards informa-
tion about the actual number of packet losses is not problematic. The model will predict

the feature n°16 and be evaluated by the F score.

As explained and showed with the experiments to predict the changes of base station and

37 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

the latency of the signal, the presence of the features n°5 and 6 in the datasets is not
beneficial for the model performance. Therefore, the set of features used (S5) does not

include them.

1.0 — Predictions
—— True value

o
®

Packet Loss
o
o

o
>

o
N}

0.0

0 100 200 300 400 500 450 455 460
time time

Figure 4.7: Graph of packet loss presence upon time for the dataset 1 and zoomed graph

For dataset 1, there are only two times when there is at least one packet loss in the testing
set and the zoomed graph from Figure 4.7 shows that the model successfully predicted
one, around time = 455s. However, the model produces many False Positives, i.e. when
the prediction (in green) is 1 but the true value (in red) is 0.

For the dataset 2, five moments when there is at least one packet loss are present in the test-
ing set and the zoomed graph from Figure 4.8 shows that the model successfully predicted

one. Besides, there is only a few False Positives around time = 375s.

1.0 —— Predictions
—— True value

Packet Loss
o
o

o
>

o
o

0.0 1

0 100 200 300 400 500 600 430
time time

Figure 4.8: Graph of presence of packet loss upon time for the dataset 2 and zoomed graph

Finally, for the dataset 3, none of the three moments where there is at least one packet loss
was detected, as depicted on Figure 4.9. Indeed, the model predicted almost only zeros,

except one False Positive.

38 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

1.04 —— Predictions
—— True value

0.8

0.6 4

Packet Loss

0.4

0.2

0.0

0 50 100 150 200
time

Figure 4.9: Graph of presence of packet loss upon time for the dataset 3

4.3.2 Regression with loss

In this second approach, the exact number of packet losses is used. This model takes
the set S¢ as input and the feature loss (n°11) as output. The NZ MAE and the regular
MAE are both used. For the first dataset, all the predictions from both models are very

close to zero, so they missed the two times when packet losses happen.

Figure 4.10 is illustrating the results for dataset 2. Again, the model that used MAE pro-
duced very low predictions, all close to zero. However, when the new metric NZ MAE
is used, some variations are seen in the predictions. This leads to a few false positive
cases, particularly around time = 375s, but two occurrences of actual packet losses were

successfully predicted close to time = 430s, as depicted in the zoomed-in graph.

—— Prediction using NZ MAE
Prediction using MAE
L —— True value

60

Packet Loss

20

l l : | |

0 100 200 300 400 500 600 450
time time

Figure 4.10: Graph of packet loss number upon time for the dataset 2 and zoomed graph

For the dataset 3, the graphs are plotted on Figure 4.11. It shows that both models have
some variations in their predictions. The model built by using NZ MAE predicted non-

zero packet loss for one of the three times when packet loss happens in this dataset, while

39 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

the model using MAE missed all three.

ction using NZ MAE
ction using MAE

53D
S oo
s 8 &
559

40 4

30 4

Packet Loss
~
S

104

0 50 100 150 200 60

time time

Figure 4.11: Graph of packet loss number upon time for the dataset 3 and zoomed graph

4.3.3 Regression with enlarged loss

The third approach uses the metric MAE and considers the set of feature S7 to predict
“enlarged loss” (feature n°17). The results for dataset 1 are plotted on Figure 4.12. The
two enlarged peaks are correctly predicted. Indeed, the predictions are following the global

trend of the feature, with just one abnormal increase around time = 350s.

—— Prediction
—— True value
Enlarged peaks

10 A

Number of packet losses
o
—
by ——y

1

: /UMWM&VA_ M wﬂu

0 100 200 300 400 500
time (s)

Figure 4.12: Graph of the enlarged loss prediction upon time for the dataset 1

Figure 4.13 shows the graphs for the dataset 2 and reveals that the model succesfuly
predicted two enlarged peaks, which correspond to three non-null packet loss values.
Two other enlarged peaks have not been detected and many false positive cases happened

around time = 200s.

40 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

—— Prediction
—— True value
Enlarged peaks

w
1=}

U N

T T T T T T T
0 100 200 300 400 500 600
time (s)

Number of packet losses
= = N N
v o w o (5]
»
2!

o

Figure 4.13: Graph of the enlarged loss prediction upon time for the dataset 2

—— Prediction
—— True value
Enlarged peaks

Number of packet losses
N w IS o o ~

-

““AAAMAM,UAAM I

o

0 50 100 150 200
time (s)

Figure 4.14: Graph of the enlarged loss prediction upon time for the dataset 3

For the dataset 3, both enlarged peaks and therefore all three packet losses occurence have
been correctly predicted by the model, as shown on Figure 4.14. However, another bump

can be observed in between these two, that does not correspond to an actual enlarged peak.

4.3.4 Prediction with a new dataset

The composition of the three datasets led to new solutions to enhance Machine Learn-
ing models performance in that particular case. However, it is interesting to see how a
model will perform if there are more packet losses occurrences.
The additional datasets that will be used to validate the chosen models also have a ma-
jority of O packet loss, but their null value rate is a lot lower. Indeed, Table 4.6 shows
that, on average, there are more than 17 times more packet loss occurrences in these new
datasets. Therefore, one of them will be used to try another model to accurately predict

packet losses.

41 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

Dataset 2 Dataset 3

0.79%

Dataset 1

0.76%

New datasets

13.98%

Packet Loss 0.77%

occurrence rate

Table 4.6: Packet loss occurence rate comparison among datasets

The tested model is using a Neural Network algorithm with the set of features S;;. The
predictions are done using a regression algorithm on the given data. Then, I chose to de-
fine a threshold to 50 to eliminate the small variations that do not necessarily correspond
to a packet loss. Below this limit, the data will not be counted as a packet loss. Besides,
it is more interesting to accurately predict the higher numbers of packet losses in my ap-

plication. Several metrics including the F; score are used to measure the performance.

—— Prediction
—— True value

1400 A

12001

1000

800 ~

Packet Loss

600

400 1

200 -

a

T
600
time (s)

Ll

T
1000

o N R N

Adh

T T
400 800

Figure 4.15: Graph of the packet loss prediction for the new dataset

The graph from Figure 4.15 shows the packet loss predictions and true values for the tested

dataset. Visually, the two lines are very similar and the predictions seem accurate.

Actual Values
Packet Loss No Packet Loss
o Packet Loss 43 4
Predictions
No Packet Loss 11 1064

Table 4.7: Confusion Matrix for the Packet Loss prediction

The confusion matrix for this dataset is drawn on Table 4.7. This matrix gathers the num-

bers of True Positive (43), False Positive (4), False Negative (11) and True Negative (1064).

42 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

The first observation is that the number of True Negative cases is very high in this example.
This is not surprising, as the majority of the data does not have any packet loss. Then, the
number of True Positive is also quite high, whereas there is only a few unwanted cases,
i.e. False Positive and False Negative. The testing data gave a F; score of 0.85, which is

a good result.

4.3.5 Conclusion

It is difficult to conclude on the models applied on the three initial datasets as the
number of packet losses is very low. It represents only 0.7% of the three datasets and
making conclusions on such a little sample is very unsure. Not predicting any packet
loss does not necessarily mean that the model is bad. And on the contrary, succesfully
predicting one packet loss could be a lucky prediction. However, as the experiments were
carried out on three different datasets, the luck factor is decreased. Still, this conclusion

must be taken carefully.

Dataset 1 Dataset 2 Dataset 3
Class. 1 packet loss detected 1 packet loss detected almost only zeros
but many fp

MAE Only zeros Only zeros Some variations but 0

packet loss detected

Regr.
NZ Only zeros 2 packet losses detected | 1 packet loss detected
MAE

Enlarged The 2 packet losses 3 packet losses are All 3 packet losses

loss detected but many fp detected but many fp detected but many fp

Table 4.8: Table gathering the conclusions from every model tested

Table 4.8 gathers the observations made for the classification and regression models. The
cases of succesful prediction of at least one non-zero packet loss are highlighted in green
in the table.

The only model that did not predict any instance of packet loss is the regression algo-

rithm predicting the feature ’loss” and using MAE. This was the control experiment and

43 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

it shows that models tend to always predict 0. All three other models performed better
and have succesfully predicted several non-null packet loss instances. The models using
classification and regression with NZ MAE both predicted a few packet losses succesfully
for two datasets and have almost only zeros as predictions for one. It can be noticed that
the classification model generated more false positive cases. Finally, the model predicting
the feature “enlarged loss” succesfuly predicted almost all instances of non-null packet
losses. However, it also produced many false positive cases for every dataset. This is not
a surprise as the variable predicted is not the actual number of packet loss but a modified

version that increases this number for most of the time.

Besides, the new datasets with an higher packet loss occurrence rate were useful to create
a model that accurately predicts the number of packet losses with a good F; score. The
previous models are still pertinent as it brings useful information on the packet loss num-
ber evolution and are novel solutions for prediction in the case of a dataset with an over-
whelming majority of zeros. The evolution of the predictions from the model forecasting
the “enlarged loss” feature can be analyzed to conclude on the packet loss likelihood. In-
deed, this feature exhibits a gradual increase leading up to the occurrence of packet losses.
It can serve as an indication of the likelihood of packet losses occurring, which may be
particularly relevant within the study’s context. When selecting the safest setting, the exact
number of packet loss may be of lesser importance than understanding the overall trend in

the evolution of this feature.

44 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

Chapter 5. Time series models

Recurrent Neural Networks

v
T (t_step)
Dense
! layer

1 layer 2 layers
a4
hy = | 22 size k h h2

| Lo
f1
size M f2 = X4
fm

X2 =

v v
hr
Xt Xy —>|
hT

Figure 5.1: Architecture of the Reccurent Neural Networks algorithm

The study also considered time series models. The Reccurent Neural Networks al-
gorithm has been used for the prediction of the three parameters. Simple RNN and Long
Short Term Memory (LSTM) cells have been tested within this algorithm. Figure 5.1
shows the architecture of a Recurrent Neural Networks model. The first part explains that

the input is the matrix X (of size M * T') composed of the M features values during a pe-

45 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

riod of 7. X can be divided as T vectors x1, ..., x7 each composed of the values of the M
features at a given time. The input goes into the Recurrent Neural Networks layers, which
return a vector Ay of size k. k can be interpreted as the number of units in a hidden layer in
the classical Neural Networks algorithm. Then, the vector is going through a Dense layer

and the model returns the output y.

The second part details the architecture of the Recurrent Neural Networks, for H = 1 and
H = 2 hidden layers. In this figure, the blue squares can be either Simple RNN or LSTM
cells. A cell is taking a vector x; composed of the M features at the time i and another
vector h;_j that contains the values (ay, ..., ay), and returns the updated vector /;. For
the LSTM model, a third input called c;_; is needed for each cell. The advantage of this

configuration will be explained later.

In the case of simple RNN, the i cell is a dense layer of size k, that receives the con-
catenated input of x; with size M and h;_1, whose size is k. The activation function is the
hyperbolic tangent tanh function, which enables a faster convergence than the sigmoid

function. The resulting formula is:
h; = tanh(WT x concat (x;, hi—1) + b)
with W a matrix with size (k + M) * k and b a vector of size k

However, a limitation of this type of cells is the issue with vanishing gradient that makes
the learning harder and slower. At each step, the algorithm updates the weights of W to
minimize the loss function L such as:
We—W- ag—‘%,
. T dL
with g—é, = !

t=1 oW

oL, _ 0Lyt Ok ol
and 53 = 77 (ITi= 6hi_1)0W

This last expression includes a multiplication of several derivatives of 4. This corresponds

to derivatives of the ranh function, that are giving values in [0, 1]. When T is large, this

46 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

expression tends towards 0. Therefore the model will not learn significantly in reasonable
time. A solution to this problem is to use LSTM cells. These cells divide the information
between what is important at short term through the hidden state 4;, that can be compared
to the output of a simple RNN cell, and what count at long term, with the cell state ¢;.

The operation of a LSTM cell can be sum up in three steps. First, the forget gate, that
consists of a dense layer with a sigmoid activation function, aims to detect valuable infor-
mations from the past cell state. The input gate chooses the relevant informations to be
added to the new cell state. Finally, the next hidden state will be generated by the output

gate by extracting important short term informations from the newly generated cell state.

These two kinds of cell will be compared in the following experiments. We saw that LSTM
should peform better, especially with long input sequences, as the vanishing gradient issue
is prevented. However, it usually implies longer computation time and the performance

gap has to be significant enough to justify it.

The use of this time series algorithm requires the determination of two additional
variables: g, and fpreq. tsep 18 the step of time that is taken into account for the input
data. It represents how far we go into the past datas to predict the future values. ¢_pred
is the gap of time between the last data that is in the input and the prediction. It represents

how far in the future the data predicted by the model is.

tstep ! pred
Jan Feb Mar | Apr | May Jun Jul Aug Sep

Figure 5.2: Explaination on the meaning of 7., and 7.4

To visualize the meaning of 7y, and ¢),.4, Figure 5.2 is an example with monthly data.
Each box represents one month and the corresponding data. The time goes from left to
right, following the order of the months. The boxes colored in green are the data taken in
the input. The box colored in red is the output, i.e. the data the model has to predict. In
this example, four steps are made into the past to build the input. Indeed, the data from

February to May are taken, so fy., = 4. Three steps are made from the last ”green box”

47 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

to the prediction, from May to August, S0 #,,.q = 3.

Regarding the prediction of the latency, the ARIMA algorithm has also been tested.
The reasons of this choice and the operation and functioning of this algorithm will be de-

tailed later.

With the previous experiments on simple Neural Networks models, the sets of features
that do not include the features n°5 and 6 appeared to be more appropriate. Therefore, these

two features will not be contained in the future sets for the time series approach.

5.1 Base station

During the Neural Networks models experiments, it has been established that the best
method to predict the moments when the phone changes the base station it is connected
to is to consider the time before the next change. This prediction using time series model
will include the comparison of two sets of features, RNN and LSTM cells and 1-layer and
deep models. The two sets of features studied are S and Sg. The second one contains

fewer features, with only three compared to the seven that compose S>.

As explained, the time before the next change is forecasted. Therefore, the next change
is already predicted in the future and the variable 7,,.4 is not needed in this case. For
generalization purposes, we take 7,04 = 0s.

Then, the value of #,., must be defined. Ideally, this value must be the smallest possible
to use less data and therefore have a smaller computation time and more samples in the
dataset. To determine the best value, the cross validation method is used to study the in-

fluence of 4., on the MAE for both sets.

The results using RNN and LSTM for the evolution of the error depending on the value of
Isep are very similar and the graphs present the same curves. Figure 5.3 shows the graphs

obtained using RNN, but the conclusions are made for both algorithms.

48 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

0 5 10 15 20 25 0 5 10 15 20 25
t_step t_step

Figure 5.3: Graphs of MAE against 7., with Sg (in blue) and §; (in orange)

The set S», whose corresponding graph on Figure 5.3 in in orange, does not seem to be
suited to time series model. Indeed, the lowest error is achieved for z,,., = 1 and then the
value is increasing until a stabilization on a high value. The interest of time series models
is to have several time steps in the input, but this leads to a bigger error with this set. This
issue may be caused by the big number of features used. For the other set, the error is not
widely varying, but a decrease is still observed until 7., = 5s. The models with the set

Sg will be built with this 7y, value.

5.1.1 Results

Table 5.1 illustrates the difference between the two sets of features. The results are
expressed in seconds with the error metric MAE 30. The smallest error of each comparison
1s highlighted in green. The models using the set Sg are resulting in lower error for 10 out
of the 12 comparisons. Notably, the difference is big for the dataset 2, for which the models

with Sg have errors twice as small as with S5.

1 hidden layer 2 hidden layers
Dataset 1 Dataset 2 Dataset 3 Dataset 1 Dataset 2 | Dataset 3

S» 7.85 10.63 7.46 10.61 10.63 7.44
RNN

Sg 7.11 5.20 7.76 7.25 5.28 7.67

S» 7.40 10.63 8.12 7.48 10.63 7.58
LSTM

Sg 6.68 5.18 7.76 6.55 5.31 7.37

Table 5.1: Errors for base station change prediction with time series models

The comparison graphs of both sets with a 1-layer LSTM model are plotted in Figure 5.4

49 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

for the datasets 1 and 2. The set of features S, is called Set 1 and corresponds to the orange

line, while Sg is named Set 2 and is seen with the green line.

ext change (s)

Time before the n

0 100 200 300 400
time (s)

500

100 200

300 400 500 600
time (s)

Figure 5.4: Prediction graphs using deep RNN for both sets on dataset 1 and 2

For the two datasets, the predictions from the models assiociated with Sg (in green) are

visibly closer to the true values. Indeed, the orange line presents a big gap with the red

one, especially for the dataset 2 whose graph is on the right.

Dataset 1 Dataset 2 Dataset 3
RNN 7.11 5.20 7.76
1 layer
LSTM 6.68 5.18 7.76
RNN 7.25 5.28 7.67
Deep model
LSTM 6.55 5.31 7.37

Table 5.2: Comparison between RNN and LSTM for base station change prediction

The models with the more pertinent set will be used for the next comparisons, including

between RNN and LSTM algorithms that can be seen in Table 5.2. The errors are very

close between the models using RNN and LSTM for every comparison. The biggest dif-

ference is seen on dataset 1, for which the LSTM models have errors of approximatevely

0.5s lower than with RNN. Overall, the LSTM models are performing slightly better.

For the final comparison between the 1-layer and deep LSTM models, the errors of the

models are expressed with three different error metrics (MAE, MAE 60 and MAE 30) to

have better insights on the performances. The combined used of these three error metrics

enables to have an estimation of the global error with MAE and a view on the errors on

50

doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

smallest data with MAE 60 and MAE 30. The errors in seconds are gathered-in Table 5.3.

Dataset 1 Dataset 2 Dataset 3
1-layer 13.69 31.59 9.54
MAE

Deep 12.87 30.02 9.24

1-layer 9.67 12.72 9.53
MAE 60

Deep 9.34 11.04 9.15

1-layer 6.68 5.18 7.76
MAE 30

Deep 6.55 5.31 7.37

Table 5.3: Comparison between 1-layer and deep LSTM for base station chage prediction

Except when it is expressed with MAE 30 on dataset 2, the error is always higher with

the 1-layer model. Even if the gaps are not wide, they are consistently in favor of the

deep model and are approximatevely the same for the three datasets. This manifests the

reliability of both model and the constant superiority of the deeper model. The graph

of Figure 5.5 shows how close the predictions from both models are for the dataset 1.

Having smaller errors calculated with all three error metrics MAE, MAE 60 and MAE 30

demonstrates the better performance of the deep model on all levels, including on every

predictions aggregated on the testing sets and on more important values.

=
o
o

Time before the next change (s)

80

60

401

201

LSTM
—— Deep LSTM
—— True value

200

time (s)

400

500

Figure 5.5: Comparison graphs between 1-layer and deep LSTM on dataset 1

51

doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

5.1.2 Conclusion

As seen in the several comparison made for the prediction of the change of base sta-
tion with time series model, the set Sg, that contains fewer features, should be use. Besides,
the use of LSTM cells has shown better results that simple RNN ones. Finally, a deeper

model proved to be beneficial for the performance.

The predictions from the chosen model on the three datasets are plotted in Figure 5.6.
For all the datasets, the predictions are following the same evolution than the true values.
Notably, the lower tips are often within the error margin, meaning that the moments of the
change are succesfully predicted. The time before the next change of base station is well

forecasted and the model gives satisfactoy results on every dataset.

—— Predicted value
60 5s error margin
— True value

401

Time before the change (s)
w
8

0 100 200 300 400 500
time (s)

—— Predicted value
55 error margin
— True value

50

40

30

20

Time before the change (s)

—— Predicted value
0 55 error margin
—— True value

0 100 200 300 400 500 0 50 100 150 200 250 300
time (s) time (s)

Figure 5.6: Graphs of base station change prediction for all datasets, with Deep LSTM

Finally, the result from this time series model is compared to the results obtained before
with a simple NN model. Table 5.4 is used for this final comparison. The errors from the
two models are expressed in seconds with MAE, MAE 60 and MAE 30. For dataset 3,
the NN model performed better, but the gap is smaller than a second for each error metric.
The time series model outperformed the simple NN one for the two others, with a MAE

more than two times lower. It can be concluded that LSTM should be prioritized.

52 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

Dataset 1 Dataset 2 Dataset 3
NN 25.8 82.2 8.50
MAE

LSTM 12.87 30.02 9.24

NN 8.12 12.0 8.50
MAE 60

LSTM 9.34 11.04 9.15

NN 6.77 5.50 6.71
MAE 30

LSTM 6.55 5.31 7.37

Table 5.4: Comparison of NN and deep LSTM models for base station change prediction

5.2 Latency

5.2.1 Recurrent Neural Networks

The experiments include the study of two sets of features: S9 and S1o. These two sets
are very different as S9 countains seven features and S is only composed of the latency

feature. MAE will be used as the error metric.

One of the aims of the study is to make predictions a few seconds ahead. ?,,.4 should
not be too small to fulfill this goal and have a real impact. On the contrary, the value
should not be too big to keep a feasible and meaningful model. Therefore, I arbitrarily
chose 7,4 = 10s after testing a few values. Similarly to the base station part, the value of
Isrep 18 defined by investigating its influence on the error. The graphs of the RNN models
depicted in Figure 5.7 are sufficient to draw conclusions.

For the first set of features Sg (in orange), the error is decreasing when 7., increases until
tsiep = 13s. Then, the value is increasing and seems to reach a stable value. The value
allowing the lowest error is retained, so 7y, = 13s in this case. Regarding the set S (in
blue), the value is raising before decreasing and converging towards a minimum, which
is obtained from fy,., = 22s. Therefore, this value is taken for the model using this set.
It can be observed that the second set, that only includes one feature, works better with
a bigger ., than the other set, composed of multiple features. Taking a large value of

fsiep increases the amount of information, as each feature is considered at each time step.

53 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

However, having multiple features can bring too much information and be detrimental to

the model’s performance, leading to the observed results.

180 A
—— 1 feature

160 7 features

140

MAE (in ms)
e
()] [e:] o N
o o o o
~

N
o

e

0 5 10 15 20 25 30 35
t step

N
o
L

Figure 5.7: MAE evolution with varying #., values with both sets for latency prediction

The first comparison is made between the two sets of features. For each case, the smallest
error between the models using the two sets is highlighted in green. Table 5.5 is gathering
the errors (in ms) of each model using H = 1 hidden layer. For the deeper models, i.e.

when H > 1 hidden layer, the results are shown on Table 5.6.

Dataset 1 Dataset 2 Dataset 3
AYS 12.2 214 14.5
RNN
S1o0 10.5 92.1 14.1
So 492 50.4 14.1
LSTM
S10 46.5 9.49 14.4

Table 5.5: Errors for models using one hidden layer for latency prediction

Dataset 1 Dataset 2 Dataset 3
So 68.2 147 15.0
RNN
S10 11.1 32.9 14.0
So 47.2 80.2 14.3
LSTM
S1o 58.5 9.94 14.4

Table 5.6: Table gathering the errors for models using several hidden layers

Out of the 12 comparisons, the model using the set S1¢ gives the best result 9 times. For the

54 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

dataset 2, the gap between the two sets is big. Indeed, the set S1¢ has errors from 2 times to
8 times smaller than the models using the other set. That gap is also noticeable for-dataset
1, with the deep RNN models, for which this set is more than 6 times more.efficient. This
difference can be seen in the Figure 5.8 that gathers the graphs of the prediction from the
models using RNN with both sets. In this Figure, Set 1 (in orange) refers to the model

using S9 and Set 2 (in green) is for the model with Syy.

—6501 Set 1

— Set2

—— True value
—700

|
~
u
o

Latency (ms)

—800 A

—850 1

=900 1

0 100 200 300 400 500
time (s)

Figure 5.8: Graphs of latency prediction with deep RNN for both sets on dataset 1

The predictions in green are very close to the true values whereas the model using the set S
produces predictions far from the target and results in a MAE of 147ms. Therefore, using
the set S1g is a better solution as it gives smaller errors. In the following comparisons,
only the results obtained with this set will be taken into account. The two algorithms can

be compared and their errors (in ms) are gathered in Table 5.7.

Dataset 1 Dataset 2 Dataset 3
RNN 10.5 92.1 14.1
1 layer
LSTM 46.5 9.49 14.4
RNN 11.1 32.9 14.0
Deep model
LSTM 58.5 9.94 14.4

Table 5.7: Comparison of RNN and LSTM for latency prediction

For the dataset 3, the results are very close between the models using RNN and LSTM
(only 0.3ms and 0.4ms difference respectively for the 1 layer and deep models). For the

dataset 1, RNN has better results, whereas LSTM performs better on dataset 2. Deep RNN

55 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

has small errors for datasets 1 and 3, and achieved satisfactory accuracy on dataset 2. Its
error is only three times higher than LSTM for dataset 2, while being more than five times

lower on dataset 1.

As regards the comparison between the 1-layer and deep models of the RNN algorithm,
they give similar results for the datasets 1 and 3. However, the error is almost three times
lower when using a deeper model on dataset 2. This comparison is illustrated with the

graphs of Figure 5.9.

800 4 Simple RNN
—— Deep RNN

—— True value
700 A

600 -

%
=}
S}

Latency (ms)

N
1<)
o

w
=3
)

NSV VA

SENSS eI e T

N
o
S

100

0 100 200 300 400 500 600
time (s)

Figure 5.9: Graph of latency prediction with 1-layer and deep RNN on dataset 2

The deeper model’s predictions are noticeably closer to the actual values. Therefore, the
best time-series model for the prediction of the latency appears to be a Deep RNN algo-
rithm, using the set Sy¢ of feature. With this configuration, the errors of the three datasets
are respectively 11.1ms, 32.9ms and 14.0m s, and represents 0.7%, 1.8% and 1.9% of their

range.

—650

—— Predicted value
20ms error margin
—— True value

—700

=750 A

Latency (ms)

—800

—850 1

=900 -

time (s)

Figure 5.10: Graph of latency prediction with Deep RNN and S;¢ on dataset 1

56 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

We can visualize the predictions of the chosen models for dataset 1 in Figure 5.10. The
true values are almost always staying in the error margin. The results and observations are
similar for the other datasets. Overall, the model is giving satisfactory results with-reliable

predictions.

5.2.2 ARIMA

ARIMA stands for AutoRegressive Integrated Moving Average. Itis a model that pre-
dicts future values of time series, based on some statistical aspects of the observed data.
This is a generalization of the ARMA model for non-stationary models, in the sense of the
mean, i.e. when the mean of the data is changing over time. This characteristic is observed
in the latency data, such as in dataset 2, where we saw that the means of training and test-
ing sets are completely different. The ARIMA model addresses this non-stationarity by

incorporating differencing operations to remove the changing mean.

This method is taking a single feature and forecast its future values on a chosen time, at
each time step. Therefore, the set Sio that corresponds to the latency feature (n°10) is
used and the model will predict the values for the next ten seconds. Only the prediction of
the 10th second will be retained to match the prediction gap that was taken for the RNN

models and ensure a reliable comparison between these two algorithms.

Original Series and 1st Order Differencing
1500
1000 1

0 500 1000 1500 2000 2500 3000

1000 -

500 4 ‘

=
i_
18

9

F

: 3
-3

—500 4

0 500 1000 1500 2000 2500 3000

Figure 5.11: Graphs of the original latency series and 1*' order differencing for dataset 2

This algorithm requires to choose the values of three parameters: p, d and g. The process

for dataset 2 will be taken as an example for the determination of these parameters values.

57 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

The order of differencing d has to be defined. Figure 5.11 shows that the series is not
stationary as the mean is changing over time. It can be oberserved that the mean is not

changing anymore in the Ist order differencing graph. Therefore, d = 1 can be taken.
The next step is to find p, the order for the autoregressive model, by inspecting the partial
autocorrelation graph on Figure 5.12, which measures the correlation between the time-

series data and a certain lag. The most significant lag is the first one. Thus, we have p = 1.

Partial Autocorrelation

0.251

L ——

-0.251
—0.50 1

—0.75 A

-1.00

0 5 10 15 20 25 30 35

Figure 5.12: Partial autocorrelation graph of dataset 2

The number of lagged forecast errors in the prediction equation corresponds to the number

of lags crossing the threshold on the autocorrelation graph of Figure 5.13. Here, g = 3.

Autocorrelation
1.00

0.75

0.25

0.00 ll,. *ovetevetresrevteveoeecseyie
-0.25
-0.50

-0.75

-1.00

0 5 10 15 20 25 30 35

Figure 5.13: Autocorrelation graph of dataset 2

These operations are made on two of the three datasets to select the best parameters for

the testing part and the chosen model is tested on all three testing sets.

58 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

The model presents a Mean Absolute Error of 8.92ms on dataset 1, 11.47ms-on dataset 2

and 17.31ms on dataset 3. These three errors are low and can translate a good performance

of the model.

—650 4

—— Predicted value
20ms error margin
—— True value

—700 4

=750

Latency (ms)

—800 1

—850

—900

0 100 200 300 400 500
time (s)

1400 4 —— Predicted value
20ms error margin
—— True value

1200 A

1000

Latency (ms)

PSP Lohusccsad b g) s i sdoa

[100 200 300 400 500 600
time (s)

Figure 5.14: Graphs of latency prediction with ARIMA on datasets 1 and 2

The graphs of the actual values and predictions for the datasets 1 and 2 can be seen on Fig-
ure 5.14. The same analysis can be made for both datasets. As expected with the low errors
observed, the true values are almost always within the error margin of the predictions. The

model is very reliable for these two datasets.

—— Predicted value
20ms error margin
—— True value

2600 -

2500 4

24004

23004

Latency (ms)

22004

2100+

2000

0 50 100 150 200
time (s)

Figure 5.15: Graph of the latency prediction with ARIMA on dataset 3

The results obtained on the third dataset are plotted on Figure 5.15. Although the error

seemed to be good, the vizualisation of the predictions enables to see that the model pre-

59 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

dicted a constant value throughout the testing set. This result is not reliable and should be
avoided.

As mentionned before, the ARIMA algorithm forecasts future values of a time series at
each step of a specified timeframe. In this application, predictions were generated on the
next 10 seconds following the input, but only the final prediction for each input in the
testing set is retained. The evolution of the predictions on this 10 seconds period for each
sample is depicted in Figure 5.16. The first predictions exhibit a significant variability
for the different samples. However the predictions are converging towards the same value
around 2050ms for all samples. For all instances, the predictions become constant after
the 8th step. Therefore, the ARIMA model produced constant and unchanging predictions

on dataset 3 for the forecasting of the latency 10 seconds ahead.

2300 4

2250 4

2200 4

2150 4

Latency (ms)

2100 4

20504

Step in the prediction (in s)

Figure 5.16: Evolution of the latency predictions with ARIMA on the 10 seconds period

5.2.3 Conclusion

Dataset 1 Dataset 2 Dataset 3
RNN 10.46 23.67 14.13
ARIMA 8.92 11.47 17.31

Table 5.8: Comparison between RNN and ARIMA for latency prediction

The results from the two retained algorithms, the Deep RNN and ARIMA, are ex-
pressed in ms in Table 5.8 and the lowest error for each dataset is highlighted in green. The

ARIMA model seems to have better results, as its resulting errors are significantly lower

60 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

for two datasets. However, the analysis of the predictions evolution on dataset 3-over the
10 seconds timeframe puts forward an important issue. The predictions are consistently
converging towards a constant value and this makes the model unreliable.

Therefore, the best model to predict the latency with a 10 seconds delay is the use of a
Deep Recurrent Neural Networks algorithm, the set of feature S;9 and the Mean Absolute

Error as the error metric.

The chosen time series model can not be directly compared to the model previously studied
with simple Neural Networks algorithm, as the latest did not take the 10 seconds delay for
the prediction. Its use served as a foundation for insights and understanding to develop the
time series model. It can still be noted that the time series model has significantly lower
errors for two of the three datasets although the NN model had a simpler task by dismissing
the forecasting delay and predicting the latency at t+1. The time series approach resulted
in a reliable model that outperforms the first approach while adding complexity in the

objective.

5.3 Packet Loss

The study proposed new solutions to enhance models performance with datasets hav-
ing an overwhelming majority of zero. The two best methods with Neural Networks al-
gorithm appeared to be the use of NZ MAE as the error metric and the prediction of the
feature n°17 designed for this application. They will be tested on the Recurrent Neural
Networks algorithm and their results will show if the same effects are percieved. Simi-
larly to the latency prediction, the problem is complexified by adding a 10 seconds delay

for the prediction.

5.3.1 Results

First, a regression RNN algorithm taking the set S7 to predict the feature n°11, which

is the actual number of packet loss, is tested. NZ MAE is used to build the model. The

61 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

use of this error metric during the Cross Validation phase to pick the model’s parameters

values did not have a significant impact on the model’s performance.

104

Packet Loss

—— Prediction
—— True value

T
300

time (s)

T T
400 500

Figure 5.17: Graphs of packet loss prediction with RNN using NZ MAE for dataset 1

Indeed, as illustrated in Figure 5.17 for the dataset 1, all the resulting predictions are very

low for the three datasets. This method did not have the desired effect and failed to prevent

the selection of a model always predicting zero packet loss.

Packet Loss

osl

—— Prediction
— True value
Enlarged peaks

[100 200

300

time (s)

— Prediction
30 — Tiue value
Enlarged peaks

LA

5

4

3

400

500

—— Prediction
— True value
Enlarged peaks

J\V/Jh\‘ﬁ |l

0 100 200 300 400 500 600
time (s)

0 50

100 150 200
time (s)

Figure 5.18: Graphs of enlarged loss prediction with RNN for the three datasets

The other tested model is also built with the set of features S7, but the output is the fea-

ture n°17 (the enlarged loss) and the error metric used to evaluate the model is the Mean

Absolute Error. Figure 5.18 displays the graphs of the predictions and true values for the

three datasets.

62

doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

This method had more impact than the previous one, with more varying values. Indeed,
four distinct bumps can be identified, including two for the actual packet 10ss occurences.
The model also mainly produced non-zero predictions with the other datasets, with half of
their packet losses correctly detected. It should be noted that the values of the predictions
are relatively low and may not accurately reflect the actual trend of the packet loss evolution

in the datasets. The identified bumps are low and could be missed in real application.

5.3.2 Conclusion

As seen with the experiments, the use of NZ MAE did not lead to a reliable model. In-
deed, all the resulting predictions are approximatevely zero. The extra complexity caused
by the 10 seconds delay added between the input and the prediction can be a reason of this
difference of performance. The exact number of packet loss is a very local event, that is ex-
tremely difficult to predict with this 10s delay. Besides, the time series input format, where
each feature is considered for every time step, may also exmplain this discrepancy, as the

increased amount of information can have a detrimental effect on the model’s performance.

As discussed earlier, the model that was used for the prediction of the “enlarged loss”
feature demonstrated better performance. However, the positive effect is less important
than when it was applied with simple Neural Networks. Similarly to the first method, this
difference can be explained by the 10 seconds delay in the prediction and the extra infor-

mation brought by the time series input format.

Therefore, the simple Neural Networks algorithm should be used for this application.
Combined with the use of the error metric NZ MAE or the prediction of the feature “en-
larged loss™, it appears to be a reliable solution to effectively forecast the packet loss with
a large majority of null values in the datasets. When this majority is more reasonable, the

NN model predicting the packet loss occurence is very efficient.

63 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

Chapter 6. Test of the selected models

As explained in the methodology section, the models that have been chosen with the

three initial datasets are tested on 20 additional datasets.

6.1 Base Station

From the study, the best model to predict the base station changes is a Deep LSTM
algorithm with the set of features Sg. As explained before, this model is trained on one
of the new datasets and tested on the others that are unknown data. The predictions are

compared to the actual values with three error metrics: MAE, MAE60 and MAE30, and

the results are gathered in Figure 6.1.

= MAE (s)

== == MAE 30 (s) % of range

e —— L =

d1 d2 d3 d4 d5 dé d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18 d19 d20

Figure 6.1: Graphs of the base station change prediction errors and their corresponding
percentage of the range for the new datasets

The red lines correspond to the error metrics results calculated with MAE (continu-
ous line) and MAE 30 (discontinuous line) and expressed in seconds. The green columns

are indicating the percentage of the range the error corresponds to. We observe that both

64 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

metrics give consistent values for every dataset. Indeed, the results are very similar from
one dataset to another, while they are completely independent. This means that the model

gives consistent results on unknown datasets.

Table 6.1 is comparing the average results of the testing sets to the errors obtained for the
three datasets of the study. It can be observed that the MAE from the testing datasets is
lower than from datasets 1 and 2. However, the range of the values is wider for these two
datasets, resulting in a lower percentage error. The percentage obtained with the testing
datasets is close to the value from dataset 3. Therefore, it can be concluded that the model

showed good performance on the unknown data.

New datasets Dataset 1 Dataset 2 Dataset 3
MAE 12.14 12.87 30.02 9.24
% of the range 17.98% 5.23% 12.20% 16.21%

Table 6.1: Comparison of testing and initial datasets results for base station changes pre-
diction

6.2 Latency

Regarding the prediction of the latency, the selected model is a Deep RNN algorithm
with the set of features $10. This model is used to forecast the latency 10 seconds into the

future on the 20 new datasets, and the results are plotted on the graph of Figure 6.2.

== MAE (ms) % of range

16+ 14

dl d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18 d19 d20

Figure 6.2: Graphs of latency prediction errors and their corresponding percentage of the
range for the new datasets

65 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

The red line gives the MAE in ms for each dataset, with the corresponding.scale on the
left side. The green columns are showing the percentage of the range that takes the error.
Their values can be read on the right side. In this case, the MAE range is wider, from 2ms
to 17ms. However, for every testing dataset, this error represents a very small percentage
of the range. Indeed, the error is greater than 2% of the range for only 4 datasets out of 20
and just one is higher than 3%. This means that the model gives very precise predictions

on unknown datasets.

New datasets Dataset 1 Dataset 2 Dataset 3
MAE 5.59 11.1 32.9 14.0
% of the range 1.52% 0.67% 1.82% 1.91%

Table 6.2: Latency prediction testing results comparison with the initial datasets

Table 6.2 is comparing the results between the testing datasets and the three previous
datasets. The MAE values are expressed in ms. The lowest MAE is achieved on the testing
datasets. However, when this error is compared to the range of the values, the results are
very similar than with the three initial datasets. It can be concluded that the chosen model

performs well and can be generalized to unknown data.

6.3 Packet Loss

For datasets that have a reasonable amount of packet loss occurences, the study se-
lected a Neural Network algorithm with the set S1;. Similarly to the other parameters, the
model is trained on one dataset and tested on the 20 others. This will help to conclude on
the generalization ability of the model and his performance on unknown data. The results
are shown in Figure 6.3. The red line indicates the F score. Across all datasets, this met-
ric gives similar results and is consistently good. Indeed, the value is higher than 0.75 for

the majority of the datasets.

The green columns are representing the True Positive Rate (TPR), that is defined such as:

TPR = lptffn with ¢p the number of true positive and fn the number of false negative.

66 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

This metric can be seen as the probability of packet loss detection. It is the number of
packet loss occurrences correctly predicted divided by the total number of packetloss oc-
currences. This value is higher than 75% for more than half of the datasets, whereas there
are at least 50 packet losses only 5% of the time. It means that the model can successfully

detect packet loss on unknown data.

Finally, the yellow columns are there for the False Discovery Rate (FDR), expressed with

this formula: FDR = fbf ftp with fp the number of false positive and ¢p the number of

true positive.

This represents the proportion of the positive predictions that are false. It is the number
of false predicted packet loss occurrences divided by the total number of predicted packet
loss occurrences. This rate is lower than 25% for 18 of the 20 datasets and even lower than

15% for more than half of the experiments.

TPR FDR = F1 score

1,00 +

0,75 —

0,50 +

0,25 +—

000 — - —L L L L
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 dit d12 d13 d14 di5 d16 d17 d18 d19 d20

Figure 6.3: Graphs of the packet loss prediction errors for the new datasets

The average values for these three metrics across the 20 testing datasets are gathered in
Table 6.3. The F; score and TPR are high, whereas the FDR is low. Therefore, the packet

loss predictions are reliable on unkown data.

F| score TPR FDR
0.792 75.8% 15.1%

Table 6.3: Average error metrics across the 20 datasets for the packet loss prediction

67 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

Chapter 7. Conclusions and Future

Directions

To conclude, this study focused on the application of Machine Learning techniques
to predict three telecommunication parameters, namely base station changes, the latency
of the signal, and the number of packet loss, in the case of metro passengers itineraries.
This work provided a comparison of various machine learning models to identify the most
effective ones for real-time predictions and the selected models have good results on un-
known data. Moreover, it explored the prediction of these parameters a few seconds into

the future, which provides useful information in real world application.

This research developed error metrics to meet the specific needs of this application. The
models using it consistently outperformed the others, proving that these error metrics facil-
itated the selection of the most reliable models. Besides, novel approaches were proposed
for predicting the base station changes, by taking the time before the next change, and es-
timating the number of packet losses, by considering a modified version of this parameter.
This last approach is a novel solution to address the challenges posed by datasets predom-

inantly composed of zero values.

It is important to acknowledge the limitations of this work. Firstly, even if the selection
of the models was driven by the specific requirements of the parameters, other Machine
Learning algorithms could have been included in the study and could be considered in

future research to complete this analysis. Secondly, the new error metric MAE a should

68 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

be tested on other applications to guarantee its influence on Machine Learning models
performance. Finally, the proposed solutions to address the issue of dealing with-99% of
zeros in the data should be tested on other datasets and different contexts to validate the

promising performance they showed.

Overall, this work has advanced the understanding of machine learning techniques in the
context of predicting telecommunication parameters for passenger metro itineraries. By
accurately forecasting the three parameters, and a few seconds in the future for two of
them, the proposed models can help in the phone settings selection to optimize network
performance and enhance the user experience. The findings and suggested solutions can

serve as a foundation for further research in this field.

69 doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

[1]

Bibliography

Anna Giannakou, Dipankar Dwivedi and Sean Peisert, “A machine learning
approach for packet loss prediction in science flows,” Future Generation
Computer Systems, vol. 102, pp. 190-197, 2020. [Online]. Available: https:
/Iwww .sciencedirect.com/science/article/pii/S0167739X19305850

Dr. Kalpana Saha (Roy) and Tune Ghosh, “Study of packet loss prediction using
machine learning,” International Journal of Mobile Communication Networking,

vol. 11, pp. 1-11, 2020.

Amir F. Atiya, Sung Goo Yoo, Kil To Chong and Hyongsuk Kim, “Packet
loss rate prediction using the sparse basis prediction model,” IEEE Transactions
on Neural Networks, vol. 18, no. 3, pp. 950-954, 2007. [Online]. Available:

https://ieeexplore.ieee.org/document/4182366

Hooman Homayounfard, ‘“Packet-loss prediction model based on historical symbolic
time-series forecasting,” Ph.D. dissertation, University of Techology of Sidney,

2013. [Online]. Available: http://hdl.handle.net/10453/24097

Chun You and Kavitha Chandra, “Time series models for internet data traffic,” in
Proceedings 24th Conference on Local Computer Networks. LCN’99, 1999, pp.
164—171. [Online]. Available: https://ieeexplore.ieee.org/document/802013

Rishabh Chauhan and Sunil Kumar, “Packet loss prediction using artificial
intelligence unified with big data analytics, internet of things and cloud

computing technologies,” in 2021 5th International Conference on Information

70 doi: 10.6342/NTU202304005

https://www.sciencedirect.com/science/article/pii/S0167739X19305850
https://www.sciencedirect.com/science/article/pii/S0167739X19305850
https://ieeexplore.ieee.org/document/4182366
http://hdl.handle.net/10453/24097
https://ieeexplore.ieee.org/document/802013
https://doi.org/10.6342/NTU202304005

Systems and Computer Networks (ISCON), 2021, pp. 01-06. [Online]. Available:

https://ieeexplore.ieee.org/document/9702517

[7] Ali Safari Khatouni, Francesca Soro and Danilo Giordano, “A machine-learning
application for latency prediction in operational 4g networks,” in 2019 IFIP/IEEE
Symposium on Integrated Network and Service Management (IM), 2019, pp. 71-74.

[Online]. Available: https://ieeexplore.ieee.org/document/8717807

[8] Jefferson Silva, Marcio Kreutz, Monica Pereira and Marjory Da Costa-Abreu,
“An investigation of latency prediction for noc-based communication architectures
using machine learning techniques,” Journal of Supercomputing, pp. 1-19, 2019.

[Online]. Available: http://shura.shu.ac.uk/25392/

[9] Robert Beverly, Karen Sollins and Arthur Berger, “Svm learning of ip adress
strucure for latency prediction,” in Proceedings of the 2006 SIGCOMM Workshop
on Mining Network Data, ser. MineNet 06, 2006, pp. 299-304. [Online]. Available:

https://doi.org/10.1145/1162678.1162682

[10] Bruno Astuto Arouche Nunes, Kerry Veenstra, William Ballenthin, Stephanie
Lukin and Katia Obraczka, “A machine learning framework for tcp round-trip
time estimation,” EURASIP Journal on Wireless Communications and Networking,
no. 47, 2014. [Online]. Available: https://jwcn-eurasipjournals.springeropen.com/

articles/10.1186/1687-1499-2014-47

[11] Desta Haileselassie Hagos, Paal E. Engelstad, Anis Yazidi and Carsten Griwodz, “A
deep learning approach to dynamic passive rtt prediction model for tcp,” in 2019
IEEE 38th International Performance Computing and Communications Conference
(IPCCC), 2019, pp. 1-10. [Online]. Available: https://ieeexplore.ieee.org/docume
nt/8958727

[12] Salman Memon and Muthucumaru Maheswaran, “Using machine learning for

handover optimization in vehicular fog computing,” in Proceedings of the 34th

71 doi: 10.6342/NTU202304005

https://ieeexplore.ieee.org/document/9702517
https://ieeexplore.ieee.org/document/8717807
http://shura.shu.ac.uk/25392/
https://doi.org/10.1145/1162678.1162682
https://jwcn-eurasipjournals.springeropen.com/articles/10.1186/1687-1499-2014-47
https://jwcn-eurasipjournals.springeropen.com/articles/10.1186/1687-1499-2014-47
https://ieeexplore.ieee.org/document/8958727
https://ieeexplore.ieee.org/document/8958727
https://doi.org/10.6342/NTU202304005

[13]

[14]

[15]

[16]

[17]

ACM/SIGAPP Symposium on Applied Computing, ser. SAC *19, 2019,.p. 182-190.

[Online]. Available: https://doi.org/10.1145/3297280.3297300

Hadeel Abdah, Joao Paulo Barraca and Rui L. Aguiar, “Handover prediction
integrated with service migration in 5g systems,” in ICC 2020 - 2020 IEEE
International Conference on Communications (ICC), 2020, pp. 1-7. [Online].

Available: https://ieeexplore.ieee.org/document/9149426

Le Luong Vy, Li-Ping Tung and Bao-Shuh Paul Lin, “Big data and machine
learning driven handover management and forecasting,” in 2017 IEEE Conference
on Standards for Communications and Networking (CSCN), 2017, pp. 214-219.

[Online]. Available: https://ieeexplore.ieee.org/document/8088624

James A. Green, “Too many zeros and/or highly skewed? a tutorial on modelling
health behaviour as count data with poisson and negative binomial regression,”
Health psychology and behavioral medicine 2021, vol. 9, no. 1, pp. 436455, 2021.
[Online]. Available: https://www.tandfonline.com/doi/full/10.1080/21642850.2021
1920416

Rob J. Hyndman and Anne B. Koehler, “Another look at measures of forecast
accuracy,”’ International Journal of Forecasting, vol. 22, no. 4, pp. 679-688, 2006.
[Online]. Available: https://doi.org/10.1016/j.ijforecast.2006.03.001

Alexei Botchkarev, “A new typology design of performance metrics to measure
errors in machine learning regression algorithms,” Interdisciplinary Journal of
Information, Knowledge, and Management, vol. 14, pp. 45-79, 2019. [Online].
Available: https://doi.org/10.28945/4184

72 doi: 10.6342/NTU202304005

https://doi.org/10.1145/3297280.3297300
https://ieeexplore.ieee.org/document/9149426
https://ieeexplore.ieee.org/document/8088624
https://www.tandfonline.com/doi/full/10.1080/21642850.2021.1920416
https://www.tandfonline.com/doi/full/10.1080/21642850.2021.1920416
https://doi.org/10.1016/j.ijforecast.2006.03.001
https://doi.org/10.28945/4184
https://doi.org/10.6342/NTU202304005

Appendix A: PEEIZAR —

Dataset 1 Dataset 2 Dataset 3
MAE 26.4 41.9 9.72
NN MAE 60 7.95 10.3 9.72
MAE 30 6.53 6.71 7.75
MAE
MAE 28.8 66.4 10.8
DNN | MAE 60 104 11.9 10.8
MAE 30 7.60 6.38 7.74
MAE 26.7 68.6 9.27
NN MAE 60 9.06 12.7 9.07
MAE 30 6.61 7.26 6.85
MAE 60
MAE 24.8 82.3 8.50
DNN | MAE 60 7.24 12.7 8.50
MAE 30 6.03 9.93 6.27
MAE 26.4 419 9.72
NN MAE 60 7.95 10.3 9.72
MAE 30 6.53 6.71 7.75
MAE 30
MAE 24.8 479 9.86
DNN | MAE 60 7.70 10.9 9.80
MAE 30 5.99 5.31 7.70

Table A.1: Table gathering the errors from all the models tested to predict the time before
the next change of base station with NN, using S

73

doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

Appendix B: K &E4Z8 =

Dataset 1 Dataset 2 Dataset 3
MAE 37.1 62.6 8.50
NN MAE 60 15.9 11.5 8.50
MAE 30 8.00 6.45 6.73
MAE
MAE 26.2 64.1 9.49
DNN | MAE 60 9.52 14.4 9.49
MAE 30 6.94 7.66 7.66
MAE 374 62.2 8.49
NN MAE 60 16.2 11.6 8.49
MAE 30 8.20 6.54 6.72
MAE 60
MAE 25.8 82.2 8.50
DNN | MAE 60 8.12 12.0 8.50
MAE 30 6.77 5.50 6.71
MAE 34.1 72.0 8.35
NN MAE 60 16.9 12.5 8.34
MAE 30 10.2 7.15 6.65
MAE 30
MAE 26.0 77.4 10.3
DNN | MAE 60 8.25 124 10.3
MAE 30 6.93 5.92 7.01

Table B.1: Table gathering the errors from all the models tested to predict the time before
the next change of base station with NN, using S»

74

doi: 10.6342/NTU202304005

https://doi.org/10.6342/NTU202304005

	書名頁
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Related Works
	Contribution

	Methodology
	System Architecture
	Processing Workflow
	Data Collection
	Preprocessing
	Cross Validation
	Testing

	Error metrics
	Structure of the metrics
	Determining point distance
	Normalization
	Aggregation over a dataset
	Choice of error metrics

	Neural Network
	Change of base station
	Classification
	Regression
	Conclusion

	Latency
	Results
	Conclusion

	Packet Loss
	Classification
	Regression with loss
	Regression with enlarged loss
	Prediction with a new dataset
	Conclusion

	Time series models
	Base station
	Results
	Conclusion

	Latency
	Recurrent Neural Networks
	ARIMA
	Conclusion

	Packet Loss
	Results
	Conclusion

	Test of the selected models
	Base Station
	Latency
	Packet Loss

	Conclusions and Future Directions
	Bibliography
	Appendices

