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Abstract

Limited spectrum resources are usually the one of main topics covered in 5G or 6G
conferences. The process of designing the novel communication system to fit the new
regulation should be always concerned with the efficient usage of spectrum resources.
Lower peak side-lobe level/power, i.e., lower out-of-band emission (OoBE), is the key
point to achieving spectrum efficiency. The filter bank multicarrier (FBMC) transmission
technique has been investigated for years, and the spectrum performance of FBMC outper-
forms the performance of orthogonal frequency division multiplexing (OFDM), a domi-
nant transmission technique for broadband multicarrier communications in recent years.

Perhaps FBMC could replace OFDM as a new communication system in the future.

The filter design of FBMC has been researched for years, but there are still some
drawbacks in the designing process such as constraints about spectrum decay. In our
work, we propose a new method of designing the filter for the FBMC/OQAM system,

which efficiently suppresses the peak side-lobe level, but still considers the property of

v doi:10.6342/NTU202302942


http://dx.doi.org/10.6342/NTU202302942

near-perfect reconstruction. We would show the performance of the magnitude response

and bit error rate (BER) test in our simulation result.
Keywords: FBMC(filter bank multicarrier), OQAM(offset QAM), Filter Design, convex

optimization, SDR(semidefinite relaxation), PSL(peak side-lobe level), MSL(maximum

side-lobe level)
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Chapter 1 Introduction
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1.1 Introduction

Orthogonal Frequency division multiplexing (OFDM) is widely adopted because of
anumber of advantages that it offers, such as simply eliminating inter-symbol interference
(IST) through the use of a cyclic prefix, computational efficiency by using FFT techniques
to implement the modulation and demodulation functions, etc. [7] However, in certain
applications such as cognitive radios and uplink of multiuser multicarrier systems, where
a subset of subcarriers is allocated to each user OFDM may be an undesirable solution [£].
OFDM is a poor fit because the filters associated with its synthesized subcarrier signals
and analyzed subcarrier signals have relatively large side lobes, which will result in out-
of-band emission (OoBE) among the bands of different users. The above problems could
be greatly alleviated if the filters in the synthesis filter bank and analysis filter bank have
small sidelobes. This kind of system with diversely well-designed filters is called filter
bank multicarrier (FBMC), whose waveform is regarded as a strong candidate for 5G/
6G and other wireless systems to come. FBMC generates lower OoBE by using a non-
rectangular pulse and deals with ISI without relying on CP, which makes it more efficient

than OFDM.

The filter/waveform design associated with FBMC has been researched for years.
Compared with the rectangular filter used by OFDM, the length of filters used by FBMC
is usually long. The reason why FBMC uses a long filter can be regarded as improving
the behavior of magnitude response by more variables that we can control in the time
domain, i.e., FBMC uses more variables to suppress OoBE which is one of the drawbacks
of OFDM. In the past decades, there have been many research works on FBMC waveform

design [14, 17, 24, 26] that have some good properties. In the early research such as [24],
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the authors mathematically investigated the discrete time series of prolate filter thoroughly
and designed the filter by concern with maximizing in-band energy in order to suppress the
OoBE. In the later work [26], based on [24], the authors aimed to minimize the OoBE but
also consider the property of near-perfect reconstruction (NPR) which wasn’t considered
by previous works. In [17], the authors proposed a well-designed closed-form FBMC
prototype filter corresponding to different values of overlapping factor K, and this filter
was thoroughly investigated in [1]. Based on the design technique which is a simple
intuitive frequency sampling (FS) method, this filter is popular and still the major choice
of FBMC waveforms. In the recent work [14], the authors used convex optimization to
design the FBMC waveform, which also aimed to minimize OoBE and maintain NPR.
Furthermore, they take spectrum decay into account. With this concern, the spectrum
decays faster in the region of the stopband. We will show the details of them in Chapter

3.

Even though the FBMC waveform has been researched thoroughly in the past, some
aspects could still be improved. In particular, in order to minimize the OoBE interference
caused to an adjacent, narrowband user, it would be a good idea to minimize the peak
side-lobes (PSLs) of the magnitude response of the prototype filter within the out-of-band
regions, rather than minimizing just the total. However, all the previously reported works
mentioned in the previous paragraph have not explicitly considered the PSLs as the objec-
tive function in an optimization problem. This leads to a possibility that a better prototype
filter in terms of an even smaller PSL may exist. For this reason, we propose to minimize
all the PSLs in our optimization problem, which is the major aspect we want to improve.
In addition, the concern about spectrum decay of magnitude response of the waveform

is redundant, which would result in a relatively high maximum side-lobe level (MSL).
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That would cause interference to the neighbor communication system or different users.
By the way, the SIR of the prototype filters mentioned in the previous paragraph is great
enough to achieve NPR that we don’t need to enhance the SIR to be too high, which can

be observed in the numerical results in Chapter 5.

In this thesis, we propose a novel FBMC waveform design method that achieves a
smaller peak side lobe than all existing waveform designs in the literature. The purpose
is to minimize the peak side-lobe level (PSL) but also retain the property of near-perfect
reconstruction (NPR) for FBMC. We propose to use the semi-definite relaxation (SDR)
[19] to solve the primal problem by applying Dattorro Iterative Algorithm [4]. The rest of
the thesis is organized as follows. In Chapter 2, the FBMC-OQAM system model is in-
troduced. In Chapter 3, previous works on designing prototype filters for FBMC-OQAM
systems are first reviewed, followed by the formulation of the proposed optimization prob-
lem of the prototype filter that would meet the aforementioned requirements. In Chapter 4,
we introduce the proposed approach to solving the primal problem. In Chapter 5, numer-
ical simulations are conducted to give a fair comparison between the proposed prototype
filter and other popular choices mentioned in Chapter 3. Finally, Chapter 6 gives the

concluding remarks.

1.2 Notations

Matrices are denoted by upper case bold letters, and column vectors are denoted by
lower case bold letters. Superscripts (+)*, (-)~%, (-)T and (-)¥ denote conjugate, inverse,
transpose, and transpose-conjugate, respectively. Operators | - | and * denote absolute
value and 2D convolution respectively. Operators T M and | M denote the M-fold

4 doi:10.6342/NTU202302942
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expander and the M -fold decimator, respectively. Operator (a[n]|b[n]) = > a[n]b[n]

n=—0oo

denote the inner product of a[n] and b[n]. Operators [-] and |-| denote ceiling function
and floor function respectively. Operators ${-} and J{-} denote the real part operation
and the imaginary part operation respectively. The function X (z) denotes the z transform

ofx[n],ie., X(2) = . z[n]z7". We write z ~ CN (0, 02) to mean that x is a complex

Gaussian variable with zero mean and variance 2. We use E{-} to denote the expectation

value.
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Chapter 2 System Model
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In this chapter, we describe the FBMC system model. In Section 2.1, we briefly
describe the FBMC transceiver and specify the input/output relation by a block diagram. In
Section 2.2, we describe the FBMC system transmitter which contains OQAM modulation
and FBMC synthesis filter bank (SFB). In Section 2.3, we describe the FBMC system
receiver which contains FBMC analysis filter bank (AFB), subcarrier-wise equalizer, and
OQAM demodulation. The main references of the FBMC system model described here
include [7, 11]. The prototype filter design problem in the next chapter will be based on
the system model described in this chapter. The performance evaluation in terms of BER

will also be based on this chapter.

2.1 FBMC System Model

¢ [ b, b; N\ b, ) &
— > > > —>
NN > > > —
OQAM : SFB AFB : Equalizer : de-OQAM
— > > > —>
oM oM oM - cM cM
+ Transmitter :  Receiver —

Figure 2.1: Block diagram of FBMC-OQAM transceiver

Figure 2.1 shows the block diagram of an M -subcarrier FBMC-OQAM transceiver.
At the transmitter, we denote ¢; = [co; c1y -+ car—14)7 € CM as the complex QAM
symbol vector followed with OQAM processing. We denote ¢,,; as the complex QAM
symbol, where m is the subcarrier index, and [ is the time index at the symbol rate. We
denote b, = [bo; b1y -+ - bM_l,l]T € CM is as the complex OQAM symbol vector. We
use z[n| to denote the time domain transmitted signal generated by the sum of the output
signal from each subchannel of SFB. At the receiver, the received signal r[n] is obtained

7 doi:10.6342/NTU202302942
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by the sum of additive white Gaussian noise (AWGN) ¢[n] ~ CN(0,02) and the trans-
mitted signal z[n| passing through the linear time-invariant (LTI) channel H (z). After the
AFB, we denote b, = [50,1 5171 EM,U]T as the unestimated OQAM symbol vector.
Estimated OQAM symbol vector b; = [ZA)OJ IA)LZ o b v—1,)T would be obtained by apply-
ing equalizer on b;. Finally, estimated QAM symbol vector ¢;, = [Cog 1y -+ 1)’

could be obtained by OQAM demodulation processing.

2.2 FBMC-OQAM Transmitter

QAM symbol / OQAM Modulation \ SFB

Cou
Col ao bo,
§ 5 M
Re(:} 12 D é = Go(2)

i Jof 2 ol 7

D

Re(") 12

gy o 12 o o

> T Gi(2) >

>N
P
\J
A,

[SYY]

e =y b
.I_ll t2 manllxéMlt T% Cra(2)
!m(-}}—’i” o }_\f J

Figure 2.2: Block diagram of FBMC-OQAM transmitter

2.2.1 OQAM Modulation

Figure 2.2 shows the detail of the FBMC-OQAM transmitter. We denote M as the
number of FBMC subcarriers and assume that M is chosen as an even integer. At the

OQAM processing, QAM symbols {¢,,;}m—o,.. -1 are divided into the real part and

.....

the imaginary part for each subchannel, which could be regarded as two staggered pulse

8 doi:10.6342/NTU202302942


http://dx.doi.org/10.6342/NTU202302942

amplitude modulation (PAM) symbols {a, ; }m—o,... r—1. We can express a,, as

.....

Q21 = §R{Cm,l} (2 1)

Am,2041 = S{0171,l}~

Here, the phase shift term {(;,;}m—o.. a—1 is introduced to minimize the interference

,,,,,

between adjacent channel. The phase shift term ¢, ; is written as

. W +1, when (m +1) is even
(g = 2T = (2.2)

+3j, when (m + () is odd,

which makes sure that the neighboring subcarrier transmits the staggered part (real/imag-
inary part) of the QAM symbol. This is why the system is also called staggered multitone

(SMT) [?]. Finally, the output of OQAM modulation is expressed as

bt = GiGongs M= 0, M~ 1. (23)

2.2.2 Synthesis Filter Bank (SFB)

The filters designed for FBMC are usually longer than the rectangular filter used by
OFDM. Here, we introduce the overlapping factor K used to extend the length of the filter,
where K is an integer number greater than one. We can regard the extended filter as more

variables to modulate the magnitude response of the filter.

In the stage of SFB, we modulate the OQAM symbols by the upsampler with factor

M

< and the transmitting filters {G,,(2) }m=o

5 m—1. The impulse response of the m-th

77777

transmitting filter G,,(z) is expressed as

gm([n] = g[n]e?¥ ", n=0,1,.., KM —1, (2.4)

9 doi:10.6342/NTU202302942
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where g[n] denote real-valued prototype filter coefficients. Then, the transmitted signal is
generated by the sum of the signal from each subchannel, and the direct form in the time

domain can be expressed as

M-1
zln] = ) {lamiCmilyas = gmll]}

m=0
M-1 oo

= Z {[am,lgm,lh%gm[n —1]} (2.5)
m=0 [=—o0
M-1 oo

M. o m y

=3 D" amiGnagln —1- SO,

m=0 |[=—oc0

2.3 FBMC-OQAM Receiver

AFB Equalizer { 0QAM Demodulation Est'\lated QAM symbol
b b Uo Goy &

Go(2) t5

M | bar 11

A J
Figure 2.3: Block diagram of FBMC-OQAM receiver

2.3.1 Analysis Filter Bank (AFB)

Figure 2.3 shows the detail of FBMC-OQAM receiver with the LTI channel H (z).
At the receiver, received signal 7[n| passes through the stage of AFB which consists of

receiving filters {Gm(z)}mzo,l ,,,,, v—1 and downsampler with factor % The impulse re-

10 doi:10.6342/NTU202302942
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sponse of m-th receiving filter G, (z) is expressed as

by = > rllgmll - 2 — ). @7

2.3.2 Equalizer

In this section, we will introduce the equalizer used in the FBMC-OQAM system.
We adopt the finite impulse response (FIR) per-subchannel equalizers derived based on
the frequency sampling (FS) approach, which was originally introduced in [ 1 2], and thor-
oughly analyzed in [10]. The extended application for the MIMO FBMC-OQAM system

can be discovered in [11].

In practice, the communication system would suffer from the distortion caused by
the channel effect we want to eliminate. We now analyze the effect in the z-domain for
the FBMC-OQAM system. The unestimated OQAM symbol of m-th subchannel in the

z-domain can be expressed as

2 (2.8)

11 doi:10.6342/NTU202302942
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where we define the channel effect of m-th subchannel as

Hp(2) = {Gm(Z)H(Z)Gm(Z)} a3 (2.9)

GG (2)

vy
Throughout this thesis, we adopt the zero-forcing (ZF) scheme for the equalizer. The ideal

transfer function of the m-th subchannel equalizer is written as

Ep(z) = . (2.10)

Since we cannot take infinite points on the frequency domain to balance the channel effect,

we now define the finite target frequency points as

Qr,=[Qy O - Q| = i, i=[1,2,..,Ly,)" (2.11)

in order to approach the ideal transfer function (2.10), and the FIR transfer function of an

L.,-tap equalizer in subchannel m can be expressed as

Ep(2) = Wpo + W2 4+ wm,(Lw_l)z’(L”’l), (2.12)

where w,, ,, denote the weight for each tap. Based on (2.12), the weights can be reformu-

lated as a vector form which can be expressed as
W, = A e, (2.13)

where

Wi = [Wino Wit Wyp,-1)" € CH», (2.14)

12 doi:10.6342/NTU202302942
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A= € Crxlv  with al = |1 =% ... e—iu(Lu-1) (2.15)

and e, = [E,, () - B, (e w-1)]7, (2.16)

Finally, the estimated OQAM symbol in m-th subchannel is written as

Ly—1

l;m,l = Z wm,ni)m,l_n. (217)
n=0

2.3.3 OQAM Demodulation

-----

the real part operator and the operation of real to complex (R2C) demapping recovered

them to become the estimated QAM symbols {¢,, ; }m=o

-----

2.3.4 Near perfect reconstruction (NPR)

In all the communication systems, when we conduct them in the case of a perfect
channel condition (i.e., when H(z) = 1 and ¢[n| = 0), the perfect reconstruction (PR) is
the necessary property. If the PR is achieved, the the estimated staggered PAM symbol in

m-th subchannel can be written as

CALm’l = am, (218)

13 doi:10.6342/NTU202302942
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However, due to the extended prototype filter, even though we conduct the FBMC system
in the case of a perfect channel condition, the system still suffers from self-interference.

Then, the estimated staggered PAM symbol in m-th subchannel can be expressed as

(g = Qg + P (2.19)

forall [ € Z, and p,,; is denoted as the self-interference term in m-th subchannel. But if
we select the well-designed prototype filter g[n] [ 1, 14, 26], the self-interference term p,y, ;

would be small enough to be negligible.

14 doi:10.6342/NTU202302942
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Chapter 3 Previous Works & Problem

Formulation
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In this chapter, we briefly describe the previous works and problem formulation for
our work. In Section 3.1, we introduce several works of FBMC filter design in past
decades. Throughout these works, we can find out some constraints that could be mod-
ified. In Section 3.2, we propose a novel optimization problem to minimize all the PSL
but also achieve NPR that is mentioned in Section 2.3.4. The primal problem formulated
in this chapter will be reformulated to be an equivalent form in the next chapter, and we

would solve it by the proposed algorithm.

3.1 Previous Works

In this section, we briefly introduce some prototype filter options for the FBMC-
OQAM system. We don’t provide a full survey on these filters but to realize the method

they proposed.

3.1.1 Prolate Filter and Discrete Slepian Sequences

The Prolate filter [24] is a classic design that aims to maximize the energy within the
region of the passband. The optimization problem of this design can be expressed as

Yo, = argmax g T(w,)g
3.1)

subjectto g'g =1,
where the definition of g and I'(w;) can be found in (4.1) and (5.5), respectively. Since
I'(ws) is symmetric, a straightforward solution comes by recalling the Rayleigh-Ritz theo-
rem, which guarantees the solution of (3.1) to be the eigenvector associated with the largest

eigenvalues of I'(w;). By denoting g > 71 > -++ > vxp—1 > 0 as the eigenvalues of

16 doi:10.6342/NTU202302942
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I'(ws), and 9, as the eigenvector associated to 7;, the solution of (3.1) is

¢o,ws = [?/fo,m [O] %,mm e 1/10,w5 {KM - 1“T7 (32)

and +; also represents the normalized energy of +;[n]. Indeed, the vector set {1, , [n]}

is also known as the discrete Prolate spheroidal sequences (DPSS) or the Slepian series.

3.1.2 Optimal Finite Duration Pulse (OFDP)

As stated previously, the Prolate design is optimal in terms of minimizing the energy
outside the passband. However, near-perfect reconstruction (NPR) requirements are not
taken into account in this design. From this perspective, the OFDP deploys the Slepian
series to provide a filter design with low OoB emission and a good symbol reconstruction

capability. The OFDP can be written as

gl = 3 it In). (33)

where the coefficients as; can be found in [25, tab. I].

3.1.3 PHYDYAS/Mirabbasi-Martin filter

To ensure fast spectrum decay at the region of stopband, the Mirabbasi-Martin pro-
totype filter [1 7] focuses on minimizing the discontinuity in their boundaries while main-
taining good reconstruction features for multicarrier applications and ensuring a smooth
pulse variation. This design uses the frequency sampling (FS) technique, where the fil-

ter weights are actually samples of the frequency response of the prototype filter. The
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Mirabbasi-Martin prototype filter can be written as the following discrete low-pass filter

K1 ,
ko+2 > kicos(#n), 0<n<L,—1

g[n] = =1 : (3.4)
0, otherwise

-----

K—1
normalized factor is &,y = \/ KM(1+2 > kf) in order to make sure that the power of
i=1

g[n] to be unity. By the way, when the overlapping factor X' = 4, in many works [21, 27],

authors refer to this filter as the PHYDYAS filter.

3.1.4 Kobayashi’s works - via convex optimization

More recently, based on the research of R. T. Kobayashi and T. Abrao [14], a proto-
type filter design methodology based on convex optimization was proposed. Through this
design, they aim to minimize the OoB energy emission, while providing a high-quality
symbol reconstruction and maintaining a fast spectrum decay. In order to model the pro-

totype filter, they define the matrix
F=[ff - fy_q] (3.5)
to be an aggregation of /V sequences, where
f; = [£;[0] fill] -~ filL, — 1], (3.6)

and they denote L, = KM +1 as filter length, while the filter length of oursis L = K M.

Hence, they express the prototype as the linear transformation

g = Fc, (3.7
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where

c=[cocp - CN—I]T (3.8)
are the coefficients to be optimized.

Throughout their work, they consider two families to be deployed as f;[n]. First, they

consider f;[n] as the DPSS, i.e.,

filn] = Yo, [n]. (3.9

As an alternative, a family of cosine sequences can also be deployed:

L__ 1=10

filn] = ¢ VEMH (3.10)

\/ 7Tas cos(@ymn), i=1,--- N —1

Then, their primal problem of designing filter can be expressed as

¢* =argmin ¢’ Qqc (3.11a)
subject to cTQﬁsfﬁzc < €+ 9, (m,n) € € (3.11b)
cTQg,ff’%c < €+ 0, (m,n) € € (3.11c)
lule| < u, kek (3.11d)
¢ FFe=1. (3.11e)

The objective function (3.11a) represents the suppression of energy out of the pass-
band. The constraints (3.11b) and (3.11c¢) represent the suppression of the self-interference
caused by the extended filter itself. The constraint (3.11d) represents the spectrum decay.
The constraint (3.11e) represents the power constraint of the filter. The detail of the vari-
ables Qo, Q,(E;?,i, Q,(f;?,l, €0, 0, £, K, uy and ug can be founded in [14]. In this thesis, we
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compare the Type-II filter and the Type-III filter from this work with the proposed proto-

type filter. The optimal coefficients {c; }i—o

1111

3.2 Problem Formulation

~_1 can be found in [

, tab. IV].

Based on the design techniques introduced in Section 3.1, we could find some aspects

worth improving. The major aspect we want to improve is suppressing all the PSLs rather

than suppressing the total OoBE. The spectrum decay mentioned in previous work is a

redundant constraint, and the main problem is to minimize the interference to the adjacent

band.

In this section, we propose a novel prototype filter design method based on convex

optimization. The main purpose is to reduce all the PSLs but also provide a high-quality

symbol reconstruction. In order to design a better prototype filter, we need to specify the

properties of the prototype filter g[n] that it must satisfy. Then, the estimated PAM symbol

i | m=mo 1=, can be expressed as

Aoty = N {{ :r[l} * G [l]}

o0

- m{{ 5 rfnlin,

:%{ 2 7lgmollo -

ILI} }l:lo '

)

i n]] } G
¥

C;;10710 }

—n]-

*
mo,lo [~

OJO}

(3.12)

We first consider the case that the channel is non-distorted and one-tap (non-frequency
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selective) without additive noise, i.e., r[n] = z[n]. Then, (3.12) can be expressed as

%{isv y%m}

n=—oo

[12] G
{ {Z Z a’mlleg[n_l M]€]27rM( l]g)}

m=0 [=—o0

gln—1y - %]6 j2n 50 (n—lo- ) . lo} (3.13)

co M-1 ) )
=R X GGGy gy e

[=—oc0 m=0

n=—oo

We now replace n by n + 24 and (3.13) can be expressed as
2

co M-1 ) )
N z Z am’lngC;m,lO6—]7rml€]7rmol0

l=—o00 m=0

5 9 (m—mq) IM
. ( Z g[n]g[n + (l — lO) . %]€j2ﬁM(n+l2{)> } .

n=—oo

(3.14)

By replacing m by m + mq and [ by [ + ly, we can rewrite (3.14) as

6—j7r(m+m0)(l+l0)€j7rmolg

l=—00 m=—my

( S glnlgln +1- Hes2mir ”W))}
S (3.15)

—jmmol

oo M-—mgp—1
R Z Z Am+mo,l+lo Cermo,lJrlo C:;lo,lo

l=—00 m=—my

(S tnlgto 1 peneie) } .

From (3.15), we can obtain the estimated staggered PAM symbol a,,, ;, by applying the

oo M—mp—1
=R Z Z am+m0,l+loCm+m0,l+loC;m,loe

(Property 1) that the prototype filter must satisfy, and the symbol a,,, ;, can be expressed
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as

l=—0c0 m=-—mo
[I]+]m|#£0
NS

~ (3.16)

KM—1 A
R Cm+mo,l+loC;10,lo ZO g[n]g[n +1- 7]63 Tt

\

Vv
Pmg,lg - self-interference

where we denote p,,, ;, as self-interference term for a,,, ;,. The necessary property used

above can be expressed as

> glnlgln) =1, (Property 1)
and we can also regard (Property 1) as a power constraint.

After taking the real part operation, the staggered PAM symbol is expressed as

dmolo = Gmyg,l + Pmo,lo- (317)

Unfortunately, the undesired self-interference term p,,, ;, is not zero so we cannot elimi-
nate it thoroughly. Therefore, we want to suppress the interference as much as possible to
approach the property of near-perfect reconstruction (NPR), which is mentioned in Sec-
tion 2.3.4. Here, we introduce the discrete ambiguity function in order to simplify the
expression of self-interference from (3.16), and it is written as

KM-1 IM
Amy = nz; glnlgln + =l i, (3.18)
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and the self-interference p,,, ;, can be expressed as

00 M—mp—1
_ mol
Pmo,lo = E E am-i—mml-‘rlo(_l) s {<m+mo,l+loc;kn0 loAm,l}

l=—0c0 m=—myg
|L[+|m]|#£0

) M—mp—1
= Z Z am—',-mo,l-‘rlo(_l)m()lé}% {j(m+l)Am,l} '

l=—0c0 m=—myg

|[+|m|#0

(3.19)

From (3.19), we can conclude

1. when (m + ) is odd, we need to suppress the imaginary part of A,,

2. when (m + 1) is even and |I| + |m| # 0, we need to suppress the real part of A,, ;

o: 9%{Am,l}

o ’J{Am,l}

Figure 3.1: Discrete Ambiguity surface

The second property of the prototype filter g[n| can now be formulated as

< t, for (m+1[) being odd

‘%{Aml}
(Property 2)

‘%{Aml} < t, for (m+1)being even, |I| + |m| # 0,

where ¢ is the threshold of the ambiguity function. The threshold ¢ is highly relative to
the signal-to-interference ratio (SIR) of the prototype filter. It should be set as a small
number. In addition to the property of NPR, the property of low PSL is also needed to be
constructed. We define the union of the set of PSL locations and the set of beginning and
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end frequencies in the region of the stopband as

W, = {w € Rlw € (ws, m), “L|G(e?)|? = O} U {ws, 7T} ; (3.20)

where w, and G(e’*) denote stopband frequency point and DTFT of g[n], respectively.

Then, the third property or the PSL constraint can be expressed as
|G <5, VYwe W, (Property 3)

where s denotes the threshold of PSL. From (Property 1),(Property 2) and (Property 3),
we can now intuitively construct the primal optimization problem of FBMC waveform

design, it can be expressed as

minimize s (3.21a)

g[nls€R+

subjectto  |Ago| =1 (3.21b)
’%{Am }| <t for (m+ 1) being odd (3.21¢)
‘%{Aml} <t, for(m+1)beingeven, |[|+ |m| #0 (3.21d)
|G <5, YweW,. (3.21e)

In the next chapter, we will present our proposed approaches to solve this waveform

design problem.
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Chapter 4 Proposed Approach
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In this chapter, the proposed approach to solve the main problem (3.21) is presented.
We first reformulate the primal problem (3.21) to be an equivalent form using the idea
of semidefinite relaxation. Then, we propose an algorithm to approach the optimal point
of the primal problem. In Section 4.1, we first introduce some definitions of special vec-
tors and matrices to transform the primal problem into several equivalent vector forms.
Unfortunately, the equivalent problem is still non-convex so we apply the semidefinite re-
laxation to it. In Section 4.2, we solve the relaxed problem and use the proposed algorithm

to approach the optimal point of the primal problem.

4.1 Reformulated Problem

For simplicity, we transform the original problem (3.21) into vector form. Here, we
introduce some definitions of special vectors and matrices. First, we define our target of

optimization g[n| to be a vector form that can be expressed as

T
_ KM
€= 190 o1 - grxM—1 eC, (4.1)

where g, = g[n]. Second, we introduce the shift matrix for the demand of derivation, and

the upper shift and lower shift matrix are written as

_0 10 - O_ _O 00 --- O_
0 0 1 0 1 00 0
Usv=10 00 --- 0 and Dxyy=10 1 0 --- 0 ,
1
000 -0 000 1 0
L d KMxKM L 4 KMxKM

(4.2)
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respectively. Third, we introduce diagonal matrix S’ that has only a frequency component

on the diagonal. It can be expressed as

1 0 0 0
0 ei?mar 0 0
S=1lo o e . 0 e CFMXKM  (43)
0
0 0 0 oo, ed2map(KM-1)
- d KMxKM

Based on the above definitions, we can rewrite the discrete ambiguity function (3.18) as

K

S

-1
ejQW%n

M
Ay = glnlgln +1- 7]

i\

>
T

1

o m M
= " gl g+ 1 ]

o

- » 4.4)
g (S)"(Ukm) 28 120
.M

g"(S)" (D)t 2g, 1<0

=g'stmg,
where we define S(™ as

(S/)m(UKM)Z'T, (>0
= € CHPA, (4.5)

(SY"(Dgar) b2, 1<0

)

The PSL constraint (3.21¢) can also be transformed into the vector form as

G(e™)]” = (g"w) (g"w)) !
(4.6)

=g'WWg,
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where

T
W(W) = |1 e Iw eiw2 ... 6—jw~(KM—1)
(4.7)
W — W(w)w(w)H
The primal problem can be expressed in an equivalent form as
minimize s (4.8a)
g,seER
subjectto g'g =1 (4.8b)
gngmvl)g' <t, for (m + () being odd (4.8¢)
gTS?’Z)g' <t, for(m+1)beingeven, |I| + |m| # 0 (4.8d)
g’ WWg <5 YweW,, (4.8¢)
where
ng,l) _ %{S(m,l)} c REMXEM
(4.9)

S(Ptnvl) = R{SMV} ¢ RKMXKM
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The problem (4.8) is not convex since the constraint function in (4.8b) is not affine. There-

fore, we define G = gg” € S£, and the problem (4.8) can be reformulated as

minimize s (4.10a)
GeSEM seR .

subjectto  Tr(G) =1 (4.10b)
Tr(GS!™") < t, for (m + ) being odd (4.10c)
Tr(GS!™") > —t, for (m + 1) being odd (4.10d)

Tr(ngn’l)) <t, for(m+1()beingeven, |||+ |m| #0 (4.10e)
Tr(ngn’l)) > —t, for (m+1)beingeven, ||+ |m| #0  (4.10f)
Tr(GWW) <5, VYw e W,, (4.10g)

rank{G} = 1. (4.10h)

However, the problem (4.10) is still not convex due to the rank-one constraint (4.10h).

Thus, the SDR [19] is applied to relax the rank-one constraint (4.10h). The problem (4.10)
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can be rewritten as a convex optimization problem that can be expressed as

Gréqgi?]iﬂiezﬂi s +w - Tr(GUW) (4.11a)
subjectto  Tr(G) =1 (4.11b)
Tr(GS!™") <'t, for (m + ) being odd (4.11¢)

Tr(GS!™) > —t, for (m + 1) being odd (4.11d)

Tr(GS%"’l)) <t, for(m+1)beingeven, |I| + |m|#0 (4.11¢)
Tr(GS%"’l)) > —t, for (m+1)beingeven, |I| +|m| #A0  (4.11f)
Tr(GWW) <5, VYwe W, (4.11g)

G -0, (4.11h)

CKMXKM

where w is a positive penalty weight and U € is a penalty matrix.

4.2 Proposed Method Based on Dattorro Iterative Algo-

rithm

Even though we relax the equivalent primal problem (4.10) to be relaxed convex
problem (4.11), the optimal G we can obtain from the problem (4.11) is still not the optimal
point of the primal problem due to the relaxation we apply. The way to approach the
optimal point of the equivalent primal problem (4.10) is to try to make the target variable
G to be rank-one, which fits the constraint (4.10h). Here, we adopt the iterative algorithm
proposed by Dattorro [4]. The main idea of this algorithm is to minimize the sum of
the smallest eigenvalues, i.e., exploit the equivalence between imposing the constraint
rank(G) < r (with G € S') and imposing the constraint that the sum of the n — r
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smallest eigenvalues of G is equal to zero, which is a straightforward method to solve the
problem with rank constraints in engineering. More research on the analytical comparison

of algorithms solving the problems with rank constraints can be found in [5].

In the initialization of this algorithm, without loss of generality, we set the penalty
matrix U® = 0 5/x s and W&O) as the set uniformly sampling at the region of stopband
with J; points since we don’t know the location of the PSLs in the beginning. Then, we
solve the problem (4.11) in every iteration, and G'¥) denote the optimal point obtained

from the problem (4.11) in (-th iteration.

Since the target variable G is positive semidefinite and symmetric, we can conduct

eigendecomposition on G(*), which can be expressed as
G» — fj(w)f)(v’)(U(eo))H7 (4.12)

where the eigenvalues along the main diagonal of D¥) is in descending order, i.e., [D] gﬁ) >

[ﬁ]g@ > > [D]%)w cur = 0. Then, the penalty matrix can be designed as
U = [0 s, cany - (U)o ey, (4.13)

where T denote the index set of column vectors of U), and [U¥) ]y denote the matrix
arranged by U(¥)’s column vectors whose indexs are belong to I. With the penalty matrix
defined in (4.13), the penalty term Tr(GU("D)) in (4.11a) can now be regarded as the sum of
all the eigenvalue corresponding to G without the largest one, i.e., [ﬁ(“”)} 1,1- By adding this
penalty term, we can suppress all the eigenvalues except []N)(“")]Ll. Then, we set the upper
bound ¢ to the ratio [D¥)],5/[D¥)]; ;. This ratio should be set as a strictly small number

to ensure the optimal point G* approaching rank-one. If the ratio [D(*)],,/[D)], ; once
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meet the upper bound e, the algorithm end.

In addition, during each iteration, the location of the PSLs should be updated. In

(p)-th iteration, the corresponding prototype filter can be expressed as

g(@) — [fj(sa)]{l} . [f)(@)]u- (4.14)
Then, we specify the magnitude response |G¥)(¢7*)|? of g(¥) and find the location of all
the PSLs to update Wi, Moreover, the marginal points of the stopband region are also
the points we want to suppress, and the updated set WY in the frequency domain can

be expressed as

w=wp

wwz{wp o € (). | G =o}u{ws,w}. (4.15)

Since it is difficult to find the zeros of the derivatives of G¥)(e/*), in practice, we simply
find the peaks of |G(¥)(e/*)|? by calculating the function at a large number, say N, =

10000, of points uniformly and find w,’s accordingly:

WD = {w,, Wy € (W, ), |GO(50) |2 > |G (eFr+1) 2 and

|G ()2 > |G (e?r1) [, p=0,1,..; Ny — 1} U {ws, 7} . (4.16)

After we make G to approach rank-one, the target optimal variable g in (4.8) can now

be extract from G, which can be expressed as

g = [U(sofl)]{l} . [f)(@*l)hb (4.17)
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which is the vector form of the optimal prototype filter.

By the discussion above, the proposed algorithm based on the Dattorro Iterative al-

gorithm [4] is summarized as follows:

Algorithm 1 Proposed Algorithm
Input: w,S;

Output: g ;

1: Initialization: ¢ = 0, U® = 0 s« xas and Wgo) uniformly sampling at the region of stop-
band with J; points;

2: repeat

3: Solve the problem (4.11) to get the optimal solution G(#).

4: Perform eigendecomposition on G¥) : G(¥) = U@D®) (INJ(‘P))H, with the eigenvalues
along the main diagonal of D) in descending order, i.c., []N)(SO)]M > [f)(ﬂ")]gg > >
D) gerr xear > 0.

5: Set oy = [IN)(‘P)]M and o9 = []3(90)]272.

6: Set the ((p)-th prototype filter as g(*) = [INJW)]{l} - o1, and update W using (4.16).

7. Update penalty matrix : UHD = [U@)] 155 . gapy - [ﬁ(@)]g,g,--.,KM}-

8: IfH(Ug/Ul)(‘P) - (02/01)(90_1)]/[(02/01)(“’_1)]‘ < 0.1, then w1 = (¥) . 1.01 .

9: p—p+1.

10: until 02/01 < ¢;

11: Obtain: g = [ﬁ(w_l)]{l} < 01.

Since there are lots of kinds of SDR problems with constraints strict or not, the al-
gorithm 1 doesn’t guarantee convergence. From statement 8 in the algorithm 1, we check
the ratio (09/04) in every iteration. To avoid the iteration staggering, if the ratio (o2/0)
doesn’t change by ten percent compared with the last iteration, we slightly enhance the
penalty weight w by one percent, which makes the iteration converge faster. This trivial

way to achieve the convergence of the algorithm 1 is by the method of trial and error.
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Chapter S Simulation Results
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In this chapter, we introduce some figures of merits (FoMs) and conduct numeri-
cal simulations to give a comparison between the proposed method in Chapter 3 and the
existing prototype filters in [ 1, 14, 26]. In Section 5.1, we describe several FoMs to eval-
uate the performance of FBMC filters. In Section 5.2, we specify the parameters for the
simulation. In Section 5.3, we compare the different filters with their performance on
magnitude response and the FoMs mentioned in Section 5.1. In Section 5.4, we conduct
a simulation on bit error rate (BER) in different channels to verify the influence of self-
interference caused by the different prototype filters. In Section 5.5, we will show the
PSD of the FBMC system by using the different prototype filters, which gives a straight-
forward perspective to verify the performance on OoBE. The simulation results in this
chapter show that the performance of the proposed prototype filter outperforms the filter

mentioned previously in maximum side-lobe level (MSL).

5.1 Figure of Merits

In this section, we introduce three FoMs to compare different filters. First, we in-
troduce the signal-to-interference ratio (SIR) which is highly relative to the property of
near-perfect reconstruction (NPR) mentioned in Section 2.3.4. Second, we introduce the
OoBE which shows the energy leakage out of the passband. Third, we introduce the MSL

which caused the maximal interference to the adjacent band.

5.1.1 Signal-to-Interference Ratio (SIR)

For the high quality of reconstruction, SIR is the main factor that affects the perfor-
mance of the property of NPR at the receiver side. From (3.16) and (3.19), the estimated
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staggered PAM symbol can be expressed as

oo M-—mg—1
&mo,lo = Amy,lo + Z Z am+m07l+l0(—1)m0l8:e {j(m+l)Am,l}

l=—0c0 m=—mop
1#0 m7#0
A

J

-~~~

self-interference
5.1
oo M-—-mop—1 ( )

it D s R S0 g ) )

l=—0c0 Mm=—myg
1#£0 m7#0
A

J/

Vv
self-interference

where g,,1[n] = gln—1-&]e? 5 (=t 2). The simplified representation of the interference

power at (m, [)-th point can be represented as

€m,l = ‘éR {](m—l-l)Aml}

Based on the limited length of filter g[n] and the conjugate symmetry of ambiguity ,

2 2

(5.2)

= ‘%R {j(m+l)<gm7z[n] | Gt [7] >}

ie, A_,,; = A’ ,, we define SIR as

m,l?

1
SIR= ——— . (5.3)

MZ > €m,l

m=0 [=—K+1

5.1.2 Out-of-Band Emission (OoBE)

Moreover, Low OoBE ensures high energy efficiency and low interference to adja-

cent bands. The In-Band energy, i.e., the energy contained within the frequency range
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|w| < ws, can be defined as

2m ) .
1 fes Lt . L-1 ‘
o [ S gl gl )
¥ k=0 1=0
| pes L1
= o [ X ol )
~Ws k=0 1=0
| L1 o
— e o> alklgll [ e d
k=0 [=0 —Ws
L-1L-1
— Z g[k]g[l] { - 1l . ejws(kfl);?*jws%fl) } (54)
k=0 1=0 (k=) 1
L—1L-1
= sin(ws (k—1
=SS gl {_gk_g)ﬂ >>}
k=0 1=0
L—1L-1
= sin(7r-4s (k—1 w
=33 gilgln { ez |
k=0 1=0
L-1L-1
=33 oilalt {sino(es - 1) - = |
k=0 1=0
= gTI‘(wS)gJ
where
ws .
D(w,)| = _sinc|(k -1, (5.5)
kl

and the OoBE, i.e., the energy outside the frequency range |w| < w;, can be defined as

E(ws) = B(r) — E(w,) = g" 1 - T(w,)|g = g' T(w,)g, (5.6)

where T'(w,) = [I — T'(wy)].
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5.1.3 Maximum Sidelobe Level (MSL)

The MSL is the ratio between the maximum side-lobe of |G(e’*)|? and the main-lobe

level, which can be defined as

max,cw |G(e?)|?

MSL = ,
G

(5.7)

where

W= {w ‘ w e (0,7), %ya(eﬂ‘ww - o} . (5.8)

Notice that the MSL describes the interference generated by g[n] to adjacent bands.

5.2 Simulation Parameters

In this section, we summarize all the parameters used for the simulation. For the
design of the proposed prototype filter, by applying Dattorro Iterative Algorithm, we first
initialize W by sampling uniformly at the region of stopband with J, = 2M + % points.
The overlapping factor is set as X' = 4 without loss of generality, which is the choice in
both [1] and [14], and the number of subcarriers is M/ = 32. The ratio upper bound of the
Dattorro Iterative Algorithm is set as ¢ = 10~ to approach the rank-one matrix G, and
the penalty weight is set as w = 0.01. When the ratio 05 /0; doesn’t change ten percent
between the current iteration and the previous iteration, we increase one percent of the
penalty weight for the convergence of the algorithm. Concerning wj, it is noteworthy
mentioning that such a parameter is set around 22, given the subcarrier bandwidth and
separation. In our work, we set w, = 7 - ZM“, andr, =1, 1.1, 1.2, 1.21, 1.3. To suppress
the SIR caused by the filters, we set ¢ = 2 - 1074
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For the BER performance, the subcarrier spacing F, is set as 15 kHz corresponding
with the symbol interval 7, = 1/F, and the sample interval T, = T,/M. The modu-
lation scheme is uncoded 16-QAM followed by OQAM processing. To verify the BER
performance, we considered different types of channel models. For the flat fading chan-
nel, we choose the AWGN channel and Flat Rayleigh fading channel. For the frequency
selective channel, we use the power delay profiles from ITU-R (International Telecom-
munication Recommendation Radiocommunication Sector) [22], and we will verify the
performance on ITU-R-Pedestrian-A (ITU-R-PA) and ITU-R-Vehicular-A (ITU-R-VA)
multipath channel. The number of equalizer taps is set as L,, = 4. In each BER curve,
we conduct 20000 Monte Carlo trials with 100 QAM symbol frames per trial in the SNR

range set as [0, 30] dB.

5.3 Magnitude Response & FoMs
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Figure 5.1: Magnitude response |G(e?%)|%, ry = 1

Throughout Figures 5.1 - 5.4, we can observe that the MSL becomes lower when
we slightly increase the value of r,, i.e., increase the stopband frequency ws. But if we
increase the stopband frequency too much, the undesired high MSL will occur, such as in
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Figure 5.3: Magnitude response |G(e?*)|?, ry = 1.2

Figure 5.5. Note that under practical regulations such as spectrum emission mask (SEM)
or adjacent channel leakage ratio (ACLR), both CP-less OFDM and CP-OFDM require
huge amounts of guardband due to the slow decay of their frequency responses. This is
also a cause of decreasing spectral efficiency [13]. Out-of-Band emission of multicarrier
modulation techniques depends on the power spectral distribution of filters. The main

requirement to choose a better filter is choosing a filter with a smaller side-lobe [6].

The comparison between the proposed prototype filter and the filters mentioned in
Chapter 3 is summarized in Table 5.1. In the aspect of MSL, the performance of the
proposed prototype filter (r, = 1.21) is the best, and it outperforms the previous works
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Figure 5.5: Magnitude response |G(e/“)|%, r, = 1.3

for 20 dB, i.e., the proposed filter has the least interference to the adjacent band, which is
achieved by sacrificing a little loss of bandwidth (BW). The loss of bandwidth concerning
the strictly frequency stopband point w, = QM“ can be expressed as

BW(wSZZM’T-rs)_l_ (M + 21y — 1)ws

BW (ws = %) (M + l)ws

— 1] x100%.  (5.9)

o=

For instance, when M = 32 and r; = 1.21, based on (5.9), the loss of bandwidth of the
proposed filter is 1.27%. From the perspective of the OoBE, the Kobayashi-I1(2019)[ 14]
has the best performance, which is attributed to the property of the spectrum decay that
we don’t concern about. Since spectrum decay is not an important property, we only need
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Prototype Filter ~ SIR[dB] MSL[dB] F/(37)[dB]

PHYDYAS(2010) 65.20 -39.85 -45.61
OFDP(1996) 59.86 -38.33 -35.45
Kobayashi-11(2019) 68.09 -47.66 -50.09
Kobayashi-II1(2019)  51.27 -58.73 -35.20
Proposed (rs = 1) 41.60 -47.82 -36.69
Proposed (rs = 1.1) 50.98 -63.64 -47.00
Proposed (rs = 1.2) 58.64 -74.23 -45.56
Proposed (rs = 1.21)  59.80 -78.02 -42.79
Proposed (r; = 1.3) 52.38 -39.45 -44.52

Table 5.1: Prototype Filter Comparison

to ensure that all the PSL is as low as possible. For the discussion of the influence of

different SIR, we will take a look at the performance in BER curves.

5.4 BER Performance

In this section, we perform the simulation to evaluate the BER performances of the
proposed FBMC waveform against previously reported waveforms in different channel
models. We choose the proposed prototype filter (r, = 1.21) which has the best per-
formance in several FoMs to compare with filters mentioned previously. The numerical

results can be observed in the following figures:

Figures 5.6, 5.7, 5.8, and 5.9 show the BER curves for different filters in AWGN,
Rayleigh channel, ITU-R-PA [22], and ITU-R-VA channels [22], respectively. By obser-
vation, we can see that the BER curves for all the filters are exactly the same. The reason
for this phenomenon is caused by the high SIR for the filters, which can be checked in
Table 5.1. When BER curves are located at the SNR range from 0 dB to 30 dB, the noise
and the channel effect are the factors dominating the performance since the SIR of all the
filters are higher than 40 dB. This result also indicates the property of NPR given by the
well-designed filter is constructed perfectly.
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FBMC under AWGN channel
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Figure 5.6: BER performance in AWGN channel

FBMC under Flat Rayleigh Fading channel
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Figure 5.7: BER performance in Rayleigh flat fading channel

5.5 Power Spectral Density (PSD)

In this section, we give a comparison between the filters on the performance of power
spectral density (PSD), which is a more straightforward way to specify the performance of
out-of-band emission (OoBE) mentioned in Section 5.1.2. Here, we introduce the deriva-
tion of the equation of PSD for the FBMC system. We first recall the transmitted signal
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FBMC under ITU-R-PA channel
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FBMC under ITU-R-VA channel

100 w w
102 ¢ 5
o
w -3 L i
410
104 F 1
—A— PHYDYAS(2010)
105 ¢ Kobayashi-11(2019) | 7
—#— Kobayashi-I11(2019)
—@— Proposed
108 I I I I I
0 5 10 15 20 25 30

Eb/NO
Figure 5.9: BER performance in ITU-R-VA channel

mentioned in (2.5):

00 v
ol = 303 amilgln — 1+ e O,

meM l=—o0

(5.10)

where M denotes the used subcarrier index set. Then, we will show that the discrete time

random process x[n] is a cyclo wide sense stationary (CWSS) with period M if it satisfies
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the following two conditions [15]:

E{zin+ M|} = E{z[n]} (5.11a)

E{zn]z*n —n']} = E{z[n + M]z*[n+ M —n']}. (5.11b)

We can justify the transmitted signal x[n] satisfying the first condition (5.11a) by the fol-

lowing equation

E{z[n + M)}

M
_E{Z Z AmiCmagln + M —1 - ]ey% .%)}

meM l=—o0

= Z E{aum}Cmagln + M —1- ]eﬂ“M(” L5 (5.12)

meM l=—o0

M
= Z Efam}Gnagln — 1 - ]e*mir " t%)

meM l=—o0

=E{x[n]}.

For the second condition (5.11b), we first expand the LHS of this condition:

E{eln]z*[n - n])
B S gl 1 et )

meM l=—o0

Z Z a /l/ /l/ n_l/ ]6‘72”1% ll%))} (513)

m'eMl'=—c0
0 0 M M
Y Y S S Blewa oniGesln— 1 g -0 Y,
meMm/eM l=—oco l'=—00

j2m 3 (n— lA) —j2m 5y (n n'—1'- M)

c € €
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Since a,,; is statistically independent corresponding to index m and [, we have

o2, whenm=m' =1

E{amJCL;‘(nIJI} = ; (514)
0, otherwise

where o denote the average symbol power of a,,;. Then (5.13) can be reformulated as

E{z[n|z*n —n']}

00 (5.15)
M M. o m
=02 3 Y gln—1- gl —n' =1 e
meM l=—oo
Similarly, the RHS of condition (5.11b) can be written as
E{z[n+ M]z*[n+ M —n'l}
(5.16)

N M M, oo
=05 D Z9[”+M—l-7}g[n+M—n'—z-7]eﬂwn.

meM l=—o0

Since g[n — - & ]g[n —n' — - &I] is a periodic signal with period M, we can conclude the
condition (5.11b) is satisfied. Therefore, x[n] is the CWSS process. By satisfying these

conditions [ 5], the average autocorrelation function of z[n| can now be written as

| M2
R.[n] = i E{z[n]z*[n — n']}
L N (5.17)
% Zgn—l —lgln —n' — 1. =] it
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Based on the definition (5.17), the average power spectral density (PSD) is DTET of R, [n/]

where G(e/2™/) =

n=0

(5.18)

1
>° g[n]e=7*/™. Based on the (5.18), we can now show the PSD

of the proposed filter. We choose the proposed filter (s = 1.21) which has the best per-

formance on MSL to compare with other filters. The number of total usable subcarriers is

M = 32. We conduct the PSD with the used subcarrier set M = {—3, -2, —1,0,1,2,3}.

The numerical result is shown as Figure 5.10. We can see that the PSD of the FBMC sys-

tem using the proposed filter has the lowest MSL, i.e., the least interference to the adjacent

band.
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Chapter 6 Conclusion & Future Work
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6.1 Conclusion

Throughout this thesis, we propose a novel optimization problem to design the pro-
totype filter for the FBMC-OQAM system and solve it by the proposed algorithm. In the
proposed optimization problem, we emphasize suppressing all the PSLs, which wasn’t a
concern in the past work. Based on this concern, the MSL of the proposed prototype filter
is much lower than the previous works, which causes the least interference to the adjacent
band. In the simulation results of BER, the proposed filter has the same performance as the
others since the property of NPR is achieved by the high SIR. Though the proposed filter
outperforms the other filters, it must sacrifice approximately one percent of bandwidth,

1.e., a little loss of spectral efficiency.

6.2 Future Work

In the past decades, there were still lots of research on prototype filter design [23].
Those filters were also designed for low OoBE or low PSL even though they were not
designed for FBMC. Maybe, we can apply these filters to the FBMC system to achieve

low OoBE and NPR as well.

Due to the long filters FBMC adopts, the system latency of FBMC is greater than
OFDM. Therefore, the short prototype filters are preferred for communication scenarios in
the future. To reduce the system latency, there was some research on short prototype filters
[16], [20], [18] which are worth checking out. Moreover, there is more novel research on
FBMC systems such as satellite communication [3]. In addition to the filter/waveform
design of the FBMC system, a new structure for the FBMC system is another topic worth
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researching.
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