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中文摘要 

牛奶和乳製品在人類社會中扮演著重要的角色。然而，酪農業目前正面臨許多挑

戰，例如需求增加、勞動力短缺和氣候變遷等。為了應對這些問題，牛奶生產系統

有待改進。智慧酪農業將物聯網（IoT）、大數據分析、人工智慧（AI）等技術應

用於牧場，為這些挑戰提供創新的解決方案。智慧酪農業包含四個要素：環境控制、

個體動物資訊、自動飼養系統和牧場管理，涉及熱緊迫控制、個體動物辨識、動物

健康監測、自動榨乳系統、精準餵飼和精準育種等主題。乳量預測是智慧酪農業中

的關鍵技術，它可以幫助農民預測農場收入、監測動物健康並優化育種選擇。本研

究的目標是建立機器學習模型來預測乳量，並評估乳量與其他特徵之間的關係。本

研究的資料來源為台灣乳牛群性能改良（DHI）計畫的資料庫，包含了 33,185筆自

2013年至 2018年、共 1,818頭荷蘭牛的榨乳記錄。經過數據清理和分析後，本研

究使用不同的機器學習演算法來建立預測模型，包括支持向量機（SVM）、隨機森

林（random forest）和 XGBoost。研究結果顯示，最終的 XGBoost模型在三種演算

法中表現最佳，其對未來乳量預測的準確率達到 76.33%。此外，本研究還發現影

響乳量的重要因素為過去平均產量、泌乳天數、與前一胎間隔和月齡。這些結果對

乳量預測的發展具有重要意義。 

 

關鍵字：智慧酪農業、精準畜禽飼養管理、動物健康監測、乳量預測、機器學習 
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Abstract 

Milk and dairy products play a significant role in human society. However, milk 

production is currently facing several challenges, such as an increasing demand, labor 

shortages, and climate changes. To address these issues, improved milk production 

systems are required. Smart dairy farming incorporates the Internet of Things (IoT), big 

data analytics, artificial intelligence (AI), and other technologies in dairy farms, offering 

innovative solutions to these challenges. Smart dairy farming is made up of four elements: 

environmental control, single animal information, automatic rearing systems, and 

management, involving topics like heat stress control, individual animal identification, 

animal health monitoring, automatic milking systems, precision feeding, and precision 

breeding. One crucial aspect of smart dairy farming is milk yield prediction, which allows 

farmers to get a projection of farm income, monitor animal health, and optimize breeding 

selection. The objectives of this study were to develop machine learning models for milk 

yield prediction and to assess the relationship between milk yield and other features. The 

data used in this study were obtained from Dairy Herd Improvement (DHI) database in 

Taiwan, which included 33,185 milking records from 2013 to 2018 involving 1,818 

Holstein cattle. After data cleaning and analysis, prediction models were built using 

various machine learning algorithms, including support vector machine (SVM), random 

forest, and extreme gradient boosting machine (XGBoost). The findings of this study 

demonstrated that the final XGBoost model exhibited the highest performance among the 

three algorithms, attaining an impressive 76.33% accuracy in predicting future milk yield. 

Moreover, it was revealed that specific factors, including average yield, days of lactation, 

calving interval, and age in months, significantly influenced milk yield. These insights 

serve as valuable contributions to the advancement of milk yield prediction. 
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Introduction 

Milk and dairy products are crucial to humans due to their economic, social, and 

health contribution. In 2020, the global dairy market size was USD 708.7 billion (Fortune 

Business Insights, 2022). The total milk production was 912.6 million tons, with global 

trade in dairy products reaching 86.6 million tons. On a per capita basis, the average 

consumption was 116.4 kg/year in milk equivalents (Food and Agriculture Organization 

of the United Nations [FAO], 2022). The vast dairy industry was estimated to provide the 

livelihood of 1 billion people along the dairy value chain worldwide (International Dairy 

Federation [IDF], 2019). Furthermore, milk and dairy products are recognized as essential 

components of a healthy and balanced diet. Milk, being the primary source of nutrition 

for young mammals, contains all the necessary nutrients for growth and development 

(Pereira, 2014). One of the most well-known health benefits of consuming milk is 

osteoporosis prevention. Nutrients like calcium, vitamin D, and protein in milk act as raw 

materials for bone structure and enhance bone strength (Wallace et al., 2021).  

Despite the numerous positive impacts of milk and dairy products on human society, 

dairy farmers face various problems and challenges. First, dairy cattle are blamed for the 

greenhouse gases emitted through enteric fermentation and the significant amount of 

manure excretion, which contribute to global warming and water pollution (Font-Palma, 

2019). Additionally, the increasing global population and rising per capita income have 

led to a rapid increase in the demand for dairy products (Organization for Economic Co-

operation and Development [OECD] & FAO, 2022). Other challenges include extreme 

weather conditions caused by climate change (Gauly & Ammer, 2020), rising labor costs 

and labor shortage (Wang et al., 2021), and the growing public concern for animal welfare. 

The industrialization of farming practices often aims to increase production by 

minimizing space and resources, but this approach raises the risk of animal diseases (e.g., 
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mastitis, lameness), which conflicts with contemporary ethical perspectives (Brombin et 

al., 2019; Henchion et al., 2022). Therefore, there is an urgent need to develop innovative 

systems for enhancing milk yield, while simultaneously mitigating negative 

environmental impacts and improving animal welfare, in other words, achieving 

sustainable development. 

Smart dairy farming is a growing trend in dairy farms worldwide, involving the 

application of technologies such as the Internet of Things (IoT), big data, and artificial 

intelligence (AI) (Kulatunga et al., 2017; Nleya & Ndlovu, 2021). This approach utilizes 

IoT devices like sensors and robots to gather data on the farm environment and animals. 

The collected data is then analyzed using AI to generate reports on operational conditions, 

enabling better decision-making and ultimately improving milk productivity. Moreover, 

the data can be used to detect anomalies and provide early warnings, facilitating prompt 

disease treatment and improving animal health (Akbar et al., 2020; Bovo et al., 2020; 

Nleya & Ndlovu, 2021). In particular, one crucial function of AI in smart dairy farming 

is milk yield prediction. By obtaining estimated milk yield in advance, farmers can project 

their income and costs, optimize breeding selections and culling decisions, and enhance 

animal health monitoring (Liseune et al., 2020, 2021). Consequently, developing machine 

learning models with high prediction accuracy becomes a paramount task in this field. 

This study aimed to develop accurate machine learning models to predict the daily 

milk yield of individual dairy cows. Various machine learning algorithms were employed 

to build prediction models using data obtained from dairy farms in Taiwan. Finally, the 

best model with the most accurate prediction was propose.
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Background 

A. Cattle Milk Production in France, Japan, and Taiwan 

The dairy industry plays a significant role in the global economy, with cattle milk 

accounting for about 81% of total milk production (OECD-FAO, 2022). Dairy cattle 

farms vary from country to country, influenced by geography, climate, society, economics, 

and culture, resulting in diverse outcomes in milk production (Chiu, 2009). The following 

section provides an overview of cattle milk production in France, Japan, and Taiwan in 

2020. Detailed numerical data are shown in Appendix A. 

1. France 

The dairy industry in France holds a significant position in the country's 

economy and culinary culture. It also maintains competitiveness in the international 

market. France, being one of the world's largest dairy producers and exporters 

(Appendix B), annually produces 25 million tons of cattle milk (FAO, n.d.). With over 

50,000 dairy farms, predominantly family-owned, the average farm raises 68 heads 

of cattle. Approximately 10% of dairy farms are equipped with automatic milking 

robots, and 160 farms have automatic feeding systems. The total number of dairy 

cattle in France is 3.4 million, with an average yield of 7,409 kg per cow per year. 

The three main breeds of dairy cows in France are Prim'Holstein, Montbéliarde, and 

Normande (Agreste, 2022; “À l'heure du lait”, n.d.; Eurostat, n.d.; FAO, n.d.; 

Ministère de l'Agriculture et de la Souveraineté alimentaire, 2022). France's overall 

temperate climate, abundant rainfall, and ample farmland create favorable conditions 

for dairy farming, resulting in lower farming costs and a corresponding low milk price 

of USD 1.14 per liter (Numbeo, n.d.). Furthermore, the country's vast agricultural land 

with diverse climatic and soil conditions across different regions contributes to the 

wide variety of French dairy products (“À l'heure du lait”, n.d.). Additionally, the 
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French dairy industry emphasizes sustainable practices and environmental 

conservation, with many farmers adopting organic farming methods to maintain a 

balanced and harmonious relationship with nature (“À l'heure du lait”, n.d.). 

2. Japan 

The dairy industry in Japan plays an essential role in the country's agricultural 

sector, meeting domestic demand for a wide range of milk and dairy products. There 

are 14,400 dairy farms in Japan, with an average of 58 cows per farm, producing about 

7.4 million tons of milk in total annually. The majority of the 839,000 dairy cows in 

Japan are Holstein cattle (Ministry of Agriculture, Forestry and Fishery [MAFF], 

2023). Most dairy farms are family-run, while about 3% of farms are equipped with 

automatic milking robots (Japan Dairy Council, n.d.; 酪農 PLUS+, 2020). Due to 

Japan's mountainous and forested areas, land availability for dairy farming is limited, 

posing challenges for farm construction and land use. Efforts have been made to 

overcome these constraints, primarily by focusing on improving milk yield (Japan 

Dairy Council, n.d.). The annual average yield in 2020 reached 8,866 kg per cow.  

Importantly, consumer preferences greatly influence the Japanese dairy market, 

leading to a reliance on imports to satisfy the diverse consumer demands. However, 

domestic production remains crucial in meeting overall dairy demand in the country 

(MAFF, 2023). In terms of dairy product research and development, there is a focus 

on developing new flavors and textures, enhancing formulations, and improving 

nutritional value (Japan Livestock Products Export Promotion Council [J-LEC], n.d.). 

3. Taiwan 

Due to the development of farming techniques, milk production in Taiwan has 

been steadily increasing each year, reaching 437 thousand tons in 2020. With 

approximately 560 dairy farms in the country, each farm has an average of 113 cows. 
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The Holstein breed is predominant, and the average milk yield is 6,937 kg per cow 

per year (Council of Agriculture, 2021; U.S. Department of Agriculture [USDA], 

2022). However, the dairy industry in Taiwan faces challenges due to its natural 

environment. The climate is characterized by high temperatures and humidity, and the 

small land area and mountainous terrain further compound these challenges. 

Consequently, Taiwanese dairy farms have lower yields and are more susceptible to 

diseases compared to major milk-producing countries with more favorable climates 

and larger land areas. To mitigate the effects of the climate, Taiwanese dairy farms 

require additional cooling facilities, leading to increased operational costs. Moreover, 

the industry is facing labor shortages and high labor costs, which contribute to overall 

expenses; however, the adoption rate of automatic systems in farms is relatively low. 

Additionally, Taiwan heavily relies on imported feed ingredients, resulting in a low 

self-sufficiency ratio and additional cost burdens (Foodnext, 2022). As a result, the 

milk price in Taiwan remains relatively high, currently standing at USD 3.05 per liter 

(Numbeo, n.d.). To address these challenges, the Taiwanese dairy industry urgently 

needs to focus on farm automation, as well as breeding cattle that are well-adapted to 

the hot and humid weather conditions.  

 

B. Smart Dairy Farming 

Technology has had a significant and positive impact on dairy farming. For instance, 

automatic techniques are used for various dairy farming processes like recording the 

activity and behavior of individual animals, feeding, detecting estrus, milking, recording 

the yields of milk, monitoring milk quality, measuring the animals’ body weights, and 

detecting diseases (Hsu, 2019; Nleya & Ndlovu, 2021). When this information is 

analyzed, integrated, and applied to decision making, it is referred to as smart dairy 
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farming (Hsu, 2019). Smart dairy farming, also known as precision dairy farming, 

combines precision farming techniques with IoT, big data analytics, and cloud computing 

to enhance productivity in the dairy industry (Kulatunga et al., 2017). Smart dairy farming 

is undoubtedly a growing market nowadays. For example, the milking robots market size 

was USD 1.25 billion in 2019 and is projected to reach USD 2.94 billion in 2027 (Fortune 

Business Insights, 2020); the livestock monitoring market was worth USD 1.6 billion in 

2022, and it is expected to reach USD 3.7 billion by 2030 (Markets and Markets, 2022). 

Smart dairy farming comprises 4 major elements: environmental control, single 

animal information, automation of rearing work, and management (Nleya & Ndlovu, 

2021). It is important to note that in this study, the focus is primarily on dairy cattle farms 

when discussing the dairy industry. 

1. Environmental control 

Heat stress is one of the main factors affecting the production efficiency of dairy 

cattle. Heat accumulation in the environment causes cows' body temperature to rise, 

resulting in reduced feed intake and ultimately leading to decreased performance, 

morbidity, and mortality (Fournel et al., 2017; Kadzere et al., 2002; West, 2003). Heat 

stress is caused by a combination of environmental factors, including temperature, 

relative humidity, solar radiation, air movement, and precipitation (Bohmanova et al., 

2007). A variety of indices are used to estimate the degree of heat stress affecting 

dairy cattle. The most common of these is the temperature-humidity index (THI), 

using the combined effects of air temperature and humidity to quantify the magnitude 

of heat stress (Bohmanova et al., 2007). A variety of indices are used to estimate the 

degree of heat stress affecting dairy cattle. The most common of these is the 

temperature-humidity index (THI), using the combined effects of air temperature and 
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humidity to represent the magnitude of heat stress (Bohmanova et al., 2007; Dikmen 

& Hansen, 2009; Ji et al., 2020).  

Considering the great impact of heat stress on dairy cattle, the implementation 

of cooling systems in dairy farms is crucial. Common cooling facilities in dairy farms 

are shades, sprinklers, fans, and foggers (Collier et al., 2006). Studies have 

demonstrated the effectiveness of cooling systems in reducing heat stress in dairy 

cows (Bucklin et al., 1991; Buffington et al., 1983; Frazzi et al., 2000). However, 

traditional cooling systems operate on fixed time cycles (Armstrong, 1994; 

Flamenbaum & Galon, 2010), leading to potential unnecessary usage (Moretti et al., 

2017). In smart dairy farming, the integration of IoT temperature and humidity 

sensors enables cooling systems to be automatically activated when real-time 

calculations indicate high heat stress levels, thus enhancing cooling efficiency and 

reducing energy costs (Goswami, 2020; Moretti et al., 2017; Vitali et al., 2009).  

2. Single Animal Information 

Recording individual information about cattle enhances herd management by 

improving animal welfare monitoring, disease control, and vaccination monitoring. 

Therefore, efficient and secure cattle identification systems are necessary to track 

relevant features for each cow over time (Awad, 2016; Qiao et al., 2021).  

Traditional identification methods, which are marking body parts like ear 

notching, ear tattooing, hot iron branding, and freeze branding, have several common 

disadvantages, including low accuracy, causing discomfort in animals, and the 

possibility to be damaged or altered (Awad, 2016; Johnston & Edwards, 1996; 

Schwartzkopf-Genswein et al., 1997). Radio Frequency Identification (RFID) devices 

emerged later, which are electronic tools that enable wireless data transmission and 



doi:10.6342/NTU202303425

 8 

remote animal identification (Ruiz-Garcia & Lunadei, 2011; Stankovski et al., 2012). 

An RFID system consists of RFID tags, RFID readers, and a management server. 

There are different types of RFID tags: ear tags, glass tags injected under the animals’ 

skin, and boluses, which are acid-resistant capsules ingested by the animals (Awad, 

2016; Ruiz-Garcia & Lunadei, 2011; Voulodimos et al., 2010). When an animal with 

an RFID tag gets near the reader, its individual information is transmitted to the reader 

by radio waves (Qiao et al., 2021) and then to the management server. This enables 

farmers to identify the specific cow near the reader, in other words, the gate, the 

feeding area, the milking area, or any other location where the reader is installed. 

In addition, both attached and non-attached IoT sensors significantly enhance 

farm management by effectively and efficiently monitoring key health parameters of 

cattle such as body temperature, ruminal pH, heart rate, and respiration rate (Sharma 

& Koundal, 2018). The body temperature can be measured using attached sensors on 

the ear tag or collar (Darwis et al., 2022; Xia et al., 2020), rumen or reticular boluses 

(Bewley & Schutz, 2010; Lees et al., 2019), or infrared cameras in the surroundings 

(Schaefer et al., 2012). Boluses with pH sensors are used to monitor ruminal pH (Sato 

et al., 2012), while pulse sensors on belts or in boluses are employed for measuring 

heart rate (Smith et al., 2006). Several devices have been developed for measuring the 

respiration rate of cattle, including sensors fixed on chest belts for detecting thoracic 

and abdominal movements (Eigenberg et al., 2000; Martinez et al., 2006), sensors 

monitoring temperature or pressure differences near nostrils (Milan et al., 2016; 

Strutzke et al., 2019), and non-contact radar sensors that detect flank movements in 

cattle (Tuan et al., 2022).  

Sensors can also be utilized for monitoring cattle behaviors. Ungar et al. (2005) 

employed GPS collars to track the positions of cattle and classify their grazing, 
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traveling, and resting behaviors. Zehner et al. (2016) and Ruuska et al. (2016) 

developed a pressure-based noseband sensor to measure rumination, eating, and 

drinking behaviors. Gokul and Tadepalli (2017) applied wearable microphone sensors 

to detect mooing sounds, while Tran et al. (2022) developed leg-mounted and collar-

mounted accelerometers to classify whether a cow was standing, lying, eating, or 

walking. Changes in these physiological and behavioral parameters can indicate 

health issues such as heat stress or lameness in cows. Hence, by continuously 

gathering data from sensors, farmers can promptly respond to any potential health 

issues. 

In smart dairy farming, another trend in identification and monitoring is image 

recognition. By utilizing cameras or other photography equipment, noncontact animal 

identification can be done quickly and easily based on biometrics extracted from 

image data (Weng et al., 2022). Several physiological traits have been used for 

identification, including muzzle patterns (Barry et al., 2007; Kumar et al., 2018; 

Kumar et al., 2017; Kusakunniran et al., 2018), iris patterns (Awad et al., 2013; 

Larregui et al., 2019; Lu et al., 2014; Sun et al., 2013), retinal vascular patterns (Allen 

et al., 2008), coat patterns (Andrew et al., 2016; Okura et al., 2019), and facial 

appearance (Kim et al., 2005; Kumar et al., 2015; Wang et al., 2020; Weng et al., 2022; 

Yao et al., 2019). These features are captured through computer vision, converted into 

digital data, and analyzed using machine learning algorithms, allowing for rapid and 

highly accurate individual identification (Wu et al., 2021). Once an animal is 

identified, the computer vision can further record and recognize cattle behaviors like 

eating, standing, and lying also by machine learning (Avanzato et al., 2022; Porto et 

al., 2013, 2015), which again is useful information for cattle health management. 
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3. Automation of Rearing Work 

Dairy farmers often face time-consuming tasks such as milking, feeding, and 

cleaning. To enhance operational efficiency and reduce labor requirements, automatic 

cow-rearing systems have been developed. Among them, automatic milking systems 

are widely used in smart dairy farms, which have been proven to increase milk yield 

by 12%, reduce labor by 18%, and improve animal welfare by allowing cows to 

determine when they want to be milked (Jacobs & Siegford, 2012). An automatic 

milking system, also known as a milking robot, consists of various modules: milking 

stall, teat sensing system, teat cleaning system, robotic arm for attaching teat cups, 

milking machine, milk cooling system, and quality control system (de Koning, 2011; 

Klungel et al., 2000; Rossing & Hogewerf, 1997).  

When a cow approaches the robot, its identity is detected, and feed is provided 

in the milking stall to keep the cow engaged during the process. The milking process 

begins, and important information is recorded, including body weight, milking 

frequency, milk yield, and various milk quality parameters such as temperature, fat 

content, protein content, total bacteria count (TBC), somatic cell count (SCC), color, 

and electrical conductivity. These measurements not only help assess individual 

productivity but also serve as indicators for disease detection, such as mastitis (de 

Koning, 2011; Hsu, 2019; Rossing & Hogewerf, 1997). Moreover, if any anomalies 

are detected, the robot automatically separates the affected batch of milk from the rest 

to prevent contamination and maintain milk quality (Hsu, 2019).  

Automatic sorting gates are commonly integrated with automatic milking 

systems. Sorting gates are equipped with identification devices like RFID readers, and 

they can direct each cow to different areas based on their specific circumstances. One 

option is to place a sorting gate before the automatic milking system to identify cows 
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that have recently been milked and redirect them to another area. Another option is to 

position a sorting gate after the automatic milking system to guide cows that require 

examination or treatment to an isolation area (Hsu, 2019; Laurs & Priekulis, 2008).  

Precision feeding is an important component in smart dairy farming, meaning to 

provide each cow with specific amounts of nutrients that maximize productivity, 

reduce greenhouse gases emission, reduce waste production, or achieve any desired 

outcomes (Adviento-Borbe et al., 2010; Erickson & Kalscheur, 2020). Aside from the 

goal above, various factors influence the nutritional requirements of cows, including 

individual characteristics, milk yield, stage of lactation, pregnancy and parturition, 

and the amount of feed consumed during milking (Bach & Cabrera, 2017; Erickson 

& Kalscheur, 2020; Peyraud & Delagarde, 2013). Implementing automatic feeding 

systems is an efficient approach to achieve precision feeding with minimal labor 

(Monteiro et al., 2021). These systems automatically weigh and thoroughly mix 

dietary ingredients such as forage, grain, and supplements like minerals, vitamins, and 

proteins to create a total mixed ration (TMR), which is then distributed to each cow 

by robots (Coppock et al., 1981; Da Borso et al., 2017; Erickson & Kalscheur, 2020; 

Šístkova et al., 2015). Additionally, feed pusher robots can work in conjunction with 

the automatic feeding system, moving along the feeding passage and pushing feed 

towards the cows to minimize feed loss and ensure consistent feed intake (Nabokov 

et al., 2020). 

4. Management 

Dairy farm management is greatly enhanced by the facilities, devices, and 

systems mentioned above, particularly animal health management. Changes in the 

cow’s behavioral, physiological, and production variables act as a mirror to changes 

in the cow’s health (Awasthi et al., 2016). For instance, heat stress in cattle is 
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characterized by elevated body temperature and respiration rate, increased drinking 

and standing behaviors, and decreased feed intake, milk production, and milk quality 

(Becker et al., 2020; Idris et al., 2021; Nienaber & Hahn, 2007; Ratnakaran et al., 

2016; Rhoads et al., 2009); lameness is associated with extended lying time and 

reduced eating time, rumination time, milk yield, and milking frequency (Antanaitis 

et al., 2021; Garvey, 2022; Warnick et al., 2001); mastitis results in higher somatic 

cell count, bacterial count, and milk conductivity, as well as decreased milk yield 

(Ruegg & Reinemann, 2002; Seegers et al., 2003). Smart dairy farms employ sensors, 

cameras, and automated systems to comprehensively monitor cattle health. Whenever 

abnormalities are detected, farmers receive notifications or alerts via mobile 

applications or herd management software on their computers, enabling prompt 

examinations or treatments (Cockburn, 2020; Islam & Scott, 2022). Therefore, cows 

suffer less pain, and animal welfare is improved. 

Another main development in smart dairy farming is precision breeding. The key 

objectives of breeding in dairy farming include high productivity, good reproduction 

performance, optimal health, longevity, low environmental impact, and high stress 

tolerance (Berry, 2015). Precision breeding aims to enhance the precision of attaining 

these desired traits through breeding (Flint & Woolliams, 2008). Genomic selection 

has revolutionized this process by utilizing genomic estimated breeding values 

(GEBV) to make selection decisions, with GEBV representing the predicted effects 

of the entire genome on certain traits (Hayes et al., 2009). This allows breeders to 

have an estimated outcome before actual breeding, enabling them to choose the best 

combination of female cows and bull semen. Furthermore, estrus detection techniques 

are employed to improve breeding success rates and enhance reproductive efficiency 

by reducing calving intervals (Bekara et al., 2017). During estrus, changes in body 
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temperature and increased activity occur (Firk et al., 2002; Mayo et al., 2019; Roelofs 

et al., 2005). These changes are detected by monitoring systems, which automatically 

send alerts. Consequently, farmers can determine the optimal timing for artificial 

insemination (Hsu, 2019). 

In conclusion, smart dairy farming serves as a promising solution to the challenges 

faced by the milk production industry today. Firstly, by incorporating techniques such as 

animal health monitoring, precision feeding, precision breeding, and automatic rearing 

systems, smart dairy farming can increase milk production and improve animal welfare 

simultaneously (Akbar et al., 2020; Bovo et al., 2020; Nleya & Ndlovu, 2021). Secondly, 

precision feeding and precision breeding practices contribute to the reduction of negative 

environmental impacts by decreasing greenhouse gas and manure emissions through feed 

and nutrition adjustments and selective cattle breeding (de Haas et al., 2011; Gerber et al., 

2013; Hayes et al., 2013; Niloofar et al., 2021). Thirdly, regarding future climate change 

concerns, precision breeding enables the efficient selection of cattle breeds with high 

stress tolerance, while the implementation of cooling systems in dairy farms helps 

mitigate heat stress among cattle (Bucklin et al., 1991; Buffington et al., 1983; Frazzi et 

al., 2000; Hayes et al., 2013). Lastly, to address labor shortages and rising labor costs, 

automatic rearing systems have been proven to reduce labor requirements on dairy farms 

(Jacobs & Siegford, 2012). As a result, smart dairy farming undoubtedly contributes 

significantly to sustainable development. 

 

C. Milk Yield Prediction 

According to previous statements, it is clear that milk yield prediction is an essential 

component in smart dairy farming. In farm management, estimated milk production 

serves as an indicator of farm income. When it comes to animal health monitoring, 
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differences between predicted milk yield and actual yield are utilized to identify potential 

diseases. Moreover, in precision breeding, estimated milk productivities provide insights 

into the performance of offspring resulting from various combinations of female cows 

and bull semen (Liseune et al., 2020). 

The basic principle of milk yield prediction involves using historical data to establish 

a relationship between milking characteristics and milk yield that can estimate the future 

milk yield. Important factors that directly or indirectly influence milk yield include days 

of lactation, age, fertility, the season of calving, and climatic conditions, as well as 

genetics, weight, season of birth, parity, past performance, feed nutritional information, 

and milk quality (Lacroix et al., 1995; Murphy et al., 2014; Sharma et al., 2007; Smith, 

1968; Wood, 1967).  

However, in the early stages, milk yield prediction models focused solely on the 

relationship between days of lactation and milk yield, also known as the lactation curve. 

A lactation curve can be described as a function of time, characterized by a rapid increase 

until reaching a peak yield, followed by a steadier decline (Liseune et al., 2021; Olori et 

al., 1999). As early as the 1960s, Wood (1967) proposed an incomplete gamma function 

to fit the lactation curve. This formula has since been widely used in various models for 

predicting lactation yield (Grzesiak et al., 2006; Leon-Velarde et al., 1995; Schaeffer & 

Jamrozik, 1996). Other mathematical methods, such as polynomial functions and 

regression models, have also been employed to describe the shape of the lactation curve 

(Ali & Schaeffer, 1987). 

Over time, with the advancement of technology and the availability of sensors, 

cameras, and automatic rearing systems, more animal records have been collected, 

leading to the development of new models with higher complexity that incorporate more 
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input features (Cockburn, 2020; Liseune et al., 2021; Murphy et al., 2014). Multiple linear 

regression is a common statistical technique commonly used for building predictive 

models (Dongre et al., 2012; Grzesiak et al., 2003; Murphy et al., 2014; Sharma et al., 

2006, 2007). Machine learning models have also proven useful for predicting milk yield, 

employing algorithms such as supported vector regression (SVR), random forest 

regression, extreme gradient boosting machine (XGBoost), long short-term memory 

(LSTM), and artificial neural network (ANN) (Dongre et al., 2012; Grzesiak et al., 2003; 

Hsieh et al., 2011; Ji et al., 2022; Nguyen et al., 2020; Zhang et al., 2020).  

The implementation of these new models has resulted in significant improvements 

in performance. For instance, Lacroix et al. (1995) developed an ANN model that utilized 

16 input variables, such as days of lactation, age, parity, season of calving, weight, feed 

nutrition, and milk quality information, achieving correlation coefficients ranging from 

0.897 to 0.980; Sharma et al. (2007) utilized 12 traits (genetic group, season of birth, 

period of birth, birth weight, age at maturity, weight at maturity, season of calving, period 

of calving, age at calving, weight at calving, peak yield, and days to attain peak yield) to 

build an ANN model, achieving over 92% prediction accuracy. 

 

Materials and Methods 

A. Data Sources 

The Dairy Herd Improvement (DHI) project in Taiwan aims to collect, preserve, and 

analyze dairy cow information. Its purpose is to provide dairy farmers with reports to aid 

in their management decisions and assist relevant units in evaluating the genetic ability 

of Taiwanese cattle for milk production. The data are collected once a month (Council of 

Agriculture, 2003; Chang et al., 2001). For this study, four data sets originated from the 

DHI project were downloaded from the online competition "Prediction of Milk Yield of 
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Taiwan Ranches" on the Artificial Intelligence Collaboration Platform (https://aidea-

web.tw/topic/fcc338da-e7ec-4d9e-a860-5dcdd85ba52b?lang=en). The main data set 

contains 37,517 milking records among 1,991 Holstein cattle across three dairy farms in 

Taiwan, spanning from 2013 to 2019. Additionally, three other data sets are breeding 

records (n=21,050), calving records (n=3,761), and health records (n=4,362). Weather 

information was obtained from the Observation Data Inquire System of the Central 

Weather Bureau (http://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp).  

 

B. Data Processing 

All programming processes were done using Python code within a Jupyter notebook 

under a virtual environment in Anaconda (https://github.com/guanguan-chen/Milk-Yield-

Prediction_Taiwanese-Data/tree/Version-2). 

1. Data Cleaning 

Initially, the data cleaning process involved removing rows from the main dataset 

that had missing values for any of the following variables: year, month, farm code, 

parity, days of lactation, age in months, or milk yield. Additionally, rows with milk 

yield of 0 were also eliminated. The resulting cleaned dataset consisted of 33,185 

milking records from 1,818 cows across three dairy farms, spanning from 2013 to 

2018. The objective was to develop models using data from 2013 to 2017 and predict 

daily milk yield for 2018, simulating the prediction of milk yield for the following 

year using historical data up until the current year. Therefore, when constructing the 

models, the data from 2018 was excluded, and the remaining data was split into two 

parts: 80% for training and 20% for validation. The initial feature combination (F1) 

consisted of five original features: month, farm code, parity, days of lactation, and 

age in months. 
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2. Feature Generation 

The main dataset provided information on the month, birth date, and latest calving 

date, allowing for the generation of new variables: milking season, birth season, and 

calving season. Additionally, calving interval and if first calving were derived from 

parity, previous calving date, and latest calving date. To represent productivity, average 

yield was calculated using past records (from 2013 until the end of the previous year) 

for each cow. Any missing values were imputed with the mean of all milk yield records. 

These new features plus F1 were the second feature combination (F2). 

From the birth dataset, dry period and hardness of calving were generated and 

incorporated into the main dataset. The dry period refers to the time span before the 

next calving when a cow stops producing milk. It was included in the records for the 

subsequent parity. The third feature combination (F3) comprised the dry period, 

hardness of calving, and F2. Furthermore, situation type and situation code were added 

to the main dataset from the health dataset. Situation codes represented different 

reasons causing specific types of situations. These two features, along with F3, 

constituted the fourth feature combination (F4). Finally, temperature and relative 

humidity (RH) information for each day on each farm was included. The temperature-

humidity index (THI) was calculated using the formula below, which helped determine 

the level of heat stress: no stress (THI < 72), mild stress (72 ≤ THI < 80), moderate 

stress (80 ≤ THI < 90), and severe stress (THI ≥ 90) (Armstrong, 1994). Along with F4, 

these four weather-related features formed the fifth feature combination (F5), resulting 

in a total of 19 features. 

𝑇𝐻𝐼 = (1.8	 × 	𝑇 + 32) − (0.55 − 0.0055	 × 	𝑅𝐻) ×	(1.8	 × 	𝑇 − 26.8) 

(Dikmen & Hansen, 2009) 
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C. Machine Learning Models 

Before proceeding, missing values in the dataset were imputed using the median of 

each column. Categorical variables were then converted into numerical ones using one-

hot encoding, which involves creating a binary column for each category. Then, three 

supervised learning algorithms, namely support vector regression (SVR) from support 

vector machine (SVM), random forest (RF), and extreme gradient boosting machine 

(XGBoost, XGB), were used to build models using F1 to F5. In the final step, 

hyperparameter tuning was performed on each model using grid search, which involves 

exploring all possible combinations of parameter values to identify the best-performing 

one. The tuned model with the highest accuracy for each algorithm was then used to 

predict the data for the year 2018. 

 

Results 

A. Model Performance 

Figure 1 shows the accuracies of SVR, RF, and XGB models built with F1 to F5 and 

F5 (tuned). Significant increases in F2 and F5 (tuned) and slight decreases in F5 are 

observed. The SVR, RF, and XGB model accuracies of F5 (tuned) were 77.18%, 78.64%, 

and 80.21%, while the prediction accuracies on data in 2018 are 74.68%, 75.95%, and 

76.33%, respectively. Detailed values of the results are shown in Appendix C. 

 
Figure 1. Model accuracies 
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B. Important Features 

The top 20 features with the highest feature importance of the XGBoost model using 

F5 (tuned) are shown in Figure 2. The top 4 are average yield, days of lactation, calving 

interval, and age in months. 

 
Figure 2. Top 20 important features in the XGBoost model using F5 (tuned) 

 

C. Relationship Between Milk Yield and the Top Four Important Features 

Figure 3a to 3d illustrate the relationship between milk yield and average yield, days 

of lactation, calving interval, and age in months. Notably, there is a positive correlation 

between milk yield and average yield (Figure 3a). As depicted in Figure 3b, milk yield 

reaches its peak around the 50th day of lactation and gradually declines thereafter. Figure 

3c does not reveal any clear patterns. Additionally, Figure 3d suggests that cattle at 35 

months of age exhibited the highest mean milk yield.  

a                                   b 
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c                                   d 

 
 

Figure 3. Relationship between milk yield and the top 4 important features. (a) Relationship 
between milk yield average yield. (d) Relationship between milk yield and days of lactation. (e) 
Relationship between milk yield and calving interval. (f) Relationship between milk yield and 
age in months. The orange lines are the mean curves. 

 

Discussion 

In this study, machine learning models were built to predict milk yield. The 

effectiveness of a milk yield prediction model depends on its ability to capture patterns 

and adjust factors affecting milk yield (Murphy et al., 2014). Figure 1 shows a significant 

improvement in accuracy for models incorporating F2, indicating a strong correlation 

between at least one of the new features in F2 and milk yield. Based on the important 

features identified (Figure 2), it is evident that the inclusion of average yield and calving 

interval significantly contributes to the increased accuracy. Additionally, the increases in 

accuracies observed in models built with F5 (tuned) highlight the effectiveness of 

hyperparameter tuning. Among all the models evaluated, the XGBoost algorithm 

demonstrated the highest prediction accuracy, achieving an impressive 76.33%. 

The top four significant factors influencing milk yield were identified as average 

yield, days of lactation, calving interval, and age in months (Figure 2, 3). This study 

introduces average yield as a novel feature, which is found to be the primary determinant 
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of milk yield. Despite the absence of genetic information, past performance appears to 

indirectly reflect the individual cow's standard performance. Wood (1967) declared that 

the general shape of a single lactation curve remains substantially unchanged and 

proposed an algebraic equation to fit the curves, which has been widely applied by others 

(Grzesiak et al., 2006; Leon-Velarde et al., 1995; Schaeffer & Jamrozik, 1996). The mean 

curve of milk yield throughout the lactation period in this study aligns with the curve that 

Wood (1967) proposed (Appendix D), proving that indeed the milk yield follows a 

consistent pattern during the lactation period. Traditionally, the calving interval is around 

12 to 13 months (Arbel et al., 2001), determined by the calving-to-conception interval 

(days open) and the dry period. However, dry period in this study was not as influential 

as calving interval, possibly due to insufficient information on dry period dates in the 

original dataset. In addition, 3- to 6-year-old cows had the highest milk yield peak and 

sustained relatively higher production compared to younger or older cows (Appendix E). 

The importance of weather-related features emerged as follows: Temperature, 

relative humidity (RH), month, and temperature-humidity index (THI) ranked as the 5th, 

6th, 8th, and 9th significant features (Figure 1), indicating their impact on milk yield, 

albeit indirectly. Several reasons could explain this. The weather information was 

collected from observation stations near the farms, potentially introducing errors 

compared to true farm values. Factors like wind speed, aside from temperature and 

relative humidity, may also influence heat stress levels. Additionally, the chosen formula 

may not accurately reflect the severity of heat stress in this study. 

Despite the promising results of the prediction models in this study, there are still 

limitations. Firstly, the data sets were not thoroughly cleaned, containing unreasonable 

values such as unusually high numbers for days of lactation and calving interval. However, 

without the ability to contact the data providers, it was challenging to address these issues 



doi:10.6342/NTU202303425

 22 

appropriately. Secondly, the health condition of cows should be considered as an 

influential factor for milk yield. However, the health data set lacked descriptions of 

situation types and codes, as well as the duration of each situation, since information was 

collected only once a month. Hence, the health information is not able to help with the 

learning of the models. Lastly, incorporating additional factors such as genetic group of 

cows, birth weight, age at maturity, weight at maturity and calving, as well as feed 

nutrition intake and milk quality, could significantly enhance the accuracy of milk yield 

prediction. 

 

Conclusion 

This study developed milk yield prediction models using 19 input variables. The 

best-performing model utilized XGBoost as the algorithm, demonstrated an accuracy of 

76.33% in predicting future milk yield. The results indicated that average yield, days of 

lactation, calving interval, and age in months are the most important features affecting 

milk yield. Nevertheless, it is important to acknowledge that the models have certain 

limitations. To further improve prediction accuracy, future work should prioritize the 

implementation of a more comprehensive and frequent data collection system in dairy 

farms. This would ensure a more extensive dataset, allowing the models to capture the 

patterns of milk yield variations more effectively. Overall, the developed models 

represent a valuable step towards enhancing milk yield prediction in dairy farming. 
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Appendix A 

Cattle milk production in 2020 in France, Japan, and Taiwan 

  Taiwan Japan France 

Population million persons 23.8 125.2 64.5 

Land area sq. km 32,260 364,485 549,970 

Raw cattle milk production 1000 t 437 7,438 25,235 

Number of dairy cattle (for milking) 1000 heads 63 839 3,406 

Average yield kg/cow 6937 8866 7409 

Number of dairy farms farms 560 14,400 50,289 

Average number of cows per farm heads 113 58 68 

per Capita consumption kg 21.65 31.6 198.5 

Import 1000 t 171 369 2984 

Export 1000 t 1 10 5506 

Milk Price (2023.5.25) USD/liter 3.05 1.41 1.14 

Note. Original data were obtained FAOSTAT (FAO, n.d.), The World Factbook (Central 
Intelligence Agency [CIA], n.d.), Council of Agriculture (2021), MAFF (2023), Agreste (2022), 
Eurostat (n.d.), and Numbeo (n.d.). 

 

 

References not in the list above 

Central Intelligence Agency [CIA]. (n.d.). The World Factbook. 

https://www.cia.gov/the-world-factbook/ 

Eurostat. (n.d.). EU-27 estimated agricultural balance sheets. 

https://datam.jrc.ec.europa.eu/datam/mashup/EU_ESTIMATED_AGRICULTU

RAL_BALANCE_SHEETS/index.html 
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Appendix B 

Top milk producing, importing, and exporting countries in 2020 

a 

 
     b                                 c 

 
 
 
 
 
 
 
 
 
 
 
 
 

Note. (a) Top 10 milk producing countries in 2020. Blue bars are the milk productions (left), while 
orange diamonds represent the yield of each cow (right). Original data were obtained from 
Production (Raw milk of cattle), FAOSTAT (FAO, n.d.). (b) Top 5 milk importers in 2020. (c) 
Top 5 milk exporters in 2020. Original data were obtained from Food Balance Sheets (Milk - 
Excluding Butter), FAOSTAT (FAO, n.d.). 
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Appendix C 

Results of each model 

  SVR RF XGB 

F1 Correlation Coefficient 0.7013 0.6746 0.7071 

 RMSE 6.2965 6.5527 6.2324 

 Accuracy 74.86% 74.47% 75.35% 

F2 Correlation Coefficient 0.7269 0.7639 0.7860 

 RMSE 6.0660 5.6810 5.4429 

 Accuracy 76.07% 78.53% 79.46% 

F3 Correlation Coefficient 0.7287 0.7724 0.7869 

 RMSE 6.0483 5.5907 5.4323 

 Accuracy 76.20% 78.78% 79.57% 

F4 Correlation Coefficient 0.7192 0.7721 0.7853 

 RMSE 6.1363 5.5983 5.4529 

 Accuracy 75.69% 78.79% 79.48% 

F5 Correlation Coefficient 0.7200 0.7646 0.7764 

 RMSE 6.1298 5.6732 5.5500 

 Accuracy 75.62% 78.38% 78.98% 

F5 (tuned) Correlation Coefficient 0.7441 0.7732 0.7991 

 RMSE 5.9378 5.5866 5.2937 

 Accuracy 77.18% 78.64% 80.21% 

Prediction of Data  Correlation Coefficient 0.6898 0.7194 0.7208 

in 2018 RMSE 6.3057 5.8317 5.8607 

 Accuracy 74.68% 75.95% 76.33% 

Note. RMSE: root mean squared error. 
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Appendix D 

Comparison of the lactation curves between Wood (1967) and this study 

              a 

 

              b 

 
Note. (a) The lactation curve proposed by (Wood, 1967): A regression curve fitted to a single 
lactation. (b) The mean curve of milk yield by weeks of lactation, under same time zone as (a). 
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Appendix E 

Lactation curves at different ages 
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