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Abstract

Respiratory viruses with high mutation rates have become a significant public health

concern, highlighting the need for monitoring complete viral sequences. While online

sequence analysis tools exist, they cannot often analyze the entire genomic sequence,

creating a gap that requires developing new software tools. This dissertation analyzes two

emerging viruses, avian influenza viruses, and SARS-CoV-2.

In the first part of the research work, | developed the analysis software packages to

analyze whole AIV genome sequences comprehensively. The FluConvert software

automatically processes raw sequence data, organizing viral segments based on virus

nomenclature (ABCD Type/Host/Region/Strain/Year/HxNy Subtype) and aligning

distinct genes, and translating them into protein sequences. Subsequently, the IniFlu

software integrates protein sequences with significant characteristics, allowing for

classification based on study objectives and examination of consensus sequences in

different subgroups. This innovative approach has led to identifying 247 polygenic

consensus signatures associated with highly pathogenic AV (HPAIV) across HA and ten

other proteins, most of which have not been reported in the literature. Our pioneering

software and methods enable rapid analysis of diverse strains’ genomes while identifying

polygenic consensus signatures for integrated investigations.

iv
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The second part of the study focused on understanding the dynamic changes of

SARS-CoV-2 Alpha variant strains in responses to various control measures during the

outbreak in Taiwan from late April to September 2021. The goal was to delineate the

epidemiological circumstances that allowed these strains to become predominant. The

findings provided valuable insights into the emergence and control of a dominant viral

strain during an outbreak.

In conclusion, the study offered an integrated platform for comprehensive viral

genome sequence analysis. It allows for simultaneous estimation of the complete viral

genome while easily integrating other significant information to extract characteristics-

specific viral sequences. Future experimental validation is required to support the analysis.

Applying this integrated analysis method to other pathogens with rapid spread, high

pathogenicity, and pandemic potential will provide insightful information for the early

detection of emerging or health-threatening dominant viruses. Results from the study will

contribute to scientific progress and early disease prevention and control success.

Keywords: Sequence analysis platform, Influenza virus, SARS-CoV-2, Viroinformatics,

Risk assessment, Pandemic

doi:10.6342/NTU202301433



Contents

TEZ R € F T o e e s i
= O . & 1 X | 1) / ii
L 2 OO OPTRONURe SO SR i
AADSTFACT ...ttt ens iv
Chapter 1 INTTOTUCTION ......ooveiiiriiieieiei ettt ettt b et ene e 1
1.1 VIFOINTOIMALICS ....c.veuiiiiieiitceete et sttt 3
1.2 Generation of viral sequences INFOrMation ...........cccceeceeveieecece e 5
N R T 1= ST To [N 1= o] 1oV 5
1.2.2 Next-generation SEQUENCING ......c.eeererterreteeeerieetesrestestesseeeseeseesessessessesseseeseseeeseenessens 6
1.2.2.1 Library preparation ........coccoeoerererienieieieeese sttt 6
1.2.2.2 Emulsion PCR and pYroSEQUENCING ......cvevverveerverteereeriesreeeestesseessesseesnessesseesessessnenns 7
1.2.2.3 10N SemicONAUCIOr SEQUENCING ...vveeeveeieeieeiteesieeseeeereereeseeesteesseesseesssesssessseessesssnsssnes 8
1.2.2.4 11IUMINA dYe SEQUENCING .....veeveerieeeeierieeeesteseetesteeeeeteseeesessesseessesseessessesseessessesssenes 9
1.2.3 Third-generation SEQUENCING.........cvevvertirierreiteeeesresreetesteereestesreeaesseseessesreessessesreensens 10
1.3 Public databases for Viral SEQUENCES.........ccueiieeiieeieecie e esee e st eteeteeteeseeesraesreereenneens 12
1.4 Viral sequence analysis tOOIS.........coervirieieieirieiriesereeeee e e 14
1.5 Rationale and approaches to develop integrated software for viral sequence analysis ...... 18
(O3 P o] (=] gAY T=1 1 ToTo (o] [T | 2RSS 22
2.1 Data sources and file FOrmal...........ccoverireriineiee e 24
A DL ;o] 0 1T= 1] g o TS 24
2.2.1 SEqUENCE AITANGEIMENT ....eoveeiirtieiertiett ettt et sttt et sb et s bt st e s sb e et e sbessee b sbeensesreennenees 25
2.2.2 Validation of data qUalitY .........c.cceririeriiieese et 26
2.2.3 Sequence alignment and algorithm SEleCtioN ........ccocveveevieieiececece e, 27
2.2.4 SEqUENCE TrANSIALION .....eeiiieieeiecieeste et e s e e s te e te e teesbeesreeseaesraeenneens 28
2.3 SeqUENCE AALA ANAIYSIS ....eoveeeeieiieiietirt ettt 28
2.3.1 Selection of open reading frames and alternative SpliCing.........ccccocevveverereieeenenennens 29
2.3.2 Strain-based aligNMENT...........coieieiicee et re e 29
2.3.3 Grouping OF VIral SEQUENCES.......cccveieereeeteeieeieeseesteesreeseeessresseeseesseessessrnssseesssesnsenns 30
2.3.4 Determining the CONSENSUS SEAUEINCE ......ecveeverieeeeteeeeeeeseeeeeseeseeeeessesseensesseensessesnsenees 31

doi:10.6342/NTU202301433



2.3.5 Identification and annotation of polygenic consensus Signatures ..........c..ccocereereenoie, 31
Chapter 3 Cited RETEIENCES. ......eee ettt ettt ste e b s s e b 32
O -] (=] G S USSP 41

PART | FluConvert and IniFlu: a suite of integrated software to identify novel signatures of

emerging influenza viruses With iNCreasing FisSK ........cccvvevverieriieceeceesee e 41
CRAPTET 5 .t h bbb et b e bbb e et b naeenes 42

PART Il The Emergence and Successful Elimination of SARS-CoV-2 Dominant Strains with

Increasing Epidemic Potential in Taiwan’s 2021 Outbreak ..........coovevevireenenenieenineeeneneene, 42
TN N 0 1 o O RR P RS 43
T2 [ 11 T [T (o) TR 44
TG N1V, 1= 1 T o [0] (o0 Y25 U 45

5.3.1 SUAY TESION .ottt ettt ettt ettt et s e et te e s et e steesaesbeereenbesreessesreenneneas 45
5.3.2 Study populations of SARS-CoV-2-positive cases in TaiWan.........cccceeveereerveeiveninnens 46
5.3.3 SARS-CoV-2 genome sequence alignment and mutation analyses..........c.ccccccvevveennns 47
5.3.4 CoVConvert: a tool to process COronavirus SEQUENCES ........ceeeeverrerrervereermereeeeeeensens 48
5.3.5 IniCoV: A Coronavirus information viewer and analyzer ..........ccccccoovvvvevivneeceeceenenne. 48

5.3.6 Contact-tracing investigations and transmissibility analysis of the early-outbreak cases
in the Taiwan's 2021 OULDIEAK .......ccvvieieriieieie ettt st e e saeenae s 50

5.3.7 Univariate and multivariable regression analyses of factors associated with SARS-

CoV-2 strains' dominance in the OULDIEAK ..........eeeeeeeeeeeeeeeee ettt e e 50
B RESUILS .ottt ettt e e et e ettt e et e e s e e e s e et e eesesaaasaaeereeesesaaa s areeeeeesseaaanrareeeeeeesaas 51

5.4.1 Characteristics in SARS-CoV-2-positive cases before and after Taiwan’s 2021

OUEDIBAK ...ttt ettt s b ettt et s e bt e b e b e s b st e b et et et e st eseene et 51
5.4.2 Characterization of Taiwan’s 2021 outbreak ..........ccccceeeeiiiiiiiiiiee e 52
5.4.3 Contact-tracing investigations to search for dynamic sequence changes............cco....... 54
5.4.4 Integrating whole-genome SEqUENCE aNaIYSES ......ccvvververeeiererieeienieeeeneeeeeeee e ennenees 54

5.4.5 Epidemiological factors associated with viral strain dominance in the 2021 outbreak 56

D DESCUSSION. ...vveeteeteeeeeeeeeeeeeateeeseeeteeseeaaeeeseeaaeeesaaaaeeessaaseeesaassatessassasessssaaeessasseessasaeessasaeesan 57
BB RETEIENCES ..ceeiiieeeeee ettt ettt ettt ettt e e s e e ettt reeesssea et baeeteeesssaaaraseeteesssssasrereeeeesssans 64
ChapLer B PEISPECLIVES ...ocueeiieeieie ettt ettt ettt ettt e e st e e seeentestesneensesseensenseeneensas 89

doi:10.6342/NTU202301433



Contents of Tables
Table 1. List of 101 SARS-CoV-2 genome sequences and important epidemiological

information used in this study iN TAIWAN .........cccoieiieiiieie e 68

Table 2. The district-specific incidence rates of the SARS-CoV-2-positive cases,
population sizes, and population densities in the three affected cities by the four

time periods during Taiwan 2021 large outbreak ............cccccovevevieieciccnenn, 71

Table 3. List of 24 SARS-CoV-2 Alpha variant cases from three risk-clusters in the onset
of 2021 large outbreak in Taiwan (from December 9, 2020 to May 16, 2021) 72

Table 4. The percentages of descendants of SARS-CoV-2 Alpha variant strains ......... 73
Table 5. The number of nucleotide variations of the 81 indigenous SARS-CoV-2 Alpha
variant strains in Taiwan compared to the Alpha reference strains (UK-MILK-
ACFICC) in the three time Periods ..........ccveeiirenenieee e 74

Table 6. Mutation prevalence percentages of the 101 Taiwan Alpha variant strains..... 75
Table 7. Univariate analysis and Multivariable regression analysis of the factors
associated with the frequency of SARS-CoV-2 genome sequences identical to

those of the dominant strains from cluster cases of 1D-3445/1186/1263 with

their onset dates from December 9, 2020 to October 31, 2021 ..................... 76

Table 8. Binomial linear regression and Variance Inflation Factor (VIF) ..................... 77
Table 9. Multivariable logistic regression (binomial) analysis associated with the
frequency of SARS-CoV-2 genome sequences identical to ID-3445/1186/1263

using stepwise method by Akaike information criterion (AIC) and

DACKWArA/FOIWAIT ... 78

doi:10.6342/NTU202301433



Contents of Figures
Figure 1. Flow diagram of study design to analyze SARS-CoV-2-positive cases in Taiwan

from January 11, 2020 to September 4, 2021 ........c.cccovevviviieeiieeiie i 79

Figure 2. Epidemic curves of laboratory-confirmed SARS-CoV-2 cases plotted with three
major government countermeasures in Taiwan from January 1, 2020, to

SePtEMDEr 4, 2021......c.ooiieeee et 80

Figure 3. The incidence rates of laboratory-confirmed SARS-CoV-2 cases in the three
major affected cities and other areas of Taiwan from Pre-outbreak and during

the large 2021 outbreak (from December 9, 2020 through July 31, 2021). 83

Figure 4. Epidemic curves of laboratory-confirmed SARS-CoV-2 cases in the three major
affected cities and other areas of Taiwan in the large 2021 outbreak.......... 84

Figure 5. Epidemiological linkages of initial six transmission chains of SARS-CoV-2
cases and their residential districts at the T1 period in the three major affected

CILIES OF TAIWAN ...t e 85

Figure 6. Nucleotide variations of 24 SARS-CoV-2 Alpha variant strains isolated from
Pre-outbreak and six different Early-outbreak chains in Taiwan (from

December 9, 2020 to May 7) compared to those of the Alpha variant reference

strain (UK MILK-ACFOICC) ......cooiiiiiiiiiieiieeeee s 86
Figure 7. Nucleotide variations of 14 SARS-CoV-2 Alpha variant strains isolated in T3
period compared to the predominant ID-3445/1186/1263 strain................ 87
Figure 8. The figure summarizes our major findings .........ccccovveviiiiiieiie e 88

doi:10.6342/NTU202301433



Chapter 1
Introduction
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Over the past three decades, emerging viruses have cumulatively evolved, producing

an increasing clade of RNA viruses. For example, influenza and coronaviruses pose

significant threats to the environment and humanity through their transmission and

genetic reassortment among animals and human populations. As of April 2023, the novel

H5N1 and H5NG6 viruses, with a case mortality rate of over 50%, have caused 957 human

cases and 507 fatalities (Jiang et al., 2017). Moreover, SARS-CoV-2 initiated the most

severe global pandemic in history, infecting 767 million infected people and causing 6.94

million human deaths by June 2023 (Ensheng Dong et al., 2020).

Advancements in sequencing technology have revolutionized the generation of viral

sequences, enabling real-time acquisition of such data. The public-domain databases,

including National Center for Biotechnology Information Virus (NCBI) and Global

Initiative on Sharing All Influenza Data (GISAID), have compiled vast amounts of

information on viral sequences, which have accumulated over 11 million and 16 million

viral sequences, respectively, as of 2023. To effectively harness and exploit this wealth

of information, viroinformatics, a subfield of bioinformatics, has emerged as a crucial

discipline for managing and analyzing these datasets. By employing viroinformatics,

researchers can gain valuable insights into emerging viruses' genomic changes and

evolutionary patterns. This knowledge is pivotal in ensuring public health and well-being
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through enhanced surveillance and monitoring of viral outbreaks.

Although there are a few tools accessible to the general public for analyzing viral

sequence information, the majority of them are designed to detect variations at a specific

position or specific positions within the viral genome. For instance, when examining the

influenza virus, which consists of eight segmented genes, these tools can only analyze

one gene at a time. Such restriction prevents simultaneous analysis of all genetic

variations together with their corresponding vital immunological and epidemiological

information. In my thesis research, my goal is to establish a comprehensive suite of

analysis software capable to analyze the entire viral genome. This software integrates

data from virology, immunology, clinical medicine, and epidemiology. By doing so, it

will enable us to explore the dynamic changes of emerging viruses and their correlation

with epidemic patterns. In this section, | will provide a detailed literature review

introducing the concepts of viral informatics, the evolution of sequencing methods, the

unique features of public databases, and an overview of existing analysis tools.

1.1 Viroinformatics

Viroinformatics, also known as viral bioinformatics or viral informatics, is an

integrated field that utilizes computational techniques to analyze viral genomic sequences

in order to identify and characterize viruses. Given that novel viruses periodically emerge,
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and pathogens can mutate rapidly, especially RNA viruses, a comprehensive analysis of

the spatiotemporal changes of viral genomes and their interactions with humans and other

host species can provide insights into the epidemical trends of viral infections. In addition

to compiling information on the geographical distribution, target host range, the duration

of a particular virus infection, a genome-wide analysis of viral strains collected over time

and from different locations can identify novel mutations in viral genomes that emerged

after the use of vaccines and antiviral drugs. For example, regular virus surveillance led

to the identification of the 2009 H1N1 influenza pandemic (H1N1pdmQ9) (Dawood et al.,

2012), which was derived from a zoonotic H3N2 virus originating from pig farms in

Mexico (Mena et al., 2016). Additionally, the H274Y mutation in the NA protein, which

is associated with resistance to the antiviral drug "Oseltamivir”, was first found in

seasonal HIN1 (Baz et al., 2010; Hurt et al., 2009) and was fixed in HIN1 predominant

strains since 2007, culminating in the HIN1pdmO09 global pandemic (Bloom et al., 2010).

The viroinformatics approach can also track the evolution of avian influenza viruses

isolated from various avian reservoirs (i.e., poultry birds, waterfowls, etc.) and their

migration routes (Lee et al., 2017; Lee et al., 2015; Yang et al., 2017). Results from such

analyses are particularly important in assessing the potential threat of human infections

and deaths. For instance, the mutation of E627K in the PB2 of the avian H5N1 influenza
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virus enables it to evade the antiviral innate mechanism by avoiding recognition of 5'ppp-

RNA via the innate sensor RIG-1 (Weber et al., 2015). The same mechanism can be

observed in highly pathogenic avian influenza viruses such as HSN6 and H7N9, which

pose a significant zoonotic threat to humans (Peng et al., 2018; Zhu et al., 2015).

Therefore, using viral sequences to analyze the prevalence of emerging infectious

diseases will provide a more accurate virus risk assessment for predicting and preventing

future pandemics. Monitoring the mutations in the virus that result in resistance against

antiviral drugs or a decrease in vaccine effectiveness will provide more insight and

direction for research than conventional virological and serological methods.

1.2 Generation of viral sequences information

As emerging viruses mutate rapidly, analyzing genetic sequences is the most direct

and optimal way to understand viral dynamic changes. Advancements in virus sampling

methods and sequencing technologies over the past 30 years have enabled real-time

detection of viruses and identification of specific virus strains.

1.2.1 Sanger sequencing

The earliest sequencing method is Sanger sequencing, which involves extracting

single-stranded DNA/RNA templates from the sample and adding four types of

dideoxynucleotides (ddATP, ddCTP, ddGTP, ddTTP) with radioactive or fluorescent
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labels separately. Gene fragments of different lengths are obtained by electrophoresis or

signal detection, resulting in clear reads of gene segments between 300~1000 bp (Sanger

et al., 1977; Tucker et al., 2009). Sanger sequencing was the gold-standard protocol for

completing the Human Genome Project from 1990-2003 and has been extended to other

genetic studies (Collins et al., 2003). Although Sanger sequencing has high specificity

and clear reads for the target gene segment, it requires good primer design, a large volume

of samples, and takes a considerable amount of time to perform multiple rounds of

sequencing to resolve the whole genome or multiple genes (Tucker et al., 2009).

Especially when sequencing small viral populations in specimens, it requires collecting

sufficient virus samples from patients’ specimens for sequencing. Further amplification

through cell cultures or experimental animals may introduce additional mutations in the

virus genome. Therefore, the development of next-generation sequencing (NGS)

technology has been crucial in reducing sample usage and obtaining high-throughput

whole-genome sequencing information.

1.2.2 Next-generation sequencing

1.2.2.1 Library preparation

The breakthrough of NGS methods lies in its high throughput ability to surpass

previous Sanger sequencing technological barriers (Tucker et al., 2009). The critical
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technical drivers are library preparation, novel nucleic acid detection sequencing

platforms, and computational capability advances. In library preparation, the first step is

using chemical or physical methods (e.g., ultrasonic fragmentation) to break down the

entire genomic sequence into small fragments in 150-400 bp (Head et al., 2014). After

breaking down the genomic sequence into small fragments, specific sequencing primers

are added to the fragments, and they are barcoded to produce longer contiguous sequences

called "contigs." These contigs allow for sample identification. Microfluidics technology

Is then used to achieve precise sequencing of even minute samples, vastly improving the

sequencing throughput of these fragments (Ma et al., 2017). Finally, these barcode-tagged

fragments are assembled through computer algorithms to construct the entire genome

sequences.

1.2.2.2 Emulsion PCR and pyrosequencing

Aside from technical breakthroughs in library preparation, the establishment of the

platform, and innovations in sequencing principles have played a critical role in

advancing NGS technology. For instance, the Roche 454 GS FLX sequencing developed

the first commercially available platform to complete automated sequencing in 2005,

using the novel emulsion PCR and the Pyrosequencing method, which do not rely on the

Sanger sequencing principle (M. Margulies et al., 2005). Emulsion PCR (em-PCR), a
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bead-based PCR method, is performed by PCR amplifying sample fragments with beads

conjugated with barcoded oligonucleotide probes and adaptors containing complemented

sequences of the target fragments. As different barcodes in different beads correspond to

different sequences, beads collected in microwells enable the differentiation of various

sequences (Mardis, 2008; Metzker, 2010). The principle of pyrosequencing is based on

detecting pyrophosphate (PPi) released during DNA synthesis. At the beginning of the

PCR reaction, DNA polymerase links one dNTP to the sample template and releases PPi.

ATP sulfurylase converts PPi to adenosine triphosphate (ATP) and adenosine

phosphosulfate (APS), providing ATP energy to produce visible light in the luciferase-

catalyzed reaction. Finally, INTP and ATP are degraded by apyrase, and detection of the

light signal is used to obtain the sequence of each nucleotide. These fragments produced

are then combined to complete the sequencing process (Marcel Margulies et al., 2005;

Nyren et al., 1993).

1.2.2.3 lon semiconductor sequencing

In 2010, a technique similar to Pyrosequencing was further developed into the Life

Technologies lon Torrent semiconductor sequencing, which uses semiconductor chips to

detect hydrogen ions generated during DNA polymerization in the PCR process

(Merriman & Rothberg, 2012). This sequencing method converted substances released
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during DNA synthesis into electrical signals, such as pH changes. However, it faces

limitations in sequencing signal conversion when dealing with longer tandem repeats (e.g.,

TATATA) or homopolymer repeats of the same nucleotide (e.g., AAAAAA), as it cannot

determine the exact number of nucleotides, which is a restriction not present in Sanger

sequencing (Balzer et al., 2013; Scheible et al., 2014). As a result, recent advances in

NGS technology have focused on improving the Sanger sequencing-based approach.

1.2.2.4 lllumina dye sequencing

One well-known example of improving Sanger sequencing is Illumina dye

sequencing, which employs bridge amplification and four-color distinct fluorescent

ddNTPs for a highly refined sequencing method (Canard & Sarfati, 1994; Guo et al., 2008;

Meyer & Kircher, 2010). The bridge amplification concept is designed to create different

barcodes and 5'- and 3'- end adapters for sample fragments. Then, the oligonucleotides of

5'- and 3'-adapter complementary sequences are coated in the microfluidic channel at

close distances. When the sample fragments attach, they cause the entire fragments to

bend according to both ends and are firmly fixed in microfluidics (Kim et al., 2013; Ma

et al., 2017). Following the principle of Sanger sequencing, cluster amplification is

performed by polymerase reaction. The improvement is that the four-color fluorescent

ddNTPs distinguish which nucleotide has been attached, and the fluorescence intensity
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represents the number of identical nucleotide attachments in tandem repeat situations
during sequencing (Guo et al., 2008).

Illumina dye sequencing has become one of the most critical NGS sequencing
methods today in various fields of genetics. However, limitations in certain sequencing
blind spots, such as short reads of a few hundred base pairs, can compromise accuracy
and the ability to assemble complete genes when sequencing regions have more tandem
repeats (AT or GC-rich) (Chen et al., 2013). Furthermore, amplifying these short-read
sequences multiple times (e.g., PCR) can result in sequencing errors. The cost and
equipment mobility associated with processing, assembling, and debugging short-read

sequences in NGS is currently a challenge that needs to be overcome.

1.2.3 Third-generation sequencing

In recent years there has been a rise in third-generation sequencing technology
(TGS), which aims to achieve long-read sequencing in real-time by observing the signal
generated with a single nucleotide passing through a single polymerase molecule or
nanopore (Flusberg et al., 2010; Wang et al., 2021). For example, Pacific Biosciences
single-molecule real-time sequencing (PacBio SMRT sequencing) places a single DNA
polymerase in a pore of a zero-mode waveguide (ZMW) of size 20 zeptoliters (10! liters)

(Garoli et al.,, 2019). The fluorescent-labeled nucleotides pass through the DNA
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polymerase at a millisecond rate and generate fluorescent signals that distinguish between

different nucleotides to complete the whole long read. This method can produce 10,000

to 30,000 base pair reads (Ardui et al., 2018). However, this sequencing method still

presents challenges of high manufacturing costs and large equipment size.

Over the past three decades, nanopore sequencing methods have made sequencing

real-time, affordable, and portable (Deamer et al., 2016). Oxford Nanopore sequencing,

developed in 2014, enables direct sequencing of DNA or RNA by nanopores of

transmembrane proteins embedded in biopolymer films without the fragmentation and

PCR method. During electrophoresis, distinct nucleotides pass through transmembrane

proteins on the biopolymer films causing structural changes that facilitate sequencing by

detecting minuscule electrical signals generated by these structural changes (Jain et al.,

2016). The rapid passage of nucleotides through the transmembrane proteins, at a rate of

250 to 450 bases per second and without sample fragmentation and PCR, saves significant

time during sample processing and sequence assembly (Wang et al., 2021). The nanopore

sequencer's compact, cell phone-sized design, makes it highly portable, enabling

applications such as rapid, real-time pathogen analysis in outbreak areas. It played a

critical role during the 2014 Ebola outbreak in Africa (Hoenen et al., 2016) and over 25%

of the SARS-CoV-2 sequences in public databases worldwide were uploaded using this
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technology (Hourdel et al., 2020; Rios et al., 2021). While Oxford Nanopore sequencing

allows for whole-length gene sequencing at one time, the method's error rate is

concomitantly higher. Comparisons with reference sequences are required during

alignment, and the presence of point mutations, such as deletions, may be indiscernible

due to interference from background signals (Delahaye & Nicolas, 2021; Sahlin &

Medvedev, 2021).

In summary, the NGS and TGS methods have provided the speed and depth for

unmet needs in Sanger sequencing analyses, but several unresolved issues remain. For

example, the discrepancies in sequencing results need to be addressed when the same

sample is sequenced by different methods. Moreover, unbiased and automated analyses

are required to identify novel and significant mutations within viral genomes, which will

facilitate the detection of consequential emerging viral strains. These are ongoing efforts

to develop advanced sequencing approaches in the field of viroinformatics.

1.3 Public databases for viral sequences

Advancements in sequencing technology have enabled the rapid generation of vast

numbers of viral sequences. Various public-domain databases store sequence information

and associated epidemiological information to facilitate further research. Major

databases containing influenza virus nucleotide sequences and epidemiological data
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include the NCBI Influenza Virus Database (NCBI-1VD) (Bao et al., 2008), GISAID

EpiFlu database (Shu & McCauley, 2017), and Bacterial and Viral Bioinformatics

Resource Center (BV-BRC, formerly called Influenza Research Database) (Zhang et al.,

2017). Access to NCBI-IVD can be achieved through GenBank accession numbers,

BLAST searches of viral sequences, published literature containing sequences isolated

from human cases, and comprehensive raw data involving the eight segments of full-

length viral sequences, known as genome sets (Bao et al., 2008). Genome sets effectively

integrate segmented influenza virus genes and facilitate convenient searching, but manual

construction is time-consuming and may not reflect real-time updates due to varying

upload times and accession number organization.

H5 avian influenza viruses in Asia exhibit faster evolution, wider viral diversity, and

greater inter-species transmission than those in Europe and America Continents (Dhingra

et al., 2016). Thus, the GISAID-EpiFlu database was created primarily to collect virus

information for avian influenza viruses. Although AlV sequences GISAID-EpiFlu are not

as complete as those in the NCBI-IRD, their real-time properties of sequences from the

GISAID database make them useful in tracking AIV evolution as it occurs.

The BV-BRC database provides various analysis tools for sequence comparison and

monitoring variations at specific amino acid residues. It also includes exclusive
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information from animal surveillance, identifies sequence features in variant types,

generates immune epitope data, and even includes 3D protein structures. With the

emergence of COVID-19 disease, these databases have expanded to include SARS-CoV-

2 viral sequences. For example, the GISAID-EpiCoV database has collected more than

14 million strains of SARS-CoV2 (Shu & McCauley, 2017). Other databases, such as

NCBI-Virus (Hatcher et al., 2017), BV-BRC (Pickett et al., 2012), COVID-19 Genomics

UK Consortium (COG-UK), and other government organizations, regularly release virus

sequences to the public for tracking changes in SARS-CoV-2 variants. Developing

computational tools for analyzing viral sequences of interest retrieved from public

domain databases and integrating epidemiological, clinical, and medical information is

essential for better understanding virus-host interactions.

1.4 Viral sequence analysis tools

Viral sequence analysis involves aligning, annotating, and comparing viral

sequences in sequence datasets to identify the emerging strain with transmission potential

or infection risks. The ability to handle sequencing alignments is crucial in this process.

Pairwise sequence alignment is commonly used to identify variations between newly

isolated and reference virus strains. Phylogenetic trees constructed from aligned

sequences are also useful in visualizing various virus evolutions (Higgins & Sharp, 1988).
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However, dealing with a large number of viral sequences can be computationally

intensive and time-consuming. Multiple sequence alignment (MSA) methods, such as

Basic Local Alignment Search Tool (BLAST) (Johnson et al., 2008), Clustal Omega

(Sievers et al., 2011), and Multiple Alignment using Fast Fourier Transform (MAFFT)

(Katoh & Standley, 2013) have made significant advances in recent years. These methods

are particularly useful as they can use partial sequences as initial seeds, which allows

them to derive an optimal formula that saves computational costs from multiple partial

seed sequences using dynamic programming. Subsequently, the resulting optimal formula

is applied to the whole sequence alignment, enabling the determination of a consensus

sequence. Consensus sequences represent the most common nucleotide or amino acid at

each position in a genome set. By identifying the most prevalent nucleotide or amino acid

at each position, consensus sequences can reveal the evolutionary trends of viral selection

and enable a detailed analysis of conserved sequences, such as motifs, and mutations in

viral genes or proteins. Conserved sequences often indicate important functional or

structural elements of viral genomes and can provide insight into potential drug targets or

vaccine candidates. Additionally, consensus sequences can be used to compare viral

sequences across different datasets or databases and facilitate the identification of

emerging strains or changes in viral diversity.
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Annotation of viral sequences based on known viral characteristics is crucial for

understanding viral properties and predicting their potential impact on public health. For

example, the BV-BRC database uses the influenza virus sequence feature variant type

(FIu-SFVT) method to annotate influenza virus strains based on literature review. This

method analyzes the NS1 protein sequences of influenza virus strains and categorizes

them into different Flu-SFVT groups based on their amino acid mutations and host range

restriction documented in past literature (Noronha et al., 2012). FluPhenotype is another

tool that records 1AV amino acid signatures associated with human adaptation, enhanced

virulence, and drug resistance reported in the literature, and can map genetic sequences

accordingly. By inputting the viral genome or amino acid sequences into FluPhenotype,

researchers can obtain predictions related to IAV HA subtypes, viral hosts, and antigenic

characteristics (Lu et al., 2020).

Integrating viral sequence data with epidemiological information allows for the

monitoring and tracking of viral evolution of viruses and potential risk to animal and

human health. Nextstrain is an example of a tool that utilizes viral sequences collected by

the GISAID database to create phylogenetic trees for viral genes. These trees can be used

for virological surveillance and spatiotemporal analysis to identify single amino acid

mutations. Nextstrain is also capable of grouping sequences based on time and location
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incorporating them into real-time maps that reveal the dynamic trends of viral

transmission (Hadfield et al., 2018). Other web tools like CoVerage shows the

phylogenetic dynamics of SARS-CoV-2 lineages (E. Dong et al., 2020), and CoVizu uses

the real-time visualization of percentage changes at specific residues through SARS-

CoV-2 genomic variations (Ferreira et al., 2021). Additionally, with continuous mutation

of SARS-CoV-2, Outbreak.info Research Library based on GISAID sequence data offers

a searchable platform to explore new SARS-CoV-2 variants (Tsueng et al., 2022).

In addition to analyzing viral gene sequences, more focus is being given to studying

amino acid sequences for structural purposes. Various methods, to determine such as

mutual information (MI) (Martin et al., 2005) or sequence correlation from a protein

sequence (Goh et al., 2000), have been employed to determine the co-evolution of amino

acid variations. For instance, an Ml-based State transition network (STN) was generated

in a study on the potential co-evolution of influenza virus and its pandemic propensity.

By analyzing over 4,000 H3N2 hemagglutinin (HA) sequences from 1968 to 2008 and

integrating phylogenetic trees and hemagglutination inhibition (HI) assays, the STN was

able to delineate antigenic maps based on HA mutation residues and identify binding

regions (Xia et al., 2009). Another study integrated MI and structural analysis to compare

H5N1 and H3N2 and identified new HA co-mutated residues (Kasson & Pande, 2009).
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A recent study used modified MI methods to examine Polymerase Basic protein 2 (PB2)

fragment and monitor PB2_627 amino acid mutation from Glutamine (E) to Lysine (K),

a variation known to be associated with high pathogenicity in mammals. The findings

suggested that PB2_451 co-evolved with PB2_627 and this correlation constitutes a

critical species-associated amino acid residue for influenza virus replication,

pathogenicity, and virulence (Gong et al., 2012).

Taken together, the development of analysis tools in viroinformatics has greatly

expanded the capacity to handle large data sets, providing critical insights into viral

evolution, transmission, and virulence. By identifying key amino acid residues and

mutations that contribute to pathogenicity and public health, these tools offer new

directions in immunological and epidemiological studies when combined with other data

sources such as epidemiological and clinical data.

1.5 Rationale and approaches to develop integrated software for viral sequence
analysis

My thesis research focuses on the notably accelerated rate of mutation in RNA

viruses, which poses a significant threat to both animals and humans. For instance, the

worldwide spread of clade 2.3.4 H5 avian influenza viruses (AlIVs) and their reassortment

with various NA proteins give rise to different subtypes. H5 AIVs are grouped into

different clades, including 0, 2.3.4, 2.3.4.4a-f AlVs (Antigua et al., 2019). We know that
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multiple mutations can exist across gene segments of influenza viruses, and a specific

mutation might impact genomic stability over time (Arai et al., 2018). H5 clade 2.3.4.4

AlVs have a higher amino acid mutation rate than clade 0, and the H5 clade 2.3.4.4 AlVs

in Asia have evolved faster, exhibiting higher viral diversity, greater inter-species

transmission, and a broader host range than those in Europe and the Americas (Neumann

et al., 2010). As of April 24, 2023, H5N1 has led to a total of 874 human cases and 458

fatalities (WHO/GIP, 2020), indicating that this subtype has the potential to infect humans

in the future. Given H5 avian influenza's capability for inter-species transmission,

infecting both mammals and humans, numerous studies have predominantly focused on

the emerging subtype. Recently, the emergence of new clade 2.3.4.4 H5N6 from February

2014 to June 2023 has resulted in 83 human cases and 49 deaths in China, garnering

significant public health attention (Jiang et al., 2017). The WHO has warned that the

infection of humans with H5 AlIVs suggests a pandemic potential for H5 AlVs.

In addition, the incidence and severity of SARS-CoV-2 have far exceeded those of

influenza viruses. Therefore, it is crucial to develop advanced and robust tools for

analyzing viral sequences that can integrate information from different databases,

including epidemiological and clinical data, to provide a comprehensive understanding

of viral transmission and pathogenicity. The knowledge can help develop practical tools
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for controlling and preventing future pandemics.

The first part of my thesis research aims to develop an innovative and integrated
software suite to analyze the entire genome of influenza virus sequences and identify
novel signatures that are correlated with host-specific residues, pathogenicity, and other
epidemiological characteristics that can increase the risk of a pandemic. The approach
involves offering automated packages that can efficiently rearrange sequence data based
on standard viral nomenclature (WHO, 1980) and translate nucleotide sequences into
three potential polypeptides from 0, +1, and +2 open reading frames (ORF) following
simultaneous multiple sequence alignments. The software suite that | have developed can
combine sequence information across different databases and integrate viral genetic
information with clinical and epidemiologic surveillance data (Yang et al., 2020). We
have demonstrated the effectiveness of the new programs by analyzing the highly
pathogenic avian influenza virus HSN2, which is defined by the presence of the hallmark
amino acid motif (XRRKRR) at the cleavage site between the HA1 and HA2 domains,
associated with the viral virulence and mammalian infections (Alexander, 2000). We
have identified at least 11 additional evidence-based amino acid substitutions across
different gene segments of H5N2 avian influenza viruses that could contribute to viral
virulence and mammalian infections (Yang et al., 2020).

The second part of my study focuses on the analysis of SARS-CoV-2 sequences,
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utilizing the software developed for AlVs with some modifications. Although Taiwan did

not experience widespread community outbreaks of SARS-CoV2 until mid-April 2021,

multiple waves of pandemic have occurred globally since 2020. To investigate the

possible source of infection and identify epidemiological conditions that facilitated viral

spread in the community, we collected 101 strains with whole genome sequences. Our

analysis revealed that a predominant strain of the SARS-CoV2 lineage B.1.1.7 (Alpha)

variant was predominantly transmitted during the early phase of the outbreak. Its

disappearance was correlated with the implementation of multiple layers of disease

control measures. Through my research, I have demonstrated that our software can

effectively retrieve and analyze viral sequence information from public domain databases,

enabling efficient monitoring of dynamic viral shifts and the emergence of novel viral

variants with pandemic potential.
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Chapter 2
Methodology

22

doi:10.6342/NTU202301433



The viral sequences utilized in the avian influenza or SARS CoV-2 study were
obtained from publicly accessible databases. Upon retrieval, these sequences underwent
a series of processing steps to ensure data quality. This included the removal of
incomplete, duplicated, or erroneous data for a thorough quality check. Subsequently,
annotation, alignment, and translation into amino acid sequences were performed, and the
resulting dataset was organized and prepared for further analysis. The workflow of

sequence analysis was illustrated in Figure I.

ﬂ‘ Influenza ﬁ Coronavirus

%} NGBI-IVD @E} NCBI Virus
GISAID-EpiFiu GISAID-EpiCoV

Step 1: Data Retrieval

* Download viral sequence data

v

Step 2: Data Process

° .
- ° FluConvert - CoVConvert
* Annotate by standard viral nomenclature 9 Y
(Type/host/region/strain/year/subtype)
* Check data quality
* MAFFT alignment L-INS- FFT-NS-2 PartTree 6 merpair
* Genome organization Soft into 8 gene segment Ref seq NC.045512.2
* Translate nucleotides into amino acid sequences
Divide viral sequences into three Reading frames (0, +1, +2) L L
B IniFlu B micov
v 1 !
Step 3: Data Analysis 10 proteins . 20 proteins _
+8 accessory proteins +11 accessory proteins
* Strain-based amino acid alignment
) ¢ FIuCS CoVCs
* Establish subgroups
* Determine consensus sequences 5 E &
* Identify polygenic consensus signatures 5 FluCG 5 CovCaG

* Plot signatures with Weblogo type

Figure I. Workflow of data analysis The stepwise processes performed by our
developed software (bold text in the colored box on the right) to identify novel signatures
of emerging viruses with increasing risk are described as follows. Step 1: Viral
sequences are obtained from the public-domain databases. Step 2: The program
automatically annotates and validates the quality of viral sequences, uses different
algorithms of MAFFT alignment based on length or the number of sequences, and
organizes according to the different viral genomes for subsequent translation into amino
acid sequences. Step 3: These modules perform strain-based alignments of viral amino
sequences, regroup viral strains with epidemiological significance, and compute a
consensus sequence for each subgroup. Subsequently, the subgroup-specific unique
polygenic amino acid signatures can be simultaneously identified.
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2.1 Data sources and file format

We downloaded viral sequence data from the GISAID and NCBI databases. To

achieve a universal collection of sequences from different databases, we retrieved the

FASTA file format, which is a text filetype commonly used in the field of bioinformatics

to preserve multiple nucleotides or amino acid sequences, each preceded by a one-line

description (also known as a header) that begins with a ">" symbol. By processing the

header in viral sequences according to the standard viral nomenclature (ABCD

Type/Host/Region/Strain/Year/HxNy Subtype), the header can facilitate the linkage of

the virus sequence to the strain's unique identification in different databases (e.g.,

CY009444 A human_PuertoRico_8 1934 HIN1 human). Therefore, the customized

header definition can be used to change the header with the standard viral nomenclature,

such as NCBI defined the sequences as “>[accession] [strain] [segment] [serotype] [host]”

and GISAID as “Isolate IDEPI Isolate name Segment number HxNy host.” Acquiring

these FASTA sequence files through customized header definitions will facilitate

subsequent automated processing of sequence data and enable more accurate analysis.

2.2 Data processing

To organize the information in a better format for further analysis, | developed a

suite of integrated software based on the Microsoft Windows operating platform for non-

programming background users in handling vast amounts of sequence data. To this end,
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users only need to put the FASTA file in the input folder and run the program, which

automatically selects the appropriate algorithms to process the sequences, following these

four steps: arrangement, validation of data quality, alignment, and algorithm selection,

translation. The suite of programs' essence lies in its code with the batch scripts languages,

such as the batch scripts languages of shell and PowerShell, enabling the textual files of

sequence data can be efficiently consolidated and converted into analyzable tables.

Detailed information on program download, installation, and usage instructions can be

found in the published paper (Yang et al., 2020). Below section described the methods in

detail.

2.2.1 Sequence arrangement

Influenza viruses possess eight segments of single-stranded RNA (ssRNA) in the

genome. They can be sequenced and deposited to the database individually. Therefore,

retrieved sequences were saved to eight separate files based on the gene segment and

subsequently combined into a single genome based on the the strain name information

associated with each gene segment. As the results, each strain was placed in the order of

the standard viral nomenclature, including the type, host, region, strain, year, and subtype

within parentheses (WHO, 1980), to normalize the virus name for next step of

examination and validation of virus strain name.
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2.2.2 Validation of data quality

The sequence data validation process can be divided into two parts. One was to

ensure that the sequence names were fully complied with the standard viral nomenclature.

Any sequence that failed to contain all six items of standard viral nomenclature or with

duplicative name was removed. We also generated an “excluding list” which contained

previously identified erroneous sequences, duplicative sequences, sequences with

inaccurate information, and those labeled as “retracted sequences” in the databases. All

rearranged sequences were inspected to delete those which matched any items in the

“excluding list” to ensure data integrity. The second part of data validation was to remove

sequences with errors aroused from any of the conditions: (1) nucleotide sequences

containing interspersed amino acid sequences or other erroneous textual data, (2)

sequences longer than the expected lengths of the genome template, and (3) presence of

2

redundant and meaningless deletions or residues (denoted as ‘n’, ‘x’ or ‘-’). Following

these two parts of validation, the resultant high-precision dataset not only preserves the

original virus sequences and corresponding information, but it also reduces the

probability of sequence processing being erroneous aborted due to meaningless sequences

that overflow the value of the original virus template, thereby enhancing the success rate

of sequence processing.
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2.2.3 Sequence alignment and algorithm selection

Traditional pairwise alignment methods have been commonly used to compare two

sequences. However, it would become a time-consuming process (LN) when confronted

with longer whole-genome sequences (length ‘L’) or the need to compare thousands of

sequences (number of sequences ‘N”). This can limit the analysis capability in terms of

sequence length and quantity. With the advent of multiple sequence alignment (MSA)

algorithms, it significantly saves computing time. To handle the challenge of large-scale

whole-genome sequence analysis, we implemented the increasingly popular MAFFT

multiple sequence alignment program (version 7.52) for nucleotide and amino acid

sequences (Katoh & Standley, 2013). MAFFT incorporates the dynamic programming

methods (Needleman & Wunsch, 1970), the progressive alignment methods (Feng &

Doolittle, 1987) and the iterative refinement methods (Berger & Munson, 1991), coupled

with Fourier transformations, to calculate and reduce the dimensionality of the sequence

matrix, thereby resulting in the computing time to approximate the sequence length L.

Depending on the sequence length and quantity, it automatically selects the best fitting

algorithm [i.e., L-INS-i (accurate) for aligning <~200 viral strains/files; FFT-NS-2 (fast)

for aligning <~30,000 viral strains/files to achieve maximal efficiency; and PartTree (fast)

for aligning > ~30,000 viral strains/files] (Katoh & Toh, 2007). These algorithms detect
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the sequences and adjust the MSA methods correspondingly, optimizing time and

accuracy to present an efficient sequence alignment.

2.2.4 Sequence translation

As viruses exploit different Open Reading Frames (ORFs) and mRNA alternative

splicing to translate various proteins and accessory proteins, it is crucial to consider the

possibilities of different ORFs when translate nucleotide sequences into amino acid

polypeptides. Therefore, the aligned sequences were translated into three possible

polypeptides from ORF 0, +1, and +2 using the program employing the EMBOSS

Transeq version 6.5 code library (Rice et al., 2000).These translated polypeptides were

converted to comma-delimited (csv) text files to establish tables for subsequent analysis.

2.3 Sequence data analysis

To actualize a platform for the visual analysis of sequences, we proffer a graphical

user interface (GUI) for non-programming users, providing a consolidated platform for

automated sequence organization and analysis tools. Here, | developed a suite of

integrated programs based on the Microsoft Excel spreadsheet software through the

scripts language of Visual Basic for Applications (VBA), providing a user-friendly GUI

to analyze the sequence data. The advantage lies in incorporating various modular plugins

(also known as add-ins) into Excel through the VBA language, allowing data to regroup
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and analyze sequences with a simple click. Next, I will present the data input, grouping,

and analysis tools for the sequences.

2.3.1 Selection of open reading frames and alternative splicing

The translated three polypeptides (ORF 0, +1, and +2) of each gene segment were

compared to all possible currently known amino acid sequences that can form proteins,

alternatively spliced isoforms, and accessory proteins of influenza viruses. Because that

each protein's N-terminus and C-terminus possess different short-conserved sequences

(CS) (4~6 aa) from the region of the transcription-regulatory sequence (Kim et al., 2020;

Lai, 1990), scanning these CS on the three translated polypeptides allows for determining

the amino acid sequence to which protein. Some proteins are formed through mRNA

alternative splicing selected between two translated polypeptides. By identifying specific

sequence positions for splicing, these sequences can be combined to generate accessory

proteins. Finally, scanning these processed amino acid sequences, our program assigned

sequential numbering to the residue positions starting from the first methionine. Since

they were shown in Excel spreadsheet with the virus-specific genome template, the

protein sequences can be easily visualized.

2.3.2 Strain-based alignment

Using standard viral nomenclature can simplify the grouping and analysis of protein
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sequence data, making it easier to visualize epidemiological and virological information

associated with virus sequences. Our designed software allows inputting a list of strain

names labeled with standard viral nomenclature. Whether segmented RNA viruses such

as influenza viruses or positive-strand RNA viruses such as SARS-CoV-2, standard viral

nomenclature can link different genes and provide more items for grouping selection.

Given that the filled amino acid sequences based on virus-specific genome templates

already carried the six items of standard viral nomenclature (type, host, region, strain,

year, and subtype), each amino acid residue of the virus sequence can be compared with

the list of strain names, the sequence is filled in the templates and arranged following the

list as one strain. After the strain-based alignment process, an aligned sequence matrix is

formed with the standard viral nomenclature as the leading identifier, and following each

amino acid is filled into the table for grouping purposes.

2.3.3 Grouping of viral sequences

The sequence matrix constructed through the strain-based alignment which

incorporated the six items of the standard viral nomenclature and sequence into an Excel

spreadsheet allowed flexibility in analyzing sequence data by group with re-alignment of

the sequences. Furthermore, using intersection filtering of multiple grids allowed for

multiple subgroupings and linking epidemiological information with amino acid residues.
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This process established groups for subsequent comparison, consensus sequence

calculation, and identifying unique polygenic consensus signatures.

2.3.4 Determining the consensus sequence

We employed a calculation method to determine the most frequent amino acid in

each residue of a specific protein, thereby to identify the most indicative sequence in the

grouping and the "consensus signature™ can be then generated (Yang et al., 2020).

2.3.5 ldentification and annotation of polygenic consensus signatures

Since mutations can occur in multiple genes across the viral genome, the

identification of polygenic consensus through the software analysis can monitor the viral

temporal dynamic changes and epidemiological significance. The most representative

(i.e., most frequent) amino acid sequence at each position of the whole genome can be

shown through various grouping, subsequently allowing for the derivation and

differentiation of consensus sequences for each subgroup.
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5.1 Abstract

Taiwan’s experience with SARS-CoV in 2003 guided its development of strategies

to defend against SARS-CoV-2 in 2020, which enabled the successful control of COVID-

19 cases from 2020 through March 2021. However, in late-April 2021, the imported

Alpha variant began to cause COVID-19 outbreaks at an exceptional rate in Taiwan. In

this study, we aimed to determine what epidemiological conditions enabled the SARS-

CoV-2 Alpha variant strains to become dominant and decline later during a surge in the

Outbreak. In conjunction with contact-tracing investigations, we used our bioinformatics

software, CoVConvert and IniCoV, to analyze whole-genome sequences of 101 Taiwan

Alpha strains. Univariate and multivariable regression analyses revealed the factors

associated with viral dominance. Univariate analysis showed the dominant Alpha strains

were preferentially selected in the surge’s epicenter (p = 0.0024) through intensive

human-to-human contact and maintained their dominance for 1.5 months until the Zero-

COVID Policy was implemented. Multivariable regression found that the epidemic

periods (p = 0.007) and epicenter (p = 0.001) were two significant factors associated with

the community-spread dominant viruses. The dominant strains emerged at the outbreak’s

epicenter with frequent human-to-human contact and low vaccination coverage. The

Level 3 Restrictions and Zero-COVID policy successfully controlled the outbreak in the
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community without city lockdowns. Our integrated method can identify the

epidemiological conditions for emerging dominant virus with increasing epidemiological

potential and support decision makers in rapidly containing outbreaks using public health

measures that target fast-spreading virus strains.

5.2 Introduction

SARS-CoV-2, an emerging virus has caused over 624 million COVID-19 cases and

nearly 6.56 million deaths worldwide by October 18, 2022 (E. Dong et al., 2020). The

Taiwan Centers for Disease Control (Taiwan CDC) quickly responded to the SARS-CoV-

2 pandemic with early border control measures on December 31, 2019, drawing upon

lessons from the SARS-CoV outbreaks in 2003 (Hsueh & Yang, 2005). Although three

incidences of limited community spread occurred from 2019 to mid-April 2021, Taiwan

did not experience any large COVID-19 outbreaks.

Continuous mutations in the SARS-CoV-2 viral genomes have evolved different

lineages with higher transmissibility and increased host fitness. Among the variants of

concern (VOCs), the Alpha variant (B.1.1.7 lineage) with the highest relative fitness

(Obermeyer et al., 2022) has exacerbated pandemic concerns since its initial detection in

the UK in September 2020 (Davies et al., 2021). In December 2020, the Alpha variant

was imported into Taiwan for the first time. After a few controllable waves, the re-
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introduction of the Alpha variant began to cause new COVID-19 cases at an

unprecedented rate in late April, driving 14,311 total indigenous cases. However, within

100 days of implementing Level 3 Restrictions, Taiwan reached zero indigenous cases on

August 22, 2021. Contact-tracing investigations confirmed several cluster cases before

the surge in 2021. Three key questions thus arose: Were the different strains of SARS-

CoV-2 Alpha variants from various early-outbreak transmission chains associated with

igniting the community outbreak? What epidemiological factors facilitated the fast spread

or blocking Alpha strains in the community? What lessons have we learned from how

Taiwan controlled this outbreak, to help other countries quickly contain fast-spreading

variants?

5.3 Methodology
5.3.1 Study design

We analyzed 16,132 laboratory-confirmed SARS-CoV-2-positive cases from

January 11, 2020 to September 4, 2021 in Taiwan, then focused on 14,636 cases (14,311

indigenous cases) from the 2021 outbreak (April 16 — September 4). As the majority of

outbreak cases (86.27%, 12,346/14,311) occurred in Taipei, New Taipei, and Taoyuan

cities, the spatiotemporal distributions of cases in these cities across four different time

periods were plotted using Microsoft Power Bl. To search for possible viral sequence

differences that launched this outbreak, we combined whole-genome sequences of 101
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Taiwan SARS-CoV-2 Alpha variants (Table 1). During the onset dates from December

9, 2020 to August 31, 2021 when the viral sequences were collected, they included 12

imported strains before the outbreak (TO, pre-outbreak) and 12 strains from the beginning

of this outbreak (T1a, April 16, 2021 — May 7, 2021; early-outbreak). Each confirmed

case containing comprehensive contact-tracing through joint efforts from local

departments of health (DOH) and Taiwan CDC. The integrated information was helpful

to investigate the early transmission chains that might be associated with subsequent

community spread (81 strains, May 7, 2021 — August 31, 2021). The 81 indigenous strains

involved three time periods based on public health interventions: T1 (April 16 — May 14;

pre-Level 3 Restrictions), T2 (May 15 — June 22; post-Level 3 Restrictions, but pre-Zero-

COVID Policy), and T3 (June 23 — August 31; post-Zero-COVID Policy) were analyzed

to look for whether a dominant virus strain was persistently spreading in the community.

Finally, we applied univariate and multivariable analyses to search for factors attributed

to the appearance of the dominant virus strains (Figure 1).

5.3.2 Study populations of SARS-CoV-2-positive cases in Taiwan

All the laboratory-confirmed SARS-CoV-2-positive cases in 2021 were tested using

real-time RT-PCR on patients suspected of or exhibiting COVID-19 clinical symptoms.

We plotted an overall epidemic curve of total imported and indigenous SARS-CoV-2-
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positive cases from January 1, 2020 to September 4, 2021. According to information

released from local DOH and confirmed by Taiwan CDC, we categorized infection

sources for indigenous cases into five major risk groups (Yen et al., 2021) (imported-

aircraft-associated, healthcare-associated, community-associated, ship-associated, and

unidentified sources).

5.3.3 SARS-CoV-2 genome sequence alignment and mutation analyses

The 308 whole-genome sequences of SARS-CoV-2 in Taiwan (January 11, 2020 —

August 31, 2021) were retrieved from NCBI-Virus and GISAID-EpiCoV databases. We

used our in-house developed analytical tools, CoVConvert and IniCoV, to process and

analyze these SARS-CoV-2 sequences (Yang et al., 2020). CoVConvert rearranged the

sequences of the 101 Taiwan Alpha variants to ensure data quality, then aligned and

translated them into three polypeptides from three reading frames. Next, IniCoV

automatically divided the translated polypeptides into 31 proteins for each viral strain,

combined them with individual epidemiological information, and subsequently compared

these 101 strains with the Alpha variants' reference strain (UK-MILK-ACF9CC, referred

to as “UK-Alpha-ref-strain”) to analyze any residue differences among these strains

involving three groups: (1) the 12 imported strains before the outbreak (T0), (2) the initial

12 strains from early-outbreak (T1a), and (3) the remaining 77 strains (T1b, T2, T3).
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5.3.4 CoVConvert: a tool to process Coronavirus sequences

CoVConvert (Coronavirus viral sequences convertel for genome organization)
performed virus strains’ names, checked the quality of downloaded sequences and
achieved multiple alignments based on the Wuhan-Hu-1 reference nucleotide sequence
of SARS-CoV-2 (NC045512.2). Next, data entries with erroneous or incorrect sequences
that failed to align were excluded. Last, all qualified and well-aligned DNA sequences
were translated into three possible polypeptides from 0, + 1, and +2 reading frames to

determine one complete full-length viral peptide using CoVConvert.

5.3.5 IniCoV: A Coronavirus information viewer and analyzer

IniCoV (Coronavirus viral information viewer and analyzer for finding out initial
source), a program composed of various modules to automatically analyze viral
sequencing data in combination with epidemiological information (e.g., viral type, host,
region, strain, year, and viral variants or lineages) involving the following two modules:
The CoVCS (Coronavirus Cross-Segment alignment) module was used to align amino
acid sequences based on SARS-CoV-2 nomenclature and subsequently divide the
translated polypeptides into 31 proteins. CoVCS-processed viral genetic information can
easily be used for determining the sequence and genome organization based on a
particular residue. In the first step, CoVCS generate the genome organization worksheet

template based on the Wuhan-1 reference sequence and define the 31 proteins’ residue
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position. Secondly, CoVCS select one or two CoVConvert generated amino acid

sequences to scan the short-conserved sequences (CS) (4~6 aa) from the region of the

transcription-regulatory sequence (Kim et al., 2020). Each protein of 31 proteins has

unique CS at the front of the N-terminal, and behind the C-terminal, CoVVCS organize

these amino acid sequences in specific position based on worksheet template. Finally,

CoVCS rearrange these organized sequences encoded by strain name and provides the

flexibility to group these sequences by name or residues. The CoVCG (Coronavirus

Comparative Grouping) module was designed to automatically deduce amino acid

sequences from the collected SARS-CoV-2 strains grouped by the question of interest. In

short, CoVCG first generated consensus sequences from each subgroup and determined

the most representative (i.e., most frequent) amino acid at each position through

computing. Unique amino acid residues differentially presented between different

subgroups in the whole genome of SARS-CoV-2 computed by CoVCG were re-examined,

verified based on the CoVCG-generated substitution table, and visualized. To visualize

the population of sequences, we wrote the web-based tool based on d3.js (Data-Driven

Documents) JavaScript program language library (Bostock et al., 2011) and presented all

substitutions of amino acids at each position as similarly to weblogo. The largest letters

presented dominant and small letters presented minor sequences shown in one plot that
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can easily summarize sequences population.

5.3.6 Contact-tracing investigations and transmissibility analysis of the early-
outbreak cases in the Taiwan's 2021 outbreak

To measure viral transmissibility, we applied the epidemiological contact-tracing

investigations to compare the effective reproductive numbers over time (Rt) of those early

Alpha variant cases. The range and mean + standard deviation (SD) values of Rt were

calculated for three groups: cases before the outbreak, airport-associated cases (pilots,

hotel staff) in the early-outbreak, and community-associated cases. Significant

differences among the three groups were tested using one-way ANOVA.

5.3.7 Univariate and multivariable regression analyses of factors associated with
SARS-CoV-2 strains' dominance in the outbreak

To understand which significant factors were associated with the dominant SARS-

CoV-2 strains, we used four R packages to examine the 81 Taiwan indigenous strains for

univariate analysis. The nine factors included: (1) epidemic periods, (2) epicenter, (3)

vaccination coverage, (4) public transport ridership, (5) numbers of daily cases, (6)

population size, (7) population density, (8) age, and (9) gender. Factors 3-8 were

separated into “high” and “low" groups based on the median. We used Fisher's exact test

to assess all factors between subgroups and obtained the crude odds ratios (COR) with

95% confidence intervals (Cls). All statistically significant factors (p < 0.05) were
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checked with correlations by calculating variance inflation factors (VIF) before running
the multivariable regression. The best-fitting model was selected from the candidate
models generated from the stepwise (backward/forward) search method by choosing the
lowest Akaike information criterion (AIC) value. We also reported the adjusted ORs
(aOR) with 95% ClIs and p-values from the best-fitting model to present the factors

associated with the dominant indigenous Alpha strains.

5.4 Results
5.4.1 Characteristics in SARS-CoV-2-positive cases before and after Taiwan’s 2021
outbreak

In Taiwan, from 15t week of 2020 through the 36" week of 2021, a total of 16,132
cases of SARS-CoV-2 laboratory-confirmed cases were documented, of which 1,486
were imported cases and 14,646 were indigenous cases. From the 1,486 imported cases,
originating from Wuhan strains led to an increase in cases during the 4™ to 6" weeks of
2020, with an average of three to eight cases per week. The highest number of 125 cases
was documented in the 12" week in mid-March 2020 when Taiwanese students returned
from Europe and the USA. However, with the government implementation of strict border
controls on March 19, 2020, the number of cases declined rapidly. Thereafter, there were
two modest peaks in imported cases of the SARS-CoV-2 Alpha variant, first during the

post-holiday period from the 48" week of 2020 to the 1% week of 2021, and then again
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during the spring break period from the 16" to the 19" week of 2021 (Figure 2A). For
indigenous cases, Two minor outbreaks during the 4" to 15" weeks of 2020, as well as
the 51 week of 2020 to the 7" week of 2021. These were primarily attributed to the
Wuhan strains (114 cases) and Epsilon variants (19 cases), respectively. No further
instances of indigenous cases emerged from the 8" to 16" weeks of 2021. Up until April
16, 2021 (the 17" week), the initial cases were confined to airport staff such as pilots and
hotel staff. Subsequently, a massive outbreak took place, reaching a peak of 3,363 cases
in mid-May of 2021 (the 20" week) (Figure 2A). The origin of the 114 prior-indigenous
cases prior to the outbreak in 2021 (spanning from January 22, 2020 to April 15, 2021)
was diverse and encompassed various risk groups, with community and unidentified
sources accounting for 16.7% (19/114) of the total. Conversely, during the outbreak from
April 16, 2021 to September 4, 2021, community and unidentified sources were found to
account for a significant increase of 98.3% (14,067/14,311) of all cases, as demonstrated

by a statistical significance of p < 0.0001 (Figure 2B).

5.4.2 Characterization of Taiwan’s 2021 outbreak

Before the outbreak (TO period), the 12 imported cases were reported but no
indigenous cases (Figure 3A). However, starting on April 16, the emergence of sporadic

clusters of SARS-CoV-2-positive cases associated with the airport and quarantine hotel
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triggered a widespread outbreak (Figure 3B, T1a). The weekly mean number and monthly

incidence rate of SARS-CoV-2-positive cases increased rapidly in Taipei, New Taipei,

and Taoyuan cities. The mean incidence rate (per 100,000 population) was 10.91 + 19.6

in T1b and peaked at 98.6 + 120.31 in T2. With the largest population, Taipei City

experienced the highest case incidence between May 7 and May 14. The daily total of

cases in these three cities peaked at 495 on May 15, prompting the cities of Taipei and

New Taipei to implement Level 3 restrictions. By early June, daily case counts in both

cities had dropped below 100 cases. Taipei City adopted an enhanced zero-COVID policy

on June 23, reducing daily cases to just ten by July 10 (Figure 4). The mean incidence

rate dropped to 12.33 + 13.19 (Figure 3B, T3). It took 100 days from the peak on May 15

to reach zero indigenous cases on August 22 in all cities, without lockdowns.

Spatiotemporal analysis of diffusion patterns over time revealed that the Wanhua District

in Taipei City had the highest incidence rates throughout the entire outbreak. Its six

neighboring districts, which held the second and third highest incidence rates from April

16 to June 22, were regarded as the epicenter of the outbreak (Table 2). Subsequently, the

virus rapidly spread from the epicenter to other districts with more substantial populations

and higher population densities (Figure 3B, T2 and T3).
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5.4.3 Contact-tracing investigations to search for dynamic sequence changes

Given the highly genome divergence of the Alpha variants and the rapid community

spread of the virus during the 2021 Taiwan outbreak, it is imperative to understand the

potential transmission routes that led to such a widespread outbreak in a matter of weeks.

Contact-tracing investigations identified six transmission chains before the occurrence of

notable cluster cases initiated by 1D-1363 that triggered the community outbreak from

April 16 to May 7 (Figure 5 and Table 3).

5.4.4 Integrating whole-genome sequence analyses

Whole-genome sequencing combined with contact tracing information could

determine which of the early transmission chains might have contributed to the

subsequent spread of the virus during the outbreak. This study examined whole-genome

sequences from twelve viral strains imported during the pre-outbreak period (TO) and

twelve strains isolated during the early periods of the outbreak (T1a) and found genome

divergence. The result indicated that the sequences of the Alpha strains isolated in TO

were highly varied when compared to the UK-Alpha-ref-strain, and were also dissimilar

from those imported during T1a. All of the early viral strains from T1a were found to

contain mutations in PLpro (C5144T and C5812T), nsp8 (C12253T), RdRp (C15895T),

Helicase (G17615A), and ORF8 (C28957T) compared to the UK-Alpha-ref-strain.

However, those isolated from the early-outbreak transmission chains 1 (ID-1091), 2 (ID-
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1145), 4 (ID-1078 and 1D-1079), 5 (ID-1154, I1D-1183, 1D-1187), and 6 (ID-1102, ID-

1137) each possessed additional nucleotide variations present throughout the genome

(Figure 6). Notably, the sequences of 1D-1186 isolated from chain 2 were identical to

those of ID-3445 and 1D-1263. Contact tracing investigations indicated that 1D-3445 was

a co-worker of the index case, ID-1363, at the teahouse, leading to the conclude that ID-

3445 and 1D-1263 represented the earliest strains of community transmission in Wanhua

District. (Figure 6). Despite 1D-3445 and ID-1263 sharing overlapping locations (Wanhua

District) in their visiting history, no epidemiological linkage was found between 1D-1186

and ID-3445 or ID-1263. Additionally, 60% (3/5) of the indigenous strains isolated during

T1b and 28.57% (16/56) of those isolated during T2 were found to be identical to the ID-

3445/1263/1186 strain. None of the remaining 42 strains (5+56-3-16 = 42) were identical

to any other strains isolated from the early-outbreak clusters (Tables 4 and 5). These

findings indicate that even though several transmissions occurred in the early periods of

the outbreak, only the strain associated with 1D-1186 was identical with those of 1D-3445

and ID-1263, which were linked to the 2021 community outbreaks (Figure 7).

Interestingly, no strains analogous to the 1D-3445/1263/1186 strain were detected after

the implementation of the enhanced Zero-COVID Policy (Table 4, T3 period).

Furthermore, the whole-genome sequences of all 14 indigenous viral strains isolated
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during T3 were disparate, and no new dominant strain emerged. Our analysis did not find

a second dominant strain throughout the outbreak (Figure 8).

5.4.5 Epidemiological factors associated with viral strain dominance in the 2021
outbreak

The univariate analysis aimed to understand the factors that correlated with the

prominence of the 1D-3445/1263/1186 strains. Five significant correlations were

determined: (1) the epidemic period [1.744 (0.369-7.924), p = 0.0097], (2) the epicenter

[0.208 (0.063-0.638), p = 0.0024], (3) vaccination coverage [0.336 (0.1-1.023), p =

0.0479], (4) population size [0.219 (0.057-0.789), p = 0.011], and (5) population density

[0.273 (0.086-0.831), p = 0.018]. Of these significant factors, the epidemic period

exhibited the highest value of crude OR, indicating that the 1D-3445 strain was already

prevalent during T1. Our multivariable analysis demonstrated that the epidemic period

and the epicenter were the two factors significantly linked with the dominance of the ID-

3445/1263/1186 strains during the 2021 outbreak [adjust OR (95% Cl), p = 0.007; 0.145

(0.044-0.474), p = 0.001, respectively]. These results suggest that the dominant strain was

selected in the epicenter during the early period of the outbreak (T1 period) (Table 7).
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5.5 Discussion

The fast-mutating and increasingly transmissible SARS-CoV-2 has created

unprecedented public health challenges. However, Taiwan successfully halted local

SARS-CoV-2 transmission through its rapid response combining strict border control,

firm adherence to using facemasks and hand hygiene, and a bundle strategy to minimize

nosocomial infection (Yen et al., 2021). Alpha variants, which dominated in Europe and

the USA in early 2021 (Liu et al., 2022; Liu et al., 2021; Tai et al., 2022), finally sparked

a large outbreak in Taiwan in mid-May 2021 (Akhmetzhanov et al., 2022). This study

integrated analyses of whole-genome viral sequences with contact-tracing, spatio-

temporal analyses, individual-based effective reproductive numbers, and public health

policies, to deliver four major findings (Figure 8). First, the Alpha variants introduced to

Taiwan were highly diverse. Second, we identified an epicenter Wanhua District in Taipei

City, where a convenient transportation hub and many leisure activities facilitated human

contact and viral transmission, driving cases in dense, highly populated neighboring

districts, and igniting Taiwan’s large 2021 outbreak. Third, one imported SARS-CoV-2

Alpha variant strain from early-outbreak chains was preferentially selected at the

epicenter and became dominant in the early epidemic period. The predominant strain

extended to the middle period and remained detectable for at least 1.5 months. This was
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the only dominant strain throughout the entire outbreak, but it declined after Level 3

Restrictions were implemented, and disappeared following the Zero-COVID Palicy

without city lockdowns (Dyer, 2022; Normile, 2022). Fourth, multivariable regression

supported the finding that the early epidemic period and epicenter were significantly

associated with emergence of the predominant community-spread viruses. These results

indicate the importance of viral genomic surveillance alongside epidemics, and its

usefulness in evaluating public health policies.

Given genomic surveillance’s application in control outbreaks (Chen et al., 2022;

Gong et al., 2020; Gu et al., 2022; Wilkinson et al., 2021), we linked whole-genome

sequencing in Taiwan with epidemiological attributes and discovered that early

transmission chains substantially facilitated the mid-April to early May community surge.

Therefore, outbreak-associated viral dominance must consider specific epidemiological

characteristics (Sutton et al., 2022), including high population density, transportation

hubs, and teahouses in the epicenter where patrons mingled without masks, as preludes

to this outbreak.

Investigating relationships between epidemiological factors and the emergence, rise,

and decline of dominant strains is essential for containing outbreaks quickly. In fact,

Alpha variants that entered Taiwan before the outbreak had high viral genome divergence.
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However, after ongoing transmission, virus selection occurred under special

epidemiological conditions (Sutton et al., 2022), like airport-associated cases and

community-related clusters (Gu et al., 2022). Once the case number sharply rose,

indicating the selection-advantageous dominant virus strain was continuously spreading,

viral diversity plummeted. As with other VOCs (Obermeyer et al., 2022), it took time, 2-

3 weeks, for community-derived strain to emerge, which became dominant strain with

more homogeneous genome. Control policies can shape trends in the virus population

during this crucial time window. Our data showed 39 days after the Level 3 Restrictions

implementation and 61 days following the Zero-COVID Policy’s rollout (Table 4), the

dominant community-spread viruses were successfully eliminated without lockdowns

(Akhmetzhanov et al., 2022). No new dominant strain appeared throughout the entire

outbreak. Therefore, dominant strains with selection advantages must be eliminated

quickly before epidemics expand.

SARS-CoV-2 has continuously evolved worldwide. When the Alpha variant

overtook the Wuhan strain (Obermeyer et al., 2022), it indicated the need to find factors

associated with viral dominance. Our multivariable analysis again demonstrated that

turning points in the early epidemic period and epicenter supported the emergence of

dominant community-spread viruses. This conclusion aligns with our findings on an
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adaptive mutant in the HIN1pdmQ9 virus carrying HA2-E374K, which was imported to

Taiwan and extended viral survival in a densely populated Taipei City before vaccination

rollouts (Kao et al., 2012). Our dengue research discovered that clustering dengue cases

with higher transmission intensity helped select a virus strain that caused more severe

dengue hemorrhagic fever cases in southern Taiwan, where Aedes aegypti mosquitoes are

assumed to play important roles in viral selection (Bennett et al., 2003; Wen et al., 2010).

These specific epidemiological conditions, including human clustering cases,

eating/dining without wearing masks, frequent human-to-human contact in entertainment

settings (e.g., teahouses), and the combination of low vaccination coverage and/or SARS-

CoV-2 infection helped Alpha strains with a selective advantage through natural selection

(prior to immune selection) become dominant and drive a rapid surge in cases. As these

mutants continue evolving, their residues for viral replication, transmissibility, immune

antagonism (Cheng et al., 2021; Jian et al., 2021; Pan et al., 2021; Verghese et al., 2021),

and their epidemic or pandemic potential merit monitoring (Subissi et al., 2022).

This study has four major limitations. First, most cases were reported from passive

surveillance. Second, we obtained viral sequences retrospectively from databases without

random sampling on epidemiological attributes. Many strains lacked full-length

sequences or complete epidemiological information, resulting in a small sample size and
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potential selection bias. As we did not have multiple samples from each patient, our

results may not fully reflect reality (Li et al., 2022; Tonkin-Hill et al., 2021). The

reproductive numbers of each early transmission chain may be underestimated due to

asymptomatic/mild infections. Hence, how early transmission chains and viral selection

mechanisms (e.g., for increasing viral infectivity or replication) of dominant strains

contributed to community clusters remains unclear. Third, individual-based pre-existing

comorbidities, vaccination history, past infection, compliance with preventative behavior

(Yenetal., 2021), and other potential influencers of viral dynamics were not collected to

protect personal privacy. Fourth, although all 81 indigenous viruses in this outbreak

carried Spike-M12371 and Helicase-R460K (Table 6), we still do not know how or

whether these mutations might increase viral transmissibility and epidemic severity.

However, compiling epidemiological linkages within the same transmission cluster and

viral sequences, can offer a better picture of early transmission chains. In conclusion,

Alpha strains in Taiwan started from imported cases with genomic diversity. A dominant

strain emerged under conditions involving human gatherings leading to case clusters from

the airport to the quarantine hotel, transportation hubs, and teahouses in the epicenter.

Four prerequisites for dominant strains that possibly emerged in the community include:

(1) high frequency of human-to-human contact at hotels without early detection of
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positive cases, or low compliance with home quarantine, facilitating viral selection

without notice, (2) close contacts without adequate protection at teahouses (e.g.,

removing masks while dining/drinking/chatting), which may have helped viruses gain

selection advantages to increase transmissibility (higher Rt values), (3) highly mobile

individuals carrying virus from the epicenter outward, and (4) lack of effective

population-based control policies against continuous transmission, like the initial absence

of rapid community screening for SARS-CoV-2-positive cases, low vaccination coverage

(1.3% and 0.7% for the 1% dose of the COVID-19 vaccine in Taipei City and New Taipei

City as of May 15, 2021, respectively). Importantly, rigorous individual and population-

level prevention policies on May 15, successfully eliminated the spread of the dominant

strains. No new viral lineage composition occurred during the 100 days of the 2021

Taiwan outbreak. Future research on VOCs should focus on an integrated approach to

timely monitoring of whole-genomic and amino acid changes of novel variants with

growing transmissibility, pathogenicity, and fatality, as well as spatio-temporal data

analysis to detect dominant strains early on. Our results demonstrate that predominant

virus strains with increasing epidemic/pandemic potential at both the micro- and macro-

levels are naturally selected by epidemiological conditions even before mass-vaccination

(Ko et al., 2018). Moreover, our software and integrated analyses can be applied to timely
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monitoring of trends in full-length viral dynamics, searching for dominant strains of any

emerging pathogens across entire epidemic, and obtaining the viruses with striking

increases in case numbers in the epicenter, as well as evaluating the effectiveness of

public health policies. Even after mass vaccination and anti-viral drug development,

international collaboration will be imperative to preventing future pandemics.
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Tables
Table 1. List of 101 SARS-CoV-2 genome sequences and important epidemiological

information used in this study in Taiwan
Travel

Identical GISAID Accession

Case ID Strain Name Onset date

history to 1D-3445 (EPI _ISL)
Imported cases (N = 20)
783 cgmh-cqu-44  2020/12/9 PHL - 956325
799 ntus2 2020/12/26 GBR - 1041958
792 792 2020/12/27 GBR - 1381386
804 ntu49 2020/12/28 GBR - 1010728
837 ntus4 2020/12/29 GBR - 1039160
958 cgmh-cgu-58 2021/2/26 USA - 2249597
1048 cgmh-cgu-61  2021/3/23 PHL - 2250151
1065 ntu62 2021/3/28 PHL - 1667475
1050 ntu6l 2021/3/29 EGY - 1667474
1047 cgmh-cgu-60 2021/4/2 IDN - 2249836
1081 cgmh-cgu-63 2021/4/3 IDN - 2250184
1059 kmuh-3 2021/4/9  JPN - 5395633
1091 ntu63 2021/4/16 USA - 13566006
1079 1079 2021/4/17 USA - 2455264
1078 1078 2021/4/18 USA - 2455327
1102 ntu64 2021/4/124 USA - -
1144 ntu6s 2021/4/28 UZB - -
1154 ntu67 2021/5/2  USA - 13618360
1183 tsgh-43 2021/5/6 USA - 2693006
2018 cgmh-cqu-64 2021/5/14 HTI - 2544700
T1 Epicenter (N =9)
1145 tsgh-42 2021/4/128 NWT - 2693005
1137 tsgh-44 2021/4/30 TPE - 4096803
3445 3445 2021/5/5  TPE  Yes 2455329
1187 ntu66 2021/5/6  TPE  No 13618344
1263 ntu68 2021/5/7  TPE  Yes 13578728
1266 ntu69 2021/5/9 NWT No 13578729
1265 ntu70 2021/5/9 NWT No 13578730
1290 ntu7l 2021/5/10 TPE No 13578731
2262 2262 2021/5/14 TPE  Yes 2455330
1145 tsgh-42 2021/4/28 NWT - 2693005
T1 Other cities (N = 2)
1186 cgmh-cqu-73  2021/5/7  TAO  Yes 2544709
2150 kmuh-4 2021/5/9  KHH  Yes 7016374
T2 epicenter (N = 30)
1419 ntu72 2021/5/15 TPE No 13578732
1373 ntu73 2021/5/15 TPE  Yes 13578733
1354 ntu74 2021/5/15 TPE No 13618345
1359 ntu75 2021/5/15 TPE No 13578734
1356 ntu76 2021/5/15 TPE No 13578345
1357 ntu77 2021/5/15 TPE  Yes 13618347
1355 ntu78 2021/5/15 TPE  No 13578735
1360 ntu79 2021/5/15 TPE No 13578736
1358 ntu80 2021/5/15 TPE No 13578737
5703 5703 2021/5/21 TPE No 3000790
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Table 1. List of 101 SARS-CoV-2 genome sequences and important epidemiological

information used in this study in Taiwan (continued)

Case ID Strain Name Onset date

Travel

Identical

GISAID Accession

history to 1D-3445 (EPI ISL)
T2 epicenter (N = 30)
7955 7955 2021/5/26 TPE  No 3040151
9098 9098 2021/5/29 NWT  Yes 3040149
10747 10747 2021/6/2 TPE  No 3000409
12049 ntu94 2021/6/11 TPE No 11333413
10179 ntu9l 2021/6/12 TPE No 11333514
13112  ntu9s 2021/6/12 TPE No 11333432
13375 13375 2021/6/14 TPE  No 3001055
13435 13435 2021/6/14 TPE  No 3040140
13564 13564 2021/6/15 TPE  No 3001368
11612  ntu8l 2021/6/16 TPE  No 13578738
13137  ntul04 2021/6/16 TPE  No 11333509
13386  ntuB2 2021/6/17 TPE  No 13578739
13103  ntu83 2021/6/17 TPE  No 13618348
13318 ntu84 2021/6/17 TPE No 13578740
10480 ntu8s 2021/6/17 TPE No 13578741
13387  ntu88 2021/6/18 TPE  Yes 11333411
13850  ntul07 2021/6/19 TPE  Yes 11333511
14035  ntu9s 2021/6/20 TPE  No 11333516
14168  ntul05 2021/6/20 TPE  No 11333510
14181 ntul08 2021/6/21 TPE No 11333512
T2 other cities (N = 26)
3461 kmuh-5 2021/5/16 KHH No 7016459
4742 kmuh-6 2021/5/16 KHH No 7016494
- cgmh-cgu-65 2021/5/18 TAO  Yes 2544701
- cgmh-cgu-66 2021/5/18 TAO  Yes 2544702
- cgmh-cgu-79 2021/5/18 TAO No 5160472
- cgmh-cgu-68 2021/5/19 TAO  Yes 2544704
- cgmh-cgu-67 2021/5/20 TAO No 2544703
- cgmh-cgu-70 2021/5/20 TAO  Yes 2544706
- cgmh-cgu-76  2021/5/20 TAO  Yes 2544712
- cgmh-cgu-69 2021/5/21 TAO No 2544705
- cgmh-cgu-78 2021/5/22 TAO  Yes 2544714
- cgmh-cgu-77 2021/5/23 TAO No 2544713
- cgmh-cgu-75 2021/5/26 TAO No 2544711
- cgmh-cgu-72  2021/5/27 TAO No 2544708
- cgmh-cgu-74  2021/5/29 TAO No 2544710
10321 10321 2021/6/1  MIA  Yes 3040148
11042 11042 2021/6/3  TAO  Yes 3040145
11103 11103 2021/6/13 CYQ  Yes 3040147
11102 11102 2021/6/3 TNN No 3040152
11310 11310 2021/6/4  MIA  Yes 3040146
11282  tsgh-46 2021/6/4 KEE No 4096807
12288 12288 2021/6/8  TAO  Yes 3040144
12857 12857 2021/6/10 KEE  Yes 3001841
12699 12699 2021/6/10 KEE No 3002178
12828 12828 2021/6/10 TAO No 3040141
14222 14222 2021/6/20 KEE  Yes 3040143
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Table 1. List of 101 SARS-CoV-2 genome sequences and important epidemiological

information used in this study in Taiwan (continued)

Case ID Strain Name Onset date

Travel

Identical

GISAID Accession

history to 1D-3445 (EPI ISL)

T3 epicenter (N =11)

14422  ntulOl 2021/6/23 TPE  No 11333507
14516  ntul02 2021/6/23 TPE  No 11333508
14166  ntul06 2021/6/23 TPE  No 11362237
14518 ntull6 2021/6/27 TPE No 11333513
14879  ntull3 2021/6/28 TPE  No 11362240
14495 ntul03 2021/7/2 TPE No 11333517
15062 ntulll 2021/7/5 TPE No 11362238
15226 ntull? 2021/7/6 TPE No 11362241
15774 tsgh-45 2021/7/128 TPE  No 4096805
15702 ntul23 2021/7/29 TPE No 11362244
16121  ntul24 2021/8/31 TPE No 11333351
T3 other cities (N = 3)

14491  kmuh-7 2021/6/23 KHH No 7016498
14454 14454 2021/6/26  MIA  No 3040142

- cgmh-cgu-85 2021/7/24 TAO No 5160564

EGY: Egypt, GBR: United Kingdom, HTI: Haiti, IDN: Indonesia, JPN: Japan,

PHL: Philippines, UZB: Uzbekistan.
CYQ: Chiayi City, KEE: Keelung City, KHH: Kaohsiung City, MIA: Miaoli County,
NWT: New Taipei City, TAO: Taoyuan City, TNN: Tainan City, TPE: Taipei City.
NTU: National Taiwan University, Taiwan CDC: Taiwan Centers for Disease Control,
TSGH: Tri-Service General Hospital, CGMH-CGU: Chang Gung Memorial Hospital
(University), KMUH: Kaohsiung Medical University Chung-Ho Memorial Hospital.
We used 101 available Taiwan whole-genome sequences of SARS-CoV-2 for analysis.
Imported or Indigenous cases were defined through joint epidemiological investigation
efforts from local Health Bureaus and Taiwan CDC. A case that had travel history was
defined as an imported case.
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Table 2. The district-specific incidence rates of the SARS-CoV-2-positive cases,
population sizes, and population densities in the three affected cities by the four time
periods during Taiwan 2021 large outbreak

110 50 100200 500+
Taipei City

Mew Taipei Gity |

Taoguan City -m Incidence Rates (per 100K) Population Population
Districts in the three outbreak Tla T1b T2 T3 Size Density Area
affected cities 4/16~5/6 5/7~5/14 5/15~6/22 6/23~7/31 (May 2021) (Size/Area) (km?)
Wanhua District, Taipei City 9.42 129.16 86.05 180,396 20,378.66 8.85
Zhonghe District, New Taipei City* 1.46 17.09 12.70 409,649 20,336.03 20.14
Bangiao District, New Taipei City* 0.54 24.09 1475 556,175 24,038.03 23.14
Datong District, Taipei City* 0.81 22.75 14.63 123,085 21,664.17 5.68
Yonghe District, New Taipei City* 2.74 15.09 14.20 218,652 38,267.35 5.71
Sanchong District, New Taipei City* 2.87 15.89 23.20 383,805 23,521.79 16.32
Zhongzheng District, Taipei City* 1.30 12.98 15.60 154,098 20,257.13 7.61
Tucheng District, New Taipei City 1.26 13.44 10.50 238,114  8,055.88 29.56
Wugu District, New Taipei City 17.81 24.48 89,842  2,576.99 34.86
Luzhou District, New Taipei City 2.47 12.35 10.38 202,410 27,223.57 7.44
Shilin District, Taipei City 3.63 126.55 17.09 275,204  4,412.57 62.37
Shiding District, New Taipei City 13.33 7,503 51.98 144.35
Xinzhuang District, New Taipei City 8.98 11.11 422,978 21,429.30 19.74
Wenshan District, Taipei City 1.13 7.52 116.26 13.17 265,885 8,438.38 31.51
Xinyi District, Taipei City 0.94 8.49 107.64 17.01 211,920 18,908.43 11.21
Taishan District, New Taipei City 1.28 7.69 16.67 78,010 4,071.44 19.16
Zhongshan District, Taipei City 0.45 5.43 103.71 19.03 220,944 16,148.40 13.68
Shenkeng District, New Taipei City 8.41 88.35 29.46 23,774 1,155.27 20.58
Xindian District, New Taipei City 0.33 926/ 10819  11.57 302503 2,516.13 120.23
Nangang District, Taipei City 1.70 9.35 99.53 5.95 117,606 5,384.30 21.84
Shulin District, New Taipei City 0.55 8.75 89.70 5.47 182,849 5,519.34 33.13
Xizhi District, New Taipei City 0.49 2.92 90.41 7.29 205,812 2,889.18 71.24
Daan District, Taipei City 0.67 8.03 79.08 10.06 298,891 26,307.59 11.36
Beitou District, Taipei City 4.83 79.81 9.67 248,237 4,368.71 56.82
Jinshan District, New Taipei City 4.77 85.86 20,977 426.25 49.21
Songshan District, Taipei City 8.08 73.23 9.09 198,120 21,331.21 9.29
Guishan District, Taoyuan City 0.61 484/ 75.60 6.04 165261 2,294.73 72.02
Bali District, New Taipei City 5.03 77.96 2.51 39,734  1,006.09 39.49
Tamsui District, New Taipei City 1.09 7.06 64.59 8.14 184,240 2,607.54 70.66
Sanxia District, New Taipei City 5.14 65.99 5.14 116,708 609.60 191.45
Linkou District, New Taipei City 2.44 63.52 5.70 122,792 2,267.55 54.15
Neihu District, Taipei City 0.36 4.99 48.53 8.57 280,318 8,876.81 31.58
Taoyuan District, Taoyuan City 0.22 2.84 38.39 5.89 458,376 13,169.98 34.80
Daxi District, Taoyuan City 31.48 10.49 95,276 906.35 105.12
Shimen District, New Taipei City 35.29 11,353 221.46 51.26
Yingge District, New Taipei City 1.14 31.86 1.14 87,850 4,158.62 21.12
Ruifang District, New Taipei City 33.48 38,839 549.09 70.73
Bade District, Taoyuan City 2.39 24.36 6.69 209,290 6,208.34 33.71
Woulai District, New Taipei City 31.67 6,315 19.66 321.13
Sanzhi District, New Taipei City 31.15 22,487 340.76 65.99
Luzhu District, Taoyuan City 2.40 2.40 19.19 420 166,744  2,208.46 75.50
Wanli District, New Taipei City 13.92 13.92 21,555 340.11 63.38
Zhongli District, Taoyuan City 0.71 1.18 18.69 5.44 422,582  5,522.50 76.52
Longtan District, Taoyuan City 0.80 15.27 8.04 124,368  1,653.08 75.23
Dayuan District, Taoyuan City 1.07 1.07 15.99 5.33 93,814 1,073.48 87.39
Yangmei District, Taoyuan City 0.57 14.21 0.57 175,836 1,972.96 89.12
Pinglin District, New Taipei City 14.95 6,688 39.15 170.84
Pingzhen District, Taoyuan City 2.19 10.50 2.19 228,594 4,786.99 47.75
Guanyin District, Taoyuan City 11.56 1.44 69,211 786.66 87.98
Xinwu District, Taoyuan City 4.06 2.03 49,218 578.92 85.02

Rankings_of top district-specific incidence rates of SARS-CoV-2 in the three affected
cities (Taipei, New Taipei, and Taoyuan cities) during the large 2021 outbreak (April 16
—July 31, 2021) in Taiwan. The Wanhua District had a 3.28-5.42-fold higher incidence
than the next highest-ranking district. = .

* Distances to the center of the six districts in the three affected cities close to the Wanhua
District were 2 km, 2.5 km, 3.5 km, 3.5 km, 3.9 km, and 4.1 km in the Zhongzheng,
Yonghe, Zhonghe, Datong, Bangiao, and Sanchong Districts respectively.
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Table 3. List of 24 SARS-CoV-2 Alpha variant cases from three risk-clusters in the
onset of 2021 large outbreak in Taiwan (from December 9, 2020 to May 16, 2021)

; Spike
CIaDse Onset date Ilrg/ Loc. Cluster Age Sex I—Il?e‘{%cgée M1|237 Eéals'glf%e Rt
783 Dec.9,2020 Im PAL - 27 M R M NA 0
799 Dec. 26,2020 Im GBR - 75 M R M NA 0
792 Dec.27.2020 Im GBR - 20 M R M NA 0
804 Dec.28,2020 Im GBR - 37 M K M NA 0
837 Dec.29.2020 Im GBR - 32 M K M NA 0
958 Feb.26.2021 Im USA - 52 M R M NA 0
1048 Mar.23,2021 Im PHL - 63 M K M NA 0
1065 Mar.28,2021 Im PHL - 32 M K M NA 0
1050 Mar.29.2021 Im EGY - 20 M K M NA 0
1047 Mar.29.2021 Im IDN - 23 M K M NA 0
1081 Mar.10,2021 Im IDN - 41 M K M NA 0
1059 Apr.9,2021 Im JPN - 24 M K M NA 0
1091 Apr.16,2021 ™ usa it 52 Mk 1 10902l 3
1105 Apr.19,2021 Im USA pilot 46 M NA NA 1199,1200 2
1078 Apr.18.2021 Im USA pilot 52 M K | 1121 1
1153 May.1,2021 Im USA pilot 37 M K 1183, 1187 2
1102 Apr.24,2021 Im USA pilot 38 M K 1133, 1137 2
1120 Apr.17,2021 Id NWT hotelstaff 48 M NA  NA 13553398 4
Earliest
) Wanhua
1363 May. 2,2021 Id TPE community 62 M NA NA case and 1
transmitted
to 3445
. 4008, 4009,
3445 May.5,2021 Id TPE community 53 F K | 4010, 4216, 5
1218, 1219,
1223, 1224
1225, 1226,
1227, 1228,
1203 May.7,2021 Id TPE community 64 M NA 1 15221230, 19
1248, 1250,
1251, 1253,
1255, 1256,
1257
1203’s 1275, 1276,
1257 May.9,2021 Id TAO 3% 47 M NA NA 12734876 3
communit
3037 May.9,2021 1d PIF Y(Wanhia g5 nA NA 38634225 4
history) ’
3037’ 4741, 4743,
4742 May. 16,2021 Id KHH 73ls 56 M K vty S

Im: Imported, Id: Indigenous, Loc.: location, EGY: Egypt, GBR: United Kingdom, IDN:
Indonesia, JPN: Japan, PHL.: Philippines, KHH: Kaohsiung City, MIA: Miaoli County,
NWT: New Taipei City, PIF: Pingtung County, TAO: Taoyuan City, TNN: Tainan City,
TPE: Taipei City.

*ID-1363, 3445, and 1203 had visited the same tea house in the Wanhua District.

The mean + SD of Rt (Reproductive number over time values) values: the five pilots
(onset dates from 16 April to 1 May 2021) associated clusters was 2 + 0.71 (range 1-3),
one hotel-staff (onset date on 17 April 2021) associated cluster was 4, and six earlier
community-associated clusters (onset dates for the first case of each cluster ranged from
2 May to 16 May 2021) was 6 + 6.51 (range 1-19), p = 0.007 (One-way ANOVA)
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Table 4. The percentages of descendants of SARS-CoV-2 Alpha variant strains

in the three time periods with their nucleotides were identical to the 9 strains from
the cases with onset dates in the T1a period (April 16 to May 6)

T1b period T2 period T3 period
May 7-May 14 May 15- June 22 June 23- August 31

Case ID (N=15) (N =56) (N=14)
1091 0 0 0
1079/1078 0 0 0
1102 0 0 0
1145 0 0 0
1137 0 0 0
1154 0 0 0
3445/1263/1186 3 (60%) 16 (28.57%) 0
1183 0 0 0
1187 0 0 0
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Table 5. The number of nucleotide variations of the 81 indigenous SARS-CoV-2
Alpha variant strains in Taiwan compared to the Alpha reference strains (UK-

MILK-ACF9CC) in the three time periods

_ No. of SNV % SNV P value
No. of strains ;
(mean£SD)  (mean+SD) (Period vs. all)
T1 period
) 11 12.36 +4.18 0.0413 +0.014 0.4954
April 16-May 14
T2 period
56 11.29+1.44 0.0377 +0.0048 0.135
May 15- June 22
T3 period
14 13.43+2.31 0.0449 +0.0077 0.0154*
June 23- August 31
SNV: single nucleotide variation
P value: Student's t-test; *: <0.05.
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Table 6. Mutation prevalence percentages of the 101 Taiwan Alpha variant strains
compared to those of the Alpha variant reference strain (UK-MILK-ACF9CC)

No. of Mutation No. of

Residue  Ref strains  Prevalence (%) strains

Hel_460 3.96% 4 96.04% 97
S 1237 13.86% 14 86.14% 87
nsp6_260 89.11% 90 10.89% 11
M_82 94.06% 95 5.94%
nspl 170 95.05% 96 4.95%
N_135 95.05% 96 4.95%
nsp2_169
N_398
nsp4_17
3CLpro_160
nsp8 141
nsp9_83
RdRp_671

97.03% 98 2.97%
97.03% 98 2.97%
98.02% 99 1.98%
98.02% 99 1.98%
98.02% 99 1.98%
98.02% 99 1.98%
98.02% 99 1.98%
98.02% 99 1.98%

T
T
L
A
E
C
T
P
€
V

98.02% 99 1.98%
98.02% 99 1.98%
98.02% 99 1.98%

98.02% 99 1.98%
ORF7a_96 98.02% 99 1.98%
ORF8 27

N N DN DN DN D N N DM DN WO 0 0o o1 O

ORF8_68

By comparing the 101 Taiwan strains with the WHO’s reference Alpha variants
(UK-MILK-ACF9CC), we were able to observe 141 amino acid changes during the
outbreak. We further calculated the mutation prevalence (in Boldface text with black
shadow) of these amino acid changes during the outbreak and found that the top
prevalence percentages of the two amino acid mutations were 96.04% (97/101) for
Helicase-R460K and 86.14% (87/101) for Spike-M12371 presence during the outbreak.
Blocks in different colors represent 31 different proteins.
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Table 7. Univariate analysis and Multivariable regression analysis of the factors
associated with the frequency of SARS-CoV-2 genome sequences identical to those
of the dominant strains from cluster cases of 1D-3445/1186/1263 with their onset
dates from December 9, 2020 to October 31, 2021

Multivariable
Univariate regression
analysis analysis
Identlcal to
dom Adjusted
3445/1186/1263 Crude OR OR (95%
Factors Seq cluster (%) (95% CI) P value Cl) P value

(1) Epidemic periods

Tlperiod 11  45.46% (5/11) 1.74 (0.37-7.92) (%8?/957?*2 018

T2 period 56 32.14% (18/56) Reference =0.492) (0.05-  0.007**
T3period 14 0% (0/14) o0ra Tt 0%
(2) Epicenter
Epicenter 50 16% (8/50)  0.21 (0.06-0.64) 0.15

. 0.0024**  (0.04- 0.001**
Non-epicenter 31  48.38% (15/31) Reference 0.47)

(3) Daily city/county-specific vaccination coverage
of the 1st-dose COVID-19 (%)
<287% 41 39.02% (16/41) Reference 0.0479% i )
>2.87% 40 17.5% (7/40) 0.34 (0.1-1.02) '
(4) Daily district-specific daily public transport ridership

(per 10K passengers)
<3.344 40 35% (14/40) Reference 0225 i )
>3.344 41 21.95% (9/41)  0.53 (0.17-1.55) '
(5) Daily cases
<24 26 34.62% (9/26) Reference 0435 i )
> 24 55 25.45% (14/55) 0.65 (0.21-2.04) '
(6) Monthly district-specific population size
(per 100K peoples by district)
<18 16 56.25% (9/16) Reference 0.011* i )
>1.8 65 21.54% (14/65) 0.22 (0.06-0.79) '
(7) Monthly district-specific populatlon density
(1OK pop. size / district area km?)
28 46.43% (13/28) Reference 0.018* i )
2 2 53 18.87% (10/53) 0.27 (0.09-0.83) '
(8) Age
<53 32 25% (8/32) Reference 1 i )
>53 35 25.71% (9/35) 1.04 (0.3-3.65)
(9) Gender
Female 43 25.58% (11/43) Reference 0625 i )
Male 38 31.58% (12/38)  1.34 (0.46-3.97) '

Seq: sequence, OR: odds ratio; CI: confidence interval; P value:

Fisher’s exact test; *: <0.05; **: <0.01.

Multivariable regression formula: binomial linear regression (Identical to 1D-3445 =
Epidemic periods + Epicenter), AIC = 83.627

T1 Period (April 16 — May 14; pre-Level 3 Restrictions), T2 Period (May 15 — June 22;
post-Level 3 Restrictions, but pre-Zero-COVID Policy), and T3 Period (June 23 —
August 31; post-Zero-COVID Policy).

We used Fisher's exact test to assess all factors between subgroups due to the small
sample size. Variance inflation factors (VIF > 5) were used to evaluate collinearity
among factors, and the statistically significant factors without collinearity were
included in the final multivariable regression model (Tables 8 and 9).
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Table 8. Binomial linear regression and Variance Inflation Factor (VIF)

[0 2 @) @ | )
Epidemic Epicenter Vaccination  Population = Population
periods P coverage size density
1+2+3+4+5 1.553 5.762 1.395 1.891 6.751
1+2+3+4 1.536 1.818 1.369 1.597 -
2+3+4+45 - 1.604 5.895 1.365 5.979

Variance inflation factors (VIF > 5) were used to evaluate collinearity among factors,
and the statistically significant factors without collinearity were included in the final
multivariable regression model.
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Table 9. Multivariable logistic regression (binomial) analysis associated with the
frequency of SARS-CoV-2 genome sequences identical to 1D-3445/1186/1263 using

stepwise method by Akaike information criterion (AIC) and backward/forward

Std. Adjusted
Estimate Error Z value OR P value

Identical to 1D-3445/1186/1263 = Epidemic periods + Epicenter + VVaccination
coverage + Population size, AIC = 86.451

Epidemic periods -1.739 0.736 -2.36 0.176 0.018*
Epicenter -1.477 0.763 -1.94 0.228 0.053.
Vaccination

-0.067 0.691 -0.1 0.935 0.923
coverage
Population size -0.832 0.776 -1.07 0.435 0.284

Identical to 1D-3445/1186/1263 = Epidemic periods + Epicenter + Population size,
AIC = 84.46

Epidemic periods -1.775 0.64 -2.77 0.17 0.006**
Epicenter -1.499 0.73 -2.06 0.223 0.04*
Population size -0.82 0.767 -1.07 0.44 0.285
Identical to 1D-3445/1186/1263 = Epidemic periods + Epicenter, AIC = 83.627
Epidemic periods -1.738 0.639 -2.72 0.176 0.007**
Epicenter -1.934 0.606 -3.19 0.145 0.001**

P value: Fisher’s exact test; *: <0.05; **: <0.01.
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Figures

2021 large outbreak in Taiwan
(2021/4116 - 2021/9/4)

16,132 laboratory-confirmed cases from 4| 14,311 confirmed cases @
Taiwan-CDC (2020/1/11 - 2021/9/4)
: :
1,291 detail Epidemiological investigations released Beginning cases
and confirmed by Taiwan-CDC (2020/1/11 - 2021/5/7) with contact-tracing
l (2021/4/16-2021/5/7)
308 SARS-CoV-2 whole-genome sequences
isolated in Taiwan (2020/1/11 - 2021/8/31) N
61 strains from NCBI-Virus ; 247 strains from GISAID-EpiCoV
y ‘
Data process executed by our in-house developed 81 Taiwan indigenous Alpha variant
bioinformatics software CoVConvert and IniCoV strains isolated (2021/4/16-2021/8/31)
(Yang et al., 2020, Detail in Appendix Figure 1) with whole-genome sequencing
and obtained 101 Taiwan Alpha variant strains with
whole-genome sequencing (2020/12/9 - 2021/8/31)

A 4 h4

81 genome sequences alignment to compare with

UK-Alpha-ref-strain (UK-ACF9CC) and the earliest

circulating viral sequence available in community
(2021/4/16 - 2021/8/31)

Epidemic curves of SARS-CoV-2 cases in Taiwan

Integrated all epidemiclogical information and
81 SARS-CoV-2 whole-genome sequences for
univariate and multivariable regression analyses

The incidence rates of SARS-CoV-2-positive cases for the 2021 large outbreak in Taiwan

Figures| The genome variations in the 81 SARS-CoV-2 Alpha variant strains of the Taiwan's 2021 outbreak

Epidemiological linkages of initial six transmission chains of SARS-CoV-2 cases and their residential districts
during the early-outbreak period in Taiwan

Univariate and multivariable regression analyses of the factors associated with the 81 community-SARS-CoV-2
Alpha variant strain’s dominance of the outbreak

DD

Figure 1. Flow diagram of study design to analyze SARS-CoV-2-positive cases in
Taiwan from January 11, 2020 to September 4, 2021

We used CoVConvert to check data quality and obtained different reading frames
for IniCoV to identify polygenetic consensus signatures.
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Figure 2. Epidemic curves of laboratory-confirmed SARS-CoV-2 cases plotted with
three major government countermeasures in Taiwan from January 1, 2020, to
September 4, 2021

The weekly numbers of laboratory-confirmed SARS-CoV-2 cases from the 1% week
of 2020 to the 36™ week of 2021 (i.e. 4 September 2021 when the daily case number
dropped below 10) were obtained from Taiwan CDC Open Data Portal
(https://data.cdc.gov.tw/en). The bar graphs show the distribution of cases based on the
onset weeks, and the arrows indicate when countermeasures were implemented (Detail
described in Supplementary). The confirmed indigenous cases caused by the three
variants of SARS-CoV-2 are: (1) Alpha variants (14,311 cases, April 16-September 4,
2021), (2) Epsilon variants (19 cases, January 1-January 31, 2021), and (3) Delta variants
(15 cases, June 16-June 26, 2021).
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(A) Weekly numbers of confirmed imported (shiny blue bars), indigenous (red bars), and
the 2021 large outbreak (light purple bars, from the 16" - 36" week of 2021). The
two waves of the imported cases involved western holidays:

1) the 48" week of 2020 (early December, 50 cases after Thanksgiving holidays)
through the 1% week of 2021 (38 cases after New Year’s holidays), and

2) 16M-19" week of 2021 after Spring breaks (mid-April, mean + S.D.: 29.5 + 12.95

cases/week).

(B) Sources of the infection for indigenous cases involved into five major risk groups
from January 1, 2020, to September 4, 2021 before the 2021 large outbreak (1% week
of 2020 to the 7" week of 2021):

1) Imported Aircraft-associated cases (light blue bars, contact history with imported
cases) = 29/114, 25.4%,

2) Healthcare-associated cases (magenta bars) = 30/114, 26.3% (9 cases in the 9'" -
11" weeks of 2020 and 21 cases in the 2" -6" weeks of 2021),

3) Community-associated cases (purple bars, indigenous cases who had no travel
history three days before the onset of illness) = 12/114, 10.5%,

4) Ship-associated cases (orange bars, cruise ships and naval crews) = 36/114, 31.6%
(36 cases in the 16M -19" weeks of 2020), and

5) Cases with unidentified sources (black bars, no clear sources of infection
following thorough epidemiological investigation) = 7/114, 6.2%.

During the 2021 large outbreak (17" week of 2021 to the 36" week of 2021):

1) Healthcare-associated cases (magenta bars) = 244/14,311, 1.7% (244 cases in the
20t -25" weeks of 2021),

2) Community-associated cases and cases with unidentified sources (light purple
bars, indigenous cases who had no travel history three days before the onset of
illness) = 14,067/14,311, 98.3%
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Figure 3. The incidence rates of laboratory-confirmed SARS-CoV-2 cases in the
three major affected cities and other areas of Taiwan from Pre-outbreak and during
the large 2021 outbreak (from December 9, 2020 through July 31, 2021)

(A) Pre-outbreak (T0, December 9, 2020 through April 15, 2021)
Symbols and lines shown the Taoyuan International Airport and quarantine
hotel in Dayuan District, and imported cases (in the circle).
(B) During the outbreak (T1-T3, April 16, 2021 through July 31, 2021)

The colour gradients show the incidence rate (per 100,000 residents) in each
district in the three major affected cities across five different time periods [T1a
(April 16, 2021-May 7, 2021, early-outbreak), T1b (May 8, 2021-May 14, 2021;
pre-Level 3 Restrictions), T2 (May 15, 2021-June 22, 2021; post-Level 3
Restrictions, but pre-Zero-COVID Policy), T3 (June 23, 2021-July 31, 2021; post-
Zero-COVID Policy].

The early-outbreak (T1a) cutting time point on May 7 because the last pilot
case ID-1183 and ID-1187 who had onset dates on May 6.

The Daily mean numbers, and red lines show the six districts neighboring the
area where the epidemic began (Wanhua District).

The “epicenter” of this outbreak was defined as the district with the highest
incidence and its bordering districts (Table 3). Data on district-specific population
sizes was obtained using Taiwan household registry information from the Ministry
of Interior population sizes in May 2021 were 2,574,704 in Taipei City, 4,026,019
in New Taipei City, and 2,270,939 in Taoyuan City
(https://www.ris.gov.tw/app/en/346).

The numerator represents number of new cases occurring at that specific time
period in the same studied district as the denominator. The monthly incidence rates
are shown as “mean = SD” before and after the 2021 outbreak: Taipei City: 0.152 +
0.161 vs 46.691+ 56.311 (p < 0.0001), New Taipei City: 0.162 + 0.066 vs 42.161 +
49.067 (p <0.0001), and Taoyuan City: 0.265 £ 0.303 vs 8.288 + 7.606 (p < 0.0001).
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Figure 4. Epidemic curves of laboratory-confirmed SARS-CoV-2 cases in the three
major affected cities and other areas of Taiwan in the large 2021 outbreak

The bar graphs show the distributions of cases based on onset dates from April 15
through July 31, 2021. Because the daily numbers of confirmed SARS-CoV-2 cases in
Taoyuan City were much lower than those in Taipei and New Taipei cities, we used two
scales (0-20 and 30-270 cases) that are separated by white lines in Taipei City, New
Taipei City, and other areas.

The 81 indigenous strains involved three time periods based on population-based
interventions: 1) T1 Period (April 15-May 14; pre-Level 3 restrictions), 2) T2 Period
(May 15-June 21; post-Level 3 restrictions, but pre-Zero COVID policy), and 3) T3
Period (June 23-August 31; post-Zero COVID policy).

The mean weekly numbers are shown as “mean + SD” before and after the 2021
outbreak, Taipei City: 0.516 + 1.807 vs 1201.25 + 1372.857 (p < 0.0001), New Taipei
City: 0.516 + 2.38 vs 1939.429 + 1975.374 (p < 0.0001), and Taoyuan City: 2.323+ 5.11
vs 215.143 + 172.747 (p < 0.0001).
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Figure 5. Epidemiological linkages of initial six transmission chains of SARS-CoV-2

cases and their residential districts at the T1 period in the three major affected cities

of Taiwan

The initial six Early-outbreak chains were drawn according to Taiwan CDC

epidemiological investigations. Symbols and lines shown in each Early-outbreak chain

represent the characteristics of the subjects who transmitted the virus (pilot in the circle;

hotel staff in the triangle) or new cases from family or friends contacts (in the square)

through direct (solid lines) or indirect (dotted lines) transmission. The numbers shown

are Case IDs. ID numbers that are red with a star sign have viral sequences available in

the GISAID-EpiCoV database.
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Figure 6. Nucleotide variations of 24 SARS-CoV-2 Alpha variant strains isolated
from Pre-outbreak and six different Early-outbreak chains in Taiwan (from
December 9, 2020 to May 7) compared to those of the Alpha variant reference strain
(UK MILK-ACF9CC)

The whole genome sequences of 24 Taiwan SARS-CoV-2 Alpha variant strains
were compared to UK-MILK-ACFI9CC. The nucleotide variations between Taiwan’s
strains and UK-MILK-ACF9CC strain are shown in vertical lines which represent
nucleotide A (green), C (blue), G (black), and T (red), respectively.
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Figure 7. Nucleotide variations of 14 SARS-CoV-2 Alpha variant strains isolated in
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The whole genome sequences of 14 Taiwan SARS-CoV-2 Alpha variant strains
isolated in T3 period were compared to ID-3445/1186/1263 strain. The nucleotide
variations between T3 strains and T1/T2 predominant 1D-3445/1186/1263 strain are
shown in vertical lines which represent nucleotide A (green), C (blue), G (black), and T

(red), respectively.
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Figure 8. The figure summarizes our major findings

This figure summarizes our major findings in this study. Before the outbreak (TO,
Pre-outbreak), the imported Alpha variant strains were heterogeneous with high viral
genome divergence. However, such diversity significantly decreased during the T1 period
(p < 0.0001), when the dominant virus strains with selective advantages appeared. We
also investigated the epidemiological conditions in Taiwan that facilitated the emergence
of the predominant virus strain in the T1 period. The effective reproductive numbers over
time (Rt) for the viruses from the imported cases were all zero at TO period before the
outbreak. However, the mean Rt values of the viruses from the pilots to quarantine hotel
staff and subsequent dominant virus strains in the community (i.e. same sequence
identities as the 1D-3445/1263/1186) increased rapidly. Specific epidemiological
conditions, including unmasked dining in many teahouses, and customers’ movement
across teahouses, helped the dominant Alpha variant strains with a selective advantage.
This study demonstrated that natural selection of a dominant virus strain (prior to immune
selection) progressed in three stages: (1) selection started from a diverse virus pool (i.e.
imported viruses at T0O), (2) selection advantages increased through virus replication, in
which the progeny virus had more advantages than its parent, and (3) selection of a fast-
spreading strain through human-to-human transmission when a community had suitable
epidemiological conditions (i.e. our T1 period and epicenter). Most importantly, COVID-
19 cases dropped sharply alongside the two important population-intervention strategies
(Level 3 Restrictions and Zero-COVID policy).
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Chapter 6
Perspectives
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In recent years, identifying and analyzing emerging infectious viruses have become

increasingly crucial due to their continuous threat. The rise in episodes of diseases such

as influenza virus and SARS-CoV-2 highlights the importance of developing robust

sequence analysis software capable of processing and analyzing vast amounts of

sequencing data generated by state-of-the-art technologies. With its segmented genome

comprising eight genes, the influenza virus poses a unique challenge as these genes can

reassort from other species. Therefore, careful consideration of each gene segment's

identification and epidemiological information is necessary during the analysis process.

Tracing the earliest evolutionary origin of the influenza virus is made even more difficult

due to the absence of a reference virus strain.

On the other hand, SARS-CoV-2, consisting of a single gene with over 30,000 base

pairs, benefits from a known early standard reference— Wuhan strain. This feature allows

for rapid identification of amino acid residue differences through comparison. However,

when comparing numerous sequences, challenges arise in calculating a consensus due to

alignment performance issues. Because of these challenges, diligent improvements in

excising software tools are necessary to organize, visualize, and analyze virus sequence

data. Developing more advanced tools is crucial for applying these sequence data in

virology, immunology, and epidemiology, gaining deeper insights and understanding.
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Current web-based sequence analysis tools

Currently, several tools are available to identify viral strains. One option is to upload

sequences to NCBI Virus for BLAST analysis. Another platform, GISAID-EpiCoV,

enables SARS-CoV-2 sequence comparison with the reference Wuhan strain. It provides

a list of amino acid differences and facilitates the determination of the virus lineage or

clade. Platforms such as BV-BRC offer the Sequence Feature Variant Type (Flu-SFVT)

method for other viruses, such as the influenza virus. These platforms allow users to

upload individual gene segments and identify amino acid differences. It also links this

information to literature-based data on pathogenicity and drug resistance.

Furthermore, when comparing groups of viral strains within a specific population,

constructing phylogenetic trees provides insights into their evolutionary trends.

NextStrain is an example of a tool that performs real-time phylogenetic tree construction

to track viral evolution trends. Sampling a clade of virus sequences helps understand their

spatiotemporal changes and identify unique evolutionary clades (Hadfield et al., 2018).

By leveraging these tools, researchers can transform virus sequences into comprehensive

gene annotations with extensive descriptions of variant residues.

Requirements of essential skills for executing the analysis

Programming skills are often necessary to effectively handle virus sequences,
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including sequence organization, alignment, and analysis. In recent years, the

development of pipeline software and online tools has led to the emergence of packaged

analysis workflows. These workflows streamline the analysis process and make it more

accessible. For instance, Bioconda hosts numerous tools that can process influenza viral

sequences. One such tool is the nf-flu tool, which focuses on analyzing each of the virus's

eight segmented genes. It compares the viral sequences to a specified reference strain

(Kruczkiewicz, 2022). Another online tool, INSaFLU, directly handles raw viral

sequencing files and compares them with representative viral strains. It then utilizes the

Snippy tool to generate consensus sequences and highlights divergent amino acid residues

(Borges et al., 2018). While these tools provide direct residue variation annotations from

raw FASTA sequence files, additional analysis may be necessary for re-aligning

sequences, which can be time-consuming.

Furthermore, these tools often require the availability of reference strain for

comparison. However, they may not integrate cross-segment gene analysis with other

relevant information. Therefore, utilizing these tools requires a combination of

programming skills and an understanding of the limitations of the available workflows.

Unique features of our analysis software packages

Our software package offers a unique set of features that address the limitations of
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existing tools while incorporating additional advantages. It provides efficient virus

sequence processing, whole genome sequence visualization, comparison, and consensus

sequence analysis. With our software, users can automatically process FASTA sequence

files, perform sequence alignment, and translate them into amino acid sequences without

requiring any programming skills. Whether the viral genomes are segmented or composed

of disparate segments, our software can integrate into a complete viral genome using a

strain-based alignment method. This flexibility allows for easy grouping and

incorporation into subsequent analyses. In addition to robust sequence processing, our

software excels in sequence visualization, enabling real-time adjustments and in-depth

exploration through an interactive GUI platform. This feature differentiates our software

from commonly used tools like BioEdit and Integrative Genomics Viewer (IGV). While

these tools can display multiple viral sequences, our software provides a more user-

friendly and intuitive interface for visualizing viral sequences. Incorporating strain name

information and amino acid residues into an Excel spreadsheet enhances visualization.

Moreover, the software facilitates easy grouping without requiring sequence alignment,

empowering users to generate group-specific consensus sequences with less efforts.

Furthermore, our software’s advantages extend beyond sequence visualization. It

offers automatic analytical workflows, distinguishing it from commercial software
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packages, such as QIAGEN CLC Genomics Workbench and bioMerieux bionumerics.

These workflows enable the study of viral mutations, integration of information from

Ingenuity Pathway Analysis (IPA), construction of phylogenetic trees, and other

analytical methods. This comprehensive approach illuminates new directions for research,

enhancing the user’s ability to delve into the complexities of viral sequence analysis.

Limitations and future improvement

While our software introduces new features that address limitations associated with

online tools, several aspects require further improvement. Platforms like the Viral

Bioinformatics Resource Center and NCBI Virus linked to PubMed offer valuable

experimental corroboration and information for understanding viruses (Brister et al., 2015;

Olson et al., 2022). However, our software cannot provide real-time updates and connect

our findings on highly variable amino acids to scientific literature, which would reveal

their epidemiological significance. Moreover, predicting the impact of unknown viral

changes requires experimental demonstration to establish their relevance. Future

enhancements to our software could include integrating automatic sequence generation

structures, enabling a faster analysis of available therapeutics. Additionally, employing

large language models (LLMs) with Al technology, such as programs integrated with

ChatGPT 4 (Stokel-Walker & Van Noorden, 2023), can offer a comprehensive platform
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for literature review, organization, and annotation of additional points. This approach

would provide great tools and insights, facilitating future research development and

establishing a solid foundation for research directions.

In summary, our software combines the benefits of efficient viral sequence

processing, comprehensive visualization, and automated analytical workflows. These

features provide a versatile and user-friendly real-time consensus sequence analysis

platform, facilitating in-depth exploration and opening new avenues for virology,

epidemiology, and clinical research. While our software addresses some limitations, there

is scope for improvement in real-time updates, linking findings to scientific literature,

experimental demonstration of viral changes, and integrating advanced language models

for enhanced literature search and annotation. These enhancements will bolster the

software's capabilities, providing researchers with a robust virus analysis and exploration

platform.
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Background

The emergence of novel H5N1 avian influenza virus (AIV) in 1997 resulting in fatalities
in humans has raised global concern [1]. As of May 8, 2020, a total of 861 human infec-
tions and 455 deaths caused by H5N1 infection had been reported [2]. Thereafter, the
re-emergence of highly pathogenic avian influenza (HPAI) A H5Ny subtypes that cause
widespread infections in poultry farms and in wild birds since 2003 has greatly
attracted public health attention. Interestingly, the H5 AIVs in Asia have evolved faster,
having higher viral diversity, greater inter-species transmission, and broader host range
than those in Europe and the Americas [3]. Understanding the viral factors which de-
termine the pathogenicity of H5 AIV by timely integration of virological, immuno-
logical and epidemiological information will be helpful to establish effective prevention
and control measures to minimize future pandemic threats.

The immediate release of the genetic sequences of influenza A viruses combined with
collections of tools established for analyzing all types and subtypes of influenza viral se-
quences have greatly advanced our understanding of the evolution of circulating viruses
and their potential risk to animal and human health [4]. Given the fact that multiple
mutations across gene segments of influenza viruses can exist and the genomic stability
might be influenced by a particular mutation over time [5], new suites of tools are
needed to integrate these databases for a better alignment of virological, epidemio-
logical and clinical data in a real-time manner.

Several public-domain databases are available for collecting influenza genetic and epi-
demiological information. They include: (1) National Center for Biotechnology Infor-
mation Influenza Virus Database (NCBI-IVD) [6], (2) Global Initiative on Sharing All
Influenza Data (GISAID-EpiFlu) [7], and (3) Influenza Research Database (IRD) [8].
While NCBI-IVD provides the complete influenza viral sequences of gene segment
across a wide range of years, GISAID-EpiFlu is recognized as a compelling mechanism
for rapid sharing of partial or incomplete influenza viral sequences [9]. As for IRD, it
contains human and mammalian influenza surveillance data as well as human clinical
data associated with viruses, linking host surveillance data to well-characterized virus
strains [8].

In this paper, we reported on development of a new suite of integrated software in-
cluding FluConvert and IniFlu for data processing and analysis. FluConvert provides a
series of automated packages to efficiently rearrange genetic data based on standard
viral nomenclature [10] and translate the nucleotide sequences into three possible poly-
peptides from 0, + 1, and + 2 open reading frames (ORF) after performing simultaneous
multiple sequence alignments. For IniFlu, it is programed to automatically select the
correct ORF encoded from corresponding gene segment as well as the spliced isoforms
(e.g. NS1, NS2 of NS gene; M1, M2 of M gene). Possible accessory proteins (e.g. PB1-
N40, PB2-S1, M42) that have been reported in the literatures [11-13] can also be se-
lected by IniFlu. The capability of IniFlu that integrates viral genetic information into
clinical and epidemiological surveillance data with high efficiency provides a rapid com-
parison of variations in viral sequences with epidemiological significance. To this end,
we provide the results from analysis of HSN2 HPAI viruses defined by the presence of
the hallmark amino acid motif (XRRKRR) at the cleavage site between HA1 and HA2
domains [14]. In addition to these multiple basis amino acid residues in the HA, we
demonstrate that several other amino acid substitutions across different gene segments
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of H5N?2 avian influenza viruses could be associated with the viral virulence and mam-
malian infections based on IniFlu-generated polygenic HPAI consensus signature. This
suggests that the data analysis platform we report here will be useful to identify novel
mutations for risk assessment of AIVs with potential threat to animal and human
health.

Methods

Installation of FluConvert and IniFlu

Both FluConvert and IniFlu are available for free download at https://apps.flutures.com
or https://github.com/chinrur/FluConvert_IniFlu. The programs can be automatically
installed in a desktop computer after the user perform execution files which is found in
downloaded folders. The operating system of the computer requires Microsoft Win-
dows 10 (version 1903 or later version) equipped with Microsoft Office 365 or Office
Excel 2016 (or later version, 64-bit) for installation and Java 6 (or later, 64-bit) to per-
form each software. When open FluConvert, the user will be asked to import data
which have been pre-downloaded from NCBI-IVD or GISAID-EpiFlu (Step 1 of Fig. 1)

Step 1: Data Retrieval

] Download viral sequence data from NCBI-IVD/GISAID-EpiFlu/IRD

\

Step 2: Data Process

¢ Arrange by standard viral nomenclature

ﬂ\ D (A/host/region/strain/year/subtype)
b 2 ¢ Check data quality
FluConvert . Sort viral sequences into eight gene segments
e Translate nucleotides into three possible polypeptides from
ORF 0, +1, and +2
v

Step 3: Data Analysis

FIuCS: « ORF selection and alternative splicing

=== « Strain-based alignment
n E FluCG: e Establish subgroups
IniFlu === eDetermine consensus sequences

e [dentify polygenic consensus signatures

Fig. 1 Workflows of data analysis executed by FluConvert and IniFlu. The stepwise processes performed by
FluConvert and IniFlu to identify novel signatures of emerging influenza viruses with increasing risk are
described as follows. Step 1: Viral sequences are obtained from the three databases (NCBI-IVD, GISAID-
EpiFlu, and IRD). Step 2: FluConvert rearranges viral strains by viral nomenclature and ensures data quality.
Viral sequences are further sorted into eight gene segments and translated into amino acid sequences.
Step 3: The module FIUCS of IniFlu performs strain-based alignments of FluConvert-processed viral amino
sequences. The module FIUCG of IniFlu regroups viral strains with epidemiological significant and computes
a consensus sequence for each subgroup. Finally, the subgroup-specific unique polygenic amino acid
signatures can be simultaneously identified (see details in Fig. 3)
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following instructions provided on the website. It will take minutes to hours to
complete the process depending on the quantity of data entry. Once FluSeed Dataset
has been processed by FluConvert (Step 2 of Fig. 1), IAV sequences can be analyzed by
IniFlu (Step 3 of Fig. 1). We also include a detail step-by-step user’s guide in Readme
which can be found at https://apps.flutures.com website.

FluConvert: a tool to process downloaded sequences

FluConvert automatically processes downloaded sequence files (*FASTA) using the
command-line interface (CLI) by batch (shell) scripts operated in a Microsoft Windows
environment. It consequently performs (1) name and quality checking for downloaded
sequences, (2) separation of sequences into eight gene segments, (3) multiple alignment
of DNA sequences within clusters, (4) translation of DNA sequences into three possible
polypeptides from ORF 0, + 1, and + 2, and (5) multiple alignment of amino acid se-
quences within clusters. The functions of FluConvert are to unify the arrangement of
genetic information and then to convert nucleotide sequences of cDNA to amino acid
sequences for multiple alignment at the protein level.

Arrangement and quality checking for downloaded sequences

All sequences downloaded from the NCBI-IVD and the GISAID-EpiFlu databases are
rearranged according to the standard influenza viral nomenclature in the order of type,
host, region, strain, year, and subtype within the parentheses [10]. Secondly, rearranged
sequences are inspected, and the gene segments are deleted when they met any condi-
tions in the “excluding list” generated for quality checking. Entries retrieved from
NCBI-IVD and GISAID-EpiFlu databases were deleted according to “excluding list” to
remove duplicates, incomplete sequences, or those with error information. Downloaded
entries that are later saved to FluSeed Dataset have never been modified or corrected
for any purposes. This is to ensure that the information remains original and the fea-
tures of genetic sequences are kept unaltered during FluConvert processing. The three
major error conditions of viral sequence information are: (1) lacking complete viral no-
menclature, having mixed subtypes, belonging to lab strains or showing errata in public
database records, (2) finding duplicate sequence records in any of the public databases,
and (3) sequences longer than the expected lengths for different segments (e.g. PB1 >
2500 bp, PB2 > 2500 bp, PA > 2400 bp, HA > 1900 bp, NP > 1700 bp, NA > 1600 bp, M >
1150 bp, and NS > 1050 bp), or having redundant sequences or those containing more
than 60 unknown nucleotides (denoted as ‘n’). Finally, all the sequences that had passed
the excluding list’s quality check without entering the excluding list were used to create
a new dataset called the “FluSeed Dataset” and subjected to IniFlu analysis.

As noted, entries retrieved from these public domain databases have never been modified
or corrected after downloading. This ensures to keep information original and features of
genetic sequences are not lost during FluConvert processing. Moreover, FluSeed Dataset is
used for IniFlu analysis and has never been intended to make publicly accessible.

Multiple sequence alignment and amino acid translation
The genome of influenza A virus contains eight RNA segments. Therefore, FluConvert
first divides the genetic sequences in FluSeed Database into eight clusters by the MAFF
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T multiple sequence alignment program (version 7.429) with fast Fourier transform
[15]. All sequences in each of the eight gene segments are then translated into three
possible polypeptides from ORF 0, + 1, and + 2 by EMBOSS Transeq (version 6.5) [16].
Nucleotide sequences and amino acid sequences in each of the eight gene segments in
the FluSeed Database are subject to multiple alignment by MAFFT again with different
optimizing parameters based on sequence lengths and the numbers of viral strains or
files [i.e. L-INS-i (accurate) for alignment of <~200 viral strains/files; FFT-NS-2 (fast)
for alignment of <~30,000 viral strains/files to obtain maximal efficiency; and PartTree
(fast) for alignment of > ~ 30,000 viral strains/files] [17]. Results of sequence alignments

from the same ORF were saved as comma-delimited (csv) text files.

IniFlu: a viral information viewer and analyzer

IniFlu, a Visual Basic Application (VBA) program for Microsoft Office Excel 2019
worksheet, has a user-friendly graphical interface (GUI) to combine viral information,
amino-acid sequences and epidemiological data for further analyses. IniFlu has two
modules, “FluCS” (which stands for “Flu Cross-Segment alignment”) and “FluCG”
(which stands for “Flu Comparative Grouping”). FluCS matches the aligned sequences
according to the standard viral nomenclature of the strains after encoding protein from
OREF selection and alternative splicing. FluCG visualizes different epidemiologically spe-
cific (such as time-, area-, host-, age-, gender-specific) consensus signatures obtained
(shown in Fig. 4), providing not only the clinical information of the viral sequences but

also their epidemiological characteristics.

FluCS: strain-based amino acid sequence alignment

FIuCS groups the amino-acid sequences of each gene segment according to FluSeed
Dataset (Fig. 2a). FluCS is also programed to automatically select the correct ORF of
each viral protein as well as the alternatively spliced isoforms. Accessory proteins, e.g.
PB1-N40, PB2-S1 and M42 [11-13] can be assigned to the viral segment group of PB1,
PB2, and M, respectively. PB1-F2 which is translated by a second ORF in the + 1 frame
[11, 18] is selected and assigned to an independent group. As a result, a total of 11 viral
segment groups (PB1, PB2, PA, HA, NA, NP, M1, M2, NS1, NS2, and PB1-F2) is estab-
lished for strain-based alignment (Fig. 2b, c). The position of each residue is numbered
based on the first methionine residue of that gene segment determined by FIuCS (e.g.
HA of H5N2 subtype is numbered by H5 numbering system) [19].

FluCG: comparative sequence analysis

FluCG chooses the most representative amino acid at each residue of a particular gene
segment by computing the most frequent amino acid among all strains within the stud-
ied subgroup. If there are more than two amino acids occurring at the same frequency,
one is chosen by alphabetic order. Residues that appear at stop codons or deleted co-
dons are marked. Through this process, the consensus sequence can be created for a
particular subgroup [20]. The unique residues in each subgroup can also be identified
by aligning two consensus sequences and are called “consensus signatures”. All the
unique amino acids appearing at each residue of the consensus signature are thor-
oughly examined and compared to verify the unique amino acid is present only in the

doi:10.6342/NTU202301433



Yang et al. BMC Bioinformatics (2020) 21:316 Page 6 of 14

FluSeed Dataset
DT T

e L pp— 07 I 06 M gy O o 0PN 01T
oSl W s CEE omm ?,9,=05- ) 05 10 I

B Ns2] [T [ 0 [ 09 MY 0N oM 10N

o 02 I - 10 o 05 I 05_10-—'9-
ot 2 e c— 5 o7 ET |
N 03P O — OB R 07 o5 09 oo
pp— ] 0SS i 7
A % oS I— 08 O7 S o5 I () — 0% f

NI 0GR R oG o7 o7 OO T ¢y (SR

B v _

ORF Selection and Alternative Splicing

NA

HA

PB2 01 RRKR | of PB1-F2
0f (i
m= S wo " O__f__ — v o7=
TE— o — = S I — I
8 I
Ve G e EE OEE opy pmm 08
(] JTE o O m— CHE CFE omm omm 98
6 B e O - O s CEE N oEE vE GEE
[ g VR o s VEE NN EE GEN OB
=== 0EEEES o opmmm CEE SEE omm om GE
10 (1] g% 7 gy G CEE g cmm GE
[ o 10 I— oI o gomm oEm
oS E— o9 L1 IS

c v

Strain-based Alignment

Influenza nomenclature
Region Strain

Host/ [Year
TVPie( g ‘ asi“"‘!"’e PB2 PA M1 M2 NS1 NS2 PBiR2
01—01—01 01-1.15-01_01_01-01“01-01-01-

| Strain2 [ P 25007 2 2 2 S 2T 02 2 02
[ KER | o —
| strainos [ I ) (T RER__| o4 — O 04100 04
| strain0s [ 05 NN 05 M 05 M 05 N 05 I 05 N 05 N o5
| Strain0s [T [ ] 06 000706, 05 M 05 N 05 SN 05 N 6 M o6
IESTETOEAN 07 I 07 W 07 O7 T 07 S o7 S o7 N o7 IO o7 7 I o7
| strains [1—— WU 06 100 70 OB S 05 N 08 N 06 T 0 NN 06 ) 06
| Strain0o [CN— Q] 09 70 09 N 09 [ 09 N 09T 09 09
[ Strain10 RONSEN BB () 10 TGN 10 I 10 10 N 0N 10 M0 10,
Subgrouping by standard viral nomenclature (host, region, year, etc.) or residue
Subgroup 1
PB2 PB1 PA M1 M2 NS1 NS2 PBI-F2
[ Stan01 [JI = [ 01-3,11.-01—01—01-01“01-01-01-
SSranes L W 05500111 0 05 S 05 5 TN 05 05 5
| Strain07 [uf  JulE ) 07 FETETI 07 ) (7 [ 07— 07 [ 07 I 07 . 07
Subgroup 2
PB2 PB1 PA M1 M2 NS1 NS2 PBi-F2
[ Sran0y (W = i) ozm m—oz—oz-mmoz-oz-m-
[ Sanod [ I (T RETR | o — 04 04 04
[“Stancc [ [ 0600710 0 06 S 06 N 6 SN 06 05 06
“Stance [ JU] 0B 150010 8 O S 06 0 T 06 N 00 06
| Strain10 BN BB ] 10 DT 10 MM 10 S 10 I 10 HCT 10/ 10 M 100"

Fig. 2 Schematic diagram of strain-based alignment approach. Influenza viral sequences are aligned by
FIuCS as follows: a The FluSeed Dataset is constructed by quality-checked and rearranged viral sequences.
Blocks in different colors represent ten viral segments. The size of each block corresponds to the length of
the viral sequence originally retrieved. Blocks in any color tagged with the same Arabic numbers are
identified as the same strain. b Rearranged viral sequences are sorted into 11 protein clusters based on
gene segments and well aligned within the cluster. Aligned sequences are subjected correct ORF into PB2,
PB1, PA, HA, NP, NA, M1, NS1, and PB1-F2. M2 and NS2 are alternatively spliced proteins from M and NS
ORF mRNAs, and respectively. ¢ Delineated viral amino acid sequences are easily aligned based on standard
influenza viral nomenclature. The analysis platform provides benefits for multi-layer subgrouping based on
epidemiological significance
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particular subgroup. Finally, all possible 20 amino acids, stop codons, and deletions are
all examined and presented in a substitution table (as Fig. 5).

Results

Influenza viral sequences and data processing

The genetic sequences and epidemiological information of influenza viruses in one
public domain database are not properly linked to the other. To maximize the informa-
tion coverage for a particular AIV subtype for further analysis, we have developed the
FluConvert program to combine all data available from these databases and automatic-
ally process them in one format. Viral sequences that had passed quality check after ex-
cluding incomplete or erroneous ones to ensure correct genetic information are used
for constituting the FluSeed Dataset. Sequences in the FluSeed are subsequently rear-
ranged to standard nomenclature in the order of influenza virus of type/host/region/
strain/year (HxNy subtype) and segregated into eight gene segments. Amino acid se-
quences are translated from nucleotide sequences for alignment (Fig. 1).

Viral strain-based sequence alignment

Continuous mutations in HPAI A (H5) viruses have been attributed to outbreaks at poultry
farms and sporadic human infections [21]. Since mutations can occur across several gene
segments in the genome of AIVs, multiple alignments for all viral strains based on the sub-
group of interest (i.e. host, region, year, a particular residue, etc.) rather than by gene seg-
ment (i.e. HA, NA, PB2, etc.) will be useful to identify multiple amino acid types associated
with viral pathogenicity in animals or the potential risk for human infections. To achieve
the goal, we have developed the IniFlu platform to integrate the processed viral sequences,
clinical and epidemiological information into the FluSeed Dataset. IniFlu can function to
present all the information imported from FluSeed in worksheet outputs for visual cross-
segment examinations simultaneously. Once all of the viral strain information is correctly
arranged by FluCS, strain-based alignment can be quickly performed as illustrated in Fig. 2.

Identification of polygenic consensus signatures

Genetic evolution of zoonotic influenza viruses is a polygenic trait. Amino acid substitutions
or mutations at species-associated signature positions may increase viral pathogenicity or
mammalian adaptation in a broader host range [22]. Since such mutations are not limited
to one gene and can simultaneously occur in multiple gene segments, identification of the
polygenic consensus signatures for a particular subgroup of viral strains offers an opportun-
ity to monitor the changing landscape of AIVs over time with epidemiological significance.
The module FluCG of IniFlu can quickly group viral strains into different subgroups and
deduce the consensus sequence of each subgroup by computing and determining the most
representative (i.e. most frequent) amino acid at each position of the whole genome, which
can differentiate between the compared subgroups. All unique amino acid residues repre-

sented in the subgroup constitute the polygenic consensus signature (Fig. 3).

Polygenic consensus signatures of the HPAI H5N2 viruses
Duplicate entries of downloaded influenza viral genetic sequences could possibly occur
when (1) the entry was submitted to both NCBI-IVD and GISAID-EpiFlu databases, (2)
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the entry was submitted to one database more than once, or (3) data entries imported
from NCBI-IVD co-existed in GISAID-EpiFlu database. To obtain the accurate count
of H5N2 virus strains downloaded from different public domain databases, FluConvert

is programmed to automatically remove duplicate entries. Only one copy of the gene

segment of a single virus strain is kept in FluSeed Dataset.

As of July 1, 2017, the H5N2 FluSeed Dataset was comprised of a total of 6746
(6443 + 303 = 6746) unique gene segments that belong to 1151 (1099 +52=1151)
H5N?2 viruses. Amongst which, 6443 gene segments of 1099 H5N2 strains were down-
loaded from NCBI-IVD and 303 segments of 52 H5N2 strains were downloaded from
GISAID-EpiFlu, respectively. Qualified genetic sequences were rearranged by FluCon-

vert to unify the nomenclature format. Corresponding epidemiological information and

clinical data for each strain were integrated through the IniFlu platform. Since several

studies have demonstrated that the presence of multiple basic amino acids at the cleav-

age site between HA1 and HA2 junctional sequence is a hallmark for increasing viral

pathogenicity and virulence in the avian host and humans [14], we compared the
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molecular signature in the H5N2 viral strains with (RRKR group) or without (RETR
group) polybasic residues at the cleavage site in the HA gene. The earliest record. of
H5N2 viruses was reported in 1972 and all of the 470 strains isolated during 1972—
2008 appeared to have RETR sequence motif at the HA cleavage site. H5N2 viruses
with the RRKR sequence motif in the HA only appeared after year 2009. To avoid bias
towards evolutionary perspective, we excluded H5N2 viruses that were isolated before
2008 and only kept the H5N2 viruses isolated from year 2009 to 2016 in the H5N2 Flu-
Seed Dataset for consensus signature analysis of both groups. As a result, there were
165 strains of H5N2 viruses with RETR marker and 138 strains with RRKR marker.

The consensus sequence analysis by FluCG identified 247 unique amino acid residues
differentially presented between RRKR and RETR groups in the whole genome of
H5N2 AlVs. Since these unique residues were present across several viral segments, we
wanted to know which gene segment might present the most unique residues that may
distinguish H5N2 viruses with the REKR marker from those RRKR. Table 1 shows the
frequencies of the characteristic substitutions that occurred at a particular gene seg-
ment. We found that NS1 had the highest substitutions (N =69, 30%), followed by HA
(N=77,13.53%), and PB1-F2 (N = 8, 8.89%). There were much less substitutions in NP
(N=1,0.2%) and PB1 (N =1, 0.13%) of H5N2 viruses (Table 1).

To investigate what substitution at a particular residue or residues could be associ-
ated with the RRKR phenotype, the polygenic consensus signatures determined from
the constellation of the 247 distinct residues as described in Table 1 were further ana-
lyzed (Fig. 4). In search of information on amino acid substitutions in the influenza vi-
ruses that are associated with increased viral virulence or drug resistance [23] reported
in the public domain database IRD-SFVT (Sequence Feature Variant Types) by IniFlu
analysis, we found that substitutions in HA, including T1241, D142E, E228K, P233S,
V336S in HA, G631S in PA that are related to increasing pathogenicity [24—26] were
present in the RRKR signature. Other variations in the HA of the RRKR signature in-
volved in the increase of a-2.6 receptor binding in mammalian cells such as S139P,
S145L, S149A, and 1226V [27-30] were also found in our analysis. Notably, the fact
that IniFlu identified the substitution of S3IN in the M2 of the RRKR signature sug-
gests that H5SN2 HPAI may have a decreased sensitivity to amantadine and rimantadine
[31] (Fig. 4). All of the unique 11 consensus signatures were re-examined and verified
from FluCG-generated substitution table (Fig. 5). Taken together, IniFlu can identify
additional substitutions across the gene segments of H5N2 that are highly associated
with viral pathogenicity and/or antiviral drug resistance.

Table 1 The 247 residues differentially occurring between RRKR and RETR consensus signatures
are polygenic

Influenza viral proteins
PB2  PBI1 PA HA NP NA M1 M2 NST NS2  PBI1-F2

Segment size® 763 757 729 569 499 475 271 99 230 121 90
No. of consensus signatures 20 1 23 77 1 18 15 8 69 7 8
between groups® (%) (262) (0.13) (3.16) (13.53) (0.2) (3.79) (554) (808) (30) (5.79) (8.89)

2 The H5N2 viral genome is composed of 4603 amino acid residues divided into 11 viral proteins. The size of each
segment is indicated by the number of residues as shown

. Unique amino acid residues are identified by comparing the consensus sequences between the two studied
subgroups. Numbers shown are the counts of the characteristic residues in each viral protein. The variations in each viral
protein are expressed by the percentage of unique residues indicated in the parentheses

doi:10.6342/NTU202301433



Yang et al. BMC Bioinformatics (2020) 21:316 Page 10 of 14

Polygenic Consensus Signatures of H5N2 Subgroups
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Fig. 4 Polygenic consensus signatures of H5N2 RRKR and RETR subgroups. A total of 247 residues across 11
protein segments of H5N2 AlVs obtained from the years 2009 to 2016 are identified from the differences
between the RRKR and RETR subgroups. Polygenic consensus signatures for each group are shown by the
constellation of the 247 unique amino acid residues across different protein segments (distinguished by
colors). The residue positions at each protein are shown as numbers. Of the 247 residues in the consensus
signature, 11 evidence-based residues documented in the literature are listed in the enlarged letters with
darkened colors

Discussion

Influenza is an important disease in humans and animals. The 13,588-base-pair RNA gen-
ome segregated into eight gene segments continues to mutate randomly at 2 x 10~ ® muta-
tions per site per infectious cycle [32]. The high activity in the reassortment of segmented
influenza viral genes derived from different host species has posed a great threat to public
health. Numerous tools have been developed to analyze influenza genetic sequences to
monitor the changes and evolution of these viruses over time in nature. In this study, we
have added two integrated analysis tools, FluConvert and IniFlu, to the endeavor.

Several analysis tools for IAV genetic sequences are available online to determine anti-
genic characteristics of IAVs based on the genomic sequences of a particular gene seg-
ment and associated epidemiological information. Here we compare a recently published
program FluPhenotype [33] with IniFlu. FluPhenotype is a web-based tool. Briefly, IAVs
amino acid markers associated with human adaptation, enhanced virulence, and drug re-
sistance, etc. that have been reported in the literatures are captured to the Data list of Flu-
Phenotype. The input genetic sequences of IAVs are mapped with the list and the
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Substitution Table of HSN2 Polygenic Consensus Signatures
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Fig. 5 Establishment of polygenic consensus signatures of RRKR and RETR groups of H5N2 AlVs. To further
confirm that each residue in the RRKR signature is unique compared with that in the RETR signature, the
percentage of the most predominant amino acid (top two rows) at the corresponding position (the 3rd
row) derived from the 11 evidence-based residues were re-examined by inspecting the FluCG-generated
worksheet. As is shown, the percentages of the predominant amino acids in each signature range from
greater than 69.12 to 95.65%

antigenic characteristics of the IAVs of interest are rapidly determined. FluPhenotype also
has the capacity to predict IAV HA subtype and viral hosts based on the input genomic
or protein sequences [33]. Although the Data list used in FluPhenotype is reportedly up-
dated every half a year, any newly identified or undefined molecular markers that have
not been made available in the literature would not be captured and mapped in a timely
manner [33].

In comparison with FluPhenotype, FluConvert is used to sort IAV genetic entries that are
downloaded from different public domain databases into eight gene segments based on the
name of the gene segment (e.g. PB2, PBI, PA, ... etc.). FluConvert subsequently rearranges
the information tagged to each entry according to the standard IAV nomenclature in the
order of type, host, region, strain, year, and subtype, thereby assigning a unique name to
each virus. Therefore, gene segments that have the same name will be grouped as one
strain. The capability of FluConvert that determines the correct protein sequences encoded
by each viral gene segment and their spliced isoforms as well as accessory proteins results in
11 viral protein clusters in the FluSeed Dataset for strain-based alignment by FluCS.

Since FluCS can align a larger number of viral strains at one time, it saves time on
cross-referring of each genetic sequence in NCBI-IVD/GISAID-EpiFlu by accession
number. Additionally, the ability of FluConvert to combine information between data-
bases can collect all available influenza genetic data as much as possible by avoiding
the exclusion from incomplete information in the depository database. Data in the Flu-
Seed Dataset can be maintained up to date by downloading newly depository of influ-
enza viral genetic data in public domain databases by users.

There are two advantages of IniFlu-performed strain-based alignment and consensus
sequence analysis. First, genetic sequences of a viral strain lacking eight complete gene
segments can be compared and included for consensus sequence analysis. Second, once
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the information is properly aligned, sequence data can be easily re-grouped for a gener-
ating group-specific consensus sequence. As a result, polygenic consensus signatures
composed of unique molecular positions across all gene segments that are associated
with a particular phenotype will be determined. As demonstrated from the analysis of
the sample H5N2 FluSeed Dataset by comparing the group-specific polygenic consen-
sus signatures between the RRKR and the RETR groups, we identified that at least 247
positions of the total 303 H5N2 AIV strains from 2009 to 2016 were able to differenti-
ate these two groups, and 11 of these substitutions have been experimentally demon-
strated for the significance in crossing over between host species (e.g. S139P, S145L,
S149A, and 1226V in HA) [27-30], antiviral drug amantadine and rimantadine resist-
ance (S31N in M2) [31] or increasing viral pathogenesis (e.g. T1241, D142E, E228K,
P233S, and V336S in HA, and G631S in PA) [24-26]. Although there have not been re-
ports of fatal human cases of H5N2, human infection of this AIV subtype have oc-
curred, as documented in seroepidemiological studies [34, 35]. These substitutions
together with those residues involved in enhancing receptor binding to mammalian
cells [14] have suggested the potential threat to human health caused by H5N2 AIV
strains with an RRKR phenotype.

Taken together, we reported the newly developed analysis tools FluConvert and Ini-
Flu, which exhibit high capacity and efficiency in data processing, analyzing, and com-
bining large amounts of the most comprehensive influenza viral information retrieved
from different public domain databases without making any modifications on down-
loaded genetic information. These tools not only provide a versatile and rapid platform
for real-time analysis to determine consensus sequences, but also identify molecular
markers with high pathogenicity in chickens as well as with interspecies transmission
to humans. FluConvert and IniFlu are particularly useful in risk assessment by monitor-
ing and analyzing the increasing trends of important amino acids of many animal influ-
enza viruses with pandemic potential. While IniFlu is first designed for type A
influenza viruses, the software can easily adapt to investigate other emerging viruses
with appropriate modifications on the worksheet template. The software reported in
this study provides a useful tool for rapidly identifying molecular signatures with viro-
logical, epidemiological and clinical significance.

Conclusions

The rapid evolution of H5 AIVs in Asia has increased the threat in agricultural safety
and human health. The timely monitoring in the changes of AIV that have increasing
risk are important for public health-policy makers. FluConvert and IniFlu reported in
this study are demonstrated for their efficiency in combining and analyzing virological,
epidemiological and clinical information from different public domain databases. Fi-
nally, identification of polygenic signature for AIVs with high risk instead of variations
at one single gene segment of influenza viruses will be beneficial to assist a better risk

assessment to prevent pandemic influenza.

Availability and requirements
Project name: FluConvert_IniFlu

Project home page: https://apps.flutures.com or https://github.com/chinrur/FluCon-
vert_IniFlu
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Operating system(s): Microsoft Windows 10 or later version (64-bit)

Programming language: Batch (shell) scripts and VBA 7.1

Other requirements: Microsoft Office Excel 365 or Excel 2016 or later version (64-
bit); Java 6 or higher version

License: MIT License.

Any restrictions to use by non-academics: No restrictions on use by non-
academics.
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