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中文摘要 

新興呼吸道病毒是公共衛生重要議題，它們的高突變率更突顯了監測病毒全

基因體序列的必要性，現今許多線上分析工具並不適用於全基因體序列，本論文

研究將從克服這些限制為目標開發新的軟體工具，深入分析了禽流感和新冠病毒。 

關於禽流感全基因體序列分析部分，先以「流感病毒序列轉換」(FluConvert) 

自動處理原始序列數據，並按照病毒命名法 (ABCD 類型/宿主/區域/菌株/年份

/HxNy亞型) 重新排列病毒片段，序列對齊後轉譯為胺基酸序列。隨後「流感病毒

序列溯源」(IniFlu) 軟體，彙整了這些具有顯著特徵的胺基酸序列，並根據研究目

標分群，檢視不同分群中重要的病毒共有序列。分析結果獲得了除了 HA 還有其

他 10 種病毒蛋白中共有 247 個與 H5N2的高致病性具有相關的胺基酸點位變異，

大部分的變異點位尚未被報導。在這套創新的軟體和方法的基礎上，我們繼續分

析了 2021 年 4 月至 9 月間台灣爆發新冠肺炎流行的 Alpha 變種病毒株，從病毒基

因指紋釐清不同的傳播鏈以及出現和防控主要流行病毒株的流行病學條件。以上

二個研究成果說明了本基因序列分析軟體可以成功快速地分析不同病毒株全基因

體，同時識別這些多基因共有特徵以進行綜合研究。 

總之，這項研究為全面的病毒全基因序列分析提供了一站式平台，可以同時

分析整個病毒全基因體，並輕鬆與其他重要資訊整合，以取得具有獨特特徵之病

毒序列，未來仍需要努力建立實際實驗證據來驗證分析。然而本研究中所研發軟

體分析甚至將此分析法應用於其他快速傳播、具致病力及有全球流行潛力病原，

即早偵測具健康威脅新興病毒，找出演變關鍵，協助科學研究進展與成功防控。 

關鍵字：基因序列分析平台、流感病毒、新冠病毒、病毒資訊學、風險評估、大

流行 
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Abstract 

Respiratory viruses with high mutation rates have become a significant public health 

concern, highlighting the need for monitoring complete viral sequences. While online 

sequence analysis tools exist, they cannot often analyze the entire genomic sequence, 

creating a gap that requires developing new software tools. This dissertation analyzes two 

emerging viruses, avian influenza viruses, and SARS-CoV-2. 

In the first part of the research work, I developed the analysis software packages to 

analyze whole AIV genome sequences comprehensively. The FluConvert software 

automatically processes raw sequence data, organizing viral segments based on virus 

nomenclature (ABCD Type/Host/Region/Strain/Year/HxNy Subtype) and aligning 

distinct genes, and translating them into protein sequences. Subsequently, the IniFlu 

software integrates protein sequences with significant characteristics, allowing for 

classification based on study objectives and examination of consensus sequences in 

different subgroups. This innovative approach has led to identifying 247 polygenic 

consensus signatures associated with highly pathogenic AIV (HPAIV) across HA and ten 

other proteins, most of which have not been reported in the literature. Our pioneering 

software and methods enable rapid analysis of diverse strains’ genomes while identifying 

polygenic consensus signatures for integrated investigations. 
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The second part of the study focused on understanding the dynamic changes of 

SARS-CoV-2 Alpha variant strains in responses to various control measures during the 

outbreak in Taiwan from late April to September 2021. The goal was to delineate the 

epidemiological circumstances that allowed these strains to become predominant. The 

findings provided valuable insights into the emergence and control of a dominant viral 

strain during an outbreak. 

In conclusion, the study offered an integrated platform for comprehensive viral 

genome sequence analysis. It allows for simultaneous estimation of the complete viral 

genome while easily integrating other significant information to extract characteristics-

specific viral sequences. Future experimental validation is required to support the analysis. 

Applying this integrated analysis method to other pathogens with rapid spread, high 

pathogenicity, and pandemic potential will provide insightful information for the early 

detection of emerging or health-threatening dominant viruses. Results from the study will 

contribute to scientific progress and early disease prevention and control success. 

Keywords: Sequence analysis platform, Influenza virus, SARS-CoV-2, Viroinformatics, 

Risk assessment, Pandemic 
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Chapter 1                                             

Introduction  
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Over the past three decades, emerging viruses have cumulatively evolved, producing 

an increasing clade of RNA viruses. For example, influenza and coronaviruses pose 

significant threats to the environment and humanity through their transmission and 

genetic reassortment among animals and human populations. As of April 2023, the novel 

H5N1 and H5N6 viruses, with a case mortality rate of over 50%, have caused 957 human 

cases and 507 fatalities (Jiang et al., 2017). Moreover, SARS-CoV-2 initiated the most 

severe global pandemic in history, infecting 767 million infected people and causing 6.94 

million human deaths by June 2023 (Ensheng Dong et al., 2020). 

Advancements in sequencing technology have revolutionized the generation of viral 

sequences, enabling real-time acquisition of such data. The public-domain databases, 

including National Center for Biotechnology Information Virus (NCBI) and Global 

Initiative on Sharing All Influenza Data (GISAID), have compiled vast amounts of 

information on viral sequences, which have accumulated over 11 million and 16 million 

viral sequences, respectively, as of 2023. To effectively harness and exploit this wealth 

of information, viroinformatics, a subfield of bioinformatics, has emerged as a crucial 

discipline for managing and analyzing these datasets. By employing viroinformatics, 

researchers can gain valuable insights into emerging viruses' genomic changes and 

evolutionary patterns. This knowledge is pivotal in ensuring public health and well-being 
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through enhanced surveillance and monitoring of viral outbreaks.   

Although there are a few tools accessible to the general public for analyzing viral 

sequence information, the majority of them are designed to detect variations at a specific 

position or specific positions within the viral genome. For instance, when examining the 

influenza virus, which consists of eight segmented genes, these tools can only analyze 

one gene at a time. Such restriction prevents simultaneous analysis of all genetic 

variations  together with their corresponding vital immunological and epidemiological 

information. In my thesis research, my goal is to establish a comprehensive suite of 

analysis software capable to  analyze the entire viral genome. This software integrates 

data from virology, immunology, clinical medicine, and epidemiology. By doing so, it 

will enable us to explore  the dynamic changes of emerging viruses and their correlation 

with epidemic patterns. In this section, I will provide a detailed literature review 

introducing the concepts of viral informatics, the evolution of sequencing methods, the 

unique features of public databases, and an overview of existing analysis tools. 

1.1 Viroinformatics 

Viroinformatics, also known as viral bioinformatics or viral informatics, is an 

integrated field that utilizes computational techniques to analyze viral genomic sequences 

in order to identify and characterize viruses. Given that novel viruses periodically emerge, 
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and pathogens can mutate rapidly, especially RNA viruses, a comprehensive analysis of 

the spatiotemporal changes of viral genomes and their interactions with humans and other 

host species can provide insights into the epidemical trends of viral infections. In addition 

to compiling information on the geographical distribution, target host range, the duration 

of a particular virus infection, a genome-wide analysis of viral strains collected over time 

and from different locations can identify novel mutations in viral genomes that emerged 

after the use of vaccines and antiviral drugs. For example, regular virus surveillance led 

to the identification of the 2009 H1N1 influenza pandemic (H1N1pdm09) (Dawood et al., 

2012), which was derived from a zoonotic H3N2 virus originating from pig farms in 

Mexico (Mena et al., 2016). Additionally, the H274Y mutation in the NA protein, which 

is associated with resistance to the antiviral drug "Oseltamivir”, was first found in 

seasonal H1N1 (Baz et al., 2010; Hurt et al., 2009) and was fixed in H1N1 predominant 

strains since 2007, culminating in the H1N1pdm09 global pandemic (Bloom et al., 2010).  

The viroinformatics approach can also track the evolution of avian influenza viruses 

isolated from various avian reservoirs (i.e., poultry birds, waterfowls, etc.) and their 

migration routes (Lee et al., 2017; Lee et al., 2015; Yang et al., 2017). Results from such 

analyses are particularly important in assessing the potential threat of human infections 

and deaths. For instance, the mutation of E627K in the PB2 of the avian H5N1 influenza 
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virus enables it to evade the antiviral innate mechanism by avoiding recognition of 5'ppp-

RNA via the innate sensor RIG-I (Weber et al., 2015). The same mechanism can be 

observed in highly pathogenic avian influenza viruses such as H5N6 and H7N9, which 

pose a significant zoonotic threat to humans (Peng et al., 2018; Zhu et al., 2015). 

Therefore, using viral sequences to analyze the prevalence of emerging infectious 

diseases will provide a more accurate virus risk assessment for predicting and preventing 

future pandemics. Monitoring the mutations in the virus that result in resistance against 

antiviral drugs or a decrease in vaccine effectiveness will provide more insight and 

direction for research than conventional virological and serological methods. 

1.2 Generation of viral sequences information 

As emerging viruses mutate rapidly, analyzing genetic sequences is the most direct 

and optimal way to understand viral dynamic changes. Advancements in virus sampling 

methods and sequencing technologies over the past 30 years have enabled real-time 

detection of viruses and identification of specific virus strains. 

1.2.1 Sanger sequencing 

 The earliest sequencing method is Sanger sequencing, which involves extracting 

single-stranded DNA/RNA templates from the sample and adding four types of 

dideoxynucleotides (ddATP, ddCTP, ddGTP, ddTTP) with radioactive or fluorescent 
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labels separately. Gene fragments of different lengths are obtained by electrophoresis or 

signal detection, resulting in clear reads of gene segments between 300~1000 bp (Sanger 

et al., 1977; Tucker et al., 2009). Sanger sequencing was the gold-standard protocol for 

completing the Human Genome Project from 1990-2003 and has been extended to other 

genetic studies (Collins et al., 2003). Although Sanger sequencing has high specificity 

and clear reads for the target gene segment, it requires good primer design, a large volume 

of samples, and takes a considerable amount of time to perform multiple rounds of 

sequencing to resolve the whole genome or multiple genes (Tucker et al., 2009). 

Especially when sequencing small viral populations in specimens, it requires collecting 

sufficient virus samples from patients’ specimens for sequencing. Further amplification 

through cell cultures or experimental animals may introduce additional mutations in the 

virus genome. Therefore, the development of next-generation sequencing (NGS) 

technology has been crucial in reducing sample usage and obtaining high-throughput 

whole-genome sequencing information. 

1.2.2 Next-generation sequencing 

1.2.2.1 Library preparation 

The breakthrough of NGS methods lies in its high throughput ability to surpass 

previous Sanger sequencing technological barriers (Tucker et al., 2009). The critical 
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technical drivers are library preparation, novel nucleic acid detection sequencing 

platforms, and computational capability advances. In library preparation, the first step is 

using chemical or physical methods (e.g., ultrasonic fragmentation) to break down the 

entire genomic sequence into small fragments in 150-400 bp (Head et al., 2014). After 

breaking down the genomic sequence into small fragments, specific sequencing primers 

are added to the fragments, and they are barcoded to produce longer contiguous sequences 

called "contigs." These contigs allow for sample identification. Microfluidics technology 

is then used to achieve precise sequencing of even minute samples, vastly improving the 

sequencing throughput of these fragments (Ma et al., 2017). Finally, these barcode-tagged 

fragments are assembled through computer algorithms to construct the entire genome 

sequences. 

1.2.2.2 Emulsion PCR and pyrosequencing 

 Aside from technical breakthroughs in library preparation, the establishment of the 

platform, and innovations in sequencing principles have played a critical role in 

advancing NGS technology. For instance, the Roche 454 GS FLX sequencing developed 

the first commercially available platform to complete automated sequencing in 2005, 

using the novel emulsion PCR and the Pyrosequencing method, which do not rely on the 

Sanger sequencing principle (M. Margulies et al., 2005). Emulsion PCR (em-PCR), a 
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bead-based PCR method, is performed by PCR amplifying sample fragments with beads 

conjugated with barcoded oligonucleotide probes and adaptors containing complemented 

sequences of the target fragments. As different barcodes in different beads correspond to 

different sequences, beads collected in microwells enable the differentiation of various 

sequences (Mardis, 2008; Metzker, 2010). The principle of pyrosequencing is based on 

detecting pyrophosphate (PPi) released during DNA synthesis. At the beginning of the 

PCR reaction, DNA polymerase links one dNTP to the sample template and releases PPi. 

ATP sulfurylase converts PPi to adenosine triphosphate (ATP) and adenosine 

phosphosulfate (APS), providing ATP energy to produce visible light in the luciferase-

catalyzed reaction. Finally, dNTP and ATP are degraded by apyrase, and detection of the 

light signal is used to obtain the sequence of each nucleotide. These fragments produced 

are then combined to complete the sequencing process (Marcel Margulies et al., 2005; 

Nyren et al., 1993). 

1.2.2.3 Ion semiconductor sequencing 

In 2010, a technique similar to Pyrosequencing was further developed into the Life 

Technologies Ion Torrent semiconductor sequencing, which uses semiconductor chips to 

detect hydrogen ions generated during DNA polymerization in the PCR process 

(Merriman & Rothberg, 2012). This sequencing method converted substances released 
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during DNA synthesis into electrical signals, such as pH changes. However, it faces 

limitations in sequencing signal conversion when dealing with longer tandem repeats (e.g., 

TATATA) or homopolymer repeats of the same nucleotide (e.g., AAAAAA), as it cannot 

determine the exact number of nucleotides, which is a restriction not present in Sanger 

sequencing (Balzer et al., 2013; Scheible et al., 2014). As a result, recent advances in 

NGS technology have focused on improving the Sanger sequencing-based approach. 

1.2.2.4 Illumina dye sequencing 

One well-known example of improving Sanger sequencing is Illumina dye 

sequencing, which employs bridge amplification and four-color distinct fluorescent 

ddNTPs for a highly refined sequencing method (Canard & Sarfati, 1994; Guo et al., 2008; 

Meyer & Kircher, 2010). The bridge amplification concept is designed to create different 

barcodes and 5'- and 3'- end adapters for sample fragments. Then, the oligonucleotides of 

5'- and 3'-adapter complementary sequences are coated in the microfluidic channel at 

close distances. When the sample fragments attach, they cause the entire fragments to 

bend according to both ends and are firmly fixed in microfluidics (Kim et al., 2013; Ma 

et al., 2017). Following the principle of Sanger sequencing, cluster amplification is 

performed by polymerase reaction. The improvement is that the four-color fluorescent 

ddNTPs distinguish which nucleotide has been attached, and the fluorescence intensity 
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represents the number of identical nucleotide attachments in tandem repeat situations 

during sequencing (Guo et al., 2008).  

Illumina dye sequencing has become one of the most critical NGS sequencing 

methods today in various fields of genetics. However, limitations in certain sequencing 

blind spots, such as short reads of a few hundred base pairs, can compromise accuracy 

and the ability to assemble complete genes when sequencing regions have more tandem 

repeats (AT or GC-rich) (Chen et al., 2013). Furthermore, amplifying these short-read 

sequences multiple times (e.g., PCR) can result in sequencing errors. The cost and 

equipment mobility associated with processing, assembling, and debugging short-read 

sequences in NGS is currently a challenge that needs to be overcome. 

1.2.3 Third-generation sequencing 

In recent years there has been a rise in third-generation sequencing technology 

(TGS), which aims to achieve long-read sequencing in real-time by observing the signal 

generated with a single nucleotide passing through a single polymerase molecule or 

nanopore (Flusberg et al., 2010; Wang et al., 2021). For example, Pacific Biosciences 

single-molecule real-time sequencing (PacBio SMRT sequencing) places a single DNA 

polymerase in a pore of a zero-mode waveguide (ZMW) of size 20 zeptoliters (10-21 liters) 

(Garoli et al., 2019). The fluorescent-labeled nucleotides pass through the DNA 
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polymerase at a millisecond rate and generate fluorescent signals that distinguish between 

different nucleotides to complete the whole long read. This method can produce 10,000 

to 30,000 base pair reads (Ardui et al., 2018). However, this sequencing method still 

presents challenges of high manufacturing costs and large equipment size. 

Over the past three decades, nanopore sequencing methods have made sequencing 

real-time, affordable, and portable (Deamer et al., 2016). Oxford Nanopore sequencing, 

developed in 2014, enables direct sequencing of DNA or RNA by nanopores of 

transmembrane proteins embedded in biopolymer films without the fragmentation and 

PCR method. During electrophoresis, distinct nucleotides pass through transmembrane 

proteins on the biopolymer films causing structural changes that facilitate sequencing by 

detecting minuscule electrical signals generated by these structural changes (Jain et al., 

2016). The rapid passage of nucleotides through the transmembrane proteins, at a rate of 

250 to 450 bases per second and without sample fragmentation and PCR, saves significant 

time during sample processing and sequence assembly (Wang et al., 2021). The nanopore 

sequencer's compact, cell phone-sized design, makes it highly portable, enabling 

applications such as rapid, real-time pathogen analysis in outbreak areas. It played a 

critical role during the 2014 Ebola outbreak in Africa (Hoenen et al., 2016) and over 25% 

of the SARS-CoV-2 sequences in public databases worldwide were uploaded using this 
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technology (Hourdel et al., 2020; Rios et al., 2021). While Oxford Nanopore sequencing 

allows for whole-length gene sequencing at one time, the method's error rate is 

concomitantly higher. Comparisons with reference sequences are required during 

alignment, and the presence of point mutations, such as deletions, may be indiscernible 

due to interference from background signals (Delahaye & Nicolas, 2021; Sahlin & 

Medvedev, 2021). 

In summary, the NGS and TGS methods have provided the speed and depth for 

unmet needs in Sanger sequencing analyses, but several unresolved issues remain. For 

example, the discrepancies in sequencing results need to be addressed when the same 

sample is sequenced by different methods. Moreover, unbiased and automated analyses 

are required to identify novel and significant mutations within viral genomes, which will 

facilitate the detection of consequential emerging viral strains. These are ongoing efforts 

to develop advanced sequencing approaches in the field of viroinformatics. 

1.3 Public databases for viral sequences 

Advancements in sequencing technology have enabled the rapid generation of vast 

numbers of viral sequences. Various public-domain databases store sequence information 

and associated epidemiological information to facilitate further research.  Major 

databases containing influenza virus nucleotide sequences and epidemiological data 
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include the NCBI Influenza Virus Database (NCBI-IVD) (Bao et al., 2008), GISAID 

EpiFlu database (Shu & McCauley, 2017), and Bacterial and Viral Bioinformatics 

Resource Center (BV-BRC, formerly called Influenza Research Database) (Zhang et al., 

2017). Access to NCBI-IVD can be achieved through GenBank accession numbers, 

BLAST searches of viral sequences, published literature containing sequences isolated 

from human cases, and comprehensive raw data involving the eight segments of full-

length viral sequences, known as genome sets (Bao et al., 2008). Genome sets effectively 

integrate segmented influenza virus genes and facilitate convenient searching, but manual 

construction is time-consuming and may not reflect real-time updates due to varying 

upload times and accession number organization. 

H5 avian influenza viruses in Asia exhibit faster evolution, wider viral diversity, and 

greater inter-species transmission than those in Europe and America Continents (Dhingra 

et al., 2016). Thus, the GISAID-EpiFlu database was created primarily to collect virus 

information for avian influenza viruses. Although AIV sequences GISAID-EpiFlu are not 

as complete as those in the NCBI-IRD, their real-time properties of sequences from the 

GISAID database make them useful in tracking AIV evolution as it occurs. 

The BV-BRC database provides various analysis tools for sequence comparison and 

monitoring variations at specific amino acid residues. It also includes exclusive 
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information from animal surveillance, identifies sequence features in variant types, 

generates immune epitope data, and even includes 3D protein structures. With the 

emergence of COVID-19 disease, these databases have expanded to include SARS-CoV-

2 viral sequences. For example, the GISAID-EpiCoV database has collected more than 

14 million strains of SARS-CoV2 (Shu & McCauley, 2017). Other databases, such as 

NCBI-Virus (Hatcher et al., 2017), BV-BRC (Pickett et al., 2012), COVID-19 Genomics 

UK Consortium (COG-UK), and other government organizations, regularly release virus 

sequences to the public for tracking changes in SARS-CoV-2 variants. Developing 

computational tools for analyzing viral sequences of interest retrieved from public 

domain databases and integrating epidemiological, clinical, and medical information is 

essential for better understanding virus-host interactions. 

1.4 Viral sequence analysis tools 

 Viral sequence analysis involves aligning, annotating, and comparing viral 

sequences in sequence datasets to identify the emerging strain with transmission potential 

or infection risks. The ability to handle sequencing alignments is crucial in this process. 

Pairwise sequence alignment is commonly used to identify variations between newly 

isolated and reference virus strains. Phylogenetic trees constructed from aligned 

sequences are also useful in visualizing various virus evolutions (Higgins & Sharp, 1988). 
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However, dealing with a large number of viral sequences can be computationally 

intensive  and  time-consuming. Multiple sequence alignment (MSA) methods, such as 

Basic Local Alignment Search Tool (BLAST) (Johnson et al., 2008), Clustal Omega 

(Sievers et al., 2011), and Multiple Alignment using Fast Fourier Transform (MAFFT) 

(Katoh & Standley, 2013) have made significant advances in recent years. These methods 

are particularly useful as they can use partial sequences as initial seeds, which allows 

them to derive an optimal formula that saves computational costs from multiple partial 

seed sequences using dynamic programming. Subsequently, the resulting optimal formula 

is applied to the whole sequence alignment, enabling the determination of a consensus 

sequence. Consensus sequences represent the most common nucleotide or amino acid at 

each position in a genome set. By identifying the most prevalent nucleotide or amino acid 

at each position, consensus sequences can reveal the evolutionary trends of viral selection 

and enable a detailed analysis of conserved sequences, such as motifs, and mutations in 

viral genes or proteins. Conserved sequences often indicate important functional or 

structural elements of viral genomes and can provide insight into potential drug targets or 

vaccine candidates. Additionally, consensus sequences can be used to compare viral 

sequences across different datasets or databases and facilitate the identification of 

emerging strains or changes in viral diversity. 
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Annotation of viral sequences based on known viral characteristics is crucial for 

understanding viral properties and predicting their potential impact on public health. For 

example, the BV-BRC database uses the influenza virus sequence feature variant type 

(Flu-SFVT) method to annotate influenza virus strains based on literature review. This 

method analyzes the NS1 protein sequences of influenza virus strains and categorizes 

them into different Flu-SFVT groups based on their  amino acid mutations and host range 

restriction documented in past literature (Noronha et al., 2012). FluPhenotype is another 

tool that records IAV amino acid signatures associated with human adaptation, enhanced 

virulence, and drug resistance reported in the literature, and can map genetic sequences 

accordingly. By inputting the viral genome or amino acid sequences into FluPhenotype, 

researchers can obtain predictions related to IAV HA subtypes, viral hosts, and antigenic 

characteristics (Lu et al., 2020). 

Integrating viral sequence data with epidemiological information allows for the 

monitoring and tracking of viral evolution of viruses and potential risk to animal and 

human health. Nextstrain is an example of a tool that utilizes viral sequences collected by 

the GISAID database to create phylogenetic trees for viral genes. These trees can be used 

for virological surveillance and spatiotemporal analysis to identify single amino acid 

mutations. Nextstrain is also capable of grouping sequences based on time and location 
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incorporating them into real-time maps that reveal the dynamic trends of viral 

transmission (Hadfield et al., 2018). Other web tools like CoVerage shows the 

phylogenetic dynamics of SARS-CoV-2 lineages (E. Dong et al., 2020), and CoVizu uses 

the real-time visualization of percentage changes at specific residues through  SARS-

CoV-2 genomic variations (Ferreira et al., 2021). Additionally, with continuous mutation 

of SARS-CoV-2, Outbreak.info Research Library based on GISAID sequence data offers 

a searchable platform to explore new SARS-CoV-2 variants (Tsueng et al., 2022). 

In addition to analyzing viral gene sequences, more focus is being given to studying 

amino acid sequences for structural purposes. Various methods, to determine such as 

mutual information (MI) (Martin et al., 2005) or sequence correlation from a protein 

sequence (Goh et al., 2000), have been employed to determine the co-evolution of amino 

acid variations. For instance, an MI-based State transition network (STN) was generated 

in a study on the potential co-evolution of influenza virus and its pandemic propensity. 

By analyzing over 4,000 H3N2 hemagglutinin (HA) sequences from 1968 to 2008 and 

integrating phylogenetic trees and hemagglutination inhibition (HI) assays, the STN was 

able to delineate antigenic maps based on HA mutation residues and identify binding 

regions (Xia et al., 2009). Another study integrated MI and structural analysis to compare 

H5N1 and H3N2 and identified new HA co-mutated residues (Kasson & Pande, 2009). 
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A recent study used modified MI methods to examine Polymerase Basic protein 2 (PB2) 

fragment and monitor PB2_627 amino acid mutation from Glutamine (E) to Lysine (K), 

a variation known to be associated with high pathogenicity in mammals. The findings 

suggested that PB2_451 co-evolved with PB2_627 and this correlation constitutes a 

critical species-associated amino acid residue for influenza virus replication, 

pathogenicity, and virulence (Gong et al., 2012).  

Taken together, the development of analysis tools in viroinformatics has greatly 

expanded the capacity to handle large data sets, providing critical insights into viral 

evolution, transmission, and virulence. By identifying key amino acid residues and 

mutations that contribute to pathogenicity and public health, these tools offer new 

directions in immunological and epidemiological studies when combined with other data 

sources such as epidemiological and clinical data. 

1.5 Rationale and approaches to develop integrated software for viral sequence 

analysis 

My thesis research focuses on the notably accelerated rate of mutation in RNA 

viruses, which poses a significant threat to both animals and humans. For instance, the 

worldwide spread of clade 2.3.4 H5 avian influenza viruses (AIVs) and their reassortment 

with various NA proteins give rise to different subtypes. H5 AIVs are grouped into 

different clades, including 0, 2.3.4, 2.3.4.4a-f AIVs (Antigua et al., 2019). We know that 
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multiple mutations can exist across gene segments of influenza viruses, and a specific 

mutation might impact genomic stability over time (Arai et al., 2018). H5 clade 2.3.4.4 

AIVs have a higher amino acid mutation rate than clade 0, and the H5 clade 2.3.4.4 AIVs 

in Asia have evolved faster, exhibiting higher viral diversity, greater inter-species 

transmission, and a broader host range than those in Europe and the Americas (Neumann 

et al., 2010). As of April 24, 2023, H5N1 has led to a total of 874 human cases and 458 

fatalities (WHO/GIP, 2020), indicating that this subtype has the potential to infect humans 

in the future. Given H5 avian influenza's capability for inter-species transmission, 

infecting both mammals and humans, numerous studies have predominantly focused on 

the emerging subtype. Recently, the emergence of new clade 2.3.4.4 H5N6 from February 

2014 to June 2023 has resulted in 83 human cases and 49 deaths in China, garnering 

significant public health attention (Jiang et al., 2017). The WHO has warned that the 

infection of humans with H5 AIVs suggests a pandemic potential for H5 AIVs. 

In addition, the incidence and severity of SARS-CoV-2 have far exceeded those of 

influenza viruses. Therefore, it is crucial to develop advanced and robust tools for 

analyzing viral sequences that can integrate information from different databases, 

including epidemiological and clinical data, to provide a comprehensive understanding 

of viral transmission and pathogenicity. The knowledge can help develop practical tools 
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for controlling and preventing future pandemics. 

The first part of my thesis research aims to develop an innovative and integrated 

software suite to analyze the entire genome of influenza virus sequences and identify 

novel signatures that are correlated with host-specific residues, pathogenicity, and other 

epidemiological characteristics that can increase the risk of a pandemic. The approach 

involves offering automated packages that can efficiently rearrange sequence data based 

on standard viral nomenclature (WHO, 1980) and translate nucleotide sequences into 

three potential polypeptides from 0, +1, and +2 open reading frames (ORF) following 

simultaneous multiple sequence alignments. The software suite that I have developed can 

combine sequence information across different databases and integrate viral genetic 

information with clinical and epidemiologic surveillance data (Yang et al., 2020). We 

have demonstrated the effectiveness of the new programs by analyzing the highly 

pathogenic avian influenza virus H5N2, which is defined by the presence of the hallmark 

amino acid motif (XRRKRR) at the cleavage site between the HA1 and HA2 domains, 

associated with the viral virulence and mammalian infections (Alexander, 2000). We 

have identified at least 11 additional evidence-based amino acid substitutions across 

different gene segments of H5N2 avian influenza viruses that could contribute to viral 

virulence and mammalian infections (Yang et al., 2020). 

The second part of my study focuses on the analysis of SARS-CoV-2 sequences, 
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utilizing the software developed for AIVs with some modifications. Although Taiwan did 

not experience widespread community outbreaks of SARS-CoV2 until mid-April 2021, 

multiple waves of pandemic have occurred globally since 2020. To investigate the 

possible source of infection and identify epidemiological conditions that facilitated viral 

spread in the community, we collected 101 strains with whole genome sequences. Our 

analysis revealed that a predominant strain of the SARS-CoV2 lineage B.1.1.7 (Alpha) 

variant was predominantly transmitted during the early phase of the outbreak. Its 

disappearance was correlated with the implementation of multiple layers of disease 

control measures. Through my research, I have demonstrated that our software can 

effectively retrieve and analyze viral sequence information from public domain databases, 

enabling efficient monitoring of dynamic viral shifts and the emergence of novel viral 

variants with pandemic potential.  
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Chapter 2                                             

Methodology  
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 The viral sequences utilized in the avian influenza or SARS CoV-2 study were 

obtained from publicly accessible databases. Upon retrieval, these sequences underwent 

a series of processing steps to ensure data quality. This included the removal of 

incomplete, duplicated, or erroneous data for a thorough quality check. Subsequently, 

annotation, alignment, and translation into amino acid sequences were performed, and the 

resulting dataset was organized and prepared for further analysis. The workflow of 

sequence analysis was illustrated in Figure I. 

 

 

 

Figure I. Workflow of data analysis The stepwise processes performed by our 

developed software (bold text in the colored box on the right) to identify novel signatures 

of emerging viruses with increasing risk are described as follows. Step 1: Viral 

sequences are obtained from the public-domain databases. Step 2: The program 

automatically annotates and validates the quality of viral sequences, uses different 

algorithms of MAFFT alignment based on length or the number of sequences, and 

organizes according to the different viral genomes for subsequent translation into amino 

acid sequences. Step 3: These modules perform strain-based alignments of viral amino 

sequences, regroup viral strains with epidemiological significance, and compute a 

consensus sequence for each subgroup. Subsequently, the subgroup-specific unique 

polygenic amino acid signatures can be simultaneously identified. 
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2.1 Data sources and file format  

We downloaded viral sequence data from the GISAID and NCBI databases. To 

achieve a universal collection of sequences from different databases, we retrieved the 

FASTA file format, which is a text filetype commonly used in the field of bioinformatics 

to preserve multiple nucleotides or amino acid sequences, each preceded by a one-line 

description (also known as a header) that begins with a ">" symbol. By processing the 

header in viral sequences according to the standard viral nomenclature (ABCD 

Type/Host/Region/Strain/Year/HxNy Subtype), the header can facilitate the linkage of 

the virus sequence to the strain's unique identification in different databases (e.g., 

CY009444_A_human_PuertoRico_8_1934_H1N1_human). Therefore, the customized 

header definition can be used to change the header with the standard viral nomenclature, 

such as NCBI defined the sequences as “>[accession] [strain] [segment] [serotype] [host]” 

and GISAID as“Isolate IDEPI Isolate name Segment number HxNy host.” Acquiring 

these FASTA sequence files through customized header definitions will facilitate 

subsequent automated processing of sequence data and enable more accurate analysis. 

2.2 Data processing 

To organize the information in a better format for further  analysis, I developed a 

suite of integrated software based on the Microsoft Windows operating platform for non-

programming background users in handling vast amounts of sequence data. To this end, 
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users only need to put the FASTA file in the input folder and run the program, which 

automatically selects the appropriate algorithms to process the sequences, following these 

four steps: arrangement, validation of data quality, alignment, and algorithm selection, 

translation. The suite of programs' essence lies in its code with the batch scripts languages, 

such as the batch scripts languages of shell and PowerShell, enabling the textual files of 

sequence data can be efficiently consolidated and converted into analyzable tables. 

Detailed information on program download, installation, and usage instructions can be 

found in the published paper (Yang et al., 2020). Below section described the methods in 

detail. 

2.2.1 Sequence arrangement 

Influenza viruses possess eight segments of single-stranded RNA (ssRNA) in the 

genome. They can be sequenced and deposited to the database individually. Therefore, 

retrieved sequences were saved to eight separate files based on the gene segment and 

subsequently combined into a single genome based on the  the strain name information 

associated with each gene segment. As the results, each strain was placed in the order of 

the standard viral nomenclature, including the type, host, region, strain, year, and subtype 

within parentheses (WHO, 1980), to normalize the virus name for next step of 

examination and validation of virus strain name. 
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2.2.2 Validation of data quality 

The sequence data validation process can be divided into two parts. One was to 

ensure that the sequence names were fully complied with the standard viral nomenclature. 

Any sequence that failed to contain all  six items of standard viral nomenclature or with 

duplicative name was removed. We also generated an “excluding list” which contained 

previously identified erroneous sequences, duplicative sequences, sequences with 

inaccurate information, and those labeled as “retracted sequences” in the databases. All 

rearranged sequences were inspected to delete those which matched any items in the 

“excluding list” to ensure data integrity. The second part of data validation was to remove 

sequences with errors aroused from any of the conditions: (1) nucleotide sequences 

containing interspersed amino acid sequences or other erroneous textual data, (2) 

sequences longer than the expected lengths of the genome template, and (3) presence of 

redundant and meaningless deletions or residues (denoted as ‘n’, ‘x’ or ‘-’). Following 

these two parts of validation, the resultant high-precision dataset not only preserves the 

original virus sequences and corresponding information, but it also reduces the 

probability of sequence processing being erroneous aborted due to meaningless sequences 

that overflow the value of the original virus template, thereby enhancing the success rate 

of sequence processing. 
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2.2.3 Sequence alignment and algorithm selection 

Traditional pairwise alignment methods have been commonly used to compare two 

sequences. However, it would become a time-consuming process (LN) when confronted 

with longer whole-genome sequences (length ‘L’) or the need to compare thousands of 

sequences (number of sequences ‘N’). This can limit the analysis capability in terms of 

sequence length and quantity. With the advent of multiple sequence alignment (MSA) 

algorithms, it significantly saves computing time. To handle the challenge of large-scale 

whole-genome sequence analysis, we implemented the increasingly popular MAFFT 

multiple sequence alignment program (version 7.52) for nucleotide and amino acid 

sequences (Katoh & Standley, 2013). MAFFT incorporates the dynamic programming 

methods (Needleman & Wunsch, 1970), the progressive alignment methods (Feng & 

Doolittle, 1987) and the iterative refinement methods (Berger & Munson, 1991), coupled 

with Fourier transformations, to calculate and reduce the dimensionality of the sequence 

matrix, thereby resulting in the computing time to approximate the sequence length L.  

Depending on the sequence length and quantity, it automatically selects the best fitting 

algorithm [i.e., L-INS-i (accurate) for aligning <∼200 viral strains/files; FFT-NS-2 (fast) 

for aligning <∼30,000 viral strains/files to achieve maximal efficiency; and PartTree (fast) 

for aligning > ∼30,000 viral strains/files] (Katoh & Toh, 2007). These algorithms detect 
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the sequences and adjust the MSA methods correspondingly, optimizing time and 

accuracy to present an efficient sequence alignment. 

2.2.4 Sequence translation 

As viruses exploit different Open Reading Frames (ORFs) and mRNA alternative 

splicing to translate various proteins and accessory proteins, it is crucial to consider the 

possibilities of different ORFs when translate nucleotide sequences into amino acid 

polypeptides. Therefore, the aligned sequences were translated into three possible 

polypeptides from ORF 0, +1, and +2 using the program employing the EMBOSS 

Transeq version 6.5 code library (Rice et al., 2000).These translated polypeptides were 

converted to comma-delimited (csv) text files to establish tables for subsequent analysis. 

2.3 Sequence data analysis 

To actualize a platform for the visual analysis of sequences, we proffer a graphical 

user interface (GUI) for non-programming users, providing a consolidated platform for 

automated sequence organization and analysis tools. Here, I developed a suite of 

integrated programs based on the Microsoft Excel spreadsheet software through the 

scripts language of Visual Basic for Applications (VBA), providing a user-friendly GUI 

to analyze the sequence data. The advantage lies in incorporating various modular plugins 

(also known as add-ins) into Excel through the VBA language, allowing data to regroup 
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and analyze sequences with a simple click. Next, I will present the data input, grouping, 

and analysis tools for the sequences. 

2.3.1 Selection of open reading frames and alternative splicing 

The translated three polypeptides (ORF 0, +1, and +2) of each gene segment were 

compared to all possible currently known amino acid sequences that can form proteins, 

alternatively spliced isoforms, and accessory proteins of influenza viruses. Because that 

each protein's N-terminus and C-terminus possess different short-conserved sequences 

(CS) (4~6 aa) from the region of the transcription-regulatory sequence (Kim et al., 2020; 

Lai, 1990), scanning these CS on the three translated polypeptides allows for determining 

the amino acid sequence to which protein. Some proteins are formed through mRNA 

alternative splicing selected between two translated polypeptides. By identifying specific 

sequence positions for splicing, these sequences can be combined to generate accessory 

proteins. Finally, scanning these processed amino acid sequences, our program assigned 

sequential numbering to the residue positions starting from the first methionine. Since 

they were shown in Excel spreadsheet with the virus-specific genome template, the 

protein sequences can be easily visualized.  

2.3.2 Strain-based alignment 

Using standard viral nomenclature can simplify the grouping and analysis of protein 
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sequence data, making it easier to visualize epidemiological and virological information 

associated with virus sequences. Our designed software allows inputting a list of strain 

names labeled with standard viral nomenclature. Whether segmented RNA viruses such 

as influenza viruses or positive-strand RNA viruses such as SARS-CoV-2, standard viral 

nomenclature can link different genes and provide more items for grouping selection. 

Given that the filled amino acid sequences based on virus-specific genome templates 

already carried the six items of standard viral nomenclature (type, host, region, strain, 

year, and subtype), each amino acid residue of the virus sequence can be compared with 

the list of strain names, the sequence is filled in the templates and arranged following the 

list as one strain. After the strain-based alignment process, an aligned sequence matrix is 

formed with the standard viral nomenclature as the leading identifier, and following each 

amino acid is filled into the table for grouping purposes. 

2.3.3 Grouping of viral sequences 

The sequence matrix constructed through the strain-based alignment which 

incorporated the six items of the standard viral nomenclature and sequence into an Excel 

spreadsheet allowed flexibility in analyzing sequence data by group with re-alignment of 

the sequences. Furthermore, using intersection filtering of multiple grids allowed for 

multiple subgroupings and linking epidemiological information with amino acid residues. 
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This process established groups for subsequent comparison, consensus sequence 

calculation, and identifying unique polygenic consensus signatures. 

2.3.4 Determining the consensus sequence 

We employed a calculation method to determine the most frequent amino acid in 

each residue of a specific protein, thereby to identify the most indicative sequence in the 

grouping and the "consensus signature" can be then generated (Yang et al., 2020). 

2.3.5 Identification and annotation of polygenic consensus signatures 

Since mutations can occur in multiple genes across the viral genome, the 

identification of polygenic consensus through the software analysis can monitor the viral 

temporal dynamic changes and epidemiological significance. The most representative 

(i.e., most frequent) amino acid sequence at each position of the whole genome can be 

shown through various grouping, subsequently allowing for the derivation and 

differentiation of consensus sequences for each subgroup.   
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5.1 Abstract 

Taiwan’s experience with SARS-CoV in 2003 guided its development of strategies 

to defend against SARS-CoV-2 in 2020, which enabled the successful control of COVID-

19 cases from 2020 through March 2021. However, in late-April 2021, the imported 

Alpha variant began to cause COVID-19 outbreaks at an exceptional rate in Taiwan. In 

this study, we aimed to determine what epidemiological conditions enabled the SARS-

CoV-2 Alpha variant strains to become dominant and decline later during a surge in the 

Outbreak. In conjunction with contact-tracing investigations, we used our bioinformatics 

software, CoVConvert and IniCoV, to analyze whole-genome sequences of 101 Taiwan 

Alpha strains. Univariate and multivariable regression analyses revealed the factors 

associated with viral dominance. Univariate analysis showed the dominant Alpha strains 

were preferentially selected in the surge’s epicenter (p = 0.0024) through intensive 

human-to-human contact and maintained their dominance for 1.5 months until the Zero-

COVID Policy was implemented. Multivariable regression found that the epidemic 

periods (p = 0.007) and epicenter (p = 0.001) were two significant factors associated with 

the community-spread dominant viruses. The dominant strains emerged at the outbreak’s 

epicenter with frequent human-to-human contact and low vaccination coverage. The 

Level 3 Restrictions and Zero-COVID policy successfully controlled the outbreak in the 



doi:10.6342/NTU202301433

44 

 

community without city lockdowns. Our integrated method can identify the 

epidemiological conditions for emerging dominant virus with increasing epidemiological 

potential and support decision makers in rapidly containing outbreaks using public health 

measures that target fast-spreading virus strains. 

5.2 Introduction 

SARS-CoV-2, an emerging virus has caused over 624 million COVID-19 cases and 

nearly 6.56 million deaths worldwide by October 18, 2022 (E. Dong et al., 2020). The 

Taiwan Centers for Disease Control (Taiwan CDC) quickly responded to the SARS-CoV-

2 pandemic with early border control measures on December 31, 2019, drawing upon 

lessons from the SARS-CoV outbreaks in 2003 (Hsueh & Yang, 2005). Although three 

incidences of limited community spread occurred from 2019 to mid-April 2021, Taiwan 

did not experience any large COVID-19 outbreaks. 

Continuous mutations in the SARS-CoV-2 viral genomes have evolved different 

lineages with higher transmissibility and increased host fitness. Among the variants of 

concern (VOCs), the Alpha variant (B.1.1.7 lineage) with the highest relative fitness 

(Obermeyer et al., 2022) has exacerbated pandemic concerns since its initial detection in 

the UK in September 2020 (Davies et al., 2021). In December 2020, the Alpha variant 

was imported into Taiwan for the first time. After a few controllable waves, the re-
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introduction of the Alpha variant began to cause new COVID-19 cases at an 

unprecedented rate in late April, driving 14,311 total indigenous cases. However, within 

100 days of implementing Level 3 Restrictions, Taiwan reached zero indigenous cases on 

August 22, 2021. Contact-tracing investigations confirmed several cluster cases before 

the surge in 2021. Three key questions thus arose: Were the different strains of SARS-

CoV-2 Alpha variants from various early-outbreak transmission chains associated with 

igniting the community outbreak? What epidemiological factors facilitated the fast spread 

or blocking Alpha strains in the community? What lessons have we learned from how 

Taiwan controlled this outbreak, to help other countries quickly contain fast-spreading 

variants? 

5.3 Methodology 

5.3.1 Study design 

We analyzed 16,132 laboratory-confirmed SARS-CoV-2-positive cases from 

January 11, 2020 to September 4, 2021 in Taiwan, then focused on 14,636 cases (14,311 

indigenous cases) from the 2021 outbreak (April 16 – September 4). As the majority of 

outbreak cases (86.27%, 12,346/14,311) occurred in Taipei, New Taipei, and Taoyuan 

cities, the spatiotemporal distributions of cases in these cities across four different time 

periods were plotted using Microsoft Power BI. To search for possible viral sequence 

differences that launched this outbreak, we combined whole-genome sequences of 101 
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Taiwan SARS-CoV-2 Alpha variants (Table 1). During the onset dates from December 

9, 2020 to August 31, 2021 when the viral sequences were collected, they included 12 

imported strains before the outbreak (T0, pre-outbreak) and 12 strains from the beginning 

of this outbreak (T1a, April 16, 2021 – May 7, 2021; early-outbreak). Each confirmed 

case containing comprehensive contact-tracing through joint efforts from local 

departments of health (DOH) and Taiwan CDC. The integrated information was helpful 

to investigate the early transmission chains that might be associated with subsequent 

community spread (81 strains, May 7, 2021 – August 31, 2021). The 81 indigenous strains 

involved three time periods based on public health interventions: T1 (April 16 – May 14; 

pre-Level 3 Restrictions), T2 (May 15 – June 22; post-Level 3 Restrictions, but pre-Zero-

COVID Policy), and T3 (June 23 – August 31; post-Zero-COVID Policy) were analyzed 

to look for whether a dominant virus strain was persistently spreading in the community. 

Finally, we applied univariate and multivariable analyses to search for factors attributed 

to the appearance of the dominant virus strains (Figure 1). 

5.3.2 Study populations of SARS-CoV-2-positive cases in Taiwan 

        All the laboratory-confirmed SARS-CoV-2-positive cases in 2021 were tested using 

real-time RT-PCR on patients suspected of or exhibiting COVID-19 clinical symptoms. 

We plotted an overall epidemic curve of total imported and indigenous SARS-CoV-2-
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positive cases from January 1, 2020 to September 4, 2021. According to information 

released from local DOH and confirmed by Taiwan CDC, we categorized infection 

sources for indigenous cases into five major risk groups (Yen et al., 2021) (imported-

aircraft-associated, healthcare-associated, community-associated, ship-associated, and 

unidentified sources). 

5.3.3 SARS-CoV-2 genome sequence alignment and mutation analyses 

The 308 whole-genome sequences of SARS-CoV-2 in Taiwan (January 11, 2020 – 

August 31, 2021) were retrieved from NCBI-Virus and GISAID-EpiCoV databases. We 

used our in-house developed analytical tools, CoVConvert and IniCoV, to process and 

analyze these SARS-CoV-2 sequences (Yang et al., 2020). CoVConvert rearranged the 

sequences of the 101 Taiwan Alpha variants to ensure data quality, then aligned and 

translated them into three polypeptides from three reading frames. Next, IniCoV 

automatically divided the translated polypeptides into 31 proteins for each viral strain, 

combined them with individual epidemiological information, and subsequently compared 

these 101 strains with the Alpha variants' reference strain (UK-MILK-ACF9CC, referred 

to as “UK-Alpha-ref-strain”) to analyze any residue differences among these strains 

involving three groups: (1) the 12 imported strains before the outbreak (T0), (2) the initial 

12 strains from early-outbreak (T1a), and (3) the remaining 77 strains (T1b, T2, T3). 
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5.3.4 CoVConvert: a tool to process Coronavirus sequences 

CoVConvert (Coronavirus viral sequences converter for genome organization) 

performed virus strains’ names, checked the quality of downloaded sequences and 

achieved multiple alignments based on the Wuhan-Hu-1 reference nucleotide sequence 

of SARS-CoV-2 (NC045512.2). Next, data entries with erroneous or incorrect sequences 

that failed to align were excluded. Last, all qualified and well-aligned DNA sequences 

were translated into three possible polypeptides from 0, + 1, and +2 reading frames to 

determine one complete full-length viral peptide using CoVConvert. 

5.3.5 IniCoV: A Coronavirus information viewer and analyzer 

IniCoV (Coronavirus viral information viewer and analyzer for finding out initial 

source), a program composed of various modules to automatically analyze viral 

sequencing data in combination with epidemiological information (e.g., viral type, host, 

region, strain, year, and viral variants or lineages) involving the following two modules: 

The CoVCS (Coronavirus Cross-Segment alignment) module was used to align amino 

acid sequences based on SARS-CoV-2 nomenclature and subsequently divide the 

translated polypeptides into 31 proteins. CoVCS-processed viral genetic information can 

easily be used for determining the sequence and genome organization based on a 

particular residue. In the first step, CoVCS generate the genome organization worksheet 

template based on the Wuhan-1 reference sequence and define the 31 proteins’ residue 



doi:10.6342/NTU202301433

49 

 

position. Secondly, CoVCS select one or two CoVConvert generated amino acid 

sequences to scan the short-conserved sequences (CS) (4~6 aa) from the region of the 

transcription-regulatory sequence (Kim et al., 2020). Each protein of 31 proteins has 

unique CS at the front of the N-terminal, and behind the C-terminal, CoVCS organize 

these amino acid sequences in specific position based on worksheet template. Finally, 

CoVCS rearrange these organized sequences encoded by strain name and provides the 

flexibility to group these sequences by name or residues. The CoVCG (Coronavirus 

Comparative Grouping) module was designed to automatically deduce amino acid 

sequences from the collected SARS-CoV-2 strains grouped by the question of interest. In 

short, CoVCG first generated consensus sequences from each subgroup and determined 

the most representative (i.e., most frequent) amino acid at each position through 

computing. Unique amino acid residues differentially presented between different 

subgroups in the whole genome of SARS-CoV-2 computed by CoVCG were re-examined, 

verified based on the CoVCG-generated substitution table, and visualized. To visualize 

the population of sequences, we wrote the web-based tool based on d3.js (Data-Driven 

Documents) JavaScript program language library (Bostock et al., 2011) and presented all 

substitutions of amino acids at each position as similarly to weblogo. The largest letters 

presented dominant and small letters presented minor sequences shown in one plot that 
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can easily summarize sequences population. 

5.3.6 Contact-tracing investigations and transmissibility analysis of the early-

outbreak cases in the Taiwan's 2021 outbreak 

To measure viral transmissibility, we applied the epidemiological contact-tracing 

investigations to compare the effective reproductive numbers over time (Rt) of those early 

Alpha variant cases. The range and mean ± standard deviation (SD) values of Rt were 

calculated for three groups: cases before the outbreak, airport-associated cases (pilots, 

hotel staff) in the early-outbreak, and community-associated cases. Significant 

differences among the three groups were tested using one-way ANOVA. 

5.3.7 Univariate and multivariable regression analyses of factors associated with 

SARS-CoV-2 strains' dominance in the outbreak 

To understand which significant factors were associated with the dominant SARS-

CoV-2 strains, we used four R packages to examine the 81 Taiwan indigenous strains for 

univariate analysis. The nine factors included: (1) epidemic periods, (2) epicenter, (3) 

vaccination coverage, (4) public transport ridership, (5) numbers of daily cases, (6) 

population size, (7) population density, (8) age, and (9) gender. Factors 3-8 were 

separated into “high” and “low" groups based on the median. We used Fisher's exact test 

to assess all factors between subgroups and obtained the crude odds ratios (cOR) with 

95% confidence intervals (CIs). All statistically significant factors (p < 0.05) were 
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checked with correlations by calculating variance inflation factors (VIF) before running 

the multivariable regression. The best-fitting model was selected from the candidate 

models generated from the stepwise (backward/forward) search method by choosing the 

lowest Akaike information criterion (AIC) value. We also reported the adjusted ORs 

(aOR) with 95% CIs and p-values from the best-fitting model to present the factors 

associated with the dominant indigenous Alpha strains. 

5.4 Results 

5.4.1 Characteristics in SARS-CoV-2-positive cases before and after Taiwan’s 2021 

outbreak 

In Taiwan, from 1st week of 2020 through the 36th week of 2021, a total of 16,132 

cases of SARS-CoV-2 laboratory-confirmed cases were documented, of which 1,486 

were imported cases and 14,646 were indigenous cases. From the 1,486 imported cases,   

originating from Wuhan strains led to an increase in cases during the 4th to 6th weeks of 

2020, with an average of three to eight cases per week. The highest number of 125 cases 

was documented in the 12th week in mid-March 2020 when Taiwanese students returned 

from Europe and the USA. However, with the government implementation of strict border 

controls on March 19, 2020, the number of cases declined rapidly. Thereafter, there were 

two modest peaks in imported cases of the SARS-CoV-2 Alpha variant, first during the 

post-holiday period from the 48th week of 2020 to the 1st week of 2021, and then again 
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during the spring break period from the 16th to the 19th week of 2021 (Figure 2A). For 

indigenous cases, Two minor outbreaks during the 4th to 15th weeks of 2020, as well as 

the 51st week of 2020 to the 7th week of 2021. These were primarily attributed to the 

Wuhan strains (114 cases) and Epsilon variants (19 cases), respectively. No further 

instances of indigenous cases emerged from the 8th to 16th weeks of 2021. Up until April 

16, 2021 (the 17th week), the initial cases were confined to airport staff such as pilots and 

hotel staff. Subsequently, a massive outbreak took place, reaching a peak of 3,363 cases 

in mid-May of 2021 (the 20th week) (Figure 2A). The origin of the 114 prior-indigenous 

cases prior to the outbreak in 2021 (spanning from January 22, 2020 to April 15, 2021) 

was diverse and encompassed various risk groups, with community and unidentified 

sources accounting for 16.7% (19/114) of the total. Conversely, during the outbreak from 

April 16, 2021 to September 4, 2021, community and unidentified sources were found to 

account for a significant increase of 98.3% (14,067/14,311) of all cases, as demonstrated 

by a statistical significance of p < 0.0001 (Figure 2B). 

5.4.2 Characterization of Taiwan’s 2021 outbreak 

        Before the outbreak (T0 period), the 12 imported cases were reported but no 

indigenous cases (Figure 3A). However, starting on April 16, the emergence of sporadic 

clusters of SARS-CoV-2-positive cases associated with the airport and quarantine hotel 
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triggered a widespread outbreak (Figure 3B, T1a). The weekly mean number and monthly 

incidence rate of SARS-CoV-2-positive cases increased rapidly in Taipei, New Taipei, 

and Taoyuan cities. The mean incidence rate (per 100,000 population) was 10.91 ± 19.6 

in T1b and peaked at 98.6 ± 120.31 in T2. With the largest population, Taipei City 

experienced the highest case incidence between May 7 and May 14. The daily total of 

cases in these three cities peaked at 495 on May 15, prompting the cities of Taipei and 

New Taipei to implement Level 3 restrictions. By early June, daily case counts in both 

cities had dropped below 100 cases. Taipei City adopted an enhanced zero-COVID policy 

on June 23, reducing daily cases to just ten by July 10 (Figure 4). The mean incidence 

rate dropped to 12.33 ± 13.19 (Figure 3B, T3). It took 100 days from the peak on May 15 

to reach zero indigenous cases on August 22 in all cities, without lockdowns. 

Spatiotemporal analysis of diffusion patterns over time revealed that the Wanhua District 

in Taipei City had the highest incidence rates throughout the entire outbreak. Its six 

neighboring districts, which held the second and third highest incidence rates from April 

16 to June 22, were regarded as the epicenter of the outbreak (Table 2). Subsequently, the 

virus rapidly spread from the epicenter to other districts with more substantial populations 

and higher population densities (Figure 3B, T2 and T3). 
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5.4.3 Contact-tracing investigations to search for dynamic sequence changes 

        Given the highly genome divergence of the Alpha variants and the rapid community 

spread of the virus during the 2021 Taiwan outbreak, it is imperative to understand the 

potential transmission routes that led to such a widespread outbreak in a matter of weeks. 

Contact-tracing investigations identified six transmission chains before the occurrence of 

notable cluster cases initiated by ID-1363 that triggered the community outbreak from 

April 16 to May 7 (Figure 5 and Table 3). 

5.4.4 Integrating whole-genome sequence analyses 

Whole-genome sequencing combined with contact tracing information could 

determine which of the early transmission chains might have contributed to the 

subsequent spread of the virus during the outbreak. This study examined whole-genome 

sequences from twelve viral strains imported during the pre-outbreak period (T0) and 

twelve strains isolated during the early periods of the outbreak (T1a) and found genome 

divergence. The result indicated that the sequences of the Alpha strains isolated in T0 

were highly varied when compared to the UK-Alpha-ref-strain, and were also dissimilar 

from those imported during T1a. All of the early viral strains from T1a were found to 

contain mutations in PLpro (C5144T and C5812T), nsp8 (C12253T), RdRp (C15895T), 

Helicase (G17615A), and ORF8 (C28957T) compared to the UK-Alpha-ref-strain. 

However, those isolated from the early-outbreak transmission chains 1 (ID-1091), 2 (ID-
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1145), 4 (ID-1078 and ID-1079), 5 (ID-1154, ID-1183, ID-1187), and 6 (ID-1102, ID-

1137) each possessed additional nucleotide variations present throughout the genome  

(Figure 6). Notably, the sequences of ID-1186 isolated from chain 2 were identical to 

those of ID-3445 and ID-1263. Contact tracing investigations indicated that ID-3445 was 

a co-worker of the index case, ID-1363, at the teahouse, leading to the conclude that ID-

3445 and ID-1263 represented the earliest strains of community transmission in Wanhua 

District. (Figure 6). Despite ID-3445 and ID-1263 sharing overlapping locations (Wanhua 

District) in their visiting history, no epidemiological linkage was found between ID-1186 

and ID-3445 or ID-1263. Additionally, 60% (3/5) of the indigenous strains isolated during 

T1b and 28.57% (16/56) of those isolated during T2 were found to be identical to the ID-

3445/1263/1186 strain. None of the remaining 42 strains (5+56-3-16 = 42) were identical 

to any other strains isolated from the early-outbreak clusters (Tables 4 and 5). These 

findings indicate that even though several transmissions occurred in the early periods of 

the outbreak, only the strain associated with ID-1186 was identical with those of ID-3445 

and ID-1263, which were linked to the 2021 community outbreaks (Figure 7). 

Interestingly, no strains analogous to the ID-3445/1263/1186 strain were detected after 

the implementation of the enhanced Zero-COVID Policy (Table 4, T3 period). 

Furthermore, the whole-genome sequences of all 14 indigenous viral strains isolated 
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during T3 were disparate, and no new dominant strain emerged. Our analysis did not find 

a second dominant strain throughout the outbreak (Figure 8). 

5.4.5 Epidemiological factors associated with viral strain dominance in the 2021 

outbreak 

The univariate analysis aimed to understand the factors that correlated with the 

prominence of the ID-3445/1263/1186 strains. Five significant correlations were 

determined: (1) the epidemic period [1.744 (0.369-7.924), p = 0.0097], (2) the epicenter 

[0.208 (0.063-0.638), p = 0.0024], (3) vaccination coverage [0.336 (0.1-1.023), p = 

0.0479], (4) population size [0.219 (0.057-0.789), p = 0.011], and (5) population density 

[0.273 (0.086-0.831), p = 0.018]. Of these significant factors, the epidemic period 

exhibited the highest value of crude OR, indicating that the ID-3445 strain was already 

prevalent during T1. Our multivariable analysis demonstrated that the epidemic period 

and the epicenter were the two factors significantly linked with the dominance of the ID-

3445/1263/1186 strains during the 2021 outbreak [adjust OR (95% CI), p = 0.007; 0.145 

(0.044-0.474), p = 0.001, respectively]. These results suggest that the dominant strain was 

selected in the epicenter during the early period of the outbreak (T1 period) (Table 7). 
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5.5 Discussion 

The fast-mutating and increasingly transmissible SARS-CoV-2 has created 

unprecedented public health challenges. However, Taiwan successfully halted local 

SARS-CoV-2 transmission through its rapid response combining strict border control, 

firm adherence to using facemasks and hand hygiene, and a bundle strategy to minimize 

nosocomial infection (Yen et al., 2021). Alpha variants, which dominated in Europe and 

the USA in early 2021 (Liu et al., 2022; Liu et al., 2021; Tai et al., 2022), finally sparked 

a large outbreak in Taiwan in mid-May 2021 (Akhmetzhanov et al., 2022). This study 

integrated analyses of whole-genome viral sequences with contact-tracing, spatio-

temporal analyses, individual-based effective reproductive numbers, and public health 

policies, to deliver four major findings (Figure 8). First, the Alpha variants introduced to 

Taiwan were highly diverse. Second, we identified an epicenter Wanhua District in Taipei 

City, where a convenient transportation hub and many leisure activities facilitated human 

contact and viral transmission, driving cases in dense, highly populated neighboring 

districts, and igniting Taiwan’s large 2021 outbreak. Third, one imported SARS-CoV-2 

Alpha variant strain from early-outbreak chains was preferentially selected at the 

epicenter and became dominant in the early epidemic period. The predominant strain 

extended to the middle period and remained detectable for at least 1.5 months. This was 
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the only dominant strain throughout the entire outbreak, but it declined after Level 3 

Restrictions were implemented, and disappeared following the Zero-COVID Policy 

without city lockdowns (Dyer, 2022; Normile, 2022). Fourth, multivariable regression 

supported the finding that the early epidemic period and epicenter were significantly 

associated with emergence of the predominant community-spread viruses. These results 

indicate the importance of viral genomic surveillance alongside epidemics, and its 

usefulness in evaluating public health policies.  

        Given genomic surveillance’s application in control outbreaks (Chen et al., 2022; 

Gong et al., 2020; Gu et al., 2022; Wilkinson et al., 2021), we linked whole-genome 

sequencing in Taiwan with epidemiological attributes and discovered that early 

transmission chains substantially facilitated the mid-April to early May community surge. 

Therefore, outbreak-associated viral dominance must consider specific epidemiological 

characteristics (Sutton et al., 2022), including high population density, transportation 

hubs, and teahouses in the epicenter where patrons mingled without masks, as preludes 

to this outbreak. 

        Investigating relationships between epidemiological factors and the emergence, rise, 

and decline of dominant strains is essential for containing outbreaks quickly. In fact, 

Alpha variants that entered Taiwan before the outbreak had high viral genome divergence. 
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However, after ongoing transmission, virus selection occurred under special 

epidemiological conditions (Sutton et al., 2022), like airport-associated cases and 

community-related clusters (Gu et al., 2022). Once the case number sharply rose, 

indicating the selection-advantageous dominant virus strain was continuously spreading, 

viral diversity plummeted. As with other VOCs (Obermeyer et al., 2022), it took time, 2-

3 weeks, for community-derived strain to emerge, which became dominant strain with 

more homogeneous genome. Control policies can shape trends in the virus population 

during this crucial time window. Our data showed 39 days after the Level 3 Restrictions 

implementation and 61 days following the Zero-COVID Policy’s rollout (Table 4), the 

dominant community-spread viruses were successfully eliminated without lockdowns 

(Akhmetzhanov et al., 2022). No new dominant strain appeared throughout the entire 

outbreak. Therefore, dominant strains with selection advantages must be eliminated 

quickly before epidemics expand. 

SARS-CoV-2 has continuously evolved worldwide. When the Alpha variant 

overtook the Wuhan strain (Obermeyer et al., 2022), it indicated the need to find factors 

associated with viral dominance. Our multivariable analysis again demonstrated that 

turning points in the early epidemic period and epicenter supported the emergence of 

dominant community-spread viruses. This conclusion aligns with our findings on an 
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adaptive mutant in the H1N1pdm09 virus carrying HA2-E374K, which was imported to 

Taiwan and extended viral survival in a densely populated Taipei City before vaccination 

rollouts (Kao et al., 2012). Our dengue research discovered that clustering dengue cases 

with higher transmission intensity helped select a virus strain that caused more severe 

dengue hemorrhagic fever cases in southern Taiwan, where Aedes aegypti mosquitoes are 

assumed to play important roles in viral selection (Bennett et al., 2003; Wen et al., 2010). 

These specific epidemiological conditions, including human clustering cases, 

eating/dining without wearing masks, frequent human-to-human contact in entertainment 

settings (e.g., teahouses), and the combination of low vaccination coverage and/or SARS-

CoV-2 infection helped Alpha strains with a selective advantage through natural selection 

(prior to immune selection) become dominant and drive a rapid surge in cases. As these 

mutants continue evolving, their residues for viral replication, transmissibility, immune 

antagonism (Cheng et al., 2021; Jian et al., 2021; Pan et al., 2021; Verghese et al., 2021), 

and their epidemic or pandemic potential merit monitoring (Subissi et al., 2022). 

This study has four major limitations. First, most cases were reported from passive 

surveillance. Second, we obtained viral sequences retrospectively from databases without 

random sampling on epidemiological attributes. Many strains lacked full-length 

sequences or complete epidemiological information, resulting in a small sample size and 
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potential selection bias. As we did not have multiple samples from each patient, our 

results may not fully reflect reality (Li et al., 2022; Tonkin-Hill et al., 2021). The 

reproductive numbers of each early transmission chain may be underestimated due to 

asymptomatic/mild infections. Hence, how early transmission chains and viral selection 

mechanisms (e.g., for increasing viral infectivity or replication) of dominant strains 

contributed to community clusters remains unclear. Third, individual-based pre-existing 

comorbidities, vaccination history, past infection, compliance with preventative behavior 

(Yen et al., 2021), and other potential influencers of viral dynamics were not collected to 

protect personal privacy. Fourth, although all 81 indigenous viruses in this outbreak 

carried Spike-M1237I and Helicase-R460K (Table 6), we still do not know how or 

whether these mutations might increase viral transmissibility and epidemic severity. 

However, compiling epidemiological linkages within the same transmission cluster and 

viral sequences, can offer a better picture of early transmission chains. In conclusion, 

Alpha strains in Taiwan started from imported cases with genomic diversity. A dominant 

strain emerged under conditions involving human gatherings leading to case clusters from 

the airport to the quarantine hotel, transportation hubs, and teahouses in the epicenter. 

Four prerequisites for dominant strains that possibly emerged in the community include: 

(1) high frequency of human-to-human contact at hotels without early detection of 
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positive cases, or low compliance with home quarantine, facilitating viral selection 

without notice, (2) close contacts without adequate protection at teahouses (e.g., 

removing masks while dining/drinking/chatting), which may have helped viruses gain 

selection advantages to increase transmissibility (higher Rt values), (3) highly mobile 

individuals carrying virus from the epicenter outward, and (4) lack of effective 

population-based control policies against continuous transmission, like the initial absence 

of rapid community screening for SARS-CoV-2-positive cases, low vaccination coverage 

(1.3% and 0.7% for the 1st dose of the COVID-19 vaccine in Taipei City and New Taipei 

City as of May 15, 2021, respectively). Importantly, rigorous individual and population-

level prevention policies on May 15, successfully eliminated the spread of the dominant 

strains. No new viral lineage composition occurred during the 100 days of the 2021 

Taiwan outbreak. Future research on VOCs should focus on an integrated approach to 

timely monitoring of whole-genomic and amino acid changes of novel variants with 

growing transmissibility, pathogenicity, and fatality, as well as spatio-temporal data 

analysis to detect dominant strains early on. Our results demonstrate that predominant 

virus strains with increasing epidemic/pandemic potential at both the micro- and macro-

levels are naturally selected by epidemiological conditions even before mass-vaccination 

(Ko et al., 2018). Moreover, our software and integrated analyses can be applied to timely 
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monitoring of trends in full-length viral dynamics, searching for dominant strains of any 

emerging pathogens across entire epidemic, and obtaining the viruses with striking 

increases in case numbers in the epicenter, as well as evaluating the effectiveness of 

public health policies. Even after mass vaccination and anti-viral drug development, 

international collaboration will be imperative to preventing future pandemics. 
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Tables 
Table 1. List of 101 SARS-CoV-2 genome sequences and important epidemiological 

information used in this study in Taiwan 

Case ID Strain Name Onset date 
Travel 

history 

Identical 

to ID-3445 

GISAID Accession  

(EPI_ISL) 

Imported cases (N = 20) 
783 cgmh-cgu-44 2020/12/9 PHL - 956325 
799 ntu52 2020/12/26 GBR - 1041958 
792 792 2020/12/27 GBR - 1381386 
804 ntu49 2020/12/28 GBR - 1010728 
837 ntu54 2020/12/29 GBR - 1039160 
958 cgmh-cgu-58 2021/2/26 USA - 2249597 
1048 cgmh-cgu-61 2021/3/23 PHL - 2250151 
1065 ntu62 2021/3/28 PHL - 1667475 
1050 ntu61 2021/3/29 EGY - 1667474 
1047 cgmh-cgu-60 2021/4/2 IDN - 2249836 
1081 cgmh-cgu-63 2021/4/3 IDN - 2250184 
1059 kmuh-3 2021/4/9 JPN - 5395633 
1091 ntu63 2021/4/16 USA - 13566006 
1079 1079 2021/4/17 USA - 2455264 
1078 1078 2021/4/18 USA - 2455327 
1102 ntu64 2021/4/24 USA - - 
1144 ntu65 2021/4/28 UZB - - 
1154 ntu67 2021/5/2 USA - 13618360 
1183 tsgh-43 2021/5/6 USA - 2693006 
2018 cgmh-cgu-64 2021/5/14 HTI - 2544700 
T1 Epicenter (N = 9) 
1145 tsgh-42 2021/4/28 NWT - 2693005 
1137 tsgh-44 2021/4/30 TPE - 4096803 
3445 3445 2021/5/5 TPE Yes 2455329 
1187 ntu66 2021/5/6 TPE No 13618344 
1263 ntu68 2021/5/7 TPE Yes 13578728 
1266 ntu69 2021/5/9 NWT No 13578729 
1265 ntu70 2021/5/9 NWT No 13578730 
1290 ntu71 2021/5/10 TPE No 13578731 
2262 2262 2021/5/14 TPE Yes 2455330 
1145 tsgh-42 2021/4/28 NWT - 2693005 
T1 Other cities (N = 2) 
1186 cgmh-cgu-73 2021/5/7 TAO Yes 2544709 
2150 kmuh-4 2021/5/9 KHH Yes 7016374 
T2 epicenter (N = 30) 
1419 ntu72 2021/5/15 TPE No 13578732 
1373 ntu73 2021/5/15 TPE Yes 13578733 
1354 ntu74 2021/5/15 TPE No 13618345 
1359 ntu75 2021/5/15 TPE No 13578734 
1356 ntu76 2021/5/15 TPE No 13578345 
1357 ntu77 2021/5/15 TPE Yes 13618347 
1355 ntu78 2021/5/15 TPE No 13578735 
1360 ntu79 2021/5/15 TPE No 13578736 
1358 ntu80 2021/5/15 TPE No 13578737 
5703 5703 2021/5/21 TPE No 3000790 
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Table 1. List of 101 SARS-CoV-2 genome sequences and important epidemiological 

information used in this study in Taiwan (continued) 

Case ID Strain Name Onset date 
Travel 

history 

Identical 

to ID-3445 

GISAID Accession  

(EPI_ISL) 

T2 epicenter (N = 30) 
7955 7955 2021/5/26 TPE No 3040151 
9098 9098 2021/5/29 NWT Yes 3040149 
10747 10747 2021/6/2 TPE No 3000409 
12049 ntu94 2021/6/11 TPE No 11333413 
10179 ntu91 2021/6/12 TPE No 11333514 
13112 ntu95 2021/6/12 TPE No 11333432 
13375 13375 2021/6/14 TPE No 3001055 
13435 13435 2021/6/14 TPE No 3040140 
13564 13564 2021/6/15 TPE No 3001368 
11612 ntu81 2021/6/16 TPE No 13578738 
13137 ntu104 2021/6/16 TPE No 11333509 
13386 ntu82 2021/6/17 TPE No 13578739 
13103 ntu83 2021/6/17 TPE No 13618348 
13318 ntu84 2021/6/17 TPE No 13578740 
10480 ntu85 2021/6/17 TPE No 13578741 
13387 ntu88 2021/6/18 TPE Yes 11333411 
13850 ntu107 2021/6/19 TPE Yes 11333511 
14035 ntu98 2021/6/20 TPE No 11333516 
14168 ntu105 2021/6/20 TPE No 11333510 
14181 ntu108 2021/6/21 TPE No 11333512 

T2 other cities (N = 26) 
3461 kmuh-5 2021/5/16 KHH No 7016459 
4742 kmuh-6 2021/5/16 KHH No 7016494 
- cgmh-cgu-65 2021/5/18 TAO Yes 2544701 
- cgmh-cgu-66 2021/5/18 TAO Yes 2544702 
- cgmh-cgu-79 2021/5/18 TAO No 5160472 
- cgmh-cgu-68 2021/5/19 TAO Yes 2544704 
- cgmh-cgu-67 2021/5/20 TAO No 2544703 
- cgmh-cgu-70 2021/5/20 TAO Yes 2544706 
- cgmh-cgu-76 2021/5/20 TAO Yes 2544712 
- cgmh-cgu-69 2021/5/21 TAO No 2544705 
- cgmh-cgu-78 2021/5/22 TAO Yes 2544714 
- cgmh-cgu-77 2021/5/23 TAO No 2544713 
- cgmh-cgu-75 2021/5/26 TAO No 2544711 
- cgmh-cgu-72 2021/5/27 TAO No 2544708 
- cgmh-cgu-74 2021/5/29 TAO No 2544710 
10321 10321 2021/6/1 MIA Yes 3040148 
11042 11042 2021/6/3 TAO Yes 3040145 
11103 11103 2021/6/3 CYQ Yes 3040147 
11102 11102 2021/6/3 TNN No 3040152 
11310 11310 2021/6/4 MIA Yes 3040146 
11282 tsgh-46 2021/6/4 KEE No 4096807 
12288 12288 2021/6/8 TAO Yes 3040144 
12857 12857 2021/6/10 KEE Yes 3001841 
12699 12699 2021/6/10 KEE No 3002178 
12828 12828 2021/6/10 TAO No 3040141 
14222 14222 2021/6/20 KEE Yes 3040143 
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Table 1. List of 101 SARS-CoV-2 genome sequences and important epidemiological 

information used in this study in Taiwan (continued) 

Case ID Strain Name Onset date 
Travel 

history 

Identical 

to ID-3445 

GISAID Accession  

(EPI_ISL) 

T3 epicenter (N = 11) 
14422 ntu101 2021/6/23 TPE No 11333507 
14516 ntu102 2021/6/23 TPE No 11333508 
14166 ntu106 2021/6/23 TPE No 11362237 
14518 ntu116 2021/6/27 TPE No 11333513 
14879 ntu113 2021/6/28 TPE No 11362240 
14495 ntu103 2021/7/2 TPE No 11333517 
15062 ntu111 2021/7/5 TPE No 11362238 
15226 ntu117 2021/7/6 TPE No 11362241 
15774 tsgh-45 2021/7/28 TPE No 4096805 
15702 ntu123 2021/7/29 TPE No 11362244 
16121 ntu124 2021/8/31 TPE No 11333351 
T3 other cities (N = 3) 
14491 kmuh-7 2021/6/23 KHH No 7016498 
14454 14454 2021/6/26 MIA No 3040142 
- cgmh-cgu-85 2021/7/24 TAO No 5160564 

EGY: Egypt, GBR: United Kingdom, HTI: Haiti, IDN: Indonesia, JPN: Japan,  

PHL: Philippines, UZB: Uzbekistan. 

CYQ: Chiayi City, KEE: Keelung City, KHH: Kaohsiung City, MIA: Miaoli County, 

NWT: New Taipei City, TAO: Taoyuan City, TNN: Tainan City, TPE: Taipei City. 

NTU: National Taiwan University, Taiwan CDC: Taiwan Centers for Disease Control, 

TSGH: Tri-Service General Hospital, CGMH-CGU: Chang Gung Memorial Hospital 

(University), KMUH: Kaohsiung Medical University Chung-Ho Memorial Hospital. 

We used 101 available Taiwan whole-genome sequences of SARS-CoV-2 for analysis. 

Imported or Indigenous cases were defined through joint epidemiological investigation 

efforts from local Health Bureaus and Taiwan CDC. A case that had travel history was 

defined as an imported case. 
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Table 2. The district-specific incidence rates of the SARS-CoV-2-positive cases, 

population sizes, and population densities in the three affected cities by the four time 

periods during Taiwan 2021 large outbreak 

 
Rankings of top district-specific incidence rates of SARS-CoV-2 in the three affected 
cities (Taipei, New Taipei, and Taoyuan cities) during the large 2021 outbreak (April 16 
– July 31, 2021) in Taiwan. The Wanhua District had a 3.28-5.42-fold higher incidence 
than the next highest-ranking district. 
* Distances to the center of the six districts in the three affected cities close to the Wanhua 
District were 2 km, 2.5 km, 3.5 km, 3.5 km, 3.9 km, and 4.1 km in the Zhongzheng, 
Yonghe, Zhonghe, Datong, Banqiao, and Sanchong Districts respectively. 

T1a T1b T2 T3

4/16~5/6 5/7~5/14 5/15~6/22 6/23~7/31

Wanhua District, Taipei City 9.42 129.16 810.25 86.05 180,396 20,378.66 8.85

Zhonghe District, New Taipei City* 1.46 17.09 241.03 12.70 409,649 20,336.03 20.14

Banqiao District, New Taipei City* 0.54 24.09 209.69 14.75 556,175 24,038.03 23.14

Datong District, Taipei City* 0.81 22.75 204.00 14.63 123,085 21,664.17 5.68

Yonghe District, New Taipei City* 2.74 15.09 199.56 14.20 218,652 38,267.35 5.71

Sanchong District, New Taipei City* 2.87 15.89 181.12 23.20 383,805 23,521.79 16.32

Zhongzheng District, Taipei City* 1.30 12.98 154.57 15.60 154,098 20,257.13 7.61

Tucheng District, New Taipei City 1.26 13.44 179.35 10.50 238,114 8,055.88 29.56

Wugu District, New Taipei City 17.81 150.19 24.48 89,842 2,576.99 34.86

Luzhou District, New Taipei City 2.47 12.35 124.04 10.38 202,410 27,223.57 7.44

Shilin District, Taipei City 3.63 126.55 17.09 275,204 4,412.57 62.37

Shiding District, New Taipei City 13.33 133.32 7,503 51.98 144.35

Xinzhuang District, New Taipei City 8.98 122.48 11.11 422,978 21,429.30 19.74

Wenshan District, Taipei City 1.13 7.52 116.26 13.17 265,885 8,438.38 31.51

Xinyi District, Taipei City 0.94 8.49 107.64 17.01 211,920 18,908.43 11.21

Taishan District, New Taipei City 1.28 7.69 106.41 16.67 78,010 4,071.44 19.16

Zhongshan District, Taipei City 0.45 5.43 103.71 19.03 220,944 16,148.40 13.68

Shenkeng District, New Taipei City 8.41 88.35 29.46 23,774 1,155.27 20.58

Xindian District, New Taipei City 0.33 9.26 103.19 11.57 302,503 2,516.13 120.23

Nangang District, Taipei City 1.70 9.35 99.53 5.95 117,606 5,384.30 21.84

Shulin District, New Taipei City 0.55 8.75 89.70 5.47 182,849 5,519.34 33.13

Xizhi District, New Taipei City 0.49 2.92 90.41 7.29 205,812 2,889.18 71.24

Daan District, Taipei City 0.67 8.03 79.08 10.06 298,891 26,307.59 11.36

Beitou District, Taipei City 4.83 79.81 9.67 248,237 4,368.71 56.82

Jinshan District, New Taipei City 4.77 85.86 20,977 426.25 49.21

Songshan District, Taipei City 8.08 73.23 9.09 198,120 21,331.21 9.29

Guishan District, Taoyuan City 0.61 4.84 75.60 6.04 165,261 2,294.73 72.02

Bali District, New Taipei City 5.03 77.96 2.51 39,734 1,006.09 39.49

Tamsui District, New Taipei City 1.09 7.06 64.59 8.14 184,240 2,607.54 70.66

Sanxia District, New Taipei City 5.14 65.99 5.14 116,708 609.60 191.45

Linkou District, New Taipei City 2.44 63.52 5.70 122,792 2,267.55 54.15

Neihu District, Taipei City 0.36 4.99 48.53 8.57 280,318 8,876.81 31.58

Taoyuan District, Taoyuan City 0.22 2.84 38.39 5.89 458,376 13,169.98 34.80

Daxi District, Taoyuan City 31.48 10.49 95,276 906.35 105.12

Shimen District, New Taipei City 35.29 11,353 221.46 51.26

Yingge District, New Taipei City 1.14 31.86 1.14 87,850 4,158.62 21.12

Ruifang District, New Taipei City 33.48 38,839 549.09 70.73

Bade District, Taoyuan City 2.39 24.36 6.69 209,290 6,208.34 33.71

Wulai District, New Taipei City 31.67 6,315 19.66 321.13

Sanzhi District, New Taipei City 31.15 22,487 340.76 65.99

Luzhu District, Taoyuan City 2.40 2.40 19.19 4.20 166,744 2,208.46 75.50

Wanli District, New Taipei City 13.92 13.92 21,555 340.11 63.38

Zhongli District, Taoyuan City 0.71 1.18 18.69 5.44 422,582 5,522.50 76.52

Longtan District, Taoyuan City 0.80 15.27 8.04 124,368 1,653.08 75.23

Dayuan District, Taoyuan City 1.07 1.07 15.99 5.33 93,814 1,073.48 87.39

Yangmei District, Taoyuan City 0.57 14.21 0.57 175,836 1,972.96 89.12

Pinglin District, New Taipei City 14.95 6,688 39.15 170.84

Pingzhen District, Taoyuan City 2.19 10.50 2.19 228,594 4,786.99 47.75

Guanyin District, Taoyuan City 11.56 1.44 69,211 786.66 87.98

Xinwu District, Taoyuan City 4.06 2.03 49,218 578.92 85.02

Districts in the three outbreak

affected cities

Population

Size

(May 2021)

Population

Density

(Size/Area)

Area

(km
2
)

Incidence Rates (per 100K)
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Table 3. List of 24 SARS-CoV-2 Alpha variant cases from three risk-clusters in the 

onset of 2021 large outbreak in Taiwan (from December 9, 2020 to May 16, 2021) 

Im: Imported, Id: Indigenous, Loc.: location, EGY: Egypt, GBR: United Kingdom, IDN: 
Indonesia, JPN: Japan, PHL: Philippines, KHH: Kaohsiung City, MIA: Miaoli County, 
NWT: New Taipei City, PIF: Pingtung County, TAO: Taoyuan City, TNN: Tainan City, 
TPE: Taipei City.  
*ID-1363, 3445, and 1203 had visited the same tea house in the Wanhua District. 
The mean ± SD of Rt (Reproductive number over time values) values: the five pilots 
(onset dates from 16 April to 1 May 2021) associated clusters was 2 ± 0.71 (range 1-3), 
one hotel-staff (onset date on 17 April 2021) associated cluster was 4, and six earlier 
community-associated clusters (onset dates for the first case of each cluster ranged from 
2 May to 16 May 2021) was 6 ± 6.51 (range 1-19), p = 0.007 (One-way ANOVA) 

Case 
ID 

Onset date 
Im/ 
Id 

Loc. Cluster Age Sex 
Helicase 
R460K 

Spike 
M1237

I 

Epi-linkage 
(Case ID) 

Rt+ 

783 Dec. 9, 2020 Im PHL - 27 M R M NA 0 
799 Dec. 26, 2020 Im GBR - 75 M R M NA 0 
792 Dec. 27, 2020 Im GBR - 20 M R M NA 0 
804 Dec. 28, 2020 Im GBR - 37 M K M NA 0 
837 Dec. 29, 2020 Im GBR - 32 M K M NA 0 
958 Feb. 26, 2021 Im USA - 52 M R M NA 0 
1048 Mar. 23, 2021 Im PHL - 63 M K M NA 0 
1065 Mar. 28, 2021 Im PHL - 32 M K M NA 0 
1050 Mar. 29, 2021 Im EGY - 20 M K M NA 0 
1047 Mar. 29, 2021 Im IDN - 23 M K M NA 0 
1081 Mar. 10, 2021 Im IDN - 41 M K M NA 0 
1059 Apr. 9, 2021 Im JPN - 24 M K M NA 0 

1091 Apr. 16, 2021 Im USA pilot 52 M K I 1090, 1111, 
1146 3 

1105 Apr. 19, 2021 Im USA pilot 46 M NA NA 1199, 1200 2 
1078 Apr. 18, 2021 Im USA pilot 52 M K I 1121 1 
1153 May. 1, 2021 Im USA pilot 37 M K I 1183, 1187 2 
1102 Apr. 24, 2021 Im USA pilot 38 M K M 1133, 1137 2 

1120 Apr. 17, 2021 Id NWT hotel staff 48 M NA NA 1127, 1128, 
1129, 1145 4 

1363 May. 2, 2021 Id TPE community 62 M NA NA 

Earliest 
Wanhua 
case  and  

transmitted 
to 3445 

1 

3445 May. 5, 2021 Id TPE community 53 F K I 
4008, 4009, 
4010, 4216, 

4305 
5 

1203 May. 7, 2021 Id TPE community 64 M NA I 

1218, 1219, 
1223, 1224, 
1225, 1226, 
1227, 1228, 
1229, 1230, 
1245, 1246, 
1248, 1250, 
1251, 1253, 
1255, 1256, 

1257 

19 

1257 May. 9, 2021 Id TAO 1203’s 
family 47 M NA NA 1275, 1276, 

2140 3 

3037 May. 9, 2021 Id PIF 

communit
y (Wanhua 

travel 
history) 

65 M NA NA 3869, 4225, 
4742, 4743 4 

4742 May. 16, 2021 Id KHH 3037’s 
family 56 M K I 4741, 4743, 

4744, 4826 4 
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Table 4. The percentages of descendants of SARS-CoV-2 Alpha variant strains    

in the three time periods with their nucleotides were identical to the 9 strains from 

the cases with onset dates in the T1a period (April 16 to May 6) 

 

Case ID 

T1b period 

May 7-May 14 

(N = 5) 

T2 period 

May 15- June 22 

(N = 56) 

T3 period 

June 23- August 31 

(N = 14) 

1091 0 0 0 

1079/1078 0 0 0 

1102 0 0 0 

1145 0 0 0 

1137 0 0 0 

1154 0 0 0 

3445/1263/1186 3 (60%) 16 (28.57%) 0 

1183 0 0 0 

1187 0 0 0 
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Table 5. The number of nucleotide variations of the 81 indigenous SARS-CoV-2 

Alpha variant strains in Taiwan compared to the Alpha reference strains (UK-

MILK-ACF9CC) in the three time periods 

 
No. of strains 

No. of SNV 

(mean  SD) 

% SNV 

(mean  SD) 

P value 

(Period vs. all) 

T1 period 

April 16-May 14 
11 12.36  4.18 0.0413  0.014 0.4954 

T2 period 

May 15- June 22 
56 11.29  1.44 0.0377  0.0048 0.135 

T3 period 

June 23- August 31 
14 13.43  2.31 0.0449  0.0077 0.0154* 

SNV: single nucleotide variation 

P value: Student's t-test; *: <0.05. 
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Table 6. Mutation prevalence percentages of the 101 Taiwan Alpha variant strains   

compared to those of the Alpha variant reference strain (UK-MILK-ACF9CC) 

 

By comparing the 101 Taiwan strains with the WHO’s reference Alpha variants 

(UK-MILK-ACF9CC), we were able to observe 141 amino acid changes during the 

outbreak. We further calculated the mutation prevalence (in Boldface text with black 

shadow) of these amino acid changes during the outbreak and found that the top 

prevalence percentages of the two amino acid mutations were 96.04% (97/101) for 

Helicase-R460K and 86.14% (87/101) for Spike-M1237I presence during the outbreak. 

Blocks in different colors represent 31 different proteins. 

  

Residue Ref
No. of

strains

No. of

strains

Hel_460 R 3.96% 4 K 96.04% 97

S_1237 M 13.86% 14 I 86.14% 87

nsp6_260 L 89.11% 90 F 10.89% 11

M_82 I 94.06% 95 S/T 5.94% 6

nsp1_170 T 95.05% 96 I 4.95% 5

N_135 T 95.05% 96 I 4.95% 5

nsp2_169 L 97.03% 98 F 2.97% 3

N_398 A 97.03% 98 V 2.97% 3

nsp4_17 F 98.02% 99 L 1.98% 2

3CLpro_160 C 98.02% 99 F 1.98% 2

nsp8_141 T 98.02% 99 M 1.98% 2

nsp9_83 P 98.02% 99 L 1.98% 2

RdRp_671 G 98.02% 99 S 1.98% 2

nsp15_185 V 98.02% 99 I 1.98% 2

S_69 - 98.02% 99 H 1.98% 2

S_70 - 98.02% 99 V 1.98% 2

S_144 - 98.02% 99 Y 1.98% 2

ORF3a_15 L 98.02% 99 F 1.98% 2

ORF7a_96 L 98.02% 99 F 1.98% 2

ORF8_27 X 98.02% 99 Q 1.98% 2

ORF8_68 K 98.02% 99 - 1.98% 2

Mutation

Prevalence (%)



doi:10.6342/NTU202301433

76 

 

Table 7. Univariate analysis and Multivariable regression analysis of the factors 
associated with the frequency of SARS-CoV-2 genome sequences identical to those 
of the dominant strains from cluster cases of ID-3445/1186/1263 with their onset 
dates from December 9, 2020 to October 31, 2021 

 
Univariate 

analysis 

Multivariable 
regression 
analysis 

Factors Seq 

Identical to 
dominant 

3445/1186/1263 
cluster (%) 

Crude OR 
(95% CI) P value 

Adjusted 
OR (95% 

CI) P value 

(1) Epidemic periods  

T1 period 11 45.46% (5/11) 1.74 (0.37-7.92) 0.0097** 
(T1 vs. T2 
= 0.492) 

(T3 vs. T2 
= 0.014*) 

0.18 
(0.05-
0.62) 

0.007** T2 period 56 32.14% (18/56) Reference 

T3 period 14 0% (0/14) 0 (0-0.74) 

(2) Epicenter 

Epicenter 50 16% (8/50) 0.21 (0.06-0.64) 
0.0024** 

0.15 
(0.04-
0.47) 

0.001** 
Non-epicenter 31 48.38% (15/31) Reference 

(3) Daily city/county-specific vaccination coverage  
   of the 1st-dose COVID-19 (%) 
< 2.87% 41 39.02% (16/41) Reference 

0.0479* - - 
≥ 2.87% 40 17.5% (7/40) 0.34 (0.1-1.02) 

(4) Daily district-specific daily public transport ridership  
(per 10K passengers) 

< 3.344 40 35% (14/40) Reference 
0.225 - - 

≥ 3.344 41 21.95% (9/41) 0.53 (0.17-1.55) 

(5) Daily cases 
< 24 26 34.62% (9/26) Reference 

0.435 - - 
≥ 24 55 25.45% (14/55) 0.65 (0.21-2.04) 

(6) Monthly district-specific population size 
(per 100K peoples by district) 

< 1.8 16 56.25% (9/16) Reference 
0.011* - - 

≥ 1.8 65 21.54% (14/65) 0.22 (0.06-0.79) 
(7) Monthly district-specific population density 

(10K pop. size / district area km2) 
< 2 28 46.43% (13/28) Reference 

0.018* - - 
≥ 2 53 18.87% (10/53) 0.27 (0.09-0.83) 

(8) Age 
< 53 32 25% (8/32) Reference 

1 - - 
≥ 53 35 25.71% (9/35) 1.04 (0.3-3.65) 

(9) Gender 
Female 43 25.58% (11/43) Reference 

0.625 - - 
Male 38 31.58% (12/38) 1.34 (0.46-3.97) 

Seq: sequence, OR: odds ratio; CI: confidence interval; P value: 
Fisher’s exact test; *: <0.05; **: <0.01. 
Multivariable regression formula: binomial linear regression (Identical to ID-3445 = 
Epidemic periods + Epicenter), AIC = 83.627 
T1 Period (April 16 – May 14; pre-Level 3 Restrictions), T2 Period (May 15 – June 22; 
post-Level 3 Restrictions, but pre-Zero-COVID Policy), and T3 Period (June 23 – 
August 31; post-Zero-COVID Policy). 
We used Fisher's exact test to assess all factors between subgroups due to the small 
sample size. Variance inflation factors (VIF > 5) were used to evaluate collinearity 
among factors, and the statistically significant factors without collinearity were 
included in the final multivariable regression model (Tables 8 and 9).  
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Table 8. Binomial linear regression and Variance Inflation Factor (VIF) 

 

  

 
(1) 

Epidemic 
periods 

(2) 
Epicenter 

(3) 
Vaccination 

coverage 

(4) 
Population 

size 

(5) 
Population 

density 

1+2+3+4+5 1.553 5.762 1.395 1.891 6.751 

1+2+3+4 1.536 1.818 1.369 1.597 - 

2+3+4+5 - 1.604 5.895 1.365 5.979 

Variance inflation factors (VIF > 5) were used to evaluate collinearity among factors, 

and the statistically significant factors without collinearity were included in the final 

multivariable regression model. 
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Table 9. Multivariable logistic regression (binomial) analysis associated with the 

frequency of SARS-CoV-2 genome sequences identical to ID-3445/1186/1263 using 

stepwise method by Akaike information criterion (AIC) and backward/forward 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Estimate 

Std. 
Error z value 

Adjusted 
OR P value 

Identical to ID-3445/1186/1263 = Epidemic periods + Epicenter + Vaccination 
coverage + Population size, AIC = 86.451 

Epidemic periods -1.739 0.736 -2.36 0.176 0.018* 

Epicenter -1.477 0.763 -1.94 0.228 0.053. 

Vaccination 

coverage 
-0.067 0.691 -0.1 0.935 0.923 

Population size -0.832 0.776 -1.07 0.435 0.284 

Identical to ID-3445/1186/1263 = Epidemic periods + Epicenter + Population size, 
AIC = 84.46 

Epidemic periods -1.775 0.64 -2.77 0.17 0.006** 

Epicenter -1.499 0.73 -2.06 0.223 0.04* 

Population size -0.82 0.767 -1.07 0.44 0.285 

Identical to ID-3445/1186/1263 = Epidemic periods + Epicenter, AIC = 83.627 

Epidemic periods -1.738 0.639 -2.72 0.176 0.007** 

Epicenter -1.934 0.606 -3.19 0.145 0.001** 

P value: Fisher’s exact test; *: <0.05; **: <0.01. 
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Figures 
 

 

 

Figure 1. Flow diagram of study design to analyze SARS-CoV-2-positive cases in 

Taiwan from January 11, 2020 to September 4, 2021 

We used CoVConvert to check data quality and obtained different reading frames 

for IniCoV to identify polygenetic consensus signatures. 
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Figure 2. Epidemic curves of laboratory-confirmed SARS-CoV-2 cases plotted with 

three major government countermeasures in Taiwan from January 1, 2020, to 

September 4, 2021 

The weekly numbers of laboratory-confirmed SARS-CoV-2 cases from the 1st week 

of 2020 to the 36th week of 2021 (i.e. 4 September 2021 when the daily case number 

dropped below 10) were obtained from Taiwan CDC Open Data Portal 

(https://data.cdc.gov.tw/en). The bar graphs show the distribution of cases based on the 

onset weeks, and the arrows indicate when countermeasures were implemented (Detail 

described in Supplementary). The confirmed indigenous cases caused by the three 

variants of SARS-CoV-2 are: (1) Alpha variants (14,311 cases, April 16-September 4, 

2021), (2) Epsilon variants (19 cases, January 1-January 31, 2021), and (3) Delta variants 

(15 cases, June 16-June 26, 2021). 
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(A) Weekly numbers of confirmed imported (shiny blue bars), indigenous (red bars), and 

the 2021 large outbreak (light purple bars, from the 16th - 36th week of 2021). The 

two waves of the imported cases involved western holidays: 

1) the 48th week of 2020 (early December, 50 cases after Thanksgiving holidays) 

through the 1st week of 2021 (38 cases after New Year’s holidays), and 

2) 16th-19th week of 2021 after Spring breaks (mid-April, mean ± S.D.: 29.5 ± 12.95 

cases/week). 

(B) Sources of the infection for indigenous cases involved into five major risk groups 

from January 1, 2020, to September 4, 2021 before the 2021 large outbreak (1st week 

of 2020 to the 7th week of 2021): 

1) Imported Aircraft-associated cases (light blue bars, contact history with imported 

cases) = 29/114, 25.4%, 

2) Healthcare-associated cases (magenta bars) = 30/114, 26.3% (9 cases in the 9th -

11th weeks of 2020 and 21 cases in the 2nd -6th weeks of 2021), 

3) Community-associated cases (purple bars, indigenous cases who had no travel 

history three days before the onset of illness) = 12/114, 10.5%, 

4) Ship-associated cases (orange bars, cruise ships and naval crews) = 36/114, 31.6% 

(36 cases in the 16th -19th weeks of 2020), and 

5) Cases with unidentified sources (black bars, no clear sources of infection  

following thorough epidemiological investigation) = 7/114, 6.2%. 

 

During the 2021 large outbreak (17th week of 2021 to the 36th week of 2021): 

1) Healthcare-associated cases (magenta bars) = 244/14,311, 1.7% (244 cases in the 

20th -25th weeks of 2021), 

2) Community-associated cases and cases with unidentified sources (light purple 

bars, indigenous cases who had no travel history three days before the onset of 

illness) = 14,067/14,311, 98.3% 
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Figure 3. The incidence rates of laboratory-confirmed SARS-CoV-2 cases in the 

three major affected cities and other areas of Taiwan from Pre-outbreak and during 

the large 2021 outbreak (from December 9, 2020 through July 31, 2021) 

(A) Pre-outbreak (T0, December 9, 2020 through April 15, 2021) 

Symbols and lines shown the Taoyuan International Airport and quarantine  

hotel in Dayuan District, and imported cases (in the circle). 

(B) During the outbreak (T1-T3, April 16, 2021 through July 31, 2021) 

The colour gradients show the incidence rate (per 100,000 residents) in each 

district in the three major affected cities across five different time periods [T1a 

(April 16, 2021-May 7, 2021; early-outbreak), T1b (May 8, 2021-May 14, 2021; 

pre-Level 3 Restrictions), T2 (May 15, 2021-June 22, 2021; post-Level 3 

Restrictions, but pre-Zero-COVID Policy), T3 (June 23, 2021-July 31, 2021; post-

Zero-COVID Policy]. 

The early-outbreak (T1a) cutting time point on May 7 because the last pilot 

case ID-1183 and ID-1187 who had onset dates on May 6. 

The Daily mean numbers, and red lines show the six districts neighboring the 

area where the epidemic began (Wanhua District). 

The “epicenter” of this outbreak was defined as the district with the highest 

incidence and its bordering districts (Table 3). Data on district-specific population 

sizes was obtained using Taiwan household registry information from the Ministry 

of Interior population sizes in May 2021 were 2,574,704 in Taipei City, 4,026,019 

in New Taipei City, and 2,270,939 in Taoyuan City 

(https://www.ris.gov.tw/app/en/346). 

The numerator represents number of new cases occurring at that specific time 

period in the same studied district as the denominator. The monthly incidence rates 

are shown as “mean ± SD” before and after the 2021 outbreak: Taipei City: 0.152 ± 

0.161 vs 46.691± 56.311 (p < 0.0001), New Taipei City: 0.162 ± 0.066 vs 42.161 ± 

49.067 (p < 0.0001), and Taoyuan City: 0.265 ± 0.303 vs 8.288 ± 7.606 (p < 0.0001). 
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Figure 4. Epidemic curves of laboratory-confirmed SARS-CoV-2 cases in the three 

major affected cities and other areas of Taiwan in the large 2021 outbreak 

The bar graphs show the distributions of cases based on onset dates from April 15 

through July 31, 2021. Because the daily numbers of confirmed SARS-CoV-2 cases in 

Taoyuan City were much lower than those in Taipei and New Taipei cities, we used two 

scales (0-20 and 30-270 cases) that are separated by white lines in Taipei City, New 

Taipei City, and other areas. 

The 81 indigenous strains involved three time periods based on population-based 

interventions: 1) T1 Period (April 15-May 14; pre-Level 3 restrictions), 2) T2 Period 

(May 15-June 21; post-Level 3 restrictions, but pre-Zero COVID policy), and 3) T3 

Period (June 23-August 31; post-Zero COVID policy). 

The mean weekly numbers are shown as “mean ± SD” before and after the 2021 

outbreak, Taipei City: 0.516 ± 1.807 vs 1201.25 ± 1372.857 (p < 0.0001), New Taipei 

City: 0.516 ± 2.38 vs 1939.429 ± 1975.374 (p < 0.0001), and Taoyuan City: 2.323 ± 5.11 

vs 215.143 ± 172.747 (p < 0.0001). 
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Figure 5. Epidemiological linkages of initial six transmission chains of SARS-CoV-2 

cases and their residential districts at the T1 period in the three major affected cities 

of Taiwan 

The initial six Early-outbreak chains were drawn according to Taiwan CDC 

epidemiological investigations. Symbols and lines shown in each Early-outbreak chain 

represent the characteristics of the subjects who transmitted the virus (pilot in the circle; 

hotel staff in the triangle) or new cases from family or friends contacts (in the square) 

through direct (solid lines) or indirect (dotted lines) transmission. The numbers shown 

are Case IDs. ID numbers that are red with a star sign have viral sequences available in 

the GISAID-EpiCoV database.  
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Figure 6. Nucleotide variations of 24 SARS-CoV-2 Alpha variant strains isolated 

from Pre-outbreak and six different Early-outbreak chains in Taiwan (from 

December 9, 2020 to May 7) compared to those of the Alpha variant reference strain 

(UK MILK-ACF9CC) 

The whole genome sequences of 24 Taiwan SARS-CoV-2 Alpha variant strains 

were compared to UK-MILK-ACF9CC. The nucleotide variations between Taiwan’s 

strains and UK-MILK-ACF9CC strain are shown in vertical lines which represent 

nucleotide A (green), C (blue), G (black), and T (red), respectively.  
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Figure 7. Nucleotide variations of 14 SARS-CoV-2 Alpha variant strains isolated in 

T3 period compared to the predominant ID-3445/1186/1263 strain 

The whole genome sequences of 14 Taiwan SARS-CoV-2 Alpha variant strains 

isolated in T3 period were compared to ID-3445/1186/1263 strain. The nucleotide 

variations between T3 strains and T1/T2 predominant ID-3445/1186/1263 strain are 

shown in vertical lines which represent nucleotide A (green), C (blue), G (black), and T 

(red), respectively. 
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Figure 8. The figure summarizes our major findings 

       This figure summarizes our major findings in this study. Before the outbreak (T0, 

Pre-outbreak), the imported Alpha variant strains were heterogeneous with high viral 

genome divergence. However, such diversity significantly decreased during the T1 period 

(p < 0.0001), when the dominant virus strains with selective advantages appeared. We 

also investigated the epidemiological conditions in Taiwan that facilitated the emergence 

of the predominant virus strain in the T1 period. The effective reproductive numbers over 

time (Rt) for the viruses from the imported cases were all zero at T0 period before the 

outbreak. However, the mean Rt values of the viruses from the pilots to quarantine hotel 

staff and subsequent dominant virus strains in the community (i.e. same sequence 

identities as the ID-3445/1263/1186) increased rapidly. Specific epidemiological 

conditions, including unmasked dining in many teahouses, and customers’ movement 

across teahouses, helped the dominant Alpha variant strains with a selective advantage. 

This study demonstrated that natural selection of a dominant virus strain (prior to immune 

selection) progressed in three stages: (1) selection started from a diverse virus pool (i.e. 

imported viruses at T0), (2) selection advantages increased through virus replication, in 

which the progeny virus had more advantages than its parent, and (3) selection of a fast-

spreading strain through human-to-human transmission when a community had suitable 

epidemiological conditions (i.e. our T1 period and epicenter). Most importantly, COVID-

19 cases dropped sharply alongside the two important population-intervention strategies 

(Level 3 Restrictions and Zero-COVID policy). 
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In recent years, identifying and analyzing emerging infectious viruses have become 

increasingly crucial due to their continuous threat. The rise in episodes of diseases such 

as influenza virus and SARS-CoV-2 highlights the importance of developing robust 

sequence analysis software capable of processing and analyzing vast amounts of 

sequencing data generated by state-of-the-art technologies. With its segmented genome 

comprising eight genes, the influenza virus poses a unique challenge as these genes can 

reassort from other species. Therefore, careful consideration of each gene segment's 

identification and epidemiological information is necessary during the analysis process. 

Tracing the earliest evolutionary origin of the influenza virus is made even more difficult 

due to the absence of a reference virus strain. 

On the other hand, SARS-CoV-2, consisting of a single gene with over 30,000 base 

pairs, benefits from a known early standard reference— Wuhan strain. This feature allows 

for rapid identification of amino acid residue differences through comparison. However, 

when comparing numerous sequences, challenges arise in calculating a consensus due to 

alignment performance issues. Because of these challenges, diligent improvements in 

excising software tools are necessary to organize, visualize, and analyze virus sequence 

data. Developing more advanced tools is crucial for applying these sequence data in 

virology, immunology, and epidemiology, gaining deeper insights and understanding. 
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Current web-based sequence analysis tools 

Currently, several tools are available to identify viral strains. One option is to upload 

sequences to NCBI Virus for BLAST analysis. Another platform, GISAID-EpiCoV, 

enables SARS-CoV-2 sequence comparison with the reference Wuhan strain. It provides 

a list of amino acid differences and facilitates the determination of the virus lineage or 

clade. Platforms such as  BV-BRC offer the Sequence Feature Variant Type (Flu-SFVT) 

method for other viruses, such as the influenza virus. These platforms allow users to 

upload individual gene segments and identify amino acid differences. It also links this 

information to literature-based data on pathogenicity and drug resistance. 

Furthermore, when comparing groups of viral strains within a specific population, 

constructing phylogenetic trees provides insights into their evolutionary trends. 

NextStrain is an example of a tool that performs real-time phylogenetic tree construction 

to track viral evolution trends. Sampling a clade of virus sequences helps understand their 

spatiotemporal changes and identify unique evolutionary clades (Hadfield et al., 2018). 

By leveraging these tools, researchers can transform virus sequences into comprehensive 

gene annotations with extensive descriptions of variant residues. 

Requirements of essential skills for executing the analysis 

Programming skills are often necessary to effectively handle virus sequences, 
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including sequence organization, alignment, and analysis. In recent years, the 

development of pipeline software and online tools has led to the emergence of packaged 

analysis workflows. These workflows streamline the analysis process and make it more 

accessible. For instance, Bioconda hosts numerous tools that can process influenza viral 

sequences. One such tool is the nf-flu tool, which focuses on analyzing each of the virus's 

eight segmented genes. It compares the viral sequences to a specified reference strain 

(Kruczkiewicz, 2022). Another online tool, INSaFLU, directly handles raw viral 

sequencing files and compares them with representative viral strains. It then utilizes the 

Snippy tool to generate consensus sequences and highlights divergent amino acid residues 

(Borges et al., 2018). While these tools provide direct residue variation annotations from 

raw FASTA sequence files, additional analysis may be necessary for re-aligning 

sequences, which can be time-consuming. 

Furthermore, these tools often require the availability of reference strain for 

comparison. However, they may not integrate cross-segment gene analysis with other 

relevant information. Therefore, utilizing these tools requires a combination of 

programming skills and an understanding of the limitations of the available workflows. 

Unique features of our analysis software packages  

Our software package offers a unique set of features that address the limitations of 
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existing tools while incorporating additional advantages. It provides efficient virus 

sequence processing, whole genome sequence visualization, comparison, and consensus 

sequence analysis. With our software, users can automatically process FASTA sequence 

files, perform sequence alignment, and translate them into amino acid sequences without 

requiring any programming skills. Whether the viral genomes are segmented or composed 

of disparate segments, our software can integrate into a complete viral genome using a 

strain-based alignment method. This flexibility allows for easy grouping and 

incorporation into subsequent analyses. In addition to robust sequence processing, our 

software excels in sequence visualization, enabling real-time adjustments and in-depth 

exploration through an interactive GUI platform. This feature differentiates our software 

from commonly used tools like BioEdit and Integrative Genomics Viewer (IGV). While 

these tools can display multiple viral sequences, our software provides a more user-

friendly and intuitive interface for visualizing viral sequences. Incorporating strain name 

information and amino acid residues into an Excel spreadsheet enhances visualization. 

Moreover, the software facilitates easy grouping without requiring sequence alignment, 

empowering users to generate group-specific consensus sequences with less efforts.  

Furthermore, our software’s advantages extend beyond sequence visualization. It 

offers automatic analytical workflows, distinguishing it from commercial software 
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packages, such as QIAGEN CLC Genomics Workbench and bioMerieux bionumerics. 

These workflows enable the study of viral mutations, integration of information from 

Ingenuity Pathway Analysis (IPA), construction of phylogenetic trees, and other 

analytical methods. This comprehensive approach illuminates new directions for research, 

enhancing the user’s ability to delve into the complexities of viral sequence analysis. 

Limitations and future improvement 

While our software introduces new features that address limitations associated with 

online tools, several aspects require further improvement. Platforms like the Viral 

Bioinformatics Resource Center and NCBI Virus linked to PubMed offer valuable 

experimental corroboration and information for understanding viruses (Brister et al., 2015; 

Olson et al., 2022). However, our software cannot provide real-time updates and connect 

our findings on highly variable amino acids to scientific literature, which would reveal 

their epidemiological significance. Moreover, predicting the impact of unknown viral 

changes requires experimental demonstration to establish their relevance. Future 

enhancements to our software could include integrating automatic sequence generation 

structures, enabling a faster analysis of available therapeutics. Additionally, employing 

large language models (LLMs) with AI technology, such as programs integrated with 

ChatGPT 4 (Stokel-Walker & Van Noorden, 2023), can offer a comprehensive platform 
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for literature review, organization, and annotation of additional points. This approach 

would provide great tools and insights, facilitating future research development and 

establishing a solid foundation for research directions. 

In summary, our software combines the benefits of efficient viral sequence 

processing, comprehensive visualization, and automated analytical workflows. These 

features provide a versatile and user-friendly real-time consensus sequence analysis 

platform, facilitating in-depth exploration and opening new avenues for virology, 

epidemiology, and clinical research. While our software addresses some limitations, there 

is scope for improvement in real-time updates, linking findings to scientific literature, 

experimental demonstration of viral changes, and integrating advanced language models 

for enhanced literature search and annotation. These enhancements will bolster the 

software's capabilities, providing researchers with a robust virus analysis and exploration 

platform. 
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Abstract

Background: The pandemic threat of influenza has attracted great attention
worldwide. To assist public health decision-makers, new suites of tools are needed to
rapidly process and combine viral information retrieved from public-domain
databases for a better risk assessment.

Results: Using our recently developed FluConvert and IniFlu software, we
automatically processed and rearranged sequence data by standard viral
nomenclature, determined the group-related consensus sequences, and identified
group-specific polygenic signatures. The software possesses powerful ability to
integrate viral, clinical, and epidemiological data. We demonstrated that both
multiple basic amino acids at the cleavage site of the HA gene and also at least 11
more evidence-based viral amino acid substitutions present in global highly
pathogenic avian influenza H5N2 viruses during the years 2009–2016 that are
associated with viral virulence and human infection.

Conclusions: FluConvert and IniFlu are useful to monitor and assess all subtypes of
influenza viruses with pandemic potential. These programs are implemented through
command-line and user-friendly graphical interfaces, and identify molecular
signatures with virological, epidemiological and clinical significance. FluConvert and
IniFlu are available at https://apps.flutures.com or https://github.com/chinrur/
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Background
The emergence of novel H5N1 avian influenza virus (AIV) in 1997 resulting in fatalities

in humans has raised global concern [1]. As of May 8, 2020, a total of 861 human infec-

tions and 455 deaths caused by H5N1 infection had been reported [2]. Thereafter, the

re-emergence of highly pathogenic avian influenza (HPAI) A H5Ny subtypes that cause

widespread infections in poultry farms and in wild birds since 2003 has greatly

attracted public health attention. Interestingly, the H5 AIVs in Asia have evolved faster,

having higher viral diversity, greater inter-species transmission, and broader host range

than those in Europe and the Americas [3]. Understanding the viral factors which de-

termine the pathogenicity of H5 AIV by timely integration of virological, immuno-

logical and epidemiological information will be helpful to establish effective prevention

and control measures to minimize future pandemic threats.

The immediate release of the genetic sequences of influenza A viruses combined with

collections of tools established for analyzing all types and subtypes of influenza viral se-

quences have greatly advanced our understanding of the evolution of circulating viruses

and their potential risk to animal and human health [4]. Given the fact that multiple

mutations across gene segments of influenza viruses can exist and the genomic stability

might be influenced by a particular mutation over time [5], new suites of tools are

needed to integrate these databases for a better alignment of virological, epidemio-

logical and clinical data in a real-time manner.

Several public-domain databases are available for collecting influenza genetic and epi-

demiological information. They include: (1) National Center for Biotechnology Infor-

mation Influenza Virus Database (NCBI-IVD) [6], (2) Global Initiative on Sharing All

Influenza Data (GISAID-EpiFlu) [7], and (3) Influenza Research Database (IRD) [8].

While NCBI-IVD provides the complete influenza viral sequences of gene segment

across a wide range of years, GISAID-EpiFlu is recognized as a compelling mechanism

for rapid sharing of partial or incomplete influenza viral sequences [9]. As for IRD, it

contains human and mammalian influenza surveillance data as well as human clinical

data associated with viruses, linking host surveillance data to well-characterized virus

strains [8].

In this paper, we reported on development of a new suite of integrated software in-

cluding FluConvert and IniFlu for data processing and analysis. FluConvert provides a

series of automated packages to efficiently rearrange genetic data based on standard

viral nomenclature [10] and translate the nucleotide sequences into three possible poly-

peptides from 0, + 1, and + 2 open reading frames (ORF) after performing simultaneous

multiple sequence alignments. For IniFlu, it is programed to automatically select the

correct ORF encoded from corresponding gene segment as well as the spliced isoforms

(e.g. NS1, NS2 of NS gene; M1, M2 of M gene). Possible accessory proteins (e.g. PB1-

N40, PB2-S1, M42) that have been reported in the literatures [11–13] can also be se-

lected by IniFlu. The capability of IniFlu that integrates viral genetic information into

clinical and epidemiological surveillance data with high efficiency provides a rapid com-

parison of variations in viral sequences with epidemiological significance. To this end,

we provide the results from analysis of H5N2 HPAI viruses defined by the presence of

the hallmark amino acid motif (XRRKRR) at the cleavage site between HA1 and HA2

domains [14]. In addition to these multiple basis amino acid residues in the HA, we

demonstrate that several other amino acid substitutions across different gene segments
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of H5N2 avian influenza viruses could be associated with the viral virulence and mam-

malian infections based on IniFlu-generated polygenic HPAI consensus signature. This

suggests that the data analysis platform we report here will be useful to identify novel

mutations for risk assessment of AIVs with potential threat to animal and human

health.

Methods
Installation of FluConvert and IniFlu

Both FluConvert and IniFlu are available for free download at https://apps.flutures.com

or https://github.com/chinrur/FluConvert_IniFlu. The programs can be automatically

installed in a desktop computer after the user perform execution files which is found in

downloaded folders. The operating system of the computer requires Microsoft Win-

dows 10 (version 1903 or later version) equipped with Microsoft Office 365 or Office

Excel 2016 (or later version, 64-bit) for installation and Java 6 (or later, 64-bit) to per-

form each software. When open FluConvert, the user will be asked to import data

which have been pre-downloaded from NCBI-IVD or GISAID-EpiFlu (Step 1 of Fig. 1)

Fig. 1 Workflows of data analysis executed by FluConvert and IniFlu. The stepwise processes performed by
FluConvert and IniFlu to identify novel signatures of emerging influenza viruses with increasing risk are
described as follows. Step 1: Viral sequences are obtained from the three databases (NCBI-IVD, GISAID-
EpiFlu, and IRD). Step 2: FluConvert rearranges viral strains by viral nomenclature and ensures data quality.
Viral sequences are further sorted into eight gene segments and translated into amino acid sequences.
Step 3: The module FluCS of IniFlu performs strain-based alignments of FluConvert-processed viral amino
sequences. The module FluCG of IniFlu regroups viral strains with epidemiological significant and computes
a consensus sequence for each subgroup. Finally, the subgroup-specific unique polygenic amino acid
signatures can be simultaneously identified (see details in Fig. 3)
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following instructions provided on the website. It will take minutes to hours to

complete the process depending on the quantity of data entry. Once FluSeed Dataset

has been processed by FluConvert (Step 2 of Fig. 1), IAV sequences can be analyzed by

IniFlu (Step 3 of Fig. 1). We also include a detail step-by-step user’s guide in Readme

which can be found at https://apps.flutures.com website.

FluConvert: a tool to process downloaded sequences

FluConvert automatically processes downloaded sequence files (*.FASTA) using the

command-line interface (CLI) by batch (shell) scripts operated in a Microsoft Windows

environment. It consequently performs (1) name and quality checking for downloaded

sequences, (2) separation of sequences into eight gene segments, (3) multiple alignment

of DNA sequences within clusters, (4) translation of DNA sequences into three possible

polypeptides from ORF 0, + 1, and + 2, and (5) multiple alignment of amino acid se-

quences within clusters. The functions of FluConvert are to unify the arrangement of

genetic information and then to convert nucleotide sequences of cDNA to amino acid

sequences for multiple alignment at the protein level.

Arrangement and quality checking for downloaded sequences

All sequences downloaded from the NCBI-IVD and the GISAID-EpiFlu databases are

rearranged according to the standard influenza viral nomenclature in the order of type,

host, region, strain, year, and subtype within the parentheses [10]. Secondly, rearranged

sequences are inspected, and the gene segments are deleted when they met any condi-

tions in the “excluding list” generated for quality checking. Entries retrieved from

NCBI-IVD and GISAID-EpiFlu databases were deleted according to “excluding list” to

remove duplicates, incomplete sequences, or those with error information. Downloaded

entries that are later saved to FluSeed Dataset have never been modified or corrected

for any purposes. This is to ensure that the information remains original and the fea-

tures of genetic sequences are kept unaltered during FluConvert processing. The three

major error conditions of viral sequence information are: (1) lacking complete viral no-

menclature, having mixed subtypes, belonging to lab strains or showing errata in public

database records, (2) finding duplicate sequence records in any of the public databases,

and (3) sequences longer than the expected lengths for different segments (e.g. PB1 >

2500 bp, PB2 > 2500 bp, PA > 2400 bp, HA > 1900 bp, NP > 1700 bp, NA > 1600 bp, M >

1150 bp, and NS > 1050 bp), or having redundant sequences or those containing more

than 60 unknown nucleotides (denoted as ‘n’). Finally, all the sequences that had passed

the excluding list’s quality check without entering the excluding list were used to create

a new dataset called the “FluSeed Dataset” and subjected to IniFlu analysis.

As noted, entries retrieved from these public domain databases have never been modified

or corrected after downloading. This ensures to keep information original and features of

genetic sequences are not lost during FluConvert processing. Moreover, FluSeed Dataset is

used for IniFlu analysis and has never been intended to make publicly accessible.

Multiple sequence alignment and amino acid translation

The genome of influenza A virus contains eight RNA segments. Therefore, FluConvert

first divides the genetic sequences in FluSeed Database into eight clusters by the MAFF
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T multiple sequence alignment program (version 7.429) with fast Fourier transform

[15]. All sequences in each of the eight gene segments are then translated into three

possible polypeptides from ORF 0, + 1, and + 2 by EMBOSS Transeq (version 6.5) [16].

Nucleotide sequences and amino acid sequences in each of the eight gene segments in

the FluSeed Database are subject to multiple alignment by MAFFT again with different

optimizing parameters based on sequence lengths and the numbers of viral strains or

files [i.e. L-INS-i (accurate) for alignment of <∼200 viral strains/files; FFT-NS-2 (fast)

for alignment of <∼30,000 viral strains/files to obtain maximal efficiency; and PartTree

(fast) for alignment of > ∼ 30,000 viral strains/files] [17]. Results of sequence alignments

from the same ORF were saved as comma-delimited (csv) text files.

IniFlu: a viral information viewer and analyzer

IniFlu, a Visual Basic Application (VBA) program for Microsoft Office Excel 2019

worksheet, has a user-friendly graphical interface (GUI) to combine viral information,

amino-acid sequences and epidemiological data for further analyses. IniFlu has two

modules, “FluCS” (which stands for “Flu Cross-Segment alignment”) and “FluCG”

(which stands for “Flu Comparative Grouping”). FluCS matches the aligned sequences

according to the standard viral nomenclature of the strains after encoding protein from

ORF selection and alternative splicing. FluCG visualizes different epidemiologically spe-

cific (such as time-, area-, host-, age-, gender-specific) consensus signatures obtained

(shown in Fig. 4), providing not only the clinical information of the viral sequences but

also their epidemiological characteristics.

FluCS: strain-based amino acid sequence alignment

FluCS groups the amino-acid sequences of each gene segment according to FluSeed

Dataset (Fig. 2a). FluCS is also programed to automatically select the correct ORF of

each viral protein as well as the alternatively spliced isoforms. Accessory proteins, e.g.

PB1-N40, PB2-S1 and M42 [11–13] can be assigned to the viral segment group of PB1,

PB2, and M, respectively. PB1-F2 which is translated by a second ORF in the + 1 frame

[11, 18] is selected and assigned to an independent group. As a result, a total of 11 viral

segment groups (PB1, PB2, PA, HA, NA, NP, M1, M2, NS1, NS2, and PB1-F2) is estab-

lished for strain-based alignment (Fig. 2b, c). The position of each residue is numbered

based on the first methionine residue of that gene segment determined by FluCS (e.g.

HA of H5N2 subtype is numbered by H5 numbering system) [19].

FluCG: comparative sequence analysis

FluCG chooses the most representative amino acid at each residue of a particular gene

segment by computing the most frequent amino acid among all strains within the stud-

ied subgroup. If there are more than two amino acids occurring at the same frequency,

one is chosen by alphabetic order. Residues that appear at stop codons or deleted co-

dons are marked. Through this process, the consensus sequence can be created for a

particular subgroup [20]. The unique residues in each subgroup can also be identified

by aligning two consensus sequences and are called “consensus signatures”. All the

unique amino acids appearing at each residue of the consensus signature are thor-

oughly examined and compared to verify the unique amino acid is present only in the
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Fig. 2 Schematic diagram of strain-based alignment approach. Influenza viral sequences are aligned by
FluCS as follows: a The FluSeed Dataset is constructed by quality-checked and rearranged viral sequences.
Blocks in different colors represent ten viral segments. The size of each block corresponds to the length of
the viral sequence originally retrieved. Blocks in any color tagged with the same Arabic numbers are
identified as the same strain. b Rearranged viral sequences are sorted into 11 protein clusters based on
gene segments and well aligned within the cluster. Aligned sequences are subjected correct ORF into PB2,
PB1, PA, HA, NP, NA, M1, NS1, and PB1-F2. M2 and NS2 are alternatively spliced proteins from M and NS
ORF mRNAs, and respectively. c Delineated viral amino acid sequences are easily aligned based on standard
influenza viral nomenclature. The analysis platform provides benefits for multi-layer subgrouping based on
epidemiological significance
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particular subgroup. Finally, all possible 20 amino acids, stop codons, and deletions are

all examined and presented in a substitution table (as Fig. 5).

Results
Influenza viral sequences and data processing

The genetic sequences and epidemiological information of influenza viruses in one

public domain database are not properly linked to the other. To maximize the informa-

tion coverage for a particular AIV subtype for further analysis, we have developed the

FluConvert program to combine all data available from these databases and automatic-

ally process them in one format. Viral sequences that had passed quality check after ex-

cluding incomplete or erroneous ones to ensure correct genetic information are used

for constituting the FluSeed Dataset. Sequences in the FluSeed are subsequently rear-

ranged to standard nomenclature in the order of influenza virus of type/host/region/

strain/year (HxNy subtype) and segregated into eight gene segments. Amino acid se-

quences are translated from nucleotide sequences for alignment (Fig. 1).

Viral strain-based sequence alignment

Continuous mutations in HPAI A (H5) viruses have been attributed to outbreaks at poultry

farms and sporadic human infections [21]. Since mutations can occur across several gene

segments in the genome of AIVs, multiple alignments for all viral strains based on the sub-

group of interest (i.e. host, region, year, a particular residue, etc.) rather than by gene seg-

ment (i.e. HA, NA, PB2, etc.) will be useful to identify multiple amino acid types associated

with viral pathogenicity in animals or the potential risk for human infections. To achieve

the goal, we have developed the IniFlu platform to integrate the processed viral sequences,

clinical and epidemiological information into the FluSeed Dataset. IniFlu can function to

present all the information imported from FluSeed in worksheet outputs for visual cross-

segment examinations simultaneously. Once all of the viral strain information is correctly

arranged by FluCS, strain-based alignment can be quickly performed as illustrated in Fig. 2.

Identification of polygenic consensus signatures

Genetic evolution of zoonotic influenza viruses is a polygenic trait. Amino acid substitutions

or mutations at species-associated signature positions may increase viral pathogenicity or

mammalian adaptation in a broader host range [22]. Since such mutations are not limited

to one gene and can simultaneously occur in multiple gene segments, identification of the

polygenic consensus signatures for a particular subgroup of viral strains offers an opportun-

ity to monitor the changing landscape of AIVs over time with epidemiological significance.

The module FluCG of IniFlu can quickly group viral strains into different subgroups and

deduce the consensus sequence of each subgroup by computing and determining the most

representative (i.e. most frequent) amino acid at each position of the whole genome, which

can differentiate between the compared subgroups. All unique amino acid residues repre-

sented in the subgroup constitute the polygenic consensus signature (Fig. 3).

Polygenic consensus signatures of the HPAI H5N2 viruses

Duplicate entries of downloaded influenza viral genetic sequences could possibly occur

when (1) the entry was submitted to both NCBI-IVD and GISAID-EpiFlu databases, (2)
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the entry was submitted to one database more than once, or (3) data entries imported

from NCBI-IVD co-existed in GISAID-EpiFlu database. To obtain the accurate count

of H5N2 virus strains downloaded from different public domain databases, FluConvert

is programmed to automatically remove duplicate entries. Only one copy of the gene

segment of a single virus strain is kept in FluSeed Dataset.

As of July 1, 2017, the H5N2 FluSeed Dataset was comprised of a total of 6746

(6443 + 303 = 6746) unique gene segments that belong to 1151 (1099 + 52 = 1151)

H5N2 viruses. Amongst which, 6443 gene segments of 1099 H5N2 strains were down-

loaded from NCBI-IVD and 303 segments of 52 H5N2 strains were downloaded from

GISAID-EpiFlu, respectively. Qualified genetic sequences were rearranged by FluCon-

vert to unify the nomenclature format. Corresponding epidemiological information and

clinical data for each strain were integrated through the IniFlu platform. Since several

studies have demonstrated that the presence of multiple basic amino acids at the cleav-

age site between HA1 and HA2 junctional sequence is a hallmark for increasing viral

pathogenicity and virulence in the avian host and humans [14], we compared the

Fig. 3 Identification of group-specific polygenic consensus signatures by FluCG. The polygenic consensus
signatures are determined as follows: a FluCG groups viral strains into different subgroups (e.g. RETR and
RRKR groups). The consensus sequence of each subgroup is determined by computing a table of 20
amino-acid substitutions to choose the most representative amino acid at each position of the whole
genome. The stop codon is denoted as “X” and the deleted residue is denoted as “-”. b One consensus
sequence from each subgroup is determined. c FluCG aligns two group consensus sequences and identifies
the signature that is unique, to distinguish between the two consensus sequences. d Text in different
colors represents different proteins that compose the polygenic consensus signatures
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molecular signature in the H5N2 viral strains with (RRKR group) or without (RETR

group) polybasic residues at the cleavage site in the HA gene. The earliest record of

H5N2 viruses was reported in 1972 and all of the 470 strains isolated during 1972–

2008 appeared to have RETR sequence motif at the HA cleavage site. H5N2 viruses

with the RRKR sequence motif in the HA only appeared after year 2009. To avoid bias

towards evolutionary perspective, we excluded H5N2 viruses that were isolated before

2008 and only kept the H5N2 viruses isolated from year 2009 to 2016 in the H5N2 Flu-

Seed Dataset for consensus signature analysis of both groups. As a result, there were

165 strains of H5N2 viruses with RETR marker and 138 strains with RRKR marker.

The consensus sequence analysis by FluCG identified 247 unique amino acid residues

differentially presented between RRKR and RETR groups in the whole genome of

H5N2 AIVs. Since these unique residues were present across several viral segments, we

wanted to know which gene segment might present the most unique residues that may

distinguish H5N2 viruses with the REKR marker from those RRKR. Table 1 shows the

frequencies of the characteristic substitutions that occurred at a particular gene seg-

ment. We found that NS1 had the highest substitutions (N = 69, 30%), followed by HA

(N = 77, 13.53%), and PB1-F2 (N = 8, 8.89%). There were much less substitutions in NP

(N = 1, 0.2%) and PB1 (N = 1, 0.13%) of H5N2 viruses (Table 1).

To investigate what substitution at a particular residue or residues could be associ-

ated with the RRKR phenotype, the polygenic consensus signatures determined from

the constellation of the 247 distinct residues as described in Table 1 were further ana-

lyzed (Fig. 4). In search of information on amino acid substitutions in the influenza vi-

ruses that are associated with increased viral virulence or drug resistance [23] reported

in the public domain database IRD-SFVT (Sequence Feature Variant Types) by IniFlu

analysis, we found that substitutions in HA, including T124I, D142E, E228K, P233S,

V336S in HA, G631S in PA that are related to increasing pathogenicity [24–26] were

present in the RRKR signature. Other variations in the HA of the RRKR signature in-

volved in the increase of α-2.6 receptor binding in mammalian cells such as S139P,

S145L, S149A, and I226V [27–30] were also found in our analysis. Notably, the fact

that IniFlu identified the substitution of S31N in the M2 of the RRKR signature sug-

gests that H5N2 HPAI may have a decreased sensitivity to amantadine and rimantadine

[31] (Fig. 4). All of the unique 11 consensus signatures were re-examined and verified

from FluCG-generated substitution table (Fig. 5). Taken together, IniFlu can identify

additional substitutions across the gene segments of H5N2 that are highly associated

with viral pathogenicity and/or antiviral drug resistance.

Table 1 The 247 residues differentially occurring between RRKR and RETR consensus signatures
are polygenic

Influenza viral proteins

PB2 PB1 PA HA NP NA M1 M2 NS1 NS2 PB1-F2

Segment sizea 763 757 729 569 499 475 271 99 230 121 90

No. of consensus signatures
between groupsb (%)

20
(2.62)

1
(0.13)

23
(3.16)

77
(13.53)

1
(0.2)

18
(3.79)

15
(5.54)

8
(8.08)

69
(30)

7
(5.79)

8
(8.89)

a: The H5N2 viral genome is composed of 4603 amino acid residues divided into 11 viral proteins. The size of each
segment is indicated by the number of residues as shown
b: Unique amino acid residues are identified by comparing the consensus sequences between the two studied
subgroups. Numbers shown are the counts of the characteristic residues in each viral protein. The variations in each viral
protein are expressed by the percentage of unique residues indicated in the parentheses
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Discussion
Influenza is an important disease in humans and animals. The 13,588-base-pair RNA gen-

ome segregated into eight gene segments continues to mutate randomly at 2 × 10− 6 muta-

tions per site per infectious cycle [32]. The high activity in the reassortment of segmented

influenza viral genes derived from different host species has posed a great threat to public

health. Numerous tools have been developed to analyze influenza genetic sequences to

monitor the changes and evolution of these viruses over time in nature. In this study, we

have added two integrated analysis tools, FluConvert and IniFlu, to the endeavor.

Several analysis tools for IAV genetic sequences are available online to determine anti-

genic characteristics of IAVs based on the genomic sequences of a particular gene seg-

ment and associated epidemiological information. Here we compare a recently published

program FluPhenotype [33] with IniFlu. FluPhenotype is a web-based tool. Briefly, IAVs

amino acid markers associated with human adaptation, enhanced virulence, and drug re-

sistance, etc. that have been reported in the literatures are captured to the Data list of Flu-

Phenotype. The input genetic sequences of IAVs are mapped with the list and the

Fig. 4 Polygenic consensus signatures of H5N2 RRKR and RETR subgroups. A total of 247 residues across 11
protein segments of H5N2 AIVs obtained from the years 2009 to 2016 are identified from the differences
between the RRKR and RETR subgroups. Polygenic consensus signatures for each group are shown by the
constellation of the 247 unique amino acid residues across different protein segments (distinguished by
colors). The residue positions at each protein are shown as numbers. Of the 247 residues in the consensus
signature, 11 evidence-based residues documented in the literature are listed in the enlarged letters with
darkened colors
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antigenic characteristics of the IAVs of interest are rapidly determined. FluPhenotype also

has the capacity to predict IAV HA subtype and viral hosts based on the input genomic

or protein sequences [33]. Although the Data list used in FluPhenotype is reportedly up-

dated every half a year, any newly identified or undefined molecular markers that have

not been made available in the literature would not be captured and mapped in a timely

manner [33].

In comparison with FluPhenotype, FluConvert is used to sort IAV genetic entries that are

downloaded from different public domain databases into eight gene segments based on the

name of the gene segment (e.g. PB2, PB1, PA, … etc.). FluConvert subsequently rearranges

the information tagged to each entry according to the standard IAV nomenclature in the

order of type, host, region, strain, year, and subtype, thereby assigning a unique name to

each virus. Therefore, gene segments that have the same name will be grouped as one

strain. The capability of FluConvert that determines the correct protein sequences encoded

by each viral gene segment and their spliced isoforms as well as accessory proteins results in

11 viral protein clusters in the FluSeed Dataset for strain-based alignment by FluCS.

Since FluCS can align a larger number of viral strains at one time, it saves time on

cross-referring of each genetic sequence in NCBI-IVD/GISAID-EpiFlu by accession

number. Additionally, the ability of FluConvert to combine information between data-

bases can collect all available influenza genetic data as much as possible by avoiding

the exclusion from incomplete information in the depository database. Data in the Flu-

Seed Dataset can be maintained up to date by downloading newly depository of influ-

enza viral genetic data in public domain databases by users.

There are two advantages of IniFlu-performed strain-based alignment and consensus

sequence analysis. First, genetic sequences of a viral strain lacking eight complete gene

segments can be compared and included for consensus sequence analysis. Second, once

Fig. 5 Establishment of polygenic consensus signatures of RRKR and RETR groups of H5N2 AIVs. To further
confirm that each residue in the RRKR signature is unique compared with that in the RETR signature, the
percentage of the most predominant amino acid (top two rows) at the corresponding position (the 3rd
row) derived from the 11 evidence-based residues were re-examined by inspecting the FluCG-generated
worksheet. As is shown, the percentages of the predominant amino acids in each signature range from
greater than 69.12 to 95.65%
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the information is properly aligned, sequence data can be easily re-grouped for a gener-

ating group-specific consensus sequence. As a result, polygenic consensus signatures

composed of unique molecular positions across all gene segments that are associated

with a particular phenotype will be determined. As demonstrated from the analysis of

the sample H5N2 FluSeed Dataset by comparing the group-specific polygenic consen-

sus signatures between the RRKR and the RETR groups, we identified that at least 247

positions of the total 303 H5N2 AIV strains from 2009 to 2016 were able to differenti-

ate these two groups, and 11 of these substitutions have been experimentally demon-

strated for the significance in crossing over between host species (e.g. S139P, S145L,

S149A, and I226V in HA) [27–30], antiviral drug amantadine and rimantadine resist-

ance (S31N in M2) [31] or increasing viral pathogenesis (e.g. T124I, D142E, E228K,

P233S, and V336S in HA, and G631S in PA) [24–26]. Although there have not been re-

ports of fatal human cases of H5N2, human infection of this AIV subtype have oc-

curred, as documented in seroepidemiological studies [34, 35]. These substitutions

together with those residues involved in enhancing receptor binding to mammalian

cells [14] have suggested the potential threat to human health caused by H5N2 AIV

strains with an RRKR phenotype.

Taken together, we reported the newly developed analysis tools FluConvert and Ini-

Flu, which exhibit high capacity and efficiency in data processing, analyzing, and com-

bining large amounts of the most comprehensive influenza viral information retrieved

from different public domain databases without making any modifications on down-

loaded genetic information. These tools not only provide a versatile and rapid platform

for real-time analysis to determine consensus sequences, but also identify molecular

markers with high pathogenicity in chickens as well as with interspecies transmission

to humans. FluConvert and IniFlu are particularly useful in risk assessment by monitor-

ing and analyzing the increasing trends of important amino acids of many animal influ-

enza viruses with pandemic potential. While IniFlu is first designed for type A

influenza viruses, the software can easily adapt to investigate other emerging viruses

with appropriate modifications on the worksheet template. The software reported in

this study provides a useful tool for rapidly identifying molecular signatures with viro-

logical, epidemiological and clinical significance.

Conclusions
The rapid evolution of H5 AIVs in Asia has increased the threat in agricultural safety

and human health. The timely monitoring in the changes of AIV that have increasing

risk are important for public health-policy makers. FluConvert and IniFlu reported in

this study are demonstrated for their efficiency in combining and analyzing virological,

epidemiological and clinical information from different public domain databases. Fi-

nally, identification of polygenic signature for AIVs with high risk instead of variations

at one single gene segment of influenza viruses will be beneficial to assist a better risk

assessment to prevent pandemic influenza.

Availability and requirements
Project name: FluConvert_IniFlu

Project home page: https://apps.flutures.com or https://github.com/chinrur/FluCon-

vert_IniFlu
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Operating system(s): Microsoft Windows 10 or later version (64-bit)

Programming language: Batch (shell) scripts and VBA 7.1

Other requirements: Microsoft Office Excel 365 or Excel 2016 or later version (64-

bit); Java 6 or higher version

License: MIT License.

Any restrictions to use by non-academics: No restrictions on use by non-

academics.
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