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Abstract

This thesis investigates the difficulty of linkage learning, an essential core, in EDAs.

Specifically, it examines allelic- ?@{K’@iﬁﬁg@ “bg_‘functions including the parity,

parity-with-trap, and Wx{?ﬂtode‘-ﬁqr}ﬁtlons l'e t function was believed

T ‘!j"
: e er&\nﬁéﬁ(_ﬁs

to be difficult for ED. s il previousyw 'ﬁ;ﬁlécate that it can be

‘ 7
solved by CGA w in a pol ) evaluau‘c":I to the problem
] | : 2tk R
size. Consequﬁh‘ly% : i 1'){:%1_‘{331_(: @ can be easily
solved by EC:@E, 7 kage i§ i A conrﬁ‘rgence model
k ! ‘ =
for CGA on *@} parity function is ify ax suppo‘]:ﬁ:he empirical
findings. The@j root f the diff equeerr%fferent EDAs

' | - o, &
is also dlscusseg-'!-Fflnall . this thes ] / sh—cod"aﬂmctlon which
L2k, =P, . .:" e

is more difficult Eﬁ_-__

ceive the linkage—leéa%ﬁ

.-" - a-:-'
to some extent. . '::

he pro'h% j@d - unction does de-

.%B'As‘&?é still able to solve it

an@im mos

%
II'._ﬂ dll

g, Estimation of Distribution Algo-
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rithms, Parity Function.
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Chapter 1

Introduction

b ["r

ocus on .Eﬂhe metaheuristic

'FlEI

optimization mbEhQ.%ﬁ"" T examplepgenetic algorit fgrﬁ I'O'Bust approaches
1
for black-box %fptlmlza ion problepisy i provide, any 1nf¢mmat10n about

| -_r'ﬂ l".i ™
the structure .23 thé pr t rithuns. though GAs €an _§£);lve numerous
problems frorxé;l(ayi_ii a ions, the;g stilll need ba-imppé'.{/ed to handle
= he !
more difficult pmblbms 1any ye research, y varlat-ih.ns of GAs have

' utIOI-I; _&lgoh'ihms (EDAs) are

EDAs can be categomZe;] mtd tﬁffereﬂ't clésg;-es ba'q-zd Ibn their linkage-learning

been invented ar-lﬂ;@evffoped @[ estimagion of

one of the most Slgmﬂcant' b@nch &k

mechanisms. The most basic ones a'fé'm{ivafi'atj EDASs, e.g., PBIL [2] and Compact
GA [16], which do not have any linkage-learning mechanism and assume all the vari-
ables in the problem are independent. Bivariate EDAs, like MIMIC [3] and BMDA
[24], can detect pairwise dependencies between the variables, but do not model the
distribution among multiple variables. Finally, multivariate EDAs, such as ECGA
[14], BOA [22], D® [25], EBNA [7] and DSMGA [27], which build interacting mod-
els to reveal dependencies among multiple variables, are more powerful for solving

nearly decomposable problems.



1.1 Motivation and Objective

Linkage learning is an inevitable issue in bivariate and multivariate EDAs, which
must exploit the linkage information to estimate joint probabilities and construct
the models. The computational cost for determining the exact dependency model
scales exponentially with problem size, and hence a proper mechanism is required
for building an approximate model. Most of the multivariate EDAs construct the
interacting models by starting with pairwise linkages between only two variables,
since it is impractical to explore the whole.possible search space of multi-variable
linkage. It takes O(I*) to compute all dependencies among k variables in a problem
of size [, so it makes more sense to start with o£ﬂ§/ pairwise linkages with cost limited
to O(I?). For example, ECGA#[14] builds the margin;ﬂ product models by merging
the subsets of Varlables accordmg to the mmlmum descrlptlon length metric, and it
needs to detect the pairwise deper;den;;; at: theFvéry begmmng of model building.

BOA [22] also exploits pairwise dépengﬂ-t‘g decide the additien or deletion of an

edge between two variablessin ih Baye?i!an netwoiks. However, a quick approach
1 ’ 4o

=

is generally deficient in precision which may colns;tequently delay the convergence
time of linkage. As thé:linkage tshould be leardlecr! beforeL fche alleles converge in
EDAs [12], reaching for balrayrce between efficienicy ahd precision is a critical issue
in linkage learning. :

The objective of this thesis is to realize how the difficulty of linkage learning
impacts on the performance of EDAs. We identify those functions which are diffi-
cult for linkage learning first, and then analyze the performance of EDAs on these
functions by observing their scalability. The influence of model accuracy in multi-
variate EDAs is investigated as well. Finally, we discuss the possibility of designing
a function which is difficult for EDAs to solve by deceiving the linkage-learning

mechanism.



1.2 Road Map

In the thesis we first review previous work on the parity function and investigate
the performances of different EDAs on that problem. A convergence model is also
derived to verify the scalability of EDA on the parity function. Then we investigate
the reason of the bad performance of EDAs on the parity functions. We discuss
about allelic-pairwise independent functions and experiment on a new problem we
propose in the later chapter. Finally, we have some analyses and conclusions on the

empirical results.




Chapter 2

Background

l "" )
7 f-the aI:g-q_rlthx_-ns which are used in
this thesis. At th@ beglnnlh \\S:l genetm.-b.lgorlthm and its

related theorle%"eare:_iﬂﬁp ‘ : n we i ; nelrlg,l:__pﬁqqedure of EDA,

o W h
@c lgorithm CGA) After that, we

g | S
1cr'fA gorltthm%k "".

J = -y
A genetic algorithm (GA) requésj&eﬁtogmg of gOIuthIlS which are called chro-

and give the :a:%talls a
|

algorithm (CGiA) and

discuss aboutu'ﬁhe _parit;

T i
within, and rew.ew the p

BN o
et

2.1 Slmple Genéit

mosomes, and one or more objective functions which evaluate the chromosomes and
decide its fitness. The types of chromosomes include binary strings, an array of
real-number parameters, or even complex structures. After the solutions are en-
coded, initialized and evaluated, different operators are applied iteratively to the
population, which is a set of individuals each containing a chromosome.

The traditional version of GA, which is called simple genetic algorithm (SGA),
encodes the solutions into binary strings. Although there are a variety of operators,
the procedure of SGA consists of the most common operators, which are selection,

recombination and mutation. The general procedures of an SGA are:



1. Initialization. Initialize a random population of size N.
2. Evaluation. Calculate the fitness values of all individuals in the population.

3. Selection. Choose the better solutions from the population depending on

their fitness values.

4. Recombination. Randomly choose two individuals as the parents, and gen-

erate new promising solutions by exchanging and perturbing their contents.

5. Mutation. Randomly alter seme bitsiin some chromosomes, which is creating

more alternative individuals.

¥
ra

6. Termination. Repecat-fromistep 2 until the pepulation eonverges to a opti-

mized final solution or the predefined time constrain is_exceeded.

Selection and recombination can be.ddne in nmmerous ways. For instance, tourna-

ment selection chogse § individua‘ls t(_); 'Eipﬁtg, ‘_chbn the winnemgets s copies after

selection, where s is called tourlba; ent Sitf or selection PESSsuLe in GA theory. Re-

combination is also called erossave . andithé.}nostytypical recombination is one-point

crossover, which randemly picks 4 point in the chlroinosomes ahd exchange the con-
E L

tents beyond this point. Usingdifferent operators in"SGAs may results in different

final outcomes.

2.2 Building Block Hypothesis and
Deceptive Problems

In the research of GA theory, it has been discussed how GA can solve the optimiza-
tion problems robustly. In the building block hypothesis [11], an optimal solution
found by GA is considered as a combination of building blocks (BBs), which are
minimal sequentially superior sub-solutions to the problem. The term 'minimal se-

quentially superior’ means that a BB has to be short, low order and high average



fitness, f(u)
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6. Make decisions well among competing BBs.
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7. Mix BBs well.

Most of the recent studies are focused on how competent GAs mix BBs well.
One of these notable issues about BBs is that an effective BB should be as short as
possible to avoid disruption by the recombination operators like one-point crossover.
Since we want GAs to work efficiently and reliably, the capability of identifying BBs
from current population is required, so that we can mix the BBs appropriately as if

they are permuted sequentially in the chromosome.



Problems can be designed to deceive GA with its difficulty within a single BB, so
GAs can not solve them successfully without identifying the BBs [9]. These deceptive
problems mislead GAs to a local optimal when less than k bits are observed, while
the k-bit global optima is in the opposite direction. For example, a k-bit trap
function [1] can be designed by assigning the highest fitness to the string with all
1s, but other strings has a lower fitness if it has more bits of 1s. Generally, the trap

subfunction is defined as

&k Lifu(X) =k
trap(X) =4 e ke L ) :
:V:.‘ |l. i /:: i.:;-l — u(X)r cheﬁllse m
&, 5 o
e h j e,
Fig. 2.1 shows a Ef'bit trafﬁ: fingcti és%_bl‘e in'-t'l‘fe ﬁgure means the

(2.1)

the unita

. ANy
number of bit ones in-a s A competent

1.; T i
k-bit BB by 1Q'arn1n-g ﬁh linka, ‘ va 'ables SO, t'hatt the_‘grap functions

1d ﬂ,be‘ able to identify the

gt

can be solved..ilf BB i
-

operators andf_“#he popt

2.3 Fram.ew?t’k‘ f

.'-'-l|l

-.
Estimation of Dlstrlb‘atlon Z&Igom'l:hms (EDA@_:. 18 'OL Loih probablhstlc model-
building genetic algorlthmsa"(Pl‘l\!,/[BGAs %3 are r(ihuit and scalable optimization
methods which can solve various difficult problems Instead of using conventional
recombination operators as in GAs, EDAs use machine learning techniques like prob-
abilistic model-building and solution sampling to generate candidate solutions, but
the concepts of population evolving and selection are still employed in EDAs. More-
over, for nearly decomposable problems, the promising solutions to these problems
can be decomposed to BBs. EDAs with linkage-learning can reconstruct the struc-
ture of the problem, which can be utilized to prevent the disruption of the BBs, and

enhance the mixing of BBs as well [11].

The framework of EDAs is similar to the one of GAs, except the operators which



reproduce new individuals are replaced by building the probabilistic model of the

population and sample new individuals from it:
1. Initialization. Generate the initial population randomly.
2. Evaluation. Calculate the fitness values of all individuals in the population.
3. Selection. Select the promising solutions depending on their fitness values.

4. Probabilistic model-building. Build the probabilistic model by calculating

the distribution of current population:
5. Sampling. Use the model built:by previous step tosample a new population.
6. Replacement. Incorporate the new populatioh into the previous one.

7. Terminations Repeat frof step 2 until the population” converges to a opti-

mized final solution or the pfé&eﬁﬁed :t'iine‘ constrain is exceeded.
I T '—!. |
| = F"‘ -

‘ ¥ g |
The ability of EDAs to constIEu it the '1ructure of the'problem is based on the
. ! 1 U : o
assumption of that the linkages among thevariablesican belearned by estimating the
=i i

joint distribution from" promisi glindividuals. If pthge problem structure is different

|
§ "

to which EDAs built, good’BBs in the curréntspopulation may be disrupted after

sampling the model, depending on-ayliether the problem is deceptive or not.

2.4 Compact GA and Extended Compact GA

In this section, two EDAs used in this thesis are introduced, which are compact
genetic algorithm (CGA) and extended compact genetic algorithm (ECGA). We

describe the frameworks of these EDAs, and examples are also given.

2.4.1 Compact GA

Compact genetic algorithm (CGA) [16] is a simple and efficient univariate EDA.

A CGA starts with a probability vector (PV) [ probabilities and each of which is



Table 2.1: The PV of CGA at different time on a one-max problem.
Evaluation (Do P1 D2 P3 D4l

0 [0.50 0.50 0.50 0.50 0.50]

600 [0.64 0.69 0.68 0.71 0.55]

1600 [0.98 0.93 0.91 0.82 0.88]

3000 [1.00 1.00 1.00 1.00 1.00]
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Figure 2.2: The average fitness of eaclfﬁe:;%p}e of CGA on a one-max problem.

=1

initialized to 0.5. Each probabi[itwb D 1n-\the PV Iie resents the probablhty that the

i-th bit of the [-bit St_I:;i;?ig: X4is 1.! Then two 1nd1‘t1 uals afe generated for selection
by the PV, the one with the higher fitness is the;vvlnne;r,_ and the other is the loser.
After that, each probability 1n the PV is ‘modi‘ﬁe'd onlLy if the corresponding bits in
the winner and loser individuals are different. When the bit from the winner is 1,
the probability is increased by 1/N, on the contrary, it is decreased by the same
amount when the bit from the winner is 0. So the PV at time ¢ can be calculated

by the following equation:
PVIi(t) = PV[i](t — 1) + Jb(wmner[ | — loser][i]). (2.2)

This procedure is repeated until the PV converges.

Figure 2.2 shows a sample run of CGA on a 100-bit one-max problem, which is



defined as

100
=> (2.3)

i=1
Table 2.1 shows part of the PV in the same experiment. We set the population
N = 100, so the differences of probabilities are always the multiple of 1/N = 0.01.
CGA is compact since it works as well as SGA without generating a population.
Moreover, it is proven that CGA performs approximately the same as a SGA with

population N and uniform crossover operator [16].

2.4.2 Extended Co ﬂac{: CEA ""F i

A P T

Extended compact gehetwlgorlt sa mulma@rla‘ﬁe EDA which is based
e ’

=

on the same pl"gﬂ;)&blhstlc t also mrludes a linkage-

learning mecha"hllsrgl_l.{b',r ' ’]fi:l";'a aI'E‘ different ways

to learn the I;I‘i'kages a i i rginal E];"oduct models

| ,
(MPMs) by calculatm -
; :ﬁmost ‘ tr]:J.CtLuqt;‘;_ill In the begin-
: 2y
itiall mode sists ets eaclii"-contalmng only
one variable, and"'F:'WO qhﬁset ame l’nerge each ‘of gréedy s.('%'arch
> H A
To build an 1deaI_MPM,_§_;'v’é nge %sig%a p1= ér rxgietrlc to decide which
two subsets should be mer-g _}1 Reh‘ed on DCC&H&* s Raﬁ[ar IIWthh claims the simpler

and a greedy method is

ning of model hmldmg,

s Ty

g
choice is preferred if all other things -a're e!d;ua'l the minimum description length
(MDL) metric is utilized to measure the MPMs. The description length, or combined
complexity of MPM can be evaluated by calculating the sum of model complexity

(MC) and compressed population complexity (CPC) , which are
MC =log, (N +1)> (2% 1) (2.4)
and
CPC = NZ Entropy(M,), (2.5)
where N is the population size, S; is the size of i-th subset and M; is the i-th subset

10



Table 2.2: The MPM of ECGA at each generation on a concatenated trap problem.

Generation Marginal Product Models
0 [0 2 3 4][1][15 16 17 18 19][9][14][5 6 7 8][10 11 12 13]
1 01234][56789][10 11 12 13 14][15 16 17 18 19]
2 01234][56789][10 11 12 13 14][15 16 17 18 19]
1t | —€— Optimal BB .
=—H— Competitive BB
2 osf |
;‘:?o.e— :
5 04l ]
£ o2 1
of 1
-1 0 1 2 3 4 5 6 7 8 9

Generation

—= -1 |

|
Figure 2.3: The proportion of ]3 s in tﬂg)opulatlion of ECGA on trap Functions

¥ Ty
in MPM. The entropy of. M; rtbe calculated !&)}jl X . log2 pj, where p; is the
joint probability of the outeome 7 to be generated by the - th subset. The model
with minimal combined complex1tyfjls chosen in each step of greedy search.
The procedure of ECGA is similar to simple GA, except the recombination op-

erator is replaced by model building and sampling the population:
1. Initialize a random population of size N.
2. Apply tournament selection.
3. Build the MPM model using greedy search.
4. Generate a new population with the model.

5. Repeat from step 2 until the population converges, or time constrain exceeds.

11



Since the algorithm is able to build models among multiple variables, it can
identify BBs and prevent the effective BBs from being destroyed. It has been verified
that the problems with trap functions can be solved robustly by ECGA [14]. For

instance, a concatenated trap function of £k =5 is defined as

m—1

f(X) = Z trap(TsiTsip1Tsir2T5i13T5i44)- (2.6)
i=0

Table 2.2 shows the MPM built by ECGA at each generation, the population size
is 1000 and the tournament size is 16s All BBs of the problem are identified at

generation 1, so that the promisingipartial Solutions are.not disrupted after new

populations are sampled and finally the optimaf solutiomig found. Moreover, another
sample, in the Fig. 2.3 shows that ECGA can ident[i[fyrthe building blocks in the
population of ECGA onJtrap fum;tlons Wlth t-he problem 81ze equal to 50. The
population size is 5000 and the tournaﬁgnt ‘saze i$ 8. Tn this ﬁgure a optimal BB

means a BB with all bits are 1, while aﬂ?,&)‘gﬁtlveFBB means a BB with all bits are

0, which is the local optimal solu ion. Afl the beﬁlhnmg, both type of BBs occupy
1/32 of the whole populatlon but finally 'ECGA,! dan separate the BBs and make

the population converge 0 the |gl%bal optimal sol}ltgon

2.5 Previous Works on Parii;y Functions

We have introduced the deceptive trap functions which are difficult for SGAs to
solve, but most of the multivariate EDAs are capable of tackling such problems
successfully. However, there exist functions which are difficult for EDAs to learn the
linkage within and build the correct model. For example, the parity function can
deceive the linkage-learning mechanism of EDAs because variables in this function

are pair-wise independent. The parity function is defined as:

Coven  1f u(X) is even
parity(X) = : (2.7)

Coqq otherwise

12



where u(X) is the unitation or bit count of string X, and Cee, and C,gq are con-

stants. Apparently, the parity function is a generalization of the XOR function.
Coffin and Smith [4] described the concatenated parity function (CPF) and the

concatenated parity/trap function (CP/TF) in their work. CPF is defined as a

concatenation of parity functions:
CPF(X)= Zparity(mik o Tkt (k—1))- (2.8)

Then CP/TF is defined
en CP/TF is defined as <18 1|L'-"£'—-'£:[-',{'t -
. ;.f.-“‘ -i “'F k- ‘."Eug

%sz_k(k% Ea-:t;ls even

o h"ﬂ: oth{mse 2
B f,b_

Coffin and m‘l‘/‘;f"lpl'h arice of hi ra’.@b-l'caljﬁayesmn opti-
mization algq&}hm (hE the higfarchical version o Bayemﬁoptlmlzatlon
algorithm (B%) on t18 : BOA#SR ' 1ate EE‘A which solves
NUImMerous hanﬁ)re]?}gm 7 O_!I£ to E—'hlld the model
of the problemﬁructu.x;,esu SC e_g:l.,gxpoﬁ‘aitlally on both
problems. It is be@% E'h:}-t, 1_:" ¢ %{)‘le oh H,Eaﬂy decomposable

As'to

problems; so they stat%d, .L‘h"a-ﬁ!'fCPE-‘J‘S hard fo §€R;I& and discussed about
l-l' ]

T oy | ]"jﬂ’

Furthermore, Echegoyen et al. [5] ‘investigated the exact model building on

the reasons and possible SOI"I{& _Hps
Bayesian network based EDAs, and verified that the linkages in CPF can be learned

by building an exact model. Emmendorfer and Pozo’s work [6] also employed CPF

to test their design of EDA.
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Chapter 3

Performance of CGA on CPF

scaled exponent;ﬁ.ll;y on thé tand the ﬁdason that caused

such unfavorab‘i\;. pq?g,r 1 {E\;}Ch is the simplest

type of the pa%y functions. , i like hB A, it Wbuld degenerate
= =

to a univariate EDA i not' be'Tearned SO we
-

Bg:c ﬂ{prlsmgly, the

i
empirical resull‘.shdws th CGA ¢ ponno'mlal time.
_:‘.:J‘ __ ] '_::::‘ -i"li."
g -
3.1 Experlm'e:até'-l Demgn . o
= i :r-i'"

To verify whether a snnpler G’g‘ ofEmmgﬁuwak on the parity functions, we
investigate the scalability of CGA, which is a univariate EDA without any linkage
learning , on CPF. Similar to the setup in [4], we choose the block size k=5, Cpqq = 5
and Co,e, = 0 for CPF. Since we want to know if a CGA needs a polynomial time to
solve parity functions or not. The number of fitness evaluations has to be counted in
this experiment. To find the minimal number of fitness evaluations, the population

size should be determined first.
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Figure 3.1: Minimal population Eognci By biséqﬁ@n method and the polynomial scal-
ability of CGA on CPF (log-log scaile)gﬁ:a;eﬂn\}e ence time bound of ©(m logm),

the slope of the trénd line indicates ti@'&;oflt e scalability.

3.1.1 Bisection Method JL '

Y P | |

A bisection method is;éxgploite here to determi(te lFhe mii}[irrr:ral population size re-
quired for different m Valué, ‘Where m denotes the fitmber of BBs in CPF. There
are two phases in the bisect[ion m'et-hod; the"ﬁfst pﬁase is to determine the up-
perbound by doubling the population size until the algorithm solves the problem
robustly. Here we define that the problem is solved robustly if the algorithm always
find out the optimal solution in at least ten trials. Then the second phase is the
bisection phase, which uses the upperbound found in previous phase and half of
the upperbound as the lowerbound. Each step the middle point of the upperbound
and lowerbound is chosen as the population size for a test, and the middle point
becomes the upperbound of the next step if the test is passed, otherwise it becomes
the lowerbound. The second phase repeats until it converges to a final result, which

is employed to generate the average number of evaluations from 100 runs for each

problem size.
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3.2 Experimental Result and Discussions

As the result shown in Fig.3.1, CGA solves CPF reliably with obviously bounded
polynomial times, which is about ©(m!3?) and differs from previously assumption
that CPF should be hard for EDAs. From this result, we can make sure that the
parity functions can be solved by a simple univariate EDA like CGA , without build-
ing the correct model of the problem. Since the approximate equivalence between

CGA and a simple GA (SGA) with uniform crossover has been verified in [16], the

performance of CGA on CPF Shg;.’l&ﬁ@

a problem designed to de 0 Q:FGA etk Ha f of the input strings are

ble with SGA. However, CPF is not

optimal in a single bu i.- ﬁl’ock bﬁ%‘]'PF th
. q 1 Wt e
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Chapter 4

Scalability Model of CGA
1;-.-'"[_ H'ﬂ—-' ﬂﬁt—'.fl'.t! Ol

-"_ t— [ _1 - I:L:_;'.-. i

™

The result from the-'-gbirev 3 hat C?‘n.ﬂ s‘ﬁ'ctg.essfully solves CPF.
i LT

\ﬁlﬁerent-]#-from hBOA, we
' ﬁ,ﬁbﬂ&blhty of CGA

To theoretlcally_,-ﬁgjldersta

attempt to derhge ag_’?:ﬁﬁd

on CPF. Flrs;sve consider the ith only one BB, ﬁhen we extend
the result to‘i::-he célse *
. r.,_;
e S
41 CP ko
ol _!H‘_

— I.- -:\.‘L :- | i ) -u:k::' Ir..
';E:-% ’m il

Before the derivatio e ext C 0] ':['if the calculation.
e wip @M %®y

N

L NEJNE-
: ”ﬁ' o
Cot jr %_j--}l T 1S even (4.1)
k 0 otherwise,

i.e., the individual X where u(X}) = k is always an optimum, k is the size of each
subproblem.

In CGA, probability vector (PV) is adopted to generate two individuals X,, X
for every generation. When the PV is expected to be converged to an individual
Xk, there must be an initial bias €y, which may be positive or negative. Hence the
initial PV become

1

{m=§+%M:L“H (4.2)
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Here we define P, = p(u(X,) = m,u(X) =n), so

Pon(t = 0) = (’“) (:) (5 + )™ (G — )% (4.3)

m

Then we can define a,,, as the expected number of times that a single p; in the
PV is modified by 1/N when u(X,) = m and u(X,) = n, where N is equivalent
to the population size in SGA [16]. The PV will be updated only when X, and
Xy has different parities, so a;; = 0 when ¢ and j has the same parity. Note that

Gpmn = Qnym Since exchanging the w; tnn_ﬁ_ﬂ&ﬂﬁl;?er won’t alter the result, therefore

._rl _['_

we can estimate the PV 'Iab.ibnera‘&mﬁ-t by E:gcursﬂ% uatlon

,.;_-!'n;r 1= ¢ i,
pilt ':-l "
- =
& T ) - (4.4)
L \ ”) =

ted— __g:a@ﬁ.;pi is expected

mﬂa;?y -Hlen (X, = 00)
_E-hl'

Qo1 :_3-—17?} the minus here

I'-||

and (X, = 10 oﬁ?ﬁ-})’%@ge !
means decreasing thg 2 =AY Uggng tkte,e

- = . 5 &
. |'_I.&;:;E_::- ‘ . TL
B e L LRSI )
N 211 1.1
~ g+ N[Z(Zl + &) — Z(Z — &)]
= &+ %815. (45)

which is a 1st-order estimation. This recursive relationship can be extended to k-bit
BB. Let A, = €41 — &, a k-bit BB can be normalized to that every generation
CGA always generates two individuals, the winner is X, and X, is the loser, and
every time each p; is updated by A;. Next, consider the (k 4 1)-bit condition,
each generation CGA generates two individuals, {X,1 or X,,0} and {X;1 or X;0}.

Again we only consider the conditions when PV is modified, where the generated

18



individuals are {X,1 and X;1} and {X,0 and X;0}. Note that concatenating a
bit-1 does not effect the result of competition, while concatenating a bit-0 alters the

result. Let prr1 = (1/2) + &4, so the expected value of Ag,; can be calculated by

1 1
Appr = (5 +e0)? Ay — (5 DAY

= 25, (4.6)

From Eq.(4.5), we have Ay ~ (1/N)gy, so

(4.7)

(4.8)
(4.9)
dgt 1 k_2
~ — [ 2°74dt. 4.1
/ et N / (4.10)
Let k£ > 3, after solving the equation, there is
| P
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ter accuracy

(4.12)

(4.13)

which is the time-to-convergence model for CPF of single BB. Note that the equation
is only valid for £ > 3, and the condition of £ = 2 is not concerned because two

variables in CPF with k£ = 2 are not independent.
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4.2 Scalability with Multiple BBs

By the central limit theorem, the distribution of the fitness of a BB is approximately
normally distributed. Using the decision-making argument [13], the probability of
making the right decision between two competing individuals in a single trial of a

problem with m independent equally-weighted BBs is:

d
= P(—),
b (\/Zm’abb)

where m' =m — 1, d is the ,' fere ' H@% two competing BBs, o3 is
L5

I ,J k-
the variance of BBS,{%{@'% denoteg‘;be cur@ive dis }On function of a unit
ptﬁrewe have d = k and

(4.14)

(4.15)
So the prob

(4.16)
Being expressec "

(4.17)

r*l
_'ﬁ!"."':t"}} _g xj J?lr."ﬂ
Using the first-order estimation of th @o} unction with its Taylor expansion,

which is accurate enough for m > 10, we have

1 1

=1 )
p 2 m/

(4.18)

We can incorporate this probability to estimate the scalability of CGA with multiple
BBs. Since we might make wrong decision and lead the PV to the opposite side,

the modified A value should be

Al =pAy — (1 —p)Ay. (4.19)
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With Eq.(4.7) and (4.18), it becomes that

2 1
Al ~ — kT2 kL (4.20)

similarly to SGA, and the populat 1e v of ould be O(y/mlogm) [15],
this model indicates the total con\jénce th CG CPF would be bounded
by ©(mlogm), ! ‘ nivgize. Moreover, this model
matches with

CPF is theo-

:ﬂ }u. r

o 1c

) DAs can solve
I_.i L ]
the parity functions or’

I'I
A.I.
W

d .-I_I:.:_;l:. ‘!'.-;..:I'r

e
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Chapter 5

Performance of ECGA on CP/TF

¥
ra

Previously we have confirmied that CPF-isssolved by ‘€@GA in a polynomial time
in both experimental and ‘theoretical ways. But for Va multivariate EDA, it would
behave like a Amivatiate EDA wiven phe linkages in the BBs{r can not be learned.
In this chapter, we chopose ECGA #6r the expeériment on two problems with parity
functions, which are CPF and QP/ Tiﬁ'ﬂ'fnally‘ the empirical tesults shows that

ECGA can solve these problemé rLeliablyl,jWhich is different to hBOA.,
N £ i 1

|

h d | L 1
5.1 Experiniental Design.

Two problems are involved in the expériments, CPF and CP/TF. First, to make sure
that ECGA degenerates to CGA when the linkage model indicates that all genes are
mutually independent, we try to solve CPF with ECGA.Then we experiment with
ECGA on CP/TF to investigate the capability of EDAs on the problems which are
designed to deceive linkage learning and hill climbing mechanisms simultaneously.
Since the parity function is an obstacle to linkage learning, which is essential for
solving trap functions, CP/TF is designed to deceive most of EDAs. Without any
linkage-learning procedure, CGA is incapable of solving concatenated deceptive trap
functions in CP/TF, On the contrary, ECGA is a multivariate EDA which can solve
deceptive subproblems consistently [14], so we expect that ECGA may solve CP/TF.

The experimental design is similar to the one on CGA, but to solve the trap func-
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Table 5.1: The MPM Models ECGA learned in different problems and population
sizes, with problem size [ = 10

MPM Model
CPF N =10 [02-1-3-4-58-6-7-9]
N = 5000 | [0-1-2-3-4-5-6-7-8-9]
CP/TF | N =10 [0-12-34-5-68-7-9]
N = 5000 [0-1-2-3-4-56789]

tions effectively, a tournament size (s) of 8 is chosen when the problem is CP/TF.
The block size k is still 5, and the bisection method is still employed to decide the

population size.

5.2 Experimental Result and Discussions

As shown in Fig. %5, 1 the mumber of evaluations 'that ECGA requires to solve
CP/TF scales polynomially with the problem s;ze Besides, i F1g 5.2 it can also
be verified that ECGA ¢an solve CPF 1p_a._chqlmpaﬁraple time as CGA does. So ECGA
solve problems with parity funﬁtl ns rglgably, alfhough we thought these problems
should be hard for BDAS. i L_Il “ e

How does ECGA solve CPp /LTF in polynomla] tlme whilehBOA does not? To
answer the question, we ﬁrst uhlvestlgate their hnkaga models; table 5.1 shows the
model built by ECGA only includés building blocks of trap functions when the pop-
ulation size is large enough, so ECGA is not-able to learn the linkages in parity
subproblems. But ECGA still can solve them with similar mechanism as CGA does,
and learn the linkages in the trap subproblems at the same time. Since ECGA could
solve these subproblems separately, no matter which subproblem converges slower, it
always requires only polynomial time. However, it is evident that EDAs are unable
to identify building blocks of parity functions correctly, so the linkages learned by
hBOA are considered spurious possibly due to the selection bias. It has been con-
firmed that using tournament selection in BOA results in less accurate models than

truncation selection [19]. Such spurious linkages may cause an overfitting model,

which is different to the original problem structure. Furthermore, the overfitting
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phenomenon observed in EDAs was correlated with the performance of EDAs [26],
and might also caused the exponential scalability of hBOA on CPF. To figure out the
reason that hBOA scales exponentially, we have to investigate the effect of different

models on the performance of EDAs and find out the critical differences between

ECGA and hBOA.

26



Chapter 6

Effects of Different Probabilistic

Models on ECGA

After the performances of ECGA®and hBOA sa7e, empirically verified to be totally
distinct, we long for an explanatigh to.this,uhcommon result. At first, we assume
that a totally different model with :spufi;-ﬁnkages leads tosuch a bad performance.
To verify this assumption, we Ha\jfe to ﬁhiﬂ‘ out thel effeets on.-ECGA with different
probabilistic medels. Thus Wé create é:r-andom model with compulsorily added
spurious linkages instead of oriéinal linkage—learni}lg mechanisms in each generation
of ECGA, and observe the nfluences. Moreover, one ouf[ the magjor difference between
ECGA and hBOA is that hBOA employs restricted toturnament replacement (RTR)
[17] as its replacement scheme, so we also need to observe the models which ECGA

builds when RTR is applied, and investigate the performance of ECGA with RTR

on the parity functions.

6.1 Experimental Design

To make sure which reason causes the exponential scalability of hBOA, we test
ECGA with three different settings, which are ECGA with spurious linkage models,
with RTR, and with both conditions.

The procedure that we used to create a model with spurious linkages is random-
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ized. Starting with [ independent clusters each containing only one gene, we merge
two randomly chosen clusters each step and repeat [/2 times for each model, , and
the size of each cluster is limited to k£ < 3. Such a model can be applied in two ways,
generating a new random model in each generation or using a fixed model which is
generated at the beginning. Note that ECGA does not learn more linkages if this
modification is applied.

RTR [17] is a replacement method which partially preserves local optima in the
population. With RTR, after each new individual is generated, W individuals are
chosen from the old population; where W is called:the window size. Then the one
which is the most similar to the néw ane is c}i.(').s_en from these individuals, and it is
replaced if the new one has-a-higher fitness. RTR issutilized in-hBOA, to preserve
alternative candidate solutions and solve hierarchical prtoblems [21]:

The parameter set.tings are the :Sa,me as Prejvi‘ous experiments, the tournament
size is still 2 since CPF does notf conicam trap ‘tfuncmons and the window size of

RTR is equal to the populatloriia e n'ﬂ‘N’%lso apply biseetion method to find the

minimal populations.in these exp rlmeni-! | |

& - |

6.2 Experlmental Result and Dlscussmns

We experiment with different modiﬁed ECGAs bn CPF. First, as the result shown
in Fig. 6.1, ECGA scales polynomially on'CPF with spurious-linkage models, no
matter the models are fixed or random generated in each generation. It still can not
explain the bad performance of hBOA on problems with parity functions. But a
fixed model with spurious linkages obviously has a bad influence on the performance
of ECGA, since the order of the number of evaluations is higher. Then we observe
the results in Fig. 6.2 , we can notice that ECGA scales polynomially with both
RTR and spurious-linkage models, but the number of evaluations is much greater
than ECGA without RTR while the problem sizes are the same. Finally, Fig.6.3
shows that ECGA scales exponentially with RTR and the original model-building

mechanism of ECGA. The numbers next to the segments in this figure indicate
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the slope of each segment, which increases with the problem size and shows the
exponential scalability. Since ECGA also has a bad performance with RTR on
CPF, RTR may be the main reason that hBOA scales exponentially.

Why does RTR make both ECGA and hBOA perform badly? With RTR, the
old individuals is only replaced when the new one is better, so it takes much more
evaluations for the population to converge. Furthermore, since RTR preserves local
optima in the population, the models which EDAs built are effected by the indi-

viduals which contain these local optima. Then the spurious linkages which are

learned by EDAs increase w he !}Eﬁ_;‘:’fﬂl_l,_':;‘h'afn ssmore critical, and the number
of such linkages are 1"_:_3 . According to these
observations, RTR , an| Dad performance of hBOA.

Tl

So EDA can so #:‘ ' ity Gt i . : s which it use may
[ ; \ =
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Chapter 7

Allelic Pairwise Independent

t

convergence as well? T pr
et

nfir th
iy ?‘
find more functions' Wthh

L%, "'.'E

This chapter focusqg oﬁ- one t pe

Because we ha-gg co

|' .r [ e
of suc ctlo 5, lich aré call.:g'd allelic-pairwise

-
independent functlons..- Thes_el;:.funlg;;tlons appear t'_o be%iﬂep@‘ident when observing

only two variables, but have __,stro,ng 5epen3en01es amoﬂg mh'ltlple variables. In these

s Ty
o

functions, the joint distribution anjc'{r't'h\‘—!' pn‘)du{:t of marginal distribution between
any two variables are identical. To satisfy this requirement, we need to assign the
same fitness to a group of individuals which are also allelic pairwise independent to
make each of them occupies the same portion of the population. The parity function
is one of these functions, since the group of all the strings with the same parity is
also pairwise independent. However, we propose another type of functions which
has less global optimal than parity function, thus we can expect that they are more

difficult than the parity functions.
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7.1 Walsh Func

%@%ﬁﬁ@hﬂ%odes

To design such a problem, we utilize Walsh functions [8, 10], which are defined as

by() = 1 ifu(xAj)is even (7.1)

—1 otherwise,

where x and j are both strings of length [, and ‘A’ denotes bit-wise logical AND

operation. Figure 7.1 is the example of Walsh functions with [ = 2. Then we define
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- -

is similar to the dlgltal Wals"h ﬂgdeﬁrwl?ch_ﬁte?bﬂused in applications of wireless
telecommunication. Table 7.1 shows the Walsh codes of [ = 2 and 3. Note that the
Walsh codes are allelic-pairwise independent except the first bit, and so are their

complements.

7.2 Walsh-code functions and
Experimental Design

Thus for block size 3 < k < 2!, we can randomly choose k bit from each W; to form a

group of allelic-pairwise independent strings, which includes 2¢~*) proportion to the

34



search space of all 2¥ strings. Therefore, we can design a function which is believed
more difficult for EDAs than the parity function, for example, the generalized Walsh-

code functions is defined as:

O if X e W,
wX)=4{ G if X eW] (7.3)

C5 otherwise,

where I/VJ’ are one’s complements of W}, which are designed to be the most competing

IlulLﬂﬂ‘”'{‘“I’;’{

_% unabl

building blocks in this problem

et ol

Since EDAs Wlth 11;1'1£ge learﬁ&g' shoul -learn the linkages be-

tween variables m-"ﬂle

dLe

ng q'.E_éE_thIl is whether it

can be solved l?,f" niyaria , tﬁi‘th CGA on the
.h LT i) . ” . L,
concatenated Walshico Cy = 4 and

!'-_:,._ [7 ._' i .'7
As the emplrlcar ‘%E’IOW ig. ‘ . ' f evaluations on

CWCF is slightly grla% B,

than CPF, it is still solved-

!
ly by CGA But ;ﬁﬂ-ﬁ&!{ arger subproblem size k,

Jﬂll’."‘

CWCF becomes more difficult since ’cﬁl er of optima is always 2! when k < 2/

while CPF has 2¥~! optima, which are proportional to 2¥. However, we still can not

make CWCF unable to solve by EDAs at this moment.
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Chapter 8

Conclusions

In this thesis, we dlS€ inkage learh.i_r_lg i'ﬂu_ EDAS which mostly

starts from learping pa1rW1s , ! ves 1gated tﬁé performance of

EDAs on probfémsq%v:fﬁh

g(-z:’pé: I Wthh has been

believed to be}iard for
!'5!
Our empifii’jal fesu

L iy
h
S(i'ved 1n polynomial

time by CGA Wthh i

|} L?-.
ECGA on the .parlty fu

atton r.We also tested

m polyﬂ!qrnlal time, but
nﬁ"nd Smith [4]. In

in the previous

I;(-)-{ pe’ﬁ#ﬂh 11 due to the spurious
linkages [19] it had learned: I‘,Wlth_ﬁTR 17, ; ?.E:h haiet-béen the default replacing

hBOA scaled expx:;;leﬁ?a]. onith1
our discussion, it Wa,s’]Jehe‘vg:d‘;thatt.h

method of hBOA, and such hnkag'r chnsdd the overﬁttmg issue [26]. To verify
the exact reason of the different performance between hBOA and ECGA, we also
investigated the performance of ECGA with random spurious linkages and RTR,
and only ECGAs with RTR scaled exponentially on CPF like hBOA did.
Moreover, we proposed the Walsh-code function, which was another function
which could deceive the linkage-learning mechanisms in EDAs successfully. With
such a function, the concatenated Walsh-code function is a more difficult problem

for EDAs than CPF, even though not significantly.
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8.1 Main Conclusion and future works

Although EDAs are unable to build exact models for the allelic-pairwise independent
functions, they still can solve these problems without learning any correct linkages
according to our experiments and derivational models of convergence time, which
is a polynomial time model of ©(mlogm). But for multivariate EDAs, they may
perform worse than univariate EDAs if too many spurious linkages are learned or
added, so linkage learning may becomes unwanted when it is handling allelic-pairwise
independent functions. However, since. Enk%e leiafnmg is one of the most important
part of multivariate ED'iIAS‘Ivs:f;e1 CE;IL %_lso a-l-ter-ﬁz)grre-qﬁeri_tors to prevent the pre-

convergence in the pb'lpu ion for"se"fvm ﬂ%se problg_Els -"BeSldes a k-bit-wise

—

model-building H{G‘h’lod can

k, since the problems wit -ls}"'daonsxderable
Because multivariat ctive IIlibt.}-l(-)dS t(:)_'solve most of

H
which can not solved r nulti . roblemrshould be hard
e
tﬂeﬂéxa%’s linkage model

of this problem darre re all the iileles ¢ an& subqequently end up
with the local optlm"a,, If su_g_hla p y eﬂgtﬁ, ulﬁ"i"varlate EDAs have
¥ o aF

to search with O(lk) tlme' t@ bulld'é-—exacidlstrl-ﬁutlon rrro'[l’el Otherwise, if we can

prove the problem does not eX1§{ Jﬁl"(;a!y be Pen;hdel!ed that EDAs may not have an

inevitable weakness on linkage learning.
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