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中中中文文文摘摘摘要要要

本論文探討分佈估測演算法(Estimation of Distribution Algorithms)在基因成對獨

立函數(allelic pairwise independent functions)上之延展性，以及此類函數例如奇

偶性函數(parity function)、奇偶與陷阱函數(parity-with-trap function)、沃爾什

編碼函數(Walsh-code function)對於鍊結學習(linkage learning)難度之影響。對於

分佈估測演算法而言，奇偶性函數被認為是難解的函數，但是在我們的實驗中證

實奇偶性函數可被精簡基因演算法(Compact Genetic Algorithms)在多項式時間之

內解出，並且困難度更高之奇偶與陷阱函數也被延伸式精簡基因演算法(Extended

Compact Genetic Algorithms)解出，縱然鍊結模型依然無法正確被認出。我們也

計算出了精簡基因演算法在奇偶性函數上之收斂時間(convergence time)模型，並

且此模型與前述之實驗結果吻合。此外，我們也討論了不同分佈估測演算法之性

能出現歧異之根本原因。最後，本論文提出了另一個可欺騙大多數分佈估測演算

法中鍊結學習機制之基因成對獨立函數，稱之為沃爾什編碼函數，然而此函數仍

然能被精簡基因演算法解出。

關鍵字: 基因演算法, 鍊結學習, 分佈估測演算法, 奇偶性函數.
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Abstract

This thesis investigates the difficulty of linkage learning, an essential core, in EDAs.

Specifically, it examines allelic-pairwise independent functions including the parity,

parity-with-trap, and Walsh-code functions. While the parity function was believed

to be difficult for EDAs in previous work, our experiments indicate that it can be

solved by CGA within a polynomial number of function evaluations to the problem

size. Consequently, the apparently difficult parity-with-trap function can be easily

solved by ECGA, even though the linkage model is incorrect. A convergence model

for CGA on the parity function is also derived to verify and support the empirical

findings. Then the root cause of the different performances between different EDAs

is also discussed. Finally, this thesis proposes a so-called Walsh-code function, which

is more difficult than the parity function. Although the proposed function does de-

ceive the linkage-learning mechanism in most EDAs, EDAs are still able to solve it

to some extent.

Keywords: Genetic Algorithms, Linkage Learning, Estimation of Distribution Algo-

rithms, Parity Function.
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Chapter 1

Introduction

In the field of genetic and evolutionary computation (GEC), which is inspired by

the natural process of evolution, most of the studies focus on the metaheuristic

optimization methods. For example, genetic algorithms (GAs) are robust approaches

for black-box optimization problems, which do not provide any information about

the structure of the problems for the algorithms. Although GAs can solve numerous

problems from varied applications, they are still needed to be improved to handle

more difficult problems. After many years of research, many variations of GAs have

been invented and developed, and estimation of distribution algorithms (EDAs) are

one of the most significant branch of GAs.

EDAs can be categorized into different classes based on their linkage-learning

mechanisms. The most basic ones are univariate EDAs, e.g., PBIL [2] and Compact

GA [16], which do not have any linkage-learning mechanism and assume all the vari-

ables in the problem are independent. Bivariate EDAs, like MIMIC [3] and BMDA

[24], can detect pairwise dependencies between the variables, but do not model the

distribution among multiple variables. Finally, multivariate EDAs, such as ECGA

[14], BOA [22], D5 [25], EBNA [7] and DSMGA [27], which build interacting mod-

els to reveal dependencies among multiple variables, are more powerful for solving

nearly decomposable problems.
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1.1 Motivation and Objective

Linkage learning is an inevitable issue in bivariate and multivariate EDAs, which

must exploit the linkage information to estimate joint probabilities and construct

the models. The computational cost for determining the exact dependency model

scales exponentially with problem size, and hence a proper mechanism is required

for building an approximate model. Most of the multivariate EDAs construct the

interacting models by starting with pairwise linkages between only two variables,

since it is impractical to explore the whole possible search space of multi-variable

linkage. It takes O(lk) to compute all dependencies among k variables in a problem

of size l, so it makes more sense to start with only pairwise linkages with cost limited

to O(l2). For example, ECGA [14] builds the marginal product models by merging

the subsets of variables according to the minimum description length metric, and it

needs to detect the pairwise dependency at the very beginning of model building.

BOA [22] also exploits pairwise dependency to decide the addition or deletion of an

edge between two variables in the Bayesian networks. However, a quick approach

is generally deficient in precision, which may consequently delay the convergence

time of linkage. As the linkage should be learned before the alleles converge in

EDAs [12], reaching for balance between efficiency and precision is a critical issue

in linkage learning.

The objective of this thesis is to realize how the difficulty of linkage learning

impacts on the performance of EDAs. We identify those functions which are diffi-

cult for linkage learning first, and then analyze the performance of EDAs on these

functions by observing their scalability. The influence of model accuracy in multi-

variate EDAs is investigated as well. Finally, we discuss the possibility of designing

a function which is difficult for EDAs to solve by deceiving the linkage-learning

mechanism.
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1.2 Road Map

In the thesis we first review previous work on the parity function and investigate

the performances of different EDAs on that problem. A convergence model is also

derived to verify the scalability of EDA on the parity function. Then we investigate

the reason of the bad performance of EDAs on the parity functions. We discuss

about allelic-pairwise independent functions and experiment on a new problem we

propose in the later chapter. Finally, we have some analyses and conclusions on the

empirical results.
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Chapter 2

Background

This chapter gives some relative knowledges of the algorithms which are used in

this thesis. At the beginning of this chapter, a traditional genetic algorithm and its

related theories are introduced. Then we introduce the general procedure of EDA,

and give the details about EDAs used in this thesis, which are compact genetic

algorithm (CGA) and extended compact genetic algorithm (ECGA). After that, we

discuss about the parity functions, which are hard for EDAs to learn the linkage

within, and review the previous works on it.

2.1 Simple Genetic Algorithm

A genetic algorithm (GA) requires an encoding of solutions, which are called chro-

mosomes, and one or more objective functions which evaluate the chromosomes and

decide its fitness. The types of chromosomes include binary strings, an array of

real-number parameters, or even complex structures. After the solutions are en-

coded, initialized and evaluated, different operators are applied iteratively to the

population, which is a set of individuals each containing a chromosome.

The traditional version of GA, which is called simple genetic algorithm (SGA),

encodes the solutions into binary strings. Although there are a variety of operators,

the procedure of SGA consists of the most common operators, which are selection,

recombination and mutation. The general procedures of an SGA are:

4



1. Initialization. Initialize a random population of size N.

2. Evaluation. Calculate the fitness values of all individuals in the population.

3. Selection. Choose the better solutions from the population depending on

their fitness values.

4. Recombination. Randomly choose two individuals as the parents, and gen-

erate new promising solutions by exchanging and perturbing their contents.

5. Mutation. Randomly alter some bits in some chromosomes, which is creating

more alternative individuals.

6. Termination. Repeat from step 2 until the population converges to a opti-

mized final solution or the predefined time constrain is exceeded.

Selection and recombination can be done in numerous ways. For instance, tourna-

ment selection choose s individuals to compete, then the winner gets s copies after

selection, where s is called tournament size, or selection pressure in GA theory. Re-

combination is also called crossover, and the most typical recombination is one-point

crossover, which randomly picks a point in the chromosomes and exchange the con-

tents beyond this point. Using different operators in SGAs may results in different

final outcomes.

2.2 Building Block Hypothesis and

Deceptive Problems

In the research of GA theory, it has been discussed how GA can solve the optimiza-

tion problems robustly. In the building block hypothesis [11], an optimal solution

found by GA is considered as a combination of building blocks (BBs), which are

minimal sequentially superior sub-solutions to the problem. The term ’minimal se-

quentially superior’ means that a BB has to be short, low order and high average

5
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Figure 2.1: A 5-bit deceptive trap function.

fitness to become a part of the global optima. With this concept, Goldberg proposed

a decomposition for the problem of designing competent GAs:

1. Know what GAs process – BBs.

2. Know thy BB challengers – BB-wise difficult problems.

3. Ensure an adequate supply of raw BBs.

4. Ensure increased market share for superior BBs.

5. Know BB takeover and convergence times.

6. Make decisions well among competing BBs.

7. Mix BBs well.

Most of the recent studies are focused on how competent GAs mix BBs well.

One of these notable issues about BBs is that an effective BB should be as short as

possible to avoid disruption by the recombination operators like one-point crossover.

Since we want GAs to work efficiently and reliably, the capability of identifying BBs

from current population is required, so that we can mix the BBs appropriately as if

they are permuted sequentially in the chromosome.
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Problems can be designed to deceive GA with its difficulty within a single BB, so

GAs can not solve them successfully without identifying the BBs [9]. These deceptive

problems mislead GAs to a local optimal when less than k bits are observed, while

the k-bit global optima is in the opposite direction. For example, a k-bit trap

function [1] can be designed by assigning the highest fitness to the string with all

1s, but other strings has a lower fitness if it has more bits of 1s. Generally, the trap

subfunction is defined as

trap(X) =

⎧⎪⎨
⎪⎩

k if u(X) = k

k − 1 − u(X) otherwise
. (2.1)

Fig. 2.1 shows a 5-bit trap function, the unitation variable in the figure means the

number of bit ones in a string X. A competent GA should be able to identify the

k-bit BB by learning the linkage between the variables so that the trap functions

can be solved. If BB is not identified, it may be disrupted by the recombination

operators and the population will converge to the local optima.

2.3 Framework of EDAs

Estimation of Distribution Algorithms (EDAs) [18, 20], or probabilistic model-

building genetic algorithms (PMBGAs) [23] are robust and scalable optimization

methods which can solve various difficult problems. Instead of using conventional

recombination operators as in GAs, EDAs use machine learning techniques like prob-

abilistic model-building and solution sampling to generate candidate solutions, but

the concepts of population evolving and selection are still employed in EDAs. More-

over, for nearly decomposable problems, the promising solutions to these problems

can be decomposed to BBs. EDAs with linkage-learning can reconstruct the struc-

ture of the problem, which can be utilized to prevent the disruption of the BBs, and

enhance the mixing of BBs as well [11].

The framework of EDAs is similar to the one of GAs, except the operators which

7



reproduce new individuals are replaced by building the probabilistic model of the

population and sample new individuals from it:

1. Initialization. Generate the initial population randomly.

2. Evaluation. Calculate the fitness values of all individuals in the population.

3. Selection. Select the promising solutions depending on their fitness values.

4. Probabilistic model-building. Build the probabilistic model by calculating

the distribution of current population.

5. Sampling. Use the model built by previous step to sample a new population.

6. Replacement. Incorporate the new population into the previous one.

7. Termination. Repeat from step 2 until the population converges to a opti-

mized final solution or the predefined time constrain is exceeded.

The ability of EDAs to construct the structure of the problem is based on the

assumption of that the linkages among the variables can be learned by estimating the

joint distribution from promising individuals. If the problem structure is different

to which EDAs built, good BBs in the current population may be disrupted after

sampling the model, depending on whether the problem is deceptive or not.

2.4 Compact GA and Extended Compact GA

In this section, two EDAs used in this thesis are introduced, which are compact

genetic algorithm (CGA) and extended compact genetic algorithm (ECGA). We

describe the frameworks of these EDAs, and examples are also given.

2.4.1 Compact GA

Compact genetic algorithm (CGA) [16] is a simple and efficient univariate EDA.

A CGA starts with a probability vector (PV) l probabilities and each of which is

8



Table 2.1: The PV of CGA at different time on a one-max problem.
Evaluation [p0 p1 p2 p3 p4]

0 [0.50 0.50 0.50 0.50 0.50]
600 [0.64 0.69 0.68 0.71 0.55]
1600 [0.98 0.93 0.91 0.82 0.88]
3000 [1.00 1.00 1.00 1.00 1.00]
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Figure 2.2: The average fitness of each two samples of CGA on a one-max problem.

initialized to 0.5. Each probability pi in the PV represents the probability that the

i-th bit of the l-bit string X is 1. Then two individuals are generated for selection

by the PV, the one with the higher fitness is the winner, and the other is the loser.

After that, each probability in the PV is modified only if the corresponding bits in

the winner and loser individuals are different. When the bit from the winner is 1,

the probability is increased by 1/N , on the contrary, it is decreased by the same

amount when the bit from the winner is 0. So the PV at time t can be calculated

by the following equation:

PV [i](t) = PV [i](t− 1) +
1

N
(winner[i] − loser[i]). (2.2)

This procedure is repeated until the PV converges.

Figure 2.2 shows a sample run of CGA on a 100-bit one-max problem, which is
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defined as

f(X) =

100∑
i=1

xi. (2.3)

Table 2.1 shows part of the PV in the same experiment. We set the population

N = 100, so the differences of probabilities are always the multiple of 1/N = 0.01.

CGA is compact since it works as well as SGA without generating a population.

Moreover, it is proven that CGA performs approximately the same as a SGA with

population N and uniform crossover operator [16].

2.4.2 Extended Compact GA

Extended compact genetic algorithm (ECGA) is a multivariate EDA which is based

on the same probabilistic modeling concept of CGA, but also includes a linkage-

learning mechanism for adapting the problem structure. There are different ways

to learn the linkages among the variables. ECGA builds marginal product models

(MPMs) by calculating the joint probability distributions over more than one gene,

and a greedy method is employed to find the most adaptive structure. In the begin-

ning of model building, the initial model consists of l subsets, each containing only

one variable, and two subsets are merged in each step of greedy search.

To build an ideal MPM, we needs to choose a proper metric to decide which

two subsets should be merged. Relied on Occam’s Razor, which claims the simpler

choice is preferred if all other things are equal, the minimum description length

(MDL) metric is utilized to measure the MPMs. The description length, or combined

complexity of MPM can be evaluated by calculating the sum of model complexity

(MC) and compressed population complexity (CPC) , which are

MC = log2 (N + 1)
∑

i

(2Si − 1) (2.4)

and

CPC = N
∑

i

Entropy(Mi), (2.5)

where N is the population size, Si is the size of i-th subset and Mi is the i-th subset

10



Table 2.2: The MPM of ECGA at each generation on a concatenated trap problem.
Generation Marginal Product Models

0 [0 2 3 4][1][15 16 17 18 19][9][14][5 6 7 8][10 11 12 13]
1 [0 1 2 3 4][5 6 7 8 9][10 11 12 13 14][15 16 17 18 19]
2 [0 1 2 3 4][5 6 7 8 9][10 11 12 13 14][15 16 17 18 19]

−1 0 1 2 3 4 5 6 7 8 9
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Figure 2.3: The proportion of BBs in the population of ECGA on trap Functions

in MPM. The entropy of Mi can be calculated by
∑−pj log2 pj, where pj is the

joint probability of the outcome j to be generated by the i-th subset. The model

with minimal combined complexity is chosen in each step of greedy search.

The procedure of ECGA is similar to simple GA, except the recombination op-

erator is replaced by model building and sampling the population:

1. Initialize a random population of size N.

2. Apply tournament selection.

3. Build the MPM model using greedy search.

4. Generate a new population with the model.

5. Repeat from step 2 until the population converges, or time constrain exceeds.
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Since the algorithm is able to build models among multiple variables, it can

identify BBs and prevent the effective BBs from being destroyed. It has been verified

that the problems with trap functions can be solved robustly by ECGA [14]. For

instance, a concatenated trap function of k = 5 is defined as

f(X) =
m−1∑
i=0

trap(x5ix5i+1x5i+2x5i+3x5i+4). (2.6)

Table 2.2 shows the MPM built by ECGA at each generation, the population size

is 1000 and the tournament size is 16. All BBs of the problem are identified at

generation 1, so that the promising partial solutions are not disrupted after new

populations are sampled and finally the optimal solution is found. Moreover, another

sample, in the Fig. 2.3 shows that ECGA can identify the building blocks in the

population of ECGA on trap functions with the problem size equal to 50. The

population size is 5000 and the tournament size is 8. In this figure, a optimal BB

means a BB with all bits are 1, while a competitive BB means a BB with all bits are

0, which is the local optimal solution. At the beginning, both type of BBs occupy

1/32 of the whole population, but finally ECGA can separate the BBs and make

the population converge to the global optimal solution.

2.5 Previous Works on Parity Functions

We have introduced the deceptive trap functions which are difficult for SGAs to

solve, but most of the multivariate EDAs are capable of tackling such problems

successfully. However, there exist functions which are difficult for EDAs to learn the

linkage within and build the correct model. For example, the parity function can

deceive the linkage-learning mechanism of EDAs because variables in this function

are pair-wise independent. The parity function is defined as:

parity(X) =

⎧⎪⎨
⎪⎩

Ceven if u(X) is even

Codd otherwise
, (2.7)
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where u(X) is the unitation or bit count of string X, and Ceven and Codd are con-

stants. Apparently, the parity function is a generalization of the XOR function.

Coffin and Smith [4] described the concatenated parity function (CPF) and the

concatenated parity/trap function (CP/TF) in their work. CPF is defined as a

concatenation of parity functions:

CPF (X) =
m−1∑
i=0

parity(xik . . . xik+(k−1)). (2.8)

Then CP/TF is defined as

CP/TF (X) =

m−1∑
i=0

⎧⎪⎨
⎪⎩

parity(xik . . . xik+(k−1)) if i is even

trap(xik . . . xik+(k−1)) otherwise,
(2.9)

Coffin and Smith investigated the performance of hierarchical Bayesian opti-

mization algorithm (hBOA) [21], the hierarchical version of Bayesian optimization

algorithm (BOA), on these problems. BOA is a novel multivariate EDA which solves

numerous hard problems reliably by utilizing Bayesian network to build the model

of the problem structures. But surprisingly, hBOA scaled exponentially on both

problems. It is believed that hBOA is robust and reliable on nearly decomposable

problems, so they stated that CPF is hard for EDAs to solve and discussed about

the reasons and possible solutions.

Furthermore, Echegoyen et al. [5] investigated the exact model building on

Bayesian network based EDAs, and verified that the linkages in CPF can be learned

by building an exact model. Emmendorfer and Pozo’s work [6] also employed CPF

to test their design of EDA.
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Chapter 3

Performance of CGA on CPF

Coffin and Smith’s work have shown that hBOA, one of the most powerful EDAs,

scaled exponentially on the parity functions. To understand the reason that caused

such unfavorable performance, we first test CGA on CPF , which is the simplest

type of the parity functions. For a multivariate EDA like hBOA, it would degenerate

to a univariate EDA if the linkages within the problem can not be learned, so we

expect CGA may act like hBOA on CPF at the beginning. But surprisingly, the

empirical result shows that CGA can solve CPF reliably in polynomial time.

3.1 Experimental Design

To verify whether a simpler GA or EDA might work on the parity functions, we

investigate the scalability of CGA, which is a univariate EDA without any linkage

learning , on CPF. Similar to the setup in [4], we choose the block size k=5 , Codd = 5

and Ceven = 0 for CPF. Since we want to know if a CGA needs a polynomial time to

solve parity functions or not. The number of fitness evaluations has to be counted in

this experiment. To find the minimal number of fitness evaluations, the population

size should be determined first.
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Figure 3.1: Minimal population found by bisection method and the polynomial scal-
ability of CGA on CPF (log-log scale) with a convergence time bound of Θ(m logm),
the slope of the trend line indicates the order of the scalability.

3.1.1 Bisection Method

A bisection method is exploited here to determine the minimal population size re-

quired for different m value, where m denotes the number of BBs in CPF. There

are two phases in the bisection method, the first phase is to determine the up-

perbound by doubling the population size until the algorithm solves the problem

robustly. Here we define that the problem is solved robustly if the algorithm always

find out the optimal solution in at least ten trials. Then the second phase is the

bisection phase, which uses the upperbound found in previous phase and half of

the upperbound as the lowerbound. Each step the middle point of the upperbound

and lowerbound is chosen as the population size for a test, and the middle point

becomes the upperbound of the next step if the test is passed, otherwise it becomes

the lowerbound. The second phase repeats until it converges to a final result, which

is employed to generate the average number of evaluations from 100 runs for each

problem size.
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3.2 Experimental Result and Discussions

As the result shown in Fig.3.1, CGA solves CPF reliably with obviously bounded

polynomial times, which is about Θ(m1.32) and differs from previously assumption

that CPF should be hard for EDAs. From this result, we can make sure that the

parity functions can be solved by a simple univariate EDA like CGA , without build-

ing the correct model of the problem. Since the approximate equivalence between

CGA and a simple GA (SGA) with uniform crossover has been verified in [16], the

performance of CGA on CPF should be replicable with SGA. However, CPF is not

a problem designed to deceive simple GA mechanism. Half of the input strings are

optimal in a single building block of CPF, thus it has 2l−m optima. It is a relatively

large portion comparing with other test functions which mostly have only one op-

timum in each subproblem. After the experiment, we want to theoretically verify

this result in the next chapter.
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Chapter 4

Scalability Model of CGA

The result from the previous chapter revealed that CGA successfully solves CPF.

To theoretically understand that why CGA performs differently from hBOA, we

attempt to derive a model to theoretically prove the polynomial scalability of CGA

on CPF. First we consider the parity function with only one BB, then we extend

the result to the case of multiple BBs in the later section.

4.1 CPF with Single Building Block

Before the derivation, we extend the definition of CPF to simplify the calculation.

Let

Codd =

⎧⎪⎨
⎪⎩

0

k
Ceven =

⎧⎪⎨
⎪⎩

k if k is even

0 otherwise,
(4.1)

i.e., the individual Xk where u(Xk) = k is always an optimum, k is the size of each

subproblem.

In CGA, probability vector (PV) is adopted to generate two individuals Xa, Xb

for every generation. When the PV is expected to be converged to an individual

Xk, there must be an initial bias ε0, which may be positive or negative. Hence the

initial PV become

{pi =
1

2
+ ε0|i = 1 . . . k} (4.2)
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Here we define Pmn = p(u(Xa) = m, u(Xb) = n), so

Pmn(t = 0) =

(
k

m

)(
k

n

)
(
1

2
+ ε0)

m+n(
1

2
− ε0)

2k−m−n (4.3)

Then we can define amn as the expected number of times that a single pi in the

PV is modified by 1/N when u(Xa) = m and u(Xb) = n, where N is equivalent

to the population size in SGA [16]. The PV will be updated only when Xa and

Xb has different parities, so aij = 0 when i and j has the same parity. Note that

amn = anm since exchanging the winner and loser won’t alter the result, therefore

we can estimate the PV at generation t by the recursive equation

pi(t) =
1

2
+ εt

=
1

2
+ εt−1 +

1

N
· 2

∑
m∈even
n∈odd

amnPmn(t− 1). (4.4)

Although k may be greater than two in CPF, here we set k = 2 only for deriva-

tion. For k = 2, if (Xa = 11) and (Xb = 10 or 01) are generated, each pi is expected

to be updated by 1/2 times, so we can get a21 = 1/2. Similarly when (Xa = 00)

and (Xb = 10 or 01) are generated, we can calculate a01 = −1/2, the minus here

means decreasing the PV. Using the equations above, we have

εt+1 = εt +
2

N
[
1

2
(2(

1

2
+ εt)

3(
1

2
− εt)) − 1

2
(2(

1

2
+ εt)(

1

2
− εt)

3)]

� εt +
2

N
[
1

4
(
1

4
+ εt) − 1

4
(
1

4
− εt)]

= εt +
1

N
εt. (4.5)

which is a 1st-order estimation. This recursive relationship can be extended to k-bit

BB. Let Δk = εt+1 − εt, a k-bit BB can be normalized to that every generation

CGA always generates two individuals, the winner is Xw and Xl is the loser, and

every time each pi is updated by Δk. Next, consider the (k + 1)-bit condition,

each generation CGA generates two individuals, {Xw1 or Xw0} and {Xl1 or Xl0}.
Again we only consider the conditions when PV is modified, where the generated

18



individuals are {Xw1 and Xl1} and {Xw0 and Xl0}. Note that concatenating a

bit-1 does not effect the result of competition, while concatenating a bit-0 alters the

result. Let pk+1 = (1/2) + εt, so the expected value of Δk+1 can be calculated by

Δk+1 = (
1

2
+ εt)

2Δk − (
1

2
− εt)

2Δk

= 2εtΔk. (4.6)

From Eq.(4.5), we have Δ2 � (1/N)εt, so

Δk � 1

N
2k−2εk−1

t . (4.7)

Note that if ε0 < 0, Δk is also less than zero only when k is even. It makes PV

converge to all zeros, which is also an optimum with an even k. Otherwise, Δk is

greater than zero when k is odd, although ε0 < 0, so that PV will not decrease and

always converge to all ones. Fig. 4.1 shows the verifications of the models of Δk

with different k and ε values. Writing Eq.(4.7) in the differential form of εt, there is

εt+1 − εt

(t+ 1) − t
� 1

N
2k−2εk−1

t , (4.8)

dεt

dt
� 1

N
2k−2εk−1

t , (4.9)

which becomes an integral equation

∫
dεt

εk−1
t

� 1

N

∫
2k−2dt. (4.10)

Let k > 3, after solving the equation, there is

1

2 − k
ε2−k

t � 1

N
2k−2t+ C0. (4.11)
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Figure 4.1: Verifications of Δk models, the ε values near zero has better accuracy
because the model is a 1st-order estimation

With initial condition ε = ε0 at t = 0,

C0 =
ε2−k
0

2 − k
. (4.12)

For estimating convergence time, ε = 1/2 when the PV converges. Finally we have

t � N

k − 2
(

1

2εk−2
0

− 1), (4.13)

which is the time-to-convergence model for CPF of single BB. Note that the equation

is only valid for k > 3, and the condition of k = 2 is not concerned because two

variables in CPF with k = 2 are not independent.
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4.2 Scalability with Multiple BBs

By the central limit theorem, the distribution of the fitness of a BB is approximately

normally distributed. Using the decision-making argument [13], the probability of

making the right decision between two competing individuals in a single trial of a

problem with m independent equally-weighted BBs is:

p = Φ(
d√

2m′σbb

), (4.14)

where m′ = m − 1, d is the difference of fitness between two competing BBs, σ2
bb is

the variance of BBs, and Φ denotes the cumulative distribution function of a unit

normal distribution. With the definition of CPF in this chapter, we have d = k and

σbb =

√
k2

2
− (

k

2
)2 =

k

2
. (4.15)

So the probability becomes

p = Φ(

√
2

m′ ). (4.16)

Being expressed in terms of the error function,

p =
1

2
[1 + erf(

√
1

m′ )]. (4.17)

Using the first-order estimation of the error function with its Taylor expansion,

which is accurate enough for m > 10, we have

p =
1

2
+

√
1

πm′ . (4.18)

We can incorporate this probability to estimate the scalability of CGA with multiple

BBs. Since we might make wrong decision and lead the PV to the opposite side,

the modified Δk value should be

Δ′
k = pΔk − (1 − p)Δk. (4.19)
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With Eq.(4.7) and (4.18), it becomes that

Δ′
k � 2√

πm′
1

N
2k−2εk−1

t . (4.20)

With the same integration procedure previously, the final convergence model become

t � N
√
πm′

2(k − 2)
(

1

2εk−2
0

− 1), (4.21)

which is an approximated bound of the time scalability of CGA. Since CGA acts

similarly to SGA, and the population size N of SGA should be Θ(
√
m logm) [15],

this model indicates the total convergence time of CGA on CPF would be bounded

by Θ(m logm), which is polynomial to the problem size. Moreover, this model

matches with the empirical result in Fig.3.1.

With the derivation above, the polynomial scalability of CGA on CPF is theo-

retically verified. However, we are still eager to know that if other EDAs can solve

the parity functions or not, especially for the multivariate EDAs.
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Chapter 5

Performance of ECGA on CP/TF

Previously we have confirmed that CPF is solved by CGA in a polynomial time

in both experimental and theoretical ways. But for a multivariate EDA, it would

behave like a univariate EDA when the linkages in the BBs can not be learned.

In this chapter, we choose ECGA for the experiment on two problems with parity

functions, which are CPF and CP/TF. Finally the empirical results shows that

ECGA can solve these problems reliably, which is different to hBOA.

5.1 Experimental Design

Two problems are involved in the experiments, CPF and CP/TF. First, to make sure

that ECGA degenerates to CGA when the linkage model indicates that all genes are

mutually independent, we try to solve CPF with ECGA.Then we experiment with

ECGA on CP/TF to investigate the capability of EDAs on the problems which are

designed to deceive linkage learning and hill climbing mechanisms simultaneously.

Since the parity function is an obstacle to linkage learning, which is essential for

solving trap functions, CP/TF is designed to deceive most of EDAs. Without any

linkage-learning procedure, CGA is incapable of solving concatenated deceptive trap

functions in CP/TF, On the contrary, ECGA is a multivariate EDA which can solve

deceptive subproblems consistently [14], so we expect that ECGA may solve CP/TF.

The experimental design is similar to the one on CGA, but to solve the trap func-
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Figure 5.1: Minimal population found by bisection method and the polynomial
scalability of ECGA on CP/TF (log-log scale)
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Figure 5.2: Minimal population found by bisection method and the polynomial
scalability of ECGA on CPF (log-log scale)
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Table 5.1: The MPM Models ECGA learned in different problems and population
sizes, with problem size l = 10

MPM Model
CPF N = 10 [02-1-3-4-58-6-7-9]

N = 5000 [0-1-2-3-4-5-6-7-8-9]
CP/TF N = 10 [0-12-34-5-68-7-9]

N = 5000 [0-1-2-3-4-56789]

tions effectively, a tournament size (s) of 8 is chosen when the problem is CP/TF.

The block size k is still 5, and the bisection method is still employed to decide the

population size.

5.2 Experimental Result and Discussions

As shown in Fig. 5.1, the number of evaluations that ECGA requires to solve

CP/TF scales polynomially with the problem size. Besides, in Fig. 5.2 it can also

be verified that ECGA can solve CPF in a comparable time as CGA does. So ECGA

solve problems with parity functions reliably, although we thought these problems

should be hard for EDAs.

How does ECGA solve CP/TF in polynomial time while hBOA does not? To

answer the question, we first investigate their linkage models, table 5.1 shows the

model built by ECGA only includes building blocks of trap functions when the pop-

ulation size is large enough, so ECGA is not able to learn the linkages in parity

subproblems. But ECGA still can solve them with similar mechanism as CGA does,

and learn the linkages in the trap subproblems at the same time. Since ECGA could

solve these subproblems separately, no matter which subproblem converges slower, it

always requires only polynomial time. However, it is evident that EDAs are unable

to identify building blocks of parity functions correctly, so the linkages learned by

hBOA are considered spurious possibly due to the selection bias. It has been con-

firmed that using tournament selection in BOA results in less accurate models than

truncation selection [19]. Such spurious linkages may cause an overfitting model,

which is different to the original problem structure. Furthermore, the overfitting
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phenomenon observed in EDAs was correlated with the performance of EDAs [26],

and might also caused the exponential scalability of hBOA on CPF. To figure out the

reason that hBOA scales exponentially, we have to investigate the effect of different

models on the performance of EDAs and find out the critical differences between

ECGA and hBOA.
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Chapter 6

Effects of Different Probabilistic

Models on ECGA

After the performances of ECGA and hBOA are empirically verified to be totally

distinct, we long for an explanation to this uncommon result. At first, we assume

that a totally different model with spurious linkages leads to such a bad performance.

To verify this assumption, we have to find out the effects on ECGA with different

probabilistic models. Thus we create a random model with compulsorily added

spurious linkages instead of original linkage-learning mechanisms in each generation

of ECGA, and observe the influences. Moreover, one of the major difference between

ECGA and hBOA is that hBOA employs restricted tournament replacement (RTR)

[17] as its replacement scheme, so we also need to observe the models which ECGA

builds when RTR is applied, and investigate the performance of ECGA with RTR

on the parity functions.

6.1 Experimental Design

To make sure which reason causes the exponential scalability of hBOA, we test

ECGA with three different settings, which are ECGA with spurious linkage models,

with RTR, and with both conditions.

The procedure that we used to create a model with spurious linkages is random-
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ized. Starting with l independent clusters each containing only one gene, we merge

two randomly chosen clusters each step and repeat l/2 times for each model, , and

the size of each cluster is limited to k ≤ 3. Such a model can be applied in two ways,

generating a new random model in each generation or using a fixed model which is

generated at the beginning. Note that ECGA does not learn more linkages if this

modification is applied.

RTR [17] is a replacement method which partially preserves local optima in the

population. With RTR, after each new individual is generated, W individuals are

chosen from the old population, where W is called the window size. Then the one

which is the most similar to the new one is chosen from these individuals, and it is

replaced if the new one has a higher fitness. RTR is utilized in hBOA, to preserve

alternative candidate solutions and solve hierarchical problems [21].

The parameter settings are the same as previous experiments, the tournament

size is still 2 since CPF does not contain trap functions, and the window size of

RTR is equal to the population size n. We also apply bisection method to find the

minimal populations in these experiment.

6.2 Experimental Result and Discussions

We experiment with different modified ECGAs on CPF. First, as the result shown

in Fig. 6.1, ECGA scales polynomially on CPF with spurious-linkage models, no

matter the models are fixed or random generated in each generation. It still can not

explain the bad performance of hBOA on problems with parity functions. But a

fixed model with spurious linkages obviously has a bad influence on the performance

of ECGA, since the order of the number of evaluations is higher. Then we observe

the results in Fig. 6.2 , we can notice that ECGA scales polynomially with both

RTR and spurious-linkage models, but the number of evaluations is much greater

than ECGA without RTR while the problem sizes are the same. Finally, Fig.6.3

shows that ECGA scales exponentially with RTR and the original model-building

mechanism of ECGA. The numbers next to the segments in this figure indicate
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the slope of each segment, which increases with the problem size and shows the

exponential scalability. Since ECGA also has a bad performance with RTR on

CPF, RTR may be the main reason that hBOA scales exponentially.

Why does RTR make both ECGA and hBOA perform badly? With RTR, the

old individuals is only replaced when the new one is better, so it takes much more

evaluations for the population to converge. Furthermore, since RTR preserves local

optima in the population, the models which EDAs built are effected by the indi-

viduals which contain these local optima. Then the spurious linkages which are

learned by EDAs increase when the bias becomes more critical, and the number

of such linkages are even more than those we added randomly. According to these

observations, RTR is considered the exact cause of the bad performance of hBOA.

So EDA can solve the parity functions reliably, but the operators which it use may

have unfavorable influences on the performance.
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Chapter 7

Allelic Pairwise Independent

Functions

The discussion here can be extended to a more general and critical issue: Is it

possible to design a problem that deceives linkage learning and consequently allelic

convergence as well? If such a problem exists, EDAs would be unable to solve it.

Because we have confirmed that the parity functions is solvable by EDAs, we want to

find more functions which are considered hard for EDAs to learn the linkages within.

This chapter focuses on one type of such functions, which are called allelic-pairwise

independent functions. These functions appear to be independent when observing

only two variables, but have strong dependencies among multiple variables. In these

functions, the joint distribution and the product of marginal distribution between

any two variables are identical. To satisfy this requirement, we need to assign the

same fitness to a group of individuals which are also allelic pairwise independent to

make each of them occupies the same portion of the population. The parity function

is one of these functions, since the group of all the strings with the same parity is

also pairwise independent. However, we propose another type of functions which

has less global optimal than parity function, thus we can expect that they are more

difficult than the parity functions.
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Figure 7.1: The example of Walsh functions with the string length l = 2

Table 7.1: Walsh codes
j l = 2 l = 3
0 1111 11111111
1 1010 10101010
2 1100 11001100
3 1001 10011001
4 11110000
5 10100101
6 11000011
7 10010110

7.1 Walsh Functions and Walsh Codes

To design such a problem, we utilize Walsh functions [8, 10], which are defined as

ψj(x) =

⎧⎪⎨
⎪⎩

1 if u(x ∧ j) is even

−1 otherwise,
(7.1)

where x and j are both strings of length l, and ‘∧’ denotes bit-wise logical AND

operation. Figure 7.1 is the example of Walsh functions with l = 2. Then we define
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Figure 7.2: Minimal population found by bisection method and the polynomial
scalability of CGA on Concatenated Walsh-code Functions (log-log scale)

Walsh codes Wj of length 2l as

the i-th bit of Wj =
1

2
(ψj(i− 1) + 1) (7.2)

which converts analog −1 in Walsh functions to digital bit-0. The definition here

is similar to the digital Walsh codes which are also used in applications of wireless

telecommunication. Table 7.1 shows the Walsh codes of l = 2 and 3. Note that the

Walsh codes are allelic-pairwise independent except the first bit, and so are their

complements.

7.2 Walsh-code functions and

Experimental Design

Thus for block size 3 < k < 2l, we can randomly choose k bit from each Wj to form a

group of allelic-pairwise independent strings, which includes 2(l−k) proportion to the
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search space of all 2k strings. Therefore, we can design a function which is believed

more difficult for EDAs than the parity function, for example, the generalized Walsh-

code functions is defined as:

w(X) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C1 if X ∈Wj

C2 if X ∈W ′
j

C3 otherwise,

(7.3)

whereW ′
j are one’s complements ofWj, which are designed to be the most competing

building blocks in this problem.

Since EDAs with linkage learning should be unable to learn the linkages be-

tween variables in the Walsh-code function, the remaining question is whether it

can be solved by univariate EDAs or not. Thus we experiment with CGA on the

concatenated Walsh-code function (CWCF) , where k = 5, C1 = 5, C2 = 4 and

C3 = 0.

7.3 Experimental Result and Discussion

As the empirical result shown in Fig. 7.2, although the order of evaluations on

CWCF is slightly greater than CPF, which indicates that CWCF is more difficult

than CPF, it is still solved reliably by CGA. But with a larger subproblem size k,

CWCF becomes more difficult since the number of optima is always 2l when k < 2l

while CPF has 2k−1 optima, which are proportional to 2k. However, we still can not

make CWCF unable to solve by EDAs at this moment.
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Chapter 8

Conclusions

In this thesis, we discussed the difficulty of linkage learning in EDAs, which mostly

starts from learning pairwise dependency. So we investigated the performance of

EDAs on problems with the allelic-pairwise independent functions, which has been

believed to be hard for EDAs.

Our empirical results showed that parity function can be solved in polynomial

time by CGA, which is Θ(m logm) according to our derivation. We also tested

ECGA on the parity functions, and ECGA solved them in polynomial time, but

hBOA scaled exponential on it in the previous works by Coffin and Smith [4]. In

our discussion, it was believed that hBOA did not perform well due to the spurious

linkages [19] it had learned with RTR [17], which has been the default replacing

method of hBOA, and such linkages caused the overfitting issue [26]. To verify

the exact reason of the different performance between hBOA and ECGA, we also

investigated the performance of ECGA with random spurious linkages and RTR,

and only ECGAs with RTR scaled exponentially on CPF like hBOA did.

Moreover, we proposed the Walsh-code function, which was another function

which could deceive the linkage-learning mechanisms in EDAs successfully. With

such a function, the concatenated Walsh-code function is a more difficult problem

for EDAs than CPF, even though not significantly.
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8.1 Main Conclusion and future works

Although EDAs are unable to build exact models for the allelic-pairwise independent

functions, they still can solve these problems without learning any correct linkages

according to our experiments and derivational models of convergence time, which

is a polynomial time model of Θ(m logm). But for multivariate EDAs, they may

perform worse than univariate EDAs if too many spurious linkages are learned or

added, so linkage learning may becomes unwanted when it is handling allelic-pairwise

independent functions. However, since linkage learning is one of the most important

part of multivariate EDAs, we can also alter some operators to prevent the pre-

convergence in the population for solving these problems. Besides, a k-bit-wise

model-building method can also solve these problems reliably with a limited order

k, since the problems with higher order are too difficult to be considerable.

Because multivariate EDAs are robust and effective methods to solve most of

nearly decomposable problems reliably, it is desirable to discover another problem

which can not solved reliably by multivariate EDAs. This problem should be hard

for EDAs just because multivariate EDAs can not construct the exact linkage model

of this problem correctly before all the alleles converge, and subsequently end up

with the local optima. If such a problem actually exists, multivariate EDAs have

to search with O(lk) time to build a exact distribution model. Otherwise, if we can

prove the problem does not exist, it can be considered that EDAs may not have an

inevitable weakness on linkage learning.

37



Bibliography

[1] D. H. Ackley. A connectionist machine for genetic hillclimbing. Kluwer Aca-

demic Publishers, Norwell, MA, USA, 1987.

[2] S. Baluja. Population-based incremental learning: A method for integrating

genetic search based function optimization and competitive learning. Technical

report, Carnegie Mellon University, Pittsburgh, PA, USA, 1994.

[3] J. S. D. Bonet, C. L. Isbell, and P. Viola. Mimic: Finding optima by estimating

probability densities. In M. J. M.C. Mozer and T. Petsche, editors, Advances in

Neural Information Processing Systems, volume 9, page 424. The MIT Press,

1997.

[4] D. Coffin and R. Smith. The limitations of distribution sampling for linkage

learning. In Evolutionary Computation, 2007. CEC 2007. IEEE Congress on,

pages 364–369, Sept. 2007.

[5] C. Echegoyen, R. Santana, J. A. Lozano, and P. Larrañaga. The impact of exact
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