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Abstract

We present arab initio study of the time-dependent density-functionalotie
(TDDFT) with proper asymptotic long-range potent@ nonperturbative treatment of
multi-photon processes of diatomic molecules iorgjrlaser field. For accurate and
efficient treatment of the TDDFT equations, the eyatized pseudospectral method
(GPS) is extended to two-center molecules systdm. grocedure allows nonuniform
and optimal spatial grid discretization of the Hhuamian in prolate spheroidal
coordinates and the time propagation using thd-gpérator technique in the energy
representation.

The multiphoton ionization and hi'gh-ora-er_ harmogeneration (HHG) of diatomic
molecules N, CO, and Qinintense short laser pulse fields are calculatedktail. We
observe both the electronic binding 'éﬁéiéy.anmﬁmtation of the orbitals affect the
ionization rate. In the analysis of HHG, the hi:_gmas:upied molecular orbital (HOMO)
has dominant contribution, but décurate resu:itsehmbe obtained with all-electron
study. The CO molecule has a small permanent dipmenent cause the different
nonlinear optical response to homonuclear molecsiiet as generating both even and
odd harmonics.

We also practice the optimal control theory usiimgetdependent targets on the
two-level system with use of the conjugate gradialgorithm, therefore greatly

reducing the number of iterations to reach converge
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Chapter 1
Introduction

Current laser technology has opened up a new fi¢létudy, the nonlinear
nonperturbative response of matter to intensedlltd laser pulses [1]. This led to the
discovery of many new nonlinear nonperturbativeiaaptphenomena and processes
such as above threshold ionization, multiphotonizimion (MPI), and high-order
harmonic generation (HHG) Which_is one of .the m@giidly developing topics in
strong field physics in the past /decade. Exampfethe potential applications of the

HHG include following: the de'velopr,h_e_p_t;pf'coherénft x-ray laser light source and

Am— -
-

nonlinear optics in the extreme ultrav'ia_!ét- regiffg attosecond laser pulses [3], and
comb laser technology [4, 5]. Rec_eﬁtly, both ezmen'tal and theoretical investigations
have focus on the diatomic mélechle’s in’ intenserlislds [6]. Comparing to the atoms,
the extra internuclear degree of freedom make llem@mena within considerably more
complicated and various.

Approximate models, such as ADK [7] and KFR(or Kald-Faisal-Reiss) [8, 9]
which are based on single active electron [10] atiér approximation, consider only
the HOMO contributing to the molecular ionizatiotdowever, these models
sometimes make failure prediction such as the aitm suppression of,f11, 12].
Thus, it is necessary to describe such strong-fiptdcesses usingab initio
wave-function approach. Then we have to solve thee-tlependent Schrodinger
equation of many-electron systems in space and twheh is beyond the capability of

current computer technology. To overcome this, ttapendent density functional
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theory with self-interaction correction has beecergly developed for nonperturbative
treatment of many-electron atomic systems in stfaids [13-15].

The technology for ultrafast laser pulses shapsgapidly and currently being
developed and the introduction of closed-loop |egrcontrol techniques [16h the
laboratory has advanced the realization of manytrobnexperiments. These
experiments include manipulating electronic exmta{17], compressing optical pulse
[18], enhancement of HHG [19], and redirecting rggetransfer in bio-molecules
[20].

Optimal control theory (OCT) is a field of mathematdates back to the late
1950s and widely applied in engineering. The appbhn of OCT to quantum
mechanics started in the 1980s [21,' 22]. 6a_|cu|ptds|e shapes may not only be used
to directly employ in the experimental setup, edp, an initial guess for genetic
algorithms, but also let us explore th'fe -i%s;‘-émb%ics inside the control system.

This thesis is organized as fcl_)llowg.' W(:e_ introdle basic theorems of ground
state density functional theory ana time-deper;den'sity functional theory in the first
two sections of chapter 2. Then, we outline theegalized pseudospectral method for
nonuniform and optimal spatial discretization of tiwo-center system. In chapter 3, we
review the concept and algorithm of optimal conthaory. In chapter 4, we investigate
multiphoton ionization and high-order harmonic gatien of homo-nuclear and
hetero-nuclear diatomic molecules such as®D, and @, respectively. And next we
show the results of quantum control. Lastly, chapteontains concluding remarks and

possible future extension of the current work.



Chapter 2
Theory of electron structure in
diatomic molecules

2.1 Ground state density functional theory

2.1.1 Hohenberg-Kohn theorems

The central statement of formal density:functioteory is the Hohenberg-Kohn
theorem [23] which, for non-degenerate “ground statan be summarized in the

following three statements:

e

1. The ground state electron déhgbt(y)' \uniguely determines the ground-state
wave function¥[p] as well as -t'he__e.xternal po:t_entia# v[p]. As a consequence, any
observable of a static many-pa-lrtic.:le s'ysterh'imatfunal of its ground-state density.
Here is the proof: Consider a system of N electawscribed by the Hamiltonian

A~

H

A A

V+

2

=T+V+V,

N N 1 N N 1 ’ 21
IR Wy oY
i=1 =1 I=l{¢=j1 i j

with the kinetic, potential and interaction ene[g;erators'I:, V, andf/ee (atomic units

are used throughout.)
For simplicity, assume the external poten(@) leads to a non-degenerate ground state

¥



HW=EW, (2.2)

g

for each¥ we then have the ground-state density

p(r)=(VIA[)|W). (2.3)

We want to show that two different ground stateg) = V'(r) (arising from two
different potentialsv(r) = v'(r)+ const) always lead to different ground-state

densitiep(r) = p'(r).

— @4
\1:>z<\1: Iy +V -\/}!@}:.-_E;+f r p € )WE ) V)

Due to the restriction to non-dégenefat_g_g_r_oﬂrixdzsﬁjuation (2.4) is a strict inequality.

=
a——

An analogous argument starting with', _f%:a_ad's to

E', < Bg+f P E)) < V(). (2.5)
Assuming p(r) = p'(r), the addition of equation (2.4) and equation (2€gds to the

contradiction
E', +E, < E,+ E}. (2.6)

Thus we derived that two different potentials coubd lead to the same charge density.
2. The ground-state energy Bnd the ground-state densipy(r) of a system

characterized by the potentifr) can be obtained from a variational principle whic

involves only the density, then the ground stagrgycan be written as a functional

of the density, & [p], which gives the ground-state energyiftand only if the true

ground-state densify(r) is inserted. For all other densitigs), the inequality

E, = E,[pd < E[A, (2.7)
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holds.
From the Hohenberg-Kohn variational principle,,ithe second statement given
above, the ground-state dengify) corresponding to the external potenti@l) can be

obtained as solution of the Euler equation

o
op(r)

E Lol - [ dr p(n)]=0. (2.8)

3. There exists a functional@[such that the energy functional can be written as
E Lol = FA + [ df An) ), (2.9)
the functional Fj] is universal in the sense that, for a given phatparticle interaction
(the Coulomb interaction in our cas_,e)', it__js indegent of the potentialy(r) of the

particular system under consideration, I.ey. it ti@s same functional form for all

systems.

=

The formal definition of the Hoheri'Bgfg-;-Kohn funaiad Flp] is well known,

Pl = (U [Eflhd ) S TR DD (2.10)

where W[p] is that N-electron wave-function which yields ttensityp and minimizes
the expectation value of +\7ee. However, the explicit density dependence gf] F[

remains unknown. Approximations have been suggestexl oldest one being the
well-known Thomas-Fermi approximation (which preeedthe Hohenberg-Kohn

theorem historically).

Most practical applications of DFT make use of ateesion of the original theory
which uses the partial densities of electrons wdifierent spinc as independent

variables,

n, () =>_[w, ), (2.11)



rather than using the total density.

2.1.2 Kohn-Sham equations

Density-functional theory can be implemented in ynasys. The minimization of
an explicit energy functional, is not normally theost efficient among them. Much
more widely used is the Kohn-Sham approach [24}erestingly, this approach owes
its success and popularity partly to the fact thdbes not exclusively work in terms of
the density, but brings a special kind of wave fioms (single-particle orbitals) back
into the game. As a consequence DFT then looksdibyrike a single-particle theory,

although many-body effects are still _inc'Iud__e_d.

In the KS formulation, the Hahiiltoniah__@('_N;elamnréystem:

.'!:--‘:

r\I/r——vtr\I/r_\I/r
KS( ) ( ) l ¥l effa-( )] ( ) € Ia( ) (212)
= 1,2,N,
where v (r ) is the effective KS potential. The total densgyiven by
N 2
(1) =W, (1) =p,()+p, (), (2.13)
i=1
and the ground-state wave function is determined by
wzﬁdet[qflmz....%]. (2.14)

The total energy of the ground state is obtained thy minimization of the

Hohenberg-Kohn energy functional
Elpp1=TeA + 1A +ELp, ol + [ vd 4D d, (2.15)

here T is the noninteracting KS kinetic energy,

6



. >, (2.16)

Vex{(I) IS the external potential due to the electronleus interaction, $] is the

classical electron-electron repulsive energy,

ol == f p|(r)_pr(r1)d ror (2.17)

and E([p] is the exchange-correlation energy functionalnikfization of the total

energy functional, equation (2.13Jbject to the constraint
f p.(H)dr =N, . (2.18)

Give rise to the KS equations with the effectivégpaial

63(ply, SEdp). ]
_0p, (N, o0, (1)

ext(r (r) i Vext(r) i

( ) : (2.19)
—vextwf = dr+vm<1
where y(r) is the exchange-cdrfel:e{tion poteh:tial,
O i
v, (1) 29EaleiP ] (2.20)

6p,(r)

The KS equations are to be solved self-consistestidyfing from some initial estimate

of the density,(r), until convergence is reached.

2.1.3 Approximationsfor the exchange-correlation functional

While DFT itself does not give any hint on how tonstruct approximate
exchange-correlation functionals, local densityragpnation (LDA) has remained the
approximation of choice for quite many years after formulation of the Kohn-Sham
theorem. In LDA, the exchange-correlation energyiven by

EAl = [ dran) 2], (2.21)

7



unif

where €." is the exchange-correlation energy per particleamfelectron gas with

spatially uniform density. It can be obtained from quantum Monte Carlo dattans
and simple parameterizations are available. Byvésy construction, the LDA is
expected to be a good approximation for spatidbyvky varying densities. Although
this condition is hardly ever met for real elecimoeystems, LDA has proved to be
remarkably accurate for a wide variety of systeimshe quest for improved functionals,
an important breakthrough was achieved with the rgemeze of the so-called
generalized gradient approximations (GGA) [25] . tWi GGA, the

exchange-correlation energy for spin-unpolarizestesys is written as

ECA L= [ k), W AD) (2.22)

While the input in LDA is unique, the:Tunctldnln GGA is not and many different
forms have been suggested. Wher!_ (':on'é:t'ruct:_ing a @BAisually tries to incorporate a
number of known properties of thé exact functi:éjnaj the restricted functional form of
the approximation. The impact of GGAs has been girdaenatic, especially in quantum
chemistry where DFT is now competitive in accuradth more traditional methods

while being computationally less expensive.

2.2 Time-dependent density functional theory

The central theorem of time-dependent density fonelitheory (TDDFT) is from
the concept of ground state density functional mpelh proves there is a one-to-one
correspondence between the time-dependent ext@uoi@ntial and the electronic
density. With this theory, we could develop a Kd&@mam like scheme to solve

time-dependent Schrédinger equation. Although the-to-one correspondence has

8



given us in principle an exact description of mahgetron quantum mechanics in a
time-dependent potential, the scheme is still inglete without some approximation to
the missing exchange-correlation potential. Thenatliabatic approximation [13, 26]is
often used, which we ignore all dependence on #%, @nd allow only a dependence

on the instantaneous density,

Vx?:dia[p]( r, t) - ch[ p]( r) |p( M=p(r.,t)" (223)

We begin by a set of time-dependent one-electrdird@mger-like Kohn-Sham

equations for N-electron atomic or molecular system
i%%(r,t) =H(rt), ()= —%VZ Ve, (1), (1) (2.24)

,i:1;2,-....l\lj,

where N (= N; or N)) is the total numbe_[_of__ei'ectron'é for a given spin

e
a——

The total number of electrons inithe é;stém isiBLN,. The time-dependent effective
potential v, (r,t)is a functioh’al__'of the_electron spin-densitie§r,t). The total

electron density at timd is determined by the set of occupied single-ebectr

Kohn-Sham spin-orbital wave functiong,, as

pED="S 0, =S ) =p C ) +p, € 1),  (2.25)

o i=1 o i=1

The effective potentialv, ,(o;7,t )in equation (2.24) can be written in the general

form
Ve, (031, 8) = Vi (N, D)+ Vo r, )+ v, () 1), (2.26)
where
p(r .’t) 1
v, (r,t)= |r — | dr', (2.27)

is the Hartree potential due to electron-electraul@mb interaction,v_,,(F,t )is the

external potential due to the interaction of thecebn with he external laser field and
9



the nuclei. v,._(r,t) is the time-dependent exchange-correlation pakenti

XC,o

Note that if the conventional explicit exchangeretation energy functional forms

taken from local spin density approximation or gaheed gradient approximation are

used, the corresponding exchange-correlation patemf. (r,t) will not possess the

correct long-range asymptotic (-1/r) behavior. Henee adopt the improved LB

potential[27], v:>7

xc,g !

which contains two empirical parametersand § and has the

following form

Vieo (r, 1) = o VA, £+ VoA, 1)

_ L B , (2.28)
1438, () I, (r, )+ 05, 9 +1*7

here, p, is the electron density with spi and we use = 1.19 and3 = 0.01. The

X, o0

first two terms in equation (2.28)/LS'5A'_E_~}:';)_’~_' and viSPA(r,t) are the LSDA exchange

i1
| |

and correlation potentials that.do [not have theectrasymptotic behavior. The last

4/3
o

term is the nonlocal gradient correction WiK) (I’):|Vp(, (r)|/p (r), which ensures

the proper long-range asymptotic potentizif;’(r,t) — =1/r as r— oo. For the

time-independent case, this exchange-correlation p&ential has been found to be

reliable for atomic and molecular DFT calculations.

2.3 Generalized pseudospectral method for

two-center systems

In this section, we present the procedure of theegdized pseudospectral (GPS)
method for non-uniform and optimal spatial dis@ation of diatomic systems[28-30].

We shall use the prolate spheroidal coordinateth®description of the system. Prolate

10



spheroidal coordinates,q,yv) are a three-dimensional system of coordinates roédai
by rotating a two-dimensional elliptic coordinatgstem about the focal axis of the
ellipse. The angle of rotation is defined¢{@ < ¢ < 271 . With the foci located at +a
along thez-axis andr; and p denoting the distances to the two foci, the dinmrsss
coordinategé,n)are defined as [31]

rn-+r,

§= (1< <o),
2a (2.29)
n=1"l2 (—1<y<2),
2a
and the back transformation to Cartesian coordiniate
x=ay/(¢* ~1)(1- 1) cosp
(€ =1)(1-=n")sing . (2.30)
X = an
The Laplacian in these coordlnates is ér".-:-'
1 1 0
v =—22—-[—(£ RIEL 2 AL
a 8 on 0
*—n?) o 3. n | (2.31)
N &—ntv ;0 ]
(& —-D(A—n?)0¢°
and the volume element is
dV=a(—n?) ddhdb. (2.32)

Due to the axial symmetry with respect to the mathe projectiorm of the
angular momentum onto the molecular axis is comskrfhus the wave function

Y(é,n,¢) can be represented in a separable form,

U(E,n,0)=pEn)E™ (m=0,+1+2,....... (2.33)

The unperturbed Hamiltonian for diatomic molecuges

11



V? Z, Z,

= TR R 1]

+Veor) + Vi, (1) (2.34)

Ziand Zare the electric charges of the two nuclei.aRd Rare the position of them
which have been put on the foci alangxis. Direct applying this Hamiltonian into the
pseudospectral discretization leads to an asymeneigienvalue problem. We will use
the alternative but equivalent variational forntlod Schrédinger equation
6 [drw’ (H—E)w
A

—0. (2.35)

Also for even and oddh, we should use different expressions for kinetiergy
operator. This is done to ensure: accufate ‘numesoaltions of the differential
equations for both even and _oda prqjection_é of mgnomentum (note that the exact
eigenfunctions have factor(f_z- —1)'m"'2(i";—':ﬁf_':)_‘“-“"--2 which are non-analytical at nuclei for

odd m[). Now we discretize equatidn (2‘34) with GPS mdthnd have the following

equation for evemvalues,

m’ B Zl<€i =7 )
2a’ (f -1~ 77]2) a(‘éz—mz)

ZIT:., +

i

Z,(5-m) : (2.36)
2\Si 7
_m—i_veE(g”n )+VXC.U(£I’T] )] i - E¢m;ij
and oddm values,

ZT"O" m2—1 1+§2 _Zl(gi_nj)

T 2@ D)) @€Y akt )

z (g ) (2.37)
2\Si 7 -
— a(é_ig_nj) ee(gﬂn )+ch,a(£|’n )] i - E¢m;ij

Here the quantitiesp . are related to the wave function at the discrdtzeordinates,

12



U (5 7]) mlj 1_y]2 Nx()g)l:l)\lyl(yj) (238)
| V& N IEX (& —nd)

Pux(X) and Piy(y) are the Legendre polynomial and it's derivatiVee kinetic energy

matrices T, and T2, are calculated as follow [32],

o= ! L -
S = J&"m-'@?—ﬁ

[5 Ny g e N , 2.39

k=1 Sk (:H‘ Xk
+6|| \[1 y] \[ 1_ Z 1(1 nky qy QJ ]
and
L1 1 R, _%
VT o \/5 n; (€3 Mn})\/é 65—
3 , 2.40
ey (HxK)OL.dK. 240
(1_'77k kydky
77k (1_yk e

Note that the potential terms are diagonal in tbeupospectral method. They are
represented by their values at the discretizeddioates, so no calculation of potential
energy matrix elements is required. The kineticrgyenatrices are given by simple
analytical expressions (2.39) and (2.40) which banreadily programmed into the
computer code. Straightforward programming impletagon and high accuracy for
moderate number of collocation points constitute thost attractive features of the

generalized pseudospectral method.

2.4 Numerical solutionsof the TDDFT equation

The advantage of time-dependent generalized pspadival (TDGPS) procedure

13



is that it allows nonuniform and optimal spatiaidgdiscretization (denser mesh near
each nucleus and sparser mesh at larger elect@aususeparations). This improves
greatly both the accuracy and the efficiency of tlkctronic structure and

time-dependent calculations. For processes suklH&s accurate time-dependent wave
functions are required to achieve convergence dimeantensity of various harmonic

peaks can span a range of many orders of magnitude.

Consider now the solution of the TDDFT equatiorasténto the following form:

i%\lf(r,t)z H 0T, 00 =Ho+V 0], (1) i=12,. N, (241)

where ﬁo is the time-independent Hamiltonian, anﬁ(r,t) includes the
electron-laser field interaction and otﬁer reéidi.mé-dependent terms in

V(0= €0 st (D=3 O W €0 v, €0, 2.42)
here E(t) is the electric field pakall_el Ito tr;-.eeinm:_clealz-axis, and E(t) = Ff (t), where f
(t) is the envelope function -of £he' Iaser"pulse. Bell extend the second-order
split-operator technique in prolate spheroidal dowmtes and in the energy

representation [33, 34]for the propagation of imdlinal spin-orbital

U(r,t+At) ;e—i\f(r,t)mlze—il:lo(r)m éi\i(r ,t)At/z\I,(r' )+ QA f) (2.43)

Note that such an expression is different from tl@ventional split-operator
techniques, wherel—AIO is usually chosen to be the kinetic-energy operaial V the

remaining Hamiltonian depending on the spatial doates only. The use of the
energy representation in equation (2.43) allows #plicit elimination of the
undesirable fast-oscillating high energy componemtd speeds up considerably the

time propagation.
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To pursue the time propagation, we first discretlze Hamiltonian by the GPS
method introduced in the last section. Then theeManmction on the pseudospectral

grid, (r,t), is first propagated according to

T(r,t)=e VOOray ity (2.44)

iV (1 DAL/ 2

since e is a diagonal matrix in the coordinate repres@mathis is a fast step

as far as the CPU time is concerned. To pursuadkestep of propagation in thlaIA0

energy space, we construct the time-independemhttwo operator

g MM = g (2.45)

by means of the GPS discretization and solutiahefield free Hamiltonian

H (€, n)xk(ﬁ_q)—ekxk(&’ 7). (2.46)
Then the matriXxS can be constructed asrv =

Zxk(r )xk (n, )e'*‘“ (2.47)

note thatSis a complex symmetric matrix and needs to betcacted only once. Thus

the time propagation in the energy space,

T t)=e MONy (¢ )= ST (1), (2.48)

is reduced to the matrix-vector product which canperformed efficiently using the
basic linear algebra subroutines. Note that simdg @ modest number of grid points
are required in the present method, and since balfy of the grid points in the
coordinate are required for homonuclear diatomitegwdes, the overall operation is
rather efficient. Finally we perform another fasbgagation step similar to that in

equation (2.44):

(r,t+At) = e VE0M2g e ) (2.49)
15



This completes one time propagation step in equaii®.43). After the
time-dependent single electron wave functiohs are obtained, the total electron

densityp(r, t) can be determined.
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Chapter 3
Optimal control theory

3.1 Basictheory

We consider an electron in an external potentia) Mder the influence of a laser
field align in thez-direction. Given an initial stat#-o=¢, the time evolution of the
wavefunction is described by the time-dependent@&@tihger equation with the laser

field modeled in the dipole approximation:

£0 X
ik f \I/(rf_.,t):ll-|..__\11(r o (3.1)
4 s 7). 32
_ﬁo___:" —%2 FVAE), (3.3)

[ is the dipole operator, ar(t) is the time-dependent electric field.

We want to construct a laser pulg®) that drives a quantum system to the final

state¥(T) and maximized the expectation valijef an operatoré at the end of the

external field:

3[0] :%f;@(o Jucy) a, (3.4)

The target operatoé is restricted to be a Hermitian operator, andait be consistent

with two parts

Oty =2Ts(t—T)Q + O(Y, (3.5)

17



(31 is the final-time target operator, arfa2 is the time-dependent target operator.

In addition to the maximization df[W], we require that the fluence of the laser
field be as small as possible to avoid irratior@lons and it is cast in the following

form:

MEEEINEOR: (3.6)

a is a positive small constant which play the rofepenalty factors, and high laser
fluence will cause more negative the expressioe. @dnalty factor can be extended to a
time-dependent functiom (t) to enforce a given time-dependent shape ofa$er pulse,
e.g. a Gaussian or sinusoidal envelo_pe'.

The constraint that the eleetronic Wwavefunction Has propagate with the

—
a——

time-dependent Schrédinger 'eduatioh_QDSE) is Sécandzby[BS, 36]

i
| i

I, e y] = __z'-mil j; T-<X(t)‘.i.'§t:‘_— & (t)‘ \If(t)> dt, (3.7)

Here we have introduced the Lagrange multip}{€r. Since we require the TDSE to be
satisfied by the complex conjugate of the wavefiancas well, we obtain the imaginary
part of the functional.

The Lagrange functional has the form

Ve, x] =W+ 4 + X Vs ), (3.8)

We refer to this functional as the standard optiroahtrol problem and start the
discussion of all extensions considered in thiskwoym this standard form.

To find the optimal laser field from the functionalequation (3.8) we perform a
total variation. Since the variabl& y ande are linearly independent we can threat

them individually. We have omitted the derivatiomsth respect to the complex
18



conjugate of the wavefunctio®*(t) and the Lagrange multiplieg*(t), since the
functional derivative will result in the complexrgagate equations for these variations.

The necessary condition for a maximum of J is

6J=0 — 46,J=0, 6.J= 10,6 J= | (3.9)
The functional derivative of J with respectifo

6= df{%<m(f)\q5qf(7)>+ i<(i8%— A)x(r) |5\11(¢)>}
~(x TP T)+(x (¥ (9)

(3.10)

The variation of6'¥(0) vanishes because we have a fixed initial camdit¥(0) =¢.
Then it's the variation of J with respecttoand in contrast to the variation with respect

to ¥ we do not have boundary terms here

:_|f d7<(l H(T))\If(T)I5X(T)> (3.11)

Finally, the variation with respéét a(x) yields &

6= " dr{-2as(x) 221 (x(7) || w(r) s, (3.12)

Setting each of the variations independently ta zeill result in the desired control

equations.

3.2 Final-timetargetsand algorithms

In this section we introduce the scheme to soleedptimal control theory with

final-time target[22]. Frona.J = 0 we find
ae(t) =—Im{x )| T(t)). (3.13)
The laser fiela(t) is calculated from the wavefunctidif(t) and the Lagrange multiplier

19



x(t) at the same point in time. The variati@pJ in equation (3.11) yields a

time-dependent Schrédinger equation'#gt) with a fixed initial stateg,

(i%—l—](t))\l/(r,t):o, U ¢,0)=0¢ (3.14)

Note that this equation also depends on the lasdre{t) via the Hamiltonian.

The variation with respect to the wavefunctiad results in

(i%—l:l )X =i (x(r 1) =0, (r 1)s¢ -T), (3.15)

if we require the Lagrange multiplig(t) to be continuous att = T , we can solve the

following two equations instead of equation we gnéte over equation

(2 =0 (3.16)
e ok, ). (3.17)

To show this we integrate over equatiorf::'-.

iim [ dt(ig—lfl(t))x(.r.,t)'l-:lim T Tf“:dti(g(r,t)—élxy(r,t))é(t-T), (3.18)
w—0J Tk ot 0] THE
the left-hand side vanishes because the integmar@ddontinuous function. It follows
that also the right-hand side must vanish, whicplies equation(3.17). From equations
(3.17) and (3.15) then follows equation (3.16). Hence, ltdagrange multipliery(t)
satisfies a time-dependent Schrodinger equatiom avitinitial condition att=T.

In the following, we present the standard approsdbesolve the optimal control
problem[37]. As the word iterative already indicaté will be necessary to solve the
time-dependent Schrodinger equation more than omoeen with the present
computational resources this limits the applicatiointhe algorithms to relatively

low-dimensional systems.

20



The scheme starts with propagatigg = Wo(0) forward in time. After the initial

propagation we determine the final state for thgrange multiplier wavefunctiog(T )
by applying the target operator to the final statehe Wavefunctionél‘Po (T). The

laser field for the backward propagation fei(t ), £(t) is determined by

50 =~ Im(x, 0] T, 1) (3.19)

The propagation fromy (T ) toye (T — dt) is done with the fielg, (T ,)where we usgg
(T) and¥y (T) in equation (3.19). The small error introdudeste is compensated by
choosing a sufficiently small time step. In paraiee propagat&, (T ) backward with
the previous fieldeo(t). This addition_al 'par_z_allel propagation is onlgcessary if the
storage of¥y (t) in the memary is net possi.ble. For the nexdpaigation step from(T

— dt) toyo (T — 2dt) we us\é‘o'("l' = dtj _@_r_]q})_go'(T = df) in equation (3.19). We repeat

=
a——

these steps untyy (0) is reached. We sﬁrm:i.r-ﬁarjze the whole iteratiep by

[0 (T) 5 )= LT, (O)]

- b <3 - 7 ‘ (3.20)
OV (T) =X (1) = =)= x, (O
The last part of the zeroth iteration step consistsetting?1(0) = ¢ and propagating

¥,(0) forward with the field:;(t) determined by
1 -
fea®) = == IM (O] s ) (3.21)

This completes the zeroth iteration step. The lisagosed by continuing with equation

(3.20).

If the initial guess for the laser field is apprape the algorithm starts converging very
rapidly and in a monotonic way, meaning that thieiedor the functional J in equation
(3.8) is increasing at each iteration step. The otamc convergence can be proven

analytically. In the proof an infinitely accurateolgtion of the time-dependent
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Schrédinger equation is assumed. Since this igpassible in practice, it may happen
that the functional decreases in the numericalreehe.g., when absorbing boundaries
are employed. This sensitivity provides an addaloocheck on the accuracy of the

propagation.

3.3 Time-dependent targetsand algorithms

In this section, we deal with the time dependengets [38, 39]. The control

equations are the same as last section excepatlaion respect t¥,
.0 A 1 -
('E_H O)x(r ,t)z—;Oz‘I’(r ., xCT)=C (3.22)
Its solution can be formally written as
4 ) 1 it S ~
A1) =Ugx(s0) = [ d7ONOA) r . 1)]. (3.23)

where L]g is the time-evolution operatb'_r',';.cdéf-ined by

A

Ug¥ 'r__e'xp[—i fo tdt"lf| t )] (3.24)
with the time-ordering operatof.

Equipped with the control equations (3.13), (3.18.22) we have to find an
algorithm to solve these equations &). In the following, we describe such a scheme
which is similar to last section. The additionalrgraetersn and & have been
‘artificially’ introduced (not derived by a funct@l variation) to ‘fine tune’ the
convergence of the algorithm. A monotonic convecgeinJ can be proven ifiJ [0, 1]
andéLl [0, 2]. Herego is always the penalty factor.

The algorithm starts with propagatiti(0) = ¢ forward in time with an initial
guess for the laser fiekd(t). The backward propagation gi(t) is started fromy(T ) =
0 solving an inhomogeneous time-dependent Schrédieguation which requirel (t)

as input,
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(W, (T) — g (t)— v, (0)]
(M) =0 —& 0¥, t) X« (0,
The brackets indicate that the storage of the wanatifon ¥, (t) can be avoided if we

(3.25)

propagate it backwards in time as well us#@). The backward propagation gi(t)

requires the laser field determined by,

5 () = (= ne @)~ Im(x, 0], ). (3.26)

The next step is to start a forward propagatio¥¥40) = ¢

[x(0) - v, ) x T
[T,(0) —et)— v 1), (3.27)

U, ,0) —e,t)— e, T

and calculate the laser field

() = (5 O I O] ¥ . 1) (3.28)
If we want to avoid storingg(t)'in the memory, we have to perform an additional
forward propagation which*in tum réhﬁu”ires the ‘kfemge oW, (f). These extra
propagations are indicated by.thele'xp'r:é_Ssiqns ackiets. After the time evolution is

complete we can close the loop and ‘continue \)(/itfatbqn (3.25).

3.4 Conjugate gradient method

Here we outline the concept of the conjugate gradigethod.

The gradient at the k-th iteration can be evalubiethe expression

0.0 = =~ Im{x, (O] ]V, (1) (3.29)

K [0
To search for an optimal field, one may invoke RdRbi’ere-Polyak search direction
as follows
d.(t)=g.(t)+n.d (1), i=L2,..N, k= 1,2,.. (3.30)
where the starting direction is

do(t) = go(t), i=1,2,..N, (3.31)
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which is the gradient corresponding to the initeler fieldey(t), the conjugate gradient

update parameter

Tran
nk— (gk 9 1) (3.32)

gk 1gk 1

with Tran denoting the vector transpose am™ =(g,(t), g,(%).......g (t,)), the

transpose of the vectok glue to the discretization of the time interval TQ,into N

slices. The time-dependent laser fieffis updated according to
eant) = (t)+Ad (t), i=12,..N, (3.33)

The constank, is a step length that maximizes the cost funetidife +1] (for the (k +

1)-th iteration) and can be determined by a liredeat each direction.

3.5 Constraintson the optlmal fields

The optimized laser field dlrectly ﬂ'btalned by ‘iterative scheme usually filled
with very high frequency and _unrgallstlc behavugnals. Thus we shall take further
restrictions on the optimal ﬁeld::' to derive fheum in better sense. But these
constraints have to put into scheme carefully, thenotonic convergence is not
guaranteed here after the implementation of them.

Fluence constraint
In order to fix the fluence of the optimized lapeitse to a given valuggEwe have

to replace the functiona} by

e e 2 _
—a fo die(1) EO}. (3.34)
Herea is a Lagrange multiplier. We have to vary withpest to it when calculating the

total variation of J. The variation with respectitcesults in an additional equation

[ "dte()? = E, . (3.35)

In the case where is a penalty factor its value has to be set eathrnwhile here the
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additional equation can be rewritten [40] to deiesmthe value of the Lagrange
multiplier a.

Inserting equation (3.13) into equation (3.3B¢lds

1 p7 " 2
= | dt{Im(x(®)|i] ()] =E,
-7 J, dim( ) 539

T R 2 '
—a= \/j; dt[im (x(t)[2| v(0)] /&,
The remaining part of the functional stays the sasudhe variations do not change, and

we keep the control equations:(3.13).(3.14), (3.46) (3.17)

L aser-envelope constraints
If we want the laser pulse has an Wh‘_ére S(t) ipthse envelope function and is
to force the laser field to becomé zero at the_fhm'g'g. and the end of the pulse
E() FI80E00 (3.37)

for example:  S(t) =sin*|(fr )/ ]|

Spectral constraints
If spectral filtering is required, we formulate tbenstraint with the help of a filter

functionh(w), the Fourier transforr® and its invers& ™
&.(t) = F[h(w) Fl, (01 (3.38)

h(o) is a filter function, for example

h(w) [ 1+ [ﬂ] n
w

Which is the Butterworth bandpass filter withand w, being the low and high cutoff

1+ [i] ] , (3.39)

Wh

frequencies (e.g., corresponding to a Ti: sapplaiser of the wavelength around 800

nm, the pulse duration between 100 and a few fesntowls).
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Chapter 4
Results and discussion

4.1 Orbital energies

Table I (A) Spin orbital energies of diatomic nmiées of present DFT calculations with LB

potential(a.u.). (B) Experimental vertical ionizatipotentials(a.u.).

Molecule Bond length  Orbital lon stat& B[41-43]
N 2.072 by -14.7951 -15.0492
loy ¢ 19, -14.7939 -15.0492
264 . <-112153 -1.3708
25, - N, -0:6778 -0.6883
1] L/o|  -0.6190 -0.6233
gk || 4 || 05675 105726
CO 2.132 & .-19.6134 -19.9367
26 110.6548 -10.8742
3 -1.2544 -1.3964
4o -0.7066 -0.7239
I -0.6270 -0.6247
56 -0.5082 -0.5144
0, 2.287 2l 2y -0.9683 -1.0037
264 o -0.8809 -0.9029
341 2y -0.7210 -0.7463
304 Ty -0.7192 -0.6680
Iyt 1, -0.6667 -0.6485
) ‘M -0.6307 -0.6140
Ing? 1, -0.4799 -0.4522
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The ground-state electronic configurations of, N CO, and @ are
102102202 2024m}30% , 10°20%30% 40’507, and 102103202 210230117,
respectively.

In Table I, we summarize the energies for the gphbitals that have a significant
contribution to MPI and the corresponding experitakrertical ionization potentials.
While N, and CO represent the spin compensated case withatime orbital energies
for both spin projections, Ls a spin-polarized system where the spin orleitedrgies
depend on the spin. With the correction of longgeahehavior of the coulomb potential,
the agreement between the calculated and expeamesmtues is fairly good,
particularly for Nand CO molecules._

The CO molecule was unequal nucleér charges, argtound electronic state has

a permanent dipole moment about :0_.;_1\2_: -Debye.'-'Amoirtversion symmetry of the

e

potential is broken. This w.iII cause ;trt'u;-St_ark eﬁand the HOMO energy shift
significantly from its unperturbed _\I/'allue. 'i'h@!kf_hd Q molecules are symmetric with
respect to inversion, thus the Sta;k shift'is daﬁdrin the field strength and its value is
quite small. Here, we performed the self-consisi2iRT calculations of Mand CO in
the field parallel to the molecular axis to estienhow large the Stark shift changes the
ionization potential.

The field strength is 0.01195 a.u. which correspaocthe intensity 5xX6A/cn.
From Table I, we can see the shift of the HOMOrgpen CO molecule is large even

in the field as weak as 5x*@V/cn?.

Table I HOMO energies of Maind CO molecules in DC electric field(positive diairection is from C
to O)

Electric field(a.u.)HOMO energy of Ma.u.) HOMO energy of CO(a.u.)

-1.195E-02 -0.5672 -0.4971
0 -0.5675 -0.5082
1.195E-02 -0.5672 -0.5198
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4.2 Multiphoton ionization

Once the time-dependent wave functions and thexefa time-dependent electron
densities are obtained, we can calculate the tiepedent multiphoton ionization

probability of an individual spin-orbital according
R,=1-N_(1, (4.1)
where

N, (O=(¥, 0%, ©), (4.2)

is the time-dependent population (su'rvival-'prpbak)ibf the io-th spin-orbital.

]
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Figure 4-1 The time-dependent population of elewtroof individual spin orbitals of Oin

20-optical-cycle, 800 nm, Sitaser pulses. The laser intensities i5* 1@/cn?
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Figure 4-2 The time-dependent population of elewtroof individual spin orbitals of Nin
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In Figure 4-1~Figure 4-3, we can see the ordehefidnization probability of each
orbital is not totally dependent on their ionizatipotential. For example in Figure 4-2
(b), although %, has lower ionization potential thaw2 the ionization probability of
the In, electrons turns out to be less than that of e éectrons. However if we
arrangec and= orbitals individually, orbitals have lower ionizat potential always
ionize more. This may be attributed to the fact #&g orbital is along the electric-field
direction, while that of 4, is perpendicular to it. We thus observe two dédfereffects
that contribute to the ionization: the ionizatioostgntial (electron binding energy) effect
and the orbital orientation effect. The ionizatipatential effect makes the electrons
with lower ionization potentials. easier t(; i_onithe orientation effect makes the
ionization easier for those electrons-whose orloitentations are parallel to the electric

field. These two effects are clearly competing.

The multiphoton ionization Bccurs main:fy in theneling regime in intense
low-frequency laser fields. The probability of theaneling ionization is very sensitive
with respect to the HOMO energy. From last sectvoe know that the Stark effect will
shift the energy potential of the CO molecule laygdhus we can observe the

ionization probability of CO molecules is much larghan that of Nand Q
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4.3 High-order harmonic generation

The time-dependent induced dipole moment can novalmeilated as

= [ z(r,9¢ = d, (9 (4.3)
where

d, () =n, (T, (r.0]4%,(,9) (4.4)
Is the induced dipole moment of theth spin-orbital. The corresponding HHG power

spectrum may now be obtained by the Fourier tramdféne respective time-dependent

dipole moment

Lopsicpdesy —iut i
5 f d(e d) (4.5)

f i b

P(w) = f

-

AL

In

Figure 4-4, we present the highTOFd%-l’ h.airmonic i power spectrum of N
CO, and Q. The cutoff regime i_'n.th:e" Nand Q fﬁaleéules is clearly shown and increase
as the field grow stronger. The most ﬁotable futirne spectrum of the CO molecule
is existence of both odd and even harmonics whilers only generate odd-order
harmonics. In an earlier study, even-order harnsooan be produced only by means of
the breakdown of the Born-Oppenheimer approximation

From Figure 4-5 to Figure 4-10, we show the indudgmble moment and HHG
power spectrum of several orbitals. We can se¢&tb®O is the dominant contribution
to the total HHG power spectrum, but the calcufaiof inner electrons also have to be

included for the accurate and detailed results.
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Figure 4-4 The HHG power spectrum of iN the field intensity (a) 5 x#®W/cn? and  (b) 1& Wicn?,
of CO in the field intensity (c) 5 x¥dW/cn? and (d) 1&* W/cn?, and of Q in the field intensity (e) 5

x10" W/cnt and (f) 18* W/cn?, 800nm, siflaser pulses.
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Figure 4-5 Comparison of the induced dipole monwil, from different spin orbital in 16 W/cn?",

800nm, sifi laser pulses
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Figure 4-7 Comparison of the induced dipole mon@rtO from different spin orbital in &6W/cn?,

800nm, sif laser pulses
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To investigate the detailed spectral and temparatsire of HHG., we perform the
time-frequency analysis by the wavelet transfornthef total induced dipole moment

d(o),

At )= [dOW . (ddt= d(), (4.6)

W(X) = @) e’’””, (4.7)

The parametet= 15 is chosen to perform the wavelet transfornmaiiothe following
study. In Figure 4-11, the time profiles show seé peaks separated by about half the
laser period. These peaks, which indicaté the mistéduring the laser excitation) at
which the harmonic is emitted. Fbr b_otla ahd_ co molecules, the emissions take place
near the center of the laser field eﬁ@g@é:- Ferh molecule, it shows that every
half-cycle high-order harmonies are'-%:'erﬁitted, aneé tharmonics are partially
synchronized as their peaks _'a.ppéars at _s'li:g:htﬂ.yerd'rﬁt time position. For the CO
molecules, the number of dominant emissions pdcaptycle is now limited to only
one. This result is in contrast with the stronddfiecollision model [44]which state that
every half-cycle the electron wave packet retuorsaf recollision with the molecular

core. The CO molecule also appear to have morehsgnized harmonics
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Figure 4-11 Time profiles for (a)MNand (b) CO. Laser intensity used is“1W/cn?, wavelength used is

800nm, with 20-optical-cycle in pulse duration.
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4.4 OCT on two-level system

A two-level system consists of two orthonormalesata) and |b). The state vector at

timet is give by

(4.8)

B} = e, (0] 8)+ 6 (0] B — [“a‘t’]

G(1)

The time evolution of|W(t)) is described by the time-dependent Schrodingeatesu

with the Hamiltonian in the basif) _and|b), given by

3 | 0 [0
iAW)

o

B

For an arbitrary laser fieldt ,)the_ time-dependent wavefunction is only numelycal
solvable.

We start with the final-time control. The initialawefunction is in stat¢a> . We want it
to end in state| b> after the interaction with the electric field. Ehtlne target operators
are O, =|b)(b| and O, = Q Standard scheme is used here.

Figure 4-12(b) shows the population is completednsferred from stat¢a> to

|b> and the optimized laser filed in Figure 4-12(anisnochromatic as expected.
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occupation humbers for the system propagated Wwéloptimized pulse. (c) Convergence gdrid J over

the iterations.
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The time-dependent target wave function is choasen

|p(t)) = a(t)e ™

8)+B(e'

b (4.10)

where the coefficientsa(t )and S(t ) are real and satisfy the following relations
a?(t) + f2(t) =1, O,=0,0, =|@t){@At)|. We apply the conjugate gradient method to

this scheme.

From Figure 4-12 to 4-14, we can see the contglliesults of different type
targets are all quite successful. The first reBulFigure 4-12 using standard scheme
with the rather simple final-time target take_é. ab#o iterations to reach the numerical
convergence. While the other fwo _time-de_bendergetar combined with conjugate

gradient method, the iterations needédi:ggr_é"gre@ﬂilyced to less than a hundred.

i
| i
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Chapter 5
Conclusion and perspectives

We use the generalized pseudospectral method &t ff®DFT equations
accurately and efficiently. Calculations on MPI ad#iG of diatomic molecules are
presented. The ionization potential of each orbiitat been accurately treated with
correct asymptotic long-range effective potentiging LBo exchange-correlation
potential. We have observed that ionizatiq_n po&drsi not the only dominate factor of
the ionization rate in diatomic molecules. In.certaser intensities, the orientation of
the molecular orbitals changes the g-rd_g__r‘pf'iomme-l't‘-i'he detailed HHG spectrum and
time profiles are analyzed by the wavérgt.jtt.ransm'm. The major contributions to the
higher order harmonics are frém__HbMO which s iemiznost. We also see the first
order Stark effect from the pérm;me'nt dipéle monadrthe CO molecule causes the
large ionization probability. Moreover, breaking thie inversion symmetry produces
even-order harmonics and allows only one main aanss one optical cycle.

HHG is related to the generation of many moderarléschniques. Our final goal
is to control and enhance the intensity of a spe&iirmonic. In this thesis, we have
presented realistic two-energy level of systems dhatoms or diatomic molecules and
have successfully manipulate the optimal controkotl. Both final-time and
time-dependent control have match the targets mimaa 99%. Introduction of the

conjugate gradient method into the OCT greatly ceduthe iterations needed to reach

convergence.
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