
國立臺灣大學電機資訊學院資訊工程學系

碩士論文

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

實作基於 Rust之安全 Linux KVM虛擬機器監測器

On Implementing a Secure Rust-based Linux KVM
Hypervisor

章瑋麟

Wei-Lin Chang

指導教授: 黎士瑋博士

Advisor: Shih-Wei Li, Ph.D.

中華民國 112年 7月

July 2023

doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

i doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

ii doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

致謝

首先，我要衷心感謝我的指導教授黎士瑋博士。在研究期間，您的指導和建

議讓我受益匪淺。您在研究期間的建議不僅帶給我研究上的進展，其蘊含的分析

角度也常比我自己的想法還更全面且有條理，讓我學到評斷一件事情更完整的思

考方式。在撰寫論文的過程中，您不辭辛勞地審閱我的稿件，指出其中的邏輯謬

誤和解釋不清之處，使我在學術寫作和邏輯闡述方面精進了許多。

本論文的完成亦得感謝擔任我口試委員的黃敬群 (jserv)教授與蕭旭君教授，

您們的寶貴意見和建議使得我的論文更加完整和嚴謹。此外，感謝江昱勳與杜展

廷同學的合作和貢獻，沒有你們的協助，KrustVM的研究和論文投稿將不會如此

順利地完成。我也要衷心感謝我的家人和朋友們，是你們的支持讓我能夠順利完

成論文。

特別感謝 OpenAI的 ChatGPT，它不厭其煩地幫助我優化論文的英文表達。

許多論文中的文字，包括本致謝部分，都得益於它，使得我的論文變得更加通

順、清晰和流暢。

最後，謹以此文獻給逝去的歲月。

章瑋麟

中華民國一百一十二年七月

iii doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

iv doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

摘要

通用的虛擬機器監測器在雲端計算環境中發揮著至關重要的作用，它們負責

監管虛擬機器的硬體資源。然而，其日益複雜的設計和廣泛的攻擊面引發了重大

的安全憂慮。攻擊者如果利用特權虛擬機器監測器的漏洞，就能夠不受限制地存

取虛擬機器中的數據，從而危及其資訊安全。以前嘗試將虛擬機器監測器重構為

小型受信任核心的嘗試存在局限性，因其安全性仍然依賴於受信任核心的實現。

此外，對 TCB的形式化驗證需要大量的人力投入，難以適用於快速發展的軟體專

案。最近，由於其強大的記憶體安全保證和高性能，Rust語言的應用逐漸增加。

本論文着眼於解決將 SeKVM中基於 C語言的 KVM（內核虛擬機器）TCB改寫並

遷移到 Rust的挑戰，為此選擇了最近版本的 Linux長期支持版本。通過這樣的改

寫，我們實作出的虛擬機器監測器 KrustVM不僅能從最新的 Linux進展中獲益，

而且還能受益於 Rust提供的安全保障。KrustVM的設計重點在於最大化其不安全

Rust程式碼的安全性。我們將不安全程式碼與安全 Rust隔離，並通過安全抽象將

不安全程式碼最小化。此外，利用 Rust的型別系統，我們確保了受信任 Rust核

心進行的不安全記憶體訪問的安全性。與 KVM和 SeKVM相比，KrustVM的性

能損失不大，展示了通過 C到 Rust的改寫來保障現有虛擬機器監測器的可行性。

關鍵字：系統安全、作業系統、虛擬化、KVM、Rust

v doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

vi doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

Abstract

Commodity hypervisors play a vital role in cloud computing environments by over-

seeing hardware resources for virtual machines. However, their growing complexity and

extensive attack surface pose significant security concerns. An attacker that exploits vul-

nerabilities in the privileged hypervisor codebase can gain unfettered access to VM data,

compromising their safety. Previous attempts to retrofit hypervisors into small trusted

cores have limitations, as the security still relies on the implementation of the trusted

core. Moreover, formal verification on the TCB necessitates significant human effort and

is not easily applicable to rapidly evolving codebases. Recently, Rust adoption has been

increasing for its strong memory safety guarantees and performance efficiency. This the-

sis addresses challenges in rewriting and porting the C-based KVM TCB in SeKVM to

Rust for a recent Linux long term support version. This allows the resulting hypervisor,

KrustVM, to not only benefit from recent Linux advancements, but also be protected by

Rust’s safety guarantees. KrustVM is designed with a focus on maximizing the safety of

vii doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

its unsafe Rust usages. We minimized and separated unsafe code from safe Rust by en-

closing unsafe code within safe abstractions. Additionally, Rust’s type system is utilized

to ensure the memory safety of the unsafe memory accesses done by the trusted Rust core.

KrustVM incurs modest overhead compared to mainline KVM and SeKVM, and demon-

strates the practicality of securing existing hypervisors through a C-to-Rust rewrite.

Keywords: System Security, Operating Systems, Virtualization, KVM, Rust

viii doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

Contents

Page

Verification Letter from the Oral Examination Committee i

致謝 iii

摘要 v

Abstract vii

Contents ix

List of Figures xi

List of Tables xiii

Chapter 1 Introduction 1

Chapter 2 Background 5

2.1 Overview of the ARM Architecture 5

2.2 KVM ARM . 7

2.3 HypSec . 8

2.4 SeKVM . 9

2.5 The Rust Programming Language 9

Chapter 3 Assumptions and Threat Model 17

Chapter 4 Implementing a Linux KVM TCB in Rust 19

4.1 Forward Porting SeKVM from Linux 4.18 to Linux 5.15 19

ix doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

4.2 Integrating Rust and Linux . 21

4.3 Rewriting C-based KCore into Rust-based Rcore 22

4.3.1 The Rewrite Process . 22

4.3.2 Rust Code Organization . 22

4.3.3 Rust-Rewrite Challenges . 24

4.3.4 Unsafe Rust Usages . 25

4.4 Bringing up KrustVM on Real Hardware 27

Chapter 5 Securing Rcore Memory Accesses 31

5.1 Rcore Memory Regions . 32

5.2 Memory Region Isolation . 33

5.2.1 Raw Pointer Access: Rcore Metadata 34

5.2.2 Raw Pointer Access: Generic Area 35

5.2.3 Raw Pointer Access: Page Table Pool 36

5.2.4 Raw Pointer Access: SMMU . 38

Chapter 6 Evaluation 39

Chapter 7 Related Work and Future Work 43

7.1 Related Work . 43

7.1.1 VM Protection . 43

7.1.2 Rust-based Systems . 44

7.1.3 Verification and Formal Methods 44

7.2 Future Work . 46

Chapter 8 Conclusions 49

References 51

x doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

List of Figures

Figure 4.1 KVM ARM Per-CPU Variables Mechanism 27

Figure 4.2 KCore overlaps the unusable hole on Rpi-4B 28

Figure 4.3 Overlap prevention . 29

Figure 5.1 Memory Regions . 33

Figure 6.1 Application Benchmark Performance: Overhead normalized to the

bare-metal setup . 42

Figure 6.2 ApplicationBenchmark Performance: Overhead normalized tomain-

line KVM . 42

xi doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

xii doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

List of Tables

Table 4.1 Rcore metadata . 23

Table 6.1 Application Benchmarks . 41

xiii doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

xiv doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

Chapter 1 Introduction

Hypervisors are essential to cloud computing. They manage the hardware resources

to provide the virtual machine (VMs) abstraction and host these VMs in the cloud. The

widely used commodity hypervisors, such as KVM [29] or Hyper-V [39], include a large

and complex TCB to satisfy users’ requirements in performance and functionality. These

hypervisors were written in unsafe languages like C, making them vulnerable to safety

bugs, such as out-of-bound memory access and use-after-free. For example, KVM inte-

grates an entire Linux OS kernel inside its TCB. Attackers that successfully exploit hy-

pervisor vulnerabilities may gain the ability to steal or modify secret VM data.

Previously, HypSec [35] has retrofitted commodity hypervisors into a small trusted

core that enforces resource access control to ensure the confidentiality and integrity of VM

data against hypervisor and host operating system exploits. However, the security of the

whole system still depends on the implementation of the small trusted TCB. Any vulnera-

bility in the trusted TCB can void the guarantees of VM data confidentiality and integrity.

SeKVM [36] extended the work of HypSec [35] by formally verifying the smaller TCB

and requires significant efforts. Previous systems only verified a specific implementation,

and as the codebase evolves to incorporate new features or undergo code refactoring, the

existing proof becomes outdated, necessitating a new proof for any code modifications.

1 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

Rust is an emerging programming language that ensures strong memory safety guar-

antees at compile time while offering performance efficiency. Its distinctive ownership

and lifetime system effectively addresses potential safety issues that programmers may en-

counter. Rust prevents variousmemory safety bugs, for example, null pointer dereferences

are eliminated by distinguishing between nullable and non nullable types, nullable types

are not allowed by default, array out-of-bound accesses are prevented by runtime checks

that are added by the compiler, and Rust’s borrowing rules prevents dangling pointers.

Further, Rust allows developers to sacrafice the memory safety guarantees for stronger

control over the program, for example to directly manage low-level systems resources

such as memory. These low-level operations requires the unsafe keyword which marks a

region of code for which the compiler does not guarantee memory safety. Due to these at-

tributes, various previous work has adopted Rust to implement systems software with crit-

ical security and performance requirements, including operating systems [10, 12, 33, 40],

hypervisors [14, 46], web browsers [5], and TEEs [49, 50]. There has been recent adoption

of Rust in the mainline Linux kernel. However, instead of replacing the existing Linux

kernel code written in C with Rust, the current efforts were limited to developing new

Rust-based device drivers.

We have developed KrustVM for Linux 5.15, a Rust-based secure Linux KVM hy-

pervisor. By using Rust, we leverage Rust’s automatic safety checks, and most of the

responsibility of human auditing is shifted to the compiler. The manual auditing efforts

can be focused solely on the portions where unsafe Rust is utilized, rather than the entire

program. We first ported the Linux 4.18-based SeKVM to Linux 5.15, a recent version

of long-term-support Linux. Then SeKVM’s verified TCB is reimplemented with a Rust-

based TCB, called Rcore. The kernel version update allows us to take advantage of new

2 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

kernel features, including Link-Time-Optimization (LTO) and energy-aware scheduling.

Similar to SeKVM, KrustVM incorporates the small Rust TCB Rcore to protect VM con-

fidentiality and integrity against the large and untrusted hypervisor codebase that encom-

passes KVM’s host Linux kernel. Performance evaluation of KrustVM on real Arm64

hardware shows that KrustVM incurs modest performance overhead to application work-

loads compared to mainline KVM and SeKVM.

During the development of KrustVM, we identified and overcame challenges that

arose when trying to rewrite and port SeKVM’s TCB to Rust for Linux 5.15. Firstly, the

Linux kernel had undergone many changes between version 4.18 and 5.15, such as feature

addition and kernel API changes. Therefore, we need to forward port SeKVM to Linux

5.15 prior to initiating the Rust rewrite process. Second, Linux 5.15 does not support

Rust as a development language, meaning Rust code can not be linked with the rest of the

kernel by the Linux build system. To resolve this challenge, we rolled our own Makefile

and integrated the build process of our Rust code with Linux’s build system. Third, writing

a KVM TCB in a new language like Rust poses many language compatibility issues. For

example, C headers are not usable in Rust, and name mangling exists in Rust but not in C,

etc. We must address each issue for our implementation to work.

Unsafe Rust is necessary for implementing hypervisors like KrustVM, since opera-

tions including low-level memory accesses and running system instructions are not pos-

sible in safe Rust. This leads to the fact that Rust’s safety guarantee does not apply to

Rcore in its entirety. Being aware of this, we implemented Rcore in a way such that the

amount of unsafe Rust is minimized. Unsafe code are enclosed within a safe abstraction

and a safe API is exposed in order to implement complex functionalities in safe Rust, in-

cluding CPU, memory, VM boot protection, VM exit, and hypercall handlers. Further,

3 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

raw pointer accesses, which are unsafe in Rust, are protected using Rust’s type system. In

Rcore, raw pointers are used for accessing physical memory. Physical memory is divided

into multiple disjoint regions, and the Rcore implementation guarantees that all memory

accesses done by Rcore are located in the predefined regions, ensuring that bugs caused by

pointers pointing to incorrect memory regions are prevented. This involves transforming

raw pointers into references, allowing Rust to automatically insert runtime checks for out-

of-bound array indices, and building customized Rust types that enforce bound-checking

for raw pointer accesses. These measures make Rcore a more memory safe codebase as it

contains a small amount of unsafe code, and raw pointer usages are safe-guarded.

The rest of the thesis will be organized as follows. Background will be reviewed in

chapter 2. Our threat model and assumptions are listed in chapter 3. The process of imple-

menting a Rust TCB for KVM and the techniques used are described in chapter 4. chap-

ter 5 presents how Rust’s safety features are utilized to design and secure Rcore memory

accesses. Evaluation of KrustVM and its comparison with mainline KVM and SeKVM

is covered in chapter 6. Related work and future work are discussed in chapter 7. At last,

we conclude the thesis in chapter 8.

4 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

Chapter 2 Background

2.1 Overview of the ARM Architecture

Our work is based on the ARM architecture for its mass adoption in mobile devices,

and its rising popularity amongmajor cloud providers [6, 7]. Different from x86, the ARM

architecture has a larger general register count, fixed length instructions, and simpler in-

structions. These properties stem fromARM’s original Reduced Instruction Set Computer

(RISC) design. CPU privilege levels in ARM are referred as Exception Levels (EL), and

there are four of them: EL0, EL1, EL2, EL3. The larger the exception level number, the

greater the privilege. EL0 is the lowest privilege level designed for userspace software,

the svc instruction (supervisor call) can be issued is this EL to trap to EL1 for system call

service. EL1 is regularly used for running an OS kernel like the Linux kernel. EL1 con-

trols EL0/1 page tables to enable virtual memory for userspace and the kernel space, and

sets up the exception vectors to handle EL0 and EL1 exceptions. EL1 can also ask for EL2

service via the hvc instruction (hypervisor call). EL2 is designed for running a hypervisor.

It is more privileged than EL1, software EL2 is capable of setting various conditions for

the hardware to trap to EL2 to intervene the lower EL1 and EL0 execution. For example,

it is capable of redirecting all device interrupts to EL2’s own exception vector to interpose

all interrupts. ARM also provides Nested Page Table (NPT) support in EL2. If EL2 en-

5 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

ables NPTs, the physical address that results from an EL0/1 page table walk becomes the

Intermediate Physical Address (IPA), the IPA must then be translated again by the addi-

tional set of page tables set up by the software in EL2 to finally get the physical address

used for memory access. The address translation turns into a two stage process, firstly the

EL0/1 virtual address is translated into IPA by walking the EL0/1 page table controlled

by the kernel in EL1, after that it is translated again by walking the NPT. Thus, when a

hypervisor enables NPT, all guest kernels in EL1 only see its own virtual guest physical

address space. The hypervisor has full control over the physical memory. Lastly, EL3

is the highest privilege level typically used for running system firmware that initializes

the hardware. The Virtualization Host Extensions (VHE) is an ARM architecture exten-

sion added to support running an unmodified OS kernel designed for an EL1 environment

directly in EL2. The extension is needed because originally, EL2 differs from EL1 in a

few ways. First, EL1 has two Translation Table Base Registers (TTBRs), while EL2 only

has one. It was designed like this because OS kernels running in EL1 need the extra base

register to separate user process address space and kernel address space, and hypervisors

normally do not host applications. Second, there is no Address Space Identifiers (ASIDs)

support in EL2 for the same reason. Third, the bit layout of some system registers and

page table format in EL2 are different from their EL1 counterparts. VHE addresses the

problems above by adding another TTBR, ASID support, and synchronized the bit layout

of EL2 and EL1 system registers and the page table formats. On hardware that support

VHE, the Linux kernel can thus boot in both EL1 and EL2.

6 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

2.2 KVM ARM

KVM ARM was merged into the mainline Linux kernel version 3.9 [17]. It was

designed to support unmodified guest VMs by utilizing hardware virtualization support

introduced in section 2.1. The authors proposed split-mode virtualization [18], allowing

the KVMARM hypervisor to split its execution across CPU modes and be integrated into

the Linux kernel. Split-mode virtualization installs a small amount of code in EL2 called

the lowvisor when Linux initializes. The lowvisor is only responsible for hypervisor tasks

that can only be done in themore privileged EL2, including running EL2 exception vectors

and installing the base addresses of NPTs in the VTTBR_EL2 register, which holds the NPT

root pointer. Split-mode virtualization has various advantages. Kernel features including

memory allocation, CPU scheduling can still be done in EL1, thus simplifying the lowvi-

sor, also the small lowvisor makes the addition of KVM ARM a less intrusive change to

the Linux codebase, increasing the possibility of it being merged into the mainline kernel

for its maintainability and ease of review.

Split-mode virtualization was proposed before the introduction of ARM VHE. With

VHE, the entire Linux kernel can be run in EL2, removing the need for KVM to split its

execution across CPU privilege levels. Before with split-mode virtualization, the lowvisor

must multiplex the EL1 context, or context switch EL1 system registers when entering or

exiting VMs, which leads to overhead. By running Linux entirely in EL2, guest EL1 states

do not have to be saved or restored each time a VM enter or exit happens, reducing the

overhead. KVM ARM was then further developed to support both the new VHE feature

(VHE mode), while keeping the option for the original split-mode virtualization, or Non-

VHE (NVHE) mode.

7 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

2.3 HypSec

HypSec [35] is a new hypervisor design which uses microkernel principles to reduce

the trusted computing base of the hypervisor while protecting the confidentiality and in-

tegrity of VM data. It is motivated by the fact that as hypervisors become more complex,

their ever-growing large codebases expose a huge attack surface for adversaries. HypSec

restructures the large monolithic hypervisor into a minimized trusted core, the corevisor

and the remaining large untrusted host, the hostvisor. The corevisor is reduced by sepa-

rating access control from resource allocation. The corevisor has full access to hardware

resources to perform access control to protect VM data. On the other hand, I/O, interrupt

virtualization and resource management such as CPU scheduling, memory management,

and device management are delegated to the hostvisor, which can leverage a host OS. The

corevisor executes at a higher CPU privilege level than the hostvisor, it deprivileges the

hostvisor at a lower privileged level, ensuring the untrusted host cannot disable or control

privileged hardware features. NPTs are enabled by the corevisor when running the hostvi-

sor and VMs so that they do not have direct access to physical memory. The corevisor

unmaps its own private memory pages from the respective NPTs, making them inaccessi-

ble to VMs and the hostvisor. The corevisor unmaps a given VM’s memory pages from

the hostvisor or other VMs’ NPTs to isolate these pages. NPTs for the hostvisor and VMs

are allocated from the corevisor’s memory pool, to which the host and VMs have no ac-

cess. Since VM and corevisor memory is unmapped from the host NPT, a compromised

hostvisor that accesses these memory pages causes an NPT fault that traps to the corevisor.

NPT faults are routed to the corevisor itself, allowing it to reject invalid hostvisor mem-

ory accesses. The work also used HypSec to retrofit KVM ARM’s NVHE mode. NVHE

8 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

mode is chosen over VHE mode for the retrofit, as VHE mode runs both the host kernel

and KVM entirely in EL2, which prevents the corevisor from restricting the host kernel’s

full hardware access.

2.4 SeKVM

SeKVM [36] extended the work of HypSec and presented a secure and formally ver-

ified Linux KVM hypervisor. While HypSec reduced the trusted computing base of the

hypervisor, potential bugs in the TCB can still nullify the guarantee of VM data confiden-

tiality and integrity. SeKVM builds on the design of HypSec and further formally verified

the hypervisor TCB. The work proposed microverification, where a large codebase such

as KVMARM, is restructured into a small core and a set of untrusted services such that the

security of the entire hypervisor can be proven by verifying the small core alone. SeKVM

retrofitted KVM ARM’s NVHE mode into the trusted KCore and the set of untrusted ser-

vices KServ. To verify KCore, security-preserving layers are introduced to modularize

the verification process. KCore’s detailed C and assembly implementations are abstracted

into higher-level specifications with the help of the Coq proof assistant, the specifications

are then used to prove security properties that would be intractable to verify directly on

the implementation.

2.5 The Rust Programming Language

Rust is a relatively young programming language compared to C that aims to be safe

and fast. It enables programs to be memory-safe without requiring programmers to man-

ually manage memory as in traditional languages (e.g. C/C++). Different from other

9 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

memory-safe languages such as Python or Go, Rust does not employ garbage collection

for managing memory. Instead, the concepts of lifetimes, ownership, and borrowing are

introduced to mandate the programmer to follow specific rules. Statically enforcing pro-

gramming rules empowers Rust to perform comparably to C. The rules are checked at

compile time, eliminating the need for runtime checks that incur overhead. Furthermore,

these checks ensure adherence to the specified rules, and if no violations are found, the

code is directly translated into machine instructions without any additional overhead or al-

teration in behavior. Additionally, Rust’s safety rules ensure that no memory safety bugs

will be present when satisfied, and the compiler automatically checks and prevents any

violation of these rules.

Ownership and Lifetimes. In Rust, each piece of data is said to be owned by a sin-

gle variable, and it is automatically dropped (freed) when the variable’s lifetime ends. A

variable’s lifetime ends as the program control flow exits the block in which the variable

is declared. In Listing 1, y’s lifetime starts at line 5 and ends at line 7 as the block closes.

Hence, the println! macro is unable to find the value y, whose lifetime has already

ended. Ownership can be transferred or moved. For example, assigning the owning vari-

able to a new variable moves the ownership of the data to the new variable. And passing

the variable into a function also moves the data ownership into the function. In both situ-

ations, the original variable returns to the uninitialized state, and using it would result in

a compilation error.

Borrowing. Ownership lacks the flexibility of argument passing. Rust addresses

this by borrowing, a mechanism that allows accessing data without gaining ownership. A

variable can borrow ownership from another variable to acquire a reference to the data.

References can be divided into two categories, shared references and exclusive references.

10 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

1 // this code sample does *not* compile
2 {
3 let x = 1;
4 { // create new scope
5 let y;
6 y = x;
7 } // y is dropped
8

9 // compilation error, y's lifetime has ended
10 println!("The value of 'y' is {}.", y);
11 }

Listing 1: Rust lifetime example

Shared references can only be read and not modified. Nevertheless, multiple shared ref-

erences for a specific value can be held simultaneously. On the other hand, exclusive

references allow reading from and modifying the value. However, having any other kind

of reference active simultaneously for that value is not permitted.

In summary, Rust’s borrowing rule enforces aliasing xor mutability meaning there

can be multiple shared references or a single exclusive reference. In Listing 2, line 6

would not compile because it tries to create a mutable reference (z) to x, while y already

borrowed x immutably. y’s lifetime ends on line 8 as it gets used for the last time; therefore

z can be created on line 10 and used on line 11. However, if line 13 is uncommented,

y’s lifetime would be extended to line 13, making the creation of z on line 10 break the

borrowing rules.

unsafe Rust. Rust’s safety checks are sometimes too restrictive regarding tasks like

low-level hardware access or special optimizations. These operations are inherently un-

safe and hence impossible to follow the rules mandated by Rust. However, they are still

necessary for low-level software such as hypervisors. To provide flexibility for these

operations, Rust allows parts of the program to opt out of its safety checks via the unsafe

keyword. Traits, functions, and code blocks can be marked as unsafe to disable the checks

11 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

1 {
2 let mut x = vec![1, 2, 3];
3 let y = &x; // immutable borrow of x
4

5 // this line would fail to compile because x is already borrowed
immutably by y↪→

6 /* let z = &mut x; */
7

8 println!("x = {:?}", x); // This line works
9 println!("y = {:?}", y); // This line works
10

11 let z = &mut x; // mutable borrow of x
12 z.push(4);
13

14 // this line would fail to compile because x is borrowed mutably by z
15 /* println!("y = {:?}", y); */
16 }

Listing 2: Rust enforces aliasing xor mutability

that the compiler would normally enforce. However, using unsafe code alsomeans that the

responsibility for ensuring memory safety is shifted from the compiler to the programmer.

Therefore, it is crucial to exercise caution when using unsafe code to avoid introducing

bugs or security vulnerabilities.

Interior unsafe. While most low-level code is written in unsafe code, Rust intro-

duces the concept of interior unsafe [41]. A function is considered interior unsafe if it

exposes a safe interface but contains unsafe blocks in its implementation. This allows

unsafe operations to be encapsulated into safe abstractions. For instance, in Listing 3,

Rust’s replace function can be called by safe Rust, but it is implemented using unsafe

raw pointer operations. At line 6, ptr::read is used to copy a bit-wise value from dest

into resultwithout moving it, and at line 7, ptr::write overwrites the memory location

pointed to by dest with the given value src without reading or dropping the old value.

Lastly, at line 8, result is returned to the function’s caller.

This leads to a design practice that interior unsafe functions should provide the nec-

12 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

1 pub const fn replace<T>(dest: &mut T, src: T) -> T {
2 // SAFETY: We read from `dest` but directly write `src` into it

afterward,↪→

3 // such that the old value is not duplicated. Nothing is dropped and
4 // nothing here can panic.
5 unsafe {
6 let result = ptr::read(dest);
7 ptr::write(dest, src);
8 result
9 }
10 }

Listing 3: interior unsafe in Rust’s replace function

essary checks that prevent the unsafe code from producing any undefined behavior or

memory safety bugs. The caller in the safe world hence bears no responsibility to ensure

safety.

Interior Mutability. Mutating referenced data via an immutable reference is for-

bidden in Rust. However, this is sometimes too restrictive for implementing efficient

algorithms or data structures. For instance, a cache might be desirable for a read-only

search data structure to optimize lookup time. Nevertheless, updating the cache state re-

quires mutability for the cache, violating the read-only constraint. Hence, a mechanism is

needed for mutating data under a read-only variable. The Rust standard library provides

some special types that allow the user to modify data even with read-only access, to ad-

dress this issue. This design pattern is known as Interior Mutability. unsafe operations

are used to implement these types to bend Rust’s usual rules that govern mutation and

borrowing. These types ensure the borrowing rules are followed, i.e. one mutable bor-

rower at one time, and no mutable borrowers when read-only borrowers exist, at runtime.

A panic occurs whenever the runtime checks fail, stopping the program to avoid safety

issues. For example, Mutex in Rust provides interior mutability. A lock is used to ensure

that only one borrower of the inner data exists at one time. More precisely, when attempt-

13 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

ing to borrow data that has already been borrowed, the Mutex enforces a busy wait until

the data is released, thereby allowing only one borrower at a time. However, if a thread

borrows the inner data of Mutex while it is already borrowing it, Mutex will wait forever,

i.e., result in a self-deadlock.

Generics and Traits. In addition to the safety mechanisms, Rust also provides fea-

tures for writing code that operates on values of many different types. Generic allows

code to work with type parameters, reducing similar code that work with different types.

For example, the vector type in Rust’s standard library std::vec::Vec is capable of

holding an array of an arbitrary type. Rust traits are properties or interfaces that can be

implemented on types; traits typically require the implementing type to supply function

implementations for its trait methods. Additionally, combined with Generic, a trait can

be treated as a restriction on type specifications such as function arguments or struct fields.

The restriction is called a trait bound. For example, the Clone trait requires the imple-

menting type to provide implementations for its clone and clone_from functions tomake

copies of themselves. A Generic function or type can use a trait bound to require its type

argument to implement Clone, so that it can invoke the clone function that the argument

implements.

Error Handling. Rust offers enum types Result<T, E> and Option<T> that have

variants to explicitly represent the state of error. A Result type can be the enum variant

Ok(T), which denotes a proper result with type T, or Err(E), which represents an error

with reason of type E. To simplify error handling, Rust provides a convenient syntactic

sugar, the ? operator. When used on a Result, it retrieves the T from Ok(T). However, if

the Result is Err(E), the Err variant is immediately returned from the enclosing func-

tion, propagating the error to the caller. When handling enum types, the program must

14 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

handle all variants of the enum, and not doing so results in a compilation error, this en-

forces the programmer to handle all possible cases, including errors. Similarly, Option

can have the Some(T) variant, or the None variant, which represents the state of not having

a value. These types prevent unexpected errors when accessing a potentially non-existing

value, or a potential error in the program.

Copy and Drop Traits. Some traits in Rust have intrinsic meaning to the compiler.

For example, the Drop trait tells the compiler that a type has special freeing code, and

the Drop trait’s drop function should be invoked when an instance of the type goes out

of scope. And the Copy trait, when implemented for a type indicates that the type should

be byte-by-byte copied when the assignment (=) operator is used instead of Rust’s typical

semantic of moving the ownership to the new variable. Interestingly, Rust forbids a type

from being Drop and Copy simultaneously, the designers of the language observed that if

a type requires special deallocating code (the drop function), then it should also require

a special copying function, rather than just copying it byte-by-byte. For instance, a type

that holds a reference to the heap requires a drop function that frees the data pointed to

by the reference, copying the object of the type in a byte-by-byte manner introduces risks

of double-free, use-after-free, etc.

15 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

16 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

Chapter 3 Assumptions and Threat

Model

We assume a remote attacker or a curious administrator that aims to compromise

the integrity and confidentiality of VM data. An attacker can exploit bugs in the host

kernel integrated with KVM. A remote attacker cannot access the hardware, so physical

attacks such as cold boot attacks [23] and memory bus snooping are out of scope. On-site

security measure [20] is assumed to be in place to prohibit unauthorized physical access

to the hardware. Side-channel attacks [9, 25, 37, 43, 52, 53] are also excluded from our

threat model.

We assume a VM does not voluntarily reveal its sensitive data, intentionally or by

accident. A VM can be compromised by a remote attacker that exploits vulnerabilities in

the VM. We do not provide security features to prevent or detect VM vulnerabilities, so

a compromised VM that involuntarily reveals its data is out of scope. However, attack-

ers may try to attack other hosted VMs from a compromised VM for which we provide

protection.

17 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

18 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

Chapter 4 Implementing a Linux

KVM TCB in Rust

In the process of developing KrustVM, we first forward ported SeKVM from its

original Linux 4.18 version to the newest long term support version Linux 5.15 at the time

of development. Once the forward port of SeKVM to Linux 5.15 is done, we then rewrote

the SeKVM TCB KCore in Rust to create Rcore, KrustVM’s TCB. This chapter describes

the challenges that arose when implementing a Rust-based KVMTCB for Linux 5.15, and

the techniques employed to solve them.

4.1 Forward Porting SeKVM from Linux 4.18 to Linux

5.15

The Linux kernel gained many new features between version 4.18 and 5.15, in-

cluding performance optimizations such as Link-Time-Optimization (LTO) and energy

aware scheduling. And new kernel security features including clang shadow call stacks,

branch target identification, control flow integrity (CFI), ARM Memory Tagging Exten-

sion (MTE), ARM pointer authentication, and randomized stack offset per system call. By

forward porting SeKVM from its original Linux kernel version 4.18 to 5.15, the codebase

19 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

can benefit from these advancements.

SeKVM is based on the mainline KVM ARM in NVHE mode, therefore, to for-

ward port it to a newer kernel version, Kernel functions called by SeKVM must be up-

dated. For example, the data cache flushing function __flush_dcache_area is changed

to dcache_clean_inval_poc in Linux 5.15. All outdated functions and macros in the

SeKVM codebase are updated. Moreover, a new KVMmode pkvm [26] is added to main-

line KVM ARM in Linux 5.11, we made sure the logic of SeKVM and pkvm is sepa-

rated such that the two modes of operation can coexist in the codebase. This is done by

checking for the kernel configuration at KVM initialization, if the configuration option for

SeKVM is set, pkvm will not be initialized. Mainline KVM had also made the code that

runs in ARM’s hypervisor mode (EL2) more self-contained. Symbols belonging to EL2

are isolated from kernel mode symbols name-wise, a prefix __kvm_nvhe_ is prepended

to all symbols in EL2. Parts of SeKVM that references symbols in the original NVHE

KVM EL2 code then must adjust how it references those symbols. The predefined helper

macro CHOOSE_NVHE_SYM() is used, it prepends the prefix (__kvm_nvhe_) for referenc-

ing NVHE symbols so that it is not required to write __kvm_nvhe_ every time the code

references a NVHE symbol. This makes our code cleaner and easier to maintain. For

SeKVM symbols that need to be referenced by the original NVHE KVM EL2 code, in

this case, the helper macro KVM_NVHE_ALIAS() is used, which creates an additional sym-

bol referring to the same piece of data as the input symbol whose name is prepended by

the NVHE prefix, enabling the NVHE KVM EL2 code to reference it. Furthermore, to

resolve the issue that the compiler optimizing struct zeroing operations with memset calls,

which are not mapped in EL2, the C compiler flag -ffreestanding is included during

the compilation of SeKVM.

20 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

4.2 Integrating Rust and Linux

In order to write a KVMTCB inRust, Rust codemust be compiled and linkedwith the

rest of the Linux kernel. However, Linux 5.15, which is the latest long term support kernel

version at the time of KrustVM development, does not support Rust as a development

language. As a result, incorporating our Rust code into the kernel requires the developer

to manually invoke the Rust compiler to build the Rust crate, and then link it against the

kernel, which can be both laborious and susceptible to errors. To overcome this challenge,

we integrated the Rust toolchain with the Linux kernel build system. A new subdirectory

in Linux’s source path arch/arm64/krustvm is created, and it contains the Rcore crate

and the Makefile for this directory. Rcore is implemented in a single crate on the no_std

environment and compiled into a single static library libkrustvm.a. To support building

libkrustvm.a and linking it with the rest of the kernel with make, the following is added

to the Makefile:

1. append libkrustvm.a to Kbuild built-in object goals obj-y by adding the line

obj-y += libkrustvm.a

2. define Makefile target to instruct make to use cargo to generate libkrustvm.a.

1 $(obj)/libkrustvm.a: $(src)/krustvm/src/*.rs
2 cargo build --release --target=aarch64-unknown-linux-gnu

3. convert libkrustvm.a into krustvm.o by calling ld

TheMakefile in arch/arm64/krustvm generates krustvm.o, and the kernel build system

will then link this file with all other object files in the kernel and produce the final kernel

image.

21 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

4.3 Rewriting C-based KCore into Rust-based Rcore

4.3.1 The Rewrite Process

Given the high complexity of the KVM hypervisor and KCore, it is clear from the

beginning that a top-down approach to a Rust rewrite would be error-prone and difficult

to test. Therefore, we elected to start the rewriting effort bottom-up, where all previous C

functions in the TCB are rewritten in Rust, one by one. This incremental approach allows

us to test one rewritten function at a time, reducing the risk of introducing bugs. Onemajor

downside of this approach is the difficulty of rewriting individual functions in a manner

that adheres to Rust’s idiomatic practices, such as using Rust’s pattern-matching match

syntax instead of the C-like if statements, and using references instead of raw pointers.

Furthermore, it may result in a lot of unsafe blocks. These issues are solved by adding a

second phase to the Rust rewrite; after the initial function by function rewrite, we removed

unnecessary unsafe blocks, refactored the code to be more Rust-idiomatic, and leveraged

Rust features to enhance Rcore memory safety.

4.3.2 Rust Code Organization

Rust packages code into modules, modules are containers for functions, types, con-

stants, traits, etc. Rust programs or libraries are made up of one or multiple modules.

Rcore consists of multiple modules, including the typical utility functions module, and

modules that contain functions that implement different hypervisor tasks, for example

mapping a page in the host kernel’s NPT. Moreover, each of the Rcore metadata types

(Table 4.1) used for storing NPT information, physical memory page ownership, VM

22 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

Name Decription of Data
vCPU context The array that stores the state of each vCPU register.
VM info The per-VM execution state metadata.
NPT info The NPT pool allocation status.
PMEM info The physical memory ownership and sharing status.
SMMU info The SMMU management and page tables metadata.
SMMUPT info The SMMU page table pool allocation status.

Table 4.1: Rcore metadata

information, SMMU page table metadata, etc., is implemented as its own module that

defines the type and its associated type methods. One of the modules is VMInfo, it in-

cludes the definition of the type VMInfo, which stores information of a VM including its

VMID, state, and an array of VCPU states. The module also contains methods for read-

ing the VMID, setting the state of the VM, etc. There is another module that aggregates

the Rcore metadata structures into a single big structure RcoreMetadata (line 1 in List-

ing 4) to simplify the memory used by these metadata. Some fields in RcoreMetadata

are shared by all CPU cores, while others are per CPU. We leverage the custom mutex

type KMutex from [15] to protect concurrent accesses to fields shared by all CPU cores

in RcoreMetadata. Shared fields are defined as type KMutex<T> (an example is line 3

in Listing 4), where T is the type that actually stores Rcore metadata. Rcore’s custom

KMutex is a generic type which can hold any arbitrary type alongside a lock. The only

way to access the data wrapped in KMutex is by calling the lock method of KMutex ref-

erence. Different from Rust, C does not support methods for structs, it therefore lacks the

ability to present an API that provides type-specific functionalities while hiding how the

method’s implementation manipulates the structure’s data. For instance in Listing 5, users

of VMInfo is forbidden from accessing the vmid field of VMInfo directly, but must call

the get_vmid method. The user thus can not arbitrarily modify data inside the structure.

This Rust feature helps eliminate bugs such as writing to read-only fields, and accessing

fields that are not intended to be exposed to the users of the type.

23 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

1 struct RcoreMetadata {
2 [...] // other fields omitted
3 pub pmem_info: KMutex<PMemInfo>,
4 [...] // other fields omitted
5 }
6

7 const RCORE_METADATA_PTR: *mut RcoreMetadata = /* Rcore's memory address
*/;↪→

8

Listing 4: Rcore metadata

1 // in the VM module:
2 pub struct VMInfo {
3 vmid: u32,
4 [...] // other fields omitted
5 }
6

7 impl VMInfo {
8 #[inline(always)]
9 pub fn get_vmid(&self) -> u32 {
10 self.vmid
11 }
12 }

Listing 5: type method example

4.3.3 Rust-Rewrite Challenges

Enforcing Linking Section. KVM separates EL2 code from EL1 by grouping EL2

code in a section .hyp.text, then mapping that section in EL2’s address space at initial-

ization. In Rcore, attribute #[link_section = ".hyp.text"] is prepended to all code

that should be run in EL2, so that they get placed in the .hyp.text section as well.

Matching Linux Types and Constants. Our implementation is compatible with the

Linux kernel codebase. For example, the page size definition is identical in Rcore and

KVM. For types shared between Linux and Rcore like kvm_vcpu, the type definitions

are generated automatically with the tool bindgen [11]. Bindgen can generate Rust type

definitions by parsing C’s struct definitions, saving developers’ time that would otherwise

24 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

be spent defining the same type. For types that are shared by both C and Rust, the Rust

attribute #[repr(C)] is used to ensure their alignment, field layout order, and padding

are the same in both languages, to prevent data corruption. This happens for example

when the field layout of a structure is different for the two languages, resulting in C and

Rust accessing distinct offsets within the structure when reading or writing to the same

field. And for constants that are used by both Linux and Rcore, including the page size

mentioned above, they are copied from C to Rust manually. Due to the limited support

of macro in bindgen and its complex usages by Linux, bindgen is not used to generate

constants.

Entry Point Binding. Whenever an exception gets taken to EL2, the CPU switches

its exception level to EL2, saves the program status and exception syndrome, and jumps to

the preassigned exception vector. We modify the exception vectors, which are written in

assembly, to call Rcore’s entry point functions instead of the original C handlers to transfer

the control flow to our Rust code. Rcore’s entry point functions must be annotated with the

Rust attribute #[no_mangle]. This attribute informs the Rust compiler that the function

name should not be mangled, in order for the linker to resolve the symbol reference in the

exception vectors.

4.3.4 Unsafe Rust Usages

A small part of Rcore’s implementation is coded in unsafe Rust. Unsafe Rust exists

because the underlying computer hardware is inherently unsafe. Certain tasks are impos-

sible without unsafe operations, such as directly accessing a specific address to configure

the interrupt controller, or issuing a memory barrier instruction in the middle of a func-

tion. Overall, the source of unsafe Rust includes inline assembly, the Foreign Function

25 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

Interface (FFI), KVM ARM Per-CPU variables, and raw pointer accesses. The first three

categories are discussed in this section, and for raw pointer usages, chapter 5 shows how

each raw pointer usage scenario is checked to guarantee their memory safety.

Inline Assembly. Inline assembly are used for system instructions (e.g. TLB invali-

dation instructions) and system register accesses. ARM architecture uses the mrs instruc-

tion to read a system register’s value to a general purpose register, and the msr instruction

to write a system register with the content of a general purpose register. Inline assembly

can be inserted in Rust code with the help of Rust’s built-in core::arch::asm module.

It can be used to embed handwritten assembly in the assembly output generated by the

compiler. For system register accesses, the aarch64-cpu crate [3] is imported into our

Rcore crate, it provides a clean API for reading and writing AArch64 system registers.

The actual inline assembly usages of mrs and msr are abstracted behind aarch64-cpu’s

safe APIs.

FFI. FFIs are used for calling longer assembly routines, below is a list showing the

FFI routines used in Rcore.

• __guest_enter: context switching general purpose registers and entering guest

VMs.

• dcache_clean_inval: invalidate cache of the input memory range.

• acquire_lock and release_lock: Rcore’s spinlock primitive that spin on an ad-

dress using an assembly loop.

• tlb_flush_ipa: flushes the TLB of the input intermediate physical address range

of the vmid given.

26 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

KVMARMPer-CPUVariables in Rust. Using KVMARMPer-CPU variables is a

special case for unsafe Rust. MainlineKVMhas its ownEL2 per CPU variablemechanism

(Figure 4.1); it is implemented by first allocating enough space for all cores to have a copy

of the per CPU variables, then, for each CPU core, it records the offset from its copy of the

variables to the base copy. This per-core offset is then stored in each core’s TPIDR_EL2

system register. When there is a requirement to access a per CPU variable, the address

of the base copy is first acquired, then TPIDR_EL2’s value is added to the base copy’s

address to calculate the per-core address. KrustVM continues to use this mechanism by

declaring the symbol which corresponds to the base address as a Rust extern static variable,

take its raw address, then add the value in TPIDR_EL2 to it. This approach requires three

unsafe statements, first from reading the address of the extern static variable, then reading

TPIDR_EL2 via inline assembly, and lastly, another unsafe to dereference the calculated

address. Concurrent accesses will not pose a problem since each core accesses a different

address.

base copy copy for
CPU0

copy for
CPU1

TPIDR_EL2
for CPU0

TPIDR_EL2 for CPU1

Figure 4.1: KVM ARM Per-CPU Variables Mechanism

4.4 Bringing up KrustVM on Real Hardware

We chose the Raspberry Pi model 4B (Rpi-4B) to verify our implementation on real

hardware. SeKVM’s trusted core KCore originally reserved its private memory by defin-

27 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

ing global symbols whose addresses reside right after the kernel image, in the Linux ker-

nel linker script. KCore then references those symbols to access and utilize the reserved

memory. However, there is an unusable hole reserved for the GPU in the physical memory

address space of Rpi-4B, spanning from 948MB to 1GB. The proprietary bootloader of

Rpi-4B restricts the placement of the kernel image within the range of 0 to 948MB. Con-

sidering that SeKVM requires more than 1GB of private memory, an overlap between

KCore’s private memory and the unusable hole becomes unavoidable (Figure 4.2). This

makes SeKVM unable to initialize on Rpi-4B.

kernel image

Rpi-4B physical address space

unusable
hole

Kcore reserved

Figure 4.2: KCore overlaps the unusable hole on Rpi-4B

To solve this issue for KrustVM, instead of allocating memory in the linker script,

we first locate a range of memory which does not overlap with the unusable hole of Rpi-

4B and the kernel image, then add a new memblock that to correspond to the Rcore’s

private memory. We mark it as reserved by calling memblock_reserve, so that the kernel

does not accidentally access this memory range (Figure 4.3). Malicious accesses to Rcore

private memory from the host kernel are prevented by unmapping the private memory

from the host kernel’s NPT.

28 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

kernel image

Rpi-4B physical address space

Rcore reserved

unusable
hole

Figure 4.3: Overlap prevention

29 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

30 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

Chapter 5 Securing Rcore Memory

Accesses

Numerous software bugs arise from the disparity between the address a pointer points

to and the intended address it should reference. For example, NPT walking code must

calculate addresses of each level’s page table entry. If the address calculation is erroneous,

the NPT walking code may dereference the pointer which points to an unrelated region

of memory, and write to guest memory, or other hypervisor metadata, leading to crashes

or vulnerabilities. Since Rcore contain raw pointer accesses, which are not protected by

Rust, pointers referring to unintended areas are also possible in our codebase. To tackle

these kinds of bugs, Rcore’s memory accesses are categorized into disjoint regions, and

raw pointer accesses to a specific region are guaranteed to not access any of the other

regions. With the memory region isolation, the NPT address miscalculation above will

be eliminated, as raw pointers specified for NPT accesses will be guaranteed to not point

to any other region. section 5.1 describes each of the memory region defined for Rcore’s

memory accesses, and section 5.2 presents how raw pointers are guaranteed to access the

intended region.

31 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

5.1 Rcore Memory Regions

Rcore’s memory accesses are categorized into four disjoint regions: Rcore Metadata,

Page Table Pool, SMMU Area, and Generic Area. Rcore metadata and Rcore Page Table

pool combined are referred to as the Rcore area in the following.

Rcore Area. Rcore needs a reserved memory region separated from the host Linux

kernel and all other VMs, named Rcore area, to provide its functionality. The Rcore area

comprises the Rcore Metadata and the Rcore Page Table Pool. The Rcore Page Table

Pool, as its name suggests, keeps private pools of physical pages for NPTs and SMMU

page tables so that Rcore has complete control over the permissions and the intermediate

physical address to physical address mappings of the memory accessed by the host Linux

kernel, VMs, and I/O devices. The Rcore metadata, on the other hand, is used for storing

Rcore metadata described in subsection 4.3.2.

SMMU Area. SMMU is accessed via MMIOs. Rcore unmaps the SMMU from the

host NPT to trap-and-emulate its access to the SMMU. This approach assures Rcore has

exclusive access to the SMMU.

Generic Area. The Generic Area refers to memory outside the Rcore area and the

SMMU area. This area is used for host OS and guest VMs operation, initially all memory

belongs to the host, and memory are allocated for the guest VMs by the host OS as the

VMs get created and start to consume memory. Rcore needs to access this area to modify

memory pages belonging to the host or guests for VM services, such as zeroing a page

before transferring ownership from a guest back to the host during VM termination.

32 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

Rcore metadata
Page
Table
Pool

generic area, access bounded
by GenericPhysRegion type

Rcore metadata, access via RGFs,
a part of Figure 4.2's Rcore reserved

Rcore Page Table Pool, access bounded
by PTEAddr type, a part of Figure 4.2's
Rcore reserved

physical address space

Rcore area

SMMU

SMMU area, access bounded
by SMMURegion type

unusable
hole

Figure 5.1: Memory Regions

5.2 Memory Region Isolation

Raw pointers are types in Rust that are not checked by Rust’s aliasing xor mutability

rule, meaning there can be multiple raw pointers pointing to the same piece of data. Fur-

ther, raw pointers are also nullable. The relaxation of these safety rules opens up the po-

tential for memory safety bugs including null pointer dereferences or use-after-free when

raw pointers are accessed. Hence, raw pointer accesses are prohibited in safe Rust. As

detailed in the upcoming paragraphs, we examine the need for raw pointers for accessing

the four regions described in section 5.1 and the measures taken to guarantee their isola-

tion, even when employing unsafe Rust in their implementation. The amount of unsafe

code that contains raw pointer accesses is also deliberately made small (∼50 LOC).

33 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

5.2.1 Raw Pointer Access: Rcore Metadata

Since there is no existing memory allocator in a hypervisor environment, we directly

inform where in the address space Rcore should use. Specifically, the address to the in-

stance of RcoreMetadata is pre-defined, and the memory region is initialized at boot

time, so it can be used safely thereby. Using that raw address, several functions are im-

plemented that transform the raw pointer to RcoreMetadata into mutable references to

each of its fields and return them to the caller.

We leverage the design proposed in [15] and implemented a set of reference getter

functions (RGFs). Rcore can use the RGFs to safely access RcoreMetadata with safe

Rust. Each RGF returns a mutable reference to one of the fields in RcoreMetadata,

line 2 of Listing 6 is an example of an RGF, it returns the mutable reference of the type

KMutex<PMemInfo>. The RGF is implemented by:

1. dereference the raw pointer using the * operator

2. pick the pmem_info field of RcoreMetadata

3. take the mutable reference of the field by prepending &mut

4. return the mutable reference

By defining fields of RcoreMetadata as KMutex<T>, and with the RGFs, most of

Rcore is free from directly using raw pointers to access Rcore metadata, and proper locks

are guaranteed to be held when accessing them.

The RGFs return mutable references from a raw pointer, thus encapsulating the raw

pointer usages when the caller wishes to access Rcore metadata (RcoreMetadata). All

34 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

1 // the RGF of pmem_info
2 pub fn get_pmem_info<T: CanGetPMemInfo>(_: &mut T) -> &mut

KMutex<PMemInfo> {↪→

3 // SAFETY: The pointer points to an initialized memory.
4 // The data is properly wrapped in a KMutex
5 // and the caller have the permission to get PMemInfo
6 unsafe {
7 &mut (*RCORE_METADATA_PTR).pmem_info
8 }
9 }

Listing 6: Rcore Reference Getter Function

memory accesses done via RGFs are bounded in the range from RCORE_METADATA_PTR

to RCORE_METADATA_PTR + sizeof(RcoreMetadata), as accesses to non-array fields

will not go out of bounds, and Rust automatically adds runtime checks for the indices

when array fields are accessed. The Rcore metadata region is unmapped from the host

Linux kernel, and we check its address to ensure that it does not overlap with the page

table pool area or the SMMU area. Hence, it is impossible for Rcore metadata accesses to

access the other three regions accidentally.

5.2.2 Raw Pointer Access: Generic Area

Generic area accesses are done by calculating raw addresses and writing to them via

raw pointers. Raw pointers are necessary here because system RAM is just a range of flat

address space to Rcore. To ensure that code accessing the generic area does not acciden-

tally access the Rcore area, a new type called GenericPhysRegion (Listing 7) has been

created, which can only point to amemory range in the generic area. GenericPhysRegion

only has one constructor, namely the new method at line 2 in Listing 7. This method ver-

ifies whether the memory range specified by the arguments (start address start_addr

and access size size) is contained within the bounds of the generic area. If the spec-

35 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

ified range overlaps with the Rcore area or the SMMU area, the constructor returns a

None variant, indicating that the construction has failed. Listing 8 shows an example

usage of GenericPhysRegion, which is a function that takes a physical frame number

(pfn), and clears the contents of the page. The GenericPhysRegion::new() function

is called at line 2 with the physical address of the page (pfn << PAGE_SHIFT) and its

size (PAGE_SIZE) as arguments and returns a type of Option<GenericPhysRegion>.

Next, Option is transformed to Result type through ok_or. and use the ? operator on

the Result type to return the contained value to page if it is an Ok variant. Otherwise,

clear_page immediately returns Error without executing anything after line 2, effec-

tively propagating the absence of a value up the call stack. The caller of GenericPhys-

Region::new() gets a GenericPhysRegion if the check passes; otherwise, clear_page

returns an Error type. If successful, the page contents are cleared at line 4.

5.2.3 Raw Pointer Access: Page Table Pool

Rcore manages the host’s and each VM’s NPTs to control their access to physical

memory. SMMU page tables control I/O devices’ memory access. We also leveraged

Rust’s type system and created the type PTEAddr (Page Table Entry Address). Each in-

stance of type PTEAddr points to an entry in the Rcore Page Table Pool region. Similar to

GenericPhysRegion, PTEAddr’s constructor verifies whether the physical address pro-

vided as an argument for the constructor is within the page table pool region in the Rcore

area. If the address falls within the range, it is translated to the corresponding virtual ad-

dress and stored in a field of the PTEAddr instance. Otherwise, the construction fails, and

a None is returned. This type encapsulates the raw pointer address translation and bound

checks so for example the NPT walking code, can guarantee it is accessing NPT entries

36 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

1 impl GenericPhysRegion {
2 pub fn new(start_addr: usize, size: usize) -> Option<Self> {
3 let end = start_addr + size;
4 // overlap check
5 if (end > RCORE_AREA_START && RCORE_AREA_END > start_addr)
6 || (end > SMMU_AREA_START && SMMU_AREA_END > start_addr) {
7 return None;
8 }
9 Some(Self {
10 start_addr,
11 size,
12 })
13 }
14

15 // returns a mutable `u8` slice for the caller
16 // to access generic area memory
17 pub fn as_slice(&self) -> &'static mut [u8] {
18 // convert the physical address to the virtual address
19 let va = pa_to_va(self.start_addr);
20 unsafe {
21 core::slice::from_raw_parts_mut(
22 va as *mut u8, self.size,
23)
24 }
25 }
26 }

Listing 7: GenericPhysRegion guarantees that every instance points to a valid generic
area range

1 fn clear_page(pfn: usize) -> Result<()> {
2 let page = GenericPhysRegion::new(pfn << PAGE_SHIFT,

PAGE_SIZE).ok_or(Error::InvalidPfn)?;↪→

3 // the `fill` method for type &[u8] fills the slice with the value
passed in↪→

4 page.as_slice().fill(0);
5 Ok(())
6 }

Listing 8: Example usage of GenericPhysRegion

37 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

in the Rcore page table pool area by using PTEAddr.

5.2.4 Raw Pointer Access: SMMU

In a manner analogous to the generic area and page table pool, the type SMMURegion

for accessing SMMU is created. SMMURegion’s newmethod takes the MMIO address and

verifies its inclusion within the SMMU region. SMMURegion is the only type that contain

raw pointers pointing to the SMMU area, as other types’ constructors reject addresses

pointing to the SMMU area. Therefore, Rcore must use SMMURegion whenever it reads

or writes SMMU registers. By utilizing this type for SMMU accesses, SMMU accesses

are guaranteed to access the correct address region.

38 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

Chapter 6 Evaluation

We evaluated the performance of various application benchmarks on a VM running

on KrustVM, SeKVM, and mainline KVM. We also tested the same benchmarks on bare

metal environment performances to establish a baseline reference of the benchmark re-

sults. The workloads were run on the Raspberry Pi 4 model B development board, with

a Broadcom BCM2711, quad-core Cortex-A72 (ARM v8) 64-bit SoC at 1.5GHz, 4GB of

RAM, and a 1 GbE NIC device.

KrustVM, SeKVM, and mainline KVM are all based on Linux 5.15. QEMU v4.0.0

was used to start the virtual machines on Ubuntu 20.04. The guest kernels also used Linux

5.15, and all kernels tested employed the same configuration. We requested the authors

of [35] and got a patch for the Linux guest kernel to enable Virtio. rustc version 1.68.0-

nightly was used to compile Rcore, while clang 15.0.0 was used to compile the remaining

components of KrustVM, SeKVM, and mainline KVM. 2 physical CPUs and 1 GB of

RAM is configured for the bare metal setup, and each VM is equipped with 2 virtual

CPUs , and 1 GB of RAM.

We ran the benchmarks listed in Table 6.1 in VMs on KrustVM, SeKVM, and main-

line KVM. Figure 6.1 shows the normalized results. In Figure 6.1 we normalized the

results to bare-metal performance. 1.00 refers to no virtualization overhead, and a higher

39 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

value means higher overhead. The performance on real application workloads show mod-

est overhead overall for KrustVM compared to SeKVM and mainline KVM.

In the TCP_MAERTS benchmark, it can be observed that mainline KVM, SeKVM, and

KrustVM all outperformed the bare-metal setup. This is caused by the Virtio driver batch-

ing multiple packet sends before submitting data to the NIC. In contrast, the bare-metal

driver submits data to the NIC for each individual transmission, leading to a higher over-

head. TCP_STREAM, which measures bulk data receive performance, does not demonstrate

the advantages of packet batching because receiving packets causes additional VM ex-

its as the hypervisor injects virtual interrupts to notify the VM of incoming packets. The

overhead caused by these extra VM exits dwarfs the benefits provided by packet batching.

For TCP_RR and the YCSB-Redis benchmarks, KrustVM experienced higher over-

head difference compared to mainline KVM at around 8% and 14%, respectively. Perfor-

mance of the bare-metal setup of these two benchmarks are roughly twice as good as the

VMs, amplifying the difference between mainline KVM and KrustVMwhen plotting Fig-

ure 6.1. In fact, when the performance is normalized against mainline KVM (Figure 6.2),

all benchmarks executed on KrustVM demonstrate an overhead of less than 10% com-

pared to mainline KVM. This shows that KrustVM is only slightly less performant than

mainline KVM.

The overhead difference of KrustVM and mainline KVM is more significant in the

networking benchmarks (i.e. Netperf, Apache, Memchached, YCSB-Redis). The ratio-

nale for this can be illustrated by comparing how network data is exchanged between the

guest and the host. We configured a Virtio network device for VMs. For mainline KVM,

the memory buffers in the Virtio rings are shared between the host kernel and VMs, such

40 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

Name Description
Kernbench Compilation of the Linux 6.0 kernel using tinyconfig for Armwith

GCC 9.4.0.
Hackbench hackbench [44] using Unix domain sockets and 50 process groups

running in 50 loops.
Netperf netperf [28] v2.6.0 running the netserver on the server and the client

with its default parameters in three modes: TCP_STREAM (through-
put), TCP_MAERTS (throughput), and TCP_RR (latency).

Apache Apache v2.4.41 Web server running ApacheBench [48] v2.3 on the
remote client, which measures the number of handled requests per
second when serving the 41 KB index.html file of the GCC 4.4 man-
ual using 100 concurrent requests.

Memcached memcached v1.5.22 using the memtier [42] benchmark v1.2.3 with
its default parameters.

YCSB-Redis redis v7.0.11 using the YCSB [13, 16] benchmark v0.17.0 with its
default parameters.

Table 6.1: Application Benchmarks

that the network device can DMA data directly into a guest-visible buffer. In contrast,

KrustVM does not allow the host kernel to share memory with VMs by default. How-

ever, to support Virtio, KrustVM provides the GRANT_MEM and REVOKE_MEM hypercalls

which can be explicitly called by the guest kernel to share memory with the host ker-

nel. Therefore, KrustVM VMs must invoke additional hypercalls while running network

workloads, inducing extra overhead. SeKVM also uses the same set of hypercalls for the

network workloads, thus incurring the same type of overhead.

41 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

ke
rnb

en
ch

ha
ck

be
nc

h

TCP_M
AERTS

TCP_S
TREAM

TCP_R
R

Apa
ch

e

Mem
ca

ch
ed

YCSB-R
ed

is

bare metal mainline KVM SeKVM KrustVM

Figure 6.1: Application Benchmark Performance: Overhead normalized to the bare-metal
setup

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

ke
rnb

en
ch

ha
ck

be
nc

h

TCP_M
AERTS

TCP_S
TREAM

TCP_R
R

Apa
ch

e

Mem
ca

ch
ed

YCSB-R
ed

is

mainline KVM SeKVM KrustVM

Figure 6.2: Application Benchmark Performance: Overhead normalized to mainline
KVM

42 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

Chapter 7 Related Work and Future

Work

7.1 Related Work

7.1.1 VM Protection

Various previouswork redesigned the hypervisor to protect VMs. Cloudvisor [38, 51]

introduced a tiny security monitor underneath the commodity hypervisor to protect the

hosted VMs. Twinvisor [34] supports regular VMs and confidential VMs by running

hypervisors within both of ARM TrustZone’s normal world and secure world. HypSec

[35] and pkvm [26] reduced the hypervisor’s resource access control component into to a

small core to reduce the attack surface. Unlike our work, none of them used Rust to secure

their hypervisor implementation. KrustVM and SeKVM [36] both leveragedHypSec’s de-

sign [35] to retrofit and secure KVM, providing the same level of VM protection. SeKVM

included a formally verified core to protect VMs against an untrusted host Linux kernel,

while KrustVM relies on a Rust-based Rcore to protect VMs. Formal verification of the

concurrent C-based SeKVM core requires significant effort. The authors took two person-

years to complete the correctness and security proofs. In contrast, our Rust-based imple-

43 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

mentation took less than one person-year. Different from formal verification, because the

Rust compiler automatically ensures memory safety properties, our hypervisor codebase

is flexible to frequent updates.

7.1.2 Rust-based Systems

Recent work extended existing C/C++ systems with a Rust binding to enable a Rust-

based programming environment. Rust-SGX [50] and RusTEE [49] wrapped the C/C++

TEE SDK and exposed a safe Rust API to enable Rust programming in TEE environments

such as SGX and TrustZone. Similarly, the Rust-for-Linux [2] project added abstraction

layers to the Linux kernel to facilitate Rust driver programming with Rust. Besides build-

ing a Rust binding, previous work re-implemented C-based components in virtualization

systems with Rust. rust-vmm [45] rewrote a subset of QEMU’s functionalities and sepa-

rated them into libraries in Rust crates. Firecracker [4], crosvm [21], Cloud Hypervisor

[1], and VMSH [47] extended the rust-vmm project with extra functionalities. These pre-

vious works built on top of existing core systems. In contrast, our work retrofitted Linux/

KVMwith a Rust-based TCB. HyperEnclave [27] relies on a Rust-based security monitor

to enforce isolation between enclave TEEs. Unlike our work, the authors did not discuss

the Rust monitor’s implementation and its unsafe Rust usage.

7.1.3 Verification and Formal Methods

seL4 [30] presented the first machine-checked verification of an OS kernel. The to-

tal effort including code implementation, proof construction, and the related research took

over 20 person years. CertiKOS [22] presented an extensible architecture for building cer-

44 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

tified concurrent OS kernels. Their mC2 kernel is verified to be functionally correct and

contains no bugs. Better than seL4, the mC2 kernel is capable of running on stock x86

machines with mutliple cores. Further, the assembly code in the kernel are also verified,

and the CompCertX verified compiler is used for compilation, these combined make the

mC2 kernel certified down to the assembly level. Overall the proof effort for certifing

the mC2 kernel is 2 person years, and it consists of 6500 lines of C and x86 assembly.

SeKVM [36] presented a secure and formally verified Linux KVM hypervisor. Differ-

ent from seL4 and CertiKOS, which both verified less commonly used kernels, SeKVM

verified the commodity Linux KVM hypervisor, which is widely deployed commercially.

To achieve this, KVM is retrofitted into a small trusted core KCore and the remaining

untrusted services KServ, and KCore is proved to guarantee VM confidentiality and in-

tegrity. All of these work verified their code implementation bywriting proofs to show that

the code refines, or satisfies the specifications given. The specifications captures all the

bahavior of the implementation. However, the high level specifications themselves may

be potentially insecure. To mitigate this issue, SeKVM takes a step further and proves

KCore’s specification upholds VM confidentiality and integrity by showing there can not

exist any information leakage between VMs and KServ, regardless of how they interact

with KCore’s interface. In other words, the specifications of KCore are guaranteed to

exhibit the desired security properties. On the other hand, seL4 and CertiKOS does not

address this issue.

These formally verified software systems are guaranteed to be free of programming

errors, but achieving this comes at the cost of significant human effort and reduced flexi-

bility for making changes. Although we hope that Rust can help us with reducing the effort

needed to secure software without sacraficing the ability to update the codebase easily, it

45 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

is challenging to solely rely on Rust to provide safety guarantees comparable to formal

verification. Aside from the fact that there are still portions of unsafe Rust code within

Rcore that the compiler cannot ensure memory safety for, logical errors such as setting

the wrong permission bits for an NPT entry are possible in Rust. Rust verification tools

[8, 19, 24, 31, 32] allows developers to annotate Rust code with specifications, invari-

ants and assertions and then verify them formally, mathematically proving that the code

satisfies the specifications. We can utilize these tools, which offer functional correctness

guarantees, to eliminate logical errors and enhance the safety of Rcore.

7.2 Future Work

This thesis demonstrated how unsafe raw pointer accesses are protected through iso-

latingmemory regions, leveraging language features like automatic bound checks for array

types, and type constructor that checks for their arguments. One aspect of this approach

is that relying solely on memory region isolation is not enough to prevent bugs caused by

raw pointers pointing to unintended addresses. Erroneous raw pointers are not detectable

by memory region isolation if they reference an incorrect addresses within the correct

region. Basically, the granularity of the protection is limited to the size of the memory

regions. This limitation is similar to the hardware MMU, which cannot detect violations

of sub-page access permissions because its protection granularity is at the page level.

In spite of the fact that memory region isolation alone can not guarantee the absence

of raw pointers pointing to unintended addresses, a possible way of enhancing the pro-

tection given by memory region isolation is to shrink the sizes of the memory regions.

The smaller granularity can increase the chances of detecting a raw pointer pointing to an

46 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

unintended address. This can be done by by using the previously mentioned features even

more extensively to enforce a separation of memory regions that are smaller in size, such

as separating the NPT pools into the first level NPT pool, second level NPT pool, and so

on, or splitting the Rcore metadata region into multiple isolated regions, such as VMInfo

region, PMemInfo region, etc.

47 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

48 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

Chapter 8 Conclusions

We have presented KrustVM, a Rust-based secure KVM hypervisor that is based

on Linux 5.15 and rewritten from the C-based Linux 4.18 SeKVM. Similar to SeKVM,

KrustVM delivers VM confidentiality and integrity protection against an untrusted Linux

host kernel integrated with KVM. We overcame challenges in forward porting SeKVM to

Linux 5.15, and rewriting SeKVM’s TCB in Rust. Furthermore, unsafe raw pointer ac-

cesses in KrustVM’s TCB Rcore are protected by memory region isolation, which lever-

aged Rust’s compile-time checks and its strong type system. These measures, combined

with Rust’s high-performance nature, enable KrustVM to ensure robust memory safety,

accomodate frequent code modifications, and maintain overall efficiency. In our experi-

ments, KrustVM preserves the performance efficiency of KVM, demonstrating the prac-

ticality for deployments.

49 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

50 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

References

[1] Cloud hypervisor - run cloud virtual machines securely and efficiently. https://

www.cloudhypervisor.org/, 2023.

[2] Rust for linux. https://rust-for-linux.com/, 2023.

[3] A. R. Adam Greig. aarch64-cpu rust crate. https://crates.io/crates/

aarch64-cpu, 2023.

[4] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer, P. Piwonka, andD.-

M. Popa. Firecracker: Lightweight virtualization for serverless applications. In 17th

USENIX Symposium on Networked Systems Design and Implementation (NSDI

20), pages 419–434, Santa Clara, CA, Feb. 2020. USENIX Association.

[5] B. Anderson, L. Bergstrom, M. Goregaokar, J. Matthews, K. McAllister, J. Mof-

fitt, and S. Sapin. Engineering the servo web browser engine using rust. In 2016

IEEE/ACM 38th International Conference on Software Engineering Companion

(ICSE-C), pages 81–89, 2016.

[6] Arm. Arm and aws: Working together to ” re:invent”

the cloud. https://www.arm.com/company/news/2018/11/

arm-and-aws-working-together-to-reinvent-the-cloud, 2018.

51 doi:10.6342/NTU202301822

https://www.cloudhypervisor.org/
https://www.cloudhypervisor.org/
https://rust-for-linux.com/
https://crates.io/crates/aarch64-cpu
https://crates.io/crates/aarch64-cpu
https://www.arm.com/company/news/2018/11/arm-and-aws-working-together-to-reinvent-the-cloud
https://www.arm.com/company/news/2018/11/arm-and-aws-working-together-to-reinvent-the-cloud
http://dx.doi.org/10.6342/NTU202301822

[7] Arm. Arm neoverse adopted by google cloud. https://www.arm.com/company/

news/2022/07/arm-neoverse-adopted-by-google-cloud, 2022.

[8] V. Astrauskas, P. Müller, F. Poli, and A. J. Summers. Leveraging rust types for

modular specification and verification. Proc. ACM Program. Lang., 3(OOPSLA),

oct 2019.

[9] M. Backes, G. Doychev, and B. Kopf. Preventing Side-Channel Leaks in Web

Traffic: A Formal Approach. In 20th Annual Network and Distributed System

Security Symposium (NDSS 2013), San Diego, CA, Feb. 2013.

[10] A. Bhardwaj, C. Kulkarni, R. Achermann, I. Calciu, S. Kashyap, R. Stutsman, A. Tai,

and G. Zellweger. Nros: Effective replication and sharing in an operating system.

In OSDI, pages 295–312, 2021.

[11] bindgen maintainer. bindgen. https://github.com/rust-lang/rust-bindgen,

2023.

[12] K. Boos, N. Liyanage, R. Ijaz, and L. Zhong. Theseus: an experiment in operating

system structure and state management. In 14th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 20), pages 1–19. USENIX Association,

Nov. 2020.

[13] Brian Cooper. Yahoo! Cloud Serving Benchmark. https://github.com/

brianfrankcooper/YCSB, Feb. 2021.

[14] J. Chen, D. Li, Z. Mi, Y. Liu, B. Zang, H. Guan, and H. Chen. Duvisor: a user-level

hypervisor through delegated virtualization, 2022.

52 doi:10.6342/NTU202301822

https://www.arm.com/company/news/2022/07/arm-neoverse-adopted-by-google-cloud
https://www.arm.com/company/news/2022/07/arm-neoverse-adopted-by-google-cloud
https://github.com/rust-lang/rust-bindgen
https://github.com/brianfrankcooper/YCSB
https://github.com/brianfrankcooper/YCSB
http://dx.doi.org/10.6342/NTU202301822

[15] Y.-H. Chiang, W.-L. Chang, J.-T. Du, and S.-W. Li. Krustvm: a rust-based secure

kvm hypervisor. https://github.com/ntu-ssl/linux-sekvm-rust, 2023.

[16] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking

cloud serving systems with ycsb. pages 143–154, 09 2010.

[17] C. Dall and J. Nieh. Supporting kvm on the arm architecture. https://lwn.net/

Articles/557132/, 2013.

[18] C. Dall and J. Nieh. Kvm/arm: The design and implementation of the linux arm

hypervisor. In Proceedings of the 19th International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS ’14, page

333–348, New York, NY, USA, 2014. Association for Computing Machinery.

[19] X. Denis, J.-H. Jourdan, and C. Marché. Creusot: A foundry for the deductive ver-

ification of rust programs. In Formal Methods and Software Engineering: 23rd

International Conference on Formal Engineering Methods, ICFEM 2022, Madrid,

Spain, October 24–27, 2022, Proceedings, page 90–105, Berlin, Heidelberg, 2022.

Springer-Verlag.

[20] Google. Google Cloud Security and Compliance Whitepa-

per - How Google protects your data. https://static.

googleusercontent.com/media/gsuite.google.com/en//files/

google-apps-security-and-compliance-whitepaper.pdf, Sept. 2017.

[21] Google. Chromiumos virtual machine monitor. https://chromium.

googlesource.com/chromiumos/platform/crosvm/, 2023.

[22] R. Gu, Z. Shao, H. Chen, X. N. Wu, J. Kim, V. Sjöberg, and D. Costanzo. Cer-

tiKOS: An extensible architecture for building certified concurrent OS kernels. In

53 doi:10.6342/NTU202301822

https://github.com/ntu-ssl/linux-sekvm-rust
https://lwn.net/Articles/557132/
https://lwn.net/Articles/557132/
https://static.googleusercontent.com/media/gsuite.google.com/en//files/google-apps-security-and-compliance-whitepaper.pdf
https://static.googleusercontent.com/media/gsuite.google.com/en//files/google-apps-security-and-compliance-whitepaper.pdf
https://static.googleusercontent.com/media/gsuite.google.com/en//files/google-apps-security-and-compliance-whitepaper.pdf
https://chromium.googlesource.com/chromiumos/platform/crosvm/
https://chromium.googlesource.com/chromiumos/platform/crosvm/
http://dx.doi.org/10.6342/NTU202301822

12thUSENIX Symposium onOperating SystemsDesign and Implementation (OSDI

16), pages 653–669, Savannah, GA, Nov. 2016. USENIX Association.

[23] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calan-

drino, A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest We Remember: Cold

Boot Attacks on Encryption Keys. In Proceedings of the 17th USENIX Security

Symposium (USENIX Security 2008), pages 45–60, San Jose, CA, July 2008.

[24] S. Ho and J. Protzenko. Aeneas: Rust verification by functional translation. Proc.

ACM Program. Lang., 6(ICFP), aug 2022.

[25] G. Irazoqui, T. Eisenbarth, and B. Sunar. S$A: A Shared Cache Attack That

Works Across Cores and Defies VM Sandboxing – and Its Application to AES. In

Proceedings of the 2015 IEEE Symposium on Security and Privacy (SP 2015), pages

591–604, San Jose, CA, May 2015.

[26] Jake Edge. KVM for Android, Nov. 2020. https://lwn.net/Articles/836693/.

[27] Y. Jia, S. Liu, W. Wang, Y. Chen, Z. Zhai, S. Yan, and Z. He. HyperEnclave: An

open and cross-platform trusted execution environment. In 2022 USENIX Annual

Technical Conference (USENIX ATC 22), pages 437–454, Carlsbad, CA, July 2022.

USENIX Association.

[28] R. Jones. Netperf. https://github.com/HewlettPackard/netperf, June 2018.

[29] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. KVM: the Linux Virtual

Machine Monitor. In In Proceedings of the 2007 Ottawa Linux Symposium (OLS

2007), Ottawa, ON, Canada, June 2007.

54 doi:10.6342/NTU202301822

https://lwn.net/Articles/836693/
https://github.com/HewlettPackard/netperf
http://dx.doi.org/10.6342/NTU202301822

[30] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elka-

duwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood.

Sel4: Formal verification of an os kernel. In Proceedings of the ACM SIGOPS 22nd

Symposium on Operating Systems Principles, SOSP ’09, page 207–220, New York,

NY, USA, 2009. Association for Computing Machinery.

[31] A. Lattuada, T. Hance, C. Cho, M. Brun, I. Subasinghe, Y. Zhou, J. Howell, B. Parno,

and C. Hawblitzel. Verus: Verifying rust programs using linear ghost types. Proc.

ACM Program. Lang., 7(OOPSLA1), apr 2023.

[32] N. Lehmann, A. Geller, N. Vazou, and R. Jhala. Flux: Liquid types for rust, 2022.

[33] A. Levy, B. Campbell, B. Ghena, D. B. Giffin, P. Pannuto, P. Dutta, and P. Levis.

Multiprogramming a 64kb computer safely and efficiently. In Proceedings of the

26th Symposium on Operating Systems Principles, pages 234–251, 2017.

[34] D. Li, Z. Mi, Y. Xia, B. Zang, H. Chen, and H. Guan. Twinvisor: Hardware-isolated

confidential virtual machines for arm. In Proceedings of the ACM SIGOPS 28th

Symposium on Operating Systems Principles, SOSP ’21, page 638–654, New York,

NY, USA, 2021. Association for Computing Machinery.

[35] S.-W. Li, J. S. Koh, and J. Nieh. Protecting cloud virtual machines from com-

modity hypervisor and host operating system exploits. In Proceedings of the 28th

USENIX Conference on Security Symposium, SEC’19, page 1357–1374, USA,

2019. USENIX Association.

[36] S.-W. Li, X. Li, R. Gu, J. Nieh, and J. Zhuang Hui. A secure and formally verified

linux kvm hypervisor. In 2021 IEEE Symposium on Security and Privacy (SP), pages

1782–1799, 2021.

55 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

[37] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-Level Cache Side-Channel

Attacks Are Practical. In Proceedings of the 2015 IEEE Symposium on Security and

Privacy (SP 2015), pages 605–622, San Jose, CA, May 2015.

[38] Z. Mi, D. Li, H. Chen, B. Zang, and H. Guan. (mostly) exitless VM protection from

untrusted hypervisor through disaggregated nested virtualization. In 29th USENIX

Security Symposium (USENIX Security 20), pages 1695–1712. USENIX Associa-

tion, Aug. 2020.

[39] Microsoft. Hyper-V Technology Overview. https://docs.

microsoft.com/en-us/windows-server/virtualization/hyper-v/

hyper-v-technology-overview, Nov. 2016.

[40] V. Narayanan, T. Huang, D. Detweiler, D. Appel, Z. Li, G. Zellweger, andA. Burtsev.

Redleaf: Isolation and communication in a safe operating system. In Proceedings

of the 14th USENIX Conference on Operating Systems Design and Implementation,

pages 21–39, 2020.

[41] B. Qin, Y. Chen, Z. Yu, L. Song, and Y. Zhang. Understanding memory and

thread safety practices and issues in real-world rust programs. In Proceedings

of the 41st ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2020, page 763–779, New York, NY, USA, 2020. Asso-

ciation for Computing Machinery.

[42] Redis Labs. memtier_benchmark. https://github.com/RedisLabs/memtier_

benchmark, Apr. 2015.

[43] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, You, Get off of

My Cloud: Exploring Information Leakage in Third-party Compute Clouds. In

56 doi:10.6342/NTU202301822

https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark
http://dx.doi.org/10.6342/NTU202301822

Proceedings of the 16th ACM Conference on Computer and Communications

Security (CCS 2009), pages 199–212, Chicago, IL, Nov. 2009.

[44] R. Russell. Hackbench. http://people.redhat.com/mingo/cfs-scheduler/

tools/hackbench.c, Jan. 2008.

[45] rust-vmm maintainers. rust-vmm. https://github.com/rust-vmm, 2023.

[46] M. Sung, P. Olivier, S. Lankes, and B. Ravindran. Intra-unikernel isolation with

intel memory protection keys. In Proceedings of the 16th ACM SIGPLAN/SIGOPS

International Conference on Virtual Execution Environments, VEE ’20, page 143–

156, New York, NY, USA, 2020. Association for Computing Machinery.

[47] J. Thalheim, P. Okelmann, H. Unnibhavi, R. Gouicem, and P. Bhatotia. Vmsh:

Hypervisor-agnostic guest overlays for vms. In Proceedings of the Seventeenth

European Conference on Computer Systems, EuroSys ’22, page 678–696, New

York, NY, USA, 2022. Association for Computing Machinery.

[48] The Apache Software Foundation. ab - Apache HTTP server benchmarking tool.

http://httpd.apache.org/docs/2.4/programs/ab.html, Apr. 2015.

[49] S. Wan, M. Sun, K. Sun, N. Zhang, and X. He. Rustee: Developing memory-safe

arm trustzone applications. In Annual Computer Security Applications Conference,

ACSAC ’20, page 442–453, New York, NY, USA, 2020. Association for Computing

Machinery.

[50] H. Wang, P. Wang, Y. Ding, M. Sun, Y. Jing, R. Duan, L. Li, Y. Zhang, T. Wei, and

Z. Lin. Towards memory safe enclave programming with rust-sgx. In Proceedings

of the 2019 ACM SIGSAC Conference on Computer and Communications Security,

57 doi:10.6342/NTU202301822

http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
https://github.com/rust-vmm
http://httpd.apache.org/docs/2.4/programs/ab.html
http://dx.doi.org/10.6342/NTU202301822

CCS ’19, page 2333–2350, New York, NY, USA, 2019. Association for Computing

Machinery.

[51] F. Zhang, J. Chen, H. Chen, and B. Zang. CloudVisor: Retrofitting Protection of

Virtual Machines in Multi-tenant Cloud with Nested Virtualization. In Proceedings

of the 23rd ACM Symposium on Operating Systems Principles (SOSP 2011), pages

203–216, Cascais, Portugal, Oct. 2011.

[52] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-VM Side Channels and

Their Use to Extract Private Keys. In Proceedings of the 2012 ACM Conference on

Computer and Communications Security (CCS 2012), pages 305–316, Raleigh, NC,

Oct. 2012.

[53] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-Tenant Side-Channel

Attacks in Paas Clouds. In Proceedings of the 2014 ACM SIGSAC Conference on

Computer and Communications Security (CCS 2014), pages 990–1003, Nov. 2014.

58 doi:10.6342/NTU202301822

http://dx.doi.org/10.6342/NTU202301822

	Verification Letter from the Oral Examination Committee
	致謝
	摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Overview of the ARM Architecture
	KVM ARM
	HypSec
	SeKVM
	The Rust Programming Language

	Assumptions and Threat Model
	Implementing a Linux KVM TCB in Rust
	Forward Porting SeKVM from Linux 4.18 to Linux 5.15
	Integrating Rust and Linux
	Rewriting C-based KCore into Rust-based Rcore
	The Rewrite Process
	Rust Code Organization
	Rust-Rewrite Challenges
	Unsafe Rust Usages

	Bringing up KrustVM on Real Hardware

	Securing Rcore Memory Accesses
	Rcore Memory Regions
	Memory Region Isolation
	Raw Pointer Access: Rcore Metadata
	Raw Pointer Access: Generic Area
	Raw Pointer Access: Page Table Pool
	Raw Pointer Access: SMMU

	Evaluation
	Related Work and Future Work
	Related Work
	VM Protection
	Rust-based Systems
	Verification and Formal Methods

	Future Work

	Conclusions
	References

