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摘要

給定一個置換 π 代表置換生成圖 G，我們用 O(n logn)時間與 O(n)空間的演算

法找到最小 k距支配集。我們先找到一個動態規劃的規則，再參考 Farber與 Keil

[12]在同類型的圖上對於支配集 (即 k = 1的情況)的動態規劃演算法，將兩者合

併後變成 O(n2)時間演算法，最後引入 AVL樹，改良成 O(n logn)時間演算法。

關鍵字：k距支配集；置換生成圖；動態規劃；AVL樹
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Abstract

Given a permutation π which denotes a permutation graph G. We use an O(n logn) time

and O(n) space algorithm to find a minimum distance-k dominating set. We first find

a dynamic programming rule, then we combine it with another dynamic programming

algorithm given by Ferber and Keil [12], which is used to find minimum dominating set

(the case of k = 1) on permutation graphs. So theO(n2) time algorithm is created. Finally,

we use AVL tree to reduce our time complexity to O(n logn).

Keywords: distance-k dominating set; permutation graph; dynamic programming; AVL

tree
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Chapter 1 Introduction

In this chapter, we will define ”minimum distance-k dominating set” on a graph. Finding

one of such set is NP-hard [13] in general graphs. We will then introduce a special graphs

named ”permutation graphs”. It has some good performances s.t. some hard problems

become polynomial-time solvable on it. The problem we want to solve belongs them.

Finally we will propose some notations which will be used often in this thesis.

1.1 Minimum Distance-k Dominating Sets

Given a graph G = (V,E) and an integer k > 0, a vertex subset D of V is a distance-k

dominating set if for each vertex j ∈ V , there is at least one vertex i ∈ D s.t. the distance

between i and j ≤ k. Note that we define the distance from any vertex to itself to be 0.

The minimum distance-k dominating set is to find such D with minimum cardinality.

1.2 Permutation Graphs

A graphG = (V,E) is a permutation graph if there exists a permutation π of {1, 2, ..., |V |}

such that (i, j) ∈ E ⇔ (i− j)(π−1(i)− π−1(j)) < 0, where π−1(i) is the position of i in

π.

In this thesis, we use ”permutation diagram” (Figure 1.1) to denote it. In the dia-

gram, we have two horizontal lines called top channel and bottom channel. The numbers

1, 2, ..., |V | are drawn on top channel from left to right; the numbers π(1), π(2), ..., π(|V |)

are drawn on bottom channel from left to right. Each vertex i becomes a line with both top

and bottom channel = i. We say its position on top channel is i, and on bottom channel is

π−1(i). Two vertices are adjacent⇔ their corresponding lines intersect with each other.

To determine whether a given graph is a permutation graph and to find the defining

permutation π if it is, Spinrad [21] give an algorithm in O(|V |2) time in 1983, and it is

improved to O(|V | + |E|) time by McConnell and Spinrad [18] in 1999. So we assume

1
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Figure 1.1: A permutation graph with permutation π and its corresponding permutation
diagram.

the input is π in this thesis.

1.3 Definitions and Notations

We first define some notations used in this thesis. We use n to denote |V |,m to denote |E|.

Then we use i to denote a line in permutation diagram whose position on top channel is i,

on bottom channel is π−1(i), and j has similar denotation. Then we use d(i, j) to denote

the distance between i and j, If (i − j)(π−1(i) − π−1(j)) < 0, then d(i, j) = 1, and we

say the two lines i and j ”intersect” with each other in permutation diagram. Finally we

use t to denote a position on top channel, b to denote a position on bottom channel.

2
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Chapter 2 Previous Work

In this chapter, we will propose some previous work.

2.1 MinimumDistance-kDominating Set onPermutation
Graphs

In this section, we will propose the previous work to solve our problem. Both k = 1 case

and k > 1 case will be told.

For domination problem (which is the case of k = 1) on permutation graphs, Ferber

and Keil [12] gave an O(n2) time dynamic programming based algorithm. Then Tsai and

Hsu [22] improved it into O(n log logn) time using a tree structure. Finally Chao, Hsu,

and Lee [8] used linked list, with some adjustment on Ferber and Keil’s algorithm, to

construct an O(n) time algorithm. Thus the optimal time is found.

For k > 1 case, Chang, Ho, and Ko [7] gave an O(nm2) time algorithm on AT-free

graphs. Since permutation graphs is a subclass of AT-free graphs, we can use this algorithm

to solve the problem. Then, Rana, Pal, and Pal [19] gave an O(n2) time algorithm on

permutation graphs.

In this thesis, we create an O(n logn) time and O(n) space algorithm. We first find

an dynamic programming rule to solve the problem, then we combine it with Ferber and

Keil’s algorithm [12] to create an O(n2) algorithm. Finally, we use a data structure called

AVL tree [1] to reduce our time complexity to O(n logn).

2.2 Related Work

In this section, we will propose other previous work related but not the same as our prob-

lem. We will first propose some different problem on permutation graphs, then propose

domination problem on different graphs.

3
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Weighted domination problem on permutation graphs is solved in O(n3) time by

Ferber and Keil [12] in 1985,O(n(m+n)) time by Liang, et al. [17] in 1991,O(n2 log2 n)

time by Tsai and Hsu [22] in 1993, and O(m+ n) time by Rhee, et al. [20] in 1996.

Independent domination problem on permutation graphs is solved in O(n3) time by

Ferber and Keil [12] in 1985, and O(n log2 n) time by Atallah, et al. [4] in 1988.

Weighted independent domination problem on permutation graphs is solved inO(n3)

time by Ferber and Keil [12] in 1985, O(n2) time by Brandstädt and Kratsch [6] in 1987,

and O(n logn) by Atallah and Kosaraju [3] in 1989.

Connected domination problem on permutation graphs is solved in O(n2) time by

Colbourn and Stewart [11] in 1990, O(m + n) time by Arvind and Rangan [2] in 1992,

and O(n) time by Ibarra and Zheng [15] in 1994.

Weighted connected domination problem on permutation graphs is solved in O(n3)

time by Colbourn and Stewart [11] in 1990, and O(m + n logn) time by Arvind and

Rangan [2] in 1992.

Paired domination problem on permutation graphs is solved inO(mn) time byCheng,

et al. [9] in 2009, and O(n) time by Lappas, et al. [16] in 2013.

On the other hand, for domination problem:

The problem on circular-arc graphs is solved in O(mn) time by Bonuccelli [5] in

1985, and O(n) time by Hsu and Tsai [14] in 1991.

The problem on trees is solved in O(n) time by Cockayne, et al. [10] in 1975.

4
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Chapter 3 A Dynamic Programming
Algorithm

In this chapter, we will propose a dynamic programming rule we find. We can simply use

this rule to get the solution. First, we will construct a data structure named ”trapezoid” to

simplify our problem. Then, we will introduce a distance-k dominating set. We find the

dynamic programming rule of it, and thus we can use it to find the solution.

3.1 A Data Structure

In this section, we find that given fixed k, for each i, there is a trapezoid, denoted by Tzk[i],

s.t. d(i, j) ≤ k ⇔ Tzk[i] ”intersects” with line j, the word ”intersect” between trapezoid

and line will be formally defined below. We will propose some important properties for

trapezoids, then we will propose how to find Tzk[i] for all i in O(n log k) time and O(n)

space. The problem thus reduce to find a minimum set D ⊆ V s.t. for each line j, there

is at least one line i ∈ D s.t. Tzk[i] intersects with j. At last we will prove the theorems

and prove the correctness and complexity of algorithms mentioned in this section.

3.1.1 Definitions and Properties

We now formally define the trapezoid Tzk[i] (Figure 3.1). It has two parallel lines, one is

located on the top channel and the other is located on the bottom channel of the permutation

diagram. It has four corners, two of them are at the top channel and two of them are at the

bottom channel. We define TRk[i] to be its top right corner’s position on the top channel;

BRk[i] to be its bottom right corner’s position on the bottom channel. TLk[i] and BLk[i]

are defined similarly.

Then, we say the trapezoid Tzk[i] intersects with some line j if either TLk[i] ≤ j ≤

TRk[i] or BLk[i] ≤ π−1(j) ≤ BRk[i], and d(i, j) ≤ k ⇔ Tzk[i] intersects with line j.

5
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Figure 3.1: A trapezoid Tz3[13].

We then propose some properties of trapezoids we find. We find that if k ∤ 2, then

TLk[i] and TRk[i] monotone increase as i increase. Else if k | 2, then BLk[i] and BRk[i]

monotone increase as i increase (Figure 3.2). There are similar properties as π−1(i) in-

crease. We use these properties often in the following sections. We formally write it

below.

(a)

(b)

Figure 3.2: Properties of trapezoids: (a) the case of k = 2, (b) the case of k = 3.

Theorem 3.1.1. For fixed k > 1, for i ≤ j, if k ∤ 2, then TLk[i] ≤ TLk[j] and TRk[i] ≤

TRk[j], else, then BLk[i] ≤ BLk[j] and BRk[i] ≤ BRk[j]; For π−1(i) ≤ π−1(j), if

k ∤ 2, then BLk[i] ≤ BLk[j] and BRk[i] ≤ BRk[j], else, then TLk[i] ≤ TLk[j] and

TRk[i] ≤ TRk[j].

3.1.2 An Algorithm to Find Trapezoids

We first use a simple example to propose the algorithm. Let k = 3, given an arbitrary line

i, we want to find the trapezoid Tz3[i]. The method to find its top right corner’s position

TR3[i] is:

(1) Collect the lines intersecting with i and i itself.

6
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(2) Pick a line in (1), whose position on bottom channel is maximum, call it i′.

(3) Collect the lines intersecting with i′ and i′ itself.

(4) Pick a line in (3), whose position on top channel is maximum, call it i′′.

(5) TR3[i] = i′′.

To find BR3[i], we do the similar things. But find maximum on top channel first,

then find maximum on bottom channel. Notice that if the final line is i′′′, then its position

on bottom channel is π−1(i′′′). So BR3[i] = π−1(i′′′).

To find TL3[i] and BL3[i], it is similar as above, but replace ”maximum” by ”mini-

mum”.

We find that if k = 3, we repeat the similar steps twice. Actually we repeat the steps

for arbitrary k by first on top channel, second on bottom, third on top, ..., until k − 1

times to find a corner. Then first on bottom channel, second on top, third on bottom, ...,

until k− 1 times to find another corner. Then replace ”maximum” by ”minimum” to find

remain two corners.

Now we formally propose the method. First, given an integer x, given a line i, we

have a definition below.

Definition 3.1.2. trx[i] = j with maximum j s.t. d(i, j) ≤ x; brx[i] = j with maximum

π−1(j) s.t. d(i, j) ≤ x. tlx[i] and blx[i] are similar, but replace ”max” by ”min”.

If x = 1, we simply write tr[i], br[i], tl[i], and bl[i].

The definition leads to the following lemma, which can be used often for proof of

theorems:

Lemma 3.1.3. If d(i, j) ≤ x, then tlx[i] ≤ j ≤ trx[i] and π−1(blx[i]) ≤ π−1(j) ≤

π−1(brx[i]).

Proof. Directly by the definition.

Then we have two theorems below, which propose that the method is correct.

Theorem 3.1.4. For arbitrary x > 1, trx[i] = tr[brx−1[i]]; brx[i] = br[trx−1[i]]; tlx[i] =

tl[blx−1[i]]; blx[i] = bl[tlx−1[i]].

Theorem 3.1.5. For fixed k > 1, TRk[i] = trk−1[i]; BRk[i] = π−1(brk−1[i]); TLk[i] =

tlk−1[i]; BLk[i] = π−1(blk−1[i]).

7
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By theorems, for k = 3 case, for each i, TR3[i] = tr2[i] = tr[br[i]]; BR3[i] =

π−1(br2[i]) = π−1(br[tr[i]]); and similar for TL3[i] andBL3[i]. This is same as the method

we use at the beginning of the section.

The Algorithm 1 and Algorithm 2 below use O(n log k) time and O(n) space to find

trapezoids Tzk[i] for all lines i. In Algorithms, for every lines i, we compute their tr[i],

br[i], tl[i], bl[i] first, then we use these terms, combine with double-and-add method, to

find x = k − 1 terms, then done.

Algorithm 1 Find tr[i] for each i. The algorithm to find br[i], tl[i], and bl[i] are similar.
Input: permutation π
Output: tr[i], i = 1 to n
t← n, b← n
while t ̸= 0 do

while b ≥ π−1(t) do
tr[π(b)]← t
b← b− 1

while t ̸= 0 and tr[t] has been valued do
t← t− 1

3.1.3 Correctness and Complexity Analysis

In this section, we will prove the theorems and the correctness of algorithms above. Then

we will prove that our algorithms compute Tzk[i] in O(n log k) time and O(n) space for

all i.

1. Proof of Theorem 3.1.1:

Claim:

(1) If i ≤ j, π−1(br[i]) ≤ π−1(br[j]).

(2) If π−1(i) ≤ π−1(j), then tr[i] ≤ tr[j].

The tl, bl terms are same as tr, br terms.

Suppose the claims are correct, within the fact of Theorem 3.1.4 and 3.1.5, we can use

them to prove each case of Theorem 3.1.1. For example if i ≤ j, by (1)BR2[i] ≤ BR2[j];

then by (2) TR3[i] ≤ TR3[j], and so on. The proof is similar if π−1(i) ≤ π−1(j).

We just prove (1) only, (2) are symmetry as (1). Suppose i ≤ j, if π−1(br[i]) >

π−1(br[j]), then since π−1(i) ≤ π−1(br[i]), i ≥ br[i], so br[i] ≤ i ≤ j. And π−1(br[i]) >

π−1(br[j]) ≥ π−1(j), br[i] intersects with j. This contradicts to the definition of br[j].

8
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Algorithm 2 Find trk−1[i] and brk−1[i] given tr[i] and br[i] for each i (double-and-add
method). The algorithm to find tlk−1[i] and blk−1[i] are similar.
Input: integer k, tr[i] and br[i], i = 1 to n
Output: trk−1[i]← T [i] and brk−1[i]← B[i], i = 1 to n
Use binary representation to represent k − 1, so k − 1 = b1b2...by, where b1 = 1, bj =
either 1 or 0 for j > 1.
for i = 1 to n do

// initialize
T [i]← tr[i], B[i]← br[i]

for j = 2 to y do
// double
if bj−1 = 1 then

for i = 1 to n do
tmpT [i]← T [B[i]], tmpB[i]← B[T [i]]

else
for i = 1 to n do

tmpT [i]← T [T [i]], tmpB[i]← B[B[i]]

for i = 1 to n do
T [i]← tmpT [i], B[i]← tmpB[i]

// add
if bj = 1 then

for i = 1 to n do
tmpT [i]← tr[B[i]], tmpB[i]← br[T [i]]

for i = 1 to n do
T [i]← tmpT [i], B[i]← tmpB[i]

2. Proof of Theorem 3.1.4:

We just prove trx[i] = tr[brx−1[i]], the others have similar proof.

We prove it by checking if tr[brx−1[i]] meets all of the conditions of trx[i] in Defini-

tion 3.1.2. d(i, tr[brx−1[i]]) ≤ x since d(i, brx−1[i]) ≤ x − 1, so the remain proof is: For

any arbitrary line j s.t. d(i, j) ≤ x, j must ≤ tr[brx−1[i]].

We claim if (a) j > tr[brx−1[i]], then by Lemma 3.1.3 tr[brx−1[i]] ≥ brx−1[i] and

thus (b) j > brx−1[i]. Then we split the relations of π−1(j) and π−1(brx−1[i]) into the

following three cases. We can find that all cases lead to a contradiction. So the claim is

false, the proof is finished.

(1) If π−1(j) < π−1(brx−1[i]), then together with (b) j intersects with brx−1[i]. But

j > tr[brx−1[i]] by (a), this contradicts to the definition of tr.

(2) Else if π−1(j) > π−1(brx−1[i]), let the shortest path from i to j be i → ... →

j′ → j, we claim that j′ > tr[brx−1[i]] and j′ intersects with brx−1[i], this contradicts to

9
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the definition of tr.

Proof of claim: π−1(j′) ≤ π−1(brx−1[i]) since d(i, j ′) = d(i, j)− 1 ≤ x− 1 and by

Lemma 3.1.3. And this leads to π−1(j′) < π−1(j). j′ > j since j′ intersects with j, and

j′ > brx−1[i] by (b). So j′ intersects with brx−1[i]; But j′ > j > tr[brx−1[i]] by (a), done.

(3) Else, but j ̸= brx−1[i] by (b), this contradict to the definition of permutation dia-

gram.

3. Proof of Theorem 3.1.5:

Claim: d(i, j) ≤ k ⇔ either tlk−1[i] ≤ j ≤ trk−1[i] or π−1(blk−1[i]) ≤ π−1(j) ≤

π−1(brk−1[i]). Then the four positions are the corners of Tzk[i] by definition of trapezoids.

We split the d(i, j) into the following three cases and prove the claim above.

(1) If d(i, j) ≤ k − 1, then the claim is correct by Lemma 3.1.3.

(2) Else if d(i, j) = k (k > 1). Suppose i < j and π−1(i) < π−1(j), whichmeans line

j is on the right of line i, then tlk−1[i] ≤ i < j and π−1(blk−1[i]) ≤ π−1(i) < π−1(j). Let

the shortest path from i to j be i→ ...→ j′ → j, then either j < j ′ or π−1(j) < π−1(j′).

Both j′ ≤ trk−1[i] and π−1(j′) ≤ π−1(brk−1[i]) by Lemma 3.1.3 since d(i, j ′) = k − 1.

Thus either j < trk−1[i] or π−1(j) < π−1(brk−1[i]). The proof is similar if line j is on the

left of line i, so the claim is correct.

(3) Else, suppose line j is on the right of line i. If i < j ≤ trk−1[i], then j must

intersect at least one line of the shortest path from i to trk−1[i] since the path is continuous

on the permutation diagram. Then d(i, j) is at most k since the length of the path is k− 1,

contradiction. Else if π−1(i) < π−1(j) ≤ π−1(brk−1[i]), the proof similar to above leads

to contradiction. So both j > trk−1[i] and π−1(j) > π−1(brk−1[i]). The proof is similar if

line j is on the left of i.

4. Correctness of Algorithm 1:

(1) Let t1 ← n, we prove that for each line i, if π−1(t1) ≤ π−1(i), then tr[i]← t1: t1
is maximum, so for each i, i ≤ t1. If π−1(t1) ≤ π−1(i) ≤ n, then d(i, t1) ≤ 1, and again

t1 is maximum. So tr[i]← t1.

(2) Then let t2 be the maximum number s.t. tr[t2] hasn’t been valued. We prove that

if π−1(t2) ≤ π−1(j) < π−1(t1), then tr[j] ← t2: tr[j] hasn’t been valued⇔ π−1(j) <

π−1(t1) (by (1)) and j ≤ t2. If π−1(t2) ≤ π−1(j), then d(j, t2) ≤ 1. The remain to prove

10
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is d(j, i) > 1 for i > t2. This is because j ≤ t2 < i and π−1(j) < π−1(t1) ≤ π−1(i).

(3) Repeat (2) until all tr[i] are valued, then done.

5. Correctness of Algorithm 2:

By Theorem 3.1.4, for ”double”, if x is odd, then for each i, tr2x[i] = trx[brx[i]], else

then tr2x[i] = trx[trx[i]]; for ”add”, for arbitrary x, trx+1[i] = tr[brx[i]]. The other terms

are similar, so the algorithm is correct.

6. Complexity Analysis:

For Algorithm 1, since both t and b runs from n to 0 once, the time complexity is

O(n); We input π, and save tr[i] for each i, so the space complexity is O(n). Since we

run the Algorithm four times, the time and space complexity are same as above.

For Algorithm 2, y = O(log k), for each j we computes tmpT [i], tmpB[i], T [i], and

B[i] once or twice for each i. So it takes O(n log k) time. We input O(n) terms, save

tmpT [i], tmpB[i], T [i], and B[i] for each i, so the space complexity are O(n). Since we

run the Algorithm twice, the time and space complexity are same as above.

So the two algorithms need O(n log k) time and O(n) space in total.

3.2 A New Distance-k Dominating Set

In this section, given fixed k > 1, we will define a distance-k dominating set D1k(i).

Where the ”1” means one input ”i”. We find a dynamic programming rule of it s.t. we

can easily find the solution on permutation graph. At last we will prove the theorems

mentioned in this section.

3.2.1 Definitions and Algorithms

We first define D1k(i).

Definition 3.2.1. D1k(0) = ∅, for i = 1 to n, D1k(i) ⊆ {1, 2, ..., i} is a minimum

distance-k dominating set including i which k-dominates {1, 2, ..., i}.

Before we introduce the dynamic programming rule, we first define the set_min:

Definition 3.2.2. Given several sets S1, S2, ..., set_min(S1, S2, ...) output a set with min-

imum cardinality.

11
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Now we have the following rules, note that they are not as trivial as it looks like.

Theorem 3.2.3. For i = 1 to n, D1k(i) = {i} ∪ set_min0≤j<i(D1k(j) | {i} ∪ D1k(j)

k-dominates {1, 2, ..., i}).

Theorem 3.2.4. set_min0≤i≤n(D1k(i) | D1k(i) k-dominates {1, 2, ..., n}) is a minimum

distance-k dominating set on given permutation graph.

By Theorem 3.2.3 and Theorem 3.2.4, we can easily construct algorithm 3 to find

solution. But if we use this algorithm without any improvement, it takesO(n4) time since

for each i, j, we need O(n2) time to check if {i} ∪ D1k(j) k-dominates {1, 2, ..., i}. So

the next chapter we will propose how to improve the time complexity of this algorithm.

Algorithm 3 Find a minimum distance-k dominating set on given permutation graph.
Input: permutation π, an integer k
Output: a minimum distance-k dominating set on permutation graph denoted by π
if k = 1 then

Use Chao, Hsu, and Lee’s [8] O(n) time algorithm to get the solution.
else

Use algorithm 1 and 2 to find Tzk[i] for i = 1 to n.
Initialize D1k(0)← ∅
for i = 1 to n do

D1k(i)← {i}∪set_min0≤j<i(D1k(j) | {i}∪D1k(j) k-dominates {1, 2, ..., i})
output set_min0≤i≤n(D1k(i) | D1k(i) k-dominates {1, 2, ..., n})

3.2.2 Correctness

In this section, we will prove two theorems above. Recall the definition of D1k(i), a set

D can be a choice of D1k(i) if:

(a) D ⊆ {1, 2, ..., i}

(b) i ∈ D

(c) D k-dominates {1, 2, ..., i}

(d) |D| is minimum

These will be used in the following proofs.

Now, we propose a lemma which is the core of proof of theorems.

Lemma 3.2.5. For each i, ∃ a choice of D1k(i), say D, s.t. each two lines ∈ D don’t

intersect with each other.
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we set a condition (e) below:

(e) Each two lines ∈ D don’t intersect with each other.

We first use this lemma to prove theorems, then we prove the correctness of this

lemma.

1. Proof of Theorem 3.2.3:

For i = 1 to n, we denotes Dlemmak(i) to be a set described by Lemma 3.2.5, and

denoteDthmk(i) = {i}∪set_min0≤j<i(D1k(j) | {i}∪D1k(j) k-dominates {1, 2, ..., i}).

We want to prove that Dthmk(i) is a choice of D1k(i). First, Dthmk(i) must exist since

{i}∪D1k(i− 1)meets (a), (b), (c) ofD1k(i), and (d) can be found since i is finite. Then,

Dthmk(i) meets (a) since {i} ⊆ {1, 2, ..., i} and D1k(j) ⊆ {1, 2, ..., j} ⊆ {1, 2, ..., i};

Dthmk(i) meets (b) and (c) by definition. The remain to prove is (d). If |Dthmk(i)| ≤

|Dlemmak(i)|, then since |Dlemmak(i)| is minimum, (d) is proved.

Let Dlemmak(i) = {i1, i2, ..., ix, i}, where i1 < i2 < ... < ix < i and π−1(i1) <

π−1(i2) < ... < π−1(ix) < π−1(i). We claim Dlemmak(i)\{i} = {i1, i2, ..., ix} is

a choice of D1k(ix), then |Dthmk(i)| = |{i} ∪ set_min0≤j<i(D1k(j) | {i} ∪ D1k(j)

k-dominates {1, 2, ..., i})| ≤ |{i} ∪D1k(ix)| = |Dlemmak(i)|, done.

To prove Dlemmak(i)\{i} is a choice of D1k(ix): (a), (b) are met immediately.

To prove (c), we knowDlemmak(i) k-dominates {1, 2, ..., i}. If i′ ∈ {1, 2, ..., ix} is

k-dominated by i, then since ix < i and π−1(ix) < π−1(i), by Theorem 3.1.1 TLk[ix] ≤

TLk[i] and BLk[ix] ≤ BLk[i], so i′ is also k-dominated by ix, done.

To prove (d), we claim {ix, i} can k-dominate {ix+1, ix+2, ..., i}. Then if ∃ a choice

of D1k(ix), say D′, and |D′| < |Dlemmak(i)\{i}|, then {i} ∪ D′ can also be a choice

ofD1k(i), but it< |Dlemmak(i)|, contradiction sinceDlemmak(i) should be minimum.

So (d) is true.

Prove the claim: if ∃ i′ s.t. ix < i′ < i, π−1(ix) < π−1(i′) < π−1(i) and i′ can’t be

k-dominated by {ix, i}, then TRk[iy] ≤ TRk[ix] < i′ and BRk[iy] ≤ BRk[ix] < π−1(i′)

for 1 ≤ y ≤ x by Theorem 3.1.1. So Dlemmak(i) doesn’t k-dominate i′, contradiction.

2. Proof of Theorem 3.2.4:

By Lemma 3.2.5, there is a minimum distance-k dominating set {i1, i2, ..., ix} of the

permutation graph meeting (e). Since |D1k(ix)| ≤ x. The remain to prove isD1k(ix) also
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k-dominates {ix+1, ix+2, ..., n}, thenD1k(ix) is also a minimum distance-k dominating

set on the same graph.

By Theorem 3.1.1, TRk[iy] ≤ TRk[ix] and BRk[iy] ≤ BRk[ix] for 1 ≤ y ≤ x, so ix
must k-dominate {ix + 1, ix + 2, ..., n}. Since D1k(ix) includes ix, done.

3. Proof of Lemma 3.2.5:

We claim that given an arbitrary setD′
k(i)which is a choice ofD1k(i), we can transfer

it into another set, sayDlemmak(i), s.t. Dlemmak(i)meets all conditions ofD1k(i) and

meets (e). Then the proof is done.

For convenience, we consider the subgraph with vertices= {1, 2, ..., i}. Note that the

subgraph of a permutation graph is also a permutation graph.We transfer D′
k(i) by: Find

two intersecting lines j1, j2 ∈ D′
k(i), W.L.O.G. suppose j1 > j2 and π−1(j1) < π−1(j2),

then replace them by tr[j2], bl[j2]. Repeat them until each of two lines in the set don’t

intersecting with each other, the set is Dlemmak(i).

Dlemmak(i) meets (a): Directly since we just consider vertices = {1, 2, ..., i}.

Dlemmak(i) meets (b): For each transfer, if ∃j ∈ D′
k(i) intersecting with i, then

since i > j, we choose tr[j] and bl[j] to replace them. Since i intersects with j and i is

maximum, tr[j] = i. So i ∈ Dlemmak(i).

Dlemmak(i) meets (c): We prove that for two intersecting lines j1, j2 ∈ D′
k(i) de-

scribed as above, if j′ is k-dominated by {j1, j2}, then it is also k-dominated by

{tr[j2], bl[j2]}, so (c) is met.

(1) If either d(j′, tr[j2]) ≤ 1 or d(j′, bl[j2]) ≤ 1, then done.

(2) Else if bl[j2] ≤ j′ ≤ tr[j2] and π−1(bl[j2]) ≤ π−1(j′) ≤ π−1(tr[j2]), then since

j2 ≤ bl[j2] and π−1(j2) ≥ π−1(tr[j2]), d(j′, j2) ≤ 1 and thus both d(j′, tr[j2]) ≤ 2 and

d(j′, bl[j2]) ≤ 2. Since k > 1, done.

(3) Else, then either j′ is on the right of tr[j2] or on the left of bl[j2]. We just prove

the former term, the latter term has similar proof. There is two cases d(j′, j1) ≤ k and

d(j′, j2) ≤ k.

Compare j2 with tr[j2], tr[j2] = tr[tr[j2]] and π−1(br[j2]) ≤ π−1(br[tr[j2]]), we

can use the claims in Theorem 3.1.1 to prove TRk[j2] ≤ TRk[tr[j2]] and BRk[j2] ≤

BRk[tr[j2]]. So d(j′, j2) ≤ k ⇒ d(j′, tr[j2]) ≤ k.

Compare j1 with tr[j2], tr[j1] ≤ tr[tr[j2]] = tr[j2] since tr[j1] must intersects with
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j2; π−1(br[j1]) ≤ π−1(br[tr[j2]]) since j1 ≤ tr[j2], so we can do similar proof as above.

Dlemmak(i) meets (d): the transfer rule makes |Dlemmak(i)| ≤ |D′
k(i)|. Since

|D′
k(i)| is minimum, so is |Dlemmak(i)|.

Dlemmak(i) meets (e): We will prove that for a set of tr and bl lines, any two lines

in the set don’t intersect with each other. Then when we transfer lines again and again,

original lines become less and tr and bl lines become more. Since the lines are finite, the

transfer will be end and finally these lines are not intersecting with each other.

We just prove for arbitrary two lines j1, j2, tr[j1] and tr[j2] don’t intersect with each

other. The other terms have similar proof. If tr[j1] intersects with tr[j2], W.L.O.G. suppose

tr[j1] > tr[j2], then tr[j1] > tr[j2] ≥ j2 and π−1(tr[j1]) < π−1(tr[j2]) ≤ j2. So j2

intersects with tr[j1], contradicts to the definition of tr[j2].
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Chapter 4 An Improved Algorithm

In this chapter, we will improve our algorithm based on the dynamic programming rule

above. We will first propose how to improve our algorithm into O(n2) time and O(n)

space based on another distance-k dominating set named D2k(t, b), which is similar to

Ferber and Keil’s [12] data structure. Then wewill introduce a simple tree structure named

AVL tree [1] to improve it into O(n logn) time and O(n) space.

4.1 Improvement by a New Distance-k Dominating Set

In this section, we will first propose a theorem which makes D1k(i) easier to compute,

then we will split D1k(i) into two cases. We find that for each i, Case 1 takes O(1) time

and O(1) space. Then we will introduce another distance-k dominating set ”D2k(t, b)”

used for Case 2. At last we will prove the theorems mentioned in this section.

4.1.1 Some Changes

We first propose a theorem:

Theorem 4.1.1. j < TLk[i] and π−1(j) < BLk[i]⇔ j should be k-dominated byD1k(i)

but isn’t k-dominated by i.

We use U(t, b) (Figure 4.1) with t = TLk[i]−1, b = BLk[i]−1 to be a set collecting

lines j mentioned above. The definition of U(t, b) is:

Definition 4.1.2. U(t, b) is a set of lines j s.t. j ≤ t and π−1(j) ≤ b.

Then by theorem we can change D1k(i) below:

D1k(i) = {i} ∪ set_min0≤j<i(D1k(j) | {i} ∪D1k(j) k-dominates {1, 2, ..., i})

= {i} ∪ set_min0≤j<i(D1k(j) | D1k(j) k-dominates U(TLk[i]− 1, BLk[i]− 1))
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Figure 4.1: U(t, b) with t = TL3[13]− 1, b = BL3[13]− 1.

Then, based on different k, we split D1k(i) into two cases. If k ∤ 2, we split it into

TLk[j] = TLk[i] and TLk[j] ̸= TLk[i]; Else, we split it into BLk[j] = BLk[i] and

BLk[j] ̸= BLk[i].

For Case 1, we have the following theorem:

Theorem 4.1.3. D1k(j) must k-dominates U(TLk[i]− 1, BL[k]− 1) for Case 1.

By theorem, if k ∤ 2, Case 1 becomes {i} ∪ set_min0≤j<i, TLk[j]=TLk[i](D1k(j)).

k | 2 is similar.

For Case 2, by Theorem 3.1.1, if k ∤ 2, then 0 ≤ j < i and TLk[j] ̸= TLk[i] ⇔

TLk[j] < TLk[i]; Else, then 0 ≤ j < i and BLk[j] ̸= BLk[i] ⇔ BLk[j] < BLk[i].

So if k ∤ 2, Case 2 becomes {i} ∪ set_minTLk[j]<TLk[i](D1k(j) | D1k(j) k-dominates

U(TLk[i]− 1, BLk[i]− 1)). k | 2 is similar.

Then we defineD2k(t, b) below s.t. Case 2 becomes {i}∪D2k(TLk[i]−1, BLk[i]−

1), where ”2” means two inputs ”t” and ”b”. We first define something which is used to

define D2k(t, b).

Definition 4.1.4. Let S = {i1, i2, ...} be a set of lines, maxTRk(S) = max(TRk[i1],

TRk[i2], ...); maxBRk(S) = max(BRk[i1], BRk[i2], ...).

Definition 4.1.5. Given several sets S1, S2, ..., set_min_TRk(S1, S2, ...) output a set S

with minimum cardinality s.t. maxTRk(S) is as large as possible. set_min_BRk has

similar definition.

Note that if S is a choice of set_min_TRk(S1, S2, ...), then S is also a choice of

set_min(S1, S2, ...). So is set_min_BRk.

Now we can define D2k(t, b). We will propose why we use set_min_TRk and

set_min_BRk instead of set_min in D2k(t, b) section.
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Definition 4.1.6. If k ∤ 2, D2k(t, b) = set_min_BRk TLk[j]≤t(D1k(j) | D1k(j) k-

dominates U(t, b)). Else, D2k(t, b) = set_min_TRk BLk[j]≤b(D1k(j) | D1k(j) k-

dominates U(t, b)).

Note that D2k(n, n) is a minimum distance-k dominating set on given permutation

graph. We can output D2k(n, n) directly in algorithm 3 instead of the original output.

Theorem 4.1.7. D2k(n, n) is a choice of set_min0≤i≤n(D1k(i) | D1k(i) k-dominates

{1, 2, ..., n}).

So the D1k(i) becomes below:

if k ∤ 2, D1k(i) = {i} ∪ set_min

 set_min0≤j<i, TLk[j]=TLk[i](D1k(j))

D2k(TLk[i]− 1, BLk[i]− 1)

else, D1k(i) = {i} ∪ set_min

 set_min0≤j<i, BLk[j]=BLk[i](D1k(j))

D2k(TLk[i]− 1, BLk[i]− 1)

We will prove in section 4.1.2 that whatever k is even or odd, Case 1 use O(1) time and

O(1) space for each i. So the complexity ofD1k(i) is based on the time and space to find

D2k(TL[i]− 1, BL[i]− 1).

4.1.2 Correctness and Complexity Analysis

In this section, we will prove the theorems and prove that Case 1 of D1k(i) takes O(1)

time and O(1) space for each i.

1. Proof of Theorem 4.1.1:

”⇒” j < TLk[i] and π−1(j) < BLk[i] implies j doesn’t intersect with Tzk[i]. Since

j < TLk[i] ≤ i, j should be k-dominated by D1k[i], done.

”⇐” j isn’t k-dominated by i, so j doesn’t intersect with Tzk[i]. Since j should be

k-dominated by D1k[i], j ≤ i. So j < TLk[i] and π−1(j) < BLk[i], done.

2. Proof of Theorem 4.1.3:

We just prove if j < i and TLk[j] = TLk[i], then D1k(j) must k-dominates

U(TLk[i]− 1, BLk[i]− 1). The BLk[j] = BLk[i] case has similar proof.
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Given arbitrary line j′ ∈ U(TLk[i] − 1, BLk[i] − 1), j′ < TLk[i] = TLk[j]. If

π−1(j′) < BLk[j], then by Theorem 4.1.1 j′ is k-dominated by D1k[j]; Else if BLk[j] ≤

π−1(j′) ≤ BRk[j], then j′ intersects with Tzk[j], done; Else, then j′ < TLk[j] ≤ j,

π−1(j′) > BRk[j] ≥ j. d(j′, j) = 1, done.

3. Proof of Theorem 4.1.7:

We just prove k ∤ 2 case, the other case is similar. D2k(n, n) =

set_min_BRk TLk[j]≤n(D1k(j) | D1k(j) k-dominates U(n, n)). Since TLk[j] must ≤ n

and U(n, n) = {1, 2, ..., n}, D2k(n, n) = set_min_BRk 0≤j≤n(D1k(j) | D1k(j) k-

dominates {1, 2, ..., n}). ThenD2k(n, n) is also a choice of set_min0≤i≤n(D1k(i) |D1k(i)

k-dominates {1, 2, ..., n}).

4. Complexity Analysis:

We just prove k ∤ 2 case. The other case is similar, We use the set S to save the

answer of Case 1 and do the following:

(1) Initialize S = no answer, i = 1.

(2) Since there is no j s.t. 0 ≤ j < i and TLk[j] = TLk[i], Case 1 has no answer.

Let S ← D1k(i), i← i+ 1.

(3-1) If TLk[i] ̸= TLk[i− 1], then by Theorem 3.1.1 TLk[i] > TLk[i− 1]. Let S =

no answer and go to (2).

(3-2) Else, S is the answer of Case 1. then let S ← set_min(S,D1k(i)), i ← i + 1

and go to (3).

In this method, we use O(1) time to get the answer of Case 1 for each i, and we use

a set S only to save Case 1, which can be saved in O(1) space. (The detail of how to save

D1k(i) in O(1) space will be told in the complexity analysis of algorithms 4 and 5.)

4.2 A New Algorithm

In this section, we will propose a method to compute D2k(t, b) more efficiently, then we

will propose the O(n2) time and O(n) space algorithm containing D1k(i) and D2k(t, b).

At last we will prove the theorems and prove the correctness and complexity of algorithms

mentioned in this section.
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4.2.1 Some Changes

Recall that If k ∤ 2, D2k(t, b) = set_min_BRk TLk[j]≤t(D1k(j) | D1k(j) k-dominates

U(t, b)). Else,D2k(t, b) = set_min_TRk BLk[j]≤b(D1k(j) |D1k(j) k-dominatesU(t, b)).

Similar to D1k(i), we split D2k(t, b) into two cases. If k ∤ 2, we split it into t ≤ TRk[j]

and TRk[j] < t; Else, we split it into b ≤ BRk[j] and BRk[j] < b.

For Case 1, we have a theorem similar to Theorem 4.1.3:

Theorem 4.2.1. D1k(j) must k-dominates U(t, b) for Case 1.

By theorem, if k ∤ 2, the Case 1 becomes set_min_BRk TLk[j]≤t≤TRk[j](D1k(j)).

k | 2 is similar. For Case 2, we have the following theorem:

Theorem 4.2.2. For k ∤ 2, if D2k(t − 1, b) k-dominates U(t, b), then Case 2 isn’t better

than D2k(t − 1, b), else, then Case 2 isn’t better than Case 1. It is similar for k | 2 but

replace D2k(t− 1, b) by D2k(t, b− 1).

Note that this theorem is true if we use set_min_TRk and set_min_BRk, but not

just set_min. By theorems above, the D2k(t, b) becomes below:

if k ∤ 2, D2k(t, b) = set_min_BRk

 set_min_BRk TLk[j]≤t≤TRk[j](D1k(j))

D2k(t− 1, b) if it k-dominates U(t, b)

else, D2k(t, b) = set_min_TRk

 set_min_TRk BLk[j]≤b≤BRk[j](D1k(j))

D2k(t, b− 1) if it k-dominates U(t, b)

By equations of D1k(i) and D2k(t, b), we can use algorithms 4 and 5 to find the

solution.

In the complexity analysis of the algorithms in section 4.2.2, for k ∤ 2, we find two

bottlenecks below:

(1) For each t, we find Case 1 of D2k(t, b) in O(n) time. (note that Case 1 is inde-

pendence from b.)

(2) For each t, we find D2k(t, b) for all b in O(n) time.

So in the next section, we will propose how to solve these two bottleneck and reduce

the time complexity into O(n logn).
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Algorithm 4 Find a minimum distance-k dominating set on given permutation graph,
k ∤ 2.
Input: permutation π, a positive integer k ∤ 2
Output: a minimum distance-k dominating set on permutation graph denoted by π
if k = 1 then

Use Chao, Hsu, and Lee’s [8] O(n) time algorithm to get the solution.
else

Use algorithm 1 and 2 to find Tzk[i] for i = 1 to n.
Initialize D1k(0)← ∅, i← 1
for t = 0 to n do

for b = 0 to n do
if t = 0 then

D2k(t, b)← D1k(0)
else

D2k(t, b)← set_min_BRk

{
set_min_BRk TLk[j]≤t≤TRk[j](D1k(j))

D2k(t− 1, b) if it k-dominates U(t, b)

while TLk[i]− 1 = t do

D1k(i)← {i} ∪ set_min

{
set_min0≤j<i, TLk[j]=TLk[i](D1k(j))

D2k(TLk[i]− 1, BLk[i]− 1)

i← i+ 1

output D2k(n, n)

4.2.2 Correctness and Complexity Analysis

In this section, we will prove the theorems and correctness of algorithms, then we will

prove that the algorithms take O(n2) time and cost O(n) space. We just prove k ∤ 2 case,

the other case has similar proof.

1. Proof of Theorem 4.2.1:

We just prove if TLk[j] ≤ t ≤ TRk[j], then D1k(j) must k-dominate U(t, b). The

BLk[j] ≤ b ≤ BRk[j] case has similar proof.

Given arbitrary line j′ ∈ U(t, b), j′ ≤ t. If j′ ≥ TLk[j], then j′ intersects with

Tzk[j], done. Else if j′ < TLk[j], then the proof similar to that in Theorem 4.1.3 propose

us j′ must be k-dominated by D1k(j), done.

2. Proof of Theorem 4.2.2:

Recall that we split D2k(t, b) into two cases:

Case 1 = set_min_BRk TLk[j]≤t≤TRk[j](D1k(j))

Case 2 = set_min_BRk TRk[j]<t(D1k[j] | D1k(j) k-dominates U(t, b))
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Algorithm 5 Find a minimum distance-k dominating set on given permutation graph,
k | 2.
Input: permutation π, a positive integer k | 2
Output: a minimum distance-k dominating set on permutation graph denoted by π
Use algorithm 1 and 2 to find Tzk[i] for i = 1 to n.
Initialize D1k(0)← ∅, i← 1
for b = 0 to n do

for t = 0 to n do
if b = 0 then

D2k(t, b)← D1k(0)
else

D2k(t, b)← set_min_TRk

{
set_min_TRk BLk[j]≤b≤BRk[j](D1k(j))

D2k(t, b− 1) if it k-dominates U(t, b)

while BLk[i]− 1 = b do

D1k(i)← {i} ∪ set_min

{
set_min0≤j<i, BLk[j]=BLk[i](D1k(j))

D2k(TLk[i]− 1, BLk[i]− 1)

i← i+ 1

output D2k(n, n)

If Case 2 has no answer, then done. Else, we want to prove two things:

(1) If D2k(t − 1, b) k-dominates U(t, b), then set_min_BRk(D2k(t − 1, b), Case

2) = D2k(t− 1, b).

(2) Else, then set_min_BRk(Case 1, Case 2) = Case 1.

Proof of (1): Let D1k(j0) be a choice of Case 2, then TRk[j0] < t. Recall that

D2k(t − 1, b) = set_min_BRk TLk[j]≤t−1(D1k[j] | D1k(j) k-dominates U(t − 1, b)).

Since TLk[j0] ≤ TRk[j0] ≤ t − 1, D1k(j0) k-dominates U(t, b) ⊇ U(t − 1, b), so

set_min_BRk(D1k(j0), D2k(t − 1, b)) = D2k(t − 1, b), otherwise it contradicts to the

definition of D2k(t− 1, b).

Proof of (2): U(t, b) = either U(t − 1, b) or U(t − 1, b) ∪ {t}. Since D2k(t − 1, b)

k-dominates U(t − 1, b) but not U(t, b), U(t, b) = U(t − 1, b) ∪ {t}, so (a) b ≥ π−1(t),

and (b) D2k(t − 1, b) doesn’t k-dominates {t}. Let D1k(j0) be a choice of Case 2 and

thus (c) TRk(j0) < t. We claim:

(2-1) set_min_BRk(D1k(j0), D2k(t− 1, b) ∪ {t}) = D2k(t− 1, b) ∪ {t}

(2-2) set_min_BRk(D2k(t− 1, b) ∪ {t}, D1k(t)) = D1k(t)

(2-3) set_min_BRk(D1k(t), Case 1) = Case 1

So set_min_BRk(D1k(j0), Case 1) = Case 1.

Proof of (2-1): We claim that |D1k(j0)| > |D2k(t−1, b)| andmaxBRk(D1k(j0)) ≤
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BRk[t], done.

|D1k(j0)| > |D2k(t − 1, b)|: By the similar proof of (1), set_min_BRk(D1k(j0),

D2k(t − 1, b)) = D2k(t − 1, b). We claim that maxBRk(D2k(t − 1, b)) <

maxBRk(D1k(j0)), then |D1k(j0)| should > |D2k(t − 1, b)|, otherwise it contradicts

to the definition of D2k(t− 1, b).

Proof of claim: maxBRk(D2k(t − 1, b)) < π−1(t) by (b); π−1(t) ≤

maxBRk(D1k(j0)) because by (c) and Theorem 3.1.1, TRk[j
′] < t, ∀j′ ∈ D1k(j0), but

D1k(j0) should k-dominate t, done.

maxBRk(D1k(j0)) ≤ BRk[t]: ∀j′ ∈ D1k(j0), j
′ is on the left of t for k > 1 by (c)

and Theorem 3.1.1. Then by Theorem 3.1.1 again, BRk[j
′] ≤ BRk[t] for all j′, done.

Proof of (2-2): We claim that |D1k(t)| ≤ |D2k(t − 1, b) ∪ {t}|, then since

maxBRk(D2k(t − 1, b) ∪ {t}) = BRk[t] which is proved in (2-1), and BRk[t] ≤

maxBRk(D1k(t)), done.

Proof of claim: |D1k(t)| ≤ |D2k(TLk[t] − 1, BLk[t] − 1) ∪ {t}| since the latter is

Case 2 of D1k(t); |D2k(TLk[t] − 1, BLk[t] − 1) ∪ {t}| ≤ |D2k(t − 1, b) ∪ {t}| since

U(TLk[t] − 1, BLk[t] − 1) ⊆ U(t − 1, b) since TLk[t] − 1 ≤ t − 1 and BLk[t] − 1 <

π−1(t) ≤ b by (a), done.

Proof of (2-3): Immediately by definition of Case 1 since TLk[t] ≤ t ≤ TRk[t].

3. Correctness of Algorithm 4:

Note that the correctness of Algorithm 5 has similar proof.

The algorithm has two problems: (1) Whether i can run from 1 to n, (2) Whether the

algorithm causes circular argument. We will prove that (1) is yes and (2) is no.

(1) By Theorem 3.1.1, TLk[i] monotone increases as i increases. So when t = 0, we

computeD1k(i) for i = 1 to x where TLk[i]−1 = 0, then TLk[i]−1must> 0 for i > x.

Then we increase t s.t. TLk[x+1]− 1 = t and computeD1k(i) for i = x+1 to x′ where

TLk[i] − 1 = t, then TLk[i] − 1 must > t for i > x′. Doing this again and again until

t = n, then we compute all of the D1k(i) for i = 1 to n.

(2) For k > 1, suppose t ← t0, the Case 1 of D2k(t, b) has all been computed since

for each j, TLk[j] ≤ t0. Take TLk[j0] = t0 for example, this is computed when t = t0−1

since at that time TLk[j0]− 1 = t0 − 1 = t.

The Case 2 of D1k(i) is computed since TLk[i] − 1 = t0 and for each b, D2k(t0, b)
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are computed above. So the algorithm doesn’t cause circular argument.

4. Complexity Analysis:

Note that the complexity of Algorithm 5 has similar proof.

For eachD1k(i), we save j < i s.t. D1k(i) = {i}∪D1k(j) (save−1 for i = 0); save

|D1k(i)|, and savemaxBRk(D1k(i)). For each b ofD2k(t, b), we save i s.t. D2k(t, b) =

D1k(i). They both cost O(n) space.

Then, for each t, we use O(n) time to compute Case 1 ofD2k(t, b) and save it asD,

which contains i s.t. D = D1k(i).

Then, for each t, for each b, we first use O(1) time to check if D2k(t − 1, b) k-

dominates U(t, b) by checking either maxBRk(D2k(t − 1, b)) ≥ π−1(t) or b < π−1(t).

Then choose Case 1 or Case 2 to be D2k(t, b) in O(1) time, save it into the place saving

D2k(t− 1, b) since the latter won’t be used anymore after the former has been computed.

Then, for each t, if TLk[i]− 1 = t, we compute Case 1 ofD1k(i) in O(1) time, find

Case 2 of it in O(1) time. Since i runs from 1 to n once, this cost O(n) times in total.

Finally, output D2k(n, n) by first find i s.t. D2k(n, n) = D1k(i) in O(1) time, then

find j1 s.t. D1k(i) = {i} ∪ D1k(j1) in O(1) time, then find j2, j3, ..., until jx = 0, thus

{i, j1, j2, ..., jx−1} is minimum distance-k dominating set on given permutation graph.

This cost O(n) time in total.

Sowe useO(n2)+O(n2)+O(n)+O(n) = O(n2) time andO(n) space for algorithm.

4.3 Improvement by AVL Trees

An AVL tree, named by two inventors, G. M. Adel’son-Vel’skii and E. M. Landis [1], is

a self-balancing binary search tree where the difference between heights of left and right

subtrees for any node can’t be more than one. For each node, its left subtree contains

nodes smaller than itself; while its right subtree contains nodes larger than itself. The

insert, delete, find minimum, search node of an AVL tree all take O(logn) time.

In this section, we will use the tree to reduce the time of two bottleneck parts of the

algorithms above to O(n logn). We will just propose k ∤ 2 case, k | 2 case are similar. At

last we will prove the theorems mentioned in this section.
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4.3.1 One Bottleneck

Recall that for k ∤ 2, the first bottleneck part is: For each t, we find Case 1 of D2k(t, b),

which is set_min_BRk TLk[j]≤t≤TRk[j](D1k(j)), inO(n) time. We propose how to reduce

it into O(logn) time using AVL tree. For each t, we want to put all of the D1k(j) with

TLk[j] ≤ t ≤ TRk[j] in the AVL tree. We can do it below:

(1) InsertD1k(j) once it is computed, which takesO(logn). Note that it is computed

when TLk[j] − 1 = t. Seems it doesn’t meet the criterion TLk[j] ≤ t ≤ TRk[j]. But

actually after all possibleD1k(j) is inserted, we first let t← t+1, then compute the Case

1 of D2k(t, b). At this time D1k(j) meet the criterion since this time TLk[j] = t.

(2) Delete D1k(j) once t > TRk[j], which takes O(logn).

Since Theorem 3.1.1, we can do them in sequencewith j, so they both takeO(n logn)

in total. Then we propose the comparison rules in AVL tree. For two different nodes

D1k(j1) and D1k(j2), we put D1k(j1) on the left of the D2k(j2) in the AVL tree if:

(1) |D1k(j1)| < |D1k(j2)|

(2) |D1k(j1)| = |D1k(j2)| andmaxBRk(D1k(j1)) > maxBRk(D1k(j2))

(3) |D1k(j1)| = |D1k(j2)|,maxBRk(D1k(j1)) = maxBRk(D1k(j2)), and j1 > j2.

So D1k(j1) is on the left of the D2k(j2) in AVL tree ⇔

set_min_BRk(D1k(j1), D1k(j2)) = D1k(j1), and we find Case 1 of D2k(t, b) by just

finding the leftmost node of AVL tree, which takesO(logn) time, done. Note that (3) just

make sure there are no two different nodes in AVL tree with same value. You can define

j1 < j2 if you want.

Take Figure 4.2 for example. For k = 3, if t = 8, the Case 1 of D2k(t, b) is the

leftmost node of AVL tree, which is D13(7).

Note that in practice we can just save j in AVL tree to representD1k(j) since we al-

ready have an array s.t. for each j with computed D1k(j), it saves |D1k(j)| and

maxBRk(D1k(j)). This is told in the complexity analysis of algorithms 4 and 5. So

the AVL tree needs O(n) space.

4.3.2 Another Bottleneck

Recall that for k ∤ 2, the second bottleneck part is: For each t, we find D2k(t, b) for all b

in O(n) time. We propose how to use another AVL tree to reduce it into O(logn) time.

Before that, we first propose a theorem about D2k(t, b).

25

http://dx.doi.org/10.6342/NTU202303439


doi:10.6342/NTU202303439

(a)

(b)

Figure 4.2: An AVL tree saving D1k(i): (a) a trapezoid table, (b) a corresponding AVL
tree when t = 8.

Theorem 4.3.1. For k ∤ 2, if b1 < b2, then set_min_BRk(D2k(t, b1), D2k(t, b2)) =

D2k(t, b1); For k | 2, if t1 < t2, then set_min_TRk(D2k(t1, b), D2k(t2, b)) = D2k(t1, b).

So for fixed t, D2k(t, b) monotone increases below the definition of set_min_BRk

as b increases. We use several blocks instead of an array to save D2k(t, b) s.t. if b1 ̸= b2

and D2k(t, b1) = D2k(t, b2), they are in the same blocks. The blocks also monotone

increases as b increases.

Then, we use AVL tree to save these blocks. Each node contains the region of b with

same D2k(t, b). Note that the regions don’t overlap since each b has only one D2k(t, b).

The node also contains j s.t. D2k(t, b) = D1k(j). The comparison rules of this AVL tree

is based on the head (or tail) of region of b, the more left is the smaller. The Figure 4.3 is

an example with k = 3, t = 12.

Then we propose how to construct this tree. Initially when t = 0, the AVL tree

contains only one node: D1k(0), with region b = 0 to n. Whenever t ← t + 1, Let the

Case 1 of D2k(t, b) be DCase1. We know that for each b:

(1) D2k(t, b) = DCase1 if set_min_BRk(DCase1, D2k(t− 1, b)) = DCase1.

(2) D2k(t, b) = DCase1 if D2k(t− 1, b) doesn’t k-dominate U(t, b).
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(a)

(b)

Figure 4.3: An AVL tree saving D2k(t, b): (a) An array saving D2k(t, b) with t = 12, (b)
its corresponding AVL tree.

(3) D2k(t, b) = D2k(t− 1, b) (no change) otherwise.

So we can continue finding the rightmost node, call the set in it =DCase2 and region

is b = b1 to b2, and do the following:

(1) If set_min_BRk(DCase1, DCase2) = DCase1, deletes the node and repeat.

(2) Else ifDCase2 k-dominates t, then it must k-dominateU(t, b), done. This happens

whenmaxBRk(DCase2) ≥ π−1(t).

(3) Else if π−1(t) < b1, then it must not k-dominate U(t, b) for all regions, delete the

node and repeat.

(4) Else, b1 ≤ π−1(t) ≤ b2. DCase2 doesn’t k-dominate U(t, b) for π−1(t) ≤ b ≤ b2

but does for b1 ≤ b < π−1(t). Change the region to b = b1 to π−1(t)− 1 and done.

After the repeat is end, suppose the rightmost node has region b = b′1 to b′2, we insert

DCase1 to the rightmost of the tree and let its region b = b′2 + 1 to n, done. Note that once

the rightmost node isn’t deleted, then by Theorem 4.3.1 all of the nodes won’t be deleted

anymore for same t, so we can then insert DCase1 and finished.

For each t, we insert at most one nodeDCase1 in the AVL tree, and we change at most

one node’s region. So these take O(logn) time. Since there are O(n) nodes in the tree,

we can delete O(n) nodes in total. So the method above take O(logn) time in amortize

to compute D2k(t, b) for all t and b.

Note that in practice for each node, we just save j in AVL tree to represent D1k(j)
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in it, and save head and tail of b to represent its region. So the AVL tree costs O(n) space

in total.

So for each t, we useO(logn) time to find Case 1 ofD2k(t, b), then we useO(logn)

in amortize to find D2k(t, b) for all b.

Notice that in the Case 2 of D1k(i), we need to find D2k(TLk[i] − 1, BLk[i] − 1),

where TLk[i] − 1 = t. We now can find it in O(logn) by let b = BLk[i] − 1, then use

second AVL tree to find a node whose region is b1 to b2, s.t. b1 ≤ b ≤ b2. So for each i,

we find D1k(i) in O(1) + O(logn) = O(logn) time. So the algorithm takes O(n logn)

time.

Since we spend O(n) space to find trapezoids and save them, an O(n) array to save

D1k(i), and two O(n) AVL trees to save D1k(j) and D2k(t, b), so the algorithm costs

O(n) space.

4.3.3 Correctness

In this section, we will prove Theorem 4.3.1. We just prove k ∤ 2 case, k | 2 case is similar.

Let b1 < b2, suppose set_min_BRk(D2k(t, b1), D2k(t, b2)) ̸= D2k(t, b1), but since

U(t, b1) ⊆ U(t, b2), D2k(t, b2) also k-dominates U(t, b1), and the restrict of D1k(j) of

two sets are same (TLk[j] ≤ t), so this contradicts to the definition of D2k(t, b1).
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Chapter 5 Conclusion

In this thesis, we first find that for fixed k, for each line i, there is a trapezoid Tzk[i] s.t.

d(i, j) ≤ k ⇔ Tz[i] intersects with j, and find Tz[i] for all i in O(n log k) time and O(n)

space.

Then we define a distance-k dominating setD1k(i) and find that it can be computed

by some D1k(j) where j < i.

Then we define another distance-k dominating setD2k(t, b), which is similar to that

in Farber and Keil’s paper [12]. We find that with the cooperation ofD1k(i) andD2k(t, b),

we can get the solution in O(n2) time and O(n) space.

Finally, with AVL tree, we reduce the algorithm intoO(n logn) time andO(n) space.

The open question is whether we can solve it faster than O(n logn). Tsai and Hsu’s

paper [22] uses another data structure to reduce the time of k = 1 case intoO(n log logn).

If we can use the same data structure to improve our algorithm, then our time complexity

becomes min(O(n log k), O(n log logn)).
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