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Abstract

Given a permutation 7 which denotes a permutation graph G. We use an O(n logn) time
and O(n) space algorithm to find a minimum distance-k£ dominating set. We first find
a dynamic programming rule, then we combine it with another dynamic programming
algorithm given by Ferber and Keil [12], which is used to find minimum dominating set
(the case of k = 1) on permutation graphs. So the O(n?) time algorithm is created. Finally,
we use AVL tree to reduce our time complexity to O(nlogn).

Keywords: distance-k dominating set; permutation graph; dynamic programming; AVL

tree
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Chapter 1 Introduction

In this chapter, we will define ”minimum distance-k dominating set” on a graph. Finding
one of such set is NP-hard [13] in general graphs. We will then introduce a special graphs
named “permutation graphs”. It has some good performances s.t. some hard problems
become polynomial-time solvable on it. The problem we want to solve belongs them.

Finally we will propose some notations which will be used often in this thesis.

1.1 Minimum Distance-%£ Dominating Sets

Given a graph G = (V, F) and an integer & > 0, a vertex subset D of V is a distance-k
dominating set if for each vertex 7 € V/, there is at least one vertex ¢ € D s.t. the distance
between 7 and j < k. Note that we define the distance from any vertex to itself to be 0.

The minimum distance-k dominating set is to find such D with minimum cardinality.

1.2 Permutation Graphs

A graph G = (V| E) is a permutation graph if there exists a permutation 7 of {1, 2, ..., |V'| }
such that (4, j) € E < (1 — 7)(m (i) — 7~ 1(j)) < 0, where 771 (4) is the position of i in
.

In this thesis, we use ”permutation diagram” (Figure 1.1) to denote it. In the dia-
gram, we have two horizontal lines called top channel and bottom channel. The numbers
1,2,...,|V] are drawn on top channel from left to right; the numbers 7 (1), 7(2), ..., 7(|V])
are drawn on bottom channel from left to right. Each vertex ¢ becomes a line with both top
and bottom channel = ¢. We say its position on top channel is ¢, and on bottom channel is
7~1(i). Two vertices are adjacent < their corresponding lines intersect with each other.

To determine whether a given graph is a permutation graph and to find the defining
permutation 7 if it is, Spinrad [21] give an algorithm in O(|V|?) time in 1983, and it is
improved to O(|V| + |E|) time by McConnell and Spinrad [18] in 1999. So we assume
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permutation
graph

m(4,1,2,7,5,3,11,10,6, 8, 13,9, 15, 17, 14, 12, 20, 18, 16, 19)

diagram

m1) m2) m3) m4) md) me) w7 mE) me) w10 m11) m12) m(13) m14) m15) w16) m17) w18) m(19) mM20)

Figure 1.1: A permutation graph with permutation 7 and its corresponding permutation
diagram.

the input is 7 in this thesis.

1.3 Definitions and Notations

We first define some notations used in this thesis. We use n to denote |V'|, m to denote | E|.
Then we use ¢ to denote a line in permutation diagram whose position on top channel is i,
on bottom channel is 77! (4), and j has similar denotation. Then we use d(7, j) to denote
the distance between i and 7, If (i — j) (7~ '(z) — 7~ 1(j)) < 0, then d(i, j) = 1, and we
say the two lines 7 and j intersect” with each other in permutation diagram. Finally we

use t to denote a position on top channel, b to denote a position on bottom channel.
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Chapter 2 Previous Work

In this chapter, we will propose some previous work.

2.1 Minimum Distance-~ Dominating Set on Permutation

Graphs

In this section, we will propose the previous work to solve our problem. Both £ = 1 case
and k£ > 1 case will be told.

For domination problem (which is the case of £ = 1) on permutation graphs, Ferber
and Keil [12] gave an O(n?) time dynamic programming based algorithm. Then Tsai and
Hsu [22] improved it into O(nloglogn) time using a tree structure. Finally Chao, Hsu,
and Lee [8] used linked list, with some adjustment on Ferber and Keil’s algorithm, to
construct an O(n) time algorithm. Thus the optimal time is found.

For k > 1 case, Chang, Ho, and Ko [7] gave an O(nm?) time algorithm on AT-free
graphs. Since permutation graphs is a subclass of AT-free graphs, we can use this algorithm
to solve the problem. Then, Rana, Pal, and Pal [19] gave an O(n?) time algorithm on
permutation graphs.

In this thesis, we create an O(n logn) time and O(n) space algorithm. We first find
an dynamic programming rule to solve the problem, then we combine it with Ferber and
Keil’s algorithm [12] to create an O(n?) algorithm. Finally, we use a data structure called

AVL tree [1] to reduce our time complexity to O(n logn).

2.2 Related Work

In this section, we will propose other previous work related but not the same as our prob-
lem. We will first propose some different problem on permutation graphs, then propose

domination problem on different graphs.

3 doi:10.6342/NTU202303439
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Weighted domination problem on permutation graphs is solved in O(n?) time by
Ferber and Keil [12] in 1985, O(n(m+n)) time by Liang, et al. [17]in 1991, O(n? log® n)
time by Tsai and Hsu [22] in 1993, and O(m + n) time by Rhee, ef al. [20] in 1996.

Independent domination problem on permutation graphs is solved in O(n?) time by
Ferber and Keil [12] in 1985, and O(n log® n) time by Atallah, et al. [4] in 1988.

Weighted independent domination problem on permutation graphs is solved in O(n?3)
time by Ferber and Keil [12] in 1985, O(n?) time by Brandstédt and Kratsch [6] in 1987,
and O(nlogn) by Atallah and Kosaraju [3] in 1989.

Connected domination problem on permutation graphs is solved in O(n?) time by
Colbourn and Stewart [11] in 1990, O(m + n) time by Arvind and Rangan [2] in 1992,
and O(n) time by Ibarra and Zheng [15] in 1994.

Weighted connected domination problem on permutation graphs is solved in O(n?)
time by Colbourn and Stewart [11] in 1990, and O(m + nlogn) time by Arvind and
Rangan [2] in 1992.

Paired domination problem on permutation graphs is solved in O(mn) time by Cheng,
et al. [9]in 2009, and O(n) time by Lappas, ef al. [16] in 2013.

On the other hand, for domination problem:

The problem on circular-arc graphs is solved in O(mn) time by Bonuccelli [5] in
1985, and O(n) time by Hsu and Tsai [14] in 1991.

The problem on trees is solved in O(n) time by Cockayne, et al. [10] in 1975.
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Chapter 3 A Dynamic Programming
Algorithm

In this chapter, we will propose a dynamic programming rule we find. We can simply use
this rule to get the solution. First, we will construct a data structure named “trapezoid” to
simplify our problem. Then, we will introduce a distance-k£ dominating set. We find the

dynamic programming rule of it, and thus we can use it to find the solution.

3.1 A Data Structure

In this section, we find that given fixed k, for each ¢, there is a trapezoid, denoted by 7'z [i],
s.t. d(i,j) < k < Tz[i] "intersects” with line j, the word “intersect” between trapezoid
and line will be formally defined below. We will propose some important properties for
trapezoids, then we will propose how to find 7z,[i] for all i in O(n log k) time and O(n)
space. The problem thus reduce to find a minimum set D C V s.t. for each line j, there
is at least one line ¢ € D s.t. T'z;[d] intersects with j. At last we will prove the theorems

and prove the correctness and complexity of algorithms mentioned in this section.

3.1.1 Definitions and Properties

We now formally define the trapezoid 7'z, [i] (Figure 3.1). It has two parallel lines, one is
located on the top channel and the other is located on the bottom channel of the permutation
diagram. It has four corners, two of them are at the top channel and two of them are at the
bottom channel. We define 7" Ry 7] to be its top right corner’s position on the top channel;
BRy[i] to be its bottom right corner’s position on the bottom channel. 7Ly [i] and B Ly[i]
are defined similarly.

Then, we say the trapezoid 7'z, [i] intersects with some line j if either 7Ly [i] < j <

TRy[i] or BLi[i] < 7 1(j) < BRy[i], and d(i, j) < k < Tz[i] intersects with line 7.

5 doi:10.6342/NTU202303439
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k=3 TL3M3 =9 TRal13] = 17

1) m2) w3 w4 w5 me) m7) m8) m9) m10) m(11) m12) m13) m14) m(15) m16) mAT) m18) m19) m20)
BlLa13]=7 BR3[13]= 16

Figure 3.1: A trapezoid T'z3[13].

We then propose some properties of trapezoids we find. We find that if & 1 2, then
T Ly[i] and T Ry [i] monotone increase as 7 increase. Else if k | 2, then BLy[i] and B Ry[i]
monotone increase as i increase (Figure 3.2). There are similar properties as 7' (i) in-
crease. We use these properties often in the following sections. We formally write it
below.

k=2

1 2 3 4 5 ] T 3 9 10 1 12 13 14 15 16 17 18 19 20

TLpM, TRl | 1,4 [ 2,4 | 3,7 | 1,4 [ 3,7 |6,11| 3,7 |81 (913|611 |6 11(12,17]9,13 |12,17|12, 15(16, 2012, 17|16, 20(19, 20|16, 20

BLoll, BRoIN | 1,2 | 1,3 | 1,6 | 1,6 | 4,6 | 4,9 | 49 [7.10|7.12 | 7,12 | 7,12 |11, 16 11, 16|13, 16(13, 16|14, 19|14, 19|17, 19|17, 20 (17, 20

(a)

k=3

1 2 3 4 5 ] T 3 9 10 1 12 13 14 15 16 17 18 19 20

TLal, TR3M | 1,4 [ 1,4 [ 1,7 | 1,7 [ 3,7 |3, 11|31 |61 [613 613|613 [9.17 | 9,17 |12,17(12,17(12,20(12, 20|16, 20|16, 20|16, 20

BLal],BR3ll| 1,6 [ 1,6 | 1,9 [ 1,6 | 1,9 |4.12 | 1,9 |7.12 |7.16 | 4,12 [ 4,12 [11,19| 7. 16 (11, 19|11, 16 (14, 20|11, 19 (14,20 (17, 20|14, 20

(b)
Figure 3.2: Properties of trapezoids: (a) the case of k = 2, (b) the case of k = 3.

Theorem 3.1.1. For fixed k > 1, fori < j, if k1 2, then T Ly[i] < T Ly[j] and T Ry|i] <
TRy[j), else, then BLy[i] < BLy|j] and BRy[i] < BRy[j]; For n=(i) < 7 '(j), if
k t 2, then BLy[i]| < BLg[j| and BRy[i] < BRy[j], else, then T Ly[i] < TLy[j] and
TRyli) < TRi[j).

3.1.2 An Algorithm to Find Trapezoids

We first use a simple example to propose the algorithm. Let £ = 3, given an arbitrary line
i, we want to find the trapezoid 7'z3[i]. The method to find its top right corner’s position
T R3]i] is:

(1) Collect the lines intersecting with ¢ and ¢ itself.

6 doi:10.6342/NTU202303439
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(2) Pick a line in (1), whose position on bottom channel is maximum, call it i’.

(3) Collect the lines intersecting with ¢’ and 7’ itself.

(4) Pick a line in (3), whose position on top channel is maximum, call it 7".

(5) T Rsi] =1".

To find BRs|i|, we do the similar things. But find maximum on top channel first,
then find maximum on bottom channel. Notice that if the final line is i"’, then its position
on bottom channel is 77 (i"”). So BR3[i] = 7~ (i").

To find T'L3[i] and BLs]i], it is similar as above, but replace “maximum” by “mini-
mum”.

We find that if £ = 3, we repeat the similar steps twice. Actually we repeat the steps
for arbitrary k by first on top channel, second on bottom, third on top, ..., until £ — 1
times to find a corner. Then first on bottom channel, second on top, third on bottom, ...,
until k£ — 1 times to find another corner. Then replace "maximum” by “minimum” to find
remain two corners.

Now we formally propose the method. First, given an integer x, given a line i, we

have a definition below.

Definition 3.1.2. tr,[i] = j with maximum j s.t. d(i,j) < z; br.[i] = j with maximum

’

71(j) s.t. d(i,5) < x. tl,[i] and bl,[i] are similar, but replace “max”" by “min”.

If z = 1, we simply write ¢r[i], br[i], tl[i], and bl[i].

The definition leads to the following lemma, which can be used often for proof of

theorems:

Lemma 3.1.3. If d(i,j) < z, then tl,[i]| < j < trg[i| and 771(0l,[1]) < 771(j) <
7 (bry[d]).

Proof. Directly by the definition. [

Then we have two theorems below, which propose that the method is correct.

Theorem 3.1.4. For arbitrary x > 1, tr,[i] = tr[bry_1[i]],; bri[i] = brltr,_[i]]; tl,[i] =
tU[bl—1[d]]; bl [t] = bl[tl,—[]).

Theorem 3.1.5. Forﬁxed k>1, TRk[Z] = t’l“k_l[i],' BRk[Z] = Wﬁl(brk_l[i]); TLk[Z] =
1 [il; BLyli] = 7= (bl [1]).

7 doi:10.6342/NTU202303439
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By theorems, for & = 3 case, for each i, T R3[i| = try[i] = tr[br[i]l; BRs[i] =
7 (brg[i]) =7 (br[tr[i]]); and similar for T'Ls[i] and BL3][i]. This is same as the method
we use at the beginning of the section.

The Algorithm 1 and Algorithm 2 below use O(n log k) time and O(n) space to find
trapezoids T'zx[i] for all lines i. In Algorithms, for every lines ¢, we compute their ¢r[i],
br[i], tl]i], bl[i] first, then we use these terms, combine with double-and-add method, to

find x = k — 1 terms, then done.

Algorithm 1 Find ¢r[i] for each i. The algorithm to find br[i], ¢t[i], and bl[¢] are similar.

Input: permutation 7
Output: trfil,i =1ton
t<n,b+n
while ¢ # 0 do
while b > 771(¢) do
trim(b)] <t
b<b—-1
while ¢ # 0 and ¢r[t] has been valued do
t—t—1

3.1.3 Correctness and Complexity Analysis

In this section, we will prove the theorems and the correctness of algorithms above. Then
we will prove that our algorithms compute 7z [i] in O(n log k) time and O(n) space for

all 7.

1. Proof of Theorem 3.1.1:

Claim:

() It < g, = Y(br[i]) < 71 (br[j]).

@) It 1(s) < 7w 1(y), then tr[i] < tr[j].

The tl, bl terms are same as tr, br terms.

Suppose the claims are correct, within the fact of Theorem 3.1.4 and 3.1.5, we can use
them to prove each case of Theorem 3.1.1. For example if i < j, by (1) BRy[i] < BRsj];
then by (2) T'R3[i] < T'R3[j], and so on. The proof is similar if 7=*(7) < 7 1(j).

We just prove (1) only, (2) are symmetry as (1). Suppose i < j, if 7= (br[i]) >
7 (br[j]), then since 7 (i) < 71 (br[i]), i > brli], so brli] <i < j. And 7 (br[i]) >

7 1(br[j]) > 7~1(j), br|i] intersects with j. This contradicts to the definition of br[5].

8 doi:10.6342/NTU202303439
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Algorithm 2 Find try_1[i| and bry_,[i] given tr[i] and br[i] for each i (double-and-add
method). The algorithm to find ¢l;_1[¢| and bl;_;[i] are similar.

Input: integer k, tr[i] and brfi],i = 1ton
Output: try_[i] < T[i] and bry_4[i] < B[i],i = 1ton
Use binary representation to represent k — 1, s0 k — 1 = b1by...b,, where by =1, b; =
either 1 or O for j > 1.
for: =1tondo
// initialize
Ti] < tr[i], B[i] < br|i]
for j =2toydo
// double
if bj—l =1 then
fori: = 1tondo
tmpT[i| < T|Bli]], tmpBl[i] < B[Ti]]
else
fori: = 1tondo
tmpT[i| < T|Ti]], tmpBli] < B[B]i]]
for: =1tondo
Ti] < tmpT|i], Bli] < tmpBl]i]
// add
if b; = 1 then
for: = 1tondo
tmpT[i| « tr|Bli]], tmpBli] < br[Ti]]
for i = 1tondo
T[i] < tmpT[i], Bli] + tmpDB]i

2. Proof of Theorem 3.1.4:

We just prove tr,[i] = tr[br,_1[i]], the others have similar proof.

We prove it by checking if ¢r[br,_1 [i]] meets all of the conditions of ¢r,[i] in Defini-
tion 3.1.2. d(i, tr[br,_1[i]]) < x since d(i, br,_1[i]) < x — 1, so the remain proof is: For
any arbitrary line j s.t. d(i,j) < x, j must < tr[br,_[i]].

We claim if (a) j > tr[br,_1[i]], then by Lemma 3.1.3 tr[br,_1[i]] > br,_1[i] and
thus (b) j > br,_1[i]. Then we split the relations of 7—!(j) and 7! (br,_,[i]) into the
following three cases. We can find that all cases lead to a contradiction. So the claim is
false, the proof is finished.

(D) If 7= 1(5) < 71 (br,_1[i]), then together with (b) j intersects with br,_[i]. But
j > tr[br,_1[i]] by (a), this contradicts to the definition of ¢r.

(2) Else if #71(j) > 7 '(br,_1[i]), let the shortest path from i to j be i — ... —

j' — j, we claim that j' > tr[br,_,[i]] and j’ intersects with br,_,[7], this contradicts to

9 doi:10.6342/NTU202303439
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the definition of ¢r.

Proof of claim: 7~ !(j) < ' (br,_1[i]) since d(i,5') = d(i,7) — 1 < z — 1 and by
Lemma 3.1.3. And this leads to 771(j') < 7#~1(j). j/ > j since j intersects with j, and
j' > br,_1[i] by (b). So j" intersects with br,_[i]; But j' > j > tr[br,_[i]] by (a), done.

(3) Else, but j # br,_4[i] by (b), this contradict to the definition of permutation dia-

gram.

3. Proof of Theorem 3.1.5:

Claim: d(i,7) < k & either tl;_1[i] < j < tre_[i] or 71 (bl_1[i]) < 771(5) <
71 (brg_1[i]). Then the four positions are the corners of T2 [i] by definition of trapezoids.
We split the d(i, j) into the following three cases and prove the claim above.

(1) Ifd(i, 7) < k — 1, then the claim is correct by Lemma 3.1.3.

(2)Elseifd(i,j) = k(k > 1). Supposei < jand 7 '(i) < m~!(j), which means line
7 is on the right of line 7, then tl),_1[i] < i < j and 7 (bl _1[z]) < 7 1(i) < 7 1(j). Let
the shortest path from i to j be i — ... — j/ — j, then either j < j’ or 771(j) < 7= 1(5').
Both j' < try_4[i] and 771 (5’) < 7' (bry_1[i]) by Lemma 3.1.3 since d(i, j') = k — 1.
Thus either j < try,_1[t] or 77 (j) < 7 *(brg_1[i]). The proof is similar if line j is on the
left of line ¢, so the claim is correct.

(3) Else, suppose line j is on the right of line 7. If i < j < try_1[i], then j must
intersect at least one line of the shortest path from i to ¢ry_; [i] since the path is continuous
on the permutation diagram. Then d(i, 7) is at most & since the length of the path is k — 1,
contradiction. Else if 771(i) < 71(j) < 7~ 1(bry_1[i]), the proof similar to above leads
to contradiction. So both j > try_;[i] and 7(j) > 7 (bry_1[i]). The proof is similar if

line j is on the left of <.

4. Correctness of Algorithm 1:

(1) Let t; < n, we prove that for each line 7, if 7=1(¢;) < 7 1(7), then tr[i] < t1: t;
is maximum, so for each i, i < t;. If 77 1(¢;) < 771(i) < n, then d(i, ;) < 1, and again
t1 is maximum. So tr[i] < t;.

(2) Then let t5 be the maximum number s.t. tr[t;] hasn’t been valued. We prove that
if 771 (ty) < m71(5) < 7 1(t1), then tr[j] < to: tr[j] hasn’t been valued & 771(j) <
7 1(ty) (by (1)) and j < to. If 771 (t5) < 7 1(4), then d(j,t5) < 1. The remain to prove
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is d(j,i) > 1 fori > t,. This is because j < t, < iand 7 1(j) < 7~ 1(t;) < 771 (i).

(3) Repeat (2) until all ¢r[i] are valued, then done.

5. Correctness of Algorithm 2:
By Theorem 3.1.4, for ”double”, if x is odd, then for each i, tro,[i] = tr,[br.[i]], else
then tro,[i| = tr,[tr,[i]]; for "add”, for arbitrary z, tr,[i] = tr[br,[i]]. The other terms

are similar, so the algorithm is correct.

6. Complexity Analysis:

For Algorithm 1, since both ¢ and b runs from n to 0 once, the time complexity is
O(n); We input 7, and save tr[i] for each i, so the space complexity is O(n). Since we
run the Algorithm four times, the time and space complexity are same as above.

For Algorithm 2, y = O(log k), for each j we computes tmpT'[i|, tmpBli], T[i], and
Bli] once or twice for each i. So it takes O(nlogk) time. We input O(n) terms, save
tmpT'[i], tmpBli|, Ti], and Bli] for each i, so the space complexity are O(n). Since we
run the Algorithm twice, the time and space complexity are same as above.

So the two algorithms need O(n log k) time and O(n) space in total.

3.2 A New Distance-t Dominating Set

In this section, given fixed & > 1, we will define a distance-k dominating set D1(7).

99 799

Where the ”1” means one input 2. We find a dynamic programming rule of it s.t. we
can easily find the solution on permutation graph. At last we will prove the theorems
mentioned in this section.

3.2.1 Definitions and Algorithms

We first define D1(7).

Definition 3.2.1. D1,(0) = &, fori = 1ton, D13(:) C {1,2,...,i} is a minimum

distance-k dominating set including i which k-dominates {1, 2, ...,i}.
Before we introduce the dynamic programming rule, we first define the set_min:

Definition 3.2.2. Given several sets Sy, 55, ..., set_min(Sy, Sa, ...) output a set with min-

imum cardinality.
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Now we have the following rules, note that they are not as trivial as it looks like.

Theorem 3.2.3. Fori = 1ton, D1,(i) = {i} U set_mino<;j<i(D1x(j) | {i} U D1x(4)
k-dominates {1,2, ...,i}).

Theorem 3.2.4. set ming<;<,(D1x(7) | D15 (i) k-dominates {1,2, ...,n}) is a minimum

distance-k dominating set on given permutation graph.

By Theorem 3.2.3 and Theorem 3.2.4, we can easily construct algorithm 3 to find
solution. But if we use this algorithm without any improvement, it takes O(n?) time since
for each 4, j, we need O(n?) time to check if {i} U D14(j) k-dominates {1,2,...,i}. So

the next chapter we will propose how to improve the time complexity of this algorithm.

Algorithm 3 Find a minimum distance-£ dominating set on given permutation graph.

Input: permutation 7, an integer k
Output: a minimum distance-k dominating set on permutation graph denoted by 7
if £ =1 then
Use Chao, Hsu, and Lee’s [8] O(n) time algorithm to get the solution.
else
Use algorithm 1 and 2 to find T’z [i] for i = 1 to n.
Initialize D1;(0) < @
fori=1tondo
D1;(i) + {i}Uset_ming<j<;(D1;(j) | {1} UD1;(j) k-dominates {1,2,...,i})
output set_mino<;<,(D1x(7) | D1x(i) k-dominates {1,2,...,n})

3.2.2 Correctness

In this section, we will prove two theorems above. Recall the definition of D1 (i), a set
D can be a choice of D1,(i) if:

(@) D C{1,2,...,i}

(byie D

(¢) D k-dominates {1,2,...,i}

(d) |D| is minimum

These will be used in the following proofs.

Now, we propose a lemma which is the core of proof of theorems.

Lemma 3.2.5. For each i, 3 a choice of D1;(1), say D, s.t. each two lines € D don't

intersect with each other:
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we set a condition (e) below:
(e) Each two lines € D don’t intersect with each other.
We first use this lemma to prove theorems, then we prove the correctness of this

lemma.

1. Proof of Theorem 3.2.3:

For i = 1 to n, we denotes Dlemmay (i) to be a set described by Lemma 3.2.5, and
denote Dthmy (i) = {i}Uset_mino<;j<i(D1x(j) | {i}UD1;(j) k-dominates {1, 2, ..., i}).
We want to prove that Dthmy(i) is a choice of D1;(i). First, Dthmy, (i) must exist since
{i} UD1;(i — 1) meets (a), (b), (c) of D1,(7), and (d) can be found since i is finite. Then,
Dthmy(i) meets (a) since {i} C {1,2,...,i} and D1,(j) C {1,2,...,5} € {1,2,...,i};
Dthmy (i) meets (b) and (c) by definition. The remain to prove is (d). If |Dthmy(i)| <
| Dlemmay,(i)|, then since | Dlemmay,(i)| is minimum, (d) is proved.

Let Diemmay, (i) = {i1,42, ..., 1z, 1}, Where i; < iy < ... < i, < iand 7 1(i1) <
7 iy) < ... < (i) < 7 (i). We claim Dlemmay(i)\{i} = {i1,i2,...,75} is
a choice of D1y(i,), then |Dthmy(i)] = |[{i} U set_ming<;<;(D1(j) | {i} U D1x(j)
k-dominates {1, 2, ...,7})| < |{i} U D1x(i,)| = |Dlemmay(i)|, done.

To prove Diemmay(i)\{i} is a choice of D1,(i,): (a), (b) are met immediately.

To prove (c), we know Dlemmay (i) k-dominates {1,2, ...,i}. Ifi' € {1,2,...,i,} is
k-dominated by 4, then since i, < 7 and 7 (i,) < 7 '(4), by Theorem 3.1.1 T'Ly[i,] <
T Lyli] and BLy[i,] < BLg[i], so i is also k-dominated by i,, done.

To prove (d), we claim {i,, i} can k-dominate {i,+1,i,+2, ..., i}. Then if 3 a choice
of D1, (i,), say D', and |D'| < |Dlemmay(i)\{:}|, then {i} U D’ can also be a choice
of D14(i), butit < | Dlemmay(3)|, contradiction since Dlemmay(i) should be minimum.
So (d) is true.

Prove the claim: if 3¢ s.t. 4, < i’ < i, 7 (i) < 7 1(¢') < 7 1(7) and ¢’ can’t be
k-dominated by {i,, i}, then TRy[i,] < TRy[i,] < ¢ and BRy[i,] < BRy[i.] < 7 (i)

for 1 <y < x by Theorem 3.1.1. So Dlemmay (i) doesn’t k-dominate 7', contradiction.

2. Proof of Theorem 3.2.4:
By Lemma 3.2.5, there is a minimum distance-k dominating set {41, is, ..., i, } of the

permutation graph meeting (e). Since |D1;(i,)| < x. The remain to prove is D1 (i) also
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k-dominates {i,+ 1,4, +2,...,n}, then D14(i,) is also a minimum distance-k dominating
set on the same graph.
By Theorem 3.1.1, T'Ry[i,] < T'Ry[i,] and BRy[i,]| < BRy[i,] for1 <y <z, so1,

must k-dominate {i, + 1,4, + 2, ...,n}. Since D1(i,) includes i,, done.

3. Proof of Lemma 3.2.5:

We claim that given an arbitrary set D) () which is a choice of D1(7), we can transfer
it into another set, say Dlemmay(i), s.t. Dlemmay (i) meets all conditions of D1 (i) and
meets (€). Then the proof is done.

For convenience, we consider the subgraph with vertices = {1, 2, ..., i}. Note that the
subgraph of a permutation graph is also a permutation graph.We transfer D; (i) by: Find
two intersecting lines ji, j» € Dj.(i), W.L.O.G. suppose j; > jo and 7 (j1) < 7' (j2),
then replace them by tr[js], bl[j2]. Repeat them until each of two lines in the set don’t
intersecting with each other, the set is Dlemmay (7).

Dlemmay (i) meets (a): Directly since we just consider vertices = {1,2, ..., }.

Dlemmay (i) meets (b): For each transfer, if 35 € D () intersecting with 4, then
since i > j, we choose tr[j] and bl[j] to replace them. Since i intersects with j and i is
maximum, ¢r[j] = i. Soi € Dlemmag(i).

Dlemmay (i) meets (c): We prove that for two intersecting lines ji, jo € D;(7) de-
scribed as above, if j’ is k-dominated by {ji,j»}, then it is also k-dominated by
{tr[j2], bl[j2]}, so (c) is met.

(1) If either d(j’, tr[j2]) < 1ord(j’,bl[j2]) < 1, then done.

(2) Else if bl[js] < j' < tr[jo] and 71 (bl[j2]) < 7 1(j") < 7w~ (tr[js]), then since
g2 < bl[jo] and w71 (jo) > L (tr[ja]), d(5', 42) < 1 and thus both d(j’,tr[js]) < 2 and
d(y',bl[j2]) < 2. Since k > 1, done.

(3) Else, then either j is on the right of ¢r[j,] or on the left of bl[j;]. We just prove
the former term, the latter term has similar proof. There is two cases d(j’, j1) < k and
d(j', j2) < k.

Compare jo with tr[js], tr[js] = tr[tr[j.]] and 71 (br[js]) < 7 1(br[tr(j]]), we
can use the claims in Theorem 3.1.1 to prove T Ry[j2] < T Ry[tr[j2]] and BRy[j2] <
BRy[tr[ja]]. Sod(j', j2) < k = d(j',tr[ja]) < k.

Compare j; with tr[js], tr[j1] < trltrja]] = tr[ja] since trj;] must intersects with
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Jo; 1 (br[j1]) < 7 (br(tr[ja]]) since j; < tr[js], so we can do similar proof as above.

Dlemmay (i) meets (d): the transfer rule makes |Dlemmay(i)| < |D;(i). Since
| D} (2)] is minimum, so is | Dlemmag(7)|.

Dlemmay (i) meets (e): We will prove that for a set of ¢r and bl lines, any two lines
in the set don’t intersect with each other. Then when we transfer lines again and again,
original lines become less and ¢ and bl lines become more. Since the lines are finite, the
transfer will be end and finally these lines are not intersecting with each other.

We just prove for arbitrary two lines j1, jo, tr[j1] and ¢r[js] don’t intersect with each
other. The other terms have similar proof. If¢r[j;] intersects with tr[j2], W.L.O.G. suppose
tr(ji] > tr[js], then tr[j;] > tr[js] > jo and 77 (¢tr[s1]) < 7 (tr[ja]) < 2. So jo

intersects with ¢r[j,], contradicts to the definition of ¢7[js)].
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Chapter 4 An Improved Algorithm

In this chapter, we will improve our algorithm based on the dynamic programming rule
above. We will first propose how to improve our algorithm into O(n?) time and O(n)
space based on another distance-k dominating set named D2y (¢, b), which is similar to
Ferber and Keil’s [12] data structure. Then we will introduce a simple tree structure named

AVL tree [1] to improve it into O(n logn) time and O(n) space.

4.1 Improvement by a New Distance-£ Dominating Set

In this section, we will first propose a theorem which makes D1(i) easier to compute,
then we will split D1(7) into two cases. We find that for each i, Case 1 takes O(1) time
and O(1) space. Then we will introduce another distance-k dominating set ”D2(t, b)”

used for Case 2. At last we will prove the theorems mentioned in this section.

4.1.1 Some Changes

We first propose a theorem:

Theorem 4.1.1. j < T'Ly[i] and 7='(j) < BLy[i] < j should be k-dominated by D1, (i)

but isn t k-dominated by i.

We use U (t, b) (Figure 4.1) with t = T'Ly[i] — 1,b = BLy[i] — 1 to be a set collecting

lines j mentioned above. The definition of U (t, b) is:
Definition 4.1.2. U(t,b) is a set of lines j s.t. j < tand 7 *(j) < 0.
Then by theorem we can change D1;(7) below:

D1;(i) = {i} Uset_ming<j<;(D1x(j) | {i} U D1x(j) k-dominates {1,2,...,i})

= {i} U set_ming<j<i(D1(j) | D1x(j) k-dominates U (T Ly[i] — 1, BLg[i] — 1))
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Figure 4.1: U(t,b) with t = T'L3[13] — 1,b = BL3[13] — 1.

Then, based on different k, we split D1;(7) into two cases. If k { 2, we split it into
TLiljl| = TLgi] and TLy[j] # TLg[i]; Else, we split it into BL[j] = BLy[i] and
BLg[j] # BLylil.

For Case 1, we have the following theorem:
Theorem 4.1.3. D1,(j) must k-dominates U (T Ly[i] — 1, BL[k] — 1) for Case 1.

By theorem, if k 1 2, Case 1 becomes {i} U set_mino<j<;, rr,[j=rLy[i](D1k(]))-
k | 2 is similar.

For Case 2, by Theorem 3.1.1, if k { 2, then 0 < j < i and T'L.[j] # TL[i] &
TLy[j] < TLgli]; Else, then 0 < j < i and BLg[j] # BLk[i] & BLi[j] < BLgli].
So if k 1 2, Case 2 becomes {i} U set_minyy,[jj<rr i (DP1k(j) | D1k(j) k-dominates
U(TLg[i] — 1, BLg[i] — 1)). k | 2 is similar.

Then we define D2,(t, b) below s.t. Case 2 becomes {i} U D2, (T'Ly[i] — 1, BLy[i] —
1), where ”2” means two inputs ”t” and ’b”. We first define something which is used to

define D2 (t,b).

Definition 4.1.4. Let S = {iy,is,...} be a set of lines, maxT R(S) = max(T Ry[i1],
T Ry[iz), ...); max BRy(S) = max(BRy[i1], BRy[ia], ...).

Definition 4.1.5. Given several sets S1,Ss, ..., set_min_ TRy (S1,Ss, ...) output a set S
with minimum cardinality s.t. maxT Ry (S) is as large as possible. set_min_BRy has

similar definition.

Note that if S is a choice of set_min_ TRy (Si, Ss,...), then S is also a choice of
set_min(Sy, Sa, ...). Sois set_min_BRj.
Now we can define D2(t,b). We will propose why we use set_min_ TRy and

set_min_BRy, instead of set_min in D2 (t,b) section.
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Definition 4.1.6. If' k 1 2, D2,(t,b) = set_min_BRy rr,[;<¢(D1k(j) | D1x(j) k-
dominates U(t,b)). Else, D2,(t,b) = set_min_TRy pr,;j<s(D1(j) | D1p(j) k-
dominates U (t,b)).

Note that D2, (n,n) is a minimum distance-k dominating set on given permutation

graph. We can output D2y (n, n) directly in algorithm 3 instead of the original output.

Theorem 4.1.7. D2;(n,n) is a choice of set_ming<;<,(D1x(i) | D1x(i) k-dominates

{1,2,...,n}).
So the D1(7) becomes below:

Set_min0§j<i, TLy[j]=TLy]1] (le (]))

D2,(TLyli] — 1, BLyJi] — 1)

if k12, D1(:) = {i} U set_min

set_mino<j<i, Br,jl=BLyi](D1k(7))
else, D1(1) = {i} U set_min SISt BB
D2y (T'Ly[i] — 1, BLy[i] — 1)
We will prove in section 4.1.2 that whatever & is even or odd, Case 1 use O(1) time and

O(1) space for each i. So the complexity of D1,() is based on the time and space to find
D2, (TL[i| — 1, BL[i] — 1).

4.1.2 Correctness and Complexity Analysis

In this section, we will prove the theorems and prove that Case 1 of D1(i) takes O(1)

time and O(1) space for each i.

1. Proof of Theorem 4.1.1:

»=" j < TLy[i] and 7~(j) < BLy[i] implies j doesn’t intersect with T'z,[:]. Since
J < TLg[i] <, j should be k-dominated by D1[i], done.

”<=" j isn’t k-dominated by i, so j doesn’t intersect with 7'z [i]. Since j should be

k-dominated by D14[i], 7 <. So j < T'Ly[i] and 7~ (j) < BLy]i], done.

2. Proof of Theorem 4.1.3:
We just prove if j < ¢ and T'Li[j] = TLg[i], then D1;(j) must k-dominates
U(TLg[i] — 1, BLg[i] — 1). The BLy[j] = BLy[i] case has similar proof.
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Given arbitrary line j° € U(TLy[i] — 1, BLg[i] — 1), j' < TLy[i| = TLglg]. If
7 (j') < BLgj], then by Theorem 4.1.1 j' is k-dominated by D1,[j]; Else if BLy[j] <
77 1(j') < BRg[j], then j’ intersects with T'2;[j], done; Else, then j* < T'Ly[j] < 7,
7 H(J") > BRy[j] > j. d(j', ) = 1, done.

3. Proof of Theorem 4.1.7:

We just prove & 1 2 case, the other case is similar.  D2;(n,n) =
set_min_BRy, rr,[jj<n(D1k(j) | D11(j) k-dominates U(n,n)). Since T'Lj[j] must < n
and U(n,n) = {1,2,..,n}, D2y(n,n) = set_min_BRy o<j<n(D1x(j) | D1x(j) k-
dominates {1,2,...,n}). Then D2, (n, n) isalso a choice of set_ming<;<,(D1x(7) | D14 (%)

k-dominates {1,2,...,n}).

4. Complexity Analysis:

We just prove k 1 2 case. The other case is similar, We use the set S to save the
answer of Case 1 and do the following:

(1) Initialize S = no answer, ¢ = 1.

(2) Since there isno j s.t. 0 < j < i and T'Ly[j] = T'Lx[i], Case 1 has no answer.
Let S < D1;(i), i + i+ 1.

(3-1) If T'Ly[i] # T Lg[i — 1], then by Theorem 3.1.1 T'Ly[i] > T'Ly[i — 1]. Let S =
no answer and go to (2).

(3-2) Else, S is the answer of Case 1. then let S < set_min(S, D1,(i)), i < i+ 1
and go to (3).

In this method, we use O(1) time to get the answer of Case 1 for each i, and we use
a set S only to save Case 1, which can be saved in O(1) space. (The detail of how to save

D14(i) in O(1) space will be told in the complexity analysis of algorithms 4 and 5.)

4.2 A New Algorithm

In this section, we will propose a method to compute D2 (¢, b) more efficiently, then we
will propose the O(n?) time and O(n) space algorithm containing D14 (z) and D2 (¢, b).
At last we will prove the theorems and prove the correctness and complexity of algorithms

mentioned in this section.
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4.2.1 Some Changes

Recall that If & 1 2, D2,(t,b) = set_min_BRy rp,[;)<¢(D1k(j) | D1x(j) k-dominates
U(t,b)). Else, D2;(t,b) = set_min_T Ry, pr,[jj<o(D1k(j) | D1x(j) k-dominates U(t,b)).
Similar to D1(7), we split D2(t, b) into two cases. If k t 2, we split it into ¢ < T'Ry[j]
and T'Ry[j] < t; Else, we split it into b < BRy[j] and BRy[j] < b.

For Case 1, we have a theorem similar to Theorem 4.1.3:

Theorem 4.2.1. D1;(j) must k-dominates U (t,b) for Case 1.

By theorem, if k { 2, the Case 1 becomes set_min_BRy, v, [jj<t<rr,[;](D1k(5)).

k | 2 is similar. For Case 2, we have the following theorem:

Theorem 4.2.2. For k 1 2, if D2;(t — 1,b) k-dominates U (t,b), then Case 2 isn't better
than D2;(t — 1,b), else, then Case 2 isn't better than Case 1. It is similar for k | 2 but
replace D2;(t — 1,b) by D2, (t,b — 1).

Note that this theorem is true if we use set_min_T Ry and set_min_B Ry, but not
just set_min. By theorems above, the D2, (¢, b) becomes below:
set_min_BRk TLy, [j]StSTRk m (D].k (]))

if k12, D2,(t,b) = set_min_BRy
D2,(t — 1,b) if it k-dominates U(t, b)

else, D2y(t,b) = set_min_TRy set_min TRy pruiisv<pri (D1(7))
D2,(t,b— 1) if it k-dominates U (t,b)

By equations of D1(i) and D2,(¢,b), we can use algorithms 4 and 5 to find the
solution.

In the complexity analysis of the algorithms in section 4.2.2, for k 1 2, we find two
bottlenecks below:

(1) For each t, we find Case 1 of D2,(t,b) in O(n) time. (note that Case 1 is inde-
pendence from b.)

(2) For each ¢, we find D2 (¢, b) for all bin O(n) time.

So in the next section, we will propose how to solve these two bottleneck and reduce

the time complexity into O(n logn).
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Algorithm 4 Find a minimum distance-k dominating set on given permutation graph,
kt2.
Input: permutation 7, a positive integer & { 2
Output: a minimum distance-k£ dominating set on permutation graph denoted by 7
if k=1 then
Use Chao, Hsu, and Lee’s [8] O(n) time algorithm to get the solution.
else
Use algorithm 1 and 2 to find 7'z4[¢] for i = 1 to n.
Initialize D1,(0) < @,i + 1
fort =0tondo
for b = 0ton do
if £ = 0 then
D2, (t,b) < D1(0)
else

D2(t,b) < set_min_BR {

set_min_BRy, 71, [j<t<TRy[j] (D1(4))
D2, (t — 1,b) if it k-dominates U(t,b)
while TLi[i| — 1 =t do
t ming<j<; n=7r. i (D1g(j
D14 (i) « {i} U set_min > _mmog.]< » TLeld] T,LkH( (7))
- DQk(TLk[l] —1, BLkM — 1)
1 1+1
output D2 (n,n)

4.2.2 Correctness and Complexity Analysis

In this section, we will prove the theorems and correctness of algorithms, then we will
prove that the algorithms take O(n?) time and cost O(n) space. We just prove k 1 2 case,

the other case has similar proof.

1. Proof of Theorem 4.2.1:

We just prove if T'Li[j] <t < TRy[j], then D1;(j) must k-dominate U (t,b). The
BL[j] < b < BRy[j] case has similar proof.

Given arbitrary line j' € U(t,b), 7/ < t. If j/ > TLg[j], then j' intersects with
T'z[7], done. Else if j* < T'Ly[j], then the proof similar to that in Theorem 4.1.3 propose
us 7/ must be k-dominated by D1(j), done.

2. Proof of Theorem 4.2.2:
Recall that we split D2y (¢, b) into two cases:
Case 1 = set_min_BRy, rr,[jj<t<rr,[;)(D1k(5))
Case 2 = set_min_BRy, rp,[jj<¢(D1k[j] | D1x(j) k-dominates U(t,b))
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Algorithm 5 Find a minimum distance-k dominating set on given permutation graph,
k| 2.

Input: permutation 7, a positive integer k | 2
Output: a minimum distance-k£ dominating set on permutation graph denoted by 7
Use algorithm 1 and 2 to find 7'z [i] for i = 1 to n.
Initialize D1(0) < @,4 + 1
for b = 0ton do
fort =0tondo
if b = 0 then
D2,(t,b) «+— D1,(0)
else

D2 (t,b) < set_min_T Ry, {

set_min_T Ry, Br,[j)<b<BRy]j] (D1x(4))
D2y (t,b— 1) if it k-dominates U (t,b)
while BL,[i] — 1 =bdo
D14 (i) « {i} U set_min ¢ _mmog,K » BLl) B,LkH( (7))
D2k(TLk[z] — 1,BL]€M — 1)
14—1+1
output D2 (n,n)

If Case 2 has no answer, then done. Else, we want to prove two things:

(1) If D2;(t — 1,b) k-dominates U (t,b), then set_min_BRy(D2;(t — 1,b), Case
2) = D2,(t — 1,b).

(2) Else, then set_min_BRy(Case 1, Case 2) = Case 1.

Proof of (1): Let D14(jo) be a choice of Case 2, then T'Ry[jo] < t. Recall that
D2,(t — 1,b) = set_min_BRy, rr,[j<t—1(D1i[j] | D1x(j) k-dominates U(t — 1,0)).
Since T'Li[jo] < TRkl[jo] < t — 1, D1x(jo) k-dominates U(t,b) D U(t — 1,b), so
set_min_BRr(D1(jo), D2x(t — 1,b)) = D2,(t — 1,b), otherwise it contradicts to the
definition of D2 (¢t — 1,b).

Proof of (2): U(t,b) = either U(t — 1,b) or U(t — 1,b) U {t}. Since D2;(t — 1,b)
k-dominates U (t — 1,0) but not U(t,b), U(t,b) = U(t — 1,b) U {t}, so (a) b > 7 1(¢),
and (b) D2(t — 1,b) doesn’t k-dominates {t}. Let D1,(jo) be a choice of Case 2 and
thus (c) T'Ry(jo) < t. We claim:

(2-1) set_min_BRy(D1(j0), D2;(t — 1,0) U {t}) = D24 (t — 1,b) U {t}

(2-2) set_min_BRy(D2,(t — 1,b) U{t}, D1x(t)) = D1.(¢)

(2-3) set_min_BRy(D1(t), Case 1) = Case 1

So set_min_BRy(D1x(jo), Case 1) = Case 1.

Proof of (2-1): We claim that | D1, (jo)| > |D2x(t—1,b)| and maz BRy(D1x(jo)) <
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BR[t], done.

|D1x(jo)| > |D2x(t — 1,0)|: By the similar proof of (1), set_min_BRy(D1x(jo),
D2, (t — 1,b)) = D2,(t — 1,b). We claim that maxBRy(D2,(t — 1,b)) <
maxBRy(D1x(jo)), then |D1x(j0)| should > |D24(t — 1,b)|, otherwise it contradicts
to the definition of D2(t — 1,b).

Proof of claim: maxBRy(D2,(t — 1,b)) < = (t) by (b); 7 '(t) <
maxBRy(D1y(jo)) because by (¢) and Theorem 3.1.1, T'Ry[j'] < t,Vj" € D1x(jo), but
D14 (jo) should k-dominate ¢, done.

maxrBR(D1(jo)) < BRi[t]: Vi € D1x(jo), 7' is on the left of ¢ for k£ > 1 by (c)
and Theorem 3.1.1. Then by Theorem 3.1.1 again, BRy[j'] < BRy|[t] for all 5/, done.

Proof of (2-2): We claim that |D1.(t)] < |D2x(t — 1,b) U {t}|, then since
marBR(D2,(t — 1,b) U {t}) = BRy[t] which is proved in (2-1), and BR[t] <
maxBRy(D1(t)), done.

Proof of claim: |D1x(t)| < |D2,(TLg[t] — 1, BLi[t] — 1) U {t}| since the latter is
Case 2 of D1(t); |D2x(TLi[t] — 1, BLi[t] — 1) U {t}| < |D2x(t — 1,b) U {t}| since
U(TL[t] — 1,BLglt] = 1) C U(t — 1,b) since TLy[t] — 1 <t —1and BLi[t] — 1 <
7 1(t) < bby (a), done.

Proof of (2-3): Immediately by definition of Case 1 since T'Ly[t] < t < T Ry[t].

3. Correctness of Algorithm 4:

Note that the correctness of Algorithm 5 has similar proof.

The algorithm has two problems: (1) Whether ¢ can run from 1 to n, (2) Whether the
algorithm causes circular argument. We will prove that (1) is yes and (2) is no.

(1) By Theorem 3.1.1, T'Ly[i] monotone increases as i increases. So when ¢ = 0, we
compute D1 (i) fori = 1to x where T'Ly[i] — 1 = 0, then T'Ly[i] — 1 must > 0 fori > x.
Then we increase t s.t. T' L[z + 1] — 1 = ¢ and compute D1(7) for i = x + 1 to 2’ where
TLgli] — 1 = t, then T'L[i] — 1 must > ¢ for i > 2/. Doing this again and again until
t = n, then we compute all of the D1,(7) for i = 1 to n.

(2) For k > 1, suppose ¢ < tg, the Case 1 of D2,(t, b) has all been computed since
for each j, T'Ly[j] < to. Take T'Ly[jo] = to for example, this is computed when ¢ = ¢, — 1
since at that time T'Ly[jo] — 1 =ty — 1 = 1.

The Case 2 of D1, () is computed since 7'Ly[i] — 1 = t, and for each b, D2y (¢, b)
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are computed above. So the algorithm doesn’t cause circular argument.

4. Complexity Analysis:

Note that the complexity of Algorithm 5 has similar proof.

For each D14(i), wesave j < is.t. D1;(i) = {i}UD1(j) (save —1 for i = 0); save
| D1x(7)|, and save maxBRy (D1, (i)). For each b of D2(t,b), we save i s.t. D2 (t,b) =
D14(i). They both cost O(n) space.

Then, for each ¢, we use O(n) time to compute Case 1 of D2 (¢,b) and save it as D,
which contains i s.t. D = D1(i).

Then, for each ¢, for each b, we first use O(1) time to check if D2,(t — 1,b) k-
dominates U (, b) by checking either mazBRy(D2;(t — 1,b)) > 7= 1(¢) or b < 7w 1(¢).
Then choose Case 1 or Case 2 to be D2(t,b) in O(1) time, save it into the place saving
D2, (t — 1, b) since the latter won’t be used anymore after the former has been computed.

Then, for each ¢, if T'L[i] — 1 = t, we compute Case 1 of D1,(i) in O(1) time, find
Case 2 of it in O(1) time. Since ¢ runs from 1 to n once, this cost O(n) times in total.

Finally, output D2y (n,n) by first find i s.t. D2;(n,n) = D1;(¢) in O(1) time, then
find j; s.t. D1(i) = {i} U D1x(j1) in O(1) time, then find js, js, ..., until j, = 0, thus
{i,J1,J2, -y Ju—1} 1s minimum distance-k dominating set on given permutation graph.
This cost O(n) time in total.

Soweuse O(n?)+0(n?)+0(n)+0(n) = O(n?) time and O(n) space for algorithm.

4.3 Improvement by AVL Trees

An AVL tree, named by two inventors, G. M. Adel’son-Vel’skii and E. M. Landis [1], is
a self-balancing binary search tree where the difference between heights of left and right
subtrees for any node can’t be more than one. For each node, its left subtree contains
nodes smaller than itself; while its right subtree contains nodes larger than itself. The
insert, delete, find minimum, search node of an AVL tree all take O(logn) time.

In this section, we will use the tree to reduce the time of two bottleneck parts of the
algorithms above to O(n logn). We will just propose k 1 2 case, k | 2 case are similar. At

last we will prove the theorems mentioned in this section.
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4.3.1 One Bottleneck

Recall that for £ 1 2, the first bottleneck part is: For each ¢, we find Case 1 of D2(¢,b),
which is set_min_BRy, rr,[jj<t<Tr,[;)(D1k(J)), in O(n) time. We propose how to reduce
it into O(logn) time using AVL tree. For each ¢, we want to put all of the D1(j) with
TLilj] <t < TRyg[j] inthe AVL tree. We can do it below:

(1) Insert D1,(j) once it is computed, which takes O(log n). Note that it is computed
when T'Ly[j] — 1 = t. Seems it doesn’t meet the criterion T'L;[j] < t < TRg[j]. But
actually after all possible D1(j) is inserted, we first let ¢ <— ¢ + 1, then compute the Case
1 of D2;(t,b). At this time D1,(j) meet the criterion since this time T'Ly[j] = t.

(2) Delete D14 (j) once t > T Ry[j], which takes O(logn).

Since Theorem 3.1.1, we can do them in sequence with j, so they both take O(n logn)
in total. Then we propose the comparison rules in AVL tree. For two different nodes
D14(j1) and D14 (52), we put D14 (j1) on the left of the D2;(j,) in the AVL tree if:

(1) D) < |D1e(2)

(2) |D1x(j1)| = |D1k(j2)| and max BRy,(D14(j1)) > maxBRy(D14(j2))

(3) |D1x(51)| = | D1k(j2)|, max BRy(D1x(j1)) = max BRk(D1x(j2)), and 71 > jo.

So Dl1g(j1) is on the left of the D2(js) in AVL tree <
set_min_BRy(D1x(j1), D1x(j2)) = D1x(j1), and we find Case 1 of D2(t,b) by just
finding the leftmost node of AVL tree, which takes O(log n) time, done. Note that (3) just
make sure there are no two different nodes in AVL tree with same value. You can define
J1 < jo if you want.

Take Figure 4.2 for example. For k = 3, if ¢ = 8, the Case 1 of D2(t,b) is the
leftmost node of AVL tree, which is D15(7).

Note that in practice we can just save j in AVL tree to represent D1;(j) since we al-
ready have an array s.t. for each j with computed D1,(j), it saves |D1x(j)| and
maxBR(D1(7)). This is told in the complexity analysis of algorithms 4 and 5. So
the AVL tree needs O(n) space.

4.3.2 Another Bottleneck

Recall that for & 1 2, the second bottleneck part is: For each ¢, we find D2 (¢,b) for all b
in O(n) time. We propose how to use another AVL tree to reduce it into O(logn) time.

Before that, we first propose a theorem about D2 (¢, ).
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k=3 t=8

TLall, TR30| 1.4 [ 1,4 [ 1,7 | 1,7 [ 3,7 |31 |3, 11 |6 11 | 6,13 [6.13 | 6,13 | 9.17 | 9,17 |12, 17|12, 17|12, 20|12, 20|16, 20|16, 20|16, 20

BLall,BR3ll| 1,6 | 1,6 | 1,9 [ 1,6 | 1,9 |4.12 | 1,9 |7.12 |7.16 | 4,12 [ 4,12 [11,19| 7. 16 (11, 19|11, 16 (14, 20|11, 19 (14,20 (17, 20|14, 20

(b)

Figure 4.2: An AVL tree saving D1(i): (a) a trapezoid table, (b) a corresponding AVL
tree when ¢ = 8.

Theorem 4.3.1. For k 1 2, if by < bs, then set_min_ BRy(D2x(t,b1), D2x(t, b)) =
D2y(t,b1); Fork | 2, ifty < to, then set_min_T Ry(D2(t1,b), D2x(t2,b)) = D2x(t1,0).

So for fixed ¢, D2(t, b) monotone increases below the definition of set_min_ BRy,
as b increases. We use several blocks instead of an array to save D2y (¢,b) s.t. if by # by
and D2 (t,b;) = D24(t, be), they are in the same blocks. The blocks also monotone
increases as b increases.

Then, we use AVL tree to save these blocks. Each node contains the region of b with
same D2y(t,b). Note that the regions don’t overlap since each b has only one D2 (¢,b).
The node also contains j s.t. D2(t,b) = D14(j). The comparison rules of this AVL tree
is based on the head (or tail) of region of b, the more left is the smaller. The Figure 4.3 is
an example with k£ = 3,1 = 12.

Then we propose how to construct this tree. Initially when ¢ = 0, the AVL tree
contains only one node: D14(0), with region b = 0 to n. Whenever ¢ < ¢ + 1, Let the
Case 1 of D2(t,b) be Dcgse1- We know that for each b:

(1) D2y(t,b) = Dcaser if set_min_BRy(Dcase1, D21k(t — 1,0)) = Dcgse-

(2) D2y (t,b) = Dcaser if D2, (t — 1,b) doesn’t k-dominate U (¢, b).
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D25(12

b) 0 1 2 3 4 5 ] T 3 9 10 1 12 13 14 15 16 17 18 19 20

D13(0) D13(T) D1a(16)

b=0~0 b=16~20
D13(0) D13(18)
§ {7, 16}

maxﬂﬁg =0 maxBR3 =20

(b)
Figure 4.3: An AVL tree saving D2(t,b): (a) An array saving D2(t,b) with ¢t = 12, (b)
its corresponding AVL tree.

(3) D2x(t,b) = D2x(t — 1,b) (no change) otherwise.

So we can continue finding the rightmost node, call the set in it = D2 and region
is b = by to by, and do the following:

(D) If set_min_BRi(Dcaser, Doase2) = Deaser, deletes the node and repeat.

(2) Else if D¢ gse k-dominates ¢, then it must k-dominate U (¢, b), done. This happens
when max BRy,(Dcasez) > 7 1(t).

(3) Else if 7= *(¢) < by, then it must not k-dominate U (¢, b) for all regions, delete the
node and repeat.

(4) Else, by < m71(t) < by. Deyser doesn’t k-dominate U (¢, b) for 771(t) < b < by
but does for b; < b < 7~ !(t). Change the region to b = b; to 7~ *(¢) — 1 and done.

After the repeat is end, suppose the rightmost node has region b = b} to b, we insert
Dcaser to the rightmost of the tree and let its region b = b, + 1 to n, done. Note that once
the rightmost node isn’t deleted, then by Theorem 4.3.1 all of the nodes won’t be deleted
anymore for same ¢, so we can then insert D¢,s.1 and finished.

For each ¢, we insert at most one node D¢,s1 in the AVL tree, and we change at most
one node’s region. So these take O(logn) time. Since there are O(n) nodes in the tree,
we can delete O(n) nodes in total. So the method above take O(logn) time in amortize
to compute D2, (t,b) for all ¢ and b.

Note that in practice for each node, we just save j in AVL tree to represent D1(j)
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in it, and save head and tail of b to represent its region. So the AVL tree costs O(n) space
in total.

So for each ¢, we use O(log n) time to find Case 1 of D2(t, b), then we use O(logn)
in amortize to find D2 (¢, b) for all b.

Notice that in the Case 2 of D14(i), we need to find D2, (T Ly[i| — 1, BLg[i] — 1),
where T'Ly[i] — 1 = t. We now can find it in O(logn) by let b = BLy[i] — 1, then use
second AVL tree to find a node whose region is by to bs, s.t. by < b < by. So for each ¢,
we find D1;(7) in O(1) + O(logn) = O(logn) time. So the algorithm takes O(n logn)
time.

Since we spend O(n) space to find trapezoids and save them, an O(n) array to save
D1(7), and two O(n) AVL trees to save D1,(j) and D2(¢,b), so the algorithm costs
O(n) space.

4.3.3 Correctness

In this section, we will prove Theorem 4.3.1. We just prove k 1 2 case, k | 2 case is similar.
Let by < by, suppose set_min_BRy (D2 (t,b), D2y (t,bs)) # D2(t, by1), but since
U(t,by) C U(t,be), D2(t,by) also k-dominates U(t,b,), and the restrict of D1(j) of

two sets are same (7'Ly[j] < t), so this contradicts to the definition of D2, (¢, b).
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Chapter S Conclusion

In this thesis, we first find that for fixed k, for each line i, there is a trapezoid T'z;[i] s.t.
d(i,j) < k < Tz[i] intersects with j, and find T'z[i] for all i in O(n log k) time and O(n)
space.

Then we define a distance-k dominating set D1, () and find that it can be computed
by some D1;(j) where j < i.

Then we define another distance-k dominating set D2 (¢, b), which is similar to that
in Farber and Keil’s paper [12]. We find that with the cooperation of D1, (i) and D2 (t, b),
we can get the solution in O(n?) time and O(n) space.

Finally, with AVL tree, we reduce the algorithm into O(n logn) time and O(n) space.

The open question is whether we can solve it faster than O(n logn). Tsai and Hsu’s
paper [22] uses another data structure to reduce the time of £ = 1 case into O(n loglogn).
If we can use the same data structure to improve our algorithm, then our time complexity

becomes min(O(nlogk), O(nloglogn)).
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