
doi:10.6342/NTU202302806

國立臺灣大學電機資訊學院電信工程學研究所

碩士論文

Graduate Institute of Communication Engineering

College of Electrical Engineering & Computer Science

National Taiwan University

Master Thesis

基於結構標記生成帶文字標籤的圖結構

TextGraphBART: Unifying Graph and Text Generation
with Structure Token

鄭景文

Ching-Wen Cheng

指導教授: 葉丙成博士,李宏毅博士

Advisor: Ping-Cheng Yeh Ph.D., Hung-yi Lee Ph.D.

中華民國 112年 8月

August, 2023

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

Acknowledgements

I would like to express my deepest gratitude to my thesis advisors, Prof. Ping-Cheng

Yeh and Prof. Hung-yi Lee, for their unwavering support, guidance, and invaluable in-

sights throughout this research. Their combined expertise and encouragement have been

the cornerstone of my academic journey, and I am deeply indebted to both of them for

their dedication.

Special thanks are extended to RelationalAI for generously providing the A100 GPU

that was vital for conducting the experiments in this research. Their collaboration and

support have been instrumental in achieving the results presented in this thesis.

I am also grateful to my friends, my family, and anyone who contributed directly

or indirectly to this thesis, for their understanding, help, and moral support throughout

my studies. Especially, Che-Kang Chang’s unwavering support and encouragement have

been a constant source of strength throughout my research journey. The discussions with

Chong-HengWeng and Yueh-Hua Tu also help me polish my ideas. I am truly grateful for

the countless hours and immeasurable effort they have dedicated to helping me succeed.

i

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806ii

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

摘要

近年來生成式模型越來越受到重視，尤其是基於 Transformer或是 Attention

的模型在各個領域都有不少的成果，像是文章、音樂、圖片、影片等等。與此同

時，在生成帶文字標籤的圖結構（如知識圖譜、心智圖等）上並沒有太多發展，

由於該問題同時牽扯到圖結構的生成與文字標籤的生成，以往的方法大致上會分

成兩種，一種是將文字與圖結構分別用兩個不同的模型，另一種則是將圖拆解成

一段段的文字序列並使用序列模型來處理。然而，使用兩個模型的方法容易缺少

圖結構與文字之間交互的資訊，而將圖拆解成序列的方法則是會損失部分的圖結

構資訊並且將低生成效率。本論文提出了一種結構標記，能夠將圖結構與文字共

同轉成單一的表示法。透過這種表示法，模型可以更有效率的學習以及生成圖結

構與文字，在此之上我們也提出了一種預訓練的方法。為了證明方法的有效性，

我們在兩個公開的資料集上做測試，並且結果顯示我們的方法可以用更少的參數

量達到跟過去模型可比的分數。

關鍵字：圖結構生成、知識圖譜、深度學習

iii

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806iv

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

Abstract

Transformer layer has been proved to work well in several domains beyond text, like

audio, image, and even multi-modal. The idea behind these models is that we can treat

different kind of input as a series of tokens. Recent research also shown that with carefully

designed input token, a pure transformer encoder can also be a powerful graph encoder.

Taking steps further in this direction, we propose a new kind of input representation called

”Structure Token”. With structure token, we can represent graph with text label as a se-

quence of tokens. By converting both graph and text into structure token, we train a pure

transformer encoder-decoder that learn a unified representation and generate both graph

and text with the same model. We also propose a new pretrain method similar to mBART

pre-training but with the structure token. In this paper, we show that with the proposed

method, we are able to train a smaller model that has performance comparable to the T5

variants on text-to-graph and graph-to-text tasks.

Keywords: Graph Generation, Knowledge Graph, Deep Learning

v

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806vi

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

Contents

Page

Acknowledgements i

摘要 iii

Abstract v

Contents vii

List of Figures xi

List of Tables xiii

Chapter 1 Introduction 1

1.1 Graph Structure in Natural Language Processing 2

1.2 Common Methods for Generating Text Graph 3

1.2.1 Multi-stage Approach . 3

1.2.2 Graph Linearization . 4

1.3 Motivation . 5

1.4 Contribution . 6

1.5 Thesis Organization . 6

Chapter 2 Preliminaries 9

2.1 Introduction to Generative Model 9

2.1.1 Basics of Text Generation . 10

vii

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

2.1.2 Basics of Graph Generation . 11

2.2 Introduction to Transformer Model 11

2.2.1 The Core Module: Attention Mechanism 12

2.2.2 Handling Sequential Data: Position Embedding 14

2.3 Transformer for Graph Data . 15

2.4 Improve Model Performance: Pre-Training and Fine-Tuning 17

2.5 Evaluate Generation Result . 18

2.5.1 Metrics for Text Generation . 19

2.5.2 Metrics for Text Graph Generation 20

Chapter 3 Method 21

3.1 Model Overview . 21

3.2 The Core Design: Representing Graph via Structure Token 24

3.2.1 Problem Setup . 25

3.2.2 Convert Graph/Text to Structure Token 27

3.2.3 Convert Structure Token to Vector Representation 31

3.2.4 Text Generation through Structure Token 36

3.2.5 Graph Generation through Structure Token 37

3.2.6 Efficiency of Structure Token . 38

3.3 Transformer Model Training . 39

Chapter 4 Experiments 41

4.1 Experiment Setup . 41

4.1.1 Training Setup . 41

4.1.2 Model Parameters . 42

viii

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

4.1.3 Datasets . 42

4.1.4 Data Processing . 46

4.2 Effectiveness of Structure Token on Graph-to-Text Generation 47

4.3 Effectiveness of Structure Token on Text-to-Graph Generation 48

4.4 Ablation Study . 53

Chapter 5 Conclusions and Future Work 55

5.1 Summary . 55

5.2 Discussion and Future Work . 56

5.3 Conclusions . 61

References 63

ix

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806x

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

List of Figures

1.1 Example of multi-stage approach . 3

1.2 Example of graph linearization approach 4

2.1 Illustration of Transformer model from Vaswani et al. [46] 12

2.2 Illustration of the origin attention from Bahdanau et al. [4] 13

2.3 Illustraction of the QKV attention operation from Vaswani et al. [46] . . . 14

2.4 Illustration of Graph Transformer from Dwivedi et al. [15]. 15

2.5 Illustraction of Graphormer from Ying et al. [50]. 16

2.6 Illustration of TokenGT from Kim et al.[26]. 17

2.7 Illustraction of BERT training from Devlin et al.[12]. 18

3.1 Overview of the proposed structure token approach. 22

3.2 Example of autoregressive generation with our structure tokens. 24

3.3 Example of a text graph. 26

3.4 Example of structure token. 28

3.5 Our method for converting structure token to embedding. 32

3.6 Properties of our orthonormal-like vector 35

3.7 The Structure Predictor for predicting the graph-level identifiers. 37

3.8 Illustration of our pre-training method. 40

xi

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806xii

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

List of Tables

4.1 Datasets. 43

4.2 Samples of text from each dataset. 44

4.3 Samples of text graph from each dataset. 45

4.4 Statistics of the datasets. 46

4.5 Performance of Graph-to-Text on EventNarrative. 47

4.6 Performance of Text-to-Graph on WebNLG (2020). 49

4.7 Performance of our model on each category of WebNLG (2020) test set

comparing to Grapher-small. 50

4.8 Examples of graph generation with TextGraphBART onWebNLG (2020)

test set. 52

4.9 Ablation results of our structure embedding on WebNLG (2020) test set. . 53

xiii

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806xiv

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

Chapter 1 Introduction

Natural Language Processing (NLP) is a field of artificial intelligence that involves

the use of computational methods to analyze and generate human language. NLP has

become increasingly popular in recent years, as the amount of natural language data avail-

able on the internet has grown exponentially and the adoption of deep learning methods

has gain significant advancements. One important area of research in NLP is to extract

structured information from unstructured text since structured information can be pro-

cessed more efficiently and easily by both human and machine. For example, Automatic

Knowledge Graph Construction (AKGC) is a task that aims to automatically capture the

entities and relationships in the text as graphs [55]. Our work presents a new method that

can be used to generate knowledge graph from text.

In this chapter, we first introduce the background in Section 1.1 and the common

method used for graph generation in Section 1.2. Then we describe the motivation of this

work in Section 1.3 and list our contributions in Section 1.4. Last, the organization of this

thesis is presented in Section 1.5.

1

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

1.1 Graph Structure in Natural Language Processing

Graph is a mathematical representation of a set of objects and the connections be-

tween them. In the Computer Science domain, a graph usually refers to a data structure

consisting of something that can be regarded as nodes and edges. There are many variants

of graph and each has its own attributes. Some of them only care about the sparsity and

locality of the edges (i.e. the structure), while some require extra information like node

labels or edge labels. In NLP, nodes are often used to represent concepts or entities, and

edges are used to represent the relationships. Since the labels are all texts, we will refer to

this kind of graph as “text graph” in this thesis.

Text graph is pretty common in linguistics. For example, we can use graph to express

linguistic relations betweenwords, phrases, and sentences. The relations can be either syn-

tactic or semantic. These kind of representations have been widely used in NLP, such as

constituency parsing or dependency parsing. Besides, graph have many other applications

in NLP. In the dialog system, we can use graph to capture the dialogue states [38]. Alter-

natively, graph can be used to represent the entities and attributes in a knowledge base of

a question answering system [52, 54].

Despite the usefulness of graph, obtaining the graph can be challenging. For in-

stance, in the question answering system, we want to store the information or knowledge

in a structured format. However, most of the language data available are in the form of

unstructured text. Manually extracting important information from these texts is resource

consuming. Therefore, automatic methods for constructing the graph have become an

important task.

2

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

1.2 Common Methods for Generating Text Graph

The key aspect of automatic graph construction is the way that the graph is generated.

Unlike those graph without labels, graph generation in NLP is a complex problem since

we need to find out not only the structure but also the labels. As a result, we either need

a model that can directly handle both structure and labels at the same time, or we use

different models for each parts.

Several methods have been proposed for graph generation in NLP, each with its own

trade-offs. In the following section, we talk about two common methods for generating

graph, the multi-stage approach and graph linearization approach.

1.2.1 Multi-stage Approach

Akron, Ohio is located
within the United States
whose leader is Joe
Biden.

Akron, Ohio

United States

Joe Biden

entity
extraction

relation
extraction

Akron, Ohio

United States

Joe Biden

country

preside
nt of

Figure 1.1: Example of multi-stage approach

Themulti-stage approach involves generating a graph inmultiple stages [19, 35]. The

idea is that we can divide the graph generation problem into an entity recognition from text

problem and a relation extraction from entities problem. In the first stage, a node model

is used to extract the entities from the text into a set of nodes. Second, an edge model is

used to find the relationships among all the nodes. This would require the edge model to

take all possible pairs of nodes and predict whether they have any relationship between

them or not. The most common implementation would be treating no relationship as a

3

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

“no relation” label and perform the inference assuming that the graph is a complete graph

[35].

Although the multi-stage approach simplified the graph generation problem, it also

introduce a label imbalance issue [35]. Because the prediction of edge model need to

include a “no relation” label, that label would be the majority in the dataset. The issue

make it more difficult to train the edge model [35]. Moreover, since we are using two

model in a chain, it is also possible to suffered from error propagation.

1.2.2 Graph Linearization

Akron, Ohio is located within the United States whose leader is Joe Biden.

graph
linearization

[H] Akron, Ohio [R] country [T] United States [H] Joe Biden [R] president of [T] United States

Figure 1.2: Example of graph linearization approach. The “[H]”, “[R]”, and “[T]” is a
special token indicating the following text is a “head”, “relation”, or “tail”, respectively.
A group of head, relation, and tail is a triple and the order of the triples can be randomly
permuted.

An alternative to the multi-stage approach is graph linearization, which refers to a

process that convert a graph into a sequence of object that can represent the origin graph.

It treats the graph generation task as a sequence generation problem [2]. There are many

different ways to represent graph with sequence. In NLP, we usually represent the graph

with sequence of triple (a tuple with 3 elements) containing the edge and the two nodes on

each side of that edge [2, 11, 13]. With this approach, we can directly transfer the technique

and models used in sequence modeling to the graph modeling problem. Meanwhile, it do

not need the “no relation” label as the one in multi-stage approach.

However, if any node have more than one node connecting to it, the same node would

4

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

appear in two different triple in the sequence. In other word, the length of the sequence

of triple will be longer than the sum of all the label in that graph. As a result, the model

would require more computation resources for larger capacity.

1.3 Motivation

As mentioned in the previous section, the multi-stage approach suffers from a label

imbalance issue and possible error propagation due to its two-stage nature. On the other

hand, the graph linearization approach can be inefficient due to the possible duplication of

nodes in the sequence of triples, which could increase the computation resources required.

Therefore, we aim to design a new method similar to the graph linearization approach but

do not need to duplicate any element in the graph.

Additionally, we want to unified the representation for text graph and text. On one

hand, the text in a text graph usually follows the same language rules as normal text. On

the other hand, some researches have shown that language model trained on unstructured

text also implicitly learn some structured features [21, 42]. Correspondingly, we should

be able to share the model for both kind of data to some extent. Moreover, one challenge

for AKGC is the lack of paired data. One solution is using the semi-supervised learning

technique [19, 48], that we iteratively train two model to generate the data pair as new

training data. If we can unified the representation for both text graph and text, then we

can reduce the number of models in semi-supervised learning to only one model.

5

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

1.4 Contribution

In this thesis, we propose a new method addressing the desired characteristic above.

1. We present a new representation, called “Structure Token”, which served as a data

format for both graph and text. This approach can be viewed as a different graph

linearization without duplication. With this representation, we can train a single

model that is capable of generating both text graph and text.

2. We designed a pretrain method above our structure token. We show that with the

proposed method, we can effectively and efficiently train models comparable to

other approaches.

1.5 Thesis Organization

The remainder of this thesis is organized as follows:

In Chapter 2, we provide the essential prerequisites related to this thesis. We start

from the basics of generativemodel and themain neural network architecture we are using.

Then we talk about some training technique such as pretraining and cycle training. Last,

we introduce some common metrics for evaluate text generation and graph generation.

In Chapter 3, we describe our proposed method in detail. We will talk about how

the data is represented with the structure token and how to convert structure tokens into

numeric features for the model to process. Then the training method is also presented in

this chapter.

In Chapter 4, we present our experimental setup, including the datasets used, evalu-

6

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

ation metrics, and the implementation details of our method. We will discuss the results

of our experiments, comparing the performance of our method with existing methods.

Finally, in Chapter 5, we conclude the thesis with a summary of our contributions

and a discussion of potential future work.

7

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU2023028068

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

Chapter 2 Preliminaries

This chapter is dedicated to discussing the essential background information required

to understand the problem we tackled and the solution we proposed in this thesis. We

start with a fundamental understanding of generative models, particularly in the context

of text and graph generation, and then move onto the primary model for our method, the

Transformer model [46]. We explain the attention mechanism and position embedding,

key components of the Transformer model. We also discuss the significance and benefits

of pre-training and fine-tuning in improving model performance. Lastly, we outline the

metrics for evaluating text and text graph generation used in this thesis.

2.1 Introduction to Generative Model

Generative models are a class of models that aim to learn the true data distribution

of the training set in order to generate new data points from the same distribution. In

the context of NLP and graph generation, generative models can be designed to generate

coherent sequences of text or connected graphs.

9

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

2.1.1 Basics of Text Generation

In order to generate texts of natural language, we want to train models that learn the

distribution of natural texts. However, it is almost impossible to find the true distribution

of natural languages. Instead, we use the joint probability of the tokens in the sequence,

like the characters or words in the sentences. Moreover, to make it suitable for generation,

the joint probability is rewritten in an autoregressive manner. That is to say, the probabil-

ity of the k-th token only depends on the previous k − 1 tokens. Autoregressive models

generate sequences token by token, with each token being generated based on all previ-

ously generated tokens or manually inputted tokens. This property makes autoregressive

models particularly suitable for sequential data, where the context, i.e., preceding tokens,

is crucial in deciding the next token.

One common category of model in the field is the Sequence-to-Sequence (Seq2Seq)

model [45], which is used in tasks such as machine translation that accepting sequence

as input and generating corresponding sequence as output. The Seq2Seq model usually

contains two part, a encoder model and a decoder model. The encoder model is respon-

sible for converting the input sequence to feature representation. On the other hand, the

decoder model will take the previously generated tokens and the feature representation

from encoder model to generate a new token. The decoder model is often designed as an

autoregressive model, while the encoder model can be any kind of model.

Originally the design of Seq2Seq model is to convert the sequence of the encoder

domain to the decoder domain [45]. People found that it is possible to generate sequences

frommultiple domains [25]. Since the autoregressive decoder model is conditioned on the

encoder feature and some preceding tokens, we can switch the domain of the decoder by

10

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

preceding different tokens. For example, in the machine translation scenario, instead of

training the decoder on one language, we can use a special language token as the preceding

token to switch the language we want to translate to [25, 33].

2.1.2 Basics of Graph Generation

The generation of graph is more complicated than generating text. Unlike the se-

quential nature of text, graphs inherently embody more intricate structures. In contrast to

text generation, it is more challenging to model the distribution of graph and express the

probability in a generation-friendly way. Several types of methods have been proposed

for generating different graphs [56]. For example, GraphRNN is an autoregressive model

that generate graph node by node and depending on the previously generated subgraphs

[51].

However, the task is even more complicated in the context of NLP because text gen-

eration becomes part of the text graph generation. Since the task include two kind of

generation problem, the intuitive solution would be either cooperating multiple models or

adapting methods that generate graph and text in a similar manner such as autoregressive

models. As mentioned and explained in Section 1.2, the multi-stage approach and graph

linearization approach are two prevalent methods.

2.2 Introduction to Transformer Model

The Transformer model, introduced by Vaswani et al. [46], is a powerful model ar-

chitecture designed to handle sequence data. They employ a mechanism called “attention”

to capture the dependencies between tokens, no matter how far apart they are in the se-

11

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

Figure 2.1: Illustration of Transformer model from Vaswani et al. [46]

quence. This capability enables Transformers to model complex language structures and

generate high-quality text. It has revolutionized the field of natural language processing

and is the foundation for state-of-the-art pretrain models like BERT, GPT, and many oth-

ers [12, 30, 40]. There are many variant of Transformers and they have also achieved

considerable success in many tasks other than NLP [31].

2.2.1 The Core Module: Attention Mechanism

The concept of attention was first introduced in a paper for machine translation [4].

As indicated by the name, the attention mechanism allows the model to “focus” on dif-

ferent parts of the input when producing an output. In the paper, the attention is used to

enhance the decoder model so that it can learn to align the translated word to the origin

words, as showed in Figure 2.2. The attention operation computes a weighted sum of all

input features, where the weights are determined by a similarity function taking an input

12

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

token and an output token.

Figure 2.2: Illustration of the origin attention from Bahdanau et al. [4]. The weight αt,i is
computed by the similarity function applying on st and hi

In the Transformer paper, they made two modifications to the original attention oper-

ation [46]. First, the attention operation is generalized. Instead of computing the weights

and weighted sum on the same sequence, they use two sequence so that the weight can be

decoupled from the weighted features. This is often referred as query-key-value attention

(or QKV attention for short), where “query” is the output token, “key” are the input to-

kens, and “value” are the weighted features. Second, they propose the idea of multi-head

attention, which simply concatenate the result of multiple attention. With multi-head, the

model can learn to focus on multiple part at the same time. Beside the modifications, the

Transformer paper also introduce the idea of self attention, which compute the attention

on the input sequence itself instead of on the output sequence and input sequence. This

enable the model to ignore irrelevant tokens and get better features from the interaction

between tokens.

13

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

Figure 2.3: Illustraction of the QKV attention operation from Vaswani et al. [46]. The
expression is in matrices form. The result of “SoftMax” is the attention weights.

2.2.2 Handling Sequential Data: Position Embedding

As we can see in the design of attention mechanism, only the choice of similarity

function and the input features would affect the result of the attention operation. The

order of tokens in the sequence will be ignored due to the weighted sum operation. Dif-

ferent from the original attention paper, which use recurrent neural network (RNN) to get

the order-aware sequence features, Transformer only use attention and feed-forward layer

in the model [4, 46]. Therefore, the Transformer model cannot handle the order in the

sequence. To overcome this problem, they propose the idea of position embedding, which

assign a vector to each position of the sequence. The input feature become the addition

of word embedding and position embedding. The position embedding is designed to have

higher similarity with closer positions, hence affect the result of attention.

There are many variant of position embedding [14]. Generally position embedding is

a function converting positional information such as absolute indices or relative distance

to vector representation. The vector representation can either be carefully and manually

designed or joint trained with the other part of model. For example, in the Transformer

14

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

paper, they use periodic functions like sin and cos with several frequencies depending on

the index [46]. On the other hand, in the BERT model, the position embedding is a set of

vectors joint trained with the model, hence the allowing context length being fixed [12].

2.3 Transformer for Graph Data

Figure 2.4: Illustration of Graph Transformer from Dwivedi et al. [15]. Comparing to
Figure 2.1 and Figure 2.3, the architecture is almost the same as Transformer for sequence.

In the previous section, we mentioned that the attention mechanism is actually order-

agnostic without the position embedding. This makes it suitable for operating on set in-

put. We can even view the input features as nodes and the attention weights as adjacency

matrix. Then the attention become an aggregation of node features depending on the ad-

jacency matrix, similar to the graph convolution [28]. Therefore, Transformer model can

also be regarded as graph neural network (GNN). For instance, the Graph Transformer

paper [15] shows how to adapt Transformer model to graph with minimummodifications,

15

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

as illustrated in Figure 2.4.

Multiple attempts have been made to apply Transformer model on graph data [15,

26, 36, 50]. Despite the resemblance of Transformer and GNN, non-Transformer models

remain dominant in graph related tasks [16]. Correspondingly, some of the works focus

on enhancing Transformer with some GNN module [36]. On the other hand, some works

have been made to prove that the Transformer itself can be as powerful as other GNN. In

the paper of Graphormer [50], some graph-specific enhancements of attention, as showed

in Figure 2.5, are proposed. They show that some of GNN models can be mathematically

expressed in Graphormer.

Figure 2.5: Illustraction of Graphormer from Ying et al. [50]. The structured information
is further encoded and applied to the attention weight.

TokenGT is another work focus on proving the ability of Transformer upon graph

data [26]. Instead of modifying Transformer or attention operation, TokenGT convert

graph into tokens, as showed in Figure 2.6. This approach share some similarities with

the position embedding. As mentioned in Section 2.2.2, the idea of position embedding is

to indicate the position of the token in the sequence and affect the calculation of attention

16

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

weights. Similarly, TokenGT design some identifiers that can indicate the position in the

graph and affect the attention. With this approach, we can use the same Transformermodel

for sequence without graph-specific modifications.

Figure 2.6: Illustration of TokenGT from Kim et al.[26].

On the other hand, the development of Transformer for text graph takes additional

directions [49]. In contrast to explicitly using the graph structure in the model, the graph

linearization based methods, as introduced in Section 1.2, also gain significant popularity

due to the imbalanced development of Transformer for sequence and for graph.

2.4 ImproveModel Performance: Pre-Training andFine-

Tuning

Pre-Training and Fine-Tuning is a two-stage training strategy arose in recent years

[12, 33, 40, 41]. It shows a significant improvement of performance over a large variety

of NLP tasks. The idea behind is a combination of transfer learning and self-supervised

learning. For example, the BERT model is pre-trained on a cloze-like objective that learn

the dependencies among words, and then fine-tuned for the downstream tasks such as

17

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

question answering, as illustrated in Figure 2.7 [12].

Figure 2.7: Illustraction of BERT training from Devlin et al.[12].

In the pre-training stage, the model is trained on a large amount of unlabeled data

with a task-agnostic training objective. This help the model learn general features of the

data. The first pre-trained Transformer model, named GPT, was introduced by Radford et

al. [40], which is pre-trained on generating sentence based on some prefixes. Although

the pre-training can be done with other objectives, the self-supervised scenario suit NLP

well due to the amount of language data on the internet. Then in the fine-tuning stage,

the model is further trained on the labeled dataset with task-specific objective. This stage

allows the model to adapt its learned features to the specific task. Since the model has

already learned generic language features in the pre-training stage, it can achieve better

performance on the specific task with less training data.

2.5 Evaluate Generation Result

Evaluating the quality of generated texts and text graphs is a critical part of the model

development process. It allows us to quantify the performance of our models and to com-

18

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

pare different models or different versions of the same model.

2.5.1 Metrics for Text Generation

Metrics for text generation are basically a functions that compare the generated text

(or candidate) to reference text(s). There are several metrics designed to evaluate the qual-

ity of generated text and each measures different properties [8]. Text generation models

are often evaluated using multiple metrics so that we can show how “similar” is the can-

didate to reference text. Here are the metrics for text generation we used in this thesis:

1. BLEU (BiLingual Evaluation Understudy) [39]: BLEU score is a widely used

metric that compares n-grams of the generated text to those of the reference text. In

general, the value is the number of n-grams from the generated text appearing in the

reference text dividing by the total number of n-grams from generated text. It can

be viewed as a ratio of overlapping text between candidate and reference text.

2. METEOR (Metric for Evaluation of Translation with Explicit ORdering) [5]:

Comparing to BLEU, METEOR is a more advanced evaluation. Instead of simply

counting the appearance of n-grams, it match the words, synonyms, word stems,

and other linguistic phenomena between candidate and reference text to form an

alignment. Then the aligned texts is used to calculate a weighted F-score, which is

the major part of METEOR.

3. BERTScore [53]: BERTScore is a relatively new metric that leverages the BERT

language model to embed the generated and reference texts. Unlike BLEU and

METEOR that rely primarily on surface-level string matching, BERTScore com-

putes token-level similarity based on the contextualized word embeddings of BERT

19

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

model. Therefore, we could get a more accurate matching based on the semantic

similarity. Then we use the matches to calculate the F1-score.

2.5.2 Metrics for Text Graph Generation

For text graph generation, it need to compare the generated text graph to the reference

text graph. In this thesis, we use the metric from WebNLG2020 [7], which is a triple F1-

score. To evaluate the generated text graph, the graph is first converted into a set of triple.

Then the generated triples and reference triples is aligned with a triple matching criterion.

There are three possible triple matching criteria proposed:

1. Strict matching: A generated triple need to be exactly the same as a reference triple

to be a match.

2. Exact matching: A slightly loosen criterion of strict matching. It treat the triple as

a set of three element, so it only require the text to be the same.

3. Partial matching: The loosest matching criterion. Beside treating triple as set, it

also allow the text to be partially equal.

By the three matching criteria, we get three triple F1-score for evaluating the gener-

ated text graph.

20

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

Chapter 3 Method

In this chapter, we elucidate the foundation and design of our approach for structured

data representation and generation. An overview of our method is given in Section 3.1.

Then in Section 3.2, we detailed explain the proposed method. Last, we introduce the

training strategy corresponding to our model in Section 3.3.

3.1 Model Overview

As mentioned in Section 1.3, the goal of this thesis is to develop a new method suit-

able for representing and generating both texts and text graphs without redundant com-

putation. Our method arise from the TokenGT approach, illustrated in Figure 2.6 [26].

TokenGT, introduced in Section 2.3, converts graph into tokens containing labels and

graph-level identifiers. Since the main model used in TokenGT is primarily the unmodi-

fied Transformer encoder, it shows a possibility of multi-modality Transformer trained on

both graph data and text data [26]. However, the idea does not directly fit in our scenario

of text graph for two reasons. First, a single graph element (node or edge) in TokenGT

need to be representable by a single token. On the contrary, it would require multiple

tokens for an element of text graph because the label is a multi-token text. Second, To-

kenGT only focus on representing the graph, while we are interested in graph generation

21

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

Transformer Encoder Transformer Decoder

...

... ...

id

Structure Predictor

x N x N

unmodified Transformer encoder-decoder

auto-regressive
token decoding

...

structure encode / decode

structure embed

input projection

structure encode / decode

structure embed

input projection

Figure 3.1: Overview of the proposed structure token approach. The graph on the left is
the input text graph. The model take the input text graph and autoregressively decode a
new structure token to form the generated subgraph (the graph on the right). The detail of
the structure predictor is expanded in Section 3.2.5.

22

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

as well. Based on the notion and challenge, we develop a new method that address the

desired properties.

Our method employs a concept we called “Structure Token” which losslessly encode

the text graph. The overview of our model is illustrated in Figure 3.1. The idea behind

is straightforward. Normal text generation model autoregressively generate a new token.

The generated tokens are combined into a subsentence that would potentially be fed back to

the model for another generation step. Likewise, our model generate a new structure token

autoregressively and the generated tokens form a subgraph, as illustrated in Figure 3.2. A

structure token is a small piece of a text graph containing a text token of a graph element

and a few identifiers for the precise location of the text token in the graph. We encode

the text graph into structure tokens and then embed the tokens into vector representations.

Meanwhile, we treat text as a special graph without any edge, so text can also be encoded

into structure tokens. Our model incorporates an unmodified Transformer Seq2Seq model

and a structure predictor that take the vector representations and predicting a new structure

token. Once the generation stop, we can decode the sequence of structure tokens into the

target text graph.

Since our method convert text graph into sequence of structure tokens, our method

can be viewed as graph linearization approach. However, previous linearization method

mainly focus on aligning graph to text. That is to say, the graph or subgraph is regarded as a

special sentence. Even though the special sentence can be converted back to the graph, the

model need to learn the implicit “graph grammar” of the special sentence for handling the

structure information, which introduce an extra complexity to the model. On the contrary,

our method aligns text to graph. The structure information is explicitly encoded in the

tokens. Moreover, our method leverages the design of TokenGT, which provide a better

23

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

...

Transformer Encoder

Akron, Ohio is located

encode & embed

input projection

Iteration 0

Decoder＆ Predictor
[graph]

Iteration 1

country[graph]

country

{ }
Iteration 2

{ }[graph] country

Decoder＆ Predictor Akron

Akron

Iteration 3

{ }Akron

Decoder＆ Predictor

[graph] country

Ohio

Ohio

... Iteration 4

{ } encode & embed

encode & embed

encode & embed

Figure 3.2: Example of autoregressive generation with our structure tokens using the same
text-to-graph generation example as Figure 1.1. “[graph]” is a domain token explained in
Section 3.2.2.

theoretical foundation for learning graph features [26].

3.2 The Core Design: Representing Graph via Structure

Token

In this section, we present the design of our method. We rigorously define the struc-

ture token representation of text graph in Section 3.2.1 and Section 3.2.2. Based on the

definition, we describe the embedding method for structure token in Section 3.2.3. Then

the generation method is presented in Section 3.2.4 and Section 3.2.5. Lastly, we show

our method is more efficient than graph linearization in Section 3.2.6.

24

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

3.2.1 Problem Setup

To begin with, we elucidate some of the terminologies and setups we used in this

thesis. When generating texts, the model perform the prediction on a fixed set of pos-

sible text tokens. The text token is a small piece of text that constitute the text label,

while the text label is a sequence of text tokens. For example, words or characters could

be the text tokens that constitute a sentence, which could be the text label. We pair the

text tokens and their positions in a text label so that we can express the text label as a

set instead of a sequence. As an instance, the text label “I like bird” can be express

as {(“I”, 1), (“like”, 2), (“bird”, 3)} where “bird” is a text token and 3 is the position.

The text graph is a structure containing nodes and edges. The nodes and edges con-

tain text labels, as illustrated in Figure 3.3. We define an arc as a triple of head node,

edge, and tail node. Then the text graph can be defined as a pair of node set and arc

set. In order to distinguish between nodes (or edges) with same text label, we assign

each nodes (or edges) with an unique id. As a consequence, we define a node (or edge)

as a pair of text label and its unique id. Consider the text graph in Figure 3.3 as an

example. There are five text labels: s1 = {(“Akron”, 1), (“,”, 2), (“Ohio”, 3)}, s2 =

{(“country”, 1), }, s3 = {(“United”, 1), (“States”, 2)}, s4 = {(“president”, 1), (“of”, 2)},

s5 = {(“Joe”, 1), (“Biden”, 2)}. The node set of the text graphwould be {(s1, 1), (s3, 2), (s5, 3)},

and the arc set become {((s1, 1), (s2, 4), (s3, 2)), ((s5, 3), (s4, 5), (s3, 2))}.

Having the idea in mind, we provide the mathematical setup of our method and the

formal definition of text and text graph. Let T be the set of all possible text tokens.

As mentioned above, a text label is defined as a set of pairs containing the text token

and positions. We generalize this definition by replacing the position with a contiguous

25

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

Akron, Ohio

United States

Joe Biden

country

preside
nt of

Figure 3.3: Example of a text graph.

sequence of unique id. Given an infinite unique id sequence:

I = (idi)∞i=0 where idi ∈ Z+ ∧ idi ̸= idj if i ̸= j (3.1)

Each idi is a positive integer. We also define id(i) = idi for simplicity. By picking a

corresponding id sequence, we can use any positive integer sequence as the positions.

Then a text label S of length l is a set of token-id pairs defined as:

S = {(ti, idj+i) | 1 ≤ i ≤ l, ti ∈ T } ⊆ T × Z+ (3.2)

We can conditionally specify the start point j ∈ N with Sj . Let S be the set of all pos-

sible text labels and Sj for specific start point. With the id sequence I, the positions

(p)lp=1 can be replaced with (idj+k)
l
k=1. Then we can union text labels without miss-

ing information by picking non-overlapped id sequences, which is a desired property

for the attention operation. For example, the text labels of Figure 3.3 mentioned above

is {s1, s2, s3, s4, s5} ⊂ S0. If we directly union s3 and s5, we cannot know whether

(“United”, 1) is followed by (“Biden”, 2) or (“States”, 2).

A text graph G = (N ,A) is composed of a node set N with q nodes and an arc set

A with r arcs. The node setN is a set of node labels paired with unique ids of the nodes,

26

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

defined as:

N = {(Ni, ni) | 1 ≤ i ≤ q, ni ∈ Z+, Ni ∈ S} ⊆ S × Z+ (3.3)

where Ni is the node label and ni is the corresponding node id. Similarly, a edge set E is

a set of edge labels paired with unique ids, defined as:

E = {(Ei, ei) | 1 ≤ i ≤ r, ei ∈ Z+, Ei ∈ S} ⊆ S × Z+ (3.4)

where Ei is the edge label and ei is the edge id. Notably, the id used in N and E are

disjoint. For example, the node set of Figure 3.3 is {(s1, 1), (s3, 2), (s5, 3)} and the edge

set is {(s2, 4), (s4, 5)}.

Then the arc set is defined as:

A = {(Nh
i ,Ei,Nt

i) | 1 ≤ i ≤ r,Nh
i ,Nt

i ∈ N ,Ei ∈ E} ⊆ N × E ×N (3.5)

where Ei is the edge and Nh
i , Nt

i is the head node and tail node, respectively. For ex-

ample, the arc set of Figure 3.3 is {((s1, 1), (s2, 4), (s3, 2)), ((s5, 3), (s4, 5), (s3, 2))} and

((s5, 3), (s4, 5), (s3, 2)) is an arc containing the head node (s5, 3), the edge (s4, 5), and the

tail node (s3, 2). With these definitions, we will show how the conversion is done in the

following sections.

3.2.2 Convert Graph/Text to Structure Token

The proposed structure token is a data representation that can losslessly encode all

data in a text graph as a sequence of tokens. As defined above, a text graph is a pair of

two sets. In order to convert text graph to structure tokens, we express the two sets of

27

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

different components into one unified structure of graph elements. Each graph element

will be represented by multiple structure tokens. A structure token consist of seven parts:

1. Label: The text token ti of a graph element.

2. Type: A binary indicator specifying whether this graph element is a node or an

edge.

3. Token ID: An unique id for this token.

4. Previous ID: The unique id for the previous token. The correct order of the text

tokens can be reconstruct using the previous id.

5. Segment ID: An unique id for the graph element.

6. Head ID: If this token is part of an edge, head id is the segment id of the head node.

Otherwise, the head id is the segment id of itself.

7. Tail ID: If this token is part of an edge, tail id is the segment id of the tail node.

Otherwise, the tail id is the segment id of itself.

[T][T][T][N][Domain]

Text Graph

Label

Token ID

Segment ID

Head ID

Tail ID

Previous ID

21 10 10

21 2 10

21 6 10

11 2 3 4 1 6 7 101 128

21 3 4 5 6 7 8 1110 139

president of

Joe [E] president ofBiden [N]

Joe Biden

United States

United States

Type 1 1 0 1

11

12 ...

...

Figure 3.4: Example of structure token. Each column is a structure token.

28

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

With these information, we are able to differentiate between structure tokens if they

are from different part of the graph. A real example of text graph and corresponding

structure tokens can be found in Figure 3.4. The idea of type, head id, and tail id are

inherited from TokenGT, which use identifiers to indicate the connection [26]. We modify

their definition and introduce extra identifiers for our text components. The segment id,

head id, and tail id are graph-level identifiers. For tokens of a specific graph element, the

graph-level identifiers of each token will be the same. On the other hand, the token id

and previous id are text-level identifier. The text order is determined by the token id and

previous id for reconstructing the text label.

Furthermore, We add an extra “domain token” to the structure tokens of a text graph

to indicate the domain of the graph, like the special language token mentioned in Sec-

tion 2.1.1 [25, 33]. With the domain, we can specify what kind of data the text graph is

holding. For example, since text is treated as a text graph without any edge, we use a

“text” domain token indicating that this text graph represent a text. Besides, we use the

domain token as the first token of every text label, so the first previous id of all text labels

are point to the domain token.

With the setup in mind, the formal definition of the structure token representation

is defined as a set of septuples (tuple with 7 elements). Given a text graph G and its

29

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

components:

G = (N ,A)

Ni = (Ni, ni) ∈ N , 1 ≤ i ≤ |N |

Aj = ((Nh
j , n

h
j), (Ej, ej), (N

t
j , n

t
j)) ∈ A, 1 ≤ j ≤ |A|

Ej ∈ E = {(Ej, ej) | 1 ≤ j ≤ |A|}

lNi = |Ni|, lEj = |Ej|

(3.6)

where lNi , lEj are the length of the text labels. We define two sequences:

LN = (LN
k)

|N |
k=1 where LN

k =


0, if k = 1

lNk−1 + LN
k−1, otherwise.

LE = (LE
k)

|A|
k=1 where LE

k =


∑|N |

k=1 lNk , if k = 1

lEk−1 + LE
k−1, otherwise.

(3.7)

Without loss of generality, we assign ni = id(LN
i + 1), ej = id(LE

j + 1) and specify the

start point of each text label such that Ni ∈ SLN
i , Ej ∈ SLE

j . By doing so, we can get the

node (or edge) id from the positional ids of its text label. For each node Ni, we define the

corresponding structure token representation XN
i as:

XN
i = {(tk, 1, uidk, uidk−1, ni, ni, ni) | 1 ≤ k ≤ lNi , (tk, uidk) ∈ Ni, uid0 = id0} (3.8)

The septuple (tk, 1, uidk, uidk−1, ni, ni, ni) contains the label tk, the type 1, the token id

uidk, the previous id uidk−1, the segment id ni, the head id ni, and the tail id ni. For

example, (“States”, 1, 12, 11, 10, 10, 10) is a structure token of the node in Figure 3.4. On

30

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

the other hand, for each edge Ej , we define the structure token representation XE
j as:

XE
j = {(tk, 0, uidk, uidk−1, ej, n

h
j , n

t
j) | 1 ≤ k ≤ lEj , (tk, uidk) ∈ Ej, uid0 = id0} (3.9)

The septuple (tk, 0, uidk, uidk−1, ej, n
h
j , n

t
j) contains label tk, the type 0, the token id uidk,

the previous id uidk−1, the segment id ej , the head id nh
j , and the tail id nt

j . For example,

(“of”, 0, 8, 7, 6, 2, 10) is a structure token of the edge in Figure 3.4. Then the corresponding

structure token representation G ′ of the text graph G is defined as:

G ′ =

|N |∪
k=1

XN
k ∪

|A|∪
k=1

XE
k ∪XD

⊆ T × {0, 1} × Z+ × Z+ × Z+ × Z+ × Z+

(3.10)

where tD ∈ T , XD = {(tD, 1, id0, id0, id0, id0, id0)} is the domain token. Each septuple

X ∈ G ′ is a structure token containing the label, type, token id, previous id, segment id,

head id, and tail id.

With this definition, we can represent every possible token id assignment by specify-

ing the unique id sequence I.For instance, Figure 3.4 use a id sequence of (k)∞k=1. On the

other hand, since the graph element can be randomly permuted, every possible ordering

is also representable with our set G ′ by picking the corresponding unique id sequence.

3.2.3 Convert Structure Token to Vector Representation

Once the input data is represented as structure tokens, these tokens are then trans-

formed into fixed-size high-dimensional vector representations for feeding to the model.

Since the structure token contain multiple parts, we follow the simple but commonmethod

that convert each of the part into vector and concatenate them together to form a larger

31

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

vector. Then the vectorized result will be fed to a trainable projection layer for getting the

token embedding, as illustrated in Figure 3.5. For the label and type, we simply use the

one-hot encoding to convert them to vectors. We denote the one-hot encoding function as

OneHotn : A → En where A is a set of n elements and En is the standard basis of Rn.

On the other hand, the ids need to be handled differently.

Type

Label

Token ID

Segment ID

Head ID

Tail ID

Previous ID

)Orthn(10

)OneHot2(0

)Orthn(7

)Orthn(2

)Orthn(6

)Orthn(8 +

concat

Affine
&

Norm

structure
embedding

OneHot|T |()of

projection
layer

Figure 3.5: Our method for converting structure token to embedding. The function argu-
ment is the ”of” token from Figure 3.4.

In order to preserve the graph structure in the tokens with the Transformer model,

each id need to be converted into orthonormal vectors as stated in TokenGT paper [26].

Two possible methods for orthonormal vectors are proposed in TokenGT: the eigendecom-

position of graph Laplacian matrix or QR decomposition of random Gaussian matrix [26].

However, with eigendecomposition of graph Laplacian matrix, the dimensionality of the

generated vectors varied depending on the number of nodes. Although the QR decompo-

sition of random Gaussian matrix can be used to generate fixed-size orthonormal vectors,

the dimensionality is proportional to the size of the matrix. To overcome these issues, we

loose the requirement of orthonormality. We use a set of orthonormal-like vectors that

the dot product of every two vectors is close to zero or less than some thresholds. To get

this kind of orthonormal-like vectors, we modify and normalize the sinusoidal position

encoding by Vaswani et al. with different frequencies [46].

32

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

In the original Transformer paper by Vaswani et al. [46], the sinusoidal position

encoding PE at position i is defined as:

PE(i) =
d/2

∥
k=1

pe(i, k) ∈ Rd

pe(i, k) = sin
(

i

10000k/d

)
∥ cos

(
i

10000k/d

)
∈ R2

(3.11)

where d is a predefined dimensionality and ∥ denote the vector concatenation. We gener-

alize the definition of PE with a frequency function f :

PE∗{f}(i) =
d/2

∥
k=1

pe∗{f}(i, k) ∈ Rd

pe∗{f}(i, k) = sin(i ∗ f(k))∥ cos(i ∗ f(k)) ∈ R2

(3.12)

Then by taking f ′(k) = 10000−k/d, the original PE can be defined with PE = PE∗{f ′}.

We use this generalized position encoding to define a transform function of the ids for our

orthonormal-like vectors. The transform function Orth : Z+ → Rd is defined as:

Orthd = norm2 ◦ PE∗{− log(k)} (3.13)

where norm2 is the L2 normalization and ◦ denote the function composition. We find that

by picking the frequency function − log(k), the generated vectors satisfied the desired

properties. In Figure 3.6, we generate 1024 vectors by applying Orth on 1 ≤ i ≤ 1024

and compute the cosine similarity of every possible pair. We can see that the similarity

values are mostly close to zero. With this transform function, we are able to convert the

ids into vectors and preserve the graph-level features.

Although the design works with graph-level identifiers, it does not work directly

with the text-level identifiers. As mentioned in Section 2.2.2, we want the tokens from

33

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

nearby positions to have higher attention weights. As a result, instead of concatenate

the orthonormal-like vectors, we add the vectors of token id and previous id together, as

illustrated in Figure 3.5. By adding the vectors, the dot product value of token a and b

become:

(Orth(tida) +Orth(pida)) · (Orth(tidb) +Orth(pidb))

= Orth(tida) ·Orth(tidb) +Orth(tida) ·Orth(pidb) +Orth(pida) ·Orth(tidb)

+Orth(pida) ·Orth(pidb)

= Orth(tida) ·Orth(pidb) +Orth(pida) ·Orth(tidb) + ε

(3.14)

where tid and pid is the token id and previous id, respectively. The value will only be

meaningful if one token is the previous token of the other, which satisfied the desired

properties of text-level position embedding.

With these designs, we define our structure token vectorize function V ec as:

V ec(X) = OneHot|T |(proj1(X)) ∥ OneHot2(proj2(X))

∥ (Orthn(proj3(X)) + Orthnproj4(X))) ∥ Orthn(proj5(X))

∥ Orthn(proj6(X)) ∥ Orthn(proj7(X)) ∈ R4n+|T |+2

(3.15)

where proji(X) denote the i-th element of the septuple X . The OneHotk is a function

convert the input to a one-hot vector with k dimensions and Orthn convert the input to a

n-dimensional orthonormal-like vector. The vectorized result will be fed into a trainable

projection layerEmb : R4n+|T |+2 → Rd to get the structure embedding with d dimensions.

34

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

(a) Heatmap of cos-similarity compute from Orth(1) to Orth(1024)

(b) Histogram of cos-similarities compute on PE∗ with different frequency functions.

Figure 3.6: Properties of our orthonormal-like vector. A dimensionality of 512 is used in
this figure.

35

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

3.2.4 Text Generation through Structure Token

After converting the structure tokens into embeddings, those embeddings are fed

into the unmodified Transformer Seq2Seq model. Conceptually, our model generate a

structure token at each step which contain seven objects. However, we do not really need

to generate seven objects at every steps. The token id is unique for every token and we can

randomly pick any id sequence I beforehand. Notably, the structure token representation

is a set, while the autoregressive generationmanner makes the generated tokens resemble a

sequence. Although the design of structure tokens enable the possibility of non-monotonic

order of text generation, we slightly restrict the generation order of the structure tokens

from the same graph element to be ordered and contiguous. With this restriction, we do

not need to predict the token id and previous id. We can use the same generation scheme

of other text generation Transformer model that simply generate the next text token until

we are done with this element. Meanwhile, since the graph-level identifiers are the same

within a graph element, we do not need to predict the graph-level identifiers during the

process of text generation for this graph element.

The generation of a text can be further simplified. As we mentioned above, a text

data is being treated as a special text graph with single node without any arcs. There is no

need to predict the graph-level identifiers since those ids are always just the token id of

the first text token. Thus, the generation process of text with our structure token design is

actually the same as other Transformer based text generation models.

36

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

3.2.5 Graph Generation through Structure Token

For graph generation, the samemethodology applies. We use a structure predictor for

predicting the graph structure. As mentioned in Section 3.2.4, the graph-level identifiers

are the same within a graph element. The prediction of graph-level identifiers can be done

only one time per graph element. Moreover, the type and segment id can also be omitted

because we can tell the values once we get the head id and tail id. As a result, our structure

predictor only need to predict the head id and tail id.

Causal Transformer Layer

...

hidden_state1:k−1

UniqueID1:k

SegmentID2:k

+
...

Tail ProjectionHead Projection

...

logits

multiply softmax

Figure 3.7: The Structure Predictor for predicting the graph-level identifiers. The
hidden_state is the output of the Transformer Seq2Seq model. SegmentID is the cor-
responding vector representations of segment ids. UniqueID is the vector representation
of all possible token ids.

For predicting the graph-level identifiers, we employ a single causal Transformer

layer (a layer of the Transformer decoder), as illustated in Figure 3.7. The causal Trans-

former layer take the output of the Transformer Seq2Seq model plus the transformed seg-

37

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

ment id to produce a hidden vector. The hidden vector will be fed into two projections

layer to get a prediction of the head id and tail id. To get the id, we multiply the final

head hidden vector and tail hidden vector with a list of our orthonormal-like vectors, and

perform softmax on the multiplication result to get the logits. Then we obtain the corre-

sponding id predictions by calling argmax on the logits. With this setup, we can apply

the same teacher forcing technique used in the original Transformer paper by Vaswani et

al.[46], so the training process is also parallelized.

3.2.6 Efficiency of Structure Token

As stated in Section 3.1, we hypothesize the proposed method is more efficient than

the graph linearization approach because we can avoid redundant computations. Consider

a text graph G with the same setup as Equation 3.6. With our structure token approach,

the number of tokens the model need to process is:

c1 =

|A|∑
k=1

|Ek|+
|N |∑
k=1

|Nk| (3.16)

On the other hand, the same number with graph linearization approach will be:

c2 =

|A|∑
k=1

(|Nh
k |+ |Ek|+ |N t

k|)

=

|A|∑
k=1

|Ek|+
|A|∑
k=1

(|Nh
k |+ |N t

k|)

(3.17)

We define C1 = c21, C2 = c22. Since the model is based on the Transformer model and

attention, the complexity is proportional to the square of the number of tokens C1 and

C2. We can observe that the number c2 is generally larger than or equal to c1 because a

node can be counted more than twice if it appears in two or more arcs. For example, if a

38

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

node Nc = Nh
a = Nh

b , which means the node Nc is the head node in two arcs Aa and Ab,

then
∑|A|

k=1(|Nh
k | + |N t

k|) ≥
∑|N |

k=1 |Nk| hence c2 ≥ c1. To validate this observation, we

measure the fraction of C1 and C2 in Table 4.4.

3.3 Transformer Model Training

Beside the design of structure token and the generation method, we also introduce a

pre-training method for our model. We call our pre-trained model TextGraphBART based

on the mBART pre-trained model for multilingual text generation [33]. The pre-training

method contain two types of training objectives, as illustrated in Figure 3.8. The first one is

the self-supervised objective that force the model to reconstruct the incomplete input text

graph. This objective allow the model to learn the “rule” of the language or the structure.

The second one is the translation-like objective that force the model to decode the graph in

another domain. The model can learn to depend on the domain token to generate different

kind of text graph. With these objectives, we can utilize many different datasets to improve

our model. Meanwhile, our pre-training method provide strong training signal so that the

model can reach some level of performance with less training data.

39

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

masked text[text]

Transformer encoder

[graph]

[text]

[graph]

text

subgraph

T2T

G2T

T2G

G2G

Transformer encoder

Transformer
Decoder

Transformer
Decoder

graph

Figure 3.8: Illustration of our pre-training method. T2T, G2T, T2G, G2G stands for text-
to-text, graph-to-text, text-to-graph, and graph-to-graph, respectively.

40

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

Chapter 4 Experiments

This chapter aims to explore the practical implementation and evaluate the effective-

ness of our method. The detail of the experiment setup such as model parameters and

chosen datasets are presented in Section 4.1. We evaluate the performance of our method

on graph-to-text and text-to-graph generation tasks in Section 4.2 and Section 4.3, respec-

tively. Lastly, an ablation study of our structure embedding is presented in Section 4.4.

4.1 Experiment Setup

In this section, we describe the setup of our experiments. The general training setup

is presented in Section 4.1.1, followed by the model hyperparameters in Section 4.1.2.

Then we introduce the dataset for our experiments and the data processing method in

Section 4.1.3 and Section 4.1.4, respectively.

4.1.1 Training Setup

Our model is trained in two phases: the pre-training and fine-tuning. We initialize

our model from scratch and perform the pre-training method mentioned in Section 3.3.

For pre-training, We use the RAdam optimizer with a learning rate of 0.0001 [32]. The

model is updated with an effective batch size of 256 and being trained for 5 epochs on

41

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

a single A100 40GB GPU. The pre-trained model is called TextGraphBART and will be

used for all the fine-tuning experiments. For fine-tuning, the model is trained on a single

RTX 3090 24GB GPU. The setup of fine-tuning depends on the task and dataset and will

be described in the relevant sections.

4.1.2 Model Parameters

We use an overall hidden size of 512 for our model. The unmodified Transformer

encoder and decoder both have 6 layers. Each attention has 16 heads, and we use a hid-

den size of 32 for self attentions and 64 for cross attentions. The feed-forward layer in

Transformer has an input and output hidden size of 512, and the intermediate hidden size

is 2048. We use these numbers for the structure predictor as well. For the activation func-

tions, we use the GELU activation function [20] for Transformers and hyperbolic tangent

activation function for the projection layers of structure predictor. During pre-training, we

apply the dropout on the attention weights and the residual connections with a dropout rate

of 0.1 [44]. The model weights are randomly initialized with a mean of 0 and a standard

deviation of 0.02.

4.1.3 Datasets

We use four paired datasets for our experiments, as presented in Table 4.1. The paired

datasets contain both text and text graph. However, most of them are created by distant

supervision [37]. That is to say, they are generated by aligning text with existing database.

With distant supervision, we can get a large but noisy paired training dataset. We use this

kind of data for our pre-training. Specifically, we use TEKGEN [1] and GenWiki [24] for

42

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

pre-training, and we fine-tune the pre-trained model on EventNarrative [11] andWebNLG

(2020) [7] for evaluating our model on graph-to-text and text-to-graph generation, respec-

tively.

Dataset Size (# samples / disk space) Usage Creation
TEKGEN [1] 6.3 M 1.5 GB pre-training distant supervision
GenWiki [24] 750 K 1.1 GB pre-training distant supervision

EventNarrative [11] 180 K 135 MB fine-tune distant supervision
WebNLG (2020) [7] 13 K 16 MB fine-tune crowd source

Table 4.1: Datasets.

TEKGEN TEKGEN is a large paired dataset built with distant supervision [1]. It align

a subset of theWikipedia text withWikidata knowledge database [47]. We use the training

set of TEKGEN, which contain 6.3 million samples, for our pre-training. Some samples

from the TEKGEN training set can be found in Table 4.2 and Table 4.3.

GenWiki GenWiki is another large paired dataset built on Wikipedia text [24]. The

text graphs are collected from DBpedia [3]. Despite being large and paired, it is possible

that some node labels in text graph do not appear in the text. We use the training set

of GenWiki, which contain 750K samples, for our pre-training. Some samples from the

GenWiki training set can be found in Table 4.2 and Table 4.3.

EventNarrative EventNarrative is an event-centric dataset that contains text graph from

the EventKG [18] and Wikidata [47]. The text is also a subset of Wikipedia text. We use

EventNarrative to evaluate our method on graph-to-text generation task, because the text

graph is more aligned with the text in EventNarrative than TEKGEN and GenWiki. In

other words, the node labels are more likely to appear in the corresponding text. We

fine-tune our pre-trained model on the training set of EventNarrative which contain 180K

43

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

Dataset Text

TEKGEN
“ The framing story is set in the 21st century and follows Desmond Miles
as Assassin ’s Creed II relives the genetic memories of his ancestor Ezio
Auditore da Firenze.”
“ The series featured appearances from famous pioneering space scientists
and explorers, and was narrated by Samuel West in the original 1999 edi-
tion, and Mark Halliley in the 2004 remastered edition. ”
“Mikhail Alekseyevich Belyaev (Russian: ; December 23, 1863Â - 1918)
was a Russian general of the Infantry, statesman, Chief of Staff of the
Imperial Russian Army from August 1, 1914 to August 10, 1916, and was
the last Minister of War of the Russian Empire from January 3, 1917 to
February 28, 1917. ”

GenWiki
“ The Roses Theatre is an arts centre located in the centre of Tewkesbury
, Gloucestershire , England . ”
“ This cabin , known as the“Warden＇s Camp＂was built in 1960 by
the chief pilot for the Maine Warden Service and is rented out along with
the six cabins at the main camp on the north shore . ”
“ With respect to the album title , Alder indicated that it was inspired ,
although accidentally , byMatheos ’ lyrics for the song “ AndYet ItMoves
” . ”

EventNarrative
“ This is a record of Jamaica national football team’s results at the Jamaica
at the FIFA World Cup. The Jamaica at the FIFA World Cup, sometimes
called the Football World Cup or the Soccer World Cup, but usually re-
ferred to simply as the World Cup, is an international association foot-
ball competition contested by the men’s national teams of the members
of Fédération Internationale de Football Association (FIFA), the sport’s
global governing body. Jamaica national football team has qualified for
the finals of the Jamaica at the FIFAWorld Cup once with it happening in
1998 after they finished third in the final round of CONCACAF qualify-
ing. Nine players have been fielded in all three of Jamaica national foot-
ball team’s Jamaica at the FIFA World Cup matches, making them record
World Cup players for their country: The two goals scored by Theodore
Whitmore during Jamaica national football team’s only World Cup win,
their 2-1 over Japan, make him Jamaica national football team’s record
scorer at World Cup tournaments. ”
“ The 1974 Mongolia Premier League was the eleventh recorded edition
of the Niislel League for association football, with the first tournament
taking place in 1955 and no tournament held in 1965. ”
“ The athletics at the 2012 Summer Olympics–women’s javelin throw
competition at the 2012 Summer Olympics in London, United Kingdom.
The event was held at the London Stadium on 07 August 2012–09 August
2012. ”

WebNLG (2020)
“ Aarhus Airport has a runway length of 2776.0. ”
“ Allen Forrest first starting performing hip hop music in 2005. ”
“ The School of Business and Social Sciences at the Aarhus University is
located in Aarhus , Denmark . It was established in 1928 and it has 16,000
students . Its dean is Thomas Pallesen . It is affiliated to the European
University Association in Brussels. ”

Table 4.2: Samples of text from each dataset. We show three sample per datasets. Corre-
sponding text graphs are shown in Table 4.3.

44

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

Dataset Graph as Triples

TEKGEN

(“Assassin ’s Creed II”, “character role: Desmond Miles”, “Nolan North”),
(“Assassin ’s Creed II”, “character role: Ezio Auditore da Firenze”,
“Roger Craig Smith”)
(“The Planets (1999 TV series)”, “publication date”, “01 January 1999”),
(“The Planets (1999 TV series)”, “narrator”, “Samuel West”)
(“Mikhail Belyaev”, “position held”, “minister of war”),
(“Mikhail Belyaev”, “allegiance”, “Russian Empire”),
(“Mikhail Belyaev”, “date of death”, “01 January 1918”),
(“Mikhail Belyaev”, “date of birth”, “23 December 1863”),
(“Mikhail Belyaev”, “country of citizenship”, “Russian Empire”)

GenWiki

(“Roses Theatre”, “location”, “Tewkesbury”),
(“Roses Theatre”, “location”, “England”),
(“Roses Theatre”, “foundingYear”, “1973”)
(“Bulldog Camps”, “isPartOf”, “Maine”),
(“Bulldog Camps”, “pushpinMap”, “Maine”),
(“Bulldog Camps”, “location”, “Maine”)
(“Darkness in a Different Light”, “rev”, “Blabbermouth”),
(“Darkness in a Different Light”, “rev”, “About.com”),
(“Darkness in a Different Light”, “title”, “O Chloroform”),
(“Darkness in a Different Light”, “rev”, “Loudwire”),
...

EventNarrative

(“Jamaica at the FIFA World Cup”, “sport”, “association football”),
(“Jamaica at the FIFA World Cup”, “subclass of”,
“Jamaica national football team”)
(“1974 Mongolia Premier League”, “sports season of league or competition”,
“Niislel League”),
(“1974 Mongolia Premier League”, “sport”, “association football”)
(“athletics at the 2012 Summer Olympics–women’s javelin throw”,
“start time”, “07 August 2012”),
(“athletics at the 2012 Summer Olympics–women’s javelin throw”,
“end time”, “09 August 2012”),
(“athletics at the 2012 Summer Olympics–women’s javelin throw”,
“point in time”, “2012”),
...

WebNLG (2020)
(“Aarhus Airport”, “runwayLength”, “2776.0”)
(“Allen Forrest”, “genre”, “Hip hop music”),
(“Allen Forrest”, “activeYearsStartYear”, “2005”)
(“School of Business and Social Sciences at the Aarhus University”,
“dean”, “Thomas Pallesen”),
(“School of Business and Social Sciences at the Aarhus University”,
“city”, “Aarhus”),
(“School of Business and Social Sciences at the Aarhus University”,
“numberOfStudents”, “16000”),
(“European University Association”, “headquarter”,
“Brussels”),
...

Table 4.3: Samples of text graph from each dataset. We show three sample per datasets.
The “...” denote that the graph is too large for displaying. Corresponding texts are shown
in Table 4.2.

45

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

samples and evaluate the model on the EventNarrative test set. Some samples from the

EventNarrative training set can be found in Table 4.2 and Table 4.3.

WebNLG (2020) WebNLG (2020) is crowd-sourced dataset crafted by human annota-

tors. The text graphs are collected from DBpedia [3], while the text are manually written

by the human annotators. As a result, the text and text graph in WebNLG are highly cor-

related, while the dataset size is the smallest. The dataset contain 16 categories in training

set and 19 categories (3 extra categories) in the test set. We use WebNLG (2020) to eval-

uate our method on text-to-graph generation task, because WebNLG is the only dataset

that the text and text graph contain the same amount of information. We fine-tune our

pre-trained model on the training set of WebNLG (2020) which contain 13K samples and

evaluate the model on WebNLG (2020) test set. Some samples from the WebNLG (2020)

training set can be found in Table 4.2 and Table 4.3.

4.1.4 Data Processing

Dataset # tokens in texts # tokens in graphs average C1/C2

TEKGEN [1] 218,476,541 98,978,382 0.784
GenWiki [24] 27,287,572 11,091,592 0.741

EventNarrative [11] 11,705,598 3,807,326 0.574
WebNLG (2020) [7] 398,576 300,632 0.652

Table 4.4: Statistics of the datasets. The average C1

C2
measures the efficiency of our method

comparing to graph linearization approach. Smaller number of C1

C2
means our method

would be more efficient on that dataset, as mentioned in Section 3.2.6.

For data processing, we use the same subword tokenizer as T5which use the Unigram

tokenization method [29, 41]. The tokenizer has a vocabulary of 32100 text tokens, which

contain 32000 subword text tokens and 100 reserved special tokens. We use the reserved

special tokens for our domain tokens. Each dataset is assigned with a corresponding do-

46

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

main token for the graph data, while all text data from different dataset share the same

text domain token. The samples in each dataset is truncated with a maximum length of

128 or 256 text tokens depending on the training stage. A random unique id sequence is

determined for each sample at every epoch. As mentioned in Section 3.2.6, our structure

token approach can result in less amount of tokens than graph linearization approach. We

use our tokenizer to process all the datasets and compute the ratios in Table 4.4. During

the pre-training, we randomly assign an unique id sequence with a maximum value of 512.

For the encoder input, we randomly drop 15% of graph elements or tokens depending on

the domain.

4.2 Effectiveness of StructureToken onGraph-to-TextGen-

eration

Model
Metric # Params BLEU METEOR BERTScore

T5-Base 220 M 12.80 22.77 89.59
T5-Large 770 M 34.31 26.84 93.02
BART-Base 140 M 31.38 26.68 93.12

GAP 153 M 35.08 27.50 93.38
TextGraphBART 75 M 33.06 27.17 94.23

Table 4.5: Performance ofGraph-to-Text on EventNarrative. Higher value is better, except
Params. We directly report the numbers from corresponding papers.

In this section, we show that our structure tokens capture sufficient graph-level fea-

tures for the decoder by comparing the text generation performance.

Setup To evaluate ourmethod on graph-to-text generation, we fine-tuned our TextGraph-

BART model on the EventNarrative dataset [11]. During fine-tuning, we used the Lion

optimizer with a learning rate of 0.00001 [9]. The model was updated with an effective

47

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

batch size of 128 and trained for 20 epochs. As for the metrics, we use the BLEU [39],

METEOR [5], and BERTScore [53] mentioned in Section 2.5.1 to evaluate the perfor-

mance.

Baseline We compared our model with T5 [41], BART [30], and GAP [10]. Both T5

and BART are Transformer Seq2Seq model pre-trained on text data and fine-tuned with

graph linearization [11], while GAP modify the encoder of Transformer Seq2Seq model

with graph-aware modules for extracting graph features [10]. It is noteworthy that all these

models use a similar Transformer decoder. The main difference among TextGraphBART

and these models is the way we represent and handle the text graph input.

Result The result is shown in Table 4.5. In comparison to T5 and BART, our struc-

ture token method achieve better score with less parameters than graph linearization ap-

proach. Meanwhile, our model is comparable with GAP without modifying the Trans-

former model. As a conclusion, our structure token representations enabled the Trans-

former model to capture better features from the text graph than the graph linearization

approach.

4.3 Effectiveness of StructureToken onText-to-GraphGen-

eration

In this section, we show that our generation method with structure tokens success-

fully generate text graph in autoregressive manner by comparing the graph generation

performance.

48

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

Model
Metric # Params F1 (Strict) F1 (Exact) F1 (Partial)

CycleGT N/A 0.309 0.342 0.360
BT5 770 M 0.675 0.682 0.713

Grapher (Query) 770+ M 0.289 0.395 0.325
Grapher (Text) 809 M 0.681 0.683 0.713

Grapher-small∗ (Text) 95 M 0.561 0.569 0.592
TextGraphBART 75 M 0.555 0.570 0.602

Table 4.6: Performance of Text-to-Graph on WebNLG (2020). Higher value is better,
except # Params. The Grapher-small∗ is trained by us with the officially released source
code of Grapher, otherwise we directly report the numbers from corresponding papers.
The # Params of CycleGT is not disclosed [7].

Setup To evaluate ourmethod on text-to-graph generation, we fine-tuned our TextGraph-

BART model on the WebNLG (2020) dataset [7]. During fine-tuning, we used the Adam

optimizer with a learning rate of 0.0001 [27]. The model was updated with an effective

batch size of 128 and trained for 100 epochs. As for the metrics, we use the official eval-

uation script of WebNLG (2020) mentioned in Section 2.5.2 to evaluate the performance.

Baseline We compare our model with CycleGT [7, 19], BT5 [2], and Grapher [35].

BT5 is just T5 pre-trained and fine-tuned with graph linearization. On the other hand,

both CycleGT and Grapher adopt the multi-stage approach. They use T5 for generating

nodes and use another model for generating the edges [7, 35]. The CycleGT is a well-

known multi-stage approach for text-to-graph generation using cycle training [19], while

Grapher perform supervised learning with a special loss function [35]. Grapher has two

variants: Grapher (Query) and Grapher (Text). Grapher (Text) use T5 to generate the

node labels as one long sequence. On the other hand, Grapher (Query) use T5 to generate

a sequence of node features and use another text generation model to generate the node

labels from the node features. Meanwhile, we use the officially released source code of

Grapher to train a Grapher-small (Text) which has a similar model size (95M) with our

model (75M). Both Grapher-small and our TextGraphBART are trained for 100 epochs

49

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

Category
#
Sam

ples(train
/test)

TextG
raphBA

RT
G
rapher-sm

all(Text)
F1

(Strict)
F1

(Exact)
F1

(Partial)
F1

(Strict)
F1

(Exact)
F1

(Partial)
Total

13211
2155

0.555
0.570

0.602
0.561

0.569
0.592

A
irport

1085
111

0.798
0.799

0.801
0.831

0.831
0.833

A
rtist

1222
129

0.636
0.650

0.666
0.696

0.709
0.727

A
stronaut

529
102

0.797
0.805

0.809
0.847

0.847
0.848

A
thlete

903
68

0.632
0.635

0.641
0.732

0.732
0.734

Building
972

53
0.811

0.812
0.817

0.889
0.889

0.890
CelestialBody

634
63

0.713
0.716

0.716
0.664

0.664
0.669

City
1110

104
0.565

0.580
0.588

0.387
0.390

0.395
Com

icsCharacter
285

35
0.781

0.781
0.787

0.917
0.917

0.919
Com

pany
351

93
0.878

0.878
0.880

0.919
0.919

0.919
Film

0
333

0.338
0.391

0.439
0.260

0.284
0.323

Food
1406

51
0.756

0.761
0.761

0.908
0.908

0.908
M
eanO

fTransportation
1132

65
0.623

0.628
0.647

0.585
0.587

0.590
M
onum

ent
263

53
0.848

0.848
0.848

0.915
0.915

0.916
M
usicalW

ork
0

355
0.244

0.257
0.354

0.163
0.174

0.247
Politician

1194
34

0.805
0.805

0.807
0.810

0.810
0.811

Scientist
0

302
0.499

0.510
0.538

0.483
0.490

0.516
SportsTeam

782
51

0.689
0.691

0.696
0.856

0.856
0.862

U
niversity

406
107

0.636
0.640

0.674
0.627

0.629
0.659

W
rittenW

ork
937

46
0.400

0.405
0.526

0.297
0.308

0.384
Table

4.7:
Perform

ance
ofourm

odelon
each

category
ofW

ebN
LG

(2020)testsetcom
paring

to
G
rapher-sm

all.
The

dotted
lines

denote
the

unseen
categories.

50

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

with the same learning rate and effective batch size.

Result The result is shown in Table 4.6. In comparison to CycleGT andGrapher (Query),

our simple generation method with structure tokens outperform models with special train-

ing methods. Although our model does not directly match the performance of the large

models like BT5 or Grapher (Text), our model is comparable with Grapher-small that

has similar model size. By comparing the performance among BT5, Grapher (Text), and

Grapher-small, we argue that the model size might have larger impact on the performance

of WebNLG (2020) test set. In conclusion, our structure token approach can achieve com-

parable performance on text-to-graph generation under similar model size without using

special training methods or loss functions.

Furthermore, we analyze the result by measuring the performance on each categories

of the WebNLG (2020) test set comparing to Grapher-small. The result is shown in Ta-

ble 4.7. Even though Grapher-small is based on the T5-small pre-trained model, which

is trained on an extremely large dataset of 750 GB: the Colossal Clean Crawled Corpus

(C4) [41], we can see that our model perform slightly better than Grapher-small on un-

seen categories (0 samples in training set). Some of the generation results are shown in

Table 4.8.

51

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

Category Input Text Generated Graph as Triples

Seen
Company “The location of Trane is

Swords , Dublin.”
(“Trane”, “location”, “Swords , Dublin”)

Food
“Bionico , a food found in
Mexico , is a dish served for
dessert.”

(“Bionico”, “course”, “Dessert”),
(“Bionico”, “country”, “Mexico”)

Airport

“The Adolfo Suarez Madrid -
Barajas airport is operated by
ENAIRE and is located in Al-
cobendas. Its runway name
is 14L/32R, and its length is
3,500. ENAIRE is in the city
of Madrid.”

(“Adolfo Suarez MadridBarajas Airport”,
“runwayLength”, “3500.0”),
(“Adolfo Suarez MadridBarajas Airport”,
“location”, “Alcobendas”),
(“Adolfo Suarez MadridBarajas Airport”,
“operatingOrganisation”, “ENAIRE”),
(“Adolfo Suarez MadridBarajas Airport”,
“country”, “Spain”),
(“Adolfo Suarez MadridBarajas Airport”,
“elevationAboveTheSeaLevel”, “610.0”)

Unseen
MusicalWork

“Turn Me On is a 35.1
minute long album produced
by Wharton Tiers that was
followed by the album enti-
tled Take it Off.”

(“Turn Me On”, “followed”, “Take It Off”),
(“Turn Me On”, “recordLabel”,
“Wharton Tiers”),
(“Turn Me On”, “numberOfPages”,
“35.1 (minute)”)

Scientist

“Nurhan Atasoy is a Turk-
ish national born in Turkey
. Turkey has its largest city
as Istanbul and its currency is
Turkish lira.”

(“Turkey”, “leader”, “Nurhan Atasoy”),
(“Turkey”, “largestCity”, “Istanbul”),
(“Turkey”, “birthPlace”, “Istanbul”),
(“Turkey”, “currency”, “Turkish lira”)

File

“Jamie Lawrence wrote mu-
sic for the 83 minute film ’
Death on a Factory Farm ’
whichwas produced by Sarah
Teale.”

(“Death on a Factory Farm”, “author”,
“Sarah Teale”),
(“Jamie Lawrence”, “musicFusionGenre”,
“Death on a Factory Farm”),
(“Death on a Factory Farm”, “mediaType”,
“83 minute”),
(“The Amazing Area (film)”,
“musicAuthor”, “Jamie Lawrence”)

Table 4.8: Examples of graph generation with TextGraphBART on WebNLG (2020) test
set. The graph is expressed as triples.

52

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

4.4 Ablation Study

F1 (Strict) F1 (Exact) F1 (Partial)
TextGraphBART 0.555 0.570 0.602
w/o segment id 0.547 (-0.008) 0.562 (-0.008) 0.595 (-0.04)
w/o type 0.544 (-0.011) 0.561 (-0.009) 0.594 (-0.008)
w/o head id & tail id 0.489 (-0.066) 0.507 (-0.063) 0.539 (-0.063)
w/o token id & previous id 0.365 (-0.190) 0.378 (-0.192) 0.404 (-0.198)

Table 4.9: Ablation results of our structure embedding on WebNLG (2020) test set. The
number in parenthesis denote the difference from TextGraphBART.

To investigate the performance contribution of the components of structure tokens,

we conducted the ablation study on our structure embedding by fine-tuning our model

with the removal of some parts of the embeddings. The model is trained on the WebNLG

(2020) with the same setup in Section 4.3. The results are shown in Table 4.9. In all

ablations, the model performance was attenuated as expected. First, the ablation of the

token id and previous id removes the text order information in the text labels hence the

degeneration of performance. Similarly, the head id and tail id provide the connectivities

of the graph. Removal of this embedding decrease the performance, indicating the im-

portance of the connectivities. On the other hand, the ablation of type and segment id are

not as detrimental as others because the type and segment id may be inferred from other

ids. Therefore, our model is still able to perform albeit less performant. In conclusion, the

ablation study showed that all of our structure embedding are important for good model

performance.

53

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU20230280654

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

Chapter 5 Conclusions and

Future Work

This chapter serves to wrap up our research. We first summarize our works in Sec-

tion 5.1. Thenwe outline the limitation and potential future research in Section 5.2. Lastly,

we cap off our thesis with Section 5.3.

5.1 Summary

This thesis presents a novel approach to the problem of text graph generation lever-

aging the strength of Transformer models. Our exploration has led to an effective method

for structured data representation and generation via “Structure Tokens”. In the structure

token, we use several identifiers for indicating the connectivities of the graphs and the or-

der of the texts. Then an embedding method for structure token is proposed, allowing the

Transformer model to utilize the structural information. We show that the structure token

approach can be use to represent and generate both texts and text graphs. The experi-

ment results demonstrated the effectiveness of our method with less data and parameters.

Meanwhile, the ablation study further confirmed the importance of various elements of

the structure tokens.

55

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

5.2 Discussion and Future Work

Although we have designed an effective method for representing and generating text

graphs and examined the design with experiments, there are a few subjects left unexplored.

In this section, we discuss the application and limitations of our research and delineate

potential directions for future research.

Application In this thesis, we show that the proposed structure token approach enabled

the Transformer model to capture better features from text graph. The structure tokens

can be used to represent a wide variety of text graphs such as the dialogue states or the

commonsense knowledge graph [23, 38]. We hypothesize that the structure token repre-

sentation might improve the performance of tasks beyond graph-to-text generation. For

example, some fake news detection model process on factual knowledge graph [22, 34].

Despite the effectiveness of structure tokens on graph-to-text generation, the impact of

structure tokens on other tasks require further investigations.

Besides, the proposed model can be used in a few programming tools. For example,

we can encode the Abstract Syntax Tree (AST) of a programming language with our struc-

ture token and use the extracted features to perform similarity search. This would improve

the string matching based code search functionality, such as code plagiarism checker or

the search functionality of large codebase like GitHub’s search engine. Moreover, it might

also be used in the compiler optimization pipelines. For example, we can view the graph

intermediate representation as a text graph, and then the graph optimization passes become

a text-graph-to-text-graph translation problem, which is aligned with the proposed model.

Furthermore, the proposedmethod could also be used for detectingmalicious binaries

56

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

(i.e. Malware). For example, one method for detecting malicious binaries is to convert the

assembly into Control-FlowGraph (CFG) and then comparing the CFGwith the malicious

samples. We can treat the CFG as text graph and then extract the features with our model.

The above ideas can be apply to many other kind of graph databases, such as the

academic knowledge graph [43] or semantic web [6], for improving either the constructing

or querying pipelines. However, these concepts necessitates a more thorough examination

that goes beyond the scope of the present thesis, thereby presenting a compelling area for

future investigations

Model Architecture In this thesis, we frequently mentioned that we use an unmodified

Transformer model. The intent of this repetition is to underscore that the observed per-

formance stem from the design of the token itself, rather than modifications to the model.

Although we can get comparable result with our structure token approach, whether the un-

modified Transformer is the most appropriate choice remains questionable. For example,

in another point of view, our structure embedding can be viewed as an variant of position

embedding that directly added to the input embeddings at the first layer only. Under this

perspective, there are several modifications we can do. As an instance, we can add our

embeddings to the input of every layers. Furthermore, we can even adapt the similar mod-

ification of relative or rotary position embedding that alter the attention operation [14].

On the other hand, we use the generalized sinusoidal position encoding with a specific

negative log frequency function to generate the orthonormal-like vectors and empirically

show that the chosen function satisfy the desired properties. Whether negative log is the

most appropriate choice of frequency function or whether there exist a better method for

generating orthonormal-like vectors are yet to be determined.

57

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

Self-Supervised and Semi-Supervised Training In this thesis, a pre-training method

is presented. The pre-training method containg two types of training objectives: the

translation-like objective and the self-supervised objective. The translation-like objective

is aligned with the fine-tuning tasks and pre-training with this objective works as transfer

learning for our fine-tuning tasks. On the other hand, the self-supervised objective would

provide extra training signal that allow the model to learn better features for the input.

Moreover, paired training data is not required for self-supervised objective, which could

benefit from using the large amount of unpaired text dataset or graph database. In the

scope of our thesis, we only pre-trained our model with paired datasets, as mentioned in

Section 4.1. The effectiveness of self supervised training require further investigations.

Cycle Training could further improve the model performance. As mentioned in Sec-

tion 1.3, lacking paired data is a challenge that might be solvable with semi-supervised

learning [19, 48]. In this thesis, we show that our model is able to perform comparably

on both text-to-graph generation and graph-to-text generation task. Therefore, our model

could generate new paired data, enabling cycle training with single model. It offers a

promising prospect for additional research in the future.

Generation Order Our structure token method is free from the problem of lineariza-

tion order since the whole structure token representation is a set. In our implementation,

the order of the graph elements are completely random. It is unclear whether the gener-

ation order would affect the performance. It might be possible to find an optimal order

of nodes and edges that can train the model more efficiently. Moreover, in Section 4.2

and Section 4.3, we make a few assumptions about the generation order to simplify the

generation and reduce the number of predictions required. If we remove the assumptions

58

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

of the generation order, despite requiring more computation resources, the possibility of

non-monotonic generation order emerged. While this issue is undoubtedly worth exami-

nation, it ventures beyond the reach of this thesis, thus laying the groundwork for further

inquiry.

Generation Algorithm In this thesis, we simply use the greedy decoding algorithm for

both text and text graph generation. Despite the effectiveness of such a simple algorithm,

we can also apply more complicated decoding algorithms that widely used in machine

translation techniques, which is not possible with the multi-stage approach. For example,

we could apply the beam search that explore multiple generation candidates at the same

time to produce better generation results [17, 45]. An exploration of this particular aspect

falls outside the present study and suggests an interesting avenue for subsequent research.

GraphGenerationMetric Throughout this thesis, we use the evaluation script ofWebNLG

to evaluate our method for graph generation. TheWebNLG evaluation method is currently

the de facto standard for evaluating those text graph generation models. Although being

widely used, there are certain limitations because the metric is based on string matching.

That is to say, the metric does not consider the possibility of paraphrases or synonyms.

For example, the ground truth triple (“Nord (Year of No Light album)”, “genre”, “Sludge

metal”) from the WebNLG test set is not the same as the generated triple (“Nord by Year

of No Light”, “genre”, “Sludge metal”) under the evaluation metric. Similarly, the ground

truth triple (“Death on a Factory Farm”, “author”, “Sarah Teale”) is not the same as the

generated triple (“Death on a Factory Farm”, “producer”, “Sarah Teale”) under the metric.

Therefore, current metric could potentially underestimate or overestimate the model per-

formance. To facilitate a better quantification and comparison of model performance, we

59

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

need a more comprehensive metric. For example, we might be able to avoid these issues

by replacing string matching algorithm with text generation metrics such as METEOR or

BERTScore.

Ablation Study In this thesis, we perform ablations on the structure embedding to mea-

sure the effectiveness and necessity of those components in our structure tokens. We use

the same pre-trained model and fine-tine it with removal. The ablation result shows the

importance of our structure token to the pre-trained model. As expected, the removal

of the component damage the model performance, especially the removal of text order

and graph structure. However, it is arguable that the same pre-trained model used in this

ablation study does not provide optimal condition for the ablations. Therefore, A more

comprehensive ablation study would require training of a new pre-trained models with the

removal of the components of structure token and then fine-tuning them.

60

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

5.3 Conclusions

The results obtained not only validate our method but also present valuable insights

into the broader field of structured data representation and generation. The success of

the structure tokens illustrates the potential benefits of a more informative token design.

Our work only target on the specific graph structure. It might be possible to design a

corresponding token for other structures or graphs with different modalities of contents.

On the other hand, the embedding of token id and previous id is similar to the position

embedding. It enables not only the potential representation of non-linear texts but also the

possibility of non-monotonic text generation.

In this thesis, we show that the structure token is effective with an unmodified Trans-

former model. However, there remains substantial room for further investigation and re-

finement of our proposed method, such as using different Transformer variants, different

ways to generate orthonormal-like vectors, or different generation algorithm. Future work

could include the extension of this approach to larger and more diverse datasets, refining

the structure token design to capture more intricate graph-level features, or adopting other

training methods like cycle training to further enhance performance. The development

of more sophisticated evaluation metrics could also aid in better quantifying the quality

of the generated text graphs, driving further improvements in model performance. The

insights and findings presented in this work are expected to serve as a foundation for these

future endeavours.

61

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU20230280662

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

References

[1] O. Agarwal, H. Ge, S. Shakeri, and R. Al-Rfou. Knowledge graph based syn-

thetic corpus generation for knowledge-enhanced language model pre-training.

In Proceedings of the 2021 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, pages

3554–3565, Online, June 2021. Association for Computational Linguistics.

[2] O. Agarwal, M. Kale, H. Ge, S. Shakeri, and R. Al-Rfou. Machine translation aided

bilingual data-to-text generation and semantic parsing. In Proceedings of the 3rd

International Workshop on Natural Language Generation from the Semantic Web

(WebNLG+), pages 125–130, Dublin, Ireland (Virtual), 12 2020. Association for

Computational Linguistics.

[3] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. Dbpe-

dia: A nucleus for a web of open data. In Proceedings of the 6th International

The Semantic Web and 2nd Asian Conference on Asian Semantic Web Conference,

ISWC’07/ASWC’07, page 722–735, Berlin, Heidelberg, 2007. Springer-Verlag.

[4] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning

to align and translate. CoRR, abs/1409.0473, 2014.

[5] S. Banerjee and A. Lavie. METEOR: An automatic metric for MT evaluation

63

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

with improved correlation with human judgments. In Proceedings of the ACL

Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation

and/or Summarization, pages 65–72, Ann Arbor, Michigan, June 2005. Association

for Computational Linguistics.

[6] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,

284(5):34–43, May 2001.

[7] T. Castro Ferreira, C. Gardent, N. Ilinykh, C. van der Lee, S. Mille, D. Mous-

sallem, and A. Shimorina. The 2020 bilingual, bi-directional WebNLG+ shared

task: Overview and evaluation results (WebNLG+ 2020). In Proceedings of the 3rd

International Workshop on Natural Language Generation from the Semantic Web

(WebNLG+), pages 55–76, Dublin, Ireland (Virtual), 12 2020. Association for Com-

putational Linguistics.

[8] A. Celikyilmaz, E. Clark, and J. Gao. Evaluation of text generation: A survey. ArXiv,

abs/2006.14799, 2020.

[9] X. Chen, C. Liang, D. Huang, E. Real, K.Wang, Y. Liu, H. Pham, X. Dong, T. Luong,

C.-J. Hsieh, Y. Lu, and Q. V. Le. Symbolic discovery of optimization algorithms.

ArXiv, abs/2302.06675, 2023.

[10] A. Colas, M. Alvandipour, and D. Z. Wang. Gap: A graph-aware language model

framework for knowledge graph-to-text generation. In International Conference on

Computational Linguistics, 2022.

[11] A. Colas, A. Sadeghian, Y. Wang, and D. Z. Wang. Eventnarrative: A large-scale

event-centric dataset for knowledge graph-to-text generation, 2022.

64

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

[12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep

bidirectional transformers for language understanding. In Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),

pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computa-

tional Linguistics.

[13] P. Dognin, I. Padhi, I. Melnyk, and P. Das. ReGen: Reinforcement learning for text

and knowledge base generation using pretrained language models. In Proceedings of

the 2021 Conference on Empirical Methods in Natural Language Processing, pages

1084–1099, Online and Punta Cana, Dominican Republic, Nov. 2021. Association

for Computational Linguistics.

[14] P. Dufter, M. Schmitt, and H. Schütze. Position information in transformers: An

overview. Computational Linguistics, 48(3):733–763, Sept. 2022.

[15] V. P. Dwivedi and X. Bresson. A generalization of transformer networks to graphs.

ArXiv, abs/2012.09699, 2020.

[16] V. P. Dwivedi, C. K. Joshi, T. Laurent, Y. Bengio, and X. Bresson. Benchmarking

graph neural networks. ArXiv, abs/2003.00982, 2020.

[17] M. Freitag andY. Al-Onaizan. Beam search strategies for neural machine translation.

In Proceedings of the First Workshop on Neural Machine Translation, pages 56–60,

Vancouver, Aug. 2017. Association for Computational Linguistics.

[18] S. Gottschalk and E. Demidova. Eventkg: A multilingual event-centric temporal

knowledge graph. In Extended Semantic Web Conference, 2018.

65

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

[19] Q. Guo, Z. Jin, X. Qiu, W. Zhang, D. Wipf, and Z. Zhang. CycleGT: Unsupervised

graph-to-text and text-to-graph generation via cycle training. In Proceedings of the

3rd InternationalWorkshop onNatural Language Generation from the SemanticWeb

(WebNLG+), pages 77–88, Dublin, Ireland (Virtual), 12 2020. Association for Com-

putational Linguistics.

[20] D. Hendrycks and K. Gimpel. Gaussian error linear units (gelus). arXiv: Learning,

2016.

[21] J. Hewitt and C. D. Manning. A structural probe for finding syntax in word repre-

sentations. In Proceedings of the 2019 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies,

Volume 1 (Long and Short Papers), pages 4129–4138, Minneapolis, Minnesota, June

2019. Association for Computational Linguistics.

[22] L. Hu, T. Yang, L. Zhang, W. Zhong, D. Tang, C. Shi, N. Duan, and M. Zhou.

Compare to the knowledge: Graph neural fake news detection with external

knowledge. In Proceedings of the 59th Annual Meeting of the Association for

Computational Linguistics and the 11th International Joint Conference on Natural

Language Processing (Volume 1: Long Papers), pages 754–763, Online, Aug. 2021.

Association for Computational Linguistics.

[23] F. Ilievski, P. Szekely, and B. Zhang. Cskg: The commonsense knowledge graph.

Extended Semantic Web Conference (ESWC), 2021.

[24] Z. Jin, Q. Guo, X. Qiu, and Z. Zhang. GenWiki: A dataset of 1.3 million content-

sharing text and graphs for unsupervised graph-to-text generation. In Proceedings of

the 28th International Conference on Computational Linguistics, pages 2398–2409,

66

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

Barcelona, Spain (Online), Dec. 2020. International Committee on Computational

Linguistics.

[25] M. Johnson, M. Schuster, Q. V. Le, M. Krikun, Y. Wu, Z. Chen, N. Thorat, F. B.

Viégas, M. Wattenberg, G. S. Corrado, M. Hughes, and J. Dean. Google＇s multilin-

gual neural machine translation system: Enabling zero-shot translation. Transactions

of the Association for Computational Linguistics, 5:339–351, 2016.

[26] J. Kim, D. Nguyen, S. Min, S. Cho, M. Lee, H. Lee, and S. Hong. Pure transformers

are powerful graph learners. Advances in Neural Information Processing Systems,

35:14582–14595, 2022.

[27] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR, abs/

1412.6980, 2014.

[28] T. Kipf and M. Welling. Semi-supervised classification with graph convolutional

networks. ArXiv, abs/1609.02907, 2016.

[29] T. Kudo. Subword regularization: Improving neural network translation models

with multiple subword candidates. In Proceedings of the 56th Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers), pages 66–

75, Melbourne, Australia, July 2018. Association for Computational Linguistics.

[30] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoy-

anov, and L. Zettlemoyer. BART: Denoising sequence-to-sequence pre-training for

natural language generation, translation, and comprehension. In Proceedings of the

58th Annual Meeting of the Association for Computational Linguistics, pages 7871–

7880, Online, July 2020. Association for Computational Linguistics.

67

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

[31] T. Lin, Y. Wang, X. Liu, and X. Qiu. A survey of transformers. AI Open, 3:111–132,

2021.

[32] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han. On the variance of the

adaptive learning rate and beyond. ArXiv, abs/1908.03265, 2019.

[33] Y. Liu, J. Gu, N. Goyal, X. Li, S. Edunov, M. Ghazvininejad, M. Lewis, and

L. Zettlemoyer. Multilingual denoising pre-training for neural machine translation.

Transactions of the Association for Computational Linguistics, 8:726–742, 2020.

[34] M. Mayank, S. Sharma, and R. Sharma. Deap-faked: Knowledge graph based

approach for fake news detection. 2022 IEEE/ACM International Conference on

Advances in Social Networks Analysis andMining (ASONAM), pages 47–51, 2021.

[35] I. Melnyk, P. Dognin, and P. Das. Knowledge graph generation from text. In

Findings of the Association for Computational Linguistics: EMNLP 2022, pages

1610–1622, Abu Dhabi, United Arab Emirates, Dec. 2022. Association for Compu-

tational Linguistics.

[36] E. Min, R. Chen, Y. Bian, T. Xu, K. Zhao, W. bing Huang, P. Zhao, J. Huang,

S. Ananiadou, and Y. Rong. Transformer for graphs: An overview from architec-

ture perspective. ArXiv, abs/2202.08455, 2022.

[37] M. Mintz, S. Bills, R. Snow, and D. Jurafsky. Distant supervision for relation extrac-

tion without labeled data. In Proceedings of the Joint Conference of the 47th Annual

Meeting of the ACL and the 4th International Joint Conference on Natural Language

Processing of the AFNLP, pages 1003–1011, Suntec, Singapore, Aug. 2009. Asso-

ciation for Computational Linguistics.

68

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

[38] S. Ouyang, Z. Zhang, and H. Zhao. Dialogue graph modeling for conversational

machine reading. In Findings of the Association for Computational Linguistics:

ACL-IJCNLP 2021, pages 3158–3169, Online, Aug. 2021. Association for Com-

putational Linguistics.

[39] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic eval-

uation of machine translation. In Proceedings of the 40th Annual Meeting of the

Association for Computational Linguistics, pages 311–318, Philadelphia, Pennsyl-

vania, USA, July 2002. Association for Computational Linguistics.

[40] A. Radford and K. Narasimhan. Improving language understanding by generative

pre-training. 2018.

[41] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,

and P. J. Liu. Exploring the limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.

[42] A. Rogers, O. Kovaleva, and A. Rumshisky. A primer in BERTology: What we

know about how BERT works. Transactions of the Association for Computational

Linguistics, 8:842–866, 2020.

[43] A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B.-J. P. Hsu, and K. Wang. An overview

of microsoft academic service (mas) and applications. In International World Wide

Web Conferences. Microsoft, May 2015.

[44] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

Dropout: A simple way to prevent neural networks from overfitting. Journal of

Machine Learning Research, 15(56):1929–1958, 2014.

69

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

[45] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural

networks. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Wein-

berger, editors, Advances in Neural Information Processing Systems, volume 27.

Curran Associates, Inc., 2014.

[46] A. Vaswani, N. M. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

L. Kaiser, and I. Polosukhin. Attention is all you need. In NIPS, 2017.

[47] D. Vrandečić and M. Krötzsch. Wikidata: A free collaborative knowledgebase.

Commun. ACM, 57(10):78–85, sep 2014.

[48] Y.Xu, L. Fu, Z. Lin, J. Qi, andX.Wang. Infinity: A simple yet effective unsupervised

framework for graph-text mutual conversion. ArXiv, abs/2209.10754, 2022.

[49] J. Yang, G. Xiao, Y. Shen, W. Jiang, X. Hu, Y. Zhang, and J. Peng. A survey of

knowledge enhanced pre-trained models. ArXiv, abs/2110.00269, 2021.

[50] C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, and T.-Y. Liu. Do

transformers really perform bad for graph representation? In Neural Information

Processing Systems, 2021.

[51] J. You, R. Ying, X. Ren, W. L. Hamilton, and J. Leskovec. Graphrnn: Generating

realistic graphs with deep auto-regressive models. In International Conference on

Machine Learning, 2018.

[52] L. Zhang and R. Li. KE-GCL: Knowledge enhanced graph contrastive learning for

commonsense question answering. In Findings of the Association for Computational

Linguistics: EMNLP 2022, pages 76–87, Abu Dhabi, United Arab Emirates, Dec.

2022. Association for Computational Linguistics.

70

http://dx.doi.org/10.6342/NTU202302806

doi:10.6342/NTU202302806

[53] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi. Bertscore: Evaluating

text generation with bert. ArXiv, abs/1904.09675, 2019.

[54] Y. Zhang, H. Dai, K. Toraman, and L. Song. Kg^2: Learning to reason science exam

questions with contextual knowledge graph embeddings, 2018.

[55] L. Zhong, J. Wu, Q. Li, H. Peng, and X. Wu. A comprehensive survey on automatic

knowledge graph construction, 2023.

[56] Y. Zhu, Y. Du, Y. Wang, Y. Xu, J. Zhang, Q. Liu, and S. Wu. A survey on deep graph

generation: Methods and applications. In LOG IN, 2022.

71

http://dx.doi.org/10.6342/NTU202302806

