
doi:10.6342/NTU202302089

國立臺灣大學電機資訊學院電信工程學研究所

碩士論文

Graduate Institute of Communication Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

以深度強化學習進行公平考量之行動邊緣運算

資源分配最佳化

Fairness-Aware Deep Reinforcement Learning
for Task Offloading and Resource Allocation

in Mobile Edge Computing

張安浩

An-How Chang

指導教授: 蔡志宏博士

Advisor: Zsehong Tsai Ph.D.

中華民國 112年 8月

August, 2023

doi:10.6342/NTU202302089i

doi:10.6342/NTU202302089ii

doi:10.6342/NTU202302089

Acknowledgements

在碩論完成之際，回首兩年來有許多感恩之處，沒有一路上的眾人相助，我

想我也無法獨自完成碩論。首先要感謝蔡志宏老師一路以來的指導，很慶幸當初

能夠進到老師的門下學習，不但給我學術學習上精闢的指教，更有扣回實務業界

的角度思考，讓我所做的研究更有實際應用的價值。此外，每次的實驗室會議老

師信手捻來的最新時事分享都很有收穫。感謝老師在我形塑碩論題目時提供許多

業界在意觀點，在架構模型時總是夠提供一針見血得評價指導，為我解惑許多。

感謝同屆的實驗室夥伴家頡和翊銘，兩年來一起修課寫碩論，在相似的碩論

架構背景下互相討論幫助我很多，各種大小代辦事項都很罩。如今我們都要一起

畢業了，這段時間承蒙照顧了！

感謝爸爸媽媽姊姊和 Joy，在碩士辛苦低潮的時候都持續陪伴我前進，肯定

我相信我會度過難關。很慶幸有離學校很近的家和家人，使我碩士的日子有堅強

依靠。

感謝教會的朋友們在我碩士時依然是我喜樂的來源，在我懷疑自己時總是堅

定的相信鼓勵我。在碩論念書之餘，有和你們的歡笑點滴回憶填滿空隙是這段路

途上美麗的祝福。感謝神一路帶領，在大小事上都有安排。

iii

doi:10.6342/NTU202302089iv

doi:10.6342/NTU202302089

摘要

隨著日益進步的使用者產品和使用者需求，手機、平板、手錶等行動裝置使

用者 (mobile user)逐漸要求越來越大量的運算需求已完成更高品質的成果，產品

本身的硬體運算資源便可能不足以應付低容忍度完成時間需求。為了突破邊緣的

硬體限制，行動邊緣運算 (Mobile Edge Computing)逐漸獲得重視，藉著鄰近的邊

緣運算的分擔邊緣裝置 (Edge Device)達成運算需求。本研究建構一個系統包含多

個 MEC伺服器並模擬多個使用者在系統中提出計算需求的環境，並提出以深度

強化學習 (Deep Reinforcement Learning)為系統架構的中央決策分配模型。藉由優

化最大數量的工作數量的目標，並輔以公平分配指標檢視分配抉擇，以達到公平

分配的最佳優化。此研究更進一步擴展實驗，藉由測試存在多種資料大小迥異的

工作環境下，測試出模型期依然保持良好且公平分配決策，進一步驗證決策模型

的可性度。此外，我們測試數種加權獎勵函數 (Weighted Reward Function)並觀察

模型不同設定下的表現。總結來說，實驗顯示提出之深度強化學習模型能夠在資

料大小迥異的環境下提供公平的資源分配。

關鍵字：計算分載最佳化、雲端資源分配、決策演算法、強化式學習、使用者平
等

v

doi:10.6342/NTU202302089vi

doi:10.6342/NTU202302089

Abstract

As the requirement for computation grows exponentially in quantity and quality,

mobile-edge computing (MEC) has perceived more attention to become a computational

mechanism for near mobile users. With the additional computing power from nearby edge

servers, edge users can potentially handle tasks that need to meet massive and real-time

computation requirements. In this thesis, we consider a multi-MEC systems with multi-

ple users, each users generate computational tasks follow by Poisson process. The thesis

propose a deep reinforcement learning-based allocation model to allocate tasks gathering

from all users in a centralized decision algorithm. We formulate the optimization goal as

maximizing the number tasks finished within deadline while task fairness awareness is

taken into considerations. In order to handle continuous task flows, we formulate a multi-

round allocation scheme and simulate its operation in the real world complex system. For

validation purposes, this thesis made several simulations on huge task size difference net-

work to test model’s performance and comparing to random allocation. In addition, we

vii

doi:10.6342/NTU202302089

tested a various type of award functions, including a basic reward function and a set of

weighted reward function, to observe their performance under different setups. In con-

clusion, the simulation results show that DRL model is effective in providing for task

allocations for various task-size distributions.

Keywords: ComputationOffloading, ResourceAllocation, Reinforcement Learning, Fair-

ness

viii

doi:10.6342/NTU202302089

Contents

Page

口試委員會審定書 i

Acknowledgements iii

摘要 v

Abstract vii

Contents ix

List of Figures xiii

List of Tables xv

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Background and Literature Review 4

1.3 Research Objective . 6

Chapter 2 System Architecture 9

2.1 Environment . 9

2.2 User & Task . 10

2.2.1 Users with different task size requirements 10

2.2.2 Task Arrival Pattern . 11

2.2.3 Task Structure Ai . 11

ix

doi:10.6342/NTU202302089

2.3 At Base Station . 12

2.3.1 Local Computation v.s. Remote Computation 12

2.3.2 Single Round to Multi-Round . 12

2.3.3 Local Offload Threshold ηi . 13

Chapter 3 The Allocation Model 15

3.1 Local Computing Mode . 15

3.2 MEC Computing Mode . 16

3.3 Deep Reinforcement Learning Model 17

3.3.1 State, Action, and Reward Definition 18

3.3.2 Q-learning method, Deep Q-learning 21

3.3.3 The Public Round and The Mini Round 25

Chapter 4 Performance Evaluation 29

4.1 Multi-Round Simulation General Performance Analysis 29

4.1.1 Environment System Setup . 29

4.1.1.1 Data Size Type . 30

4.1.1.2 MEC CPU Frequency 31

4.1.2 Completion Rate over different Arrival Rate 31

4.1.2.1 Hard Completion Rate and Soft Completion Rate . . . 31

4.1.3 Utilization per Mini Round Performance 33

4.1.4 Fairness Analysis . 35

4.1.5 Model Training . 37

4.2 PerformanceAnalysis ofMulti-Round Simulation overDifferent Data

Size . 38

4.2.1 Completion Rate over task size type 39

x

doi:10.6342/NTU202302089

4.2.2 Task Fairness Ratio over data size type 40

4.3 Large Data Size Difference with Weighted Reward 42

4.3.1 Weighed Reward Function . 43

4.3.2 Fairness Index Evaluation . 47

Chapter 5 Conclusion and Future Work 51

5.1 Conclusion . 51

5.2 Future Work . 52

References 55

Denotation 59

xi

doi:10.6342/NTU202302089xii

doi:10.6342/NTU202302089

List of Figures

2.1 System Environment . 9

2.2 An illustration of the Public Round and the Mini Round 13

3.1 Flowchart for Mini Round Operations 27

4.1 Hard Completion Rate over Different Task Arrival Rate 32

4.2 Soft Completion Rate (λ = 9) . 32

4.3 Soft Completion Rate (λ = 10) . 32

4.4 Soft Completion Rate (λ = 11) . 33

4.5 Soft Completion Rate (λ = 12) . 33

4.6 Soft Completion Rate (λ = 13) . 33

4.7 Utilization (λ = 13) . 34

4.8 Utilization (λ = 9) . 35

4.9 Utilization (λ = 7) . 35

xiii

doi:10.6342/NTU202302089xiv

doi:10.6342/NTU202302089

List of Tables

4.1 PARAMETER SETTING . 30

4.2 Gmax among different task arrival rate 36

4.3 Gavg among different task arrival rate 37

4.4 Soft Completion rate among different task size 39

4.5 Gmax among different task size . 40

4.6 Gavg among different task size . 41

4.7 PARAMETER SETTING (LARGE DATA DIFF) 43

4.8 Weighted Reward Function Comparison via Gmax (λ = 16) 45

4.9 Weighted Reward Function Comparison via Gavg (λ = 16) 45

4.10 Weighted Reward Function Comparison via Gmax (λ = 12) 45

4.11 Weighted Reward Function Comparison via Gavg (λ = 12) 46

4.12 Weighted Reward Function Comparison via Gmax (λ = 8) 46

4.13 Weighted Reward Function Comparison via Gavg (λ = 8) 46

4.14 Gmax among different task size type . 48

4.15 Gavg among different task size type . 48

xv

doi:10.6342/NTU202302089xvi

doi:10.6342/NTU202302089

Chapter 1 Introduction

1.1 Motivation

As the prevalent of 5G internet, the capability of the Internet of Things (IoT) has

grown rapidly. Various kinds of devices, like cellphones, tablets and watches, can now

connect to wireless networks, process information, and handle computation-intensive ap-

plications. However, with limited computational resources and battery restrictions on the

devices, processing intensive computation tasks might cause a problem since the limited

processing power cannot finish processing the task under delay constrain. Also, running

massive computational requirements require huge energy whereas energy is scarce. In

order to alleviate these edge devices process computation-intensive tasks, one of the com-

mon solutions is to offload the task to the cloud server that is located at a distance data

center that have massive computational resources and sufficient energy supply. However,

this can have several concerns. First, lots of the computation-intensive tasks are real-

time applications, meaning that the delay tolerance is low, hence sending these tasks to

the cloud might cause more time in total including transmission time. Second, suppose all

edge devices rely on a distant cloud server to help process computationally intensive tasks.

In that case, the wireless network speed will become the bottleneck of the computational

time, as every edge device is counting on the cloud server.

1

doi:10.6342/NTU202302089

To tackle this problem and alleviate the massive transmission of occupation of the

internet to the cloud, mobile edge computing (MEC) is viewed as a promising technology

that enables mobile devices to offload computation-intensive tasks toMEC servers nearby,

where these servers have plenty computational power and stable power supply compar-

ing to the mobile devices. The MEC can increase addition computation resources near

the mobile user and provide high-performance servers to mobile users [1]. By distribut-

ing the MEC servers close to the users, through computation offloading the mobile users

can leverage and successfully run computational-intensive apps, live-stream, gaming and

more. Therefore, due to the potential advantages of increasing computation offloading

destinations and quicker computational resource allocation solutions, in [2] this has been

viewed as a important part in MEC system.

Over the past decades, Deep Learning (DL) has been unprecedented popular as the

capability and flexibility a DL model improves model performance among various do-

mains [3]. Deep learning methods have some advantages: 1) Given a history dataset, an

DLmodel can extract and learn the patterns of the underlying structure, and then make de-

cisions based on the observations. By feeding an DL model large chunk of real time data,

the mode can improve and adjust its decisions to fit domain preferences and tendencies,

and no need to manually interfere or comes up heuristic guidelines. 2) For a well-trained

DL model, it has potential to make quick and good decisions, which perfectly meets the

desired characteristic an offloading decision model needs. As the mobile users’ requests

dynamically changes rapidly, local computation capability in mobile phone might not be

able to handle within strict deadlines, hence fast results get more important than never

before. 3) The process of optimizing the wireless network is a difficult but crucial prob-

lem to solve. Since the quantity and quality of mobile users shifts in a pattern difficult

2

doi:10.6342/NTU202302089

to describe and simulate. Throughout various methods proposed before, such as heuristic

methods, mixed-integer linear programming, all struggle to handle this constantly chang-

ing network structure. 4) As mentioned in [3], It is complicated managing the joint 4C

optimization in 5G. Diverse requests including individuals QoS needs. In such case, ML

has the potential to solve respective needs more efficiently.

[4] Deep Reinforcement Learning (DRL) has gained huge success in recent year,

where powerful DRL-based models thrive in gaming [5], dynamic path finding [6], opti-

mization [7] and more. Advantages are that DRL model make quick and good decisions,

and the model can continuously learning through latest real-time history data, so that it

dynamically adjust throughout the time. In recent years, DRL is also introduced to solve

offloading engine and resource allocation for network([8], [9]), aiming to maximize the

utilization of the network resources [4].

Typically DRL models solving computation offloading and resource allocation aim

to optimize the allocation decision with minimal computational delay and energy con-

sumption [9] at all cost. However, the fairness among users is also a crucial factor that

cannot be neglected to maintain. As a perspective of the computation resource supplier,

providing a great service leads to higher QoS.

In the real-time application, the status of MEC servers and the cloud are dependent

on previous tasks requests at the moment, those tasks occupy part of the computational

resources, which further affect how much available capacity each server can provide. In

practice, the network is always dynamically changing its resource status. A well-designed

schedulingmodel should be able to allocate resource where the status of eachMEC servers

and the cloud are dynamically changing after each round of resource allocation. Hence,

3

doi:10.6342/NTU202302089

in this thesis I will design a simulation scheme that the scheduling model can make good

decisions under multi-round allocation simulation.

1.2 Background and Literature Review

Related literature in this field have studied various aspects of the optimization prob-

lem. For example, [10] Chang et.al proposes a bi-level optimization approach that divide

the problem into upper level and lower level and solve the problem applying Lagrangian

function and Hungarian method recursively. However, one potential drawback is that

continuously solving Lagrange multiplier increases computation requirement and possi-

bly extend the processing time, which is not favorable for latency-sensitive tasks.

Another research Huang et. al [11] proposed a Deep Reinforcement Learning (DRL)-

based Online Offloading (DROO) that can learn the binary offloading decision to decide

to execute locally or at MEC server. Their algorithm does not involve solving mixed

integer programming problems, which helps avoiding spending too much time to solve

that. The method includes the offloading decision and a resource allocation problems

separately. The optimization goal is set to be maximize channel realization. To offload

N tasks simultaneously, the action space for offloading decision along cause 2N , which is

exponentially large and therefore time-costly to explore optimal action. Since the number

of task N is a pre-defined fixed scalar, the simulation in the research didn’t involve a

multi-round simulation where a random number of tasks comes and go, which motivates

this study to further test the robust of DRL-based method in the multi-round environment.

[8] Gao et. al consider a multi-user MEC system, where multiple mobile users could

perform computation offloading to an MEC server. The author formulated the sum of

4

doi:10.6342/NTU202302089

cost by combining delay and energy consumption as the optimization objective. Deep Q

network model is implemented and simulated on a small environment with one single cell

MEC server and 5 users. Due to the setup of the simulation, this model does not need

to handle communications and task allocations between multiple MEC servers, which

simplified a common real world scenario. Therefore, it is doubtful the performance can

transforms to more complex system. In the Deep Q network setup, the state is set as the

total weighted cost of the entire system and the total available computation capacity of

the MEC server, denoted as (tc, ac). However, this state combine too less information to

allocate if the task have distinct characteristic. For example, in the simulation the task size

is sampled withing one small fixed range, each tasks have size difference less than two

times difference. In this way, the RL model might learn the implicit task size setup and

might not perform well when different task size appears. Therefore, in this thesis we add

multiple task size range with great difference so that the model can learn through a more

complex system.

Zhou et. al [9] also investigated the joint optimization of computation offloading

and resource allocation in a dynamic multi-user MEC system. The objective in [9] is to

minimize the energy consumption of the entire MEC system. The author formulated the

problem as a mixed-integer nonlinear programming problem, and propose a DRL-based

method to determine the joint policy of computation offloading and resource allocation.

The model was simulated in a single MEC system with 5 users. Since the objective func-

tion focus on the minimal energy consumption, the delay constrain is viewed as a side

objective. However, the computation time is the major performance issue. Hence from

the user’s perspective, minimizing computation time is a crucial factor. On the other hand,

the simulation environment in [9] is extremely simple, where only 5 users are implemented

5

doi:10.6342/NTU202302089

to show its energy consumption and delay performance are shown.

Aside frommaximizing the optimal performance on latency or energy objective, [12]

points out the importance of consider the fairness among task, and propose a joint opti-

mization problem that taking into account the system efficiency and fairness. The author

defined the task fairness ratio as the time consumption divided by the task deadline re-

quirement. A proposition is then proof that the task fairness is minimized only if each

task’s task fairness are equal. To integrate this concept, the author proposed a two-level

algorithm, where the first part find the superior offloading scheme through evolutionary

strategies, and the second part generate resource allocation scheme through a fairness pro-

cess. Inspired by this research, this thesis will apply the fairness ratio defined in [12] and

integrate with Deep RL structure that hasn’t been done before.

1.3 Research Objective

Combining several observations we’ve seen through papers above, The research ob-

jective can be summarized as:

1. Fairness-Aware DRL Allocation Model

Throughout previous researches applying deep reinforcement learning-based algo-

rithm to solve resource allocation problems, no research had considered the fairness

between tasks. The main focus was more about minimizing time consumption, re-

ducing overall system energy consumption, maximize number of tasks executed but

valuing the task fairness. However, since we view all users are equally important

and not being left to starvation, hence whether the allocation protect task fairness

becomes one of the research objective in this thesis.

6

doi:10.6342/NTU202302089

2. Performance Validation for Multi-Round Operations

Consider designing a robust resource allocation algorithm to perform well in real

time network, the model should be able to thrive and adjust in state-dependent

multi rounds situation. Although a deep reinforcement learning model automati-

cally needs to interact and improve in a state-to-state environment, duo to the diffi-

culty and complexity of simulating multi round environments, previous works often

train in a scheme where the initial state does not comes after the environment inputs

an action from model. Instead, the initial state are randomly initialized or starting

at the same empty state.

3. Class State based on Types of Task Sizes

In the setup of reinforcement learning, the environment is described as a state vector,

and the RLmodel canmake action based on the state. Therefore, what information a

state provides affect the performance of the model. Although it seems that the state

should be as thorough as possible, including detailed background parameters, huge

dimension of the space spanned by state possible values might make the problem

difficult to solve. This is due to the fact that, RL model needs to probe through

possible states as much as possible to learn through experience, large state space

took longer training time and more computational resource.

Therefore, in our model we simplified the state description about task’s size. Instead

of sending the actual tasks size to the state, each task is categorized by three types of

task sizes: Small, Medium, and Large. The reason of not writing the actual task size

into state is that, in network flow where massive flows come from places to places,

measuring the actual task size directly is impractical and impossible [13]. Besides, if

the model were to always know the actual task size, the model can directly estimate

7

doi:10.6342/NTU202302089

its requirement for computational power, then indirect allocation methods are no

need to apply. By denoting the tasks as its task size type, one can simplify the

dimension of the data space of the state because the number of tasks size type is an

integer constant, whereas the possible task size type falls only within the positive

number space.

8

doi:10.6342/NTU202302089

Chapter 2 System Architecture

2.1 Environment

Consider a MEC network that consistsNM MEC Servers,NB Base Stations, andNU

Users in the network. The number of MEC server is no greater than the number of the

base station, i.e. NM ≤ NB, since we assume MEC Servers are scarce resources, these

MEC servers will be shared by all nearby base stations. As each user send tasks to base

stations, the controller of the base station has to decide how should the task been allocate.

Figure 2.1 shows the network environment.

Figure 2.1: System Environment

9

doi:10.6342/NTU202302089

2.2 User & Task

2.2.1 Users with different task size requirements

In a dynamic network, the tasks size can have 10 to 100 times size difference than the

others when the user’s need are different. In this situation, how to allocate tasks to MEC

servers can make great difference in optimization. Therefore, in this thesis, the task size

is generated from multiple type of task size, each task size type have great size difference

up to 10 times. From the user perspective, generating tasks from different task size type

symbolize different type of user request format. For example, enterprise users ask for huge

task size for computational-intensive applications, whereas in the same time smaller and

less intensive requests are also needed. To simulate this task size different, integrating dif-

ferent tasks size type into the simulation simultaneously creates more complex challenge

to the allocation model. This setup fit closer to the real world network scenario as well.

In actual network, it is common to have both kind of the users asking for compu-

tational resources in the same time. To effectively allocate each kind of task size type

to the optimal allocation, the decision is effected by what the optimization goals are. A

straightforward way is to minimize overall computational time with as much tasks finished

within its delay tolerance threshold as possible. This way of allocation alone, however,

might favor the enterprise users and those large tasks. In general, enterprise users tend to

ask for massive and strict time tolerance. In order to maximize overall performance with

the least amount of tasks failed to finish in time, the model will always prioritize allocating

majority of the computational resources to the enterprise user, which leads to individual

user starvation. Hence in my environment, by introducing the concept of different task

10

doi:10.6342/NTU202302089

size types, we can see how different task type are treated and evaluate those with proper

fairness index which we will go through the details in the following chapter.

2.2.2 Task Arrival Pattern

To simulate an environment interact with the network system similar to real world,

each user will generate tasks following Poisson arrival process. Denote the Poisson arrival

process with arrival rate λ as Poi(λ). Different arrival rate λ will be sampled with respect

to different traffic scenario. Consider three level of arrival rate: Computation-intensive

duration, Workday duration, and Off-work duration. The Computation-intensive duration

when a series of real-time tasks are requesting, for example training a deep neural network

model, streaming a live event, multiple people online meeting. Here wewill set an average

arrival rate of the Computation-intensive duration as λc. The Workday duration refers

to general workday request flows, where users require computational resource in a less

intensive delay tolerance and sparse request frequency. The average arrival rate of the

Workday duration is denoted as λw. The Off-day duration is when the users aren’t working

and the remaining requests come from regular maintains of the server. The average arrival

rate of the Off-day duration is λo. In the simulation, various size of arrival rate represent

different arrival pattern to evaluate the allocation model’s performance.

2.2.3 Task Structure Ai

For a computation-intensive task Ai required by a user, it is described by three fea-

tures: Di denotes the computation input Data Size, Xi denotes the computation intensity

in CPU cycles per bit, τi is the requested completion deadline in the second unit. Here

11

doi:10.6342/NTU202302089

we denoted a task as Ai := (Di, Xi, τi). These parameters can be estimated through task

profiles. Noted that by definition, DiXi is the total number of CPU cycles required for

completing the task Ai.

2.3 At Base Station

2.3.1 Local Computation v.s. Remote Computation

The tasks generated by the users will being processed in one of the three ways: locally

by the user’s device, offloaded to a MEC server, or offloaded to the cloud. In general, we

can view offloading to either MEC server or cloud as processing the task ”Remotely”,

comparing to processing the task ”locally” at the user’s device. In this environment, the

user’s device will use a simple criteria to decide whether a task should be offloaded to the

remote or process it locally. The following paragraph will further elaborate this decision

scheme.

2.3.2 Single Round to Multi-Round

In a single round [ri, ri+1], the base station will collect new task requirements, and

decide how to allocate the tasks and assign to the desire remote server. The task does not

need to finish the computation within one single round time. In the following chapter, the

large scale is called the public round.

For each public round, the system time is equally divided into consecutive time

frames lengths as multiple smaller rounds, which is called theMini Round r ∈ N. Denote

the duration of an mini round as Tr. Tr has to be long enough for a the system do all things

12

doi:10.6342/NTU202302089

mentioned above. Aside from that, every public rounds we’ll update latest status of each

MEC servers and the cloud, for R ∈ N. The length of an Public Round is denoted as TR.

Given a fixed positive integer u, the length of one public round [Ri, Ri+1] is u rounds of

mini rounds, i.e.

TR = |TR2 − TR1 | = |Tru − Tr1 | = u|Tr2 − Tr1 | = uTr

The visual demonstration is shown as Figure 2.3:

Figure 2.2: An illustration of the Public Round and the Mini Round

2.3.3 Local Offload Threshold ηi

For each task Ai waiting to be processed at the user device, the device filter the task

by a binary offloading policy deciding either it is offloaded completely to one of the remote

server, or process the task locally. Let xi ∈ {0, 1} be the indicator that denotes whether

a task i is offloaded remotely. When xi = 1, task Ai is offloaded to a remote server

and xi = 0 indicates that it’s processed locally. For each task Ai at user device, whether

to offload to remote server is filtered by a delay threshold ηR at round r. We estimate

how long the task Ai will be executed locally, and denote it as T l
i . Then, compare this

estimated local execution time with the delay threshold ηR, and the task will be offloaded

to remote server if the estimated local computation time is greater than the delay threshold.

Noted that this delay threshold will be fixed for u rounds and then be updated to the latest

13

doi:10.6342/NTU202302089

threshold ηR+1. This latest threshold is generated by the the decision model at the base

station. Here, setting a simple offloading strategy to decide whether the task is executed

locally or remotely is decided as follows:

For each task Ai,

ηR - Offloading Delay Threshold at Update Round R

T l
i - Local Execution Time of Ai

xi - Offloading Indicator

xi =

1 if T l

i ≥ ηR

0 otherwise

, ∀i

For each task Ai, divide the expected number of cycle DiXi by the local computation

frequency of the respective user i, f l
i , we can get the estimated computation time at local.

T l
i =

DiXi

f l
i

Noted that for each user, we assume the computation frequency is the same among all

tasks generated by this same user. If the user device has amount of computational re-

source to match the fixed computation frequency f l
i then the user device will not assign

the remaining resources and viewed as full. In the future work, we can add into the model

how each user device assign computational resources to each local dynamically.

14

doi:10.6342/NTU202302089

Chapter 3 The Allocation Model

In the network, a task will be processed at one of the two places: local user device

or one of the MEC servers. After a task is sent to a base station, the system has to decide

which MEC server to allocate this task. To evaluate the performance, we’ll go through

how to evaluate the processing performance at different places. To determine where to

allocate each task efficiently and fairly, a centralized allocation model will decide where

to allocate.

For each task, since it will be executed either in local or at the MEC, we define two

computing mode: the Local Computing Mode is when the task is executed locally, and

the MEC Computing Mode is when the task is offloaded to MEC servers to execute. In

the following sections, we will go through how each mode a task is evaluated its time

consumption details.

3.1 Local Computing Mode

When a task calledAi is processed locally at a user device, one can estimate the local

computation delay T l
i by the required CPU cycle of the task Ai and the local computation

frequency f l
i . Since the task doesn’t transmit through the network, their is no transmission

15

doi:10.6342/NTU202302089

delay. The local computation delay is:

T l
i =

DiXi

f l
i

(3.1)

In this allocationmodel, the total cost of local computingC l
i for taskAi is theweighted

cost of delay cost where wl
t is a given fixed constant. The cost can be given by

C l
i = wl

tT
l
i (3.2)

3.2 MEC Computing Mode

For the case of offloading a task to a MEC server, the total amount of time needed

include the transmission time of the task from the edge device to theMEC server, the com-

putational time at the server, and the transmission time sending back the results. Denote

the transmission delay of task Ai to the remote server k as T tu
i,k, and it is given by

T tu
i,k =

Di

Ru
i,k

(3.3)

where Ru
i,k is the up-link rate for taskAi to the remote server k. Secondly, the computation

delay at the remote server k can be derived as

T c
i,k =

DiXi

fi,k
(3.4)

where fi,k is the allocated computation frequency at the server k. Denote the transmission

delay of the result Dr from the MEC server k to task Ai as T td
i,k,

T td
i,k =

Dr

Rd
i,k

(3.5)

16

doi:10.6342/NTU202302089

where Rd
i,k is the down-link rate from the remote server k to task Ai . The Total MEC

Server Execution Delay is thus given by

T r
i =

Di

Ru
i,k

+
DiXi

fi,k
+

Dr

Rd
i,k

. (3.6)

The objective function will be maximizing the number of tasks that have been suc-

cessfully executed. Denote yi as the indicator of task Ai finish executed or not, yi is

defined as:

yi =

1 if Ti ≤ τi

0 otherwise

, ∀i (3.7)

Then the objective problem is formulated as follows.

max
A

N∑
i=1

yi (3.8)

s.t. C1 : xi ∈ {0, 1}, ∀i

C2 : Ti = (1− xi)T
l
i + xiT

r
i ≤ τi, ∀i

3.3 Deep Reinforcement Learning Model

With the environment setting done as the state input, the reinforcement learning algo-

rithm can then be applied to approximate the allocation decision-making. In the following

section, we will introduce the widely-used DDQN-based method to try to solve the allo-

cation to the MEC servers.

17

doi:10.6342/NTU202302089

3.3.1 State, Action, and Reward Definition

To begin with, there are three key elements construct the basic structure of the em-

ployed reinforcement learning model: state, action, and reward.

1. State

The system environment is described as a vector combining several index. The first

part is the total number of undone tasks in the system, denoted asN r. Next, a vector

[N r
S, N

r
M , N r

L] counts the number of non-allocated tasks by its data size type: small,

medium and large, respectively. Since the data size is classified as three types, here

we can use three variables to store the count of tasks that aren’t allocated. Next, the

state record the counting number of tasks in each MEC queue by its data size type.

Each MEC requires three values to store, hence need NMEC × 3 scalars. Denote

MEC i’s number of tasks in queue by task size type as [M (i)
S ,M

(i)
M ,M

(i)
L]. Last but

not least, the state append a vector describe which task size type the following task

that is preparing to assign. The vector will be a one-hot vector like [1, 0, 0] for

type 1 task type, and [0, 1, 0] for task 2. Here denote the task size type vector as

[PT (c = 0), PT (c = 1), PT (c = 2)], where PT (c = 0) states the probability of the

task T ’s task type is 0. Combining all information mentioned above, the state at

mini-round r before allocate the following task T will be:

srT = (N r
S, N

r
M , N r

L, N
r,M

(1)
S ,M

(1)
M ,M

(1)
L , ...,M

(K)
L , PT (c = 0), PT (c = 1), PT (c = 2))

This state will be used specifically for this task T , the allocation model take this

state to make the allocation decision. The task will be sent to MEC and the number

count that are affected by this allocation will be updated so that the state for the next

18

doi:10.6342/NTU202302089

task will be updated.

2. Action

As we apply reinforcement learning to the allocation model in MEC system, an

action to describe how the allocation model can interact with the environment is

needed. The action should decide which MEC server to allocation for this task,

which is presented as a one-hot vector fashion. Suppose the number ofMEC servers

in the system is K, a task’s allocation decision is presented as [a(1)1 , a
(1)
2 , ..., a

(1)
K].

Hence the action vector a is as follow:

a = [a
(1)
1 , ..., a

(1)
K]

a
(j)
i ∈ {0, 1}

∑
i

a
(j)
i = 1

3. Reward

In reinforcement learning, reward R is used to present how many positive result

were obtained. Given a current state st, after making an action a, the amount of re-

ward received after a fixed duration of time section is called the immediate reward

Rt. In general, the reward is related to the objective function. In this optimization

problem, we aim to maximize performance of finishing as many tasks as possible

and the fairness between tasks and users. In other words, we aim to increase com-

pletion rate and fairness. To maximize completion rate means that the MEC system

needs to maximize the utilization rate of the MEC. Higher utilization rate means

19

doi:10.6342/NTU202302089

that the percentage of time the MEC is occupied is high in the same round. Hence,

the value of reward is defined to be the number tasks that has been successfully exe-

cuted within its respective deadline. The immediate reward is defined as the number

of tasks that are finished within one mini round after the allocation decision is made.

We define the immediate reward after taking action a at state s as r(s, a) = N
(r)
Task.

Noted that N (r)
Task =

∑
i yi.

The reward function defined above count the total amount of finished tasks, we call

this the basic reward function. An potential issue that the basic reward function

might face is that it treat each finished tasks equally without regards of task size.

This way would favor smaller tasks to be executed over large tasks since with the

same amount of computational resource, the number of small tasks can be executed

more than larger ones. Therefore, adding weight to each reward can possibly bal-

ance this inequality issue. In the chapter 4, various kind ofweighted reward function

will be tested to see which performs better than others.

If we re-examine several previous related work, such as [8], the reward vector space

consist of the offloading decision part and the resource allocation part, where the resource

allocation part output howmuch resource the server need to allocate to each task. Although

this type of definition can possibly provide thorough action space so that the model have

chance finding optimal allocation destination and quantity, the resource allocation decision

drastically increase the action space dimension, causing more difficulty and computation

overhead at each round of allocate decision making. Hence, in order to decrease the action

space, the model will only make the offloading destination decision, and at each allocation

round, each MEC server will equally allocation available resource at the moment. To

avoid the proportion of allocate resource been sliced too small, a minimum slicing size

20

doi:10.6342/NTU202302089

of resource allocation is set so that resource won’t be sliced smaller than the minimum

slicing size.

3.3.2 Q-learning method, Deep Q-learning

One of themost popular method in reinforcement learning is the Q-learning algorithm

([4],[8]). Q-learning is a reinforcement learning techniques used to solveMarkovDecision

Processes (MDPs) ([8], [14]) without prior knowledge of the environment. Given a state

s and an action a, a Q value is the output of the Q function Q(·) that states how much

expected reward value are going to get from this state to the end state. Each state-action

pair have a real value Q(s, a), representing expected reward afterward. Normally when

training the reinforcement learning, the Q-function only need to input the state s and the

output will be a scalar vector with the dimension of the number of all possible action.

Each value refers to the Q value of the state and one specific action a. We can then choose

the action with the highest Q value as the desired best action choice. After each step,

each encountered state-action pair will derive a Q value Q(s, a), which can be stored in a

Q-table so that it can be checked in the future lookup if the state reappears.

The Q-learning algorithm can be typically executed through an iterative process, such

as Q-learning or DeepQ-learning, where the agent explore the environment, observes state

transitions and rewards, and updates the Q-values based on the observed experience. The

goal is to find an optimal policy that maximize the expected long-term reward by selecting

actions in each state. The Q-function is often represented and stored in a Q-table so that

whenever a state is occur, the agent can lookup to the Q-table to obtain history maximal

reward from that state. Ideally, when the agent explore and interact the environment often

enough, most of the state are visited and explored, we can then always often optimal

21

doi:10.6342/NTU202302089

actions.

However, the Q-table approach does not work well when the state-action space is

too large and complex, because the agent is impossible or too time-costly to explore all

state-action pairs. Therefore, researchers comes up ideas to use approximate functions to

approximate the actual Q-table, where the function takes the state-action pair as function

input, and output an expected accumulated reward. As the deep neural network getting

powerful and easier to train in recent years, many researches have developed to use deep

neural network model to approximate the Q-function. Deep Q-learning extends the basic

Q-learning algorithm by utilizing deep neural networks to approximate the Q-function.

Instead of using a tabular representation of the Q-values, a deep Q-network (DQN) is

employed to estimate the Q-values for high-dimensional state spaces. In the following

research, we denote DRL as the allocation method applying the Deep Q-learning, and the

DRL will be applied.

Since Q value can be viewed as a long-term cumulative reward, the Q(st, a) can be

decomposed to two part: immediate reward and the future reward, i.e.

Q(st, a) = r(st, a) + γ ∗max
a∈A

Q(st+1, a)

where the (s, a) is the current state-action pair, s′ is the state after current state s takes

the action a. At the next state s′ the future reward is defined as the maximal possible

reward among all possible actions at state s′. The γ is the depreciated multiplier reflecting

how much the future reward takes account as the action made at the current state. The

multiplier falls in 0 ≤ γ ≤ 1. If the depreciated multiplier is set close to 1, it means the

future reward hugely depends on the current action made at the state. On the other hand, if

22

doi:10.6342/NTU202302089

the multiplier is set close to 0, it means the action only affect immediate rewards, and the

future reward should not take much credit from this action at the state. In our scenario, the

action decide each tasks’ offloading decision, and the immediate reward how well each

server performs in the next round. In the simulation scenario in this research, sr denotes

a state at a mini round r, the Q-function can be defined as:

Q(sr, a) = r(sr, a) + γ ∗max
a∈A

Q(sr+1, a) (3.9)

where r(sr, a) is the total number of tasks that are successfully executed in this mini round

r among all MECs.

Asmentioned before, DeepQ-Learning apply deep neural networkmodels to approx-

imate the Q-function. In order to do so, we need to be able to learn the Q-function from

interacting with the environment. In order to train a Q-function that generate correct out-

put, the engine need to know how ’accurate’ the output the Q-function is during training.

Normally in DNN training process, we can compare the model-generated value to ground

true value, which is called the supervised learning. However, since we don’t know the

optimal accumulated reward from every state-action pair, Q-learning method is difficult

to formulated as a supervised learning way. Instead, Temporal Difference (TD) learning

is a popular approach to optimize the Q-function in reinforcement learning. The key idea

behind TD learning is to update the Q-values based on estimation from subsequent states

rather than waiting for the final outcome. According to the definition of equation 3.9, the

Q value the state-action pair (sr, a) should equal to the sum of immediate reward at this

mini round r(st, a) taking action a and the expected cumulative reward of state sr+1 at

the next mini round r+1. Therefore, during the training, the difference betweenQ(sr, a)

should be as close as possible as r(sr, a) + γ ∗maxa∈A Q(sr+1, a), we can then compute

23

doi:10.6342/NTU202302089

the average difference as the loss to back propagate and optimize the model. To sum up,

we can update the parameters by state-action-reward pair as:

(sr, ar, rr, sr+1) (3.10)

Noted that since the model will be called every time it allocate a task, the current state

sr is different from other tasks that are waiting to be allocated in the same mini round. As

mentioned beforehand the state include tasks count of not-allocated ones in the BSs and

the tasks count of tasks in each MEC queue to execute this mini round, every time after

the model allocate a task, the environment state will be updated to the following state for

the next task. In this way, the model can see how many tasks left not allocated and how

each MEC servers have been distributed tasks up to date. The model then possibly can

make adjustments for the next allocation. Since the immediate reward is defined as the

total number of tasks being executed during the whole mini round, the proper definition

of the next state is at the beginning of the next mini round r + 1. Hence, for each tasks in

this mini round will be stepping to the same next state sr+1. The last part of state where

it denote the task type of the task prepared to assigned is set to all zeros in the next state

sr+1.

In [9], the author design themodel to input fixed number of tasks as a batch to allocate

simultaneously, and output action include where to allocate and howmuch CPU frequency

to allocate. Although with this flexibility the model has a chance to obtain global optimal

allocate solution, the action space grow exponentially as the number of tasks to allocate

the same time. Hence, in this research I reduce the action space dimension so that the

model could be more likely to handle larger amount of tasks and more number of MEC

24

doi:10.6342/NTU202302089

servers to choose without too long decision delay.

3.3.3 The Public Round and The Mini Round

In the simulation, Two level of round are used: Public Round and Mini Round. At

the beginning each public round, all base stations collect tasks that have been sent from

mobile users. These are the tasks preparing to allocate to MEC servers. The goal is to

allocate and execute all tasks collected at the beginning of the public round. In another

word, there will have no new tasks being considered to allocate within the same public

round. All tasks that arrived the base stationwill wait until the next public round to allocate

MEC server. The duration of a public round is 1 sec.

Each public round is split in 20 fixed even length small execution round called mini

round. For every mini round the model allocate a batch of tasks to MEC servers. The

detail procedure of one mini round can be split into following step:

1. Randomly pick a task. From all tasks in the base station waiting queue, randomly

pick a task prepare to allocate to one MEC server.

2. Wrap the state. Write the initial state sr for the task, check status including the MEC

waiting queue tasks counting and the picked task’s information.

3. Select action. During the training, the action will be selected either by the policy net’s

prediction output or by random selection. This method choice is controlled by a

threshold, and the threshold will monotonically decrease the chance a random ac-

tion is selected. The reason to include random selection during the training is to

increase the exploring chance such that the model won’t satisfy by local optimal so-

lutions. The policy model takes the state as a one-dimension vector input and output

25

doi:10.6342/NTU202302089

a predicted Q value for each action. This predicted vector have the dimension of

the number of possible actions in action space A. Say the number of MEC server

is NMEC , then the dimension of action space will equal to NMEC since the model

allocate one tasks a time.

4. Send to MEC server . Send the task to the assigned MEC server. Record the trans-

mission delay to add to this task’s time cost and remainder tasks’ queue delay.

5. Update state. Update the number count of unassigned tasks in base station and the

number of tasks in MEC queue.

6. Assign all tasks in batch. By repeating process 1-5 to allocate and send all tasks in

batch to MEC servers.

7. MEC Execution After all tasks in batch have been assigned toMEC server, eachMEC

server execute tasks in queue in parallel. For each server, it randomly pick one task

in the queue to execute. If the task is estimated not able to finish within the ongoing

mini round, then the MEC server will not proceed to execute this task but instead

find another tasks in queue until it find the next task that can finish within that mini

round or no other task left not-visited. The utilization rate of a MEC server in a mini

round is defined as the percentage of time it is used to execute tasks.The utilization

rate per mini round are recorded and and evaluated that can demonstrate how well

MEC servers are utilized through out all 20 mini round in a public round.

After finish executing a mini round, all tasks that failed to be completely executed

will be sent back to base station to the waiting queue so that in the future mini round the

allocation engine can possibly allocate those tasks again. The reason to sent unfinished

task back to base station instead of keep those at the server they’re at is that, MEC server

26

doi:10.6342/NTU202302089

can bemore likely to adjust their allocation decisions andwrong allocation decisions won’t

be easily accumulate causing worse performance. In our running scenario, since large

tasks are a lot larger than small tasks, if too many large tasks are assigned into one MEC

server might cause the server stuck by large tasks for too long. Hence, for those unfinished

tasks at MEC servers at the end of a mini round, re-allocate them in the next mini round

can lead to more stable and better completion rate.

Figure 3.1: Flowchart for Mini Round Operations

27

doi:10.6342/NTU20230208928

doi:10.6342/NTU202302089

Chapter 4 Performance Evaluation

4.1 Multi-Round Simulation General Performance Anal-

ysis

In this section, we run multi round simulation to estimate the performance of the

system on the proposed algorithm. Setting random allocation as the baseline to compare,

the simulation ran through multiple rounds of training under different intensity of task

arrival rate.

4.1.1 Environment System Setup

Consider a fixed amount number of mobile users and MEC servers randomly scat-

tered in a urban district as a circle area with 2km radius. The district has NB = 4 Base

Stations and K = 4 MEC Servers. Each MEC Servers is distributed separately base

stations, each base station has access and same priority to each MEC severs. The total

number of mobile users in the environment I = 40. For each users, the tasks generated

by them follows the Poisson distribution Poi(λ)with the arrival rate equals λ. The arrival

rate λ ∈ [8, 10, 12, 14] ranging from less traffic to tense traffic.

29

doi:10.6342/NTU202302089

4.1.1.1 Data Size Type

For the data size type, there are three data size type: Small, Medium and Large,

each is also denoted as Type0, Type1 and Type2 respectively. For each data size type, the

task is uniformly sampled over a range respected to its data size type. The size between

difference data size type can be two to ten times larger. In such environment, it is important

to cleverly allocate tasks so that tasks can be fairly executed as much as possible without

sacrificing the overall performance. Each task have difference probability to be each task

size type. Here, from small to large, the probability each tasks is which task size type are

[0.5, 0.3, 0.2]. This way of definition such that the system has small task type the most and

large task size type the least, which is similar to real-world interaction environment. The

detail setting of parameter can see Table 4.1.

Table 4.1: PARAMETER SETTING

Parameters Values

Number of BSs (NB) 3
Number of MECs (K) 4
Number of Users (I) 40
Task arrival rate λ per User [8, 10, 12, 14]
Task Type [0, 1, 2]
Small Data size (Type0) 3-5 kbits
Medium Date size (Type1) 6-10 kbits
Large Data size (Type2) 15-50 kbits
Probability of each data type [0.5, 0.3, 0.2]
The Computation Intensity 1000 (cycles/bit)
Task deadline 0.3-1 sec.
Public Round 1 sec.
Mini Round 0.05 sec.
MEC CPU frequency of 4 MEC [1, 1, 1, 2] GHz

30

doi:10.6342/NTU202302089

4.1.1.2 MEC CPU Frequency

At the MEC server side, four MEC servers have CPU frequency = 0.5, 0.5, 1, 2 re-

spectively. Instead of setting all MEC server the same CPU frequency as previous paper

set ([8]), by setting different CPU frequency increase the robustness of the model to adapt

to a more complex scenario that in fact closer to the real world situation. Usually MEC

servers scattered in urban area are maintained separately, when a new generation MEC

server comes out, the company that organize MEC servers often change servers one at a

time. In such way, MEC servers are likely to have very different computational power.

4.1.2 Completion Rate over different Arrival Rate

4.1.2.1 Hard Completion Rate and Soft Completion Rate

Here we compare two kind of completion rate performance over different task ar-

rival rate λ: Hard Completion Rate and Soft Completion Rate. The soft completion

rate count the ratio of tasks that have been successfully executed within a public round

regardless of their respective delay tolerance. Hard completion rate, on the other hand,

count the ratio of tasks not only have finished their execution but also finished within de-

lay tolerance. As the tasks’ delay tolerance fall between [0.3, 1], it is challenging to have

most tasks finish in time before delay tolerance, hence we also evaluate the performance

on soft completion rate to get a broader view. The hard completion rate is demonstrated

at Figure 4.1. As the traffic getting heavier, the proposed DRL allocation method manage

to have a steady and better performance over random allocation method.

31

doi:10.6342/NTU202302089

Figure 4.1: Hard Completion Rate over Different Task Arrival Rate

If we look at the soft completion rate that release the delay tolerance constrain, we

can observe that both DRL and Random method have promising results. Compared to the

random allocation, DRL allocation managed to have a better performance no matter in

heavy traffic or light traffic task arrival rate.

Figure 4.2: Soft Completion Rate (λ = 9)

Figure 4.3: Soft Completion Rate (λ = 10)

32

doi:10.6342/NTU202302089

Figure 4.4: Soft Completion Rate (λ = 11)

Figure 4.5: Soft Completion Rate (λ = 12)

Figure 4.6: Soft Completion Rate (λ = 13)

4.1.3 Utilization per Mini Round Performance

In this subsection, we observe and analysis the performance of utilization over all

MEC servers every mini round. In the real world scenario, allocation decision is a chain

of multiple decisions, and each allocation decision will affect its immediate successor and

even multiple descendent from it. The resources allocated and the choice it make to assign

which task to whichMEC server will have huge impact on when and howmuch each tasks

be executed. Ideally, if a allocation scheme is well designed andwell optimized, we should

be able to observe high utilization average over mini rounds. Also, a better allocation will

33

doi:10.6342/NTU202302089

be able to see the utilization early drop at the ending of the mini rounds. This can be

observed in Figure 4.9. The reason is that, if the amount of computation requirement

is affordable within a public round, a optimized allocation decisions will maximize the

percentage of utilization from the early mini round. In such way, tasks will be executed

earlier and the idle computation resource will appear at the end of the mini rounds. In

contrast, a less utilized allocation scheme will have a less average utilization and late to

non utilization drop at the end of mini rounds.

We compare the DRL method and random method over 200 public rounds to see

the average utilization over each mini rounds. When the traffic is heavy (λ = 13), both

method hold a steady utilization over each mini round. As we can see DRL has the better

average utilization. When the traffic is less heavy (λ = 9) where both method has over 90

percentage of soft completion rate. DRL utilization drop at mini round 18 from its steady

average utilization, whereas random method holds similar utilization throughout all mini

rounds. In light traffic (λ = 7) situation, both methods manage to finish most tasks before

the end of mini round, indicating that when traffic is not too heavy, bothmethod can handle

finishing the tasks well. However, when the heavy traffic comes, DRL managed to have

better performance over all mini rounds.

Figure 4.7: Utilization (λ = 13)

34

doi:10.6342/NTU202302089

Figure 4.8: Utilization (λ = 9)

Figure 4.9: Utilization (λ = 7)

4.1.4 Fairness Analysis

Aside from finishing the tasks as fast as possible and as much as possible, it is im-

portant while easily neglected to make sure the fairness among tasks are considered and

maintained. Throughout the survey papers applying DRL-based method to solve MEC

server resource allocation problem, Their objectives focus either on energy consumption

[9] or a mix average of energy and time cost [8]. In this research, aside from optimiz-

ing the number of tasks being successfully executed, we also evaluate the performance of

fairness between tasks. Here we apply the Maximal Task Fairness Ratio and the Average

Task Fairness Ratio defined in [12].

35

doi:10.6342/NTU202302089

1. Maximal Task Fariness Ratio

For each task Ai, the required deadline is defined as τi, and the actual total time

consumption from being requested from the user to being executed is denoted as

tk, then define an auxiliary variable Gi =
ti
τi
. In another words, this is the ratio of

actual delay to maximum delay tolerance of the task. In the following article, this

ratio is called the task fairness ratioGi of taskAi. For each task, getting minimum

task fairness ratio imply faster execution, which implying better satisfaction. On the

contrary, if the task fairness ratio goes larger than 1, it means the task isn’t executed

within deadline. Consider A as the task set including all tasks in the system per

public round, then define:

Gmax = max
Ai∈A

Gi (4.1)

whereGmax denotes the maximum task fairness ratioGi among all tasks in a public

round. To determine a method to be more fair than another, smallerGmax implies a

smaller upper bound of task fairness ratio Gi, hence a more fair method.

Table 4.2: Gmax among different task arrival rate

DRL Random

λ = 9 3.443 3.819
λ = 10 3.288 3.712
λ = 11 4.011 3.880
λ = 12 3.995 3.898
λ = 13 4.088 3.926

As we can see from Table4.2, DRL have much better when arrival rate λ = 9, 10,

meaning a better allocation under light traffic. In heavy traffic, however, random

method got slightly better Gmax but the difference is small.

2. Average Task Fairness Ratio

36

doi:10.6342/NTU202302089

Another point of view is to look at the average of all task fairness ration Gi, which

is denoted as Gavg.

Gavg =
1

ntask

∑
Ai∈A

Gi (4.2)

In this way, the average task fairness ratio represent a more general fairness among

all tasks, as Gmax simply demonstrate the worst task’s task fairness ratio, the re-

maining tasks’ task fairness ratio distribution are unknown.

Table 4.3: Gavg among different task arrival rate

DRL Random

λ = 9 0.985 1.079
λ = 10 0.944 1.117
λ = 11 1.059 1.218
λ = 12 1.081 1.222
λ = 13 1.131 1.244

Looking at the result ofGavg between DRL and Random over different arrival rate λ,

DRL all yield a better performance onGavg, which we can imply that DRL provide a better

allocation decision through the point of view of fairness. Not only the DRL method have

better performance on Gmax, but also maintain a fair performance on individual task’s

worst fairness ratio Gmax.

4.1.5 Model Training

For each simulation, the model run through 200 public rounds and see the perfor-

mance throughout the whole process. Since the model try to make allocation decision to

MEC servers, the initial model allocation decision is similar as randomly allocate each

tasks. Noted that the performance of a random allocation will not be obviously bad com-

paring to other scenario when applying RL to gaming. Therefore the model does not need

37

doi:10.6342/NTU202302089

many public rounds to warm up. When we look at the average task fairness ratio of the

first 50 public rounds, last 100 public rounds, and last 50 public rounds respectively, the

average fairness ratio when λ = 16 is 1.236, 1.231, 1.221. Since their differences are

within 1 %, such results show that the model does not need a warm up period for many

public rounds. Hence in the simulation we directly illustrate the performance throughout

all public rounds without a training period.

4.2 PerformanceAnalysis ofMulti-RoundSimulation over

Different Data Size

In this section we break down the view to look at performance over different sets of

size types. Inside the simulation, three types of data size tasks are randomly generated:

Small(Type0), Medium(Type1), Large(Type2). The data size for each type is uniformly

sampled within its respected range, and the average data size different between different

tasks can have up to 5-10 times difference. In real world scenario, various kind of tasks

requests come and go to MEC servers. These tasks can be small computation requests that

do not need to be strictly finished within their deadline, or can also be huge computation

offloading requests that require fast completion like AI model training in reference. As

the world is getting more and more less tolerant to delay, it is challenging to satisfy all

types of tasks computing requests. On the other hand, to nicely evaluate pros and cons

between various kind of allocation methods are challenging as well, because different

point of views can have very different conclusions. For example, if an allocation scheme

aims to maximize the utilization among all MEC servers, chances are the scheme can

favor larger tasks because just by running large tasks can easily fill up the utilization.

38

doi:10.6342/NTU202302089

In such way, however, smaller tasks could possibly face timeout. On the other hand,

if an allocation mechanism mainly focuses on minimizing total energy consumption on

the local devices, large tasks might cause longer time to finish since the allocation model

could possibly execute smaller tasks first for less energy consumption. Therefore, whether

different size of tasks can all benefit fairly from an allocation model becomes an important

yet easily neglected challenge to tackle. In this section, we compare the performance on

soft completion rate, max task fairness ratio Gmax, and average task fairness ratio Gavg

over three types of data size.

4.2.1 Completion Rate over task size type

Table 4.4: Soft Completion rate among different task size

DRL Random

Small Medium Large Small Medium Large

λ = 8 0.908 0.904 0.783 0.866 0.864 0.757

λ = 10 0.856 0.871 0.803 0.790 0.804 0.711

λ = 12 0.846 0.778 0.491 0.779 0.714 0.442

λ = 14 0.770 0.695 0.388 0.692 0.627 0.344

The simulation runs over 200 public rounds with the same basic parameter setup as

Sec.4.1. As we can see, small tasks have a better average completion rate. This is because

these small tasks can be quickly executed as long as it’s there turn to execute. As the

task getting larger, the average soft completion rate decrease gradually. In general, DRL

manage to have a better soft completion rate over the Randommethod. When we compare

the best completion rate among task size type, only once at λ = 10 has medium task

39

doi:10.6342/NTU202302089

type yield a better completion rate than small data size. Another thing we can observe

is that, when the traffic getting heavy, large tasks are effected the most, where the soft

completion rate dropped 0.4 percent from λ = 8 to λ = 14. This is an inherent challenge

because when the system have large number of tasks of all data size types, sacrificing

large task’s performance can be more likely to maintain small and medium data size’s

overall performance. In other word, if large data size type tasks are been chosen to execute

even slightly more can strongly affect performance of small and medium tasks. Through

the simulation can observe that in order to have improvement on all types of tasks size,

methods that have the higher utilization rate can achieve this. When λ = 14, for example,

not only the DRL has improvement on large data size type’s utilization rate, small and

medium data size both have a slight better utilization rate per mini round.

4.2.2 Task Fairness Ratio over data size type

Aside from completion rate, in this section we take a look at the fairness index over

different data size type. By looking at the maximum task fairness ratio Gmax and the

average task fairness ratio Gavg, we evaluate how fair among each data size type task.

The simulation result is shown in Table 4.5.

Table 4.5: Gmax among different task size

DRL Random

Small Medium Large Small Medium Large

λ = 8 2.10 2.12 2.14 2.51 2.08 1.31
λ = 10 2.42 2.48 2.55 3.36 3.31 3.89
λ = 12 2.66 2.68 2.38 3.7 2.99 3.26
λ = 14 2.84 2.59 2.52 4.30 3.88 2.97

Compared with the random method, DRL has a better and stable Gmax. When the

40

doi:10.6342/NTU202302089

traffic is light, both method made fair allocations, and the random method has the best

Gmax at large task size when λ = 8. However, when λ increases to 14, the DRL method

holds on to better Gmax in three types of task fairness ratio than random. This tendency

shows that the DRL method handles well in heavy traffic situations. Also, we can observe

that when λ = 12, 14, the large data size type has the minimum Gmax comparing to small

and medium data size type. To explain, since more large data size type tasks are in the

system looking for computation resources, they increase the proportion of time the MEC

server executing the large tasks, hence smaller tasks are effected more. As they are more

likely need towait for large tasks finish, the queue time for smaller tasks are likely increase.

Table 4.6: Gavg among different task size

DRL Random

Small Medium Large Small Medium Large

λ = 8 0.42 0.45 0.54 0.53 0.56 0.64
λ = 10 0.46 0.51 0.64 0.61 0.66 0.81
λ = 12 0.52 0.56 0.69 0.70 0.75 0.90
λ = 14 0.53 0.56 0.65 0.74 0.77 0.86

At Table 4.6, the average task fairness ratios are demonstrated. From λ = 8 to

λ = 14, the DRL manage to keep a stable average fairness ratio among different, and the

difference between different tasks size type are not too large. In comparison, the random

allocation increase faster when task arrival rate increases, for example the small tasks

increase 39% of average fairness ratio in random allocation, which is larger than 26% for

DRL allocation on small task.

41

doi:10.6342/NTU202302089

4.3 Large Data Size Difference with Weighted Reward

In the previous section experiments, we set three types of different data size type and

compared the performance. To follow up, in the following section we simulate on data

size type that have much larger size difference. The motivation to expand this simulation

is that, in real world the task size difference can be up to 100 times, how many large tasks

being computed before small tasks then greatly affect the computation time of small tasks.

Since throughout previous survey papers, none of them ran simulation under complex data

size range, this section made a experiment on distant data size type.

Consider three data size, where the small data size can be as small as 0.2 kbits, and

the large data size can be up to 70 kbits. The maximal possible data size difference can

then be up to more than 100 times difference, which is much larger than the 10 times data

size difference in previous simulations. The detail of parameter setup can see Table 4.7.

Noted that the probability distribution of each data size type is 70%, 20%, and 10%.

The setup is meant to emulate an environment where extremely large data size tasks exist

but doesn’t appear frequently. Hence, how to manage these seldom appeared large tasks

and maintain the fairness among tasks is the main goal in this simulation. The large task

size fall within the range of [40, 70] kbits, which means that some large tasks are not going

to fit in a mini round of a small MEC server that have 50 kbits maximal CPU frequency per

mini round. Therefore, these large tasks would be better to offload to the largeMEC server

(with 100 kbits max. CPU frequency /mini round). In the following simulation result can

tell that, the proposed DRL allocation method can have better allocation scheme.

42

doi:10.6342/NTU202302089

Table 4.7: PARAMETER SETTING (LARGE DATA DIFF)

Parameters Values

Number of BSs 7
Number of MECs 4
Number of Users 40
Task arrival rate λ per User [8, 10, 12, 14, 16]
Task Type T [0, 1, 2]
SMALL
Small Data size (Type0) 0.2-2 kbits
Prob. of Small Data 0.7
MEDIUM
Medium Data size (Type1) 10-30 kbits
Prob. of Medium Data 0.2
LARGE
Large Data size (Type2) 40-70 kbits
Prob. of Small Data 0.1

The Computation Intensity 1000 (cycles/bit)
Task deadline 0.3-1 sec.
Public Round 1 sec.
Mini Round 0.05 sec.
MEC CPU frequency of 4 MEC [1, 1, 1, 2] GHz
Max. CPU frequency of each MEC
in a mini round

[50, 50, 50, 100] kbits

4.3.1 Weighed Reward Function

As the task size variation getting larger and larger, larger tasks should receive larger

weight to compensate its time-consuming characteristic. Previously, the reward in DRL

is recorded as the number of tasks finished, regardless of the difference of task size. Here

we introduce weighted reward depending on the task’s size. Denote the task size as x, the

weighted reward r is determined by weighted reward function r = R(x). We experiment

several kind of weighted reward function and evaluate the performance when the task

arrival rate λ = 16.

Size Type Weighted Reward Function

43

doi:10.6342/NTU202302089

Define the weighted reward function equals to the task’s data size type T +1. Hence,

the large size task get weight = 3, medium weight = 2, and small weight = 1.

R(x) = T + 1 (4.3)

Linear Weighted Reward Function

Define the linear weighted reward function as the round down value of the task’s

data actual size in kbits. The task size range [0.5, 70] among all task size type, hence

possible weight fall between positive integer no larger than 70.

R(x) = ⌊ x

106
⌋ (4.4)

Square Root Weighted Reward Function

Define the square root weighted reward function by setting the square root of the

actual data size as the weight. The threshold of which data size to apply square root

is tested to performs best starting at 0.

R(x) =

√
x

106
(4.5)

Power Weighted Reward Function

Define the power weighted reward function as the data size (in kbits) to the power of

1.1. Since using exponential weight can greatly rewards large size task completion,

which might contradict the goal of fairness among all task size type. Therefore, here

we set a small power to test its performance.

R(x) = (
x

106
)1.1 (4.6)

44

doi:10.6342/NTU202302089

Here we ran the performance among different weighted reward function over three

different traffic arrival rate representing intensive (λ = 16), normal (λ = 12), and light

(λ = 8) traffic scenario. The performance is evaluate by maximal task fairness ratioGmax

and average task fairness ratio Gavg. By looking at the fairness performance enable us to

separate pros and cons between different weighted reward function method.

Table 4.8: Weighted Reward Function Comparison via Gmax (λ = 16)

Data Size Type Linear Square Root Power

λ = 16 DRL Random DRL Random DRL Random DRL Random

Small 4.99 7.20 4.92 4.52 5.00 5.85 4.97 6.20

Medium 5.58 5.82 5.29 6.15 5.37 5.14 5.25 4.09

Large 5.36 5.85 4.84 5.19 4.97 3.46 4.98 3.37

Table 4.9: Weighted Reward Function Comparison via Gavg (λ = 16)

Data Size Type Linear Square Root Power

λ = 16 DRL Random DRL Random DRL Random DRL Random

Small 1.03 1.13 1.00 1.10 1.03 1.12 1.08 1.19

Medium 1.46 1.49 1.36 1.42 1.47 1.51 1.44 1.43

Large 1.73 1.68 1.75 1.71 1.74 1.69 1.74 1.70

Table 4.10: Weighted Reward Function Comparison via Gmax (λ = 12)

Data Size Type Linear Square Root Power

λ = 12 DRL Random DRL Random DRL Random DRL Random

Small 4.12 4.17 4.10 4.66 3.75 3.52 3.84 4.50

Medium 4.14 6.21 4.68 4.79 4.05 4.94 3.86 4.14

Large 4.30 6.25 4.61 6.12 3.79 4.51 4.20 4.46

45

doi:10.6342/NTU202302089

Table 4.11: Weighted Reward Function Comparison via Gavg (λ = 12)

Data Size Type Linear Square Root Power

λ = 12 DRL Random DRL Random DRL Random DRL Random

Small 0.88 0.95 0.91 0.98 0.83 0.92 0.84 0.92

Medium 1.16 1.30 1.25 1.36 1.17 1.34 1.04 1.17

Large 1.70 1.72 1.77 1.78 1.58 1.65 1.63 1.67

Table 4.12: Weighted Reward Function Comparison via Gmax (λ = 8)

Data Size Type Linear Square Root Power

λ = 8 DRL Random DRL Random DRL Random DRL Random

Small 2.84 3.16 3.16 3.54 2.77 2.32 2.86 3.40

Medium 2.88 3.25 2.86 3.09 2.70 2.75 2.62 3.34

Large 3.33 3.04 3.58 3.30 3.3 3.73 3.26 3.23

Table 4.13: Weighted Reward Function Comparison via Gavg (λ = 8)

Data Size Type Linear Square Root Power

λ = 8 DRL Random DRL Random DRL Random DRL Random

Small 0.67 0.71 0.74 0.80 0.68 0.72 0.69 0.72

Medium 0.91 1.02 0.86 0.99 0.82 0.92 0.82 0.91

Large 1.46 1.54 1.48 1.54 1.49 1.58 1.42 1.50

The Table 4.8 and Table 4.9 shows the simulation integrating different weighted re-

ward functions and evaluate on task fairness ratio Gmax & Gavg under intensive traffic.

For each kind of weighted reward function, the task fairness compares over each task size

type respectively. The highlights shows the better (smaller) values. When looking at the

46

doi:10.6342/NTU202302089

maximum task fairness ratio Gmax, Applying data size type and linear generates better

performance in intensive traffic (λ = 16), since they both manage to have better task

fairness ratio over all three task size type. This can also been seen in Gavg, where both

method have better average task fairness ratio over small and medium tasks. When the

traffic is normal (λ = 12), through Table 4.11 and Table 4.10, all weighted reward func-

tion results in good performance as they performs better performance in Gavg than the

random method. This states the overage fairness is better in DRL. On the other hand, all

weighted reward function results in good the maximal fairness ratio Gmax comparing to

the random method as well. Therefore, when the traffic is normal, choosing either way of

weighted reward function make no huge difference in fairness performance. In light traffic

(λ = 8) scenario, all weighted methods performs well in general in Gavg. This can been

seen in Table 4.13. In maximal fairness ratioGmax, however, have different performance.

The data size type, square root and power methods all have better performance in small

medium, but not in large. In summary, when the traffic is normal and light, the choosing

of weighted reward function does not make huge difference in fairness ratio performance

among different tasks size type. However, when the traffic is intense, size type weighted

reward function and linear weighted reward function performs better. In the following

simulation, we will apply the linear weighted reward function to calculate the weighted

reward.

4.3.2 Fairness Index Evaluation

Here the simulation ran through 5 different task arrival rate (λ = 8, 10, 12, 14, 16) and

compare the performance between the proposed DRLmethod and the randommethod size

by size. For the small tasks, the DRLmethod outperform in 3 out of 5 testing. Themedium

47

doi:10.6342/NTU202302089

Table 4.14: Gmax among different task size type

Small Medium Large

DRL Random DRL Random DRL Random

λ = 8 2.93 3.85 2.87 3.38 3.25 2.78
λ = 10 3.67 3.16 3.68 3.59 3.75 3.38
λ = 12 3.88 4.99 4.08 4.37 3.98 3.47
λ = 14 4.76 6.50 5.34 4.67 5.05 3.40
λ = 16 4.92 4.52 5.29 6.15 4.84 5.19

tasks have the DRL method better performance in 3/5 cases. In the large tasks, however,

the random method managed to have a better performance in 4/5 arrival rate scenario.

We can interpret the DRL method focus more on finishing small to medium, whereas the

random method tends to be more uncertain on performance over different data size type.

Table 4.15: Gavg among different task size type

Small Medium Large

DRL Random DRL Random DRL Random

λ = 8 0.79 0.75 0.88 0.97 1.45 1.54
λ = 10 0.82 0.87 1.05 1.17 1.67 1.73
λ = 12 0.87 0.94 1.14 1.27 1.60 1.64
λ = 14 1.01 1.10 1.42 1.45 1.82 1.79
λ = 16 1.00 1.10 1.36 1.42 1.75 1.71

The average task fairness ratio Gavg give us a more general point of view over all

tasks. As we can see in Table 4.15, the DRL method outperforms the random methods

in both the small tasks and medium tasks, where for each λ, the Gavg in DRL in smaller.

The DRL method also have better Gavg when the traffic is relatively smaller. Although

the DRL have larger Gavg in larger λ, the difference is close. Therefore, by combining

performance over Gavg and Gmax, we conclude the fact that the DRL method manage

to handle extreme data size type difference better than the random method. With this

robustness, the DRLmethod has great potential to successfully handle real world complex

48

doi:10.6342/NTU202302089

task size flow scenario.

49

doi:10.6342/NTU20230208950

doi:10.6342/NTU202302089

Chapter 5 Conclusion and Future

Work

5.1 Conclusion

In this thesis, we have proposed a Deep reinforcement learning based resource allo-

cation algorithm on MEC servers with fairness awareness. In order to design a resource

allocation method optimizing desiring objective like time and energy, researchers implied

various kind of method to try to tackle this problem. Among those methods, multiple Deep

reinforcement learning based allocation algorithms have been proposed to optimize time

consumption or energy consumption. However, aside from maximize time consumption

among all tasks, it is also important to take the fairness between tasks into consideration.

Since high performance overall might neglect some tasks being sacrificed to achieve the

result. Therefore, this thesis designed a DRL-based resource allocation algorithm that

value task fairness through the maximal task fairness ratio Gmax and average task fair-

ness ratio Gavg. Moreover, we made simulations on scenario that tasks size comes from

huge size difference, and ran the model to compare with the random method and shown a

promising result.

With the simplified definition on the state, the proposed approach effectively reduces

51

doi:10.6342/NTU202302089

the state space size and therefore reduce the complexity of the decision process. Compared

to previous research’s definition [8], where the state is the sum cost of the whole system

and the total available computational capacity, we describe the state with counting number

of tasks of each type in the system. In this way of definition, the state will not include

attributes that are continuous but integer. Hence, the possible number of states became

countable. Throughout the simulations have shown the model managed to perform decent

allocation scheme under this state definition, which also maintains the fairness between

tasks. Also, instead of allocating a batch of tasks at the same time, the thesis proposed a

smaller model to allocate one task at a time. In this way the DRL model have the action

space with the size of the number of MEC serves in the system, which is much less than

allocating multiple tasks at a time.

5.2 Future Work

For the future work, the DRL network have the flexibility to expand the state space,

we can include more aspects into state so that the model can observe the environment in

a more thorough point of view. For example, in this thesis we mainly focus on maxi-

mizing the number of tasks finished, and minimizing time consumption and task fairness.

We can also expand the objective function to consider energy consumption among tasks.

As the energy consumption takes a huge part of the MEC server data centers’ operating

cost, which is an crucial part its company will value. Also, we can expand the action

decision scenario, and add additional index that need to match, for example the need of

GPU resource. These features can be an important and useful topic for the research and

for the application to real-world system. To do so, we can modify the definition of the

state and include the information that whether each MEC server has a GPU or not. Apart

52

doi:10.6342/NTU202302089

from the MEC servers computation resources, cloud computation resources can also put

into the environment as an offloading destination option. Different from MEC servers,

clouds have massive computation power but in a distant location from the mobile user.

Therefore, how to strategically leverage cloud resources without long queuing time and

transmission time becomes a crucial challenge.

Another possible extension is to apply the model into an multi-core MEC servers

system. Since in the thesis we assume each MEC server act as a single core MEC server,

we can deploy a mechanism with multiple flow in parallel. For each flows of tasks, every

MEC core runs its public rounds and mini rounds respectively and the staring time stamp

of each MEC core are split. With this design of splitting stating time among different

MEC cores, we can simply assign offloaded tasks to the closest next start of the public

round’s MEC core. In the one-core design in the thesis, offloaded tasks will have to wait

until the next start of the public round to be possibly allocated. In other words, those tasks

that arrive soon after a start of a pubic round have to wait a large period of a public round

duration before allocation, causing longer waiting time in the system. By integrating into

the multi-core MEC system, offloaded tasks will only need to wait until the next starting

public round from one of the MEC core, hence those tasks will wait less amount of time

before allocation. Also, since each MEC core execute in parallel, multi-core MEC system

does not increase the computational complexity, meaning better chance to scale up the

size of the employed network.

53

doi:10.6342/NTU20230208954

doi:10.6342/NTU202302089

References

[1] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust, “Mobile-edge

computing architecture: The role of mec in the internet of things,” IEEE Consumer

Electronics Magazine, pp. 84–91, Oct 2016.

[2] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge computing

—a key technology towards 5g,” ETSI white paper, pp. 1–16, Nov 2015.

[3] Q. V. Pham, F. Fang, V. N. Ha, M. J. Piran, M. Le, and et al., “A survey of multi-

access edge computing in 5g and beyond: Fundamentals, technology integration,

and state-of-the-art.” IEEE access, pp. 116 974–117 017, Aug 2020.

[4] N. C. Luong, D. T. Hoang, Gong, S., Niyato, D., Wang, P., Y. C. Liang, and D. I. Kim,

“Applications of deep reinforcement learning in communications and networking: A

survey.” IEEECommunications Surveys and Tutorials, vol. 21, no. 4, pp. 3133–3174,

2019.

[5] V. Mnih and K. et al., “Playing atari with deep reinforcement learning.” arXiv

preprint arXiv:1312.5602, 2013.

[6] W. Xiong, T. Hoang, and W. Y. Wang, “Deeppath: A reinforcement learning method

for knowledge graph reasoning,” arXiv preprint arXiv:1707.06690, 2017.

55

doi:10.6342/NTU202302089

[7] K. Li, T. Zhang, and R. Wang, “Deep reinforcement learning for multiobjective op-

timization,” IEEE transactions on cybernetics, vol. 51, no. 6, pp. 3103–3114, 2020.

[8] J. Li, H. Gao, T. Lv, and Y. Lu, “Deep reinforcement learning based computation

offloading and resource allocation for mec,” IEEE Wireless Communications

and Networking Conference(WCNC), pp. 1–6, 2018. [Online]. Available: https:

//ieeexplore.ieee.org/document/8377343

[9] H. Zhou, K. Jiang, X. Liu, X. Li, and V. C. Leung, “Deep reinforcement learning for

energy-efficient computation offloading in mobile-edge computing,” IEEE Internet

of Things Journal, vol. 9, no. 2, pp. 1517–1530, January 2021.

[10] K. Cheng, Y. Teng, W. Sun, A. Liu, and X. Wang, “Energy-efficient joint offloading

and wireless resource allocation strategy in multi-mec server systems,” Proc. IEEE

ICC, pp. 1–6, May 2018.

[11] L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning for online com-

putation offloading in wireless powered mobile-edge computing networks,” IEEE

Trans. Mobile Comput., vol. 19, no. 11, pp. 2581–2593, November 2020.

[12] J. Zhou and X. Zhang, “Fairness-aware task offloading and resource allocation in

cooperative mobile-edge computing,” IEEE Internet of Things Journal, vol. 9, no. 5,

pp. 3812 – 3824, March 2022.

[13] Z. Shu, J. Wan, J. Lin, S. Wang, D. Li, S. Rho, and C. Yang, “Traffic engineering in

software-defined networking: Measurement and management,” IEEE access, vol. 4,

pp. 3246–3256, 2016.

56

https://ieeexplore.ieee.org/document/8377343
https://ieeexplore.ieee.org/document/8377343

doi:10.6342/NTU202302089

[14] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation task

scheduling for mobile-edge computing systems,” in 2016 IEEE international sym-

posium on information theory (ISIT). IEEE, 2016, pp. 1451–1455.

57

doi:10.6342/NTU20230208958

doi:10.6342/NTU202302089

Denotation

BSi The i-th Base Station

NB Number of Base Station

Mk The k-th MEC Server

K Number of MEC Servers

Cloud Cloud Server

Ui User i

I Number of Users

Aij The j-th Task from User i

N Number of Tasks in a round

Dij Computational Data Size (bit) of task Aij

59

doi:10.6342/NTU202302089

Xij Computation Intensity (CPU Cycle/bit) of task Aij

τij Requested Completion Deadline of task Aij

gij GPU requirement indicator of task Aij

CUi
Class of User i

I Individual User

E Enterprise User

λi Arrival Rate of User i

λE Arrival Rate of Enterprise User

λI Arrival Rate of Individual User

NUi
Number of Tasks generated by User i

T l
ij Estimated local computation of task Aij

ηi Offload threshold of user i (sec.)

N l
i Number of Local-Mode Tasks generated by User Ui

N r
i Number of Remote-Mode Tasks generated by User Ui

Mk
i Number of Tasks processed at the k-th MEC Server required by User

Ui

60

doi:10.6342/NTU202302089

Ci Number of Tasks processed at the Cloud required by User Ui

Al
ij′ j′-th Local-Mode Task generated by User Ui

Ar
ij′ j′-th Remote-Mode Task generated by User Ui

NMk
Number of Tasks in the k-th MEC Server

NC Number of Tasks in the Cloud

61

	口試委員會審定書
	Acknowledgements
	摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Background and Literature Review
	Research Objective

	System Architecture
	Environment
	User & Task
	Users with different task size requirements
	Task Arrival Pattern
	Task Structure Ai

	At Base Station
	Local Computation v.s. Remote Computation
	Single Round to Multi-Round
	Local Offload Threshold

	The Allocation Model
	Local Computing Mode
	MEC Computing Mode
	Deep Reinforcement Learning Model
	State, Action, and Reward Definition
	Q-learning method, Deep Q-learning
	The Public Round and The Mini Round

	Performance Evaluation
	Multi-Round Simulation General Performance Analysis
	Environment System Setup
	Data Size Type
	MEC CPU Frequency

	Completion Rate over different Arrival Rate
	Hard Completion Rate and Soft Completion Rate

	Utilization per Mini Round Performance
	Fairness Analysis
	Model Training

	Performance Analysis of Multi-Round Simulation over Different Data Size
	Completion Rate over task size type
	Task Fairness Ratio over data size type

	Large Data Size Difference with Weighted Reward
	Weighed Reward Function
	Fairness Index Evaluation

	Conclusion and Future Work
	Conclusion
	Future Work

	References
	Denotation

