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摘要 

在矩形脈衝正交分頻多工系統中，恆定振幅序列對於構建前導/領航波形以

促進系統參數識別非常有用。在各種系統參數識別應用中，如隨機接入通道識別

和多輸入多輸出系統中的上行通道探測，通常優先採用正交恆定振幅序列。然

而，在現行的無線通訊標準中採用的傳統正交恆定振幅序列（例如 Zadoff-Chu

序列）數量不足。這種不足會導致需要大量識別序列的系統參數識別性能嚴重降

低。此外，攜帶傳統恆定振幅序列的矩形脈衝正交分頻多工前導/領航波形會受

到大的旁帶頻譜功率影響，因此具有較低的頻譜緊密度。因此，本文旨在開發幾

個𝐼階恆定振幅序列集，其中包含更多正交恆定振幅序列，同時賦予相應的正交分

頻多工前導/領航波形高頻譜緊密度。由於提供了更多正交序列，所開發的𝐼階恆

定振幅序列集可以增強在呈現短延遲的多路徑通道上之系統參數識別性能特性，

同時構成頻譜緊密的正交分頻多工前導/領航波形。 

 

關鍵字：正交分頻多工、正交恆定振幅序列、領航、前導、系統參數識別、頻譜

緊密度。 
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Abstract 

   In rectangularly-pulsed orthogonal frequency division multiplexing (OFDM) 

systems, constant-amplitude (CA) sequences are desirable to construct preamble/pilot 

waveforms to facilitate system parameter identification (SPI). Orthogonal CA sequences 

are generally preferred in various SPI applications like random-access channel 

identification and uplink channel sounding in multiple-input multiple-output systems. 

However, the number of conventional orthogonal CA sequences (e.g., Zadoff-Chu 

sequences) that can be adopted in popular wireless communication standards is 

insufficient. Such insufficiency causes heavy performance degradation for SPI requiring 

a large number of identification sequences. Moreover, rectangularly-pulsed OFDM 

preamble/pilot waveforms carrying conventional CA sequences suffer from large power 

spectral sidelobes and thus exhibit low spectral compactness. This paper is thus motivated 

to develop several order-𝐼 CA sequence families which contain more orthogonal CA 

sequences while endowing the corresponding OFDM preamble/pilot waveforms with 

fast-decaying spectral sidelobes. Since more orthogonal sequences are provided, the 

developed order-𝐼 CA sequence families can enhance the performance characteristics in 

SPI over multipath channels exhibiting short-delay channel profiles, while composing 

spectrally compact OFDM preamble/pilot waveforms. 

 

Index Terms: Orthogonal frequency division multiplexing, orthogonal constant-

amplitude sequences, pilot, preamble, system parameter identification, spectral 

compactness. 
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Chapter 1 

Introduction 

Rectangularly-pulsed orthogonal frequency division multiplexing (OFDM) 

waveforms are commonly adopted in modern wireless communication systems [1]-[3] 

due to their feasibility of efficient implementation by fast Fourier transform, easy 

incorporation of cyclic prefix (CP) to facilitate initial synchronization and channel 

estimation, and robustness against frequency-selective channel dispersion. In 

rectangularly-pulsed OFDM systems, constant amplitude (CA) sequences are often used 

as the training sequence in frequency domain to modulate uniformly spaced subcarriers 

and thereby enable robust fine initial time/frequency synchronization [4]-[9] and accurate 

channel estimation [9]-[14] at the receiver combating frequency-selective channel 

dispersion. When exact or near orthogonality is sustained among sequences, multiple CA 

training sequences are also adopted to facilitate the identification of different system 

parameters for establishing initial connection, including the identification of 

cell/sector/antenna, random access (RA) channel, duplex mode, guard ratio, etc. [1]-[3], 

[15]-[17]. Two typical applications based on system parameter identification (SPI) are 

RA channel identification [17]-[21] and multiple-input multiple-output (MIMO) 

simultaneous channel estimation (SCE) [14], [44]-[48]. Specifically, the received OFDM 

waveforms carrying different CA sequences in frequency domain are identified by cross-

correlating the received frequency-domain samples with all possible 

identification/sounding sequences, thereby enabling RA channel identification [17]-[21]. 

Several sounding waveforms carrying different CA sequences in frequency domain are 

concurrently transmitted by different transmit antennas and separated at different receive 

antennas by dispreading the received frequency-domain samples with all sounding 
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sequences, thereby enabling SCE for several uplink MIMO channels [14], [44]-[48]. 

Multiple orthogonal CA sequences are generally preferred since better sequence 

identification can be achieved to ensure less false identification in RA channel 

identification when the channel coherence bandwidth [25] is larger than the waveform 

bandwidth. Meanwhile, it is analytically shown that the large-size SCE can be achieved 

with less disturbance from ISI when the adopted CA sequence family is composed of 

orthogonal sequence subfamilies, each containing as many as permissible cyclically-

shiftable CA sequences as possible. 

In [17]-[21], they focus on RA applications in various communication systems. They 

aim to improve the detection performance and efficiency of RA preambles while 

mitigating interference [17]-[20] or collision issues [21]. For RA application, Zadoff-Chu 

(ZC) sequences are commonly employed as part of their preamble designs. However, 

insufficient number of adopted orthogonal ZC sequences may reduce the performance of 

RA applications. Overall, these papers collectively contribute to advancing RA 

procedures, enhancing detection performance, reducing collision issues, and improving 

resource utilization by the proposed techniques in various communication systems. 

Using cyclically-shiftable ZC sequences as sounding sequences, various SCE 

approaches have been developed to estimate channel frequency responses (CFRs) on all 

pilot subcarriers in the least-square (LS) manner directly [48] or estimate channel impulse 

responses (CIRs) in the LS manner first and then transformed into CFR estimates through 

discrete Fourier transform (DFT) on all subcarriers indirectly [24], [44]-[47], after 

separating multiple received sounding signals with the aid of cyclically-shiftable 

sounding sequences. Within the assumption of perfect time and frequency alignment 

among all received sounding signals, the SCE performance has been analytically studied 

for independent Rayleigh multipath channels in [44], [46], [48] and for correlated 
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Rayleigh multipath channels in [45], [47]. Perfect time alignment is assumed to be 

achieved under the cellular system setup that the timing advance mechanism is ideally 

conducted by all uplink transmitters [46]. The detrimental effect of time offsets and 

frequency offsets among multiple received sounding signals on SCE are studied 

analytically in [24] for independent Rayleigh multipath channels. 

 

1.1 Conventional CA Sequences 

In practice, ZC sequences [26]-[27] are commonly used as such 

training/identification/sounding sequences due to their features of CA and zero periodic 

autocorrelation (ZAC) in both time and frequency domains [8], [28]. Particularly, ZC 

sequences are popular in SPI applications due to the ZAC-enabled feasibility by 

generating all orthogonal ZC sequences through cyclically shifting a root ZC sequence in 

time domain. However, adjacent cyclically-shifted ZC sequences cannot be identified by 

the receiver in the presence of timing uncertainty under which the start time of the useful 

signaling subinterval is practically synchronized only within the CP subinterval [18], [29]. 

Due to such sequence ambiguity [29], not every cyclically shifted ZC sequence can be 

adopted for SPI in the uplink cellular environment since a minimum cyclic shifting 

distance (CSD) is required to differentiate distinct received sequences sent from uplink 

transmitters in different locations [1]-[3], [17]-[21], [29]. As the cell radius is increased, 

a larger minimum CSD is required to avoid such sequence ambiguity [29]. The latter issue 

results in the shortage of adoptable orthogonal ZC sequences in many standard 

preamble/pilot signaling formats for SPI [1]-[3]. For example, a total of 64 ZC sequences 

are required for RA channel identification in uplink 5G-NR [2, Section 6.3.3.1], [17]-[21]. 

Among the various adopted pairs of sequence length and minimum CSD, the numbers of 

adoptable orthogonal ZC sequences are upper bounded by the ratio of sequence length to 
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minimum CSD and turn out be much smaller than 64. Since fewer orthogonal ZC 

sequences are available, RA channel identification suffers from larger false-identification 

error (FIE) in multipath environments exhibiting longer-delay channel profiles, thus 

entailing worse false identification [17]- [18]. As another example in 5G-NR [2, Section 

6.4.1.4.1], a MIMO base station in SCE system can receive uplink pilot waveforms from 

at most 12 transmit antennas concurrently, and thus requires up to 12 cyclically-shiftable 

orthogonal ZC sequences to identify and separate different uplink channels in order to 

achieve high estimation accuracy for static multipath channels [14], [22], [24]. Under this 

setup, the minimum CSD required to avoid sequence ambiguity is specified by 𝑁/12 

for the adopted ZC sequences of different sequence lengths 𝑁 [2, Section 6.4.1.4.3]. 

Since at most 12 cyclically-shiftable orthogonal ZC sequences are available for all 

adopted pairs of sequence length and minimum CSD [2, Section 6.4.1.4], nonorthogonal 

ZC sequences generated from different root indices would be adopted if more than 12 

uplink channels were required to be estimated simultaneously. When a base station 

receives multiple pilot waveforms carrying nonorthogonal ZC sequences simultaneously, 

the SCE performance is heavily degraded due to inter-pilot-interference and this causes 

the pilot contamination problem [14], [22]-[24]. To alleviate the effect of pilot 

contamination, orthogonal Yu-Lee (YL) sequences are constructed in [14] from phase-

rotating ZC sequences generated from a single root index appropriately, and shown to 

outperform nonorthogonal ZC sequences in uplink SCE under perfectly time-

synchronized reception of multiple sounding signals. However, the SCE performance is 

yet to be enhanced under asynchronous signal reception since the maximum number of 

adoptable orthogonal YL sequences is still limited by the ratio of sequence length to 

minimum CSD. 
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1.2 Order-𝐼 CA Sequences 

Although efficient to implement, rectangularly-pulsed OFDM waveforms exhibit 

large power spectral sidelobes due to discontinuity at pulse edges and thus cause strong 

interference to adjacent channels [9], [30]-[32]. Specifically, rectangularly-pulsed OFDM 

waveforms carrying ZC sequences have been shown to render widely spread waveform 

spectrum with baseband spectral sidelobes decaying asymptotically as 𝑓−2  [8]-[11]. 

Although highly compact training waveform spectrum can be composed by suppressing 

spectral sidelobes through delicate signal processing techniques [30]- [35], the feature of 

frequency-domain CA is altered in the transmitted waveform after sidelobe suppression, 

thus compromising the performance characteristics of initial synchronization, channel 

estimation, and SPI at the receiver. To resolve the problem, several order-𝐼 CA sequences 

have been recently developed in [8]-[11] to render extremely small baseband power 

spectral sidelobes decaying asymptotically as 𝑓−2𝐼−2 with sidelobe-decaying order 𝐼 ≥

1 , and thus compose spectrally compact training waveforms for robust fine initial 

synchronization [8]-[9] and accurate channel estimation [9]- [11]. The larger the sidelobe-

decaying order 𝐼  is, the higher spectral compactness the corresponding training 

waveform can achieve. Since frequency-domain CA is sustained, order-𝐼 CA sequences 

enable the same performance characteristics as ZC sequences in initial synchronization 

and channel estimation, while yielding much higher spectral compactness [8]-[11]. In 

[10]-[11], order-𝐼 CA sequences 𝒢𝐼 and ℐ𝐼 were first developed for a large number of 

sequence lengths. For all composite and prime sequence lengths larger than 11, order-𝐼 

CA sequences �̂�𝐼  and ℐ̂𝐼  were further developed in [9] and shown to provide the 

sidelobe-decaying order not smaller than order-𝐼 CA sequences 𝒢𝐼 and ℐ𝐼. To meet the 

needs of various SPI applications, four families containing mutually orthogonal order-𝐼 
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CA sequences were also developed in [9] for respective sequence types 𝒢𝐼, ℐ𝐼, �̂�𝐼, and 

ℐ̂𝐼, based on the method of phase model assigning (PMA), and denoted hereinafter by 

families 𝒢𝐼
(pma)

, ℐ𝐼
(pma)

, �̂�𝐼
(pma)

, and ℐ̂𝐼
(pma)

 for convenience. Nevertheless, the 

numbers of permissible orthogonal sequences provided by these families are still 

insufficient for some SPI applications requiring a large number of orthogonal CA 

sequences (like RA channel identification and MIMO channel sounding) [1]-[2]. This 

paper is thus motivated to develop new families with an attempt to providing more 

orthogonal order- 𝐼  CA sequences. Based on the methods of degenerate PMA and 

augmented PMA, several modified PMA sequence families are constructed herein to 

provide more orthogonal order-𝐼  CA sequences (𝒢𝐼 , ℐ𝐼 , �̂�𝐼 , and ℐ̂𝐼 ) than families 

𝒢𝐼
(pma)

, ℐ𝐼
(pma)

, �̂�𝐼
(pma)

, and ℐ̂𝐼
(pma)

 by possibly trading off the sidelobe-decaying order 

𝐼 ≤ 𝐼.  

Some modified PMA sequence families were proposed by [43] to obtain more 

orthogonal sequences, denoted by families 𝒢
max,𝐼

(dpma,𝜅)
 for 𝜅 ∈ 𝒵2

+ and family �̂�𝐼
(apma)

. 

Families 𝒢
max,𝐼

(dpma,𝜅)
 for 𝜅 ∈ 𝒵2

+ provide larger family sizes than 𝒢𝐼
(pma)

 and offer the 

larger family sizes as 𝜅 increases, but they may entail reduced sidelobe-decaying order. 

Family �̂�𝐼
(apma)

 maintains the same sidelobe-decaying order as family �̂�𝐼
(pma)

 but 

increases the number of orthogonal sequences. [43] provides a detailed explanation of the 

construction and properties of these sequence families. However, the numbers of 

permissible orthogonal sequences provided by these families are still insufficient for 

some SPI applications. Therefore, we aim to develop the search method to construct new 

sequence families 𝒢
max,𝐼

(dpma,𝜅)
 for 𝜅 ∈ 𝒵Ω(𝑁)−1

+ − 𝒵2
+, families �̃�

max,𝐼

(dpma,𝜅)
 𝜅 ∈ 𝒵Ω(𝑁)−1

+ , 

families �̂�
max,𝐼

(dpma,𝜅)
, and 𝒢

max,𝐼

(adpma,𝜅)
 for 𝜅 ∈ 𝒵Ω̃(𝑁)−1

+ . 
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All developed order-𝐼 sequences can still provide much higher spectral compactness 

than ZC, YL, and pseudorandom-noise (PN) sequences for the composed OFDM 

preamble/pilot waveforms. Since sequences ℐ𝐼 and ℐ̂𝐼 can be similarly constructed like 

sequences 𝒢𝐼  and �̂�𝐼 , only the new families composed of order-𝐼 CA sequences 𝒢𝐼 

and �̂�𝐼 are elaborated in the following. The contribution of the paper is addressed as 

follows. 1.5.1 

 

1.3 Contribution 

 Degenerate PMA sequence families 𝒢
max,𝐼

(dpma,𝜅)
 and �̃�

max,𝐼

(dpma,𝜅)
 with sequence 

length 𝑁  are constructed respectively under a proper level- (Ω(𝑁) − 𝜅) 

factorization of 𝑁  for 𝜅 ∈ 𝒵Ω(𝑁)−1
+ − 𝒵2

+  and under a near-proper level-

(Ω(𝑁) − 𝜅) factorization of 𝑁 for 𝜅 ∈ 𝒵Ω(𝑁)−1
+ , where Ω(𝑁) is the prime 

omega value of 𝑁 and denotes the multiplicity in the prime factorization of 𝑁. 

Families 𝒢
max,𝐼

(dpma,𝜅)
 and �̃�

max,𝐼

(dpma,𝜅)
 can provide more orthogonal order-𝐼 CA 

sequences than the PMA sequence family 𝒢𝐼
(pma)

, with or without trading off 

sidelobe-decaying order 𝐼 ≤ 𝐼 . When Ω̃(𝑁) > Ω(𝑁) , degenerate PMA 

sequence families �̂�
max,𝐼

(dpma,𝜅)
 are accordingly constructed under a combined 

proper level-(Ω̃(𝑁) − 𝜅) factorization of 𝑁 for 𝜅 ∈ 𝒵Ω̃(𝑁)−1
+ , where Ω̃(𝑁) 

is the modified prime omega (MPO) value defined in [9, eqs. (14)-(15)] and 

denotes the increased multiplicity provided by all prime factorizations of the 

properly decomposed values from 𝑁. Families �̂�
max,𝐼

(dpma,𝜅)
 can provide more 

orthogonal order-𝐼 CA sequences than the PMA sequence family �̂�𝐼
(pma)

, with 

or without trading off sidelobe-decaying order 𝐼 ≤ 𝐼. 
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 When 𝑁  meets Ω̃(𝑁) > Ω(𝑁) , the augmented PMA sequence family 

�̂�𝐼
(apma)

 provided in [43] is constructed by virtue of phase-rotating every 

existing sequence in family �̂�𝐼
(pma)

 to generate more mutually orthogonal 

sequence members, and thus provides double the number of orthogonal order-

𝐼  CA sequences in family  �̂�𝐼
(pma)

 while maintaining the same sidelobe-

decaying order. Based on the same phase-rotating method, augmented 

degenerate PMA sequence family �̂�
max,𝐼

(adpma,κ)
 is constructed from family 

�̂�
max,𝐼

(dpma,κ)
 for a given 𝜅 ∈ 𝒵Ω̃(𝑁)−1

+  and provides double the family size of 

�̂�
max,𝐼

(dpma,κ)
 without trading off the sidelobe-decaying order. 

 In comparison with ZC, YL, and PN sequence families, modified PMA 

sequence families �̂�
max,𝐼

(dpma,𝜅)
, and �̂�

max,𝐼

(adpma,κ)
 are demonstrated to enhance the 

performance characteristics in uplink RA channel identification over indoor 

and urban Rayleigh multipath environments exhibiting short-delay channel 

profiles. The performance characteristics of SCE over independent Rician 

multipath channels using the degenerate PMA sequence family 𝒢
max,𝐼

(dpma,𝜅)
 

exhibit improvement if a large number of uplink channels were required to be 

estimated simultaneously under asynchronous signal reception. Such 

enhancements and improvements are thanks to the provision of more 

orthogonal CA sequences and thus the mitigation of false identification and 

inter-sequence-interference. Meanwhile, the preamble/pilot waveforms 

carrying order-𝐼  CA sequences from modified PMA sequence families are 

attributed with much higher spectral compactness than those carrying ZC, YL, 

and PN sequences. 
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1.4 Organization 

The paper is organized as follows. Chapter 2 provides a review on order-𝐼 CA 

sequences 𝒢𝐼, �̂�𝐼, ℐ𝐼, and ℐ̂𝐼 [9]-[11]. Chapter 3 develops family 𝒢
max,𝐼

(dpma,𝜅)
 under a 

proper level-(Ω(𝑁) − 𝜅) factorization and family �̃�
max,𝐼

(dpma,𝜅)
 under a near-proper level-

(Ω(𝑁) − 𝜅) factorization, both for 𝜅 ∈ 𝒵Ω(𝑁)−1
+ . When Ω̃(𝑁) > Ω(𝑁), family �̂�𝐼

(apma)
 

is constructed in Chapter 4 by the phase-rotating method. Families �̂�
max,𝐼

(dpma,κ)
 and 

�̂�
max,𝐼

(adpma,κ)
 are also constructed under a combined proper level- (Ω̃(𝑁) − 𝜅) 

factorization for 𝜅 ∈ 𝒵Ω̃(𝑁)−1
+ . In Chapter 5, the OFDM systems employing various CA 

sequence families are compared for RA channel identification and spectral compactness. 

The performance characteristics of OFDM SCE systems using various CA sequences 

families are analyzed and demonstrated in Chapter 6. Chapter 7 concludes the paper. 

 

1.5 Notations 

1.5.1 Boldface lower-case and upper-case letters denote column vectors and 

matrices, respectively. Superscripts 𝑡, ∗, and ℎ denote transpose, complex 

conjugate, and conjugate transpose, respectively. 𝒵∗, 𝒵𝐾 and 𝒵𝐾
+ are the 

set of nonnegative integers, {0,1, … , 𝐾 − 1} and {1,2, … , 𝐾}, respectively. 

By default, 𝒵0
+ is an empty set. We also use [𝑥𝑘; 𝑘 ∈ 𝒵𝐾] to represent a 

𝐾 × 1 vector with 𝑥𝑘 being the 𝑘-th entry, min{𝑥, 𝑦} the smaller between 

𝑥 and 𝑦, ((𝑛))
𝑁

 the modulo-𝑁 value of 𝑛, ‖𝐱‖ the Frobenius norm of 

vector 𝐱, ⌈𝑥⌉ the smallest integer that is not smaller than 𝑥, and ⌊𝑥⌋ the 

largest integer that is not larger than 𝑥 . We let 𝜔𝐾 ≜ exp {−𝑗
2𝜋

𝐾
}  and 

denote 𝐖𝐾 ≜ [𝐾−1/2𝜔𝐾
𝑚𝑘; 𝑚 ∈ 𝒵𝐾, 𝑘 ∈ 𝒵𝐾] as a 𝐾 × 𝐾 unitary discrete-
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Fourier-transform (DFT) matrix with normalized columns and rows. ℰ{·} 

denotes the expectation operator. 𝑗 ≜ √−1 is the imaginary unit. 

1.5.2 A polygon is said to be cyclic if all vertices of this polygon can circumscribe 

a circle. 

1.5.3 Due to the time-offset uncertainty, only the cyclically-shifted sequences 

generated from a given time-domain ZAC sequence with the CSD of at least 

𝜔min can be adopted as the sounding sequences in {�̃�𝑘; 𝑘 ∈ 𝒵𝐾} in order to 

avoid sequence identification ambiguity in the SCE process As such, there 

are at most ⌊𝑁/𝜔min⌋  permissible cyclically-shiftable CA sequences in 

{𝐪𝑘; 𝑘 ∈ 𝒵𝐾} in the case with 𝐾 > ⌊𝑁/𝜔min⌋. 

1.5.4 Notably, �̃�0 = Ω(𝑁) and all Hamming weights 𝓌𝑚 sum to Ω(𝑁). 
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Chapter 2 

Review of Order-𝑰 Constant-Amplitude Sequences 

2.1 Signal Model 

Consider the rectangularly-pulsed OFDM waveform carrying a sequence of 𝑁 

complex symbols. In the nominal time interval of length 𝑇, these symbols are modulated 

into 𝑁 uniformly-spaced subcarriers interleaved among 𝛾𝑁 subcarriers with a positive-

integer-valued interleaving factor 𝛾. The time interval is partitioned into a guard CP 

subinterval of length 𝑇𝑔 followed by a useful signaling subinterval of length 𝑇𝑑 = 𝑇 −

𝑇𝑔, where 𝑇𝑔 = 𝛼𝑇𝑑 and 𝛼 is the guard ratio with 0 < 𝛼 < 1. Denote 𝐪 ≜ [𝑞[𝑛]; 𝑛 ∈

𝒵𝑁]  as the sequence in frequency domain and �̃� ≜ [�̃�[𝑚];𝑚 ∈ 𝒵𝑁] = 𝐖𝑁
ℎ𝐪  as its 

inverse DFT with ‖𝐪‖2 = ‖�̃�‖2 = 1. Throughout, 𝐪 is restricted to have CA symbols 

with |𝑞[𝑛]|2 = 1/𝑁 , and thus its inverse DFT �̃�  possesses the ZAC property, i.e., 

∑ �̃� [((𝑚 − 𝑛))
𝑁
] (�̃�[𝑚])∗𝑚∈𝒵𝑁 = 0 for all integers ((𝑛))

𝑁
≠ 0 [8], [28]. 

Rectangularly-pulsed OFDM preamble/pilot waveforms are discontinuous if 

identification symbols are not properly restricted and thus render large baseband power 

spectral sidelobes decaying asymptotically as 𝑓−2 . In practical OFDM systems, 

rectangularly pulsed preamble/pilot waveforms carrying PN and ZC sequences render 

widely spread waveform spectrum with baseband spectral sidelobes decaying 

asymptotically as 𝑓−2 [8]-[11]. By properly restricting identification symbols, various 

order-𝐼 CA sequences have been recently developed in [8]-[11] to render extremely small 

baseband power spectral sidelobes decaying asymptotically as 𝑓−2𝐼−2  and thus the 

corresponding baseband power spectrum exhibits 𝐼 -decaying sidelobes. Due to fast 

sidelobe decaying, these order-𝐼 CA sequences enhance the spectral compactness of the 
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corresponding OFDM preamble/pilot waveforms, while achieving accurate channel 

estimation and robust fine initial time and frequency synchronization owing to dual 

sequence properties of frequency-domain CA and time-domain ZAC [8]- [9]. Particularly 

in [9], four types of order-𝐼 CA sequences 𝒢𝐼, �̂�𝐼, ℐ𝐼, and ℐ̂𝐼 with sequence length 𝑁 

have been developed in explicit expressions for all composite sequence lengths and all 

prime sequence lengths larger than 11 under all parametric conditions on 𝛼𝛾. In what 

follows, sequences 𝒢𝐼, �̂�𝐼, ℐ𝐼, and ℐ̂𝐼 are briefly reviewed. 

For convenience, an order- 𝐼  CA sequence 𝐪 = [𝑁−1/2(−1)𝑛𝛾𝜒[𝑛]; 𝑛 ∈ 𝒵𝑁] is 

described by a CA sequence 𝝌 = [𝜒[𝑛]; 𝑛 ∈ 𝒵𝑁] with |𝜒[𝑛]| = 1 for all 𝑛 ∈ 𝒵𝑁, and 

presented in two separate conditions, namely Condition A that 𝛼𝛾 is an integer and 

Condition B that 𝛼𝛾 is not an integer [9]. Under Condition A, if 𝐪 satisfies  

Constraint A: 𝝁𝛽
𝑡 𝝌 = 0 for all 𝛽 ∈ 𝒵𝐼 but 𝝁𝐼

𝑡𝝌 ≠ 0 

for a positive integer 𝐼 ∈ 𝒵𝑁−1
+  where 𝝁𝛽 ≜ [𝑛𝛽; 𝑛 ∈ 𝒵𝑁], the corresponding baseband 

power spectrum exhibits 𝐼-decaying sidelobes. Under Condition B, if 𝐪 satisfies  

Constraint B: 𝝁𝛽
𝑡 𝝌 = 0 and �̃�𝛽

𝑡 𝝌 = 0 for all 𝛽 ∈ 𝒵𝐼 but 𝝁𝐼
𝑡𝝌 ≠ 0 or �̃�𝐼

𝑡𝝌 ≠ 0 

for a positive integer 𝐼 ∈ 𝒵⌊(𝑁−1)/2⌋
+  where �̃�𝛽 ≜ [𝑒−𝑗2𝜋𝑛𝛼𝛾𝑛𝛽; 𝑛 ∈ 𝒵𝑁] , the 

corresponding baseband power spectrum exhibits 𝐼-decaying sidelobes. Throughout, we 

consider the prime factorization 𝑁 = ∏ 𝑃𝑚
Ω(𝑁)−1
𝑚=0  where prime integers 𝑃𝑚 may not be 

all distinct. Due to the constraints, the largest possible family size Ψmax(𝑁) is limited 

by Ψmax(𝑁) = 𝑁 − 𝐼 under Condition A and Ψmax(𝑁) = 𝑁 − 2𝐼 under Condition B, 

for any sequence family containing mutually orthogonal sequences of length 𝑁. 
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2.2 Sequence 𝒢𝐼 

 Arrange prime factors 𝑃𝑚  in descending order 𝑃0 ≥ 𝑃1 ≥ ⋯ ≥ 𝑃Ω(𝑁)−1. Define 

𝜙𝑚 ≜ ∏ 𝑃𝑘
𝑚−1
𝑘=0  for 𝑚 ∈ 𝒵Ω(𝑁)−1

+  and 𝜙0 = 1 . An order- 𝐼  CA sequence 𝒢𝐼  is 

described as 

𝜒 [ ∑ 𝑙𝑚𝜙𝑚
𝑚∈𝒵Ω(𝑁)

] = exp{𝑗 ∑ 𝜃𝑚[𝑙𝑚]

𝑚∈𝒵Ω(𝑁)

} (1) 

for all 𝑙0 ∈ 𝒵𝑃0 , 𝑙1 ∈ 𝒵𝑃1, …, 𝑙Ω(𝑁)−1 ∈ 𝒵𝑃Ω(𝑁)−1 under Condition A, and 

𝜒 [ ∑ 𝑙𝑚𝜙𝑚
𝑚∈𝒵Ω(𝑁)

] = exp

{
 

 

𝑗 ∑ 𝜃𝑚[𝑙𝑚]

𝑚∈𝒵Ω(𝑁)

+ 𝑗2𝜋𝛼𝛾 ∑ 𝑙2𝑛+1𝜙2𝑛+1
𝑛∈𝒵

⌊
Ω(𝑁)
2 ⌋ }

 

 

(2) 

for all 𝑙0 ∈ 𝒵𝑃0 , 𝑙1 ∈ 𝒵𝑃1, …, 𝑙Ω(𝑁)−1 ∈ 𝒵𝑃Ω(𝑁)−1 under Condition B. Here, the phases 

𝜃𝑚[𝑙𝑚] are restricted by 

∑ exp{𝑗𝜃𝑚[𝑙𝑚]}
𝑙𝑚∈𝒵𝑃𝑚

= 0 for all 𝑚 ∈ 𝒵Ω(𝑁). (3) 

For a given 𝑁 , sequence 𝒢𝐼  yields the sidelobe-decaying order 𝐼 ≥ Ω(𝑁)  under 

Condition A and 𝐼 ≥ ⌊Ω(𝑁)/2⌋ under Condition B. 

 Orthogonal sequence family 𝒢𝐼
(pma)

 have been obtained from the PMA method in 

[9, Subsection III.B]. For a given index vector 𝝂 = [𝜈𝑚; 𝑚 ∈ 𝒵Ω(𝑁)] with 𝜈𝑚 ∈ 𝒵𝑃𝑚−1
+  

for all 𝑚 ∈ 𝒵Ω(𝑁), a sequence in family 𝒢𝐼
(pma)

 can be uniquely specified by 𝝂 and 

formed by assigning 

𝜃𝑚[𝑙𝑚] =
2𝜋𝜈𝑚𝑙𝑚
𝑃𝑚

 for all 𝑙𝑚 ∈ 𝒵𝑃𝑚  and 𝑚 ∈ 𝒵Ω(𝑁) (4) 

under either Condition A or Condition B. By varying 𝝂 exclusively, family 𝒢𝐼
(pma)

 can 

be constructed accordingly and it contains Ψ(𝑁) ≜ ∏ (𝑃𝑚 − 1)
Ω(𝑁)−1
𝑚=0  orthogonal order-



doi:10.6342/NTU202303160

14 

 

𝐼 CA sequences. Apparently, all order-𝐼 sequences in 𝒢𝐼
(pma)

 are mutually orthogonal, 

i.e., 𝐪𝑙
ℎ𝐪𝑘 = �̃�𝑙

ℎ�̃�𝑘 = 0 for any two different sequences 𝐪𝑙 and 𝐪𝑘 in family 𝒢𝐼
(pma)

. 

 Consider a leader sequence 𝐪lead  in 𝒢𝐼
(pma)

, specified by 𝝂 =

[𝜈0, 𝜈1, … , 𝜈Ω(𝑁)−1]
𝑡
. Denote �̃�lead

(𝑘) = [�̃�lead [((𝑖 + 𝑘))𝑁] ; 𝑖 ∈ 𝒵𝑁] as the 𝑘-cyclically-

shifted version of �̃�lead  (i.e., the inverse DFT of 𝐪lead ) and 𝐪lead
(𝑘) =

[𝑞lead[𝑛] exp{𝑗2𝜋𝑛𝑘/𝑁} ; 𝑛 ∈ 𝒵𝑁] as its DFT. According to [9], the set of admissible 

cyclic shifts for which 𝐪lead
(𝑘)

 is still an order-𝐼 CA sequence in 𝒢𝐼
(pma)

 is specified by 

𝒰(𝜈0) ≜ {𝑙𝑁/𝑃max|𝑙 ∈ 𝒵𝑃max  but 𝑙 ≠ 𝑃max − 𝜈0}  where 𝑃max ≜ max
𝑚∈𝒵Ω(N)

𝑃𝑚  is the 

largest prime factor and 𝜈0 is the leading entry in 𝝂. From 𝐪lead, we can thus specify 

the cyclically-shiftable (CS) sequence subfamily 𝒢𝐼
(cs)(𝐪lead)  which contains all 

mutually orthogonal order-𝐼 CA sequences obtained by cyclically shifting �̃�lead with 

shifts in 𝒰(𝜈0), as 

𝒢𝐼
(cs)(𝐪lead) ≜ {𝐪lead

(𝑘) |𝑘 ∈ 𝒰(𝜈0)} if 𝐪lead ∈ 𝒢𝐼
(pma) (5) 

under either Condition A or Condition B. The factor 𝑁/𝑃max  defining 𝒰(𝜈0) is the 

family CSD for generating 𝒢𝐼
(cs)(𝐪lead) . Notably, 𝒢𝐼

(cs)(𝐪lead)  contains 𝑃max − 1 

different sequences in 𝒢𝐼
(pma)

, which are specified by identical indices 𝜈1, 𝜈2, … , 𝜈Ω(N)−1. 

Therefore, by varying 𝜈1, 𝜈2, … , 𝜈Ω(N)−1 , we can obtain Ψ(𝑁)/(𝑃max − 1)  mutually 

exclusive subfamilies 𝒢𝐼
(cs)(𝐪lead) constructed from all permissible subfamily leaders 

𝐪lead specified by different index subvectors [𝜈1, 𝜈2, … , 𝜈Ω(N)−1]
𝑡
. In 𝒢𝐼

(cs)(𝐪lead), all 

orthogonal order-𝐼 CA sequences can be easily obtained by cyclically shifting the inverse 

DFT of a subfamily leader 𝐪lead. 
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2.3 Sequence ℐ𝐼 

 Arrange prime factors 𝑃𝑚  in ascending order 𝑃0 ≤ 𝑃1 ≤ ⋯ ≤ 𝑃Ω(𝑁)−1 . Define 

𝜓𝑚 = 𝑁/𝜙𝑚+1  for 𝑚 ∈ 𝒵Ω(𝑁)−1  and 𝜓Ω(𝑁)−1 = 1. An order-𝐼  CA sequence ℐ𝐼  is 

defined similarly to sequence 𝒢𝐼 as in (1)-(4) with 𝜙𝑚 → 𝜓𝑚 for 𝑚 ∈ 𝒵Ω(𝑁). Table I 

gives some example sequences of length 𝑁 = 15 under Condition A and Condition B, 

respectively. With sequence length 𝑁, sequence ℐ𝐼 yields the sidelobe-decaying order 

𝐼 ≥ Ω(𝑁) under Condition A and 𝐼 ≥ ⌊Ω(𝑁)/2⌋ under Condition B. By varying the 

index vector 𝝂  exclusively, the orthogonal sequence family ℐ𝐼
(pma)

 can be likewise 

constructed and it contains Ψ(𝑁) mutually orthogonal order-𝐼 CA sequences. For a 

given 𝐪lead  in ℐ𝐼
(pma)

 specified by 𝝂 = [𝜈0, 𝜈1, … , 𝜈Ω(𝑁)−1]
𝑡
, the cyclically-shiftable 

sequence subfamily ℐ𝐼
(cs)(𝐪lead) can be obtained as 

ℐ𝐼
(cs)(𝐪lead) ≜ {𝐪lead

(𝑘) |𝑘 ∈ 𝒰(𝜈Ω(𝑁)−1)} if 𝐪lead ∈ ℐ𝐼
(pma) (6) 

under Condition A or Condition B. Thus, ℐ𝐼
(cs)(𝐪lead)  contains 𝑃max − 1  different 

sequences in ℐ𝐼
(pma)

, which are specified by identical indices 𝜈0, 𝜈1, … , 𝜈Ω(N)−2. We can 

obtain Ψ(𝑁)/(𝑃max − 1)  mutually exclusive subfamilies ℐ𝐼
(cs)(𝐪lead)  constructed 

from all permissible subfamily leaders 𝐪lead  specified by different index subvectors 

[𝜈0, 𝜈1, … , 𝜈Ω(N)−2]
𝑡
. 

 Due to the similarity between 𝒢𝐼
(pma)

 and ℐ𝐼
(pma)

, only modified PMA families 

from 𝒢𝐼
(pma)

 are elaborated below. 
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Table I 

Some example sequences of length 𝑁 = 14 under (a) Condition A and (b) Condition B 

with 𝛼𝛾 = 1/2. In the tables, 𝜁 is defined by 𝜁 ≜ exp{𝑗𝜋/7}. 

(a) Sequences under Condition A 

Sequence Sequence Expression 

𝒢𝐼 √
1

14
[1, 𝜁2, 𝜁4, 𝜁6, 𝜁8, 𝜁10, 𝜁12, −1, 𝜁9, 𝜁11, 𝜁13, 𝜁, 𝜁3, 𝜁5]  

ℐ𝐼 √
1

14
[1, −1, 𝜁2, 𝜁9, 𝜁4, 𝜁11, 𝜁6, 𝜁13, 𝜁8, 𝜁, 𝜁10, 𝜁3, 𝜁12, 𝜁5]  

 

(b) Sequences under Condition B 

Sequence Sequence Expression 

𝒢𝐼 √
1

14
[1, 𝜁2, 𝜁4, 𝜁6, 𝜁8, 𝜁10, 𝜁12, 1, 𝜁2, 𝜁4, 𝜁6, 𝜁8, 𝜁10, 𝜁12]  

ℐ𝐼 √
1

14
[1,1, 𝜁2, 𝜁2, 𝜁4, 𝜁4, 𝜁6, 𝜁6, 𝜁8, 𝜁8, 𝜁10, 𝜁10, 𝜁12, 𝜁12]  

 

2.4 Sequence �̂�𝐼 and ℐ̂𝐼 

For a given sequence length 𝑁, order-𝐼 CA sequences �̂�𝐼 and ℐ̂𝐼 are constructed 

from concatenating component CA subsequences with shorter lengths as follows. First, 

𝑁 is properly decomposed into 𝑁 = ∑ �̃�(𝜌)
𝜌∈𝒵𝐿  where �̃�(𝜌) = ∏ 𝑃𝑚

(𝜌)Ω(�̃�(𝜌))−1

𝑚=0  with 

prime factors 𝑃0
(𝜌)

≥ 𝑃1
(𝜌)

≥ ⋯ ≥ 𝑃
Ω(�̃�(𝜌))−1

(𝜌)
 arranged for all 𝜌 ∈ 𝒵𝐿 , and 𝝌  is 

accordingly partitioned into 𝐿  subsequences 𝝌0, 𝝌1, … , 𝝌𝐿−1  of lengths 

�̃�(0), �̃�(1), … , �̃�(𝐿−1), respectively, i.e., 𝝌 = [𝝌0
𝑡 , 𝝌1

𝑡 , … , 𝝌𝐿−1
𝑡 ]𝑡. Second, subsequences 

𝝌0, 𝝌1, … , 𝝌𝐿−1  are constructed in forms (1)-(4) with 𝜙𝑚 → 𝜙𝑚
(𝜌)

 for 𝑚 ∈ 𝒵Ω(�̃�(𝜌)) 

and 𝜌 ∈ 𝒵𝐿 , and then concatenated to form sequence �̂�𝐼 . Sequence ℐ̂𝐼  is formed 

similarly with subsequences constructed in the forms (1)-(4) for all 𝜌 ∈ 𝒵𝐿 with 𝜙𝑚 →

𝜓𝑚
(𝜌)

 for 𝑚 ∈ 𝒵Ω(�̃�(𝜌)) and 𝑃0
(𝜌)

≤ 𝑃1
(𝜌)

≤ ⋯ ≤ 𝑃
Ω(�̃�(𝜌))−1

(𝜌)
 rearranged. Table II gives 

some example sequences of length 𝑁 = 23  under Condition A and Condition B, 

respectively. 
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 With a proper decomposition 𝑁 = ∑ �̃�(𝜌)
𝜌∈𝒵𝐿 , order-𝐼 CA sequences �̂�𝐼 and ℐ̂𝐼 

yield the sidelobe-decaying order 𝐼 ≥ Ω̃(𝑁)  under Condition A and 𝐼 ≥ ⌊Ω̃(𝑁)/2⌋ 

under Condition B, where the proper decomposition {�̃�(𝜌); 𝜌 ∈ 𝒵𝐿} can achieve the 

MPO value Ω̃(𝑁), defined in [9, eqs. 14-15] as 

Ω̃(𝑁) = max
𝐿∈𝒵

⌊
𝑁
2
⌋

+
max

�̃�(0)≥�̃�(1)≥⋯≥�̃�(𝐿−1)≥2
�̃�(0)+�̃�(1)+⋯+�̃�(𝐿−1)=𝑁

min
𝜌𝒵𝐿

Ω(�̃�(𝜌)) . (7)
 

Notably, the proper decomposition is not necessarily unique for arbitrary lengths 𝑁 and 

can assure Ω̃(𝑁) ≥ Ω(𝑁) is guaranteed if and only if (iff) 𝑁 is not any one of the 

following forms 

𝑁 = 2𝑎 × 3𝑏 × 5𝑐 (8) 

𝑁 = 2𝑎 × 3𝑏 × 7𝑑 (9) 

𝑁 = 2𝑎 × 3𝑏 × 11𝑒 (10) 

where the nature numbers 𝑎, 𝑏, 𝑐, 𝑑, and 𝑒 are restricted to 𝑎, 𝑏 ∈ 𝒵∗, 𝑐 ∈ 𝒵4, 𝑑 ∈ 𝒵3, 

and 𝑒 ∈ 𝒵2 [9, Property 5]. In the case, order-𝐼 CA sequences �̂�𝐼  and ℐ̂𝐼  can yield 

higher sidelobe-decaying order than order-𝐼  CA sequences 𝒢𝐼  and ℐ𝐼 . Conversely, 

when 𝑁 is one of the above three forms, sequences 𝒢𝐼 and ℐ𝐼 can provide comparable 

sidelobe-decaying order to sequences �̂�𝐼 and ℐ̂𝐼 due to Ω̃(𝑁) = Ω(𝑁). For a given 𝑁, 

a proper decomposition and the associated Ω̃(𝑁)  can be efficiently sought from 

Procedure 1 and Property 4 in [9], where some examples for medium and large 𝑁 values 

are also listed in [9, Tables I and II]. 

 Orthogonal sequence family �̂�𝐼
(pma)

 has also been obtained from the PMA method 

[9]. Consider the prime factorizations �̃�(𝜌) = ∏ 𝑃𝑚
(𝜌)Ω(�̃�(𝜌))−1

𝑚=0  for all 𝜌 ∈ 𝒵𝐿. For the 

given index vectors 𝝂(𝜌) = [𝜈𝑚
(𝜌)
;𝑚 ∈ 𝒵Ω(�̃�(𝜌))] with 𝜈𝑚

(𝜌)
∈ 𝒵

𝑃𝑚
(𝜌)
−1

+  for all 𝜌 ∈ 𝒵𝐿 , 
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all subsequences of the corresponding sequence �̂�𝐼  in family �̂�𝐼
(pma)

 can be thus 

specified by these 𝝂(𝜌) and formed from the phase assignment in (4). By varying 𝝂(𝜌) 

exclusively and concurrently for all 𝜌 ∈ 𝒵𝐿, family �̂�𝐼
(pma)

 is constructed accordingly 

and it contains Ψ̂(𝑁) ≜ min
𝜌∈𝒵𝐿

Ψ(�̃�(𝜌))  orthogonal order- 𝐼  CA sequences, where 

Ψ(�̃�(𝜌)) = ∏ (𝑃𝑚
(𝜌)
− 1)

Ω(�̃�(𝜌))−1

𝑚=0  for all 𝜌 ∈ 𝒵𝐿 . Notably, the orthogonal sequence 

family �̂�𝐼
(pma)

 is not necessarily unique for a given length 𝑁  since the proper 

decomposition for 𝑁 is not necessarily unique. When 𝑁 is not any one of the forms in 

(8)-(10), any orthogonal sequence in family �̂�𝐼
(pma)

 can not be obtained from cyclically 

shifting another sequence (in time domain) in the family, due to the proper decomposition 

of 𝑁 [9]. Without limitation by minimum CSD, the latter feature permits the use of all 

orthogonal sequences in such family �̂�𝐼
(pma)

 and its modified families for SPI 

applications in the uplink cellular environment.  

 The orthogonal sequence family ℐ̂𝐼
(pma)

 is likewise constructed. Due to the 

similarity between �̂�𝐼
(pma)

 and ℐ̂𝐼
(pma)

, only modified PMA families from �̂�𝐼
(pma)

 are 

elaborated herein. 

 When the sequence length 𝑁  is not any one of the forms in (8)-(10) and has 

Ω̃(𝑁) > Ω(𝑁), we can construct family �̂�𝐼
(pma)

 with larger sidelobe-decaying order than 

family 𝒢
𝐼

(pma)
. Different from family 𝒢

𝐼

(pma)
, all sequences in family �̂�𝐼

(pma)
 can not 

be obtained through mutual cyclic shifting. Conversely, when 𝑁 follows any one of the 

forms in (8)-(10) and exhibits Ω̃(𝑁) = Ω(𝑁) , family 𝒢
𝐼

(pma)
 can yield comparable 

sidelobe-decaying order to family �̂�𝐼
(pma)

 and is composed of Ψ(𝑁)/(𝑃max − 1) 

mutually exclusive subfamilies 𝒢𝐼
(cs)(𝐪lead) for all permissible subfamily leaders 𝐪lead, 
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as shown in Subsection II.A. Each subfamily 𝒢𝐼
(cs)(𝐪lead)  contains 𝑃max − 1 

sequences generated by cyclically shifting the inverse DFT of a subfamily leader 𝐪lead 

in family 𝒢
𝐼

(pma)
 with family CSD 𝑁/𝑃max. 

 The following sections are devoted to the development of two types of new 

orthogonal sequence families, namely degenerate PMA sequence families 𝒢
𝐼

(dpma,κ)
, 

�̂�
𝐼

(dpma,κ)
 and augmented PMA sequence families �̂�𝐼

(apma)
, �̂�

𝐼

(adpma,κ)
. For a composite 

length 𝑁 , family 𝒢
𝐼

(dpma,κ)
 contains orthogonal order-𝐼  CA sequences 𝒢𝐼  with the 

larger family size than family 𝒢𝐼
(pma)

 by sacrificing the sidelobe-decaying order in some 

cases. When 𝑁 meets Ω̃(𝑁) > Ω(𝑁), family �̂�𝐼
(apma)

 exhibits double the family size 

as family �̂�𝐼
(pma)

 while maintaining the same sidelobe-decaying order. Moreover, 

degenerate PMA sequence family �̂�
𝐼

(dpma,κ)
 and augmented degenerate PMA sequence 

family �̂�
𝐼

(adpma,κ)
 are also developed from degenerating families �̂�𝐼

(pma)
 and �̂�𝐼

(apma)
, 

respectively, by trading off the sidelobe-decaying order. Table III and IV summarize the 

proposed modified PMA sequence families. 
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Table II 

Some example sequences of length 𝑁 = 23 with proper decomposition 𝑁 = 14 + 9 

under (a) Condition A and (b) Condition B with 𝛼𝛾 = 1/2. In the tables, 𝜁𝑙’s are 

defined by 𝜁𝑙 ≜ exp{𝑗𝜋/𝑙}. 

(a) Sequences under Condition A 

Sequence Sequence Expression 

�̂�𝐼 √
1

23
[1,𝜁

7

2
,𝜁
7

4
,𝜁
7

6
,𝜁
7

8
,𝜁
7

10
,𝜁
7

12
, −1,𝜁

7

9
,𝜁
7

11
,𝜁
7

13
,𝜁
7
,𝜁
7

3
,𝜁
7

5
, 1,𝜁

3

2
,𝜁
3

4
,𝜁
3

2
,𝜁
3

4
, 1,𝜁

3

4
, 1,𝜁

3

2
]  

ℐ̂𝐼 √
1

23
[1,−1,𝜁

7

2
,𝜁
7

9
,𝜁
7

4
,𝜁
7

11
,𝜁
7

6
,𝜁
7

13
,𝜁
7

8
,𝜁
7
,𝜁
7

10
,𝜁
7

3
,𝜁
7

12
,𝜁
7

5
, 1,𝜁

3

2
,𝜁
3

4
,𝜁
3

2
,𝜁
3

4
, 1,𝜁

3

4
, 1,𝜁

3

2
]  

 

(b) Sequences under Condition B 

Sequence Sequence Expression 

�̂�𝐼 √
1

23
[1,𝜁

7

2
,𝜁
7

4
,𝜁
7

6
,𝜁
7

8
,𝜁
7

10
,𝜁
7

12
, 1,𝜁

7

2
,𝜁
7

4
,𝜁
7

6
,𝜁
7

8
,𝜁
7

10
,𝜁
7

12
, 1,𝜁

3

2
,𝜁
3

4
,𝜁
3

5
,𝜁
3
, −1,𝜁

3

4
, 1,𝜁

3

2
]  

ℐ̂𝐼 √
1

23
[1,1,𝜁

7

2
,𝜁
7

2
,𝜁
7

4
,𝜁
7

4
,𝜁
7

6
,𝜁
7

6
,𝜁
7

8
,𝜁
7

8
,𝜁
7

10
,𝜁
7

10
,𝜁
7

12
,𝜁
7

12
, 1,𝜁

3

5
,𝜁
3

4
,𝜁
3

2
,𝜁
3
, 1,𝜁

3

4
, −1,𝜁

3

2
]  
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Table III 

Families 𝒢
max,𝐼

(dpma,κ)
 and ℐ

max,𝐼

(dpma,𝜅)
 under a proper level-(Ω(𝑁) − 𝜅) factorization 𝑁 =

∏ 𝐴𝑚
(𝜅)

𝑚∈𝒵Ω(𝑁)−𝜅
 for 𝜅 ∈ 𝒵Ω(𝑁)−1

+ , and families �̃�
max,𝐼

(dpma,κ)
 and ℐ̃

max,𝐼

(dpma,𝜅)
 under a near-

proper level-(Ω(𝑁) − 𝜅) factorization 𝑁 = ∏ �̃�𝑚
(𝜅)

𝑚∈𝒵Ω(𝑁)−𝜅
 for 𝜅 ∈ 𝒵Ω(𝑁)−1

+  with 

Ω(𝑁) > 2. 

Family Description 

𝒢
max,𝐼

(dpma,κ)
 

1. Arrange factors in descending order 𝐴0
(𝜅) ≥ 𝐴1

(𝜅) ≥ ⋯ ≥ 𝐴Ω(𝑁)−𝜅−1
(𝜅)

. 

2. An order-𝐼 CA sequence 𝒢𝐼 is defined as in (1)-(4) with 𝑃𝑚 → 𝐴𝑚
(𝜅)

 for 

𝑚 ∈ 𝒵Ω(𝑁)−𝜅, 𝜙𝑚 = ∏ 𝐴𝑖
(𝜅)

𝑖∈𝒵𝑚  for 𝑚 ∈ 𝒵Ω(𝑁)−𝜅−1
+ , and 𝜙0 = 1. 

3. Family 𝒢
max,𝐼

(dpma,κ)
 is constructed by varying 𝝂 = [𝜈𝑚; 𝑚 ∈ 𝒵Ω(𝑁)−𝜅] 

with 𝜈𝑚 ∈ 𝒵
𝐴𝑚
(𝜅)
−1

+  exclusively and has the family size Ψ(dpma,𝜅)(𝑁) =

∏ (𝐴𝑚
(𝜅)
− 1)𝑚∈𝒵Ω(𝑁)−𝜅

. 

�̃�
max,𝐼

(dpma,κ)
 

1. Arrange factors in descending order �̃�0
(𝜅) ≥ �̃�1

(𝜅) ≥ ⋯ ≥ �̃�Ω(𝑁)−𝜅−1
(𝜅)

. 

2. An order-𝐼 CA sequence �̃�𝐼 is defined as in (1)-(4) with 𝑃𝑚 → �̃�𝑚
(𝜅)

 for 

𝑚 ∈ 𝒵Ω(𝑁)−𝜅, 𝜙𝑚 = ∏ �̃�𝑖
(𝜅)

𝑖∈𝒵𝑚  for 𝑚 ∈ 𝒵Ω(𝑁)−𝜅−1
+ , and 𝜙0 = 1. 

3. Family �̃�
max,𝐼

(dpma,κ)
 is constructed by varying 𝝂 = [𝜈𝑚; 𝑚 ∈ 𝒵Ω(𝑁)−𝜅] 

with 𝜈𝑚 ∈ 𝒵
�̃�𝑚
(𝜅)
−1

+  exclusively and has the family size Ψ̃(dpma,𝜅)(𝑁) =

∏ (�̃�𝑚
(𝜅) − 1)𝑚∈𝒵Ω(𝑁)−𝜅

. 

ℐ
max,𝐼

(dpma,𝜅)
 

1. Arrange factors in descending order 𝐴0
(𝜅) ≤ 𝐴1

(𝜅) ≤ ⋯ ≤ 𝐴Ω(𝑁)−𝜅−1
(𝜅)

. 

2. An order-𝐼 CA sequence ℐ𝐼 is defined as in (1)-(4) with 𝜙𝑚 → 𝜓𝑚 and 

𝑃𝑚 → 𝐴𝑚
(𝜅)

 for 𝑚 ∈ 𝒵Ω(𝑁)−𝜅 , where 𝜓𝑚 = 𝑁/𝜙𝑚+1  for 𝑚 ∈
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𝒵Ω(𝑁)−𝜅−1 and 𝜓Ω(𝑁)−𝜅−1 = 1. 

3. Family ℐ
max,𝐼

(dpma,κ)
 is constructed by varying 𝝂 = [𝜈𝑚; 𝑚 ∈ 𝒵Ω(𝑁)−𝜅] 

with 𝜈𝑚 ∈ 𝒵
𝐴𝑚
(𝜅)
−1

+  exclusively and has the family size Ψ(dpma,𝜅)(𝑁) =

∏ (𝐴𝑚
(𝜅) − 1)𝑚∈𝒵Ω(𝑁)−𝜅

. 

ℐ̃
max,𝐼

(dpma,𝜅)
 

1. Arrange factors in descending order �̃�0
(𝜅) ≤ �̃�1

(𝜅) ≤ ⋯ ≤ �̃�Ω(𝑁)−𝜅−1
(𝜅)

. 

2. An order-𝐼 CA sequence ℐ̃𝐼 is defined as in (1)-(4) with 𝜙𝑚 → 𝜓𝑚 and 

𝑃𝑚 → �̃�𝑚
(𝜅)

 for 𝑚 ∈ 𝒵Ω(𝑁)−𝜅 , where 𝜓𝑚 = 𝑁/𝜙𝑚+1  for 𝑚 ∈

𝒵Ω(𝑁)−𝜅−1 and 𝜓Ω(𝑁)−𝜅−1 = 1. 

3. Family ℐ̃
max,𝐼

(dpma,κ)
 is constructed by varying 𝝂 = [𝜈𝑚; 𝑚 ∈ 𝒵Ω(𝑁)−𝜅] 

with 𝜈𝑚 ∈ 𝒵
�̃�𝑚
(𝜅)
−1

+  exclusively and has the family size Ψ̃(dpma,𝜅)(𝑁) =

∏ (�̃�𝑚
(𝜅) − 1)𝑚∈𝒵Ω(𝑁)−𝜅

. 
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Table IV 

Families �̂�
max,𝐼

(dpma,𝜅)
, �̂�

max,𝐼

(adpma,𝜅)
, ℐ̂

max,𝐼

(dpma,𝜅)
, and ℐ̂

max,𝐼

(adpma,𝜅)
 for 𝜅 ∈ 𝒵Ω̃(𝑁)−1

+  under a 

proper decomposition 𝑁 = ∑ �̃�(𝜌)
𝜌∈𝒵𝐿  and individual proper level-(Ω(�̃�(𝜌)) − 𝜅) 

factorizations �̃�(𝜌) = ∏ 𝐴𝑚
(𝜌,𝜅)

𝑚∈𝒵Ω̃(𝑁)−𝜅
 for all 𝜌 ∈ 𝒵𝐿, provided that Ω̃(𝑁) > Ω(𝑁). 

For �̂�
max,𝐼

(adpma,𝜅)
 and ℐ̂

max,𝐼

(adpma,𝜅)
, the decomposition 𝑁 = ∑ �̃�(𝜌)

𝜌∈𝒵𝐿  has to meet 

Restriction A. 

Family Description 

�̂�
max,𝐼

(dpma,𝜅)
 

1. Arrange factors in descending order 𝐴0
(𝜌,𝜅)

≥ 𝐴1
(𝜌,𝜅)

≥ ⋯ ≥ 𝐴Ω(𝑁)−𝜅−1
(𝜌,𝜅)

 

for all 𝜌 ∈ 𝒵𝐿. 

2. An order-𝐼 CA sequence �̂�𝐼 is described as 𝝌 = [𝝌0
𝑡 , 𝝌1

𝑡 , … , 𝝌𝐿−1
𝑡 ]𝑡. 

3. Subsequences 𝝌𝜌 for all 𝜌 ∈ 𝒵𝐿 are constructed in (1)-(4) with 𝜙𝑚 →

𝜙𝑚
(𝜌)

 and 𝑃𝑚 → 𝐴𝑚
(𝜌,𝜅)

 for 𝑚 ∈ 𝒵Ω̃(𝑁)−𝜅 , where 𝜙𝑚
(𝜌)
= ∏ 𝐴𝑖

(𝜌,𝜅)
𝑖∈𝒵𝑚  

for 𝑚 ∈ 𝒵
Ω(�̃�(𝜌))−𝜅−1
+  and 𝜙0

(𝜌)
= 1. 

4. Family �̂�
max,𝐼

(dpma,𝜅)
 is constructed by varying 𝝂(𝜌) = [𝜈𝑚

(𝜌)
;𝑚 ∈

𝒵Ω(�̃�(𝜌))−𝜅] with 𝜈𝑚
(𝜌)

∈ 𝒵
𝐴𝑚
(𝜌,𝜅)

−1

+  for all 𝜌 ∈ 𝒵𝐿 exclusively and has 

the family size Ψ̂(dpma,𝜅)(𝑁) = min
𝜌∈𝒵𝐿

∏ (𝐴𝑚
(𝜌,𝜅)

− 1)
Ω(�̃�(𝜌))−𝜅−1

𝑚=0 . 

�̂�
max,𝐼

(adpma,𝜅)
 

1. Family �̂�
max,𝐼

(adpma,𝜅)
 contains all orthogonal order-𝐼  CA sequences in 

family �̂�
max,𝐼

(dpma,𝜅)
 and their phase-rotated sequences. 

2. From an order-𝐼 CA sequence �̂�𝐼 in family �̂�
max,𝐼

(dpma,𝜅)
, one extra order-

𝐼 CA sequence is augmented by rotating the phases of the subsequences 

𝝌𝜌 and described by 𝝌𝜽 = [𝑒𝑗𝜃0𝝌0
𝑡 , 𝑒𝑗𝜃1𝝌1

𝑡 , … , 𝑒𝑗𝜃𝐿−1𝝌𝐿−1
𝑡 ]

𝑡
. 
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3. A proper phase vector 𝜽 = [𝜃𝜌; 𝜌 ∈ 𝒵𝐿] is obtained by invoking the 

procedure in Subsection IV.B.1. 

ℐ̂
max,𝐼

(dpma,𝜅)
 

1. Arrange factors in descending order 𝐴0
(𝜌,𝜅)

≤ 𝐴1
(𝜌,𝜅)

≤ ⋯ ≤ 𝐴Ω(𝑁)−𝜅−1
(𝜌,𝜅)

 

for all 𝜌 ∈ 𝒵𝐿. 

2. An order-𝐼 CA sequence ℐ̂𝐼 is described as 𝝌 = [𝝌0
𝑡 , 𝝌1

𝑡 , … , 𝝌𝐿−1
𝑡 ]𝑡. 

3. Subsequences 𝝌𝜌 for all 𝜌 ∈ 𝒵𝐿 are constructed in (1)-(4) with 𝜙𝑚 →

𝜓𝑚
(𝜌)

 and 𝑃𝑚 → 𝐴𝑚
(𝜌,𝜅)

 for 𝑚 ∈ 𝒵Ω̃(𝑁)−𝜅 , where 𝜓𝑚
(𝜌)

= 𝑁/𝜙𝑚+1
(𝜌)

 for 

𝑚 ∈ 𝒵
Ω(�̃�(𝜌))−𝜅−1
+  and 𝜓

Ω(�̃�(𝜌))−𝜅−1

(𝜌)
= 1. 

4. Family ℐ̂
max,𝐼

(dpma,𝜅)
 is constructed by varying 𝝂(𝜌) = [𝜈𝑚

(𝜌)
;𝑚 ∈

𝒵Ω(�̃�(𝜌))−𝜅] with 𝜈𝑚
(𝜌)

∈ 𝒵
𝐴𝑚
(𝜌,𝜅)

−1

+  for all 𝜌 ∈ 𝒵𝐿 exclusively and has 

the family size Ψ̂(dpma,𝜅)(𝑁) = min
𝜌∈𝒵𝐿

∏ (𝐴𝑚
(𝜌,𝜅)

− 1)
Ω(�̃�(𝜌))−𝜅−1

𝑚=0 . 

ℐ̂
max,𝐼

(adpma,𝜅)
 

1. Family ℐ̂
max,𝐼

(adpma,𝜅)
 contains all orthogonal order-𝐼  CA sequences in 

family ℐ̂
max,𝐼

(dpma,𝜅)
 and their phase-rotated sequences. 

2. From an order-𝐼 CA sequence ℐ̂𝐼 in family ℐ̂
max,𝐼

(dpma,𝜅)
, one extra order-

𝐼 CA sequence is augmented by rotating the phases of the subsequences 

𝝌𝜌 and described by 𝝌𝜽 = [𝑒𝑗𝜃0𝝌0
𝑡 , 𝑒𝑗𝜃1𝝌1

𝑡 , … , 𝑒𝑗𝜃𝐿−1𝝌𝐿−1
𝑡 ]

𝑡
. 

3. A proper phase vector 𝜽 = [𝜃𝜌; 𝜌 ∈ 𝒵𝐿] is obtained by invoking the 

procedure in Subsection IV.B.1. 
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Table V 

The closed-form expressions for proper level-(Ω(𝑁) − 𝜅) factorizations with 𝜅 = 1 

and 𝜅 = 2, as well as near-proper level-(Ω(𝑁) − 𝜅) factorizations with 𝜅 ∈

𝒵Ω(𝑁)−2
+ − 𝒵2

+. For 𝜅 ∈ 𝒵2
+, {�̃�𝑚

(𝜅); 𝑚 ∈ 𝒵Ω(𝑁)−𝜅} is initially assigned by �̃�𝑚
(𝜅) = 𝐴𝑚

(𝜅)
 

with the arranged order 1 < 𝐴0
(𝜅) ≤ 𝐴1

(𝜅) ≤ ⋯ ≤ 𝐴Ω(𝑁)−𝜅−1
(𝜅)

. 

Level-(Ω(𝑁) − 𝜅) 

Factorization 

Factor Assignment From {𝑃𝑚; 𝑚 ∈ 𝒵Ω(𝑁)} With 

𝑃0 ≤ 𝑃1 ≤ ⋯ ≤ 𝑃Ω(𝑁)−1 

Proper Factorization 

(𝜅 = 1, Ω(𝑁) > 2) 

[43] 

𝐴0
(1) = 𝑃0𝑃1 and 𝐴𝑚

(1) = 𝑃𝑚+1 for 𝑚 ∈ 𝒵Ω(𝑁)−2
+  

Proper Factorization 

(𝜅 = 2, Ω(𝑁) > 3) 

[43] 

𝐴0
(2) = 𝑃0𝑃1𝑃2 𝐴𝑚

(2) = 𝑃𝑚+2 for 𝑚 ∈ 𝒵Ω(𝑁)−3
+ ,  

if 𝑃1𝑃2 < 𝑃3 

𝐴0
(2) = 𝑃0𝑃3, 𝐴1

(2) = 𝑃1𝑃2 and 𝐴𝑚+1
(2) = 𝑃𝑚+3 for  

𝑚 ∈ 𝒵Ω(𝑁)−4
+ , otherwise 

Near-Proper 

Factorization 

(
𝜅 ∈ 𝒵Ω(𝑁)−2

+ − 𝒵2
+,

Ω(𝑁) > 4
) 

�̃�0
(𝜅) = �̃�0

(𝜅−2)�̃�1
(𝜅−2)�̃�2

(𝜅−2)
 and �̃�𝑚

(𝜅) = �̃�𝑚+2
(𝜅−2)

 for  

𝑚 ∈ 𝒵Ω(𝑁)−𝜅−1
+ , if �̃�1

(𝜅−2)�̃�2
(𝜅−2) < �̃�3

(𝜅−2)
 

�̃�0
(𝜅) = �̃�0

(𝜅−2)�̃�3
(𝜅−2)

, �̃�1
(𝜅) = �̃�1

(𝜅−2)�̃�2
(𝜅−2)

, and �̃�𝑚+1
(𝜅) =

�̃�𝑚+3
(𝜅−2)

 for 𝑚 ∈ 𝒵Ω(𝑁)−𝜅−2
+ , otherwise 

 

 

  



doi:10.6342/NTU202303160

26 

 

Chapter 3 

Families 𝓖
𝐦𝐚𝐱,�̃�

(𝐝𝐩𝐦𝐚,𝜿)
 and �̃�

𝐦𝐚𝐱,�̃�

(𝐝𝐩𝐦𝐚,𝜿)
 

Consider a composite length 𝑁 with the prime factorization 𝑁 = ∏ 𝑃𝑚
Ω(𝑁)−1
𝑚=0  and 

Ω(𝑁) > 2. With a given 𝜅 ∈ 𝒵Ω(𝑁)−1
+ , many families 𝒢

𝐼

(dpma,𝜅)
 can be degenerated 

from family 𝒢𝐼
(pma)

 with identical or less sidelobe-decaying order. Based on a particular 

level-(Ω(𝑁) − 𝜅) factorization 𝑁 = ∏ 𝐴𝑚
Ω(𝑁)−𝜅−1
𝑚=0  where factors 𝐴𝑚 may not be all 

primes and are arranged in descending order, a family 𝒢
𝐼

(dpma,𝜅)
 can be constructed by 

the same PMA method constructing family 𝒢𝐼
(pma)

. Specifically, such family 𝒢
𝐼

(dpma,𝜅)
 

contains ∏ (𝐴𝑚 − 1)
Ω(𝑁)−𝜅−1
𝑚=0  orthogonal order-𝐼  CA sequences 𝒢𝐼  by varying the 

index vector 𝝂 = [𝜈𝑚; 𝑚 ∈ 𝒵Ω(𝑁)−𝜅]  exclusively with 𝜈𝑚 ∈ 𝒵𝐴𝑚−1
+  for all 𝑚 ∈

𝒵Ω(N)−𝜅, and exhibits the sidelobe-decaying order 𝐼 ≥ Ω(𝑁) − 𝜅 under Condition A and 

𝐼 ≥ ⌊(Ω(𝑁) − 𝜅)/2⌋ under Condition B. As Ω(𝑁) is odd, any family 𝒢
𝐼

(dpma,1)
 based 

on any level-(Ω(𝑁) − 1) factorization yields the sidelobe-decaying order 𝐼 ≥ ⌊Ω(𝑁)/

2⌋ under Condition B, which may exhibit the same sidelobe-decaying as family 𝒢𝐼
(pma)

 

based on the prime factorization. 

 For a fixed 𝜅 ∈ 𝒵Ω(𝑁)−2
+ , the family sizes for different families 𝒢

𝐼

(dpma,𝜅)
 are not 

necessarily identical, depending on corresponding level- (Ω(𝑁) − 𝜅)  factorizations. 

Besides, more orthogonal PMA sequences can be obtained by using a larger 𝜅  in 

𝒵Ω(𝑁)−1
+  in that 𝐴𝑚𝐴𝑛 − 1  is strictly larger than (𝐴𝑚 − 1)(𝐴𝑛 − 1)  for any two 

integer factors with 𝐴𝑚 , 𝐴𝑛 > 1 . The largest family size Ψmax(𝑁) = 𝑁 − 1  under 

Condition A is exactly achieved by the only family 𝒢
𝐼

(dpma,Ω(𝑁)−1)
 based on the level-1 
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factorization 𝑁 = 𝐴0 . For a fixed 𝜅 ∈ 𝒵Ω(𝑁)−2
+ , a particular level- (Ω(𝑁) − 𝜅) 

factorization 𝑁 = ∏ 𝐴𝑚
(𝜅)Ω(𝑁)−𝜅−1

𝑚=0  is said to be a proper level-(Ω(𝑁) − 𝜅) factorization 

if Ψ(dpma,𝜅)(𝑁) ≜ ∏ (𝐴𝑚
(𝜅) − 1)Ω(𝑁)−𝜅−1

𝑚=0  is the achievable largest family size among all 

possible families 𝒢
𝐼

(dpma,𝜅)
. Such proper level-(Ω(𝑁) − 𝜅) factorization may not be 

unique. Under a proper factorization, the corresponding family 𝒢
𝐼

(dpma,𝜅)
 is dubbed 

𝒢
max,𝐼

(dpma,𝜅)
 for notational convenience. Family 𝒢

max,𝐼

(dpma,𝜅)
 consists of Ψ(dpma,𝜅)(𝑁)/

(𝐴max
(𝜅) − 1)  mutually exclusive CS sequence subfamilies 𝒢max,𝐼

(cs,𝜅)(𝐪lead)  for all 

permissible subfamily leaders 𝐪lead , where 𝐴max
(𝜅) ≜ max

𝑚∈𝒵Ω(𝑁)−𝜅
𝐴𝑚
(𝜅)

. Each subfamily 

𝒢max,𝐼
(cs,𝜅)(𝐪lead) contains 𝐴max

(𝜅) − 1 sequences generated by cyclically shifting the inverse 

DFT of a subfamily leader 𝐪lead  in family 𝒢
max,𝐼

(dpma,𝜅)
 with family CSD 𝜔𝒢

(𝜅) ≜

𝑁/𝐴max
(𝜅)

. Below, proper level-(Ω(𝑁) − 𝜅) factorizations with 𝜅 = 1 and 𝜅 = 2 are 

first developed in closed-form expressions. An exclusive search procedure is then 

proposed to find proper level-(Ω(𝑁) − 𝜅) factorizations with all 𝜅 ∈ 𝒵Ω(𝑁)−2
+ . Last, for 

sequence lengths 𝑁  with Ω(𝑁) > 4 , near-proper level- (Ω(𝑁) − 𝜅)  factorizations 

𝑁 = ∏ �̃�𝑚
(𝜅)Ω(𝑁)−𝜅−1

𝑚=0  for all 𝜅 ∈ 𝒵Ω(𝑁)−2
+ − 𝒵2

+  are presented in closed-form 

expressions to construct another degenerate PMA sequence family �̃�
max,𝐼

(dpma,𝜅)
, which also 

gives a larger family size than 𝒢𝐼
(pma)

. 

 For presentation convenience, prime factors in 𝑁 = ∏ 𝑃𝑚
Ω(𝑁)−1
𝑚=0  are arranged 

below in ascending order 𝑃0 ≤ 𝑃1 ≤ ⋯ ≤ 𝑃Ω(𝑁)−1 for the development of proper and 

near-proper level- (Ω(𝑁) − 𝜅)  factorizations and the developed factors in 𝑁 =

∏ 𝐴𝑚
(𝜅)Ω(𝑁)−𝜅−1

𝑚=0  and 𝑁 = ∏ �̃�𝑚
(𝜅)Ω(𝑁)−𝜅−1

𝑚=0  are not arranged in any order. Notably, to 
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construct order-𝐼  CA sequences in families 𝒢
max,𝐼

(dpma,𝜅)
 and �̃�

max,𝐼

(dpma,𝜅)
, the developed 

factors have to be rearranged beforehand in descending order, i.e., 𝐴0
(𝜅) ≥ 𝐴1

(𝜅) ≥ ⋯ ≥

𝐴Ω(𝑁)−𝜅−1
(𝜅)

 and �̃�0
(𝜅) ≥ �̃�1

(𝜅) ≥ ⋯ ≥ �̃�Ω(𝑁)−𝜅−1
(𝜅)

. Table V summarizes the developed 

closed-form expressions for proper level-(Ω(𝑁) − 𝜅) factorizations with 𝜅 = 1 and 

𝜅 = 2 as well as near-proper level-(Ω(𝑁) − 𝜅) factorizations for all 𝜅 ∈ 𝒵Ω(𝑁)−2
+ − 𝒵2

+. 

  

3.1 Proper Level-(Ω(𝑁) − 1) Factorization for Ω(𝑁) > 2： 

 The proper level- (Ω(𝑁) − 1)  factorization was proposed by [43]. With 𝑁 =

∏ 𝑃𝑚
Ω(𝑁)−1
𝑚=0  and Ω(𝑁) > 2, 𝑁  can be factorized into Ω(𝑁) − 1 factors only when 

two specific prime factors 𝑃𝑖  and 𝑃𝑛  are chosen from {𝑃𝑚; 𝑚 ∈ 𝒵Ω(𝑁)} and merged 

into one composite factor 𝑃𝑖𝑃𝑛. Under such factorization, one family 𝒢
𝐼

(dpma,1)
 can be 

formed with the family size Ψ(𝑁) × 𝑓([𝑃𝑖, 𝑃𝑛]), where the function 𝑓(𝐚𝑡) is defined by 

𝑓(𝐚𝑡) =
∏ 𝑎𝑚 − 1𝑚∈𝒵𝑀

∏ (𝑎𝑚 − 1)𝑚∈𝒵𝑀

(11) 

with 𝐚 = [𝑎𝑚; 𝑚 ∈ 𝒵𝑀]  being an 𝑀 -tuple argument with all integer-valued entries 

𝑎𝑚 > 1. This family size can be maximized by choosing 𝑃𝑖 and 𝑃𝑛 properly based on 

Lemma 1, which is proven in [43]. 

 Lemma 1：Consider two integer-valued 𝑀-tuples 𝐚 = [𝑎𝑚; 𝑚 ∈ 𝒵𝑀] and 𝐛 =

[𝑏𝑚; 𝑚 ∈ 𝒵𝑀] . If 1 < 𝑎𝑚 ≤ 𝑏𝑚  for all 𝑚 ∈ 𝒵𝑀 , then 𝑓(𝐚𝑡) ≥ 𝑓(𝐛𝑡) . Moreover, 

𝑓(𝐚𝑡) > 𝑓(𝐛𝑡) if 1 < 𝑎𝑛 < 𝑏𝑛 for some 𝑚 ∈ 𝒵𝑀 and 1 < 𝑎𝑚 ≤ 𝑏𝑚 for all the other 

𝑚 ∈ 𝒵𝑀 − {𝑛}. 

 From Lemma 1, the smallest two prime factors should be merged to compose a 

proper level- (Ω(𝑁) − 1)  factorization 𝑁 = ∏ 𝐴𝑚
(1)Ω(𝑁)−2

𝑚=0  with 𝐴0
(1) = 𝑃0𝑃1  and 
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𝐴𝑚
(1) = 𝑃𝑚+1 for 𝑚 ∈ 𝒵Ω(𝑁)−2

+ . This proper factorization results in the largest family 

size Ψ(dpma,1)(𝑁) = (𝑃0𝑃1 − 1)∏ (𝑃𝑚 − 1)
Ω(𝑁)−1
𝑚=2 . The corresponding family 

𝒢
max,𝐼

(dpma,1)
 can provide mutually orthogonal order-𝐼 CA sequences with 𝐼 ≥ Ω(𝑁) − 1 

under Condition A and 𝐼 ≥ ⌊(Ω(𝑁) − 1)/2⌋ under Condition B. 

 

3.2 Proper Level-(Ω(𝑁) − 2) Factorization for Ω(𝑁) > 3： 

 The proper level- (Ω(𝑁) − 2)  factorization was proposed by [43]. With 𝑁 =

∏ 𝑃𝑚
Ω(𝑁)−1
𝑚=0  and Ω(𝑁) > 3, there are two mutually exclusive methods to factorize 𝑁 =

∏ 𝐴𝑚
Ω(𝑁)−3
𝑚=0  in order to obtain a level-(Ω(𝑁) − 2) factorization. Method 1 is to choose 

any three prime factors from {𝑃𝑚; 𝑚 ∈ 𝒵Ω(𝑁)}  and merge them into one composite 

factor. Method 2 is to choose any four prime factors from {𝑃𝑚; 𝑚 ∈ 𝒵Ω(𝑁)} and merge 

them into two composite factors in pairs. Both methods are detailed below. 

 Method 1: From Lemma 1, the smallest three prime factors should be merged in order 

to maximize the family size when a level-(Ω(𝑁) − 2)  factorization is obtained by 

merging three prime factors. This results in the family size (𝑃0𝑃1𝑃2 − 1)∏ (𝑃𝑚 −
Ω(𝑁)−1
𝑚=3

1). Thus, one candidate family for 𝒢
max,𝐼

(dpma,2)
 is based on the candidate factorization 

𝐴0 = 𝑃0𝑃1𝑃2 and 𝐴𝑚 = 𝑃𝑚+2 for 𝑚 ∈ 𝒵Ω(𝑁)−3
+ . 

 Method 2: When a level-(Ω(𝑁) − 2) factorization is obtained by merging four 

prime factors in pairs, the family size can be maximized by choosing and pairing four 

prime factors properly based on Lemma 2, as proven in [43]. 

 Lemma 2: Consider four integers 𝑃𝑎, 𝑃𝑏, 𝑃𝑐, and 𝑃𝑑. If 1 < 𝑃𝑎 ≤ 𝑃𝑏 ≤ 𝑃𝑐 ≤ 𝑃𝑑, 

then 𝑓([𝑃𝑎, 𝑃𝑑]) × 𝑓([𝑃𝑏 , 𝑃𝑐]) ≥ 𝑓([𝑃𝑎, 𝑃𝑐]) × 𝑓([𝑃𝑏 , 𝑃𝑑]) ≥ 𝑓([𝑃𝑎, 𝑃𝑏]) × 𝑓([𝑃𝑐, 𝑃𝑑]). 
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 From Lemma 1 and Lemma 2, the smallest four prime factors should be merged in 

pairs to form the candidate factorization 𝐴0 = 𝑃0𝑃3, 𝐴1 = 𝑃1𝑃2 and 𝐴𝑚+1 = 𝑃𝑚+3 for 

𝑚 ∈ 𝒵Ω(𝑁)−4
+ , in order to maximize the family size when a level- (Ω(𝑁) − 2) 

factorization is obtained by merging four prime 13 factors in pairs. Such factorization 

results in the other candidate family for 𝒢
max,𝐼

(dpma,2)
 having the family size (𝑃0𝑃3 −

1)(𝑃1𝑃2 − 1)∏ (𝑃𝑚 − 1)
Ω(𝑁)−1
𝑚=4 . 

 Exclusively, Method 1 and Method 2 give two candidate level- (Ω(𝑁) − 2) 

factorizations offering the family sizes Ψ(𝑁) × 𝑓([𝑃0, 𝑃1, 𝑃2])  and Ψ(𝑁) ×

𝑓([𝑃0, 𝑃3]) × 𝑓([𝑃1, 𝑃2]), respectively. The factorization that yields the largest family 

size is thus a proper level-(Ω(𝑁) − 2) factorization and can be adopted to construct 

family 𝒢
max,𝐼

(dpma,2)
. Lemma 3 is proven in [43] to support such proper factorization. 

 Lemma 3: Consider four integers 𝑃𝑎 , 𝑃𝑏 , 𝑃𝑐 , and 𝑃𝑑  with 1 < 𝑃𝑎 ≤ 𝑃𝑏 ≤ 𝑃𝑐 ≤

𝑃𝑑. If 𝑃𝑏𝑃𝑐 ≤ 𝑃𝑑 , then 𝑓([𝑃𝑎, 𝑃𝑏 , 𝑃𝑐]) ≥  𝑓([𝑃𝑎, 𝑃𝑑]) × 𝑓([𝑃𝑏 , 𝑃𝑐]). 

 From Lemma 3, a proper level-(Ω(𝑁) − 2) factorization for 𝑁 = ∏ 𝐴𝑚
(2)Ω(𝑁)−3

𝑚=0  is 

obtained by setting 𝐴0
(2) = 𝑃0𝑃1𝑃2 and 𝐴𝑚

(2) = 𝑃𝑚+2 for 𝑚 ∈ 𝒵Ω(𝑁)−3
+  (i.e., Method 1) 

if 𝑃1𝑃2 < 𝑃3 , and by setting 𝐴0
(2) = 𝑃0𝑃3 , 𝐴1

(2) = 𝑃1𝑃2  and 𝐴𝑚+1
(2) = 𝑃𝑚+3  for 𝑚 ∈

𝒵Ω(𝑁)−4
+  (i.e., Method 2) otherwise. This proper factorization results in the largest family 

size Ψ(dpma,2)(𝑁) = max{(𝑃0𝑃1𝑃2 − 1)∏ (𝑃𝑚 − 1)
Ω(𝑁)−1
𝑚=3 , (𝑃0𝑃3 − 1)(𝑃1𝑃2 −

1)∏ (𝑃𝑚 − 1)
Ω(𝑁)−1
𝑚=4  } . Based on the proper level- (Ω(𝑁) − 2)  factorization, family 

𝒢
max,𝐼

(dpma,2)
 is constructed by the PMA method and provides mutually orthogonal order-𝐼 

CA sequences with 𝐼 ≥ Ω(𝑁) − 2 under Condition A and 𝐼 ≥ ⌊(Ω(𝑁) − 2)/2⌋ under 

Condition B. 
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3.3 Exclusively Search a Proper Level-(Ω(𝑁) − 𝜅) Factorization 

 For 𝜅 ∈ {3,4, … , Ω (𝑁) − 2} , it is difficult to find proper level- (Ω(𝑁) − 𝜅) 

factorizations in closed-form expressions. An exclusive search procedure is proposed 

instead to find such proper factorizations. 

 To obtain a proper level-(Ω(𝑁) − 𝜅) factorization, we need to (i) find all possible 

factor sets {𝐴𝑚; 𝑚 ∈ 𝒵Ω(𝑁)−𝜅}  satisfying ∏ 𝐴𝑚
Ω(𝑁)−𝜅−1
𝑚=0 = ∏ 𝑃𝑚

Ω(𝑁)−1
𝑚=0  by 

partitioning the prime factor set {𝑃𝑚; 𝑚 ∈ 𝒵Ω(𝑁)} into Ω(𝑁) − 𝜅 groups first and then 

taking all group products in the exclusive manner, and (ii) search for a proper factor set 

{𝐴𝑚
(𝜅);𝑚 ∈ 𝒵Ω(𝑁)−𝜅}  which yields the largest family size Ψ(dpma,𝜅)(𝑁) =

∏ (𝐴𝑚
(𝜅) − 1)Ω(𝑁)−𝜅−1

𝑚=0  among all factor sets. In each partitioning, we denote 𝜔𝑚 as the 

number of prime factors in the 𝑚-th group, i.e., 𝜔𝑚 = Ω(𝐴𝑚) for 𝑚 ∈ 𝒵Ω(𝑁)−𝜅. Thus, 

each factor set {𝐴𝑚; 𝑚 ∈ 𝒵Ω(𝑁)−𝜅} is characterized by the corresponding omega pattern 

𝝎 ≜ [𝜔𝑚; 𝑚 ∈ 𝒵Ω(𝑁)−𝜅] with ∑ 𝜔𝑚
Ω(𝑁)−𝜅−1
𝑚=0 = Ω(𝑁). The exclusive partitioning can 

be conducted by searching for all possible omega patterns first and then finding all 

possible groupings for each pattern 𝝎. To avoid repetitive search, 𝝎 is limited to have 

descending entries 𝜔0 ≥ 𝜔1 ≥ ⋯ ≥ 𝜔Ω(𝑁)−𝜅−1  in the exclusive partitioning. In the 

following, an exclusive search procedure is proposed accordingly to find a proper level-

(Ω(𝑁) − 𝜅) factorization. 

 Step 1: Obtain and store all admissible patterns for 𝝎  under the constraints 

∑ 𝜔𝑚
Ω(𝑁)−𝜅−1
𝑚=0 = Ω(𝑁) and 𝜔0 ≥ 𝜔1 ≥ ⋯ ≥ 𝜔Ω(𝑁)−𝜅−1 ≥ 1 by the process of integer 

partitioning in [36, Section 1.1]-[37]. 

 Step 2: Transform the prime factor set {𝑃𝑚; 𝑚 ∈ 𝒵Ω(𝑁)} into all possible factor sets 

{𝐴𝑚; 𝑚 ∈ 𝒵Ω(𝑁)−𝜅}  characterized by each admissible pattern 𝝎  exclusively from 
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Gosper’s Hack algorithm [38, Section 7.1.3]-[39]. Compute family sizes 

∏ (𝐴𝑚 − 1)
Ω(𝑁)−𝜅−1
𝑚=0  for all sought factor sets {𝐴𝑚; 𝑚 ∈ 𝒵Ω(𝑁)−𝜅} Store one candidate 

factor set which provides the largest family size among all sought factor sets characterized 

by each admissible pattern 𝝎. 

 Step 3: Find a proper level- (Ω(𝑁) − 𝜅)  factor set {𝐴𝑚
(𝜅);𝑚 ∈ 𝒵Ω(𝑁)−𝜅}  by 

choosing one candidate factor set which yields the largest family size Ψ(dpma,𝜅)(𝑁) =

∏ (𝐴𝑚
(𝜅) − 1)Ω(𝑁)−𝜅−1

𝑚=0  among all stored factor sets in Step 2. 

 In Step 1, the process of integer partitioning in [36, Section 1.1]-[37] finds all 

possible patterns for 𝝎  by dividing the all one Ω(𝑁) -tuple [1,1, … ,1]𝑡  into the 

admissible (Ω(𝑁) − 𝜅)-tuple 𝝎  in the exclusive manner. For example, the process 

finds [3,1,1]𝑡  and [2,2,1]𝑡  by dividing [1,1,1,1,1]𝑡  into [𝜔0, 𝜔1, 𝜔2]
𝑡  for Ω(𝑁) =

5 and 𝜅 = 2. In Step 2, Gosper’s Hack algorithm transforms an omega pattern to all 

possible binary codewords without repetition in the bitwise manner [39, Algorithm 3.1], 

as detailed in Appendix A. In Step 3, a proper level- (Ω(𝑁) − 𝜅)  factor set 

{𝐴𝑚
(𝜅);𝑚 ∈ 𝒵Ω(𝑁)−𝜅} is found from all stored candidate factor sets stored in Step 2 by 

identifying the largest family size. This completes the exclusive search procedure. 

  

3.4 Near-Proper Level- (Ω(𝑁) − 𝜅)  Factorization for Ω(𝑁) > 4  and 𝜅 ∈

{3,4, … , Ω(𝑁) − 2} 

A near-proper level- (Ω(𝑁) − 𝜅)  factorization ∏ �̃�𝑚
(𝜅)Ω(𝑁)−𝜅−1

𝑚=0  with �̃�0
(𝜅) ≤

�̃�1
(𝜅) ≤ ⋯ ≤ �̃�Ω(𝑁)−𝜅−1

(𝜅)
 for all 𝜅 ∈ 𝒵Ω(𝑁)−2

+ − 𝒵2
+ is proposed here to construct another 

degenerate PMA sequence family �̃�
max,𝐼

(dpma,𝜅)
 based on the construction method of Proper 

Level- (Ω(𝑁) − 2)  Factorization in Subsection III.B. Under such near-proper 



doi:10.6342/NTU202303160

33 

 

factorization, family �̃�
max,𝐼

(dpma,𝜅)
 exhibits the family size Ψ̃(dpma,𝜅)(𝑁) =

∏ (�̃�𝑚
(𝜅) − 1)Ω(𝑁)−𝜅−1

𝑚=0 . Despite Ψ̃(dpma,𝜅)(𝑁) ≤ Ψ(dpma,𝜅)(𝑁), the near-proper level-

(Ω(𝑁) − 𝜅) factorization can be obtained simply in a closed-form expression without 

resort to exclusive searching. 

 Following Subsection III.B, a near-proper level-(Ω(𝑁) − 𝜅) factorization for 𝑁 =

∏ �̃�𝑚
(𝜅)Ω(𝑁)−𝜅−1

𝑚=0  is obtained from a given level- (Ω(𝑁) − 𝜅 + 2)  factorization 𝑁 =

∏ �̃�𝑚
(𝜅−2)Ω(𝑁)−𝜅+1

𝑚=0  with the arranged order �̃�0
(𝜅−2) ≤ �̃�1

(𝜅−2) ≤ ⋯ ≤ �̃�Ω(𝑁)−𝜅+1
(𝜅−2)

. 

Specifically, a near-proper level-(Ω(𝑁) − 𝜅) factorization for 𝑁 = ∏ �̃�𝑚
(𝜅)Ω(𝑁)−𝜅−1

𝑚=0  is 

obtained by setting �̃�0
(𝜅) = �̃�0

(𝜅−2)�̃�1
(𝜅−2)�̃�2

(𝜅−2)
 and �̃�𝑚

(𝜅) = �̃�𝑚+2
(𝜅−2)

 for 𝑚 ∈ 𝒵Ω(𝑁)−𝜅−1
+  

if �̃�1
(𝜅−2)�̃�2

(𝜅−2) < �̃�3
(𝜅−2)

, and by setting �̃�0
(𝜅) = �̃�0

(𝜅−2)�̃�3
(𝜅−2)

, �̃�1
(𝜅) = �̃�1

(𝜅−2)�̃�2
(𝜅−2)

 

and �̃�𝑚+1
(𝜅) = �̃�𝑚+3

(𝜅−2)
 for 𝑚 ∈ 𝒵Ω(𝑁)−𝜅−2

+  otherwise. For 𝜅 ∈ 𝒵2
+ , {�̃�𝑚

(𝜅);𝑚 ∈

𝒵Ω(𝑁)−𝜅} is s initially assigned by �̃�𝑚
(𝜅) = 𝐴𝑚

(𝜅)
 where 𝑁 = ∏ 𝐴𝑚

(𝜅)Ω(𝑁)−𝜅−1
𝑚=0  is a proper 

level-(Ω(𝑁) − 𝜅) factorization with the arranged order 𝐴0
(𝜅) ≤ 𝐴1

(𝜅) ≤ ⋯ ≤ 𝐴Ω(𝑁)−𝜅−1
(𝜅)

. 

 Notably, families �̃�
max,𝐼

(dpma,𝜅)
 contain Ψ̃(dpma,𝜅)(𝑁)/(�̃�max

(𝜅) − 1)  mutually 

exclusive CS sequence subfamilies and each subfamily contains �̃�max
(𝜅) − 1 sequences 

generated by cyclically shifting the inverse DFT of a subfamily leader with family CSD 

𝜔
𝒢

(𝜅)
≜ 𝑁/�̃�max

(𝜅)
, where �̃�max

(𝜅) ≜ max
𝑚∈𝒵Ω(𝑁)−𝜅

�̃�𝑚
(𝜅)

. 

 

3.5 Some Examples of Families 𝒢
max,𝐼

(dpma,𝜅)
 and �̃�

max,𝐼

(dpma,𝜅)
 

 Based on proper level-(Ω(𝑁) − 𝜅) factorization 𝑁 = ∏ 𝐴𝑚
(𝜅)Ω(𝑁)−𝜅−1

𝑚=0  and near-

proper level- (Ω(𝑁) − 𝜅)  factorization 𝑁 = ∏ �̃�𝑚
(𝜅)Ω(𝑁)−𝜅−1

𝑚=0 , family 𝒢
max,𝐼

(dpma,𝜅)
 and 
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family �̃�
max,𝐼

(dpma,𝜅)
 can be constructed to contain orthogonal order-𝐼 CA sequences with 

family sizes ∏ (𝐴𝑚
(𝜅) − 1)Ω(𝑁)−𝜅−1

𝑚=0  and ∏ (�̃�𝑚
(𝜅) − 1)Ω(𝑁)−𝜅−1

𝑚=0 , respectively. Since there 

is only one level-Ω(𝑁) factorization, family 𝒢𝐼
(pma)

 is essentially constructed under a 

proper level-(Ω(𝑁) − 𝜅)  factorization with 𝜅 = 0 . The developed degenerate PMA 

families 𝒢
max,𝐼

(dpma,𝜅)
 and �̃�

max,𝐼

(dpma,𝜅)
 are listed in Table VI for example sequence lengths 

adopted by the MIMO SCE application in 5G-NR [2, Section 6.4.1.4.3], where the 

achieved family size, the supporting factor set, and the family CSD are demonstrated for 

each family. As shown, 𝒢
max,𝐼

(dpma,𝜅)
 and �̃�

max,𝐼

(dpma,𝜅)
 provide much larger family sizes than 

𝒢𝐼
(pma)

 and offer the larger family sizes as 𝜅 increases, but they may entail reduced 

sidelobe-decaying order 𝐼 ≥ Ω(𝑁) − 𝜅  under Condition A and 𝐼 ≥ ⌊(Ω(𝑁) − 𝜅)/2⌋ 

under Condition B. For a fixed 𝜅 ∈ {3,4, … , Ω(𝑁) − 2}, the family size of �̃�
max,𝐼

(dpma,𝜅)
 is 

the same as or very close to the family size of 𝒢
max,𝐼

(dpma,𝜅)
. The latter reveals the advantage 

of near-proper level-(Ω(𝑁) − 𝜅) factorization for 𝜅 ∈ {3,4, … , Ω(𝑁) − 2} in that the 

closed-form expressions are available for factorization. 

 For the SCE application in 5G NR, orthogonal Zadoff-Chu sequences are adopted 

and these sequences are generated by cyclically shifting a root ZC sequence in time 

domain under the restriction that the minimum CSD 𝜔min is guaranteed for every shift 

to avoid sequence ambiguity [2, Section 6.4.1.4.1]. Recall that family 𝒢
max,𝐼

(dpma,𝜅)
 contains 

Ψ(dpma,𝜅)(𝑁)/(𝐴max
(𝜅) − 1)  mutually exclusive CS sequence subfamilies and each 

subfamily contains 𝐴max
(𝜅) − 1  sequences generated by cyclically shifting the inverse 

DFT of a subfamily leader with family CSD 𝜔𝒢
(𝜅) ≜ 𝑁/𝐴max

(𝜅)
. Thus, not every sequence 

in family 𝒢
max,𝐼

(dpma,𝜅)
 can be adopted if 𝜔𝒢

(𝜅)
 is smaller than 𝜔min required by the SCE 
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application. The same concern exists with family �̃�
max,𝐼

(dpma,𝜅)
. For example, family 

𝒢
max,𝐼

(dpma,5)
 in Table VI(c) contains Ψ(dpma,5)(288)/(𝐴max

(5) − 1) = 15  CS sequence 

subfamilies and each subfamily contains 𝐴max
(5) − 1 = 17 sequences with 𝜔𝒢

(5) = 16. 

Due to 𝜔min = 24, at most ⌊(𝐴max
(5) − 1)/⌈𝜔min/𝜔𝒢

(5)⌉⌋ = 8 sequences can be adopted 

in each subfamily to satisfy the CSD restriction and accordingly at most 120 orthogonal 

sequences from family 𝒢
max,𝐼

(dpma,5)
 can be used as the sounding sequences under the 

restriction 𝜔min = 24. As such, the number Ψ(𝑁|𝜔min) is also given for each family 

in Table VI to show the maximum number of sounding sequences available for use in the 

SCE application under the CSD restriction by 𝜔min. 

 Remark 1: In 5G NR, there are 12  orthogonal ZC sequences required for all 

considered sequence lengths [2, Section 6.4.1.4.3] to support simultaneous uplink channel 

estimation from at most 12  transmit antennas [2, Section 6.4.1.4.1], and the 

orthogonality among sounding sequences is necessary to identify and separate different 

channels in order to achieve high estimation accuracy for multipath channels with short-

delay channel profiles [14], [22], [24]. In this case, the minimum CSD required to avoid 

sequence ambiguity is specified by 𝜔min = 𝑁/12  for the adopted ZC sequences of 

different sequence lengths 𝑁 . As an example in Table VI(a) with 𝑁 = 48 , 12 

orthogonal ZC sequences can be generated by cyclically shifting a given ZC sequence (in 

time domain) with 𝜔min = 4 . As shown in Table VI, all families 𝒢
max,𝐼

(dpma,𝜅)
 and 

�̃�
max,𝐼

(dpma,𝜅)
 with 𝜅 ≥ 2 can offer more than 12 orthogonal sequences than the adopted 

ZC sequence families for the channel sounding application in 5G NR [2, Section 

6.4.1.4.1], while satisfying the same CSD restriction by 𝜔min and providing the larger 

sidelobe-decaying order. 
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Table VI 

The family sizes and the numbers of available sounding sequences provided by family 

𝒢
max,𝐼

(dpma,𝜅)
 and �̃�

max,𝐼

(dpma,𝜅)
 for sequence lengths (a) 𝑁 = 48, (b) 𝑁 = 144, and (c) 𝑁 =

288 adopted for channel sounding application in 5G NR standard. The associated 

factor sets {𝐴𝑚
(𝜅);𝑚 ∈ 𝒵Ω(𝑁)−𝜅} and {�̃�𝑚

(𝜅); 𝑚 ∈ 𝒵Ω(𝑁)−𝜅} are also demonstrated. 

 

(a) 𝑁 = 48 (Ω(𝑁) = 5,𝜔min = 4) 

Family (Family CSD) Family Size (Ψ(𝑁|𝜔min)) Factor Set 

𝒢𝐼
(pma)

 (16) 2 (2) {2,2,2,2,3} 

𝒢
max,𝐼

(dpma,1)
 (12) 6 (6) {2,2,3,4} 

𝒢
max,𝐼

(dpma,2)
 (12) 18 (18) {3,4,4} 

𝒢
max,𝐼

(dpma,3)
, �̃�

max,𝐼

(dpma,3)
 (6,6) 35,35 (35,35) {6,8}, {6,8} 

 

(b) 𝑁 = 144 (Ω(𝑁) = 6,𝜔min = 12) 

Family (Family CSD) Family Size (Ψ(𝑁|𝜔min)) Factor Set 

𝒢𝐼
(pma)

 (48) 4 (4) {2,2,2,2,3,3} 

𝒢
max,𝐼

(dpma,1)
 (36) 12 (12) {2,2,3,3,4} 

𝒢
max,𝐼

(dpma,2)
 (36) 36 (36) {3,3,4,4} 

𝒢
max,𝐼

(dpma,3)
, �̃�

max,𝐼

(dpma,3)
 (24,24) 75,75 (75,75) {4,6,6}, {4,6,6} 

𝒢
max,𝐼

(dpma,4)
, �̃�

max,𝐼

(dpma,4)
 (12,12) 121,121 (121,121) {12,12} {12,12} 

 

(c) 𝑁 = 288 (Ω(𝑁) = 7,𝜔min = 24) 

Family (Family CSD) Family Size (Ψ(𝑁|𝜔min)) Factor Set 

𝒢𝐼
(pma)

 (96) 4 (4) {2,2,2,2,2,3,3} 

𝒢
max,𝐼

(dpma,1)
 (72) 12 (12) {2,2,2,3,3,4} 

𝒢
max,𝐼

(dpma,2)
 (72) 36 (36) {2,3,3,4,4} 

𝒢
max,𝐼

(dpma,3)
, �̃�

max,𝐼

(dpma,3)
 (48,48) 90,90 (90,90) {3,4,6,6}, {3,4,6,6} 

𝒢
max,𝐼

(dpma,4)
, �̃�

max,𝐼

(dpma,4)
 (36,32) 175,168 (175,168) {6,6,8} {4,8,9} 

𝒢
max,𝐼

(dpma,5)
, �̃�

max,𝐼

(dpma,5)
 (16,16) 255,255 (120,120) {16,18} {16,18} 
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Table VII 

The family sizes provided by �̂�
max,𝐼

(dpma,𝜅)
 and �̂�

max,𝐼

(adpma,𝜅)
 with sequence lengths (a) 

𝑁 = 139, (b)𝑁 = 571, (c)𝑁 = 839, and (d)𝑁 = 1151 for RA application in 5G NR. 

In searching 𝜽, the accuracy measure is set to 𝜖 = 10−9. The proper factor sets for all 

subsequence lengths �̃�(0), �̃�(1), …, �̃�(𝐿−1) and the sought �̂� are also demonstrated. 

The largest achievable family size Ψmax(𝑁) under Condition B is given for 

benchmarking. 

(a) 𝑁 = 139 with (�̃�(0), �̃�(1), �̃�(2)) = (50,45,44), 

Ω̃(𝑁) = 3, and {𝜃0, 𝜃1, 𝜃2} = {0°, 125.12°, 236.77°} 

Family 
Family Size 

(Ψmax(𝑁)) 

Factor Sets of 

�̃�(0), �̃�(1), and �̃�(2) 

�̂�𝐼
(pma)

, �̂�𝐼
(apma)

 10, 20 (137) {2,5,5}, {3,3,5}, {2,2,11} 

�̂�
max,𝐼

(dpma,1)
, �̂�

max,𝐼

(adpma,1)
 30, 60 (137) {5,10}, {5,9}, {4,11} 

 

(b) 𝑁 = 571 with (�̃�(0), �̃�(1), �̃�(2)) = (225,196,150), 

Ω̃(𝑁) = 4, and {𝜃0, 𝜃1, 𝜃2} = {0°, 138.98°, 239.06°} 

Family 
Family Size 

(Ψmax(𝑁)) 

Factor Sets of 

�̃�(0), �̃�(1), and �̃�(2) 

�̂�𝐼
(pma)

, �̂�𝐼
(apma)

 32, 64 (567) {3,3,5,5}, {2,2,7,7}, {2,3,5,5} 

�̂�
max,𝐼

(dpma,1)
, �̂�

max,𝐼

(adpma,1)
 80, 160 (569) {5,5,9}, {4,7,7}, {5,5,6} 

�̂�
max,𝐼

(dpma,2)
, �̂�

max,𝐼

(adpma,2)
 125, 252 (569) {15,15}, {14,14}, {10,15} 
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(c) 𝑁 = 839 with (�̃�(0), �̃�(1), �̃�(2)) = (396,243,200), 

Ω̃(𝑁) = 5, and {𝜃0, 𝜃1, 𝜃2} = {0°, 156.04°, 509.57°} 

Family 
Family Size 

(Ψmax(𝑁)) 

Factor Sets of 

�̃�(0), �̃�(1), and �̃�(2) 

�̂�𝐼
(pma)

, �̂�𝐼
(apma)

 16, 32 (835) 
{2,2,3,3,11}, {3,3,3,3,3}, 

{2,2,2,5,5} 

�̂�
max,𝐼

(dpma,1)
, �̂�

max,𝐼

(adpma,1)
 48, 96 (835) {3,3,4,11}, {3,3,3,9}, {2,4,5,5} 

�̂�
max,𝐼

(dpma,2)
, �̂�

max,𝐼

(adpma,2)
 112, 224 (837) {6,6,11}, {3,9,9}, {5,5,8} 

�̂�
max,𝐼

(dpma,3)
, �̂�

max,𝐼

(adpma,3)
 171, 342 (837) {18,22}, {9,27}, {10,20} 

 

(d) 𝑁 = 1151 with (�̃�(0), �̃�(1), �̃�(2)) = (468,440,243), 

Ω̃(𝑁) = 5, and {𝜃0, 𝜃1, 𝜃2} = {0°, 149.15°, 248.20°} 

Family 
Family Size 

(Ψmax(𝑁)) 

Factor Sets of 

�̃�(0), �̃�(1), and �̃�(2) 

�̂�𝐼
(pma)

, �̂�𝐼
(apma)

 32, 64 (1147) 
{2,2,3,3,13}, {2,2,2,5,11}, 

{3,3,3,3,3} 

�̂�
max,𝐼

(dpma,1)
, �̂�

max,𝐼

(adpma,1)
 64, 128 (1147) {3,3,4,13}, {2,4,5,11}, {3,3,3,9} 

�̂�
max,𝐼

(dpma,2)
, �̂�

max,𝐼

(adpma,2)
 128, 256 (1149) {6,6,13}, {5,8,11}, {3,9,9} 

�̂�
max,𝐼

(dpma,3)
, �̂�

max,𝐼

(adpma,3)
 208, 416 (1149) {18,26}, {20,22}, {9,27} 
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Chapter 4 

Families �̂�𝑰
(𝐚𝐩𝐦𝐚)

, �̂�
𝐦𝐚𝐱,�̃�

(𝐝𝐩𝐦𝐚,𝜿)
, and �̂�

𝐦𝐚𝐱,�̃�

(𝐚𝐝𝐩𝐦𝐚,𝜿)
 

In this section, we consider the sequence length 𝑁  meeting Ω̃(𝑁) > Ω(𝑁)  and 

construct new families �̂�
max,𝐼

(dpma,𝜅)
 and �̂�

max,𝐼

(adpma,𝜅)
 for 𝜅 ∈ 𝒵Ω̃(𝑁)−1

+ . Notably, any 

orthogonal sequence in a new family �̂�
max,𝐼

(dpma,𝜅)
 or �̂�

max,𝐼

(adpma,𝜅)
 cannot be obtained from 

cyclically shifting another sequence in the same family, due to the proper decomposition 

of 𝑁. 

 

4.1 Degenerate PMA Sequence Family �̂�
max,𝐼

(dpma,𝜅)
 for 𝜅 ∈ 𝒵Ω̃(𝑁)−1

+  

With a given 𝜅 ∈ 𝒵Ω̃(𝑁)−1
+ , the degenerate PMA sequence family �̂�

max,𝐼

(dpma,𝜅)
 can be 

constructed by virtue of the combined proper level- (Ω̃(𝑁) − 𝜅)  factorization for 

sequence �̂�𝐼 , which is composed of individual proper level- (Ω(�̃�(𝜌)) − 𝜅) 

factorizations for all component subsequences of lengths �̃�(0), �̃�(1), … , �̃�(𝐿−1)  under 

the proper decomposition 𝑁 = ∑ �̃�(𝜌)
𝜌∈𝒵𝐿  yielding Ω̃(𝑁)  (see (7)) with �̃�(0) ≥

�̃�(1) ≥ ⋯ ≥ �̃�(𝐿−1) ≥ 2 . For each 𝜌 ∈ 𝒵𝐿 , the proper level- (Ω(�̃�(𝜌)) − 𝜅) 

factorization �̃�(𝜌) = ∏ 𝐴𝑚
(𝜌,𝜅)Ω(�̃�(𝜌))−𝜅−1

𝑚=0  is used to construct family 𝒢
max,𝐼

(dpma,𝜅)
 with 

subsequence length �̃�(𝜌), where the factors 𝐴𝑚
(𝜌,𝜅)

 are not all primes. Each orthogonal 

sequence in family �̂�
max,𝐼

(dpma,𝜅)
 is thus composed by a concatenation of 𝐿  PMA 

subsequences 𝝌0, 𝝌1, … , 𝝌𝐿−1  of lengths �̃�(0), �̃�(1), … , �̃�(𝐿−1) , respectively. Such 

family �̂�
max,𝐼

(dpma,𝜅)
 has the family size Ψ̂(dpma,𝜅)(𝑁) ≜ min

𝜌∈𝒵𝐿
∏ (𝐴𝑚

(𝜌,𝜅)
− 1)

Ω(�̃�(𝜌))−𝜅−1

𝑚=0 . 
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Notably, �̂�
max,𝐼

(dpma,𝜅)
 tends to offer the larger family size as 𝜅 is increased, but it may 

reduce the sidelobe-decaying order 𝐼 ≥ Ω̃(𝑁) − 𝜅  under Condition A and 𝐼 ≥

⌊(Ω̃(𝑁) − 𝜅)/2⌋ under Condition B. 

 

4.2 Augmented PMA Sequence Families �̂�𝐼
(apma)

 and �̂�
max,𝐼

(adpma,𝜅)
 for 𝜅 ∈ 𝒵Ω̃(𝑁)−1

+  

Augmented PMA sequence family �̂�𝐼
(apma)

 was proposed from [43], which 

expands from family �̂�𝐼
(pma)

 with the same sidelobe-decaying order and a double family 

size, by virtue of phase-rotating every existing sequence in family �̂�𝐼
(pma)

 to generate 

more orthogonal sequence members. Similarly, augmented degenerate PMA sequence 

family �̂�
max,𝐼

(adpma,𝜅)
 expands from �̂�

max,𝐼

(dpma,𝜅)
 and offers a double family size while 

sustaining the same sidelobe-decaying order. In what follows, the phase-rotating method 

constructing family �̂�𝐼
(apma)

 is described in detail, and such method is also applied to 

construct family �̂�
max,𝐼

(adpma,𝜅)
. The details of the phase-rotating method were presented in 

[43] and are reviewed here. 

Consider one sequence �̂�𝐼  in family �̂�𝐼
(pma)

, which is described by 𝝌 =

[𝝌0
𝑡 , 𝝌1

𝑡 , … , 𝝌𝐿−1
𝑡 ]𝑡 . From this sequence, one extra order- 𝐼  CA sequence �̂�𝐼  can be 

obviously constructed by rotating the phases of the subsequences 𝝌𝜌 and described by 

𝝌𝜽 = [𝑒𝑗𝜃0𝝌0
𝑡 , 𝑒𝑗𝜃1𝝌1

𝑡 , … , 𝑒𝑗𝜃𝐿−1𝝌𝐿−1
𝑡 ]

𝑡
 where 𝜽 = [𝜃𝜌; 𝜌 ∈ 𝒵𝐿] is the rotating phase 

vector. Due to the PMA construction of �̂�𝐼
(pma)

, such phase-rotated sequence is mutually 

orthogonal to all the other PMA sequences in family �̂�𝐼
(pma)

 as well as their phase-

rotated sequences. To ensure that two sequences �̂�𝐼  described by 𝝌  and 𝝌𝜽  are 

mutually orthogonal, 𝜽 should be chosen to meet the orthogonality condition 𝝌ℎ𝝌𝜽 =
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∑ 𝝌𝜌
ℎ

𝜌∈𝒵𝐿 𝝌𝜌𝑒
𝑗𝜃𝜌 = 0, or equivalently 

∑ �̃�(𝜌)

𝜌∈𝒵𝐿

𝑒𝑗𝜃𝜌 = 0. (12) 

Notably, ∑ �̃�(𝜌)𝑒𝑗𝜃𝜌𝜌∈𝒵𝐿  can be regarded as the sum of 𝐿 vectors �̃�(𝜌)𝑒𝑗𝜃𝜌  in the 

complex plane. As indicated by (12), these 𝐿 vectors should be connected to form an 𝐿-

edge cyclic polygon in the complex plane. According to the cyclic polygon theorem in 

[40, Theorem 1], a solution to (12) exists iff all edge lengths �̃�(𝜌)  meet following 

restriction. 

Restriction A: 𝐿 ≥ 3 and max
𝜌∈𝒵𝐿

�̃�(𝜌) <
1

2
∑ �̃�(𝜌)
𝜌∈𝒵𝐿  

When Restriction A is met, the solution of 𝜽 to (12) can be obtained by invoking the 

following procedure. 

 

4.2.1 Review of the Procedure to Finding a Proper 𝜽 

This procedure was proposed in [43] and based on the bisection method to 

constructing a cyclic polygon given the edge lengths and obtaining the arc angles 

corresponding to the given edge lengths simultaneously [40, Section 1]. Under Restriction 

A, there must exist a cyclic polygon with prescribed edge lengths �̃�(0), �̃�(1), … , �̃�(𝐿−1) 

1.5.2. Denote 𝜉  as the radius of the circumscribed circle and 𝜗𝜌  as the arc angle 

corresponding to the edge length �̃�(𝜌) of the circumscribed circle. Notably, 𝜉 and {𝜗𝜌} 

are necessary to calculate {𝜃𝜌} [40, Section 1]. Moreover, we denote 𝜉, �̂�𝜌, and 𝜃𝜌 as 

the estimates of 𝜉, 𝜗𝜌, and 𝜃𝜌, respectively, in order to approach (12). The following 

procedure is then used to find {𝜃𝜌} which can approach (12) within a predetermined 

accuracy 𝜖 [40, Section 1], [43]. 

Step 0: Let 𝜃min = 0, 𝜃max = 2𝜋, and 𝜖 be a small positive real number close to 
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zero. 

Step 1: Let 𝜃mid =
1

2
(𝜃min + 𝜃max) and ξ̂ =

�̃�(0)

2 sin(𝜃mid/2)
. 

Step 2: Let �̂�0 = 𝜃mid and �̂�𝜌 = arccos (1 −
(�̃�(𝜌))

2

2�̂�2
) for all 𝜌 ∈ 𝒵𝐿+1

+ . 

Step 3: There are three cases in this step. 

 Case 1: If |Σ𝜌∈𝒵𝐿�̂�𝜌 − 2𝜋| ≤ 𝜖, go to Step 4 directly. 

 Case 2: If Σ𝜌∈𝒵𝐿�̂�𝜌 < 2𝜋 − 𝜖, let 𝜃min = 𝜃mid and go back to Step 1. 

 Case 3: If Σ𝜌∈𝒵𝐿�̂�𝜌 > 2𝜋 + 𝜖, let 𝜃max = 𝜃mid and go back to Step 1. 

Step 4: Let �̂�0 = 0 and 𝜃𝜌 = 𝜃𝜌−1 +
1

2
(�̂�𝜌−1 + �̂�𝜌) for all 𝜌 ∈ 𝒵𝐿−1

+ . 

When Σ𝜌∈𝒵𝐿�̂�𝜌 < 2𝜋 − 𝜖 occurs, all prescribed edge lengths �̃�(𝜌) can not make a 

cyclic polygon and thus the estimated radius 𝜉 is larger than the actual radius 𝜉. Since 

arccos is a monotonically decreasing function and 𝜉 >  𝜉, �̂�𝜌 < 𝜗𝜌 for all 𝜌 ∈ 𝒵𝐿 in 

this case. Conversely, �̂�𝜌 > 𝜗𝜌  for all 𝜌 ∈ 𝒵𝐿  when Σ𝜌∈𝒵𝐿�̂�𝜌 > 2𝜋 + 𝜖 . Through 

multiple iterations, �̂�𝜌  can be obtained for all 𝜌 ∈ 𝒵𝐿 . At Step 4, the absolute error 

|Σ𝜌𝜗𝜌 − Σ𝜌�̂�𝜌| is limited to be within 𝜖 . Thus, 𝜃𝜌  for all 𝜌 ∈ 𝒵𝐿  can be estimated 

within an accuracy 𝜖. 

When the proper decomposition 𝑁 = Σ𝜌∈𝒵𝐿�̃�
(𝜌) for a given familt �̂�𝐼

(pma)
 meets 

Restriction A, family �̂�𝐼
(apma)

 can be constructed by including all orthogonal order-𝐼 

CA sequences in family �̂�𝐼
(pma)

 with size Ψ̂(𝑁)  and augmenting another Ψ̂(𝑁) 

orthogonal order-𝐼 CA sequences, where each augmented sequence described by 𝛘𝜽 

can be constructed for each sequence �̂�𝐼 described by 𝛘 with 𝜽 obtained by invoking 

the aforementioned procedure. Apparently, all augmented sequences are mutually 

orthogonal and also orthogonal to all sequences in family �̂�𝐼
(pma)

. This results in the 
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family size 2Ψ̂(𝑁) and the same sidelobe-decaying order for family �̂�𝐼
(apma)

. Similarly, 

family �̂�
max,𝐼

(adpma,𝜅)
 for 𝜅 ∈ 𝒵Ω̃(𝑁)−1

+  can be augmented from a given family �̂�
max,𝐼

(dpma,𝜅)
 

and has the family size 2Ψ̂(dpma,𝜅)(𝑁)  under the same proper decomposition 𝑁 =

Σ𝜌∈𝒵𝐿�̃�
(𝜌), while sustaining the same sidelobe-decaying order. Notably, �̂�𝐼

(apma)
 can be 

regarded as a special case of �̂�
max,𝐼

(adpma,𝜅)
 with 𝜅 = 0  and 𝐼 = 𝐼  since �̂�𝐼

(apma)
 is 

essentially constructed under combined proper level-Ω̃(𝑁) factorization for �̂�
max,𝐼

(adpma,0)
. 

 

4.3 Examples of Families �̂�𝐼
(apma)

, �̂�
max,𝐼

(dpma,𝜅)
, and �̂�

max,𝐼

(adpma,𝜅)
 

The developed families �̂�𝐼
(apma)

, �̂�
max,𝐼

(dpma,𝜅)
, and �̂�

max,𝐼

(adpma,𝜅)
 are listed in Table VII 

for example sequence lengths adopted by the random access application in 5G-NR [2], 

where the achieved family size and the proper factor sets for all subsequence lengths 

�̃�(0), �̃�(1), … , �̃�(𝐿−1)  are demonstrated for each family. As shown, family �̂�
max,𝐼

(dpma,𝜅)
 

offers the larger family size as 𝜅 increases and much larger family size than �̂�𝐼
(pma)

. 

Nevertheless, �̂�
max,𝐼

(dpma,𝜅)
 may entail reduced sidelobe-decaying order 𝐼 ≥ Ω̃(𝑁) − 𝜅 

under Condition A and 𝐼 ≥ ⌊(Ω̃(𝑁) − 𝜅)/2⌋  under Condition B. For a fixed 𝜅 ∈

𝒵Ω̃(𝑁)−1
+ , family �̂�

max,𝐼

(adpma,𝜅)
 exhibits double the size of family �̂�

max,𝐼

(dpma,𝜅)
 while 

sustaining the same sidelobe-decaying order. Moreover, the family sizes of �̂�
max,𝐼

(dpma,𝜅)
 

with large 𝜅 values approach a good portion of the largest achievable size Ψmax(𝑁). 

The latter reveals the advantage of augmented degenerate PMA sequence families. 

Remark 2: Orthogonal Zadoff-Chu sequences are desirable for the RA application in 

5G NR. Although 𝑁 orthogonal ZC sequences of length 𝑁 can be easily generated by 

cyclically shifting a given ZC sequence with an admissible root index 𝜍 (relatively prime 
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to 𝑁), a large minimum CSD 𝜔min is generally required to identify received orthogonal 

ZC sequences transmitted from transmitters located in various locations in the same cell. 

The larger the cell radius, the larger the required 𝜔min. As a result, nonorthogonal ZC 

sequences with different admissible root indices are commonly employed for RA 

requiring a large number of short-length identification sequences under a limited 𝜔min. 

In 5G NR, there are 64 RA identification sequences required in each cell, and many large 

values for 𝜔min are specified in [2, Tables 5-7 in Section 6.3.3.1] for the adopted ZC 

sequences of different lengths 𝑁 = 139, 571, 839, and 1151. In these specifications, 

the maximum number of orthogonal ZC sequences is limited to ⌊𝑁/𝜔min⌋ < 64 for 

many specified pairs (𝑁,𝜔min) . For example with (𝑁,𝜔min) = (839,26) , only 32 

orthogonal ZC sequences can be generated by cyclically shifting a given ZC sequence 

with an admissible root index 𝜍1. In this case, additional nonorthogonal ZC sequences 

are added in [2, Section 6.3.3.1] by cyclically shifting another ZC sequence with an 

admissible root index 𝜍2 so that all 64 sequences are collected. As shown in Table VII(c), 

families �̂�
max,𝐼

(adpma,𝜅)
 with 𝜅 ∈ {2,3} can provide more than 64 orthogonal order-𝐼 CA 

sequences and thus outperform the adopted ZC sequences [2, Section 6.3.3.1] in RA 

performance while providing the higher spectral compactness. 
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Chapter 5 

Random-Access Channel Identification 

This section demonstrates the performance characteristics of uplink RA channel 

identification based on the reception of the OFDM preamble waveforms carrying 

identification sequences from various CA sequence families, including modified PMA, 

ZC, YL, and PN sequence families, over Rayleigh multipath channels. Here, the 

interleaving factor 𝛾 = 1  is considered. Spectral compactness of various OFDM 

preamble waveforms are also shown to justify the spectral compactness achieved by use 

of order-𝐼 CA sequences. 

 

5.1 Scenario for RA Channel Identification 

 Consider the scenario that a single user terminal transmits a sequence 𝐪𝑘 ≜

[𝑞𝑘[𝑛]; 𝑛 ∈ 𝒵𝑁] from the family of 𝐽 CA sequences {𝐪𝑖; 𝑖 ∈ 𝒵𝐽} for identifying the 

availability of the 𝑘 -th access channel [1]-[2]. After applying down-conversion, CP 

removal, and DFT to the received OFDM preamble signal, the base-station receiver 

observes the frequency-domain vector 𝐫 ≜ [𝑟[𝑛]; 𝑛 ∈ 𝒵𝑁] modeled as [17], [19] 

𝑟[𝑛] = 𝑁
1
2𝑞𝑘[𝑛]ℎ[𝑛] + 𝑧[𝑛]. (13) 

Here, 𝐳 ≜ [𝑧[𝑛]; 𝑛 ∈ 𝒵𝑁]  contains independent and identically distributed circularly 

symmetric complex Gaussian (CSCG) noise samples with mean zero and variance 

ℰ{|𝑧[𝑛]|2} = 1/𝜑 , where 𝜑  is the received signal-to-noise power ratio (SNR). 𝐡 ≜

[ℎ[𝑛]; 𝑛 ∈ 𝒵𝑁] is the channel frequency response (CFR) vector corresponding to the 

channel impulse response (CIR) {ℎ̃[𝑙], 𝜏𝑙; 𝑙 ∈ 𝒵𝐿ℎ} with 𝐿ℎ resolvable paths, given by 
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ℎ[𝑛] = ∑ ℎ̃[𝑙]𝑒−𝑗2𝜋Δ𝑓𝑛𝜏𝑙

𝑙∈𝒵𝐿ℎ

for all 𝑛 ∈ 𝒵𝑁 (14)
 

where Δ𝑓 = 1/𝑇d is subcarrier frequency spacing and 𝜏𝑙 denotes the 𝑙-th path delay 

value with 0 ≤ 𝜏0 < 𝜏1 < ⋯ < 𝜏𝐿ℎ−1 ≤ 𝑇g. Moreover, all path responses are modeled to 

be independent CSCGs having means ℰ{ℎ̃[0]} = �̃� exp{𝑗𝜃} and ℰ{ℎ̃[𝑙]} = 0 for 𝑙 ∈

𝒵𝐿ℎ−1
+ , and correlations ℰ {(ℎ̃[𝑙] − ℰ{ℎ̃[𝑙]})

2
} = 0 and ℰ {|ℎ̃[𝑙] − ℰ{ℎ̃[𝑙]}|

2
} = 𝜎𝑙

2 for 

𝑙 ∈ 𝒵𝐿ℎ, where 𝜃 is an arbitrary phase, �̃�2 is the direct path power, and 𝜎𝑙
2 is the 𝑙-th 

diffuse path power for the CIR {ℎ̃[𝑙]; 𝑙 ∈ 𝒵𝐿ℎ} with �̃�2 + ∑ 𝜎𝑙
2

𝑙∈𝒵𝐿ℎ
= 1. Additionally, 

the factor 𝐾 is the ratio of direct power to diffuse power sum, which is defined as 𝐾 =

�̃�2/∑ 𝜎𝑙
2

𝑙∈𝒵𝐿ℎ
. All path responses are also independent of all noise samples 

{𝑧[𝑛]; 𝑛 ∈ 𝒵𝑁}. The RA channel identification is based on the correlations {𝐪𝑖
ℎ𝐫; 𝑖 ∈ 𝒵𝐽}, 

with  

𝐪𝑖
ℎ𝐫 = 𝑁

1
2 ∑ ℎ̃[𝑙]

𝑙∈𝒵𝐿ℎ

∑ 𝑞𝑖
∗[𝑛]𝑞𝑘[𝑛]𝑒

−𝑗2𝜋Δ𝑓𝑛𝜏𝑙

𝑛∈𝒵𝑁

+ ∑ 𝑞𝑖
∗[𝑛]𝑧[𝑛]

𝑛∈𝒵𝑁

. (15) 

To identify 𝐪𝑘, the squared correlation magnitudes 𝑌(𝐪𝑖) = |𝐪𝑖
ℎ𝐫|

2
 are measured and 

compared with a positive threshold 𝛽 for all 𝑖 ∈ 𝒵𝐽. When 𝑌(𝐪𝑖) is greater than 𝛽, the 

𝑖-th access channel is considered as a requested one [17]-[18], [20]-[21]. 

 

5.2 Performance Analysis 

 Under Rayleigh channel with �̃�2 = 0, 𝐪𝑖
ℎ𝐫 for 𝑖 ∈ 𝒵𝐽  is a CSCG having zero 

mean and variance ℰ {|𝐪𝑖
ℎ𝐫|

2
} =

1

𝜑
+ 𝜎fie

2 (𝑖, 𝑘)  if 𝑖 ≠ 𝑘  and ℰ {|𝐪𝑖
ℎ𝐫|

2
} =

1

𝜑
+ 𝜎c

2 

otherwise, where 𝜎fie
2 (𝑖, 𝑘) ≜ 𝑁∑ 𝜎𝑙𝑙∈𝒵𝐿ℎ

2
|∑ 𝑞𝑖

∗[𝑛]𝑞𝑘[𝑛]𝑒
−𝑗2𝜋Δ𝑓𝑛𝜏𝑙

𝑛∈𝒵𝑁 |
2

 is the 

variance of the FIE term occurring when 𝐪𝑖 does not match the identification sequence 
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𝐪𝑘  and 𝜎c
2 =

1

𝑁
∑ 𝜎𝑙𝑙∈𝒵𝐿ℎ

2
|∑ 𝑒−𝑗2𝜋Δ𝑓𝑛𝜏𝑙𝑛∈𝒵𝑁 |

2
 is the signaling variance when 𝐪𝑖 

matches 𝐪𝑘 correctly. Given the statistic of 𝐪𝑖
ℎ𝐫, 𝑌(𝐪𝑖) is a central chi-square random 

variable with two degrees of freedom [41]. 

 Three measures 𝑃fa, 𝑃fid,𝑘, and 𝑃c are defined herein to quantify the performance 

of the threshold-based identification scheme. The false alarm probability 𝑃fa denotes the 

probability of misidentifying 𝐪𝑖 when there is no request (i.e., 𝑟[𝑛] = 𝑧[𝑛] for all 𝑛 ∈

𝒵𝑁), defined by 𝑃fa ≜ Pr{𝑌(𝐪𝑖) > 𝛽|no request} for some 𝑖 ∈ 𝒵𝐽 and given by 𝑃fa =

𝑒−𝛽𝜑, which is invariant with 𝐪𝑖. The average false identification probability 𝑃fid,𝑘 is 

the average probability of identifying the request of an access channel other than the 𝑘-

th channel that was actually requested [20, Subsection IV.D], and given by 

𝑃fid,𝑘 ≜
1

𝐽 − 1
∑ Pr{𝑌(𝐪𝑖) > 𝛽|𝐪𝑘 was requested}

𝑖∈𝒵𝐽,𝑖≠𝑘

 

=
1

𝐽 − 1
∑ 𝑒−𝛽𝜑/(1+𝜑𝜎fie

2 (𝑖,𝑘))

𝑖∈𝒵𝐽,𝑖≠𝑘

. (16) 

From the union bound argument, (𝐽 − 1)𝑃fid,𝑘 is also an upper bound to the probability 

of identifying the request of any access channel other than the 𝑘-th channel that was 

actually requested [21, Subsection III.D]. The correct identification probability 𝑃c is the 

average probability of identifying the request of the 𝑘 -th access channel correctly, 

defined by 𝑃c ≜ Pr{𝑌(𝐪𝑘) > 𝛽|𝐪𝑘 was requested} and given by 𝑃c = 𝑒−𝛽𝜑/(1+𝜑𝜎c
2), 

which is irrelevant with 𝐪𝑘. The identification scheme performs well when 𝑃c is made 

as large as possible while 𝑃fa and all 𝑃fid,𝜅 are re restricted to be small. This can be 

achieved by properly setting the threshold 𝛽 since 𝑃fa, 𝑃fid,𝑘, and 𝑃c increase as 𝛽 is 

decreased for a given SNR 𝜑. When the channel is flat fading (i.e., ℎ[𝑛] = ℎ̃[0] for all 

𝑛 ∈ 𝒵𝑁, or equivalently 𝐿ℎ = 1, 𝜏0 = 0, and 𝜎0
2 = 1), 𝐪𝑖

ℎ𝐫 for 𝑖 ≠ 𝑘 simplifies to a 
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CSCG with mean zero and variance ℰ {|𝐪𝑖
ℎ𝐫|

2
} =

1

𝜑
+ �̃�fie

2 (𝑖, 𝑘) , where �̃�fie
2 (𝑖, 𝑘) =

𝑁|∑ 𝑞𝑖
∗[𝑛]𝑞𝑘[𝑛]𝑛∈𝒵𝑁 |

2
. In this case, 𝑃fid,𝑘  in (16) achieves the minimum 𝑃fid,min =

𝑒−𝛽𝜑 when all sequences in the family {𝐪𝑖; 𝑖 ∈ 𝒵𝐽} are mutually orthogonal. Moreover, 

𝑃c achieves the maximum 𝑃c,max = 𝑒
−𝛽𝜑/(1+𝜑𝑁). When the coherence bandwidth 𝐵𝑐 ≈

1/(5𝜎rms) [25, Chapter 4, eq. 39] is much larger than the signaling bandwidth 𝑁𝛾/𝑇𝑑 

(i.e., 𝜏0 = 0 and 𝜎𝑙
2 ≪ 𝜎0

2 for all 𝑙 ≠ 0), 𝜎fie
2 (𝑖, 𝑘) approaches to �̃�fie

2 (𝑖, 𝑘) for 𝑖 ≠

𝑘 and 𝑃fid,𝑘  is expected to get close to 𝑃fid,min if all sequences in {𝐪𝑖; 𝑖 ∈ 𝒵𝐽} are 

orthogonal, where 𝜎rms is the root mean square delay spread in CIR. As thus implied, 

smaller 𝑃fid,𝑘  values can be achieved when there are more orthogonal sequences in 

{𝐪𝑖; 𝑖 ∈ 𝒵𝐽} available for RA channel identification over multipath channels with large 

coherence bandwidth, or equivalently short-delay channel profiles. 

 For Rician channel, 𝐪𝑖
ℎ𝐫 for 𝑖 ∈ 𝒵𝐽 is a CSCG having mean ℰ{𝐪𝑖

ℎ𝐫} = 𝜂fie(𝑖, 𝑘) 

and variance ℰ {|𝐪𝑖
ℎ𝐫|

2
} =

1

𝜑
+ 𝜎fie

2 (𝑖, 𝑘)  if 𝑖 ≠ 𝑘 , and ℰ{𝐪𝑖
ℎ𝐫} = 𝜂c  and variance 

ℰ {|𝐪𝑖
ℎ𝐫|

2
} =

1

𝜑
+ 𝜎c

2  otherwise, where 𝜂fie = √𝑁�̃�𝑒𝑗𝜃 ∑ 𝑞𝑖
∗[𝑛]𝑞𝑘[𝑛]𝑛∈𝒵𝑁  is the mean 

of the FIE term occurring when 𝐪𝑖 does not match the identification sequence 𝐪𝑘 and 

𝜂c = √𝑁�̃�𝑒
𝑗𝜃  is the signaling variance when 𝐪𝑖  matches 𝐪𝑘  correctly. Under such 

derive, the average false identification probability 𝑃fid,𝑘  is given by 𝑃fid,𝑘 =

1

𝐽−1
∑ 𝑄1 (

|𝜂fie(𝑖,𝑘)|

(
1

2
𝜎fie
2 (𝑖,𝑘)+

1

2𝜑
)
1/2 ,

√𝛽

(
1

2
𝜎fie
2 (𝑖,𝑘)+

1

2𝜑
)
1/2)𝑖∈𝒵𝐽,𝑖≠𝑘 , and the correct identification 

probability is given by 𝑃c = 𝑄1 (
|𝜂c|

(
1

2
𝜎c
2+

1

2𝜑
)
1/2 ,

√𝛽

(
1

2
𝜎c
2+

1

2𝜑
)
1/2). Here, 𝑄𝑚(𝑎, 𝑏) is called the 

Marcum Q-function of order 𝑚 and defined in [49, eq. 2.3-36]. 
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Table VIII 

A Typical RA System Parameter Profile in Uplink 5G NR 

Sequence Length 𝑁 839 

Subcarrier Spacing Δ𝑓 = 1/𝑇𝑑 1.25 kHz 

Interleaving Factor 𝛾 1 

Guard Ratio 𝛼 33/256 

Total Number of Sequences 𝐽 64 

 

5.3 Performance Results 

A total of 64 ZC sequences are required for RA channel identification in uplink 5G-

NR [2, Section 6.3.3.1]. To avoid sequence ambiguity, a minimum CSD 𝜔min  is 

required to extract orthogonal ZC sequences through cyclically shifting a fixed-root-index 

ZC sequence. As mentioned in Remark 2, this causes the shortage of adoptable orthogonal 

ZC sequences for most specified (𝑁, 𝜔min) pairs. In [14], orthogonal YL sequences are 

constructed from phase-rotating the ZC sequences generated from cyclically shifting a 

fixed-root-index ZC sequence appropriately. When the minimum CSD requirement is 

imposed, not every cyclically shifted ZC sequence can be used to generate orthogonal YL 

sequences. The latter limits the number of adoptable orthogonal YL sequences as well in 

order to avoid sequence ambiguity. For example, we consider a particular RA system 

parameter profile in Table VIII [2] which adopts the sequence length 𝑁 = 839 and the 

minimum CSD limit 26. In this case, at most ⌊839/26⌋ = 32 orthogonal ZC and YL 

sequences can be respectively adopted and thus nonorthogonal sequences have to be 

augmented in [2, Section 6.3.3.1] since 64 RA channels are to be identified. The 

characteristics of the average false identification probability 
1

𝐽
∑ 𝑃fid,𝑘𝑘∈𝒵𝐽  versus SNR 

𝜑 are demonstrated in Fig. 1 by simulating the threshold-based RA channel identification 

using such ZC and YL sequence families under three different Rayleigh multipath 
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channel profiles, namely TDL-B urban micro street-canyon (UMI-SC) short-delay profile 

(exhibiting 𝜎rms = 65 ns and 𝐵c ≈ 2.93 × 𝑁𝛾/𝑇𝑑 ) and TDL-B indoor (IND) short-

delay profile (exhibiting 𝜎rms = 20 ns and 𝐵c ≈ 9.54 × 𝑁𝛾/𝑇𝑑) in [42, Section 7.7.2] 

as well as the benchmarking flat fading (FF) channel profile (exhibiting an infinitely large 

𝐵c). Notably, the UMI-SC short-delay profile exhibits a longer delay spread than the IND 

short-delay profile, and thus results in a smaller coherence bandwidth. Also compared in 

Fig. 1 are RA channel identification systems using orthogonal sequence families 

�̂�
max,𝐼

(adpma,1)
 and �̂�

max,𝐼

(dpma,2)
, and a nonorthogonal PN sequence family. All 64 PN 

sequences are constructed from the generator polynomial 𝑋15 + 𝑋14 + 1 with minimum 

CSD 26 [3, Section 9.7.1]. When the sequence length 𝑁 is not any one of the forms in 

(8)-(10) and has Ω̃(𝑁) > Ω(𝑁), we can construct family �̂�
max,𝐼

(dpma,𝜅)
 with larger sidelobe-

decaying order than family 𝒢
max,𝐼

(dpma,𝜅)
. Different from family 𝒢

max,𝐼

(dpma,𝜅)
, all sequences in 

family �̂�
max,𝐼

(dpma,𝜅)
 can not be obtained through mutual cyclic shifting.1 As described in 

Table VII(c), families �̂�
max,𝐼

(adpma,1)
 and �̂�

max,𝐼

(dpma,2)
 can provide 96 and 112 orthogonal 

sequences, respectively, and 64 sequences are randomly chosen from them in the 

simulation. To achieve an extremely small 𝑃fa = 10
−5, the threshold value is set to 𝛽 =

5

𝜑
ln 10  for a given SNR 𝜑  and in this case the correct identification probability is 

 
1 A large minimum CSD 𝜔min is generally required to identify received orthogonal ZC sequences transmitted 

from transmitters located in various locations in the same cell for RA channel identification. As a result, multiple root 

ZC sequences are commonly employed for RA requiring a large number of short-length identification sequences under 

a limited 𝜔min, which can not be obtained through mutual cyclic shifting [2, Section 6.3.3.1]. Therefore, even though 

all sequences in family �̂�
max,𝐼

(dpma,𝜅)
 can not be obtained from cyclically shifting another sequence (in time domain) in 

the family, the sequences can be used for RA channel identification. 
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equivalent to 𝑃c = 10−5/(1+𝜑𝜎c
2) . For the SNR range demonstrated in Fig. 1, 1 − 𝑃c 

falls in the ranges [8.85 × 10−4, 8.42 × 10−2] , [8.67 × 10−4, 8.25 × 10−2] , and 

[8.65 × 10−4, 8.23 × 10−2] for TDL-B UMI-SC, TDL-B IND, and FF channel profiles, 

respectively. Due to the adoption of nonorthogonal sequences, RA channel identification 

suffers from large FIE (i.e., larger 𝜎fie
2 (𝑖, 𝑘)) and thus entails serious false identification 

for the systems using ZC, YL, and PN sequence families. On the contrary, false 

identification is less severe for the systems using orthogonal sequence families �̂�
max,𝐼

(dpma,2)
 

and �̂�
max,𝐼

(adpma,1)
, particularly in the multipath channels exhibiting larger coherence 

bandwidths. 
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Fig. 1. The characteristics of the average false identification probability versus SNR 

among the RA channel identification systems using various sequence families under 

TDL-B UMI-SC short-delay channel profile, TDL-B IND short-delay channel profile, 

and FF channel profile with 𝐾-factor of 𝐾 = 0. 
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Fig. 2 demonstrates the characteristics of the average false identification probability 

versus SNR 𝜑 under three Rician channel profiles, namely TDL-D urban macro (UMA) 

normal-delay profile (exhibiting 𝜎rms = 363  ns and 𝐵c ≈ 0.52 × 𝑁𝛾/𝑇𝑑 ), TDL-D 

UMI-SC short-delay profile (exhibiting 𝜎rms = 65 ns and 𝐵c ≈ 2.93 × 𝑁𝛾/𝑇𝑑), TDL-

D IND short-delay profile (exhibiting 𝜎rms = 20 ns and 𝐵c ≈ 9.54 × 𝑁𝛾/𝑇𝑑) in [42, 

Section 7.7.2]. TDL-D channel profile is a Rician channel profile with 𝐾-factor of 𝐾 =

13.3dB. Notably, the UMA normal-delay profile exhibits a longer delay spread than the 

UMI-SC and IND short-delay profile, and thus results in a smaller coherence bandwidth. 

The demonstration in Fig. 2 uses the same sequence families as Fig. 1. Similar 

performance trends to those in Fig. 1 can be observed for these systems operating over 

Rician multipath channels. For the SNR range demonstrated in Fig. 2, 1 − 𝑃c falls in the 

ranges [1.11 × 10−16, 7.27 × 10−8] , [2.25 × 10−12, 3.11 × 10−6] , and [1.14 ×

10−11, 5.9 × 10−6] for TDL-D UMA normal-delay profile, UMI-SC short-delay profile, 

and TDL-D IND short-delay profiles, respectively. 
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Fig. 2. The characteristics of the average false identification probability versus SNR 

among the RA channel identification systems using various sequence families under 

TDL-D UMA normal-delay profile, TDL-D UMI-SC short-delay profile, and TDL-D 

IND short-delay profile with 𝐾-factor of 𝐾 = 13.3dB. 
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Fig. 3 compares the spectral compactness characteristics of all the OFDM preamble 

waveforms adopted in Fig. 1. To compare the spectral compactness among various 

waveforms, the average out-of-band power fraction is defined as 

𝜂 ≜ 10 log10 (
1

𝐽
∑ (∫ 𝑆𝐵

(𝑖)(𝑓)𝑑𝑓
|𝑓|>

𝐵
2

/∫ 𝑆𝐵
(𝑖)(𝑓)𝑑𝑓

∞

−∞

)

𝑖∈𝒵𝐽

) (17) 

where 𝑆𝐵
(𝑖)(𝑓) is the baseband power spectrum of the waveform carrying 𝐪𝑖 [9]. The 

results on 𝜂 are presented with respect to the normalized bandwidth 𝐵𝑇𝑑/(𝛾𝑁). For a 

predetermined 𝜂  (say -50 dB), the smaller the required bandwidth, the higher the 

spectral compactness. As shown, preamble waveforms carrying order-𝐼 CA sequence 

families �̂�
max,𝐼

(adpma,1)
 (yielding sidelobe-decaying order 𝐼 ≥ 2) and �̂�

max,𝐼

(dpma,2)
 (yielding 

sidelobe-decaying order 𝐼 ≥ 1) can provide much higher spectral compactness than 

preamble waveforms carrying ZC, YL, PN sequence families. 

The average PAPR is defined as [9, eq. 22] 

PAPR = 10 log10

(

 
 1

𝐽
∑

max
𝑛∈𝒵𝛾𝑁

|�̃�(𝑖) (−
𝑇𝑑
2 +

𝑛𝑇𝑑
𝛾𝑁 )|

2

1
𝛾𝑁

∑ |�̃�(𝑖) (−
𝑇𝑑
2 +

𝑛𝑇𝑑
𝛾𝑁 )|

2

𝑛∈𝒵𝛾𝑁
𝑖∈𝒵𝐽

)

 
 

(18) 

where �̃�(𝑖)(𝑡) = 𝑠𝑘
(𝑖)(𝑡) exp{−𝑗2𝜋𝑓𝑐𝑡} is the baseband version of 𝑠𝑘

(𝑖)(𝑡) by shifting 

center frequency down by 𝑓𝑐 ≜ 𝑓0 +
(𝑁−1)𝛾/2+𝜘(𝑘)

𝑇𝑑
. Here, 𝑠𝑘

(𝑖)(𝑡 − 𝑇(𝑘))  is the 

component waveform carrying 𝐪𝑖 on the 𝑘-th training block interval defined in [9, eq. 

(1)], 𝑓0 is a reference frequency with 𝑓0 ≫ 𝛾𝑁/𝑇𝑑, and 𝜘(𝑘) is the index offset with 

𝜘(𝑘) ∈ 𝒵𝛾. Deterministic average PAPR for the sequence families with the parameter 

adopted in Fig. 1 are demonstrated in Table IX. It is noticed that family �̂�
max,𝐼

(dpma,2)
 and 

�̂�
max,𝐼

(adpma,1)
 offer higher waveform PAPR than ZC, YL, and PN sequence families. Thus, 
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high PAPR turns out to be a major trade-off for the proposed order-𝐼  CA sequence 

families in order to achieve high spectral compactness. 

 

 

Fig. 3. Average out-of-band power fraction characteristics for OFDM preamble 

waveforms carrying various CA sequence families. 

 

Table IX 

Average PAPR for OFDM preamble waveforms using various sequence families. 

Sequence Family 

ZC 

Sequence 

Family 

YL 

Sequence 

Family 

PN 

Sequence 

Family 

Family 

�̂�
max,𝐼

(adpma,1)
 

Family 

�̂�
max,𝐼

(dpma,2)
 

Average PAPR 3.93 dB 4.1 dB 7.86 dB 20.16 dB 20.68 dB 
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Chapter 6 

Simultaneous Channel Estimation 

6.1  Scenario for Simultaneous Channel Estimation 

 Consider the uplink MIMO channel sounding scenario that the 𝑘-th antenna among 

a total of 𝐾  transmit antennas emits the 𝑘 -th sequence 𝐪𝑘  in a family of 𝐽  CA 

sequences {𝐪𝑙; 𝑙 ∈ 𝒵𝐽} with 𝐽 ≥ 𝐾 , for the purpose of sounding the uplink channels 

from the 𝑘-th transmit antenna to 𝑀 receive antennas at the BS receiver [1]-[2], [14], 

[24], [44]-[48]. In the asynchronously- received sounding intervals of length 𝑇, these 𝐾 

transmit antennas send respective rectangularly-pulsed OFDM sounding waveforms, 

each carrying its respective sounding sequence of 𝑁 complex symbols. Specifically, 𝑁 

symbols in a sounding sequence are modulated at each transmit antenna site into 𝑁 

uniformly-spaced subcarriers at subcarrier positions 0, 𝛾, 2𝛾, … , (𝑁 − 1)𝛾 , which are 

interleaved among 𝛾𝑁 subcarriers with the interleaving factor 𝛾. Each sounding time 

interval can be essentially partitioned into a guard CP subinterval of length 𝑇𝑔 followed 

by a useful sounding subinterval of length 𝑇𝑑 = 𝑇 − 𝑇𝑔 . To ensure accurate channel 

estimation in respective SISO channels, 𝐪𝑘  is restricted to have CA symbols with 

|𝑞𝑘[𝑛]|
2 = 1/𝑁, and thus its inverse DFT �̃�𝑘 possesses the ZAC property. Within the 

system setup, the discrete-time sequence transmitted by the 𝑘 -th transmit antenna 

contains the 𝑛-th entry �̃�𝑘 [((𝑛))𝑁] for 𝑛 ∈ 𝒵𝛾𝑁 in its useful sounding subinterval. 
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Fig. 4. Simultaneous channel estimation system at the 𝑚-th receive antenna. 

 

6.1.1 SCE System 

Fig. 4 depicts the considered baseband equivalent SCE system at the 𝑚 -th receive 

antenna. After down conversion, sampling at a rate 𝛾𝑁/𝑇𝑑 , time/frequency 

synchronization, and guard removal, 𝐾 (time-domain) baseband signals {�̃�𝑘,𝑚[𝑛]; 𝑛 ∈

𝒵𝛾𝑁} for all 𝑘 ∈ 𝒵𝐾 are extracted simultaneously in a local useful sounding subinterval 

of length 𝑇𝑑  at the 𝑚 -th receive antenna. Denote {ℎ̃𝑘,𝑚
(𝑡) [𝑖]; 𝑖 ∈ 𝒵𝑁}  as the true 

discrete-time channel impulse response (CIR) with at most 𝐿(𝑡) paths for all antenna 

pairs (𝑘,𝑚), where ℎ̃𝑘,𝑚
(𝑡) [𝑖] = 0  for 𝑖 ∈ 𝒵𝑁 − 𝒵𝐿(𝑡) . When all baseband signals are 

extracted with timing offsets 𝜏𝑘,𝑚 ∈ 𝒵𝜔min−𝐿(𝑡) where 𝜔min is the required minimum 

CSD and 𝐿(𝑡) < 𝜔min ≤ 𝛼𝛾𝑁  is assumed throughout, the received baseband signal 

{�̃�𝑘,𝑚[𝑛]; 𝑛 ∈ 𝒵𝛾𝑁} transmitted from the 𝑘-th antenna can be modeled as [7, eq. 9] 

�̃�𝑘,𝑚[𝑛] = ∑ �̃�𝑘 [((𝑛 − 𝜏𝑘,𝑚 − 𝑖))
𝑁
]

𝑖∈𝒵
𝐿(𝑡)

ℎ̃𝑘,𝑚
(𝑡) [𝑖] (19)
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= ∑ �̃�𝑘 [((𝑛 − 𝑙))𝑁]

𝜏𝑘,𝑚+𝐿
(𝑡)−1

𝑙=𝜏𝑘,𝑚

ℎ̃𝑘,𝑚[𝑙]. (20) 

For each 𝑘 ∈ 𝒵𝐾 , 𝜏𝑘,𝑚  is the discrete time offset (normalized by sampling time 

𝑇𝑑/(𝛾𝑁)) between the local and the received 𝑘-th useful sounding subintervals. Under 

the time synchronization mechanism adopted by the cellular network [1]-[2], [14], [24], 

[44]-[48], all offsets 𝜏𝑘,𝑚 are not necessarily synchronized to zeros but required to lock 

into the uncertainty range 𝜏𝑘,𝑚 ∈ 𝒵𝜔min−𝐿(𝑡) .
1.5.3 In this case, �̃�𝑘,𝑚[𝑛] is alternatively 

modeled by (20) where {ℎ̃𝑘,𝑚[𝑙]; 𝑙 ∈ 𝒵𝐿}  represents the effective discrete-time CIR 

which has at most 𝐿  paths with 𝐿 = 𝜔min  and ℎ̃𝑘,𝑚[𝑙] ≜ ℎ̃𝑘,𝑚
(𝑡) [((𝑙 − 𝜏𝑘,𝑚))

𝑁
]. As 

indicated by (20), the 𝑘-th discrete-time sequence {�̃�𝑘 [((𝑛))𝑁] , 𝑛 ∈ 𝒵𝛾𝑁} is received 

after the dispersion by {ℎ̃𝑘,𝑚[𝑙]; 𝑙 ∈ 𝒵𝐿} in the local useful sounding subinterval. Since 

all time offsets 𝜏𝑘,𝑚 are uncertain, the effective CIR {ℎ̃𝑘,𝑚[𝑙]; 𝑙 ∈ 𝒵𝐿} having at most 

𝐿(𝑡) nonzero path responses are essentially estimated by SCE.  

 With (20), the received (time-domain) baseband signal at the 𝑚 -th antenna 

{�̃�𝑚[𝑛]; 𝑛 ∈ 𝒵𝛾𝑁} is modeled as �̃�𝑚[𝑛] = ∑ �̃�𝑘,𝑚[𝑛] + �̃�𝑚[𝑛]𝑘∈𝒵𝐾  in the local useful 

sounding subinterval, where {�̃�𝑚[𝑛]; 𝑛 ∈ 𝒵𝛾𝑁}  contains independent and identically 

distributed (i.i.d.) circularly symmetric complex Gaussian (CSCG) noise samples �̃�𝑚[𝑛] 

having mean zero and noise power 1/𝜑. The SCE system first takes the 𝛾𝑁-point DFT 

of {�̃�𝑚[�̃�]; �̃� ∈ 𝒵𝛾𝑁} and obtains {𝑦𝑚[𝑛]; 𝑛 ∈ 𝒵𝛾𝑁} with 𝑦𝑚[𝑛] = ∑ �̃�𝑚[�̃�]𝜔𝛾𝑁
𝑛�̃�

�̃�∈𝒵𝛾𝑁 . 

Then, {𝑦𝑚[𝑛]; 𝑛 ∈ 𝒵𝛾𝑁}  is decimated by a factor 𝛾  to yield the observable set 

{𝑦𝑚[𝛾𝑛]; 𝑛 ∈ 𝒵𝑁}, which contains the complete information of all sounding sequences 

𝐪0, 𝐪1, … , 𝐪𝐾−1 [16]. Specifically, 𝑦𝑚[𝛾𝑛] is modeled as 
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𝑦𝑚[𝛾𝑛] = 𝛾√𝑁 ∑ 𝑞𝑘[𝑛]ℎ𝑘,𝑚[𝛾𝑛]

𝑘∈𝒵𝐾

+ 𝑧𝑚[𝛾𝑛]. (21) 

Here, the noise samples {𝑧𝑚[𝛾𝑛]; 𝑛 ∈ 𝒵𝑁} for all 𝑚 ∈ 𝒵𝑀 are i.i.d. CSCG with mean 

zero and noise power ℰ{|𝑧𝑚[𝛾𝑛]|
2} = 𝛾𝑁/𝜑. For the channel from the 𝑘-th transmit 

antenna to the 𝑚 -th receive antenna, {ℎ𝑘,𝑚[𝛾𝑛]; 𝑛 ∈ 𝒵𝑁}  is the channel frequency 

response (CFR) on 𝑁  uniformly-spaced subcarriers at subcarrier positions 

0, 𝛾, 2𝛾, … , (𝑁 − 1)𝛾, which is related to the effective CIR {ℎ̃𝑘,𝑚[𝑙]; 𝑙 ∈ 𝒵𝐿} by the 𝑁-

point DFT 

ℎ𝑘,𝑚[𝛾𝑛] = ∑ ℎ̃𝑘,𝑚[𝑙]

𝑙∈𝒵𝐿

𝜔𝛾𝑁
𝛾𝑛𝑙 (22) 

= 𝜔𝑁
𝑛𝜏𝑘,𝑚 ∑ ℎ̃𝑘,𝑚

(𝑡) [𝑖]𝜔𝑁
𝑛𝑖

𝑖∈𝒵
𝐿(𝑡)

. (23)
 

 Operating on {𝑦𝑚[𝛾𝑛]; 𝑛 ∈ 𝒵𝑁}, the simultaneous estimation of 𝐾 effective CIRs 

{ℎ̃𝑘,𝑚[𝑙]; 𝑙 ∈ 𝒵𝐿} is conducted in two steps. At the first step, the approximate least-square 

estimates of 𝐾  CFRs {ℎ𝑘,𝑚[𝛾𝑛]; 𝑛 ∈ 𝒵𝑁}  are formed by dispreading {𝑦𝑚[𝛾𝑛]; 𝑛 ∈

𝒵𝑁} respectively with 𝐾 identification sequences 𝐪𝑘 [24], [44]-[46] as 

ℎ̂𝑘,𝑚[𝛾𝑛] = 𝛾
−1√𝑁𝑞𝑘

∗[𝑛]𝑦𝑚[𝛾𝑛] (24) 

for 𝑛 ∈ 𝒵𝑁  and 𝑘 ∈ 𝒵𝐾 . Second, 𝐾  effective CIR estimates {ℎ̂̃𝑘,𝑚[𝑙]; 𝑙 ∈ 𝒵𝐿}  are 

made by taking the (𝑁-point) inverse DFT of {ℎ̂𝑘,𝑚[𝛾𝑛]; 𝑛 ∈ 𝒵𝑁} respectively for all 

𝑘 ∈ 𝒵𝐾, as 

ℎ̂̃𝑘,𝑚[𝑙] =
1

𝑁
∑ ℎ̂𝑘,𝑚
𝑛∈𝒵𝑁

[𝛾𝑛]𝜔𝑁
−𝑛𝑙, 𝑙 ∈ 𝒵𝐿 . (25) 

This enables SCE for 𝑀𝐾 MIMO channels. 
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6.2 Performance Analysis 

 Here, the estimation performance of the SCE system is analytically evaluated for the 

following MIMO multipath channel. For the uplink MIMO with 𝐾 transmit antennas 

and 𝑀  receive antennas, there are 𝑀𝐾  true CIRs {ℎ̃𝑘,𝑚
(𝑡) [𝑖]; 𝑖 ∈ 𝒵𝑁} for all 𝑘 ∈ 𝒵𝑀 

and 𝑚 ∈ 𝒵𝑀 , each following the Rician multipath model. For a given antenna pair 

(𝑘,𝑚), each CIR consists of one direct path response ℎ̃𝑘,𝑚
(𝑡) [0] and 𝐿(𝑡) − 1 diffuse path 

responses ℎ̃𝑘,𝑚
(𝑡) [𝑖] for all 𝑖 ∈ 𝒵

𝐿(𝑡)−1
+ , followed by zero path responses ℎ̃𝑘,𝑚

(𝑡) [𝑖] = 0 for 

all 𝑖 ∈ 𝒵𝑁 − 𝒵𝐿(𝑡) . All path responses are modeled to be independent CSCGs having 

means ℰ{ℎ̃𝑘,𝑚
(𝑡) [0]} = �̃�𝑘,𝑚 exp{𝑗𝜃𝑘,𝑚}  and ℰ{ℎ̃𝑘,𝑚

(𝑡) [𝑖]} = 0  for 𝑖 ∈ 𝒵
𝐿(𝑡)−1
+ , and 

correlations ℰ {(ℎ̃𝑘,𝑚
(𝑡) [𝑖] − ℰ{ℎ̃𝑘,𝑚

(𝑡) [𝑖]})
2

} = 0  and ℰ {|ℎ̃𝑘,𝑚
(𝑡) [𝑖] − ℰ{ℎ̃𝑘,𝑚

(𝑡) [𝑖]}|
2

} =

𝜎𝑘,𝑚
2 [𝑖] for 𝑖 ∈ 𝒵𝐿(𝑡), where 𝜃𝑘,𝑚 is an arbitrary phase, �̃�𝑘,𝑚

2  is the direct path power, 

and 𝜎𝑘,𝑚
2 [𝑖] is the 𝑖-th diffuse path power for the CIR {ℎ̃𝑘,𝑚

(𝑡) [𝑖]; 𝑖 ∈ 𝒵𝐿(𝑡)}. All path 

responses for all antenna pairs are mutually independent and also independent of all noise 

samples {𝑧𝑚[𝛾𝑛];𝑚 ∈ 𝒵𝑀, 𝑛 ∈ 𝒵𝑁}. Under such MIMO channel modeling, the received 

channel power for antenna pair (𝑘,𝑚)  is given by 𝜍𝑘,𝑚 = �̃�𝑘,𝑚
2 + ∑ 𝜎𝑘,𝑚

2 [𝑖]𝑖∈𝒵
𝐿(𝑡)

. 

Further, provided with the minimum CSD 𝜔min and time offsets 𝜏𝑘,𝑚 ∈ 𝒵𝜔min−𝐿(𝑡) , 

effective CIRs {ℎ̃𝑘,𝑚[𝑙]; 𝑙 ∈ 𝒵𝐿} and CFRs {ℎ𝑘,𝑚[𝛾𝑛]; 𝑛 ∈ 𝒵𝑁} for all antenna pairs 

can be modeled accordingly with 𝐿 = 𝜔min and ℎ̃𝑘,𝑚[𝑙] = ℎ̃𝑘,𝑚
(𝑡) [((𝑙 − 𝜏𝑘,𝑚))

𝑁
]. Such 

effective CIRs {ℎ̃𝑘,𝑚[𝑙]; 𝑙 ∈ 𝒵𝐿}  and CFRs {ℎ𝑘,𝑚[𝛾𝑛]; 𝑛 ∈ 𝒵𝑁}  can be also 

characterized by the root-mean-square (rms) delay spread 𝜎rms,𝑘,𝑚 = [𝜇𝑘,𝑚
(2) −

(𝜇𝑘,𝑚
(1) )

2

]
1/2

 [25, Chapter 4, eq. 36], where 𝜇𝑘,𝑚
(2) ∑ (

𝑖𝑇𝑑

𝛾𝑁
)
2

𝜎𝑘,𝑚
2𝐿(𝑡)−1

𝑖=1 [𝑖]/𝜍𝑘,𝑚  and 
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𝜇𝑘,𝑚
(1) ∑ (

𝑖𝑇𝑑

𝛾𝑁
)𝜎𝑘,𝑚

2𝐿(𝑡)−1
𝑖=1 [𝑖]/𝜍𝑘,𝑚. 

 Operating on {𝑦𝑚[𝛾𝑛];𝑚 ∈ 𝒵𝑀, 𝑛 ∈ 𝒵𝑁} , 𝑀𝐾  effective CIR estimates 

{ℎ̂̃𝑘,𝑚[𝑙]; 𝑙 ∈ 𝒵𝐿}  for all 𝑘 ∈ 𝒵𝐾  and 𝑚 ∈ 𝒵𝑀  can be made as in (25), which is 

rewritten by using (21)-(24) as 

ℎ̂̃𝑘,𝑚[𝑙] =
1

𝛾√𝑁
∑ 𝑞𝑘

∗[𝑛]𝑦𝑚[𝛾𝑛]𝜔𝑁
−𝑛𝑙

𝑛∈𝒵𝑁

 

= ℎ̃𝑘,𝑚[𝑙] + 𝜚𝑘,𝑚[𝑙] + 𝜆𝑘,𝑚[𝑙]. (26) 

In (26), the noise term 𝜆𝑘,𝑚[𝑙] ≜
1

𝛾√𝑁
∑ 𝑞𝑘

∗[𝑛]𝑧𝑚[𝛾𝑛]𝜔𝑁
𝑛𝑙

𝑛∈𝒵𝑁  is CSCG with mean zero 

and noise power ℰ {|𝜆𝑘,𝑚[𝑙]|
2
} =

1

𝛾𝜑
. 𝜌𝑘,𝑚[𝑙] is the ISI term caused by the mismatching 

between the local identification sequence 𝑞𝑘[𝑛] and the sounding sequences transmitted 

from other than the 𝑘-th transmit antenna, with 

𝜚𝑘,.𝑚[𝑙] ≜ ∑ ∑ ℎ̃𝑢,𝑚
(𝑡) [𝑠]

𝑠∈𝒵
𝐿(𝑡) 

𝑢∈𝒵𝐾,𝑢≠𝑘

∑ 𝑞𝑘
∗[𝑛]𝑞𝑢[𝑛]𝜔𝑁

𝑛(𝑠−𝑙+𝜏𝑢,𝑚)

𝑛∈𝒵𝑁

. (27)
 

Given 𝜏𝑢,𝑚, the ISI term 𝜚𝑘,.𝑚[𝑙] is CSCG with mean 

ℰ{𝜚𝑘,.𝑚[𝑙]} = ∑ �̃�𝑘,𝑚𝑒
𝑗𝜃𝑘,𝑚

𝑢∈𝒵𝐾,𝑢≠𝑘

∑ 𝑞𝑘
∗[𝑛]𝑞𝑢[𝑛]𝜔𝑁

𝑛(𝜏𝑢,𝑚−𝑙)

𝑛∈𝒵𝑁

(28) 

= ∑ �̃�𝑘,𝑚𝑒
𝑗𝜃𝑘,𝑚

𝑢∈𝒵𝐾,𝑢≠𝑘

∑ �̃�𝑘
∗[𝑛]�̃�𝑢 [((𝑛 + 𝑙 − 𝜏𝑢,𝑚))

𝑁
]

𝑛∈𝒵𝑁

(29) 

and mean square 

ℰ {|𝜚𝑘,𝑚[𝑙]|
2
} = |ℰ{𝜚𝑘,𝑚[𝑙]}|

2
+

∑ ∑ 𝜎𝑢,𝑚
2 [𝑠] | ∑ 𝑞𝑘

∗[𝑛]𝑞𝑢[𝑛]𝜔𝑁
𝑛(𝑠−𝑙+𝜏𝑢,𝑚)

𝑛∈𝒵𝑁

|

2

𝑠∈𝒵
𝐿(𝑡)

𝑢∈𝒵𝐾,𝑢≠𝑘

(30)
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= |ℰ{𝜚𝑘,𝑚[𝑙]}|
2
+

∑ ∑ 𝜎𝑢,𝑚
2 [𝑠] | ∑ �̃�𝑘

∗[𝑛]�̃�𝑢 [((𝑛 + 𝑙 − 𝑠 − 𝜏𝑢,𝑚))
𝑁
]

𝑛∈𝒵𝑁

|

2

𝑠∈𝒵
𝐿(𝑡)

𝑢∈𝒵𝐾,𝑢≠𝑘

(31)
 

Where the equalities (29) and (31) come from Parseval’s relation. With 𝐿 = 𝜔min, the 

cyclic shifts 𝑙 − 𝜏𝑢,𝑚 in (29) and 𝑙 − 𝑠 − 𝜏𝑢,𝑚 in (31) meet the restriction |𝑙 − 𝜏𝑢,𝑚| <

𝜔min and |𝑙 − 𝑠 − 𝜏𝑢,𝑚| < 𝜔min. As indicated by (29) and (31) together with the latter 

restriction, the effect of ISI vanishes when all time-domain sequences in {�̃�𝑘; 𝑘 ∈ 𝒵𝐾} 

can be can be cyclically shifted to each other by a CSD not smaller than 𝜔min, e.g., the 

sequences obtained from cyclically-shiftable ZC sequence family, YL sequence family, 

and CS sequence subfamily 𝒢max,𝐼
(cs,4)(𝐪lead), all meeting the minimum CSD constraint. 

When all sequences in {𝐪𝑘; 𝑘 ∈ 𝒵𝐾}  are mutually orthogonal but not necessarily 

cyclically shiftable (e.g., the sequences obtained from an orthogonal sequence family 

𝒢
max,𝐼

(dpma,𝜅)
), all ISI terms in {𝜚𝑘,𝑚[𝑙 + 𝜏𝑢,𝑚]; 𝑙 ∈ 𝒵𝐿(𝑡)}, which disturb the estimation of all 

nonzero path responses {ℎ̃𝑘,𝑚[𝑙 + 𝜏𝑢,𝑚]; 𝑙 ∈ 𝒵𝐿(𝑡)} for each antenna pair (𝑘,𝑚), yield 

|ℰ{𝜚𝑘,𝑚[𝜏𝑢,𝑚]}|
2
= 0  and ℰ {|𝜚𝑘,𝑚[𝑠 + 𝜏𝑢,𝑚]|

2
} = 0  for 𝑠 ∈ 𝒵𝐿(𝑡)  and are thus 

suppressed remarkably. However, when the sequences in {𝐪𝑘; 𝑘 ∈ 𝒵𝐾}  are not all 

orthogonal mutually, the ISI terms disturb the effective CIR estimation significantly. 

 The estimation performance provided by all CIR estimates ℎ̂̃𝑘,𝑚[𝑙] is characterized 

by the average MSE [45] as 

𝜎ave
2 ≜

1

𝑀𝐾
∑ ∑ ∑ ℰ {|ℎ̂̃𝑘,𝑚[𝑙] − ℎ̃𝑘,𝑚[𝑙]|

2

}

𝑙∈𝒵𝐿𝑘∈𝒵𝐾𝑚∈𝒵𝑀

 

=
1

𝑀𝐾
∑ ∑ ∑ ℰ {|𝜚𝑘,𝑚[𝑙] + 𝜆𝑘,𝑚[𝑙]|

2
}

𝑙∈𝒵𝐿𝑘∈𝒵𝐾𝑚∈𝒵𝑀

. 

since 𝜚𝑘,𝑚[𝑙] is independent of 𝜆𝑘,𝑚[𝑙]. 𝜎ave
2  is derived as 
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𝜎ave
2 =

1

𝑀𝐾
∑ ∑ ∑ ℰ {|𝜚𝑘,𝑚[𝑙]|

2
}

𝑙∈𝒵𝐿𝑘∈𝒵𝐾𝑚∈𝒵𝑀

+
𝐿

𝛾𝜑
. (32) 

Using (30)-(31) in (32), the average MSE performance can be numerically evaluated for 

SCE over independent Rician multipath channels. 

 

6.3 Performance Results 

 The performance characteristics of the average MSE versus the total number of 

transmit antennas are demonstrated in Figs. 4-5 for the SCE systems using ZC, YL, PN, 

and modified PMA sequence family in Table VI(b) which operate over uplink MIMO 

multipath channels exhibiting exponentially decaying path power profiles. Specifically, 

the path power profiles are characterized by factors 𝐾𝑘,𝑚
(ℎ)

 and 𝐷𝑘,𝑚. Here, 𝐾𝑘,𝑚
(ℎ)

 is the 

ratio of direct power to diffuse power sum (i.e., 𝐾𝑘,𝑚
(ℎ) = �̃�𝑘,𝑚

2 /∑ 𝜎𝑘,𝑚
2 [𝑙]𝑙∈𝒵

𝐿(𝑡)
), making 

�̃�𝑘,𝑚
2 = 𝜍𝑘,𝑚𝐾𝑘,𝑚

(ℎ)/(𝐾𝑘,𝑚
(ℎ) + 1)  and ∑ 𝜎𝑘,𝑚

2 [𝑙]𝑙∈𝒵
𝐿(𝑡)

= 𝜍𝑘,𝑚/(𝐾𝑘,𝑚
(ℎ) + 1) . 𝐷𝑘,𝑚  is an 

exponential decaying factor used to specify 𝜎𝑘,𝑚
2 [𝑙] = 𝐶𝑘,𝑚 exp{−𝑙/𝐷𝑘,𝑚} for 𝑙 ∈ 𝒵𝐿(𝑡) 

with the normalization 𝐶𝑘,𝑚 = 𝜍𝑘,𝑚/ [(𝐾𝑘,𝑚
(ℎ) + 1)∑ exp{−𝑙/𝐷𝑘,𝑚}𝑙∈𝒵

𝐿(𝑡)
] . In the 

demonstration, we fix 𝜍𝑘,𝑚 = 1, 𝐾𝑘,𝑚
(ℎ) = 𝐾(ℎ), 𝐷𝑘,𝑚 = 𝐷, and 𝜎rms,.𝑘,𝑚 = 𝜎rms for all 

𝑘 ∈ 𝒵𝐾 and all 𝑚 ∈ 𝒵𝑀. Under this setup, 𝜑 is the received signal to noise power ratio 

(SNR). 

 Table X lists the considered system and channel parameters, where a particular 

system setup in 5G-NR [2, Section 6.4.1.4.1] is followed. To calculate (32), all discrete 

time offsets 𝜏𝑘,𝑚  for all 𝑘 ∈ 𝒵𝐾  and all 𝑚 ∈ 𝒵𝑀  are randomly selected in the 

uncertainty range 𝜏𝑘,𝑚 ∈ 𝒵𝐿−𝐿(𝑡), and the average MSE results are obtained by simulating 

all offsets 𝜏𝑘,𝑚 for 1000 trials and averaging the calculated 𝜎ave
2  values from all trials. 
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 Fig. 5 shows the performance characteristics of all SCE systems operating at SNR 

𝜑 = 35  dB over three Rayleigh multipath channels with (𝐾(ℎ), 𝐷) = (0,0.5) 

(exhibiting 𝜎rms ≈ 48  ns), (𝐾(ℎ), 𝐷) = (0,2)  (exhibiting 𝜎rms ≈ 193  ns), and 

(𝐾(ℎ), 𝐷) = (0,10)  (exhibiting 𝜎rms ≈ 260  ns). These sets for (𝐾(ℎ), 𝐷)  result in 

similar 𝜎rms values to the three TDL-B channel profiles in 5G-NR with maximum delay 

time spreads 𝑇max ≈ 2 × 𝑇𝑑/(𝛾𝑁), 𝑇max ≈ 8 × 𝑇𝑑/(𝛾𝑁), and 𝑇max ≈ 11 × 𝑇𝑑/(𝛾𝑁), 

respectively [42, Section 7.7.2]. As shown, the performance characteristics are less 

sensitive to channel delay spread for a fixed true CIR length 𝐿(𝑡) as long as all time 

offsets 𝜏𝑘,𝑚  are well restricted to 𝜏𝑘,𝑚 ∈ 𝒵𝐿−𝐿(𝑡) . Due to serious ISI caused by 𝐾 

nonorthogonal sequences, the system using the PN sequence family provides the worst 

average MSE. When 𝐾 < 12 , the systems using ZC, YL, and 𝒢
max,𝐼

(dpma,4)
 sequence 

families operate without ISI and provide the best average MSE due to the adoption of 𝐾 

cyclically-shiftable CA sequences (see (29) and (31)). When 𝐾 = 12, such advantage 

remains with the systems using ZC and YL sequences, but vanishes for the system using 

𝒢
max,𝐼

(dpma,4)
 since ISI occurs from the adoption of one more orthogonal sequence from a 

second CS subfamilies 𝒢max,𝐼
(cs,4)(𝐪lead). When 𝐾 > 12, all systems using ZC, YL, and 

𝒢
max,𝐼

(dpma,4)
 sequence families suffer from ISI due to the use of some pairs of CA sequences 

which are not cyclically shiftable to each other. The ISI effect gets worse as 𝐾 is larger 

since there are more of such CA sequence pairs. Nevertheless, the system using family 

𝒢
max,𝐼

(dpma,4)
 outperforms all the other systems significantly for 𝐾 > 12, due to the use of 

orthogonal sequences. 
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TABLE X 

A SCE System and Channel Parameters. 

Sequence Length 𝑁 144 

Subcarrier Spacing Δ𝑓 = 1/𝑇𝑑 15 kHz 

Interleaved Length 𝛾 4 

Guard Ratio 𝛼 9/128 

Number of Receive Antennas 𝑀 64 

Minimum CSD 𝜔min (𝐿 = 𝜔min) 12 

True CIR Length 𝐿(𝑡) 8 

Effective CIR Length 𝐿 12 

 

 
Fig. 5. The characteristics of the average MSE versus the total number of transmit 

antennas among the simultaneous MIMO channel estimation using various sequence 

families under Rayleigh multipath channels with 𝐿(𝑡) = 8, 𝜑 = 35 dB, 𝐾(ℎ) = 0, and 

various 𝐷. 
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 Fig. 6 shows the performance characteristics of all SCE systems operating at SNR 

𝜑 = 35  dB and over three Rician multipath channels with (𝐾(ℎ), 𝐷) = (10,0.5) 

(exhibiting 𝜎rms ≈ 15  ns), (𝐾(ℎ), 𝐷) = (10,2)  (exhibiting 𝜎rms ≈ 73  ns), and 

(𝐾(ℎ), 𝐷) = (10,10) (exhibiting 𝜎rms ≈ 126 ns). Similar performance trends to those 

in Fig. 5 can be observed for these systems operating over Rician multipath channels. Due 

to the strong leading path response (having a large 𝐾(ℎ)), the SCE system using family 

𝒢
max,𝐼

(dpma,4)
 provides the better performance in the Rician multipath channel than in the 

Rayleigh multipath channel. 

 

Fig. 6. The characteristics of the average MSE versus the total number of transmit 

antennas among the simultaneous MIMO channel estimation using various sequence 

families under Rician multipath channels with 𝐿(𝑡) = 8, 𝜑 = 35 dB, 𝐾(ℎ) = 10, and 

various 𝐷. 
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 Fig. 7 compares the spectral compactness characteristics of all the OFDM pilot 

waveforms (with 𝐾 = 𝐽) adopted in Figs. 4-5. The results on 𝜂 calculated from (17) are 

presented with respect to the normalized bandwidth 𝐵𝑇𝑑/(𝛾𝑁). For a predetermined 𝜂 

(say −40 dB), the smaller the required bandwidth, the higher the spectral compactness. 

As shown, pilot waveforms carrying order-𝐼 CA sequence family 𝒢
max,𝐼

(dpma,4)
 (yielding 

sidelobe-decaying order 𝐼 ≥ 1) can provide much higher spectral compactness than pilot 

waveforms carrying ZC, YL, PN sequence families. 

Deterministic average PAPR for the sequence families with the parameter adopted 

in Fig. 5 are calculated from (18) and demonstrated in Table XI. It is noticed that family 

𝒢
max,𝐼

(dpma,4)
 offer higher waveform PAPR than ZC, YL, and PN sequence families. Thus, 

high PAPR turns out to be a major trade-off for the proposed order-𝐼  CA sequence 

families in order to achieve high spectral compactness. 
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Fig. 7. Average out-of-band power fraction characteristics for OFDM preamble 

waveforms carrying various CA sequence families. 

 

Table XI 

Average PAPR of OFDM pilot waveforms using various sequence families. 

Sequence 

Family 

ZC  

Sequence Family 

YL  

Sequence Family 

PN  

Sequence Family 

Family 

𝒢
max,𝐼

(dpma,4)
 

Average 

PAPR 
3.2 dB 3.08 dB 5.95 dB 20.25 dB 
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Chapter 7 

Conclusion 

Several modified PMA sequence families are constructed in the paper to provide 

more orthogonal order-𝐼 CA sequences for RA applications and SCE estimation (i.e. SPI 

applications), while facilitating the composition of spectrally compact OFDM 

preamble/pilot waveforms. The higher the sidelobe-decaying order, the higher spectral 

compactness the preamble/pilot waveform exhibits. By use of the developed orthogonal 

order- 𝐼  CA sequences, the SPI system requiring a large number of 

identification/sounding sequences can achieve the better performance in multipath 

channels while exhibiting high spectral compactness. Specifically, degenerate PMA 

sequence families 𝒢
max,𝐼

(dpma,𝜅)
 and �̃�

max,𝐼

(dpma,𝜅)
 for 𝜅 ∈ 𝒵Ω(𝑁)−1

+ − 𝒵2
+ can provide more 

orthogonal order-𝐼 CA sequences than the family 𝒢𝐼
(pma)

 and families 𝒢
max,𝐼

(dpma,𝜅)
 for 

𝜅 ∈ 𝒵2
+  proposed from [43], with or without trading off sidelobe-decaying order. 

Augmented PMA sequence families �̂�𝐼
(apma)

 proposed from [43] and �̂�
max,𝐼

(adpma,𝜅)
 for 

𝜅 ∈ 𝒵Ω(𝑁)−1
+  are further constructed to double the family size by augmenting the phase-

rotated replicas of all PMA sequences in families �̂�𝐼
(pma)

 and �̂�
max,𝐼

(dpma,𝜅)
, respectively, 

without trading off the sidelobe-decaying order. When compared with conventional 

Zadoff-Chu, Yu-Lee, and pseudorandom-noise CA sequence families, these modified 

PMA sequence families are shown to provide noticeable performance improvement in 

random-access channel identification over indoor and urban multipath environments 

exhibiting short-delay channel profiles. Additionally, it is desirable for simultaneous 

channel estimation to adopt the orthogonal sequence family containing as many 
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orthogonal cyclically-shiftable sequences as possible. In comparison with Zadoff-Chu, 

Yu-Lee, and pseudorandom-noise sequence families, the performance characteristics of 

simultaneous channel estimation over independent Rician multipath channels using the 

degenerate phase-model assigning sequence family 𝒢
max,𝐼

(dpma,𝜅)
 exhibit improvement if a 

large number of uplink channels were required to be estimated simultaneously under 

asynchronous signal reception. Meanwhile, the preamble/pilot waveforms carrying order-

𝐼  CA sequences in these modified PMA sequence families are attributed with much 

higher spectral compactness than those carrying conventional CA sequences.  
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Appendix 

A) Gosper’s Hack Algorithm 

Gosper’s Hack algorithm in [38]-[39] can assist in finding all possible factor sets 

{𝐴𝑚; 𝑚 ∈ 𝒵Ω(𝑁)−𝜅}  which satisfy ∏ 𝐴𝑚
Ω(𝑁)−𝜅−1
𝑚=0 = ∏ 𝑃𝑚

Ω(𝑁)−1
𝑚=0  and are all 

characterized by an admissible pattern 𝔀 = [𝓌𝑚; 𝑚 ∈ 𝒵Ω(𝑁)−𝜅] with 𝓌𝑚 = Ω(𝐴𝑚). 

To find all possible factor sets {𝐴𝑚; 𝑚 ∈ 𝒵Ω(𝑁)−𝜅}, we aim to (i) first find all possible 

partitions of {𝑃𝑚; 𝑚 ∈ 𝒵Ω(𝑁)} into Ω(𝑁) − 𝜅  prime factor subsets {𝑃𝑚
(𝑛);𝑚 ∈ 𝒵𝓌𝑛

} 

for 𝑛 ∈ 𝒵Ω(𝑁)−𝜅 , where 𝑃0
(𝑛) ≤ 𝑃1

(𝑛) ≤ ⋯ ≤ 𝑃𝓌𝑛−1
(𝑛)

, with the aid of Gosper’s Hack 

algorithm and (ii) then compose all possible factor sets by computing 𝐴𝑛 = ∏ 𝑃𝑚
(𝑛)𝓌𝑛−1

𝑚=0  

accordingly. To describe step (i), we define �̃� = [�̃�𝑛; 𝑚 ∈ 𝒵Ω(𝑁)−𝜅]  with �̃�𝑛 ≜

∑ 𝓌𝑚
Ω(𝑁)−𝜅−1
𝑚=𝑛  and 𝐛(𝑛) ≜ [𝑏𝑚

(𝑛);𝑚 ∈ 𝒵�̃�𝑛
]  as a binary codeword with length �̃�𝑛 

and Hamming weight 𝓌𝑛 .1.5.4 For a given 𝔀, there are a total of ∏ (
�̃�𝑛

𝓌𝑛
)𝑛∈𝒵Ω(𝑁)−𝜅
 

possible binary codeword sets for {𝐛(𝑛); 𝑛 ∈ 𝒵Ω(𝑁)−𝜅}  and they can be exclusively 

obtained by Gosper’s Hack algorithm in Fig. 8 [39, Algorithm 3.1]. To obtain a partition 

of {𝑃𝑚; 𝑚 ∈ 𝒵Ω(𝑁)}  for each given {𝐛(𝑛); 𝑛 ∈ 𝒵Ω(𝑁)−𝜅} , a binary codeword set 

{�̃�(𝑛); 𝑛 ∈ 𝒵Ω(𝑁)−𝜅} is converted from {𝐛(𝑛); 𝑛 ∈ 𝒵Ω(𝑁)−𝜅} by the proposed codeword 

conversion algorithm in Fig. 9, in a way that each codeword �̃�(𝑛) ≜ [�̃�𝑚
(𝑛); 𝑚 ∈ 𝒵Ω(𝑁)] 

contains Ω(𝑁) entries and the same Hamming weight as 𝐛(𝑛). Notably, there are a total 

of Ω(𝑁)  ones in {�̃�(𝑛); 𝑛 ∈ 𝒵Ω(𝑁)−𝜅} . From {�̃�(𝑛); 𝑛 ∈ 𝒵Ω(𝑁)−𝜅} , a partition of 

{𝑃𝑚; 𝑚 ∈ 𝒵Ω(𝑁)} into Ω(𝑁) − 𝜅  prime factor subsets {𝑃�̃�
(𝑛); �̃� ∈ 𝒵𝓌𝑛

}  can be thus 

specified by 



doi:10.6342/NTU202303160

73 

 

𝑃
ℰ𝑚
(𝑛)
(𝑛)

= 𝑃𝑚 if �̃�𝑚
(𝑛) = 1 (32) 

For 𝑛 ∈ 𝒵Ω(𝑁)−𝜅  and 𝑚 ∈ 𝒵Ω(𝑁) , where ℰ𝑚
(𝑛) = ∑ �̃�

𝑚′
(𝑛)𝑚

𝑚′=0 − 1 . Accordingly, all 

possible partitions of {𝑃𝑚; 𝑚 ∈ 𝒵Ω(𝑁)}  and thereby all possible factor sets for 

{𝐴𝑚; 𝑚 ∈ 𝒵Ω(𝑁)−𝜅} can be found in steps (i) and (ii) from ∏ (
�̃�𝑛

𝓌𝑛
)𝑛∈𝒵Ω(𝑁)−𝜅
 possible 

codeword sets for {𝐛(𝑛); 𝑛 ∈ 𝒵Ω(𝑁)−𝜅}. 

 Consider the example with Ω(𝑁) = 6, 𝜅 = 3, and a given pattern 𝔀 = [3,2,1]𝑡. 

Such 𝔀  determines �̃� = [6,3,1]𝑡  uniquely and thus fixes the lengths 6, 3, 1  and 

Hamming weights 3, 2, 1  of the binary codeword set {𝐛(0), 𝐛(1), 𝐛(2)}  accordingly. 

From Gosper’s Hack algorithm, there are (
6
3
) (
3
2
) (
1
1
) = 60  possible codeword sets 

meeting such length and weight distributions. For example, 𝐛(0) = [0,1,0,1,1,0]𝑡 , 

𝐛(1) = [0,1,1]𝑡 , and 𝐛(2) = [1] form one possible codeword set. From the codeword 

conversion algorithm, the corresponding codeword set {�̃�(𝑛); 𝑛 ∈ 𝒵Ω(𝑁)−𝜅} is obtained 

as �̃�(0) = [0,1,0,1,1,0]𝑡, �̃�(1) = [0,0,1,0,0,1]𝑡, and �̃�(2) = [1,0,0,0,0,0]𝑡. In turns, such 

{�̃�(𝑛); 𝑛 ∈ 𝒵Ω(𝑁)−𝜅}  determines a partition of {𝑃𝑚; 𝑚 ∈ 𝒵Ω(𝑁)}  into {𝑃𝑚
(0);𝑚 ∈

𝒵𝓌0
} = {𝑃1, 𝑃3, 𝑃4} , {𝑃𝑚

(1); 𝑚 ∈ 𝒵𝓌1
} = {𝑃2, 𝑃5} , and {𝑃𝑚

(2);𝑚 ∈ 𝒵𝓌2
} = {𝑃0} . The 

corresponding {𝐴𝑚; 𝑚 ∈ 𝒵Ω(𝑁)−𝜅}  becomes {𝑃1𝑃3𝑃4, 𝑃2𝑃5, 𝑃0} . All 60 possible 

partitions can be thus obtained from 60 codeword sets {𝐛(0), 𝐛(1), 𝐛(2)} exclusively 

obtained by Gosper’s Hack algorithm. 
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Fig. 8. 

Gosper’s Hack Algorithm 

 

 

Fig. 9. 

Codeword Conversion Algorithm 
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