
doi:10.6342/NTU202302797

國立臺灣大學電機資訊學院資訊工程學研究所

碩士論文

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

鍾手勢：手勢辨認使用飛時相機應用於智慧型眼鏡

ChungGesture: Hand Gesture Recognition with Time-of-

Flight Camera for Smart Glasses

鍾承鎧

Cheng-Kai Chung

指導教授：傅楸善 博士

Advisor: Chiou-Shann Fuh, Ph.D.

中華民國 112年 6月

June 2023

doi:10.6342/NTU202302797

doi:10.6342/NTU202302797

i

誌謝

能順利完成本篇論文首先要感謝傅楸善教授的指導，他總是不遺餘力地在研

究過程中支持我並給予建議，同時也要感謝佐臻股份有限公司提供合作的機會，

支持我研究這個主題。感謝公司同仁們專業的意見讓我受益良多，尤其是陳宏融

同事的指導。

 另外也要感謝數位相機與電腦視覺實驗室的學長姊、同學和學弟妹們在研究

期間的照顧。邵育翔學長、龔柏丞學長、孫譽學長、呂英弘學長、李志洸學長、

蕭延儒學長、閻楷青學姊無論在任何問題總會給予我適當的幫助，讓我在研究過

程中順利度過難關。同學張季祐、許銘真、游凱任、林正偉、林佳城、林聖祐，

在研究過程中互相扶持照顧，一同分享學業上的甘苦。學弟何志宏、郁霈靖、李

詠億、吳柏緯、邱議禾、游惟丞，學妹方郁婷、張婷淇，實驗室因為你們的加入

帶來不少歡樂，讓我忘卻課業上的煩悶。數位相機與電腦視覺實驗室的所有成員

們對於幫助我完成這篇論文實在功不可沒。

 最後要感謝我的家人和好友，總是毫無保留地支持我在學業上的任何決定，

使我能專心投入課業，無後顧之憂。在此僅將這段時間的研究成果匯集成本論

文，獻給所有曾經關心、照顧與幫助我的所有人。

doi:10.6342/NTU202302797

ii

中文摘要

本論文提出一個名為「鍾手勢」的演算法，希望藉由搭載著 8x8像素的低解析

度飛時深度相機的智慧型眼鏡，來進行手勢辨識，其中共包含了六個精準、快速、

舒適的動作，旨在提高使用者的操作體驗。

我們首先回顧了手勢辨認技術的相關知識和現有相關研究，並探索三種主要

的深度預測技術：立體視覺、結構光和 ToF 相機。接著，我們針對智慧型眼鏡的

特性和使用情境，提出了適合的手勢辨認應用場景和手勢操作設計，並開發了相對

應的軟體系統。最後，我們進行了實驗評估，包括手勢辨認的精準度、穩定度和使

用者的滿意度。實驗結果顯示，本研究所提出的手勢辨認系統具有良好的準確度和

穩定度，且能有效提升智慧型眼鏡的使用體驗。

我們的演算法開發及應用皆是在佐臻的 J7EF Plus智慧型眼鏡上，詳細的方法

和流程會在論文中加以說明。

關鍵字：鍾手勢、飛時相機、手勢辨識、擴增實境眼鏡

doi:10.6342/NTU202302797

iii

ABSTRACT

 In this thesis, we propose ChungGesture, which utilizes a low-resolution Time-of-

Flight (ToF) camera with 8x8 pixels to perform gesture recognition on smart glasses. The

algorithm consists of six precise, fast, and comfortable gestures designed to enhance the

user experience.

We first review the relevant knowledge and existing research on gesture recognition

technology and explored three main depth prediction techniques: stereo vision, structured

light, and ToF camera. Next, we propose suitable application scenarios and gesture

designs based on the characteristics and usage context of smart glasses, and develop

corresponding software systems. Finally, we conduct experimental evaluations, including

gesture recognition accuracy, stability, and user satisfaction. The results show that our

gesture recognition system has good accuracy and stability and can effectively improve

the user experience of smart glasses.

Our algorithm development and application are performed on Jorjin J7EF Plus smart

glasses, and the detailed methods and processes will be explained in this thesis.

Key words: ChungGesture, Time-Of-Flight Camera, Gesture Recognition, Augmented

Reality (AR) Glasses

doi:10.6342/NTU202302797

iv

CONTENTS

誌謝 ... i

中文摘要 .. ii

ABSTRACT .. iii

CONTENTS .. iv

LIST OF FIGURES .. vii

LIST OF TABLES ... x

Chapter 1 Introduction .. 1

1.1 The Concept of Smart Glasses .. 1

1.1.1 Hardware .. 2

1.1.2 Virtual Reality (VR) and Augmented Reality (AR) 3

1.1.3 Interacting with Smart Glasses... 7

1.2 Hand Gestures .. 9

1.3 Thesis Organization ... 11

Chapter 2 Related Works .. 12

2.1 History of Smart Glasses ... 12

2.2 The Method of Depth Estimation ... 16

doi:10.6342/NTU202302797

v

2.2.1 Stereo Vision ... 17

2.2.2 Structured Light ... 18

2.2.3 Time-of-Flight Camera .. 20

2.3 Hand Gestures Recognition .. 23

Chapter 3 Background .. 26

3.1 Our Device Configuration ... 26

3.2 Sensor Decision ... 29

3.3 Hardware Limitation ... 30

3.3.1 The Low-Resolution Depth Sensor ... 30

3.3.2 Limited Field of View (FoV).. 31

3.3.3 Sensor Mobility Constraint ... 31

3.4 Existing Techniques and Limitations ... 31

3.4.1 LuGesture Method ... 31

3.4.2 Limitations of LuGesture Method .. 37

Chapter 4 Methodology .. 40

4.1 Overview ... 40

4.2 Data Collection ... 41

4.3 Noise Reduction .. 42

doi:10.6342/NTU202302797

vi

4.3.1 Remove Background .. 42

4.3.2 Remove Twinkle ... 44

4.4 Hand Area Detection .. 45

4.4.1 Left-Right Hand Discrimination .. 45

4.4.2 Cropping for Left-Right Hand Differentiation 46

4.4.3 Calculating Hand Palm Centroid ... 48

4.4.4 Smoothing ... 52

4.5 Gesture Recognition ... 53

4.5.1 Swipe ... 54

4.5.2 Push and Pull .. 56

4.6 Our System ... 57

Chapter 5 Experimental Results ... 59

5.1 Experimental Setting ... 59

5.2 Precision Result .. 59

5.3 Stability Result ... 61

5.4 Gesture Recognition Accuracy Result .. 64

Chapter 6 Conclusion and Future Works .. 66

References ... 67

doi:10.6342/NTU202302797

vii

LIST OF FIGURES

Figure 1-1: Simplified representation of a “virtuality continuum” [1]. 5

Figure 1-2: Classification of interaction approaches for smart glasses [2]. 8

Figure 1-3: The classification Aigner et al. used to communicate information about

objects or entities, such as specific sizes, shapes, and motion paths [3]. 10

Figure 2-1: Evolution of media devices [7]. .. 12

Figure 2-2: Stereoscopic vision diagram [20]. .. 18

Figure 2-3: Structured light camera diagram [23]. .. 19

Figure 2-4: Overview of pulsed and modulated D-ToF and I-ToF measuring techniques

[4]. ... 21

Figure 2-5: Principle of dToF sensor [5]. .. 22

Figure 2-6: The components of a video- or depth-based hand .. 24

Figure 3-1: Jorjin J-Reality J7EF Plus [18]. .. 26

Figure 3-2: Sony Xperia 1 II [24]. ... 27

Figure 3-3: Jorjin J7EF Plus display mode. (a) 2D mode. (b) 3D mode (Jorjin, 2023) [18].

 .. 29

Figure 3-4: Examples of difference images for each direction. (a) Swipe left. (b) Swipe

doi:10.6342/NTU202302797

viii

right. (c) Swipe up. (d) Swipe down. The motion direction can be observed

by the general direction from red (disappearing: negative values) to blue

(appearing: positive values) [17]. ... 33

Figure 3-5: The whole process to detect swipe gestures. For Step 3, we show the graph of

the 4th row. We can see that the score peaks at index 3 and 4, which is where

our middle point is. The same process applies to every row for the horizontal

score as shown, and every column for the vertical score [17]. 34

Figure 3-6: Illustration of the two stages of a push gesture [17]. 35

Figure 3-7: Illustration of the three stages for hand-speed detection [17]. 36

Figure 3-8: Processing to reduce jitter. (a) Unprocessed binary image. (b) Reweighted

image. (c) Upscaled and blurred image after reweighting. Note that these are

different frames [17]. .. 37

Figure 3-9: The result image of LuGesture. Hand in the (a) top-left corner, (b) upper-

center corner, (c) top-right corner. .. 38

Figure 4-1: Main flowchart of ChungGesture. .. 41

Figure 4-2: The data flow chart of smart glasses [18]. .. 42

Figure 4-3: Sensing range of hand pixels. (a) Direct view. (b) Side view. 43

Figure 4-4: Comparison chart of twinkle processing. (a) Twinkle image. (b) After twinkle

doi:10.6342/NTU202302797

ix

removal. .. 44

Figure 4-5: Determine left-right hand. .. 46

Figure 4-6: Hand palm image. ... 48

Figure 4-7: Precision problem. .. 49

Figure 4-8: Gaussian weighting image. (a) Averaged point. (b) Fingertip. 51

Figure 4-9: Weight table. ... 52

Figure 4-10: Right-hand swipe left image. .. 55

Figure 4-11: Illustration of a push gesture. .. 57

Figure 5-1: Screenshot from the Color Weakness game used in our experiments. 60

doi:10.6342/NTU202302797

x

LIST OF TABLES

Table 2-1. Specification of Google Glass Enterprise Edition 2 [9], Microsoft HoloLens 2

[11], and Epson Moverio BT-350 [12]. .. 15

Table 2-2. Comparison of 3D imaging technologies [21]. .. 17

Table 2-3. Comparison between dToF and iToF. ... 23

Table 5-1. Comparison results of precision. .. 61

Table 5-2. Comparison results of stability. .. 63

Table 5-3. Comparison results of gesture recognition. .. 65

doi:10.6342/NTU202302797

1

Chapter 1 Introduction

1.1 The Concept of Smart Glasses

Smart glasses are a type of Optical Head-Mounted Display (OHMD) device that

mainly provides the wearer with real-time reference and judgment of various information

by projecting computer screens onto the lenses of the glasses. With the advent of the 5G

era, network transmission is getting faster. Smart glasses, combined with cloud

technology, are further expanded into various fields, such as simulating real-life scenarios

for assistive and medical personnel. With the assistance of smart glasses, they can handle

real-time information more efficiently and give the wearer a more immersive experience.

Currently, smart glasses have become a fierce competition project for major companies

such as Microsoft, Amazon, Google, Apple, Sony, and Samsung.

This thesis aims to illustrate how to combine medical and entertainment activities

through the use of self-developed smart glasses and gesture recognition algorithm in

collaboration with Jorjin Technologies. Therefore, smart glasses play a very important

role in this thesis, responsible for receiving information, data processing, triggering

doi:10.6342/NTU202302797

2

events, and finally displaying them on the screen, allowing users to overlay virtual world

information onto the physical world and achieve a more immersive interactive experience.

In this section, we will introduce the hardware of smart glasses, as well as what Virtual

Reality (VR) and Augmented Reality (AR) are, and how users interact with the

environment through smart glasses in both virtual and real worlds.

1.1.1 Hardware

Currently, many companies engage in the development of smart glasses. The most

common hardware components include:

• Display: A miniature display screen located within the glasses that projects

images and videos onto the wearer's field of view. Some glasses use micro-

Organic Light-Emitting Diode (OLED) displays to provide high resolution and

sharpness.

• Camera: A built-in camera that captures images and videos of the user's

surroundings. This feature is essential for AR experiences as it allows the device

to recognize and overlay digital information onto physical objects.

• Sensors: Smart glasses may also come equipped with a range of sensors such as

doi:10.6342/NTU202302797

3

accelerometers, gyroscopes, and magnetometers. These sensors track the user's

head movements, allowing the device to adjust the display accordingly.

• Processor and Memory: A Central Processing Unit (CPU) and memory are

essential components that enable the device to run complex algorithms and render

high-quality graphics. Some smart glasses use mobile processors and operating

systems similar to those found in smartphones.

• Connectivity: Smart glasses often feature Wireless Fidelity (Wi-Fi), Bluetooth, or

cellular connectivity, allowing them to connect to Internet and other devices.

1.1.2 Virtual Reality (VR) and Augmented Reality (AR)

Recently, the development of Augmented Reality (AR) and Virtual Reality (VR)

technologies has brought new possibilities to the field of smart glasses. Therefore, we

need to first define what Virtual Reality and Augmented Reality are.

Virtual Reality (VR) and Augmented Reality (AR) are both technologies that

combine computer-generated graphics with the real world. In VR, users are immersed in

a completely synthetic world and can interact with it. Users can experience a sense of

doi:10.6342/NTU202302797

4

presence. The physical laws of the real world may not apply in this synthetic world. VR

is commonly used in applications such as gaming and education. On the other hand, AR

overlays virtual images onto the real-world environment, allowing users to see both the

real world and virtual graphics simultaneously. For example, AR filters on social media

platforms add virtual animal ears or masks onto users' faces in real time. As the Jorjin

J7EF Plus smart glasses used in this thesis are an AR application, in this section we will

focus on AR.

In Figure 1-1, AR is a subset of Mixed Reality (MR). MR visual displays are a

specific category of Virtual Reality (VR) technologies that involve the integration of real

and virtual worlds at various points along the "virtuality continuum", which ranges from

entirely real environments to fully virtual ones (Milgram & Kishino, 1994) [1]. The

concept of a "virtuality continuum" refers to the blending of object classes presented in a

particular display situation. This continuum spans from completely real environments at

one end to completely virtual ones at the other. At the left end, real environments consist

solely of real objects and can be observed through a conventional video display or directly

without any electronic display. At the opposite end, virtual environments consist solely

of virtual objects, such as those in a computer-generated simulation.

doi:10.6342/NTU202302797

5

Figure 1-1: Simplified representation of a “virtuality continuum” [1].

While the term "Mixed Reality" may not be widely used, the term "Augmented

Reality" (AR) has become increasingly common in the literature. Thus, we define

Augmented Reality as any situation where a real-world environment is enhanced or

"augmented" by virtual computer-generated objects. Clear classification helps us to have

a better understanding of AR. In the following, we will introduce the six categories

defined by Milgram and Kishino [1].

1. Monitor-based video displays, also known as "window-on-the-World" (WoW)

displays, where computer-generated images are overlaid electronically or

digitally. An example is a 3D movie or game displayed on a computer screen.

2. Video displays similar to those in Class 1, but with immersive Head-Mounted

Displays (HMD’s) rather than WoW monitors.

3. HMDs equipped with a see-through capability, allowing computer-generated

doi:10.6342/NTU202302797

6

graphics to be optically superimposed onto real-world scenes viewed directly.

An instance of this would be the Google Glass, which features a transparent

display attached to the right side of the glasses.

4. Similar to Class 3, but with video viewing of the "outside" world instead of

optical. The displayed world in Class 4 should correspond orthoscopically with

the immediate outside real world, creating a "video see-through" system, similar

to the optical see-through of option 3.

5. Completely graphic display environments to which video "reality" is added,

either completely immersive, partially immersive, or otherwise.

6. Completely graphic but partially immersive environments where real physical

objects in the user's environment play a role in the computer-generated scene,

such as reaching in and grabbing something with one's own hand.

After a brief overview of the various types of MR, it becomes apparent that even if

many projects and applications share the same AR tag, they may require quite different

hardware configurations and software implementations. In this thesis, we will focus on

Class 3 MR devices, also referred to as "smart glasses."

doi:10.6342/NTU202302797

7

1.1.3 Interacting with Smart Glasses

After understanding the hardware of smart glasses and the concepts of VR and AR,

we will now introduce how to interact with smart glasses.

Smart devices today primarily use touchscreens as the main input method. However,

smart wearable devices such as smart glasses do not incorporate touchscreens because

they can block the user's line of sight and limit the flexibility of hand movements. The

interaction approaches are classified into three categories based on Lee and Hui's work

(Lee & Hui, 2018) [2]: handheld, touch, and touchless. First, handheld utilizes handheld

controllers, such as smartphones. Second, touch refers to non-handheld touch-based

interaction, including gestures and tapping on body surfaces, as well as touch-sensing

wearable devices such as smart rings, smart wrist bands, and watches. Last, touchless

includes non-handheld and non-touch input, such as mid-air hand gestures, head and body

movements, gaze interaction, and voice recognition.

doi:10.6342/NTU202302797

8

Figure 1-2: Classification of interaction approaches for smart glasses [2].

To minimize the need for additional devices, we prioritize touchless methods. As

classified by Lee and Hui (2018) [2], touchless input can be divided into two types: hands-

doi:10.6342/NTU202302797

9

free interaction and freehand interaction. Hands-free interaction involves voice

recognition, head movements, gaze movements, and tongue movements. For our project,

we will concentrate on freehand interactions based on vision-based gestures.

1.2 Hand Gestures

In order to provide users with a satisfactory experience, appropriate gesture design

becomes especially important. There are two common approaches to design a gesture

language for user interactions: using the User Defined Interfaces (UDI) methodology to

elicit gestures, or designing a language that avoids conflicts, is ergonomic, and carries

high bandwidth (Aigner, et al., 2012) [3]. UDI aims to recognize gestures that users

intuitively communicate with. However, although UDI improves the novice "first guess",

it may produce inconsistent results since the same gesture may have a different purpose

among users, or different gestures may be used to achieve the same result. Aigner et al.

[3] developed a methodology similar to UDI, but with to reduce ambiguity. They defined

10 target gesture effects and categorized gesture types into 5 distinct categories.

doi:10.6342/NTU202302797

10

Figure 1-3: The classification Aigner et al. used to communicate information about

objects or entities, such as specific sizes, shapes, and motion paths [3].

doi:10.6342/NTU202302797

11

The 10 target effects include select, release, accept, refuse, remove, cancel, navigate,

identify, translate, and rotate. The 5 gesture types include pointing, semaphoric,

pantomimic, iconic, and manipulation. Semaphoric gestures can be further classified into

three types: static, dynamic, and stroke.

After a thorough understanding of the gesture design system, we can analyze the

required effects and corresponding gestures from the perspective of UDI, even when

there are hardware specifications limitations.

1.3 Thesis Organization

 The related works about ChungGesture are briefly introduced in Chapter 2. The

definition of our six gestures and methodology will be described in Chapter 3. The

experimental results will be presented in Chapter 4. The last chapter contains the

conclusion of this thesis and some future works.

doi:10.6342/NTU202302797

12

Chapter 2 Related Works

2.1 History of Smart Glasses

According to P. A. Rauschnabel, A. Brem, and Y. Ro [7], a framework for the

evolution of media is proposed, consisting of five distinct generations of media. Figure

2-1 illustrates the temporal dimension along the x-axis and the influence of each media

generation's technologies on users' lives along the y-axis.

Figure 2-1: Evolution of media devices [7].

The first generation of media, referred to as offline media, encompassed stationary

doi:10.6342/NTU202302797

13

and uni-directional platforms such as newspapers, television, and others. These

technologies relied on internal storage, cartridges (e.g., game consoles), CD-ROMs

(Compact Disk – Read-Only Memory), or analog radio frequencies (e.g., TV (TeleVision)

or radio) for information delivery.

The second generation, known as Web 1.0, emerged as early online technologies

with static websites being prominent examples. Users in this generation predominantly

consumed content produced by professional organizations, assuming a passive role.

Although limited two-way communication was feasible, most Web 1.0 technologies

remained uni-directional. Early websites largely served as digital brochures, primarily

created by professional organizations. A few innovative individuals manually

programmed HTML (Hyper-Text Markup Language) code to develop personal websites.

The third generation, which began in the early 2000s, is referred to as Web 2.0 or

social media. Social media platforms enabled complex and multi-directional

communication, transforming users into both consumers and producers of content (often

called 'prosumers'). Factors such as faster Internet connections, user-friendly devices, and

increased trust in the Internet contributed to the widespread adoption of Web 2.0

technologies. Early examples of Web 2.0 technologies include Facebook, SecondLife,

and Myspace.

doi:10.6342/NTU202302797

14

The fourth generation extended social media from static devices to mobile devices,

including laptops, tablets, and smartphones. This generation also encompasses wearable

devices such as smart watches, smart clothing, and smart wristbands. Mobile technologies

grant users constant access to their social media environment, resulting in social media

applications such as Facebook and Instagram becoming highly popular smartphone apps.

The fifth generation of media introduces Wearable Augmented Reality Devices

(WARD), which merge virtual and physical realities. These technologies integrate virtual

elements into the real world, with augmented reality smart glasses being a notable

example and the primary focus of this research.

P. A. Rauschnabel, A. Brem, and Y. Ro. [7] defined Augmented Reality Smart

Glasses as wearable Augmented Reality (AR) devices that are worn like regular glasses

and merge virtual information with physical information in a user’s view field.

The first Head-Mounted Display (HMD) driven by graphics was pioneered by Ivan

Sutherland in the 1960s [8]. Over the years, the term HMD has also been used in military

applications to refer to helmet-mounted displays integrated with military helmets.

Designing an ergonomically optimized headband to securely fasten the HMD to the user's

head poses a significant challenge for HMD designers. Due to factors such as weight,

weak processors, short battery life, and small screen size, HMD devices have faced

doi:10.6342/NTU202302797

15

challenges in achieving widespread adoption in the market.

In recent years, commercial HMD devices have been dedicated to enhancing

performance and reducing weight in order to achieve greater convenience and comfort. A

prime example of this trend is the Google Glass [9].

Table 2-1. Specification of Google Glass Enterprise Edition 2 [9], Microsoft

HoloLens 2 [11], and Epson Moverio BT-350 [12].

Item
Google Glass

Enterprise Edition 2
Microsoft HoloLens 2

Epson Moverio

BT-350

Resolution

(Pixels)
640×360 2048 x 1080 1280 x 720

Storage 32 GB 64 GB 48 GB

CPU
Qualcomm XR1 1.7

GHz Quad-core

Qualcomm Snapdragon

850

Intel Atom X5 (1.44

GHz Quad-Core)

RAM DDR4 3 GB
4 GB LPDDR4x system

DRAM
2 GB

Battery 800 mA·h 16,500 mA·h 2,950 mA·h

Camera 8-megapixel camera
8-megapixel camera,

1080p video recording
5-megapixel camera

Operating

System

Android Open-Source

Project 8.1 (Oreo)
Windows 10 Android 5.1

Weight 46 g 566 g 151 g

Sensor

Wi-Fi

Bluetooth

GPS

6-axis gyroscope

Azure Kinect sensor

accelerometer

Gyroscope

Magnetometer

6-DoF (Degrees of Freedom)

GPS

Wi-Fi

 Bluetooth

GPS

3-axis gyroscope

Fluoroscopy

method

Curved mirror

(+Reflective

waveguide):

Google Light pipe

Holographic waveguide

Reflective

waveguide:

Epson light guide

doi:10.6342/NTU202302797

16

Table 2-1 presents the product specifications of three commonly found smart glasses

in the market. Among them, Google Glass Enterprise Edition 2 is the most widely used,

with a specific focus on utility in industrial sectors such as aviation and medicine.

Microsoft HoloLens creates a Mixed Reality (MR) environment that enables interactive

experiences akin to physically touching virtual objects based on a depth sensor equipped

with artificial intelligence. HoloLens extends beyond industrial applications, finding use

in operating rooms as well as construction and maintenance sites. In contrast, BT-350

requires a wired controller connected to the main unit for operation, which can lead to

user discomfort [10].

2.2 The Method of Depth Estimation

We use ToF camera: depth sensing camera. Therefore, in this section, we will delve

into the study of depth prediction techniques, which can be mainly classified into three

methods: stereo vision, structured light, and ToF camera. We will provide a detailed

introduction to each of these methods, with particular emphasis on ToF camera. Table 2-2

presents a comparison of these three major 3D imaging technologies.

doi:10.6342/NTU202302797

17

Table 2-2. Comparison of 3D imaging technologies [21].

 Stereo Vision Structured Light Time-of-Flight

Software Complexity High Medium Low

Material Cost Low High Medium

Compactness Low High Low

Response Time Medium Slow Fast

Depth Accuracy Low High Medium

Low-Light Performance Weak Good Good

Bright-Light

Performance
Good Weak Good

Power Consumption Low Medium Scalable

Range Limited Scalable Scalable

2.2.1 Stereo Vision

Stereo vision, as emphasized by R. Szeliski [19], has emerged as a highly active

technology in the realm of computer vision research. It pertains to the task of inferring

the three-dimensional structure of a scene based on multiple digital images captured from

distinct viewpoints [16]. In Figure 2-2, by employing a mathematical solution, the depth

doi:10.6342/NTU202302797

18

of an object can be determined by analyzing the triangle formed from the intersection

point generated by projecting the object onto two distinct lenses.

Figure 2-2: Stereoscopic vision diagram [20].

2.2.2 Structured Light

A structured light camera is a type of depth-sensing camera that uses a structured

pattern of light projected onto a scene to determine depth information. The camera emits

a known pattern of light, such as a grid or a series of horizontal or vertical lines, onto the

objects or surfaces in its field of view [22]. By capturing the reflected or deformed pattern

of light using specialized sensors, the camera can analyze the distortions in the pattern

and calculate the depth of various points in the scene. In Figure 2-3, structued light relies

doi:10.6342/NTU202302797

19

on the principle of triangulation, where the known pattern of light is projected from a

known position, and the camera observes the resulting deformation or displacement of

the pattern on the objects or surfaces. By analyzing the distortions, the camera can

reconstruct a depth map, providing information about the distance of each point from the

camera.

Figure 2-3: Structured light camera diagram [23].

doi:10.6342/NTU202302797

20

2.2.3 Time-of-Flight Camera

According to F. Remondino and D. Stoppa et al. [4], ToF camera can be categorized

into two main types: Direct Time-of-Flight (D-ToF) and Indirect Time-of-Flight (IToF).

D-TOF is typically employed in single-point range systems, specifically in

scannerless ToF systems. It is well-suited for Single Photon Avalanche Diode (SPAD)-

based systems. In the case of Direct-ToF (D-ToF) measurement, the detector system

initiates a highly precise stopwatch simultaneously with the emission of light pulses from

the emitter. When the stopwatch is stopped, the roundtrip time τ_ToF is directly recorded.

The target distance z can then be estimated using a simple equation:

𝑍 =
𝑐

2
⋅ 𝜏𝑇𝑜𝐹

An alternative solution to D-ToF is known as Indirect-ToF (I-ToF), which involves

extrapolating the roundtrip time from a time-gated measurement of light intensity. In this

case, a highly accurate stopwatch is not required. Instead, time-gated photon counters or

charge integrators are used, which can be implemented at a pixel level with less

complexity and silicon area. I-ToF is particularly suitable for ToF cameras based on

electronic and photo-mixing devices. The operation principle of D-ToF and an example

of a four-gates I-ToF are in Figure 2-4.

doi:10.6342/NTU202302797

21

Figure 2-4: Overview of pulsed and modulated D-ToF and I-ToF measuring

techniques [4].

As stated by P. Padmanabhan and C. Zhang et al. [5], dToF image sensors based on

Time-Correlated Single-Photon Counting (TCSPC) offer high-speed performance and

accurate ranging capability, and they have been extensively studied in recent years. To

obtain stable depth information, the dToF approach involves detecting events across

multiple laser pulses directed at the target, which are then captured by the SPAD sensor

depicted in Figure 2-5. This method also mitigates the issue of multiple reflections that

can impact iToF cameras.

doi:10.6342/NTU202302797

22

Figure 2-5: Principle of dToF sensor [5].

According to [6], dToF technology offers the advantage of more stable depth

information compared with iToF. However, it also has certain drawbacks. For instance,

operating a Single Photon Avalanche Diode (SPAD) in dToF requires a high bias voltage

(>10 V), and shrinking the pixel size is challenging, resulting in a limited pixel count of

only tens of thousands. In contrast, iToF can be implemented on a standard

Complementary Metal-Oxide Semiconductor (CMOS) sensor using lower power (<3.3

V), making it easier to shrink the pixel size and achieve a larger pixel count within a

smaller optical format. Additionally, SPAD technology is more expensive than iToF

CMOS Image Sensor (CIS). A detailed comparison between dToF and iToF is presented

in Table 2-3.

doi:10.6342/NTU202302797

23

Table 2-3. Comparison between dToF and iToF.

 dToF iToF

Principle of operation Time-dependent Phase-dependent

Sensor SPAD array iTOF CIS

Difficulty of making difficult Easy

Power consumption Low High

Measurement accuracy Stable Depends on distance

Multiple Reflections Easy to solve Difficult to solve

Price Expensive Cheap

Application iPhone 13 Samsung Galaxy

2.3 Hand Gestures Recognition

Hand gesture recognition plays a crucial role in facilitating natural and intuitive user

interfaces for Human-Computer Interaction (HCI), offering users an effortless and user-

friendly experience [13].

 According to M. Oudah, A. Al-Naji, and J. Chahl [15], there are two commonly

doi:10.6342/NTU202302797

24

used approaches for interpreting gestures in HCI applications. The first approach utilizes

data gloves, either wearable or in direct contact, while the second approach relies on

computer vision without the requirement of wearing any sensors. The second approach

can be further classified into various categories: color-based recognition, appearance-

based recognition, motion-based recognition, skeleton-based recognition, depth-based

recognition, 3D model-based recognition, and deep-learning based recognition. We will

focus on depth-based recognition.

In Figure 2-6, J. Suarez and R. R. Murphy proposed a system for depth-based hand

gesture recognition [14].

Figure 2-6: The components of a video- or depth-based hand

gesture recognition and pose estimation system [14].

doi:10.6342/NTU202302797

25

Depth-based hand gesture recognition starts by capturing depth images, which relies

on the specific sensor employed. Subsequently, hand localization is conducted on the

obtained sequence of images through tracking and segmentation techniques. Finally, the

segmented hand images and/or their tracked trajectories are classified into specific

gestures or poses, utilizing a predefined set of gestures.

doi:10.6342/NTU202302797

26

Chapter 3 Background

3.1 Our Device Configuration

Figure 3-1: Jorjin J-Reality J7EF Plus [18].

The smart glasses used in this experiment are Jorjin J7EF Plus connected to a Sony

Xperia 1 II smartphone with operating system Android 12.

doi:10.6342/NTU202302797

27

Figure 3-2: Sony Xperia 1 II [24].

Jorjin J7EF Plus has a 1080p (1,920x1,080 pixels) binocular display with horizontal

FoV (Field of View) of 29.6 degrees. Its Inter-Pupillary Distance (IPD) is 65 millimeters.

It is also equipped with 4 sensors, including an 8-megapixel RGB (Red, Green, Blue)

camera, a 64 (=8x8) pixels Time-of-Flight (ToF) depth camera (ST VL53L5CX) with 15

FPS (Frames Per Second), ambient light sensor, and an IMU (Inertial Measurement Unit)

consisting of an accelerometer, gyroscope, and magnetometer. The gesture recognition

algorithms are run on a Micro-Controller Unit (MCU: ST STM32F401CE).

Jorjin J7EF Plus relies on a host device to provide both content and power. To ensure

proper functionality, certain factors must be considered when selecting the host device:

• DP Alt (DisplayPort Alternate) Mode: a special mode defined by USB-IF

doi:10.6342/NTU202302797

28

(Universal Serial Bus - Implementers Forum) to transmit high-definition video

over USB-C ports, is the main protocol used for graphic transmission to the

glasses. The host device must support DP Alt Mode to display content on Jorjin

J7EF Plus glasses.

• Power output: another important factor for the glasses. A standard USB 2.0 port

can only supply a maximum of 500mA current to a client device. A Power-

Delivery enabled USB port can output a higher current (1.5A or more) to the

connected device. If the host device cannot provide sufficient power to the

glasses, unstable connections and abnormal functionalities may occur during

operation.

Jorjin J7EF Plus also has 2D and 3D display modes. In 2D mode, users will see the

same content on the left and the right displays on the glasses, and the aspect ratio on the

glasses’ displays will be the same as the original one on the host display. In 3D mode,

users will see different content on the left and the right displays, and the aspect ratio on

the glasses displays will be twice as the original one on the host display since the original

content will be split in half then be stretched to the normal size before displaying on the

glasses. In our experiment, we only consider 2D mode.

doi:10.6342/NTU202302797

29

(a) (b)

Figure 3-3: Jorjin J7EF Plus display mode. (a) 2D mode. (b) 3D mode (Jorjin, 2023)

[18].

3.2 Sensor Decision

In the selection of sensors, we opted for a ToF camera instead of an RGB camera.

This choice was made due to the ToF camera's ability to easily eliminate background

noise. In traditional RGB camera-based gesture recognition, foreground objects need to

be separated from the background. This can be easily achieved when the background

remains static. However, with smart glasses worn on the user's head, the background is

constantly changing, making this task more challenging. By using a ToF camera, we only

need to retain the pixels within the range where we anticipate the user will perform

gestures, while ignoring all pixels outside this range. Another advantage is the accuracy

doi:10.6342/NTU202302797

30

in detecting depth variations. RGB cameras can only estimate distance variations by

observing minor shape and feature differences, leading to relatively larger errors. In

contrast, ToF cameras inherently possess depth information, providing a distinct

advantage when designing gestures that are perpendicular to the sensor plane.

3.3 Hardware Limitation

3.3.1 The Low-Resolution Depth Sensor

Due to the limited computational power of the MCU on smart glasses, it is not as

powerful as a typical CPU installed in desktop computers. Furthermore, our research

focuses on low cost and low power consumption. Therefore, we choose a ToF camera

with a resolution of only 8x8 as our sensor. We aim to achieve precise, fast, and

comfortable gestures. However, due to the low resolution, it is not possible to accurately

recognize the shape of a palm, let alone individual fingers. As a result, we exclude static

gestures such as finger counting and instead choose motion-based gestures with larger

displacement amplitudes, such as swiping.

doi:10.6342/NTU202302797

31

3.3.2 Limited Field of View (FoV)

Due to the placement of our sensor on the smart glasses, specifically on the user's

forehead with a sensing area directly in front of the eyes, users need to raise their hands

slightly higher to keep them within the sensing range. Besides, to ensure gesture comfort,

we design our gestures to minimize upper arm movements and instead focus on

movements of the forearm.

3.3.3 Sensor Mobility Constraint

Due to the placement of the sensor on the user's head in smart glasses, the sensing

area is influenced by head movements and rotations. Even slight shaking can result in

static objects being detected as moving objects. Furthermore, if the head rotates too much,

it may cause the hand to move out of the sensing area, interrupting an incomplete gesture.

Therefore, when designing gestures, we took into account the importance of interactivity.

3.4 Existing Techniques and Limitations

3.4.1 LuGesture Method

The previous development of Jorjin J-Reality J7EF Plus Smart Glasses was mainly

doi:10.6342/NTU202302797

32

based on Y. H. Lu's work [17]. LuGesture focuses on hand gesture recognition using ToF

technology integrated into the smart glasses. LuGesture enables the recognition of three

gesture sets, including:

1. Swipe + Push/Pull: The four swipe directions include up, down, left, and right.

These specific gestures have been chosen to emulate the arrow keys on a

keyboard. The complete process involves the following steps: First, binarize the

pixels based on whether they fall within the sensing range. Then, calculate the

difference between the current and previous frames, and apply image blur to

distribute the differences more evenly. By analyzing the blurred difference image

and identifying the gradient directions, we can determine the swipe direction for

each difference frame. When the hand is no longer present or stops moving, we

can determine the gesture direction by examining the most frequently occurring

direction in the sequence. Alternatively, we can sum the scores of all frames in

the sequence to determine the gesture direction.

The push and pull gestures are designed to be triggered when a hand moves

towards or away from the sensor, covering a certain distance. The algorithm

consists of two stages: ready stage and trigger stage. In ready stage, we detect

the presence of a hand. We calculate the mean distance of the pixels that detect

doi:10.6342/NTU202302797

33

an object within the sensing range, which serves as the start distance. The

algorithm transitions from ready stage to trigger stage when the difference

between the current mean distance and the start distance exceeds a specified

distance threshold. This transition triggers the push gesture if the current distance

is larger, while it triggers the pull gesture if the current distance is smaller. Once

the gesture is triggered, the algorithm is reset, allowing for the detection of

subsequent gestures.

Due to the possibility of simultaneous triggering of swipe gestures and push/pull

gestures, LuGesture assigns higher priority to push/pull gestures.

(a) (b) (c) (d)

Figure 3-4: Examples of difference images for each direction. (a) Swipe left. (b)

Swipe right. (c) Swipe up. (d) Swipe down. The motion direction can be observed by

the general direction from red (disappearing: negative values) to blue (appearing:

positive values) [17].

doi:10.6342/NTU202302797

34

Figure 3-5: The whole process to detect swipe gestures. For Step 3, we show the

doi:10.6342/NTU202302797

35

graph of the 4th row. We can see that the score peaks at index 3 and 4, which is where

our middle point is. The same process applies to every row for the horizontal score as

shown, and every column for the vertical score [17].

Figure 3-6: Illustration of the two stages of a push gesture [17].

2. Hand Speed: This gesture is primarily designed for throwing games and records

the speed at which the hand is pushed forward. Imagine an invisible wall in front

of us, with the closer side referred to as the close side and the farther side as the

far side. The algorithm can be divided into three stages: ready stage, trigger stage,

and sleep stage. In the ready stage, the algorithm detects the hand but waits for

the hand to cross the invisible wall, as the number of pixels on the far side is less

doi:10.6342/NTU202302797

36

than the required threshold for triggering the speed registration. Once the hand

crosses the wall, it enters the trigger stage. In the trigger stage, LuGesture

calculates the hand speed by subtracting the mean distance between hand pixels

in the current and previous frames, capturing the maximum speed since entering

the ready stage. During the sleep stage, LuGesture pauses its operation to avoid

triggering unnecessary gestures. After the sleep time expires, it can re-enter the

ready stage for further detection.

Figure 3-7: Illustration of the three stages for hand-speed detection [17].

3. Hand Tracking: This gesture is designed to allow users to use their hands as a

cursor even in low-resolution conditions. The complete process involves:

binarizing the image based on the sensing range to extract hand pixels, adjusting

weights to reduce the impact of twinkle pixels, upscaling the image, applying

image blurring, calculating the centroid, and performing interpolation between

doi:10.6342/NTU202302797

37

frames to improve FPS.

(a) (b) (c)

Figure 3-8: Processing to reduce jitter. (a) Unprocessed binary image. (b) Reweighted

image. (c) Upscaled and blurred image after reweighting. Note that these are different

frames [17].

3.4.2 Limitations of LuGesture Method

After conducting practical experiments with LuGesture, we observe that the gesture

recognition performance did not meet expectations, as shown in Figure 3-9, with frequent

instances of misjudgment. Therefore, we analyze and identify potential risks associated

with LuGesture:

1. Excessive non-palm region: During Hand Tracking, the hand's centroid struggles to

reach the upper region. Even when the palm moves upward, the sensor may still

doi:10.6342/NTU202302797

38

detect the forearm, thereby affecting centroid calculation.

2. Insufficient stability: The low resolution (8x8 pixels) of the camera has a limited

number of pixels. Consequently, even a single pixel can have a significant impact on

the centroid calculation. Additionally, the inherent limitations of ToF technology can

result in twinkle issues when the palm edges fall between two pixels, greatly

impacting stability.

3. Lack of functional integration: Each component of LuGesture operates

independently, lacking seamless integration into a comprehensive system.

(a) (b) (c)

Figure 3-9: The result image of LuGesture. Hand in the (a) top-left corner, (b) upper-

center corner, (c) top-right corner.

To address these identified risks, ChungGesture proposes the following solutions to

achieve improved results below:

doi:10.6342/NTU202302797

39

1. Differentiating between left and right hands.

2. Improving precision.

3. Improving stability.

4. Enhancing gesture recognition accuracy.

5. Integrating all components into a unified system.

Detailed explanations of these solutions will be provided in Methodology.

doi:10.6342/NTU202302797

40

Chapter 4 Methodology

4.1 Overview

 Based on the three risks outlined in Chapter 3, we have developed a system that

achieves the functionalities of 4 swipe directions, push/pull, and tracking by accurately

calculating the centroid of the palm. Figure 4-1 illustrates the main process flow of

ChungGesture: First, we apply distance and signal strength filtering. Second, we filter out

the background and partial arm by defining a reasonable range of palm movements. After

that, we handle the twinkle pixels along the palm edges and determine whether it is the

left or right hand. Finally, based on the left/right hand, we filter out the remaining arm

regions, leaving only the palm, and calculate its centroid for accurate gesture recognition.

doi:10.6342/NTU202302797

41

Figure 4-1: Main flowchart of ChungGesture.

4.2 Data Collection

Based on Jorjin Software Development Kit (SDK) in Figure 4-2, depth information

and signal strength of the ToF Camera can be obtained by calling the API (Application

Programming Interface) named "onTofIncomingFrame". The data are stored and

transmitted in arrays of size 64 (=8X8 pixels).

doi:10.6342/NTU202302797

42

Figure 4-2: The data flow chart of smart glasses [18].

4.3 Noise Reduction

4.3.1 Remove Background

In order to extract only the palm information, the first step after obtaining the depth

information and signal strength is to remove background noise. Based on our observations,

hand movement range for most individuals falls within the range of 0~45 centimeters.

Therefore, pixels outside this range are initially ignored. Additionally, to mitigate distance

measurement errors in the ToF camera, ChungGesture also considers the signal strength

returned by the ToF camera as an auxiliary parameter. Only the data with signal strength

above a certain threshold (=122) is selected to ensure data accuracy. If all pixels are

doi:10.6342/NTU202302797

43

filtered out, the frame is deemed invalid, and no further processing or calculations are

performed on that frame. Conversely, the remaining pixels are referred to as valid pixels.

Generally, when waving the hand, the palm tends to tilt slightly forward, with the

fingertips being farthest away from our body in Figure 4-3. Therefore, we use the distance

of the farthest valid pixel as the reference and retain the valid pixels within 10 centimeters

of this distance. These retained pixels are referred to as hand pixels, while the remaining

valid pixels are assumed as arm and ignored. The depth values of all hand pixels are

summed and averaged to obtain the depth of the hand.

(a) (b)

Figure 4-3: Sensing range of hand pixels. (a) Direct view. (b) Side view.

doi:10.6342/NTU202302797

44

4.3.2 Remove Twinkle

After performing the aforementioned processing steps, we can roughly filter out the

shape of the hand. However, due to the accuracy and low resolution of the ToF camera,

when the edge of the palm falls between pixels in Figure 4-4 (a), gray pixels are prone to

twinkle. Therefore, we keep a record of the hand pixels from the previous 8 frames and

compare them with the current frame. If a pixel was present in the past but not in the

current frame, or vice versa, we consider those pixels as twinkle pixels.

(a) (b)

Figure 4-4: Comparison chart of twinkle processing. (a) Twinkle image. (b) After

twinkle removal.

doi:10.6342/NTU202302797

45

By considering both the twinkle pixels and the hand pixels together, we classify them

based on their connectivity. Connected pixels in Figure 4-4 (b), refer to those pixels that

are connected to each other. This approach helps reduce the instability caused by

flickering.

4.4 Hand Area Detection

4.4.1 Left-Right Hand Discrimination

Through observation, we have found that when most people wave their right hand,

it tilts to the left, and vice versa in Figure 4-5 (a). Taking the example of the right hand,

after performing noise reduction on the frame, we can observe that the connected pixels

form a connection from the top left to the bottom right. Leveraging this characteristic, we

identify the leftmost and rightmost columns of connected pixels. We calculate the average

y-coordinate values of the connected pixels on these two columns in Figure 4-5 (b).

Similarly, we identify the topmost and bottommost rows and calculate the average x-

coordinate values of the connected pixels on these two rows in Figure 4-5 (c). If the

average y-value of the leftmost column is higher than that of the rightmost column, and

doi:10.6342/NTU202302797

46

at the same time, the average x-value of the top row is to the left of the average x-value

of the bottom row, and this pattern persists for three consecutive frames, then it is

determined as a right hand, and vice versa.

(a) (b) (c)

Figure 4-5: Determine left-right hand.

4.4.2 Cropping for Left-Right Hand Differentiation

The size of an object varies with its distance from the eyes, and the same applies to

the hand in relation to glasses. The closer the hand is, the larger it appears and the more

pixels it occupies. Through repeated observations, we can utilize the average depth

calculated in Section 4.3.1 to determine the expected number of pixels for the palm at that

doi:10.6342/NTU202302797

47

distance in Equations 1 and 2:

𝐿 = (𝑑 × tan(𝜃) /𝑙) (1)

ℎ(𝑑) = (𝑊 × 𝐻)/𝐿2 (2)

where L represents the actual length of a pixel; d represents the average depth of the hand;

θ represents the angle between the line connecting the glasses and the palm and the

palm itself; l represents the length of the palm as it appears in the image; h represents the

number of pixels for the hand; and W and H represent the width and height of the palm,

respectively.

After obtaining the information of the left and right hands along with their

corresponding pixel counts, we take the right hand as an example. In Figure 4-6 (a), based

on the recorded top-left point (red pixel) mentioned in Section 4.4.1, we follow the

sequence indicated in Figure 4-6 (b) to selectively retain the connected pixels while not

exceeding the expected number of pixels for the hand. All remaining pixels are filtered

out, resulting in a representation of the palm in the form of pixels in Figure 4-6 (c). The

yellow pixels are referred to as hand palm pixels, and the blue pixel represents the final

pixel we have chosen.

doi:10.6342/NTU202302797

48

(a) (b) (c)

Figure 4-6: Hand palm image.

4.4.3 Calculating Hand Palm Centroid

Now we have obtained the pixels representing the shape of the hand palm, the next

crucial step is calculating the centroid. This part is considered the most important because

subsequent gesture recognition and tracking are based on the centroid. We evaluate the

effectiveness of our methods by precsion and stability. Therefore, we have developed four

methods, which will be explained in detail below, and the comparative results will be

presented in Chapter 5.

In Method 1, if we simply take the average of the coordinates of hand palm pixels,

it can be easily influenced by edge twinkle pixels, even after processing the twinkle pixels.

doi:10.6342/NTU202302797

49

Therefore, to increase stability, we apply Gaussian weighting to the averaged point using

Equations 5 to 7. This helps us reduce the impact of edge twinkle pixels, where points

closer to the center (hand palm center) have higher weights, while points farther from the

center (hand palm edges) have lower weights. By recalculating the centroid based on

these weights, we obtain our hand palm centroid.

Using the aforementioned method still poses a problem, which is the precision.

Taking the right hand as an example, when our right palm reaches the top left corner

of the sensor detection area, the calculated hand palm centroid is in Figure 4-7.

However, if the palm continues to extend towards the top left corner beyond the sensor

detection area, the calculated hand palm centroid remains at the same position. We can

never reach the actual top left corner.

Figure 4-7: Precision problem.

doi:10.6342/NTU202302797

50

To address the aforementioned issue, we record the hand palm centroid and depth

when the hand first reaches the top left corner. We simulate the movement of the hand

palm towards the top left corner by pushing it forward. Here, we set a parameter P

representing the longest distance of the push (5 centimeters). Assuming the hand palm

continues to touch the top left corner, we apply Equation 3 to scale the hand palm

centroid proportionally:

(𝑥, 𝑦)𝑓 = (𝑥, 𝑦)𝑐 +
(𝑑𝑐 − 𝑑𝑟)

𝑃
× ((𝑥, 𝑦)𝑡 − (𝑥, 𝑦)𝑐) (3)

where, (x, y) represents the coordinate values; f represents the final result; c represents

the current frame; r represents records when first reaches the corner; t represents the

target corner; d represents the depth; and P represents the longest distance of the push.

Methods 2, 3, and 4 are also developed to address the mentioned issue.

Method 2 involves proportional scaling, specifically, the resolution is projected

from 7x7 to 8x8. The path traveled by the hand is normalized to a length of 8 units.

The hand palm centroid, which has undergone Gaussian weighting in Method 1, is

proportionally scaled using Equation 4:

(𝑥, 𝑦)𝑜𝑢𝑡𝑝𝑢𝑡 =
(𝑥, 𝑦) − (𝑥, 𝑦)𝑚𝑖𝑛

(𝑥, 𝑦)𝑚𝑎𝑥 − (𝑥, 𝑦)𝑚𝑖𝑛
 (4)

where (x,y)max represents the max coordinate of the sensor, which means (7, 7) in this

doi:10.6342/NTU202302797

51

paper; (x,y)min represents the min coordinate of the sensor, which means (0, 0) in this

paper.

Method 3, similar to Method 1, employs Gaussian weighting using Equations

5 to 7. However, the key distinction lies in the fact that we now assign weights based

on fingertip position in Figure 4-8.

(a) (b)

Figure 4-8: Gaussian weighting image. (a) Averaged point. (b) Fingertip.

𝐷𝑖𝑗 = √(𝑖 − 𝑐𝑥)2 + (𝑗 − 𝑐𝑦)
2
 (5)

𝑊𝑖𝑗 =
1

𝜎√2𝜋
𝑒−𝐷𝑖𝑗

2/(2𝜎2) (6)

𝐶 = (
∑ ∑ (𝑖 ∗ 𝑊𝑖𝑗)𝑁−1

𝑗=0
𝑀−1
𝑖=0

∑ ∑ 𝑊𝑖𝑗
𝑁−1
𝑗=0

𝑀−1
𝑖=0

,
∑ ∑ (𝑗 ∗ 𝑊𝑖𝑗)𝑁

𝑗=0
𝑀
𝑖=0

∑ ∑ 𝑊𝑖𝑗
𝑁
𝑗=0

𝑀
𝑖=0

) (7)

doi:10.6342/NTU202302797

52

where Dij represents the distance between coordinate (i, j) and center coordinate (cx,

cy); Wij represents the weight from Gaussian; C represents the coordinate after

reweighting; and M and N represent the dimension of hand palm pixels matrix.

Method 4 involves directly assigning an 8x8 weight table based on the left- or right-

hand determination obtained from Section 4.4.1. The centroid is then calculated using this

weight distribution, as illustrated in Figure 4-9.

Figure 4-9: Weight table.

4.4.4 Smoothing

doi:10.6342/NTU202302797

53

To improve stability, we consider the inherent inaccuracies of ToF sensor itself. Even

when the hand remains motionless, slight fluctuations can be observed in the depth values

provided by the sensor, which can affect our determination of the hand palm centroid. To

address this issue, we incorporate a Gaussian weighting technique by considering the

hand palm centroids of the previous three frames when calculating the current frame's

hand palm centroid. This approach is based on the assumption that hand movements are

coherent, and the variations between consecutive frames are not significant. After

applying Gaussian weighting, we obtain the final hand palm centroid with improved

stability.

4.5 Gesture Recognition

After undergoing the smoothing process, the hand palm centroid allows us to achieve

accurate hand tracking. In this section, we will explain how we utilize the hand palm

centroid to enable detection of four swipe directions (up, down, left, and right) as well as

push and pull gestures.

doi:10.6342/NTU202302797

54

4.5.1 Swipe

In the case of detecting the four swipe directions, there are two aspects to consider:

observation and recognition. First, we aim to achieve recognition by analyzing the user's

motion vectors. However, each individual's hand length, hand palm size, motion habits,

and speed differ, and there is also a distinction between left and right hands. As a result,

the obtained motion vectors will vary. We have previously explained the process of

obtaining the hand palm centroid to facilitate our observation and analysis in Figure 4-10.

Taking the example of a right-hand swipe left, through repeated observations, we noticed

that even for a simple leftward motion, the hand palm centroid enters from the upper-right

position of the frame and exits from the lower-left position. We record displacement

vector during this process, taking four frames as a unit. Considering the limitation of 15

Frames-Per-Second (FPS), a higher number of frames may introduce delay and

misjudgment, while a lower number may overlook slower hand motions. Similarly, we

record displacement vectors for swipe right, up, and down, corresponding to the other

three directions.

doi:10.6342/NTU202302797

55

Figure 4-10: Right-hand swipe left image.

Once we have the statistical vectors for the four swipe directions, we have a basis

for gesture recognition. When the user actually performs a hand swipe, it generates a

displacement vector. If this displacement vector reaches a certain magnitude within four

frames, we compute the dot product between this vector and the previously recorded

statistical vectors for each swipe direction. Subsequently, we calculate the angle using the

following equation:

doi:10.6342/NTU202302797

56

𝐴𝑛𝑔𝑙𝑒 = cos−1(
𝑉𝐷 ∙ 𝑉𝐶

|𝑉𝐷| × |𝑉𝐶|
)

where VD represents the current displacement vector, and VC represents the previously

recorded statistical displacement vectors. The recognized gesture corresponds to the

smallest calculated angle. We employ this approach because we consider the statistical

vectors as ground truth, and calculating the angle between the displacement vector and

the statistical vector is akin to measuring the similarity to the corresponding gesture.

4.5.2 Push and Pull

Next, we discuss the push/pull gestures, which involve movements perpendicular to

the plane of the ToF sensor sensing area. These gestures are closely tied to our depth

information. The determination of these two gestures primarily relies on the hand's depth

in Section 4.3.1. Their triggering conditions are associated with depth variation. We have

set two parameters: a depth variation threshold for triggering push and pull gestures. The

threshold for push is set to 12 centimeters, while the threshold for pull is set to 8

centimeters. Similar to the swipe gestures, we consider a window of four frames. We

detect whether the hand's depth variation exceeds the threshold within these four frames.

If the depth variation increases beyond 12 centimeters, it is recognized as a push gesture.

Conversely, if the depth variation decreases beyond 8 centimeters, it is recognized as a

doi:10.6342/NTU202302797

57

pull gesture.

Figure 4-11: Illustration of a push gesture.

4.6 Our System

Our ChungGesture recognition system is primarily based on the hand palm centroid.

Whether it is hand tracking, the four swipe directions, or push/pull gestures, required

doi:10.6342/NTU202302797

58

displacement and depth variation can be obtained through the methods proposed in this

thesis. Therefore, we can integrate all gestures into a single system. However, during the

same motion, it is possible to trigger multiple gestures simultaneously. For example, while

performing a left swipe, the hand may also move closer to the body, triggering both a

swipe left and a pull gesture. To address this, we have set a cooldown parameter (0.5

seconds) to prevent continuous triggering of multiple gestures. Furthermore, we assign

priorities to these gestures based on their triggering difficulty and the frequency of gesture

usage. Push/pull gestures are given higher priority, followed by the four swipe directions.

doi:10.6342/NTU202302797

59

Chapter 5 Experimental Results

5.1 Experimental Setting

In this thesis, our experimental setup consists of Jorjin's J-Reality J7EF Plus smart

glasses and Sony's Xperia 1 II smartphone. Data acquisition is performed through the

SDK provided by Jorjin, which imposes certain environmental limitations. Therefore, all

algorithms in this experiment are implemented within Unity 2020.3.32f1 version. The

Minimum API Level and Target API Level are set to Android 8.1 'Oreo' (API level 27).

The entire project is built into an APK file and installed on the Xperia 1 II running the

Android 12 operating system. Once the smart glasses are connected to the smartphone,

data transmission begins, and the smartphone screen is displayed on the smart glasses

synchronously. All our participants are students from the College of Electrical

Engineering and Computer Science, National Taiwan University.

5.2 Precision Result

In our experiment, we used the color weakness game to test precision. The color

doi:10.6342/NTU202302797

60

weakness game involved dividing the screen into equally sized blocks. A red dot would

move according to the hand palm centroid, and the objective was to keep the red dot

within the only block on the screen with a different color for at least 0.5 seconds to

obtaining score. As the score increased, the size of the blocks decreased, and the number

of blocks displayed on the screen increased. Ultimately, we measured the precision based

on the maximum achievable resolution.

Figure 5-1: Screenshot from the Color Weakness game used in our experiments.

The test results, in Table 5-1, demonstrate that all of our methods outperform

LuGesture. This is attributed to LuGesture's excessive inclusion of non-palm regions,

which prevents it from reaching the upper-left corner, causing it to freeze at a resolution

of 5x3. In contrast, our methods rank in the following order: Method 2, Method 3, Method

4, and Method 1.

doi:10.6342/NTU202302797

61

Table 5-1. Comparison results of precision.

Resolution↑

(pixels)

Rank↓ of

Precision

Method 1 12x7 4

Method 2 17x10 1

Method 3 16x9 2

Method 4 14x8 3

LuGesture 5x3 5

5.3 Stability Result

To test the stability, we employed a method where the hand was kept fixed in a

consistent position. Using the initial hand palm centroid as the reference point, we

measured the maximum and average displacement of the hand palm centroid over the

following 2 seconds. This stability test was conducted simultaneously with the four

methods mentioned in Section 4.4.3, along with LuGesture, to ensure that the input data

remain consistent across all tests.

doi:10.6342/NTU202302797

62

We conduct tests at hand-to-glasses distances of 25 cm, 35 cm, and 45 cm, and the

results are summarized in Table 5-2. Method 2 performed better only at closer distances,

with a decreasing performance as the distance increased. This can be attributed to the

centroid being scaled proportionally. With fewer pixels being available at farther

distances, the calculated centroid is more susceptible to the influence of twinkle pixels,

which amplifies the impact. On the other hand, Method 1 consistently performed well

across all distances. Method 3 exhibited a deteriorating performance as the distance

increased, highlighting the significance of adjusting the weight distribution between edge

and center pixels as the pixel count decreases. Method 4 and LuGesture maintained a

moderate performance throughout the distances. Based on these tests, we concluded that

Method 1 is the most stable approach.

doi:10.6342/NTU202302797

63

Table 5-2. Comparison results of stability.

Distance Method

Max

Displacement

(↓)

Average

Displacement

(↓)

Rank↓

(Max)

Rank↓

(Avg.)

25cm

Method 1 0.30797 0.07797 1 1

Method 2 0.49090 0.13533 2 2

Method 3 0.59835 0.22994 4 3

Method 4 0.61624 0.26741 5 5

LuGesture 0.53071 0.23308 3 4

35cm

Method 1 0.433898 0.17689 2 1

Method 2 0.60592 0.22490 5 5

Method 3 0.37658 0.18161 1 2

Method 4 0.46323 0.20023 3 3

LuGesture 0.48287 0.20820 4 4

45cm

Method 1 0.37906 0.18205 1 1

Method 2 0.58799 0.25649 5 5

Method 3 0.46471 0.21001 4 4

Method 4 0.40675 0.18507 2 2

LuGesture 0.41865 0.19921 3 3

doi:10.6342/NTU202302797

64

5.4 Gesture Recognition Accuracy Result

In this experiment, we employ Method 1 to conduct 50 tests with ten participants

respectively using their right hand for swipe gestures in four directions (up, down, left,

and right), as well as push/pull gestures in Table 5-3. It can be observed that

ChungGesture outperformed LuGesture in all gesture directions, particularly in Swipe up

and Swipe right. Participants often swing their hands diagonally from the lower-left

corner to the upper-right corner of the sensor's sensing range while performing these two

gestures, resulting in mutual misinterpretations. To address this issue, we pre-record

vectors to achieve better performance.

doi:10.6342/NTU202302797

65

Table 5-3. Comparison results of gesture recognition.

Accuracy↑ ChungGesture LuGesture

Swipe Left 95% 92%

Swipe Right 93% 89%

Swipe Up 91% 87%

Swipe Down 91% 88%

Push 96% 96%

Pull 93% 93%

doi:10.6342/NTU202302797

66

Chapter 6 Conclusion and Future Works

 In this thesis, we propose ChungGesture, which consists of six precise, fast, and

comfortable gestures aimed at enhancing the user experience of Jorjin J-Reality J7EF Plus

users. Despite the low resolution of low-cost and power-efficient ToF sensor, we

encounter challenges such as excessive non-palm areas and insufficient stability based on

LuGesture. However, through our efforts and the methods proposed in Chapter 4, we have

been able to overcome hardware limitations and improve the mentioned issues.

In Chapter 5, we identify instances of gesture misjudgment, mainly due to variations

in individuals' swinging habits. Designing a gesture recognition system that is applicable

to every individual remains a goal that requires further research and effort.

Currently, we have successfully improved the gesture recognition accuracy from a

minimum of 87% to 91% and integrated different functionalities into the ChungGesture

system. In the future, additional gesture testing in different environments, such as multi-

user settings and handling varying lighting conditions, will be necessary to achieve higher

precision and stability. Once everything is refined, we hope to further develop

ChungGesture towards a 3D mouse and explore more augmented reality applications

through collaboration with Jorjin.

doi:10.6342/NTU202302797

67

References

[1] P. Milgram and F. Kishino, “A Taxonomy of Mixed Reality Visual Displays,” IEICE

Transactions on Information and Systems, Vol. 77, No. 12, pp. 1321-1329, 1994.

[2] L. H. Lee and P. Hui, “Interaction Methods for Smart Glasses: A Survey,” IEEE

Access, Vol. 6, pp. 28712-28732, 2018.

[3] R. Aigner, D. Wigdor, H. Benko, M. Haller, D. Lindbauer, A. Ion, S. D. Zhao, and J.

T. K. V. Koh, “Understanding Mid-Air Hand Gestures: A Study of Human

Preferences in Usage of Gesture Types for HCI,” Microsoft Research TechReport

MSR-TR-2012-111, 2, 30, 2012.

[4] F. Remondino and D. Stoppa, Eds., TOF Range-Imaging Cameras, Vol. 68121,

Springer, Heidelberg, Germany, 2013.

[5] P. Padmanabhan, C. Zhang, and E. Charbon, “Modeling and Analysis of a Direct

Time-of-Flight Sensor Architecture for LiDAR Applications,” Sensors, vol. 19, No.

5464, pp. 1-27, 2019.

[6] M. S. Keel et al., "A VGA Indirect Time-of-Flight CMOS Image Sensor with 4-Tap

7- μ m Global-Shutter Pixel and Fixed-Pattern Phase Noise Self-Compensation,"

IEEE Journal of Solid-State Circuits, vol. 55, pp. 889-897, 2020.

[7] P. A. Rauschnabel, A. Brem, and Y. Ro, “Augmented Reality Smart Glasses:

doi:10.6342/NTU202302797

68

Definition, Conceptual Insights, and Managerial Importance,” Unpublished

Working Paper, The University of Michigan-Dearborn, College of Business,

https://www.researchgate.net/publication/279942768_Augmented_Reality_Smart_

Glasses_Definition_Conceptual_Insights_and_Managerial_Importance, 2015.

[8] I. E. Sutherland, “Head-Mounted Three Dimensional Display,” Proceedings of Fall

Joint Comput. Conf. AFIPS, San Francisco, CA, 33, pp. 757–764, 1968.

[9] Google, “Glass Enterprise Edition 2,” https://support.google.com/glass-

enterprise/customer/answer/9220200?hl=en&ref_topic=9235678, 2023.

[10] D. Kim and Y. Choi, “Applications of Smart Glasses in Applied Sciences: A

Systematic Review,” Appl. Sci., Vol. 11, 4956, pp. 1-21, 2021.

[11] Microsoft, “Microsoft HoloLens 2,” https://www.microsoft.com/zh-

tw/hololens/hardware, 2023.

[12] Epson, “Epson Moverio BT-350,” https://www.epson.com.tw/c/Moverio-BT-

350/p/V11H837054, 2023.

[13] J. P. Wachs, M. Kölsch, H. Stern, and Y. Edan, "Vision-Based Hand-Gesture

Applications," Communications of the ACM, vol. 54, pp. 60-71, 2011.

[14] J. Suarez and R. R. Murphy, "Hand Gesture Recognition with Depth Images: A

Review," 2012 IEEE RO-MAN: International Symposium on Robot and Human

https://www.researchgate.net/publication/279942768_Augmented_Reality_Smart_Glasses_Definition_Conceptual_Insights_and_Managerial_Importance
https://www.researchgate.net/publication/279942768_Augmented_Reality_Smart_Glasses_Definition_Conceptual_Insights_and_Managerial_Importance

doi:10.6342/NTU202302797

69

Interactive Communication, Paris, France, pp. 411-417, doi:

10.1109/ROMAN.2012.6343787, 2012.

[15] M. Oudah, A. Al-Naji, and J. Chahl, "Hand Gesture Recognition Based on Computer

Vision: A Review of Techniques," Journal of Imaging, Vol. 6.8: 73, pp. 1-29, 2020.

[16] W. Daolei and K.B. Lim, “Obtaining Depth Map from Segment-Based Stereo

Matching Using Graph Cuts,” Journal of Visual Communication and Image

Representation, Vol. 22, Issue 4, pp. 325-331, 2011.

[17] Y. H. Lu, “LuGesture: Hand Gesture Recognition with Time-of-Flight Camera for

Smart Glasses,” Master Thesis, Department of Computer Science and Information

Engineering, National Taiwan University, 2022.

[18] Jorjin, “Jorjin J-Reality J7EF Plus,” https://www.jorjin.com/products/ar-smart-

glasses/j-reality/j7ef-plus/, 2023.

[19] R. Szeliski, Computer Vision: Algorithms and Applications, Springer, London, 2021.

[20] C. Walker, “Stereo Vision Basics,”

http://chriswalkertechblog.blogspot.com/2014/03/stereo-vision-basics.html, 2023.

[21] L. Li, “Time-of-Flight Camera – An Introduction,” Texas Instrument Technical

White Paper, 2014.

[22] J. Geng, "Structured-Light 3D Surface Imaging: A Tutorial," Advances in Optics and

doi:10.6342/NTU202302797

70

Photonics, Vol. 3, No. 2, pp. 128-160, 2011.

[23] P. Zanuttigh, G. Marin, C. D. Mutto, F. Dominio, L. Minto, and G. M. Cortelazzo,

Time-of-Flight and Structured Light Depth Cameras: Technology and Applications,

Springer, Berlin, 978-3, 2016.

[24] Sony, “Sony Xperia 1 II,”

https://www.sony.com.tw/zh/electronics/smartphones/xperia-1m2, 2023.

