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中文摘要 

 隨著分子生物學的進步，基因體選拔 (genomic selection，GS)廣泛用於動物或

作物育種計畫中，並成為一項重要的工具。儘管基因型分析 (genotyping)的成本降

低，外表型分析 (phenotyping)仍然是要花相對較高的成本以及時間，因此希望透

過基因型 (genotype)推測外表型(phenotype)，以此加速育種計畫。基因體選拔透過

遍布整個基因體 (genome)的基因標誌 (gene markers)以及已知的連續型性狀外表

型，建立統計模型，進而憑藉基因型推測出育種價估計值 (genomic estimated 

breeding values，GEBVs)，從中選拔出適合的自交系 (inbred lines)或育種計畫中的

雜交組合 (hybrids)。 

 統計模型的建構中，如何只透過基因型資料，選擇適當的個體當作訓練集 

(training set)進行外表型分析，建構出表現好的預測模型，在基因體選拔是個重要

的議題。在本文的研究中，分析兩種方法：A-最適準則 (A-optimality)與 D-最適準

則 (D-optimality)兩種判斷方法，原理是試圖挑出最大變異的個體作為適合的訓練

集。我們使用四組不同的作物基因資料，分別使用模擬結果與實際資料，並與之前

研究的其他方法相比較，兩者相較於隨機訓練集有比較好的表現。 

 

關鍵字：基因體選拔、訓練集選擇、植物育種、基因演算法、混合線性模型 
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Abstract 

 Genomic selection (GS) has become a powerful tool in the domains of plant and 

animal breeding with advanced and cheaper molecular genetic technology. Despite 

substantial reduction in genotyping costs, phenotyping still remains a time-consuming 

and expensive process. As a result, phenotype estimation through genotypic information 

can accelerate the breeding cycle. In GS, markers of the whole genome are used to 

estimate genomic estimated breeding values (GEBVs) by statistical models, which are 

built with genotype and phenotype. These GEBVs facilitate the selection of desirable 

inbred lines or hybrids for further breeding programs. 

 In the construction of statistical models, selecting appropriate individuals as the 

training set based on genotype data and building effective prediction models is a crucial 

topic in genomic selection. In this study, we evaluated two methods: A-optimality and D-

optimality, which are criteria aimed at selecting individuals with the highest level of 

variation. We utilized four different crop genomic datasets and compared the results with 

previous studies, using both simulated and real data. Both A-optimality and D-optimality 

demonstrated better performance compared to random training sets. 

 

Keywords: genomic selection; training set selection; plant breeding; genetic algorithm; 

linear mixed effect model  



doi:10.6342/NTU202301253

v 

 

Contents 

口試委員會審定書 ........................................................................................................... i 

致謝 .................................................................................................................................. ii 

中文摘要 ......................................................................................................................... iii 

Abstract ............................................................................................................................ iv 

Chapter 1 Introduction ...................................................................................................... 1 

Chapter 2 Materials and Methods ..................................................................................... 3 

2.1 Genome datasets ..................................................................................................... 3 

2.2 GBLUP model ........................................................................................................ 6 

2.3 A-optimality and D-optimality ............................................................................... 6 

2.4 Training set evaluation ............................................................................................ 8 

2.5 Scenarios of this study .......................................................................................... 10 

2.6 Simulation study for validating A-opt and D-opt methods ................................... 11 

2.7 Analysis of phenotypic values .............................................................................. 12 

2.8 Comparison with other optimality criteria ............................................................ 12 

Chapter 3 Results ............................................................................................................ 13 

3.1 The variance pattern of a candidate set in A-optimality ....................................... 13 

3.2 Simulation results ................................................................................................. 15 

3.3 Results of phenotypic value analysis .................................................................... 20 



doi:10.6342/NTU202301253

vi 

 

3.4 Comparison results of different training set optimality criteria ............................ 24 

Chapter 4 Discussion ...................................................................................................... 26 

4.1 Coding of marker score matrix ............................................................................. 26 

4.2 Normalization of the marker score matrix ............................................................ 26 

4.3 The influence of subpopulation ............................................................................ 27 

4.4 The influence of heritability in phenotypic analysis ............................................. 30 

4.5 Robustness in different estimation methods ......................................................... 31 

Chapter 5 Conclusion ..................................................................................................... 36 

Appendix 1 ..................................................................................................................... 37 

Appendix 2 Source code in R ......................................................................................... 39 

Bibliography ................................................................................................................... 46 

 

  



doi:10.6342/NTU202301253

vii 

 

List of Figures 

Figure 1 Bar chart representing the variance in A-opt. .................................. 14 

Figure 2. The average NDCG values for the Tropical Rice dataset across three 

heritability levels and various values of k. ............................................. 16 

Figure 3. The average NDCG values for the wheat dataset across three 

heritability levels and various values of k. ............................................. 17 

Figure 4. The average NDCG values for the sorghum dataset across three 

heritability levels and various values of k. ............................................. 18 

Figure 5. The average NDCG values for the 44K rice dataset across three 

heritability levels and various values of k. ............................................. 19 

Figure 6. The average mean of NDCGk@10 for the phenotypic data in the 

tropical rice dataset. ................................................................................ 20 

Figure 7. The average mean of NDCGk@10 for the phenotypic data in the 

wheat dataset........................................................................................... 21 

Figure 8. The average mean of NDCGk@10 for the phenotypic data in the 

sorghum dataset. ..................................................................................... 22 

Figure 9. The average mean of NDCGk@10 for the phenotypic data in the 44K 

rice dataset. ............................................................................................. 23 

Figure 10. The average mean of NDCGk@10 for the dataset with 

subpopulation structure, sorghum dataset and 44K rice dataset. ............ 29 



doi:10.6342/NTU202301253

viii 

 

Figure 11. The comparison between different estimation methods for the 

phenotypic data of the tropical rice dataset. ........................................... 32 

Figure 12. The comparison between different estimation methods for the 

phenotypic data of the wheat dataset. ..................................................... 33 

Figure 13. The comparison between different estimation methods for the 

phenotypic data of the sorghum dataset. ................................................ 34 

Figure 14. The comparison between different estimation methods for the 

phenotypic data of the 44K rice dataset.................................................. 35 

 

  



doi:10.6342/NTU202301253

ix 

 

List of Tables 

Table 1. The summary of the datasets .............................................................. 5 

Table 2. The training set size for each dataset. ................................................ 11 

Table 3. The comparison between optimality criteria with different training set 

size across each dataset........................................................................... 25 

Table 4. The heritability of each phenotypic data ........................................... 30 



doi:10.6342/NTU202301253

1 

Chapter 1 Introduction 

Recently, genomic selection (GS) has become a powerful tool in the domains of plant 

and animal breeding with advanced and cheaper molecular genetic technology. In 

genomic selection, breeders focus on the quantitative traits, and select the superior 

breeding lines based on the genomic breeding values (GEBV) instead of traditional 

phenotypic selection. That is, GS can accelerate the breeding cycle by selecting superior 

lines before phenotyping. GEBV is estimated by the sum of the effects of dense genetic 

markers across the whole genome. The dense genetic markers are expected to capture 

most of the quantitative trait loci (QTL)(Meuwissen et al., 2001). Therefore, relatively 

small gene effects of QTLs could be included into estimation. 

There have been two noteworthy advancements in the field of GS. Firstly, 

sequencing of the whole genome has led to the identification of DNA markers in the form 

of single-nucleotide polymorphism (SNP). This has resulted in a substantial reduction in 

genotyping costs. Secondly, the GS model has been demonstrated to accurately estimate 

the GEBVs based on the SNP markers (Hayes et al., 2009). There are two common 

statistical model commonly used in GS, the whole genome regression model and the 

linear mixed effect model. The former tends to estimate all the marker effects, and then 

estimate GEBVs. The latter takes the marker effects as random effects, and GEBVs are 

then estimated by BLUPs (best linear unbiased predictors). The GBLUP model 

(VanRaden, 2008) has been more commonly used. Besides, some machine-learning and 

deep-learning algorithms have been utilized in GS. Heslot et al. (2012) conducted a 

comparison between commonly used methods in the GS and other machine-learning 

methods including support vector regression, random forests, and neural networks. 
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González-Camacho et al. (2012) used a neural network method and compared the result 

with reproducing kernel Hilbert space (RKHS) regression model and a linear regression 

model.  

In spite of lower genotyping costs and progressive estimation methods in GS, 

phenotyping still remains a time-consuming and expensive process. In a breeding 

program, there are numerous lines in a germplasm bank or hybrid offspring, and 

phenotyping every single line is a challenging task. Hence, it becomes crucial to select a 

good training set based on genotypic information before phenotyping. Some optimality 

criteria are utilized to select an optimal training set. With the whole genome regression 

model, Akdemir et al. (2015) used genetic algorithm to minimize the prediction error 

variance (PEV) for estimating GEBVs based on the ridge regression estimation. Ou and 

Liao (2019) proposed a criterion which is called r-score. The spirit of r-score method is 

to find an approximation to the expected value of Pearson’s correlation coefficient 

between GEBVs and phenotypic values. With the GBLUP model, Rincent et al. (2012) 

conducted a comparison between several optimization criteria. They subsequently used a 

generalized coefficient of determination (CD)(Laloë, 1993; Laloë et al., 1996) to select 

an optimal training set. 

In our study, we examined two optimality criteria, the A-optimality criterion and the 

D-optimality criterion, which are based on the variance-covariance matrix of genotypic 

values. The A-optimality criterion is a relatively intuitive method that does not need an 

intensive computing algorithm such as genetic algorithm or other exchange algorithms. 

By contrast, we used genetic algorithm in D-optimality criterion. In summary, our 

research aimed to offer a comprehensive analysis and comparison of these two different 

approaches to select an appropriate training set in GS.  
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Chapter 2 Materials and Methods 

2.1 Genome datasets 

In this study, four genome datasets were analyzed. The first two datasets were found 

to be lack of a strong subpopulation structure, while the last two datasets were observed 

to possess a strong subpopulation structure. A summary of each dataset was presented in 

table 1. 

1. Tropical rice dataset  

This dataset, presented in Spindel et al. (2015), consists of 73,147 SNP markers and 

363 elite breeding lines belonging to either the indica or indica-admixed group. The 

dataset includes observations of grain yield (GYD), flowering time (FT), and plant height 

(PH) measured eight times between 2009 and 2012, with each year having one 

observation in the dry season and one in the wet season. However, PH data was not 

available for the wet season of 2009, and 35 phenotypic values were missing out of the 

363 individuals. As a result, only the 328 individuals were used in this study. 

Because Spindel et al. (2015) suggested that the subset of SNP markers which were 

efficient enough for GS in this particular collection of rice germplasm, we randomly 

selected one SNP marker per 0.1-cM interval over each chromosome. The resulting subset 

included 10,772 out of the 73,147 SNP markers. Each SNP at a given locus was coded as 

-1, 0, or 1 depending on whether the individual was homozygote of the minor allele, 

heterozygote, or homozygote of the major allele. When a locus was missing, the 

imputation method coded it a value of 1 after the SNP coding. 

2. Wheat dataset 
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The dataset, presented in Kristensen et al. (2019), consists of 13,006 SNP markers 

and 635 F6 winter wheat lines from two breeding cycles. The first cycle included 321 

individuals that were harvested in 2014, while the second cycle included 314 individuals 

that were harvested in 2015. Phenotypic values were recorded on four quality traits: flour 

yield (FYD), dough tenacity (DT), dough extensibility (DE), and dough strength (DS). 

For our study, only 313 wheat lines from the second breeding cycle that had complete 

data on all phenotypic values were utilized. 

We filtered out SNPs with a missing rate of less than 0.9 and a minor allele frequency 

(MAF) of less than 0.05. This resulted in a total of 11,214 SNPs being retained. The SNP 

coding process was performed using the same approach as described in the tropical rice 

dataset. 

3. Sorghum dataset 

This dataset, presented in Fernandes et al. (2018), consists of 56,299 SNP markers 

and 451 diverse sorghum lines. The dataset also includes best linear unbiased prediction 

(BLUP) values of plant height (PH), moisture content (MC), and biomass yield (BYD) of 

each line. BLUP values were estimated to account for variation due to year and spatial 

effects. Due to the principal component analysis by Fernández-González et al. (2023), the 

dataset demonstrates a robust subpopulation structure comprising four clusters based on 

individual classification. This dataset was used to compare methods for training set 

optimization in genomic selection by Fernández-González et al. (2023). 

4. 44k rice dataset 

This dataset, presented in Zhao et al. (2011), consists of 44,100 SNP markers and 36 

traits of 413 accessions, demonstrating a robust subpopulation structure. We first removed 
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all SNP markers with a missing rate less than 0.95 and a minor allele frequency (MAF) 

less than 0.05, resulting in a final set of 34,233 SNP markers. To eliminate redundant 

markers and calculate genomic relationships between individuals, approximately one-

third of these SNP markers were selected (11,043 out of 34,233) evenly distributed over 

each chromosome. The SNP coding process was performed using the same approach as 

described in the tropical rice dataset. We further restricted our analysis to a subset of 301 

out of 413 accessions that had complete trait data for all three phenotypic values: 

flowering time in Arkansas (FT-Ark), flowering time in Faridpur (FT-Far), and flowering 

time in Aberdeen (FT-Abe).  

Table 1. The summary of the datasets 

 

Dataset name 
Numbers of 

 SNP markers 

Numbers of  

subpopulation 

Sizes of 

candidate set 
Phenotypic data 

Tropical Rice 10,772 1 328 

GYD: grain yield 

FT: flowering time 

PH: plant height 

Wheat 11,214 1 314 

FYD: flour yield 

DT: dough tenacity 

DE: dough extensibility 

DS: dough strength 

Sorghum 56,299 4 451 

BYD: biomass yield 

MC: moisture content 

PH: plant height 

44K Rice 11,047 6 301 

FT-Ark: flowering time at Arkansas 

FT-Far: flowering time at Faridpur 

FT-Abe: flowering time at Aberdeen 
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2.2 GBLUP model 

 We used GBLUP model in our study. The GBLUP model can be described as follows:  

                           𝒚 = μ𝟏𝑛 + 𝒈 + 𝒆                           (1) 

where 𝒚  denotes the vector of phenotypic values, μ  the general mean, 𝟏𝑛  the unit 

vector of length n, 𝒈 the vector of genotypic values for individuals and 𝒆 the vector of 

random errors. 𝒈  and 𝒆  are assumed to be mutually independent. 𝒈  is assumed to 

follow a multivariate normal distribution, denoted by 𝒈~MVN(𝟎,𝑲σ𝑔
2). 𝒆 is assumed 

to follow normal distribution denoted by 𝒆 ~ MVN(𝟎, 𝑰𝒏σ𝑒
2),  where 𝟎  is a zero 

vector; σ𝑔
2 is the genetic variance of additive effects, σ𝑒

2 is the random error variance,  

𝑰𝑛 is the identity matrix of order n, and 𝑲 is a genomic relationship matrix for measuring 

similarity among individuals. Several forms were employed for 𝑲  in the context of 

genomic selection (Forni et al., 2011; Rincent et al., 2012; Tsai et al., 2021; Wu et al., 

2023).  

𝑿 is the original marker scores matrix, which is coded as -1, 0 and 1 for homozygote 

of the minor allele, heterozygote, and homozygote of the major allele. We let 𝑴  be 

normalized in each SNP marker and called it standardized marker score matrix. In other 

words, 𝑚𝑖𝑗 =
𝑥𝑖𝑗−𝑥𝑗

𝑠𝑗
 , where mij  and xij  are the (𝑖𝑗)th  elements of 𝑴  and 𝑿 , for 

𝑖  =  1,  2,   … ,  n, 𝑗  =  1,  2,   … ,  p. We consider the genomic relationship matrix as 𝑲 =

𝑴𝑴𝑻/p. 

2.3 A-optimality and D-optimality  

 In this study, we aim to introduce a novel approach for selecting a training set from 

a large candidate set with less calculation. The proposed method is based on the concept 
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of the dispersion or diversity of the training set. Specifically, we seek to identify the 

training set that exhibits the highest level of variation. To achieve this, we present two 

different strategies: A-optimal and D-optimal designs. 

A-opt: argmax (𝑇𝑟(𝑲𝒕)) 

D-opt: argmax (det(𝑲𝒕)) 

where 𝑲𝑡 is the subset of the genomic relationship matrix 𝑲.  

The A-optimality criterion focuses on maximizing the variation of the selected 

training set by maximizing the trace of the genomic relationship matrix. This approach is 

based on the intuition that the trace of the genomic relationship matrix provides a measure 

of the total variance present in the selected training set. The trace of the genomic 

relationship matrix is calculated as the sum of the diagonal elements of the matrix, which 

represents the total variance of the sample. To maximize the trace, we can rank the 

candidate samples according to their variance and select the training set that exhibits the 

highest level of variation. 

As for D-optimality criterion, the determinant is employed to maximize the diversity 

of the selected training set. Researchers have proposed using the determinant of the 

genomic relationship matrix as a measure of overall variability. In a recent study by 

Chung and Liao (2020), whom suggested that the determinant of genomic relationship 

matrix represents the overall variability of the genotypic values. A higher determinant 

indicates that the subset spans a larger space in high-dimensional vector space, exhibiting 

greater genomic diversity. However, maximizing the determinant of genomic relationship 

matrix is a challenging optimization problem. Exhaustively searching all possible subsets 

is computationally expensive and infeasible, especially for large datasets. Ou and Liao 
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(2019) presented a genetic algorithm to identify training set that maximizes the r-score. 

The genetic algorithm involved generating a population of candidate subsets and 

evaluating their determinant values using the genomic relationship matrix. The subsets 

were then evolved through successive generations, with the fittest individuals (i.e., those 

with the highest determinant values) being selected for the next generation. This process 

was repeated until a satisfactory solution was obtained. Hence, we utilized genetic 

algorithm implemented in the R package Trainsel (Akdemir et al., 2021) to maximize the 

determinant of a genomic relationship matrix.  

As for the datasets with subpopulation structure, we select training set based on the 

stratified sampling method, selecting optimal training set by the proportion of each 

subpopulation. In A-optimality criterion, we selected top variance values in each 

subpopulation separately. In D-optimality criterion, we presented genetic algorithm and 

let crossover step in the subpopulation themselves instead of the whole candidate set. The 

R-code was displayed in Appendix 2. 

 

 

2.4 Training set evaluation 

Training set evaluation is an essential component in selecting the best training set 

among several possible choices. In genomic selection (GS), researchers have traditionally 

relied on mean squared error (MSE) and Pearson’s correlation as measures. However, 

recent studies suggested that alternative measures may provide better insights into model 

performance. 
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In our study, we used two measures: discounted cumulative gain (DCG) (Jarvelin, 

2000) and its normalized version (NDCG), which have been widespread in the 

Information Retrieval (IR) literature for evaluating the effectiveness of search engines. 

These measures have also been adopted by Blondel et al.(2015) for model evaluation in 

GS. Plant breeders usually focus on the top k individuals rather than the entire candidate 

set in GS, since individuals with low breeding values are ignorable in most cases. 

Therefore, we use DCG and NDCG measures to evaluate the performance of the training 

set. 

In GBLUP model, the BLUPs of 𝒈 for all candidates by Henderson’s mixed model 

equations (Dempster et al., 1977) can be estimated as: 

�̂� = 𝑲𝑐(𝑲𝑡)
−1 �̂�𝑡                         (2) 

where �̂�  devotes the BLUPs of 𝒈   𝑲𝑐  the genomic relationship matrix between the 

candidate population and the training set, 𝑲𝑡 is the submatrix of genomic relationship 

matrix 𝑲 corresponding to the training subset, �̂�𝑡 the BLUPs for the genomic values 

by using training set. Given 𝑔(1) ≥ 𝑔(2) ≥ ⋯ ≥ 𝑔(𝑛)  represent the actual genotypic 

values arranged in a decreasing order, in addition, the BLUPs corresponding to the true 

genotypic values, denoted as �̂�(1) , �̂�(2) ,   �̂�(𝑛) , are obtained based on the selected 

training set. By rearranging these BLUPs, it can be deduced that �̂�(π1) ≥ �̂�(π2)… ≥ �̂�(π𝑛), 

where 𝜋 = (𝜋1, 𝜋2, … , 𝜋𝑛)  is a permutation of 𝜋0 = (1,  2, … ,  𝑛) . Next, the score of 

discounted cumulative gain (DCG) at position k in the anticipated ranking obtained using 

the training set was determined as: 

𝐷𝐶𝐺@𝑘(𝒈, π(�̂�)) = ∑ 𝑓(𝑔(π𝑖))𝑑(𝑖)
𝑘
𝑖=1                  (3) 
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The score of ideal discounted cumulative gain (IDCG) score at position k in the perfect 

ranking was determined as: 

𝐼𝐷𝐶𝐺@𝑘(𝒈, π(�̂�)) = 𝐷𝐶𝐺@𝑘(𝒈, π0(𝒈)) =∑𝑓(𝑔(𝑖))𝑑(𝑖)

𝑘

𝑖=1

 

where 𝑓(𝑔) = 𝑔, the discount function of 𝑑(𝑖) =
1

𝑙𝑜𝑔2(𝑖+1)
. 

Next, NDCG score at position k was determined as:  

𝐷𝐶𝐺@𝑘(𝒈, 𝜋(�̂�)) =∑𝑓(𝑔(𝜋𝑖))𝑑(𝑖)

𝑘

𝑖=1

. 

NDCG is a measure of model performance that is calculated by dividing the DCG score 

of the predicted ranking by the IDCG score. Basically, it is the ratio between these two 

scores. The advantage of using NDCG over DCG is that it is simpler to compare because 

it always falls between 0 and 1. That is, greater values of NDCG indicate superior model 

performance. Another score of ranking is the mean of NDCG scores from 𝑘 = 1  to  

𝑘 = 𝐾: 

𝑚𝑒𝑎𝑛_𝑁𝐷𝐶𝐺@𝐾(𝒈, �̂�) =
1

𝐾
∑𝑁𝐷𝐶𝐺@𝑘(𝒈, �̂�)

𝐾

𝑘=1

 

2.5 Scenarios of this study 

In order to assess the effectiveness of A-opt and D-opt, our study comprised the 

following 3 steps. Firstly, we employed simulated data to evaluate the optimality criteria, 

thereby establishing a baseline for comparison. Second, we used phenotypic values to 

validate the optimality criteria, ensuring its applicability to real-world data. Third, we 

performed a comparative analysis with previously proposed optimality criteria. To 
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construct GBLUP model and got the BLUPs, we mainly utilized the R package 

‘sommer’(Covarrubias-Pazaran, 2016) which is based on restricted maximum likelihood 

estimation (REML).  

2.6 Simulation study for validating A-opt and D-opt methods 

Firstly, we set different training set sizes for different datasets, which are shown in 

Table 2. To determine the training set, we employed three distinct strategies: A-opt, D-

opt, and random selection. Second, the simulated data was generated in accordance with 

GBLUP model, which was given as Eq. (1). The marker score matrix 𝑿 was considered 

to be known, and the general mean was set at 100, the genetic variance of additive effects 

σ𝑔
2 was set at 25. Furthermore, the heritability ℎ2 was varied at three levels, specifically 

low, intermediate and high levels, being set as 0.2, 0.5 and 0.8 respectively. The random 

error variance 𝜎𝑒
2 can be calculated by the genetic variance and the heritability, which 

was given as 𝜎𝑒
2 = 𝜎𝑔

2(1 − ℎ2)/ℎ2. Therefore, the phenotypic values could be generated. 

Next, the BLUPs was computed by generated phenotypic values and marker score matrix. 

Subsequently, the NDCG would be calculated. We denoted the generated genotypic 

values as 𝒈 and its BLUPs as �̂� in Eq. (3) with k=1, 5, 10 and the mean of NDCG with 

k=10. 3000 times iterations would be employed in the simulation study. 

Table 2. The training set size for each dataset. 

Dataset name Training set size 

Tropical Rice 50 75 100 150 200 300 

Wheat 50 75 100 150 250  

Sorghum 50 75 100 150 200 350 

44K Rice 50 75 100 150 250   
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2.7 Analysis of phenotypic values 

As for the phenotypic values, we used the same training set in simulation study. 

Nevertheless, BLUPs here were computed by the observed phenotypic values. In addition, 

we denoted the normalized phenotypic values as 𝒈 and BLUPs as  �̂�  in Eq. (3) to 

calculate the NDCG with k=1, 5, 10 and mean of NDCG with k=10.  

2.8 Comparison with other optimality criteria 

 We incorporated three other optimality criteria in our study: r-score (Ou & Liao, 

2019), the prediction error variance (PEV) (Akdemir et al., 2015), and the generalized 

coefficient of determination (CD) (Laloë, 1993). Similarly, the simulation study as 

mentioned above was employed. We used R package ‘TSDFGS’ (Ou & Liao, 2019) to 

select optimal training sets. 
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Chapter 3 Results 

3.1 The variance pattern of a candidate set in A-optimality 

 The variances of individuals in each dataset are displayed in Figure 1 in a bar chart 

form. As for datasets without a strong subpopulation structure, tropical rice and wheat 

datasets, a clear decrease in variance is observed in both cases. As for datasets with a 

strong subpopulation structure, sorghum and 44K rice dataset, there is an ambiguous 

demarcation in the top part of the sorghum dataset, while there is an evident and clear 

classification based on the subpopulation structure throughout the entire 44K rice dataset. 

The variances within each subpopulation are found to be similar.
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Figure 1 Bar chart representing the variance in A-opt.  

The length of each bar presents the variance of each candidate set individual, which 

is the trace of the normalized genomic relationship matrix. The individuals are ordered 

in descending order. In the sorghum and 44K rice dataset, the subpopulations are 

distinguished in different colors.
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3.2 Simulation results 

 The simulation results were displayed in Figure 2-5, some common results could be 

observed in each simulation test across all four datasets: (1) The trend of NDCG values 

remains similar across different values of k (k = 1, 5, 10) as well as the mean NDCG 

values, but the NDCG values and mean NDCG values with k = 10 are seem to be more 

stable. (2) The NDCG values are significantly higher in the simulations with the high 

level of heritability compared with those with the low level of heritability. (3) The NDCG 

values are increasing but the rate of increase slow down as the training set size increases. 

Probably the estimation methods reach the limitation.  

 With regards to the optimal training set, the A-opt and D-opt led to higher NDCG 

values significantly compared to the random training sets across most of scenarios, 

especially for the dataset without a strong subpopulation. For the tropical rice dataset in 

Figure 2, A-opt and D-opt perform well in a similar way and reach the performance 

limitation with lower sample size (100 out of 328) compared to the other training sets. 

For the wheat dataset in Figure 3, the trends perform similarly, A-opt performed better 

than D-opt. For the sorghum dataset in Figure 4, A-opt consistently performed better 

compared to the random training set over all scenarios, however D-opt did not perform 

in the same way. D-opt only outperformed in the high level of heritability, but did not 

perform better compared to the random training set in the low and medium levels of 

heritability. For the 44K rice dataset in Figure 5, both A-opt and D-opt outperformed in 

the medium and high level of heritability, however D-opt did not perform well in the low 

level of heritability.  



doi:10.6342/NTU202301253

16 

 

Figure 2. The average NDCG values for the tropical rice dataset across three heritability 

levels and various values of k.  

Horizontal axis represents different training set size. Vertical axis represents the average 

values of NDCG with various values of k. Types of line represent heritability levels and 

Colors of line represent A-opt, D-opt and simple random method for selecting training 

set. 
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Figure 3. The average NDCG values for the wheat dataset across three heritability levels 

and various values of k.  

Horizontal axis represents different training set size. Vertical axis represents the average 

values of NDCG with various values of k. Types of line represent heritability levels and 

Colors of line represent A-opt, D-opt and simple random method for selecting training 

set. 
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Figure 4. The average NDCG values for the sorghum dataset across three heritability 

levels and various values of k. 

Horizontal axis represents different training set size. Vertical axis represents the 

average values of NDCG with various values of k. Types of line represent heritability 

levels and Colors of line represent A-opt, D-opt and stratified random method for 

selecting training set. 
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Figure 5. The average NDCG values for the 44K rice dataset across three heritability 

levels and various values of k.  

Horizontal axis represents different training set size. Vertical axis represents the 

average values of NDCG with various values of k. Types of line represent heritability 

levels and Colors of line represent A-opt, D-opt and stratified random method for 

selecting training set. 
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3.3 Results of phenotypic value analysis  

 The results of phenotypic value analysis are displayed in Figures 6-9, and only 

mean_NDCG values are used, since the NDCG values trend is similar across values of k. 

According to Figures 6-9, the performance is similar to the simulation study as mentioned 

above. The NDCG values is growing with the increase of sample size, and A-opt and D-

opt outperform random training set in most scenarios.  

 

Figure 6. The average mean of NDCGk@10 for the phenotypic data in the tropical 

rice dataset.  

Colors of line represent A-opt, D-opt and simple random method for selecting training 

set.  

  



doi:10.6342/NTU202301253

21 

 

Figure 7. The average mean of NDCGk@10 for the phenotypic data in the wheat 

dataset.  

Colors of line represent A-opt, D-opt and simple random method for selecting training 

set. 
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Figure 8. The average mean of NDCGk@10 for the phenotypic data in the sorghum 

dataset.  

Colors of line represent A-opt, D-opt and stratified random method for selecting 

training set. 
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Figure 9. The average mean of NDCGk@10 for the phenotypic data in the 44K rice 

dataset.  

Colors of line represent A-opt, D-opt and stratified random method for selecting 

training set. 
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3.4 Comparison results of different training set optimality criteria 

 The comparison results among different optimality criteria are displayed in Table 3. 

It can be observed that all optimality criteria outperform the random training set, 

particularly in the datasets without a strong subpopulation structure such as the tropical 

rice and wheat datasets. Additionally, A-opt outperforms the other optimality criteria in 

most of the scenarios.
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Table 3. The comparison between optimality criteria with different training set size across each dataset.  

The values of this table presented the averaged mean of NDCGk@10 with the simulation study conducted 3000 times 

and ℎ2 = 0.5. The colored values highlight the best performance for each training set size and dataset combination. 

    Training set size 

Dataset Criterion 50 75 100 150 200 300 

Tropical 

rice 

A-opt 0.8005 0.8126 0.8227 0.8325 0.8337 0.8434 

D-opt 0.7810 0.8110 0.8155 0.8281 0.8348 0.8416 

R-score 0.7765 0.7952 0.8049 0.8170 0.8238 0.8426 

PEV 0.7882 0.8087 0.8205 0.8327 0.8329 0.8433 

CD 0.7800 0.7931 0.8057 0.8223 0.8235 0.8426 

Random 0.4873 0.5502 0.5982 0.6751 0.7340 0.8239 

  50 75 100 150 250   

Wheat 

A-opt 0.6851 0.7198 0.7392 0.7688 0.7882  

D-opt 0.6766 0.7047 0.7277 0.7586 0.7785  

R-score 0.6262 0.6760 0.7004 0.7477 0.7713  

PEV 0.6641 0.6961 0.7141 0.7556 0.7786  

CD 0.6296 0.6683 0.6996 0.7440 0.7725  

Random 0.5462 0.5971 0.6401 0.6984 0.7390  

  50 75 100 150 200 350 

Sorghum 

A-opt 0.5759 0.6134 0.6434 0.6831 0.7130 0.7561 

D-opt 0.5494 0.5928 0.6214 0.6529 0.6922 0.7452 

R-score 0.5877 0.6134 0.6373 0.6754 0.6992 0.7437 

PEV 0.5671 0.5941 0.6264 0.6656 0.7045 0.7507 

CD 0.5867 0.6149 0.6360 0.6734 0.6995 0.7446 

Random 0.5533 0.5903 0.6197 0.6597 0.6874 0.7461 

    50 75 100 150 250   

44K rice 

A-opt 0.6041 0.6432 0.6666 0.7015 0.7236  

D-opt 0.5900 0.6314 0.6540 0.6974 0.7237  

R-score 0.6020 0.6401 0.6616 0.7008 0.7229  

PEV 0.5896 0.6162 0.6390 0.6839 0.7155  

CD 0.6066 0.6428 0.6605 0.6997 0.7230  

Random 0.5847 0.6116 0.6407 0.6853 0.7167   



doi:10.6342/NTU202301253

26 

Chapter 4 Discussion 

4.1 Coding of marker score matrix 

Consider an equally-spaced setting for the marker scores: 

𝑋𝐴 = 𝑎 for minor homozygote AA; 

𝑋𝐻 =
𝑎+𝑏

2
 for heterozygote AB; 

𝑋𝐵 = 𝑏 for major homozygote BB. 

The above setting can be easily transformed to be -1, 0, 1 system as follows. 

(𝑋𝐴 − 𝑐) × 𝑑 = −1; 

(𝑋𝐻 − 𝑐) × 𝑑 = 0; 

(𝑋𝐵 − 𝑐) × 𝑑 = 1 

where 

𝑐 =
𝑎 + 𝑏

2
,   𝑑 =

2

𝑏 − 𝑎
 

Therefore, it may be sufficient to use the coding system of -1, 0 and 1. 

4.2 Normalization of the marker score matrix 

 Normalization of the marker score matrix is a crucial step in GS process. Without 

normalization of each SNP marker, the information from each SNP marker may appear 

to be equal, disregarding the variation in their contributions to the phenotype. With the 

proper normalization, the individual markers' contributions can be appropriately weighted. 
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According to Appendix 1, the normalized marker score matrix can be described as 

follows. Let P denote the frequency of the locus of one single SNP marker, then the 

normalized marker scores can be obtained as 

𝑀𝐴 =
−1 − 𝑥

𝑠
=
−𝑃𝐻 − 2𝑃𝐵

𝑠
; 

𝑀𝐻 =
0 − 𝑥

𝑠
=
−𝑃𝐴 + 𝑃𝐵

𝑠
; 

𝑀𝐵 =
1 − 𝑥

𝑠
=
2𝑃𝐴 + 𝑃𝐻

𝑠
 

where 

𝑠 = √(1 − 𝑃𝐻)𝑃𝐻 + 4𝑃𝐴𝑃𝐵. 

𝑃𝐴 =
𝑛𝐴

n
 devotes the frequency of homozygote AA in one SNP marker. 

𝑃𝐵 =
𝑛𝐵

n
 devotes the frequency of homozygote BB in one SNP marker. 

𝑃𝐻 =
𝑛𝐻

n
 devotes the frequency of heterozygote AB in one SNP marker. 

If 𝑛𝐻 = 0, which is highly homogenous genome, then 

𝑀𝐴 =
−1 − 𝑥

𝑠
=

−2𝑃𝐵

√4𝑃𝐴𝑃𝐵
=
−√𝑃𝐵

√𝑃𝐴
 

𝑀𝐵 =
1 − 𝑥

𝑠
=

2𝑃𝐴

√4𝑃𝐴𝑃𝐵
=
√𝑃𝐴

√𝑃𝐵
 

Consequently, the standardized marker score matrix is based on the frequency of 

each SNP marker. 

4.3 The influence of subpopulation 

 Figures 4 and 5 showed those results with considering the possible influence of 

subpopulation structure. However, in the beginning of the breeding program, considering 
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the subpopulation into GS process still remains a crucial problem. Therefore, we here 

conducted 3000 times simulations to evaluate the performance regarding whether the 

subpopulation structure is considered or not.  

As for A-opt in Figure 10, considering subpopulation performs significantly better 

in both the sorghum and 44K rice datasets with a small training set size. The reason can 

be observed in Figure 1, which shows the clear demarcation in each dataset with 

subpopulation structure. As a result, when selecting training set using the A-opt criterion 

without considering subpopulation structure, it tends to select the individuals from only 

one or two subpopulations. However, with bigger training set size, subpopulation 

structure seems to be a limit of criteria. Methods without considering population structure 

performs better for the 44K rice dataset, for training set size above 150.  

In contrast, in Figure 10 for the 44K rice dataset, D-opt methods without considering 

subpopulation structure outperform those with subpopulation structure. This is probably 

because that we restricted the crossover of individuals in the genetic algorithm, the global 

optimal training set couldn’t be obtained beyond this restriction. 
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Figure 10. The average mean of NDCGk@10 for the dataset with subpopulation 

structure, sorghum dataset and 44K rice dataset.  

Be simulated 3000 times of generating with h = 0.5. Horizontal axis represents 

different training set size. Vertical axis represents the average values of mean of 

NDCGk@10. Types of line represent whether the subpopulations were considered 

and colors of line represent A-opt, D-opt and random method for selecting training 

set. 
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4.4 The influence of heritability in phenotypic analysis  

 Table 4 represents the heritability of each phenotypic data. For those phenotypic data 

with lower level of heritability, like FYD in wheat dataset, BYD in sorghum dataset, FT-

Far in 44K dataset. In Figures 7,8 and 9, the results of these traits show that the NDCG 

values doesn’t always increase with an increase of the training set size. Besides, the 

optimality criteria do not outperform the random training set in certain scenarios for a 

lower heritability trait. That is, in phenotypic analysis, there are various uncontrolled 

factors, making it impossible to reflect a consistent result with the simulated study. This 

is especially evident in scenarios in low level of heritability.  

Table 4. The heritability of each phenotypic data 

 

  

Dataset name Phenotypic data Heritability 

GYD: grain yield 0.7586

FT: flowering time 0.8416 

PH: plant height 0.7518

FYD: flour yield 0.6140

DT: dough tenacity 0.8197

DE: dough extensibility 0.5982

DS: dough strength 0.9123

BYD: biomass yield 0.4123

MC: moisture content 0.6974

PH: plant height 0.8014

FT-Ark: flowering time at Arkansas 0.7637

FT-Far: flowering time at Faridpur 0.4096

FT-Abe: flowering time at Aberdeen 0.5907

Tropical Rice

Wheat

Sorghum

44K Rice
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4.5 Robustness in different estimation methods  

 We want to assess the robustness of the optimality criteria by examining their 

performance using other estimation methods. For this purpose, we conducted a 

comparative analysis using three more other methods: RKHS regression, random forest, 

and Ordinal Mcrank, which have been shown to have satisfactory performance in 

analyzing specific datasets (Blondel et al., 2015). For model construction, we utilized 

phenotypic values as inputs. and calculated mean of NDCGk@10 to evaluate the 

performance and compare different models. For RKHS regression, the R package 

“rrBLUP” (Endelman, 2011) was used. For random forest, the Python “scikit-learn” 

package (Fabian, 2011) was used. For ordinal Mcrank, the Python source code was used 

at https://github.com/mblondel/ivalice.  

 Although A-opt and D-opt is based on the GBLUP model, we can observe roughly 

that in Figures 11-14, the same optimality criterion exhibits a similar trend with the 

GBLUP model for the other three methods in most scenarios. In addition, the performance 

of different estimation methods is dependent on the specific case, and it is hard to indicate 

clearly that which method is superior in our study. Nevertheless, the statistic model: 

GBLUP model and RKHS regression, and the machine-learning based method: Random 

forests and Ordinal Mcrank, it is observed that their values are close and exhibit a similar 

trend in most of the situations. 

https://github.com/mblondel/ivalice
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Figure 11. The comparison between different estimation methods for the phenotypic 

data of the tropical rice dataset.  

Vertical axis represents the average mean of NDCGk@10. Types of line represent A-

opt and D-opt optimality criteria for selecting training set and colors of line represent 

various estimation methods. 
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Figure 12. The comparison between different estimation methods for the phenotypic 

data of the wheat dataset.  

Vertical axis represents the average mean of NDCGk@10. Types of line represent A-

opt and D-opt optimality criteria for selecting training set and colors of line represent 

various estimation methods. 
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Figure 13. The comparison between different estimation methods for the phenotypic 

data of the sorghum dataset.  

Vertical axis represents the average mean of NDCGk@10. Types of line represent A-

opt and D-opt optimality criteria for selecting training set and colors of line represent 

various estimation methods. 
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Figure 14. The comparison between different estimation methods for the phenotypic 

data of the 44K rice dataset.  

Vertical axis represents the average mean of NDCGk@10. Types of line represent A-

opt and D-opt optimality criteria for selecting training set and colors of line represent 

various estimation methods. 
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Chapter 5 Conclusion 

 In our study, we aimed to compare the performance of two optimality criteria, A-

optimality and D-optimality, with random training sets in GS. Both A-optimality and D-

optimality demonstrated better performance compared to random training sets in most 

cases.  

Initially, we hypothesized that D-optimality, which considers covariances between 

individuals, was supposed to outperform A-optimality. However, interestingly, A-

optimality demonstrated superior performance in a greater number of situations. We 

presumed that the utilization of the genetic algorithm in D-optimality may have led to 

the identification of only local optima rather than global optima.  

Overall, our study contributes to the understanding of the performance of A-

optimality and D-optimality, providing breeders with a smart approach to selecting 

training sets in breeding programs. 
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Appendix 1 

Normalization for SNP data 

For a particular SNP, there are 𝑛𝐴, 𝑛𝐻  𝑎𝑛𝑑 𝑛𝐵 individuals, with AA, AB and BB 

respectively. The standardized marker scores are defined as: 

𝑀𝐴 =
−1 − 𝑥

𝑠
; 

𝑀𝐻 =
0 − 𝑥

𝑠
; 

𝑀𝐵 =
1 − 𝑥

𝑠
 

where 

𝑥 =
𝑛𝐴 × (−1) + 𝑛𝐻 × 0 + 𝑛𝐵 × 1

𝑛
= −𝑃𝐴 + 𝑃𝐵; 

𝑃𝐴 =
𝑛𝐴

n
 devotes the frequency of homozygote AA in one SNP marker. 

𝑃𝐵 =
𝑛𝐵

n
 devotes the frequency of homozygote BB in one SNP marker. 

𝑃𝐻 =
𝑛𝐻

n
devotes the frequency of heterozygote AB in one SNP marker. 

𝑠2 =
𝑛𝐴 × (−1 − 𝑥)2 + 𝑛𝐻 × (0 − 𝑥)2 + 𝑛𝐵 × (1 − 𝑥)2

𝑛
 

 =
1

𝑛
(𝑛𝐴 + 𝑛𝐵 − 𝑛𝑥

2
) 

 =
1

𝑛
(𝑛𝐴 + 𝑛𝐵 − 𝑛(−𝑃𝐴 + 𝑃𝐵)

2) 

 = 𝑃𝐴 + 𝑃𝐵 − (−𝑃𝐴 + 𝑃𝐵)
2 

 = 𝑃𝐴 + 𝑃𝐵 − 𝑃𝐴
2 + 2𝑃𝐴𝑃𝐵 − 𝑃𝐵

2 

 = (𝑃𝐴 + 𝑃𝐵) − (𝑃𝐴
2 + 𝑃𝐵

2) + 2𝑃𝐴𝑃𝐵 

 = (1 − 𝑃𝐻) − (𝑃𝐴 + 𝑃𝐵)
2 + 4𝑃𝐴𝑃𝐵 

 = (1 − 𝑃𝐻) − (1 − 𝑃𝐻)
2 + 4𝑃𝐴𝑃𝐵 



doi:10.6342/NTU202301253

38 

 = (1 − 𝑃𝐻)𝑃𝐻 + 4𝑃𝐴𝑃𝐵. 

 

Thus, we have that 

𝑀𝐴 =
−1 − 𝑥

𝑠
=
−𝑃𝐻 − 2𝑃𝐵

𝑠
; 

𝑀𝐻 =
0 − 𝑥

𝑠
=
−𝑃𝐴 + 𝑃𝐵

𝑠
; 

𝑀𝐵 =
1 − 𝑥

𝑠
=
2𝑃𝐴 + 𝑃𝐻

𝑠
 

where 

𝑠 = √(1 − 𝑃𝐻)𝑃𝐻 + 4𝑃𝐴𝑃𝐵. 

 

If 𝑛𝐻 = 0, which is highly homogenous genome, then 

𝑀𝐴 =
−1 − 𝑥

𝑠
=

−2𝑃𝐵

√4𝑃𝐴𝑃𝐵
=
−√𝑃𝐵

√𝑃𝐴
; 

𝑀𝐵 =
1−𝑥

𝑠
=

2𝑃𝐴

√4𝑃𝐴𝑃𝐵
=

√𝑃𝐴

√𝑃𝐵
. 
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Appendix 2 Source code in R 

1. ### source code for master thesis 

2. ### Wen Hsiu  

3. ### 2022.7.3  

4.  

5. ###package 

6. library('dplyr') 

7. library('devtools') 

8. install_github("TheRocinante-lab/TrainSel") 

9. library('devtools') 

10. library("TrainSel") 

11. ############## 

12.  

13. ###function### 

14. ###DCG values### 

15. get_dcg <- function(true,pred,k){ 

16. df = data.frame(y_true=true,y_pred=pred) 

17. df = df[order(df[,2],decreasing = T),] 

18. dcg= 0 

19. for (i in 1:k){ 

20. a=df[i,1]/log2(i+1) 

21. dcg = dcg + a 

22. } 

23. return(dcg) 

24. } 

25.  

26. ###NDCG value### 

27. get_ndcg <- function(y_true,y_pred,k){ 

28. dcg = get_dcg(y_true,y_pred,k) 

29. idcg = get_dcg(y_true,y_true,k) 

30. ndcg = dcg/idcg 

31. return(ndcg) 

32. } 

33.  

34.  

35. ###mean NDCG value### 
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36. get_ndcg_mean=function(y_true,y_pred,k){ 

37. nmean=c() 

38. for(i in 1:k){ 

39. nmean[i]=get_ndcg(y_true,y_pred,i) 

40. } 

41. return(mean(nmean)) 

42. } 

43.  

44. ###stratified numbers of subpopulation### 

45. ##cluster=subpopulation data 

46. ##p=proportion  

47. ##N=training set size 

48. sub_number=function(cluster,N){ 

49. p=table(clusters)/length(clusters) 

50. max=table(cluster) 

51. sub=round(N*p) 

52. stop1=0 

53. while(stop1==0){ 

54. for (i in 1:length(p)){ 

55. if (sub[i]>max[i]){sub[i]=max[i]} 

56. } 

57. stop=0 

58. while(stop==0){ 

59. if (sum(sub)>N){ 

60. a=sample(length(p),1) 

61. sub[a]=sub[a]-1 

62. }else if(sum(sub)<N){ 

63. a=sample(length(p),1) 

64. sub[a]=sub[a]+1 

65. }else{stop=1} 

66. } 

67. a=c() 

68. for (i in 1:length(p)){ 

69. a[i]=sub[i]>max[i] 

70. } 

71. if (sum(a)==0 && sum(sub)==N){stop1=1} 

72. } 
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73. return(sub) 

74. } 

75.  

76.  

77. ###A-opt### 

78. ##kin=normalized kinship matrix  

79. ##N=training set size 

80. ##cluster=sub population cluster 

81. get_a_opt=function(kin,N,cluster=0){ 

82. ##without subpopulation 

83. if (sum(cluster)==0){ 

84. trace=diag(kin) 

85. o=order(trace,decreasing = T) 

86. kin1=trace[o] 

87. return(names(kin1)[1:N]) 

88. } 

89.  

90. ##with subpopulation 

91. else{ 

92. trace=diag(kin) 

93. o=order(trace,decreasing = T)  

94. n=sub_number(cluster,N) 

95. trace_o=trace[o] 

96. a=c() 

97. for (i in 1:length(unique(cluster))){ 

98. trace_sub=trace[cluster==unique(cluster)[i]] 

99. trace_sub_order=trace_sub[order(trace_sub,decreasing = T)] 

100. a=c(a,trace_sub_order[1:n[i]])  

101. } 

102. return(names(a)) 

103. } 

104. } 

105.  

106. ##GA function 

107. #cross over 

108. ####2 chromosome a1,a2,chromosome length=n 

109. crossover = function(a1,a2,n){ 
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110. x = sample(1:(length(a1)-1),1) 

111. cross = c(a1[1:x],a2[(x+1):n])  

112. cross = sort(cross) 

113. while (length(unique(cross))<n){ 

114. cross=unique(cross) 

115. cross=sample(setdiff(union(a1,a2),cross),1) %>% c(cross,.) %>% sort 

116. } 

117. return(cross) 

118. } 

119.  

120. ##mutation 

121. ##1 chromosome a1 

122. ##all candidate a2 

123. ##mutation rate=p 

124. mutation = function(a1,a2,p){ 

125. n=length(a1) #向量長度 

126. m=sample(c(1,0),n,replace = T,prob=c(1-p,p)) #mutated loci 

127. m.loc = which(m==0)  

128. m.number = length(m.loc) ##loci number 

129. if (m.number!=0){ 

130. m.pool=setdiff(a2,a1[-m.loc]) ##delete those be chose 

131. a1[m.loc]=sample(m.pool,m.number) ##mutate 

132. } 

133. return(sort(a1)) 

134. } 

135.  

136. ###D-opt### 

137. ##kin=normalized kinship matrix  

138. ##N=training set size 

139. ##cluster=sub population cluster 

140. get_d_opt=function(kin,N,cluster=0){ 

141. cluster=clusters 

142. n=sub_number(cluster,N) 

143. ##without subpopulation 

144. if (sum(cluster)==0){ 

145. dataDopt = list(d.matrix=kin) 

146. DOPT = function(soln,Data){ 
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147. Fmat=Data[["d.matrix"]] 

148. return(det(Fmat[soln,soln])) 

149. } 

150.  

151. ##GA parameter 

152. TSC = TrainSelControl() 

153. TSC$niterations=1000 

154. TSC$npop=nrow(kin) 

155. TSC$nelite=20 

156.  

157. TSOUT=TrainSel(Data = dataDopt, 

158. Candidates = list(1:nrow(kin)), 

159. setsizes = c(N), 

160. settypes = "UOS", 

161. Stat=DOPT,control = TSC) 

162. d_opt=rownames(kin)[TSOUT[["BestSol_int"]]] 

163. return(d_opt) 

164.  

165. #with subpopulation 

166. }else{ 

167.  

168. sublist=list() 

169. for (i in 1:length(unique(cluster))){ 

170. sublist[[i]]=names(clusters[clusters==unique(cluster)[i]]) 

171. } 

172. #create one chromosome 

173. get_1chro=function(n){ 

174. chro=c() 

175. for (i in 1:length(max)){ 

176. a=sort(sample(sublist[[i]],n[i],replace=F)) 

177. chro=append(chro,a) 

178. } 

179. return(chro) 

180. } 

181. ##create 20 chromosome 

182. x = replicate(20,get_1chro(n)) %>% data.frame() 

183. ###存 result 
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184. lit=100000 

185. result=c() 

186.  

187. litnow=1; stop=0 

188. while (stop==0){ 

189. cat(litnow,"50") 

190. deter=apply(x,2,function(x) 

kin[rownames(kin)%in%x,rownames(kin)%in%x] %>% det)  

191.  

192. top = which.max(deter) 

193. p =(max(deter)-deter[-top])/sum(max(deter)-deter[-top]) ##eliminate 

probability 

194. del=setdiff(1:20,top) %>% sample(.,8,prob=p) ##8 eliminate 

195. sel=c(1:20)[-del] 

196. ##create 7 cross over chro 

197. cross7=data.frame(matrix(rep(NA,50*7),nrow=50,ncol=7)) 

198.  

199. #crossover seperately by subpopulation 

200. for (k in 1:7){ 

201. ch_part_cross=c() 

202. for (i in 1:length(unique(cluster))){ 

203. sub=cluster %>% 

204. .[.== unique(cluster)[i]] %>% 

205. names() 

206. cho=sample(sel,2) 

207. a=x[,cho[1]] %>% intersect(.,sub) 

208. b=x[,cho[2]] %>% intersect(.,sub) 

209. ch_part= data.frame(a,b)  

210. a=crossover(ch_part[,1],ch_part[,2], 

211. nrow(ch_part)) 

212. ch_part_cross=append(ch_part_cross,a) 

213. } 

214. cross7[,k]=ch_part_cross 

215. } 

216.  

217. off=data.frame(x[,sel],cross7) 

218.  
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219. ##mutate seperately by subpopulation 

220.  

221. mut=data.frame(matrix(rep(NA,N*19),nrow=N,ncol=19)) 

222.  

223. for (i in 1:length(unique(cluster))){ 

224. sub=cluster %>% 

225. .[.== unique(cluster)[i]] %>% 

226. names() 

227. before=off[off[,1]%in%sub,] 

228. after=before 

229.  

230. for (k in 1:19){ 

231. after[,k]=mutation(before[,k],sublist[[i]],0.05) 

232. } 

233. mut[off[,1]%in%sub,]=after 

234. } 

235.  

236. ##add the best 

237. new.x = data.frame(mut,top=x[,top]) 

238. x = new.x  

239. result[litnow]=max(deter) 

240. if ((litnow-which.max(result))>=20000){stop=1} 

241. litnow=litnow+1 

242. } 

243. } 

244. return(x[,20]) 

245. } 
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