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Abstract

Genomic selection (GS) has become a powerful tool in the domains of plant and
animal breeding with advanced and cheaper molecular genetic technology. Despite
substantial reduction in genotyping costs, phenotyping still remains a time-consuming
and expensive process. As a result, phenotype estimation through genotypic information
can accelerate the breeding cycle. In GS, markers of the whole genome are used to
estimate genomic estimated breeding values (GEBVs) by statistical models, which are
built with genotype and phenotype. These GEBVs facilitate the selection of desirable

inbred lines or hybrids for further breeding programs.

In the construction of statistical models, selecting appropriate individuals as the
training set based on genotype data and building effective prediction models is a crucial
topic in genomic selection. In this study, we evaluated two methods: A-optimality and D-
optimality, which are criteria aimed at selecting individuals with the highest level of
variation. We utilized four different crop genomic datasets and compared the results with
previous studies, using both simulated and real data. Both A-optimality and D-optimality

demonstrated better performance compared to random training sets.

Keywords: genomic selection; training set selection; plant breeding; genetic algorithm;

linear mixed effect model
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Chapter 1 Introduction

Recently, genomic selection (GS) has become a powerful tool in the domains of plant
and animal breeding with advanced and cheaper molecular genetic technology. In
genomic selection, breeders focus on the quantitative traits, and select the superior
breeding lines based on the genomic breeding values (GEBV) instead of traditional
phenotypic selection. That is, GS can accelerate the breeding cycle by selecting superior
lines before phenotyping. GEBYV is estimated by the sum of the effects of dense genetic
markers across the whole genome. The dense genetic markers are expected to capture
most of the quantitative trait loci (QTL)(Meuwissen et al., 2001). Therefore, relatively

small gene effects of QTLs could be included into estimation.

There have been two noteworthy advancements in the field of GS. Firstly,
sequencing of the whole genome has led to the identification of DNA markers in the form
of single-nucleotide polymorphism (SNP). This has resulted in a substantial reduction in
genotyping costs. Secondly, the GS model has been demonstrated to accurately estimate
the GEBVs based on the SNP markers (Hayes et al., 2009). There are two common
statistical model commonly used in GS, the whole genome regression model and the
linear mixed effect model. The former tends to estimate all the marker effects, and then
estimate GEBVs. The latter takes the marker effects as random effects, and GEBVs are
then estimated by BLUPs (best linear unbiased predictors). The GBLUP model
(VanRaden, 2008) has been more commonly used. Besides, some machine-learning and
deep-learning algorithms have been utilized in GS. Heslot et al. (2012) conducted a
comparison between commonly used methods in the GS and other machine-learning

methods including support vector regression, random forests, and neural networks.
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Gonzalez-Camacho et al. (2012) used a neural network method and compared the result
with reproducing kernel Hilbert space (RKHS) regression model and a linear regression

model.

In spite of lower genotyping costs and progressive estimation methods in GS,
phenotyping still remains a time-consuming and expensive process. In a breeding
program, there are numerous lines in a germplasm bank or hybrid offspring, and
phenotyping every single line is a challenging task. Hence, it becomes crucial to select a
good training set based on genotypic information before phenotyping. Some optimality
criteria are utilized to select an optimal training set. With the whole genome regression
model, Akdemir et al. (2015) used genetic algorithm to minimize the prediction error
variance (PEV) for estimating GEBVs based on the ridge regression estimation. Ou and
Liao (2019) proposed a criterion which is called r-score. The spirit of r-score method is
to find an approximation to the expected value of Pearson’s correlation coefficient
between GEBVs and phenotypic values. With the GBLUP model, Rincent et al. (2012)
conducted a comparison between several optimization criteria. They subsequently used a
generalized coefficient of determination (CD)(Lalo€, 1993; Lalog et al., 1996) to select

an optimal training set.

In our study, we examined two optimality criteria, the A-optimality criterion and the
D-optimality criterion, which are based on the variance-covariance matrix of genotypic
values. The A-optimality criterion is a relatively intuitive method that does not need an
intensive computing algorithm such as genetic algorithm or other exchange algorithms.
By contrast, we used genetic algorithm in D-optimality criterion. In summary, our
research aimed to offer a comprehensive analysis and comparison of these two different

approaches to select an appropriate training set in GS.

2
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Chapter 2 Materials and Methods

2.1 Genome datasets

In this study, four genome datasets were analyzed. The first two datasets were found
to be lack of a strong subpopulation structure, while the last two datasets were observed
to possess a strong subpopulation structure. A summary of each dataset was presented in

table 1.
1. Tropical rice dataset

This dataset, presented in Spindel et al. (2015), consists of 73,147 SNP markers and
363 elite breeding lines belonging to either the indica or indica-admixed group. The
dataset includes observations of grain yield (GYD), flowering time (FT), and plant height
(PH) measured eight times between 2009 and 2012, with each year having one
observation in the dry season and one in the wet season. However, PH data was not
available for the wet season of 2009, and 35 phenotypic values were missing out of the

363 individuals. As a result, only the 328 individuals were used in this study.

Because Spindel et al. (2015) suggested that the subset of SNP markers which were
efficient enough for GS in this particular collection of rice germplasm, we randomly
selected one SNP marker per 0.1-cM interval over each chromosome. The resulting subset
included 10,772 out of the 73,147 SNP markers. Each SNP at a given locus was coded as
-1, 0, or 1 depending on whether the individual was homozygote of the minor allele,
heterozygote, or homozygote of the major allele. When a locus was missing, the

imputation method coded it a value of 1 after the SNP coding.

2. Wheat dataset
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The dataset, presented in Kristensen et al. (2019), consists of 13,006 SNP markers
and 635 F6 winter wheat lines from two breeding cycles. The first cycle included 321
individuals that were harvested in 2014, while the second cycle included 314 individuals
that were harvested in 2015. Phenotypic values were recorded on four quality traits: flour
yield (FYD), dough tenacity (DT), dough extensibility (DE), and dough strength (DS).
For our study, only 313 wheat lines from the second breeding cycle that had complete

data on all phenotypic values were utilized.

We filtered out SNPs with a missing rate of less than 0.9 and a minor allele frequency
(MAF) of less than 0.05. This resulted in a total of 11,214 SNPs being retained. The SNP
coding process was performed using the same approach as described in the tropical rice

dataset.

3. Sorghum dataset

This dataset, presented in Fernandes et al. (2018), consists of 56,299 SNP markers
and 451 diverse sorghum lines. The dataset also includes best linear unbiased prediction
(BLUP) values of plant height (PH), moisture content (MC), and biomass yield (BYD) of
each line. BLUP values were estimated to account for variation due to year and spatial
effects. Due to the principal component analysis by Fernandez-Gonzalez et al. (2023), the
dataset demonstrates a robust subpopulation structure comprising four clusters based on
individual classification. This dataset was used to compare methods for training set

optimization in genomic selection by Fernandez-Gonzaélez et al. (2023).

4. 44Kk rice dataset

This dataset, presented in Zhao et al. (2011), consists of 44,100 SNP markers and 36
traits of 413 accessions, demonstrating a robust subpopulation structure. We first removed

4
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all SNP markers with a missing rate less than 0.95 and a minor allele frequency (MAF)
less than 0.05, resulting in a final set of 34,233 SNP markers. To eliminate redundant
markers and calculate genomic relationships between individuals, approximately one-
third of these SNP markers were selected (11,043 out of 34,233) evenly distributed over
each chromosome. The SNP coding process was performed using the same approach as
described in the tropical rice dataset. We further restricted our analysis to a subset of 301
out of 413 accessions that had complete trait data for all three phenotypic values:
flowering time in Arkansas (FT-Ark), flowering time in Faridpur (FT-Far), and flowering

time in Aberdeen (FT-Abe).

Table 1. The summary of the datasets

Numbers of Numbers of Sizes of i
Dataset name ) i Phenotypic data
SNP markers  subpopulation  candidate set

GYD: grain yield
Tropical Rice 10,772 1 328 FT: flowering time
PH: plant height

FYD: flour yield
DT: dough tenacity
DE: dough extensibility
DS: dough strength

Wheat 11,214 1 314

BYD: biomass yield
Sorghum 56,299 4 451 MC: moisture content
PH: plant height

FT-Ark: flowering time at Arkansas
44K Rice 11,047 6 301 FT-Far: flowering time at Faridpur
FT-Abe: flowering time at Aberdeen
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2.2 GBLUP model
We used GBLUP model in our study. The GBLUP model can be described as follows:

y=ul,+g+e (1)

where y denotes the vector of phenotypic values, p the general mean, 1, the unit
vector of length n, g the vector of genotypic values for individuals and e the vector of
random errors. g and e are assumed to be mutually independent. g is assumed to
follow a multivariate normal distribution, denoted by g~MVN(O, K 05). e is assumed
to follow normal distribution denoted by e ~ MVN(O, 1,62), where 0 is a zero
vector; 05 is the genetic variance of additive effects, 62 is the random error variance,
I, is the identity matrix of order n, and K is a genomic relationship matrix for measuring
similarity among individuals. Several forms were employed for K in the context of
genomic selection (Forni et al., 2011; Rincent et al., 2012; Tsai et al., 2021; Wu et al.,

2023).

X is the original marker scores matrix, which is coded as -1, 0 and 1 for homozygote
of the minor allele, heterozygote, and homozygote of the major allele. We let M be

normalized in each SNP marker and called it standardized marker score matrix. In other

words, m;; = xij__xj , where m;y; and x;; are the (ij)th elements of M and X, for
J

i=12, ..,n j =12, .., p. We consider the genomic relationship matrix as K =

MMT /p.

2.3 A-optimality and D-optimality

In this study, we aim to introduce a novel approach for selecting a training set from

a large candidate set with less calculation. The proposed method is based on the concept
6
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of the dispersion or diversity of the training set. Specifically, we seek to identify the
training set that exhibits the highest level of variation. To achieve this, we present two

different strategies: A-optimal and D-optimal designs.
A-opt: arg max (Tr(K t))
D-opt: argmax (det(K,))
where K, is the subset of the genomic relationship matrix K.

The A-optimality criterion focuses on maximizing the variation of the selected
training set by maximizing the trace of the genomic relationship matrix. This approach is
based on the intuition that the trace of the genomic relationship matrix provides a measure
of the total variance present in the selected training set. The trace of the genomic
relationship matrix is calculated as the sum of the diagonal elements of the matrix, which
represents the total variance of the sample. To maximize the trace, we can rank the
candidate samples according to their variance and select the training set that exhibits the

highest level of variation.

As for D-optimality criterion, the determinant is employed to maximize the diversity
of the selected training set. Researchers have proposed using the determinant of the
genomic relationship matrix as a measure of overall variability. In a recent study by
Chung and Liao (2020), whom suggested that the determinant of genomic relationship
matrix represents the overall variability of the genotypic values. A higher determinant
indicates that the subset spans a larger space in high-dimensional vector space, exhibiting
greater genomic diversity. However, maximizing the determinant of genomic relationship
matrix is a challenging optimization problem. Exhaustively searching all possible subsets

is computationally expensive and infeasible, especially for large datasets. Ou and Liao

7
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(2019) presented a genetic algorithm to identify training set that maximizes the r-score.
The genetic algorithm involved generating a population of candidate subsets and
evaluating their determinant values using the genomic relationship matrix. The subsets
were then evolved through successive generations, with the fittest individuals (i.e., those
with the highest determinant values) being selected for the next generation. This process
was repeated until a satisfactory solution was obtained. Hence, we utilized genetic
algorithm implemented in the R package Trainsel (Akdemir et al., 2021) to maximize the

determinant of a genomic relationship matrix.

As for the datasets with subpopulation structure, we select training set based on the
stratified sampling method, selecting optimal training set by the proportion of each
subpopulation. In A-optimality criterion, we selected top variance values in each
subpopulation separately. In D-optimality criterion, we presented genetic algorithm and
let crossover step in the subpopulation themselves instead of the whole candidate set. The

R-code was displayed in Appendix 2.

2.4 Training set evaluation

Training set evaluation is an essential component in selecting the best training set
among several possible choices. In genomic selection (GS), researchers have traditionally
relied on mean squared error (MSE) and Pearson’s correlation as measures. However,
recent studies suggested that alternative measures may provide better insights into model

performance.
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In our study, we used two measures: discounted cumulative gain (DCG) (Jarvelin,
2000) and its normalized version (NDCG), which have been widespread in the
Information Retrieval (IR) literature for evaluating the effectiveness of search engines.
These measures have also been adopted by Blondel et al.(2015) for model evaluation in
GS. Plant breeders usually focus on the top k individuals rather than the entire candidate
set in GS, since individuals with low breeding values are ignorable in most cases.
Therefore, we use DCG and NDCG measures to evaluate the performance of the training

set.

In GBLUP model, the BLUPs of g for all candidates by Henderson’s mixed model

equations (Dempster et al., 1977) can be estimated as:
9=K.(K)'9: )

where g devotes the BLUPs of g, K. the genomic relationship matrix between the
candidate population and the training set, K; is the submatrix of genomic relationship
matrix K corresponding to the training subset, g, the BLUPs for the genomic values
by using training set. Given gy = g) = -+ = gm) represent the actual genotypic
values arranged in a decreasing order, in addition, the BLUPs corresponding to the true
genotypic values, denoted as §(1), J2), --- Jm). are obtained based on the selected
training set. By rearranging these BLUPs, it can be deduced that §(x,) = J(x,) -+ = J(myy)»
where w = (mq,m,, ..., m,) is a permutation of my, = (1, 2, ..., n). Next, the score of
discounted cumulative gain (DCG) at position k in the anticipated ranking obtained using

the training set was determined as:

DCG@k(g,m(@)) = X1 f(9(np)d (D) A3)
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The score of ideal discounted cumulative gain (IDCG) score at position k in the perfect

ranking was determined as:

k
IDCG@k(g,m(g)) = DCC@k(g,mo(g)) = 2 f(g9w)d@)

=1

1
log,(i+1)

where f(g) = g, the discount function of d(i) =

Next, NDCG score at position k was determined as:

k
DCG@K(g,7(@) = ) f(9x)A(D.

NDCG is a measure of model performance that is calculated by dividing the DCG score
of the predicted ranking by the IDCG score. Basically, it is the ratio between these two
scores. The advantage of using NDCG over DCG is that it is simpler to compare because
it always falls between 0 and 1. That is, greater values of NDCG indicate superior model
performance. Another score of ranking is the mean of NDCG scores from k =1 to
k=K:

K
1
mean_NDCG@K(g,§) = Ez NDCG@k(g,9)
k=1

2.5 Scenarios of this study

In order to assess the effectiveness of A-opt and D-opt, our study comprised the
following 3 steps. Firstly, we employed simulated data to evaluate the optimality criteria,
thereby establishing a baseline for comparison. Second, we used phenotypic values to
validate the optimality criteria, ensuring its applicability to real-world data. Third, we

performed a comparative analysis with previously proposed optimality criteria. To
10
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construct GBLUP model and got the BLUPs, we mainly utilized the R package
‘sommer’(Covarrubias-Pazaran, 2016) which is based on restricted maximum likelihood

estimation (REML).
2.6 Simulation study for validating A-opt and D-opt methods

Firstly, we set different training set sizes for different datasets, which are shown in
Table 2. To determine the training set, we employed three distinct strategies: A-opt, D-
opt, and random selection. Second, the simulated data was generated in accordance with
GBLUP model, which was given as Eq. (1). The marker score matrix X was considered
to be known, and the general mean was set at 100, the genetic variance of additive effects
os was set at 25. Furthermore, the heritability h® was varied at three levels, specifically
low, intermediate and high levels, being set as 0.2, 0.5 and 0.8 respectively. The random
error variance o2 can be calculated by the genetic variance and the heritability, which
was givenas o7 = o4 (1 — h?)/h?. Therefore, the phenotypic values could be generated.
Next, the BLUPs was computed by generated phenotypic values and marker score matrix.
Subsequently, the NDCG would be calculated. We denoted the generated genotypic
values as g and its BLUPs as g in Eq. (3) with &=1, 5, 10 and the mean of NDCG with

k=10. 3000 times iterations would be employed in the simulation study.

Table 2. The training set size for each dataset.

Dataset name Training set size
Tropical Rice 50 75 100 150 200 300
Wheat 50 75 100 150 250
Sorghum 50 75 100 150 200 350
44K Rice 50 75 100 150 250
11
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2.7 Analysis of phenotypic values

As for the phenotypic values, we used the same training set in simulation study.
Nevertheless, BLUPs here were computed by the observed phenotypic values. In addition,
we denoted the normalized phenotypic values as g and BLUPs as g in Eq. (3) to

calculate the NDCG with k=1, 5, 10 and mean of NDCG with k=10.
2.8 Comparison with other optimality criteria

We incorporated three other optimality criteria in our study: r-score (Ou & Liao,
2019), the prediction error variance (PEV) (Akdemir et al., 2015), and the generalized
coefficient of determination (CD) (Lalog&, 1993). Similarly, the simulation study as
mentioned above was employed. We used R package ‘TSDFGS’ (Ou & Liao, 2019) to

select optimal training sets.

12
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Chapter 3 Results

3.1 The variance pattern of a candidate set in A-optimality

The variances of individuals in each dataset are displayed in Figure 1 in a bar chart
form. As for datasets without a strong subpopulation structure, tropical rice and wheat
datasets, a clear decrease in variance is observed in both cases. As for datasets with a
strong subpopulation structure, sorghum and 44K rice dataset, there is an ambiguous
demarcation in the top part of the sorghum dataset, while there is an evident and clear
classification based on the subpopulation structure throughout the entire 44K rice dataset.

The variances within each subpopulation are found to be similar.

13
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Figure 1 Bar chart representing the variance in A-opt.

The length of each bar presents the variance of each candidate set individual, which

is the trace of the normalized genomic relationship matrix. The individuals are ordered

in descending order. In the sorghum and 44K rice dataset, the subpopulations are

distinguished in different colors.

14
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3.2 Simulation results

The simulation results were displayed in Figure 2-5, some common results could be
observed in each simulation test across all four datasets: (1) The trend of NDCG values
remains similar across different values of k (k = 1, 5, 10) as well as the mean NDCG
values, but the NDCG values and mean NDCG values with k = 10 are seem to be more
stable. (2) The NDCG values are significantly higher in the simulations with the high
level of heritability compared with those with the low level of heritability. (3) The NDCG
values are increasing but the rate of increase slow down as the training set size increases.

Probably the estimation methods reach the limitation.

With regards to the optimal training set, the A-opt and D-opt led to higher NDCG
values significantly compared to the random training sets across most of scenarios,
especially for the dataset without a strong subpopulation. For the tropical rice dataset in
Figure 2, A-opt and D-opt perform well in a similar way and reach the performance
limitation with lower sample size (100 out of 328) compared to the other training sets.
For the wheat dataset in Figure 3, the trends perform similarly, A-opt performed better
than D-opt. For the sorghum dataset in Figure 4, A-opt consistently performed better
compared to the random training set over all scenarios, however D-opt did not perform
in the same way. D-opt only outperformed in the high level of heritability, but did not
perform better compared to the random training set in the low and medium levels of
heritability. For the 44K rice dataset in Figure 5, both A-opt and D-opt outperformed in
the medium and high level of heritability, however D-opt did not perform well in the low

level of heritability.
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Figure 2. The average NDCG values for the tropical rice dataset across three heritability

levels and various values of k.

Horizontal axis represents different training set size. Vertical axis represents the average

values of NDCG with various values of k. Types of line represent heritability levels and

Colors of line represent A-opt, D-opt and simple random method for selecting training

set.
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Figure 3. The average NDCG values for the wheat dataset across three heritability levels

and various values of k.

Horizontal axis represents different training set size. Vertical axis represents the average
values of NDCG with various values of k. Types of line represent heritability levels and
Colors of line represent A-opt, D-opt and simple random method for selecting training

set.
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Figure 4. The average NDCG values for the sorghum dataset across three heritability

levels and various values of k.

Horizontal axis represents different training set size. Vertical axis represents the
average values of NDCG with various values of k. Types of line represent heritability
levels and Colors of line represent A-opt, D-opt and stratified random method for

selecting training set.
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Figure 5. The average NDCG values for the 44K rice dataset across three heritability

levels and various values of k.

Horizontal axis represents different training set size. Vertical axis represents the
average values of NDCG with various values of k. Types of line represent heritability
levels and Colors of line represent A-opt, D-opt and stratified random method for

selecting training set.
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3.3 Results of phenotypic value analysis

The results of phenotypic value analysis are displayed in Figures 6-9, and only
mean NDCG values are used, since the NDCG values trend is similar across values of k.
According to Figures 6-9, the performance is similar to the simulation study as mentioned
above. The NDCG values is growing with the increase of sample size, and A-opt and D-

opt outperform random training set in most scenarios.
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Figure 6. The average mean of NDCGk@]10 for the phenotypic data in the tropical

rice dataset.

Colors of line represent A-opt, D-opt and simple random method for selecting training

set.
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3.4 Comparison results of different training set optimality criteria

The comparison results among different optimality criteria are displayed in Table 3.
It can be observed that all optimality criteria outperform the random training set,
particularly in the datasets without a strong subpopulation structure such as the tropical
rice and wheat datasets. Additionally, A-opt outperforms the other optimality criteria in

most of the scenarios.
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Table 3. The comparison between optimality criteria with different training set size across each dataset.

The values of this table presented the averaged mean of NDCGk@ 10 with the simulation study conducted 3000 times

and h? = 0.5. The colored values highlight the best performance for each training set size and dataset combination.

Training set size

Dataset Criterion 50 75 100 150 200 300
A-opt 0.8005 0.8126 0.8227 0.8325 0.8337 0.8434
D-opt 0.7810 0.8110 0.8155 0.8281 0.8348 0.8416
Tropical R-score 0.7765 0.7952 0.8049 0.8170 0.8238 0.8426
rice PEV 0.7882 0.8087 0.8205 0.8327 0.8329 0.8433
CD 0.7800 0.7931 0.8057 0.8223 0.8235 0.8426
Random 0.4873 0.5502 0.5982 0.6751 0.7340 0.8239
50 75 100 150 250
A-opt 0.6851 0.7198 0.7392 0.7688 0.7882
D-opt 0.6766 0.7047 0.7277 0.7586 0.7785
R-score 0.6262 0.6760 0.7004 0.7477 0.7713
Wheat PEV 0.6641 0.6961 0.7141 0.7556 0.7786
CD 0.6296 0.6683 0.6996 0.7440 0.7725
Random 0.5462 0.5971 0.6401 0.6984 0.7390
50 75 100 150 200 350
A-opt 0.5759 0.6134 0.6434 0.6831 0.7130 0.7561
D-opt 0.5494 0.5928 0.6214 0.6529 0.6922 0.7452
Sorghurm R-score 0.5877 0.6134 0.6373 0.6754 0.6992 0.7437
PEV 0.5671 0.5941 0.6264 0.6656 0.7045 0.7507
CD 0.5867 0.6149 0.6360 0.6734 0.6995 0.7446
Random 0.5533 0.5903 0.6197 0.6597 0.6874 0.7461
50 75 100 150 250
A-opt 0.6041 0.6432 0.6666 0.7015 0.7236
D-opt 0.5900 0.6314 0.6540 0.6974 0.7237
R-score 0.6020 0.6401 0.6616 0.7008 0.7229
44K rice
PEV 0.5896 0.6162 0.6390 0.6839 0.7155
CD 0.6066 0.6428 0.6605 0.6997 0.7230
Random 0.5847 0.6116 0.6407 0.6853 0.7167
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Chapter 4 Discussion

4.1 Coding of marker score matrix

Consider an equally-spaced setting for the marker scores:

X, = a for minor homozygote AA;
Xy = aTer for heterozygote AB;

Xp = b for major homozygote BB.

The above setting can be easily transformed to be -1, 0, 1 system as follows.
X, —c)xd=-1,;

Xy —c)xd=0;

Xg—c)xd=1

where

_a+b Q= 2
€= 2 " " T b—a

Therefore, it may be sufficient to use the coding system of -1, 0 and 1.

4.2 Normalization of the marker score matrix

Normalization of the marker score matrix is a crucial step in GS process. Without
normalization of each SNP marker, the information from each SNP marker may appear
to be equal, disregarding the variation in their contributions to the phenotype. With the

proper normalization, the individual markers' contributions can be appropriately weighted.
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According to Appendix 1, the normalized marker score matrix can be described as
follows. Let P denote the frequency of the locus of one single SNP marker, then the

normalized marker scores can be obtained as

—1-X —Py—2P;

M, = = ;
A S S
0—x —P,+P
MH= = A B;
S S
1-x 2P,+P
M, = _ 4 H
S S
where

s =+/(1 — Py)Py + 4P,Pp.
P, = %A devotes the frequency of homozygote AA in one SNP marker.

Pg = "B devotes the frequency of homozygote BB in one SNP marker.
n

Py = nTH devotes the frequency of heterozygote AB in one SNP marker.

If ny = 0, which is highly homogenous genome, then

v "L _ 2P /P
s ARk B
MB=1—§ 2P, NI

s AR P

Consequently, the standardized marker score matrix is based on the frequency of

each SNP marker.
4.3 The influence of subpopulation

Figures 4 and 5 showed those results with considering the possible influence of

subpopulation structure. However, in the beginning of the breeding program, considering
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the subpopulation into GS process still remains a crucial problem. Therefore, we here
conducted 3000 times simulations to evaluate the performance regarding whether the

subpopulation structure is considered or not.

As for A-opt in Figure 10, considering subpopulation performs significantly better
in both the sorghum and 44K rice datasets with a small training set size. The reason can
be observed in Figure 1, which shows the clear demarcation in each dataset with
subpopulation structure. As a result, when selecting training set using the A-opt criterion
without considering subpopulation structure, it tends to select the individuals from only
one or two subpopulations. However, with bigger training set size, subpopulation
structure seems to be a limit of criteria. Methods without considering population structure

performs better for the 44K rice dataset, for training set size above 150.

In contrast, in Figure 10 for the 44K rice dataset, D-opt methods without considering
subpopulation structure outperform those with subpopulation structure. This is probably
because that we restricted the crossover of individuals in the genetic algorithm, the global

optimal training set couldn’t be obtained beyond this restriction.
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Figure 10. The average mean of NDCGk@10 for the dataset with subpopulation

structure, sorghum dataset and 44K rice dataset.

Be simulated 3000 times of generating with h = 0.5. Horizontal axis represents
different training set size. Vertical axis represents the average values of mean of
NDCGk@10. Types of line represent whether the subpopulations were considered

and colors of line represent A-opt, D-opt and random method for selecting training

set.
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4.4 The influence of heritability in phenotypic analysis

Table 4 represents the heritability of each phenotypic data. For those phenotypic data

with lower level of heritability, like FYD in wheat dataset, BYD in sorghum dataset, FT-

Far in 44K dataset. In Figures 7,8 and 9, the results of these traits show that the NDCG

values doesn’t always increase with an increase of the training set size. Besides, the

optimality criteria do not outperform the random training set in certain scenarios for a

lower heritability trait. That is, in phenotypic analysis, there are various uncontrolled

factors, making it impossible to reflect a consistent result with the simulated study. This

is especially evident in scenarios in low level of heritability.

Table 4. The heritability of each phenotypic data

Dataset name Phenotypic data Heritability
GYD: grain yield 0.7586
Tropical Rice FT: flowering time 0.8416
PH: plant height 0.7518
FYD: flour yield 0.6140
Wheat DT: dough tenac.:it_y_ 0.8197
DE: dough extensibility 0.5982
DS: dough strength 0.9123
BYD: biomass yield 0.4123
Sorghum MC: moisture content 0.6974
PH: plant height 0.8014
FT-Ark: flowering time at Arkansas 0.7637
44K Rice FT-Far: flowering time at Faridpur 0.4096
FT-Abe: flowering time at Aberdeen 0.5907
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4.5 Robustness in different estimation methods

We want to assess the robustness of the optimality criteria by examining their
performance using other estimation methods. For this purpose, we conducted a
comparative analysis using three more other methods: RKHS regression, random forest,
and Ordinal Mcrank, which have been shown to have satisfactory performance in
analyzing specific datasets (Blondel et al., 2015). For model construction, we utilized
phenotypic values as inputs. and calculated mean of NDCGk@10 to evaluate the
performance and compare different models. For RKHS regression, the R package
“rrBLUP” (Endelman, 2011) was used. For random forest, the Python “scikit-learn”
package (Fabian, 2011) was used. For ordinal Mcrank, the Python source code was used

at https://github.com/mblondel/ivalice.

Although A-opt and D-opt is based on the GBLUP model, we can observe roughly
that in Figures 11-14, the same optimality criterion exhibits a similar trend with the
GBLUP model for the other three methods in most scenarios. In addition, the performance
of different estimation methods is dependent on the specific case, and it is hard to indicate
clearly that which method is superior in our study. Nevertheless, the statistic model:
GBLUP model and RKHS regression, and the machine-learning based method: Random
forests and Ordinal Mcrank, it is observed that their values are close and exhibit a similar

trend in most of the situations.

31

doi:10.6342/NTU202301253


https://github.com/mblondel/ivalice

YLD FT

1.004 10
0,954
09
=} o
g g
3 0.904 b
2 g }
| 10.8
IS c i
© @ H
: - ;
0.85 ?;
I
H
i
07 /
i
0.80 /
i
o [
50 75 100 150 200 300 50 75 100 150 200 300
training set size training set size
PH
1.04
0.94
=}
% 08
Q
Q
ZI
c
3
g 07
0.6
l’l

50 7'5 |6U 1 %EI 2(']0 3[‘)0
training set size

Method —#- GBLUP —#- RKHS —# Random Forest —#— Ordinal Mcrank

Criteria — A-opt ---- D-opt

Figure 11. The comparison between different estimation methods for the phenotypic

data of the tropical rice dataset.

Vertical axis represents the average mean of NDCGk@10. Types of line represent A-

opt and D-opt optimality criteria for selecting training set and colors of line represent

various estimation methods.
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various estimation methods.
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Figure 13. The comparison between different estimation methods for the phenotypic

data of the sorghum dataset.
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data of the 44K rice dataset.

Vertical axis represents the average mean of NDCGk@10. Types of line represent A-
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various estimation methods.
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Chapter S Conclusion

In our study, we aimed to compare the performance of two optimality criteria, A-
optimality and D-optimality, with random training sets in GS. Both A-optimality and D-
optimality demonstrated better performance compared to random training sets in most

cascs.

Initially, we hypothesized that D-optimality, which considers covariances between
individuals, was supposed to outperform A-optimality. However, interestingly, A-
optimality demonstrated superior performance in a greater number of situations. We
presumed that the utilization of the genetic algorithm in D-optimality may have led to

the identification of only local optima rather than global optima.

Overall, our study contributes to the understanding of the performance of A-
optimality and D-optimality, providing breeders with a smart approach to selecting

training sets in breeding programs.
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Appendix 1

Normalization for SNP data

For a particular SNP, there are ny, ny and ng individuals, with AA, AB and BB

respectively. The standardized marker scores are defined as:

u _—1—?
A — S )
M _O—E
H — S )
M _1—?
B™ g
where

X (=1)+nygx0+ngx1
E: A ( ) 7:1 B :_PA+PB’

P, = %A devotes the frequency of homozygote AA in one SNP marker.
Pp = %B devotes the frequency of homozygote BB in one SNP marker.

Py = nTHdevotes the frequency of heterozygote AB in one SNP marker.

g X (=1=%)?+ny x (0—%)% +ng x (1 —X)?
n

SZ

=%(nA + ng —nfz)
:%(nA-l'nB —n(=Py + P5)?)
=PA+PB_(_PA+PB)2

=Py + Py — P2+ 2P,Py — P}

= (Py + Pg) — (P} + P3) + 2P,Pg
= (1_PH)_(PA+PB)2+4PAPB

:(1_PH)_(1_PH)2+4PAPB
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:(1_PH)PH+4PAPB

Thus, we have that

—1-X —Py—2P;

M, = = ;
A S S
0—x —-P,+P
M, = _ "1 B;
S S
1—x 2P,+P
M, = _ =fa H
s S
where

s =+/(1 — Py)Py + 4P,Pp.

If ny = 0, which is highly homogenous genome, then

—-1-% —2P —/Py
s JiPPs P

M _i_ 2P4 _ﬂ
B~ s _w/4'PAPB_\/P_B.

MA=
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Appendix 2 Source code in R

### source code for master thesis
### Wen Hsiu
#i## 2022.7.3

#it#package

library('dplyr")

library('devtools")
install_github("TheRocinante-lab/TrainSel")
library('devtools")

library("TrainSel")

B R

###function###

###DCG values###

get_dcg <- function(true,pred,k){

df = data.frame(y_true=true,y_pred=pred)
df = df[order(df[,2],decreasing = T),]
dcg= 0

for (i in 1:k){

a=df[i,1]/log2(i+1)

dcg = dcg + a
}

return(dcg)

}

##H#NDCG value###

get_ndcg <- function(y_true,y_pred,k){
dcg = get _dcg(y_true,y pred,k)

idcg = get_dcg(y_true,y_true, k)

ndcg = dcg/idcg

return(ndcg)

}

###tmean NDCG value#tt
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get_ndcg_mean=function(y_true,y_pred,k){
nmean=c ()

for(i in 1:k){
nmean[i]=get_ndcg(y_true,y pred,i)

}

return(mean(nmean))

}

#i##stratified numbers of subpopulation###
##cluster=subpopulation data
##p=proportion

##N=training set size
sub_number=function(cluster,N){
p=table(clusters)/length(clusters)
max=table(cluster)

sub=round(N*p)

stopl=0

while(stopl==0){

for (i in 1:length(p)){

if (sub[i]>max[i]){sub[i]=max[i]}
}

stop=0

while(stop==0){

if (sum(sub)>N){
a=sample(length(p),1)
sub[a]=sub[a]-1

telse if(sum(sub)<N){
a=sample(length(p),1)
sub[a]=sub[a]+1

telse{stop=1}

}

a=c()

for (i in 1:length(p)){
al[i]=sub[i]>max[1i]

}

if (sum(a)==0 && sum(sub)==N){stopl=1}
}
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return(sub)

}

HH#H#A-optHHH#

##kin=normalized kinship matrix
##N=training set size
##cluster=sub population cluster
get_a_opt=function(kin,N,cluster=0){
##without subpopulation

if (sum(cluster)==0){
trace=diag(kin)
o=order(trace,decreasing = T)
kinl=trace[o]
return(names(kinl)[1:N])

}

##with subpopulation
else{
trace=diag(kin)
o=order(trace,decreasing = T)
n=sub_number(cluster,N)
trace_o=trace[o0]
a=c()
for (i in 1:length(unique(cluster))){
trace_sub=trace[cluster==unique(cluster)[i]]
trace_sub_order=trace_sub[order(trace_sub,decreasing = T)]
a=c(a,trace_sub_order[1l:n[i]])
}
return(names(a))
}
}

##GA function
#cross over
####2 chromosome al,a2,chromosome length=n

crossover = function(al,a2,n){
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x = sample(1l:(length(al)-1),1)

cross = c(al[l:x],a2[(x+1):n])

cross = sort(cross)

while (length(unique(cross))<n){

cross=unique(cross)

cross=sample(setdiff(union(al,a2),cross),1) %>% c(cross,.) %>% sort
}

return(cross)

}

##mutation

##1 chromosome al

##all candidate a2

##mutation rate=p

mutation = function(al,a2,p){

n=length(al) #HERE

m=sample(c(1,0),n,replace = T,prob=c(1-p,p)) #mutated loci
m.loc = which(m==0)

m.number = length(m.loc) ##loci number

if (m.number!=0){

m.pool=setdiff(a2,al[-m.loc]) ##delete those be chose
al[m.loc]=sample(m.pool,m.number) ##mutate

}

return(sort(al))

}

###D-optH#H#H#

##kin=normalized kinship matrix
##N=training set size
##cluster=sub population cluster
get_d_opt=function(kin,N,cluster=0){
cluster=clusters
n=sub_number(cluster,N)
##without subpopulation

if (sum(cluster)==0){

dataDopt = list(d.matrix=kin)
DOPT = function(soln,Data){
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Fmat=Data[["d.matrix"]]
return(det(Fmat[soln,soln]))

}

##GA parameter

TSC = TrainSelControl()
TSC$niterations=1000
TSC$npop=nrow(kin)
TSC$nelite=20

TSOUT=TrainSel(Data = dataDopt,

Candidates = list(1:nrow(kin)),

setsizes = c(N),

settypes "Uos",

Stat=DOPT, control = TSC)
d_opt=rownames(kin) [TSOUT[["BestSol int"]]]

return(d_opt)

#with subpopulation
telse{

sublist=1ist()
for (i in 1:length(unique(cluster))){

sublist[[i]]=names(clusters[clusters==unique(cluster)[i]])

}

#create one chromosome
get_1chro=function(n){

chro=c()

for (i in 1:length(max)){
a=sort(sample(sublist[[i]],n[i],replace=F))
chro=append(chro,a)

}

return(chro)

}

##tcreate 20 chromosome

x = replicate(20,get _1chro(n)) %>% data.frame()
#H#H#FE result
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1it=100000

result=c()

litnow=1; stop=0
while (stop==0){
cat(litnow, "50")
deter=apply(x,2,function(x)

kin[ rownames (kin)%in%x, rownames(kin)%in%x] %>% det)

top = which.max(deter)

p =(max(deter)-deter[-top])/sum(max(deter)-deter[-top]) ##eliminate
probability

del=setdiff(1:20,top) %>% sample(.,8,prob=p) ##8 eliminate

sel=c(1:20)[-del]

##tcreate 7 cross over chro

cross7=data.frame(matrix(rep(NA,50*7),nrow=50,ncol=7))

#crossover seperately by subpopulation
for (k in 1:7){

ch_part_cross=c()

for (i in 1:length(unique(cluster))){
sub=cluster %>%

.[.== unique(cluster)[i]] %>%

names ()

cho=sample(sel,2)

a=x[,cho[1]] %>% intersect(.,sub)
b=x[,cho[2]] %>% intersect(.,sub)
ch_part= data.frame(a,b)
a=crossover(ch_part[,1],ch_part[,2],
nrow(ch_part))
ch_part_cross=append(ch_part_cross,a)

}

cross7[,k]=ch_part_cross

}

off=data.frame(x[,sel],cross7)
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219.

220.

221.

222.

223.

224.

225.

226.

227.

228.

229.

230.

231.

232.

233.

234.

235.

236.

237.

238.

239.

240.

241.

242.

243.

244

245,

##mutate seperately by subpopulation

mut=data.frame(matrix(rep(NA,N*19),nrow=N,ncol=19))

for (i in 1:length(unique(cluster))){

sub=cluster %>%

.[.== unique(cluster)[i]] %>%
names ()
before=off[off[,1]%in%sub, ]

after=before

for (k in 1:19){

after[,k]=mutation(before[,k],sublist[[i]],0.05)

}
mut[off[,1]%in%sub, |=after

}

#i#add the best

new.x = data.frame(mut,top=x[,top])

X = new.Xx

result[litnow]=max(deter)

if ((litnow-which.max(result))>=20000){stop=1}

litnow=litnow+1

}
}
return(x[,20])

¥
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