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Abstract

In this thesis, we consider the bootstrap of a four-dimensional flat space equal time
correlator. we review the “Cosmological Optical Theorem” (COT) in the context of flat
space correlators and proceed to constrain tree-level correlators using the constraints of
total energy and partial energy poles, manifest locality, and Ward-Takahashi identities. To
apply this to fermionic correlators, we derive the COT for half-integer operators and give

distinctive rules suitable for Dirac and Majorana fermions in the bulk.

Keywords: Cosmological Correlator, Spin Half, Gravitino, Flat Space, Boundary term, Boot-

strap
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Chapter 1 Introduction

In recent years, a series of studies have been conducted on the bootstrap of physical
observables. These studies have employed fundamental principles to impose constraints
on physical observables. Early research in this field includes amplitude bootstrap, as dis-
cussed in [9] [17], and the bootstrap of Conformal Field Theory (CFT), as outlined in
[25][14]. Contemporary investigations have expanded to include inflationary cosmologi-

cal correlators.

The successful bootstrap program in de Sitter space perturbative cosmological corre-
lators [4], encapsulates the physics of slow-roll inflation. The tree-level structures can be

reconstructed from the residues of singularities, de Sitter isometries, unitarity, and locality.

This research follows the massless four-particle test led by McGady DA, Rodina
L. and Benincasa P, Cachazo F. McGady DA and Rodina L. demonstrated that the four-
particle test in amplitude is enough constrained to necessitate a massless spin 3/2 that
respects supersymmetry.[ | 9] On the other hand, Benincasa P and Cachazo F. established
that there is no higher spin massless particle if we adhere to the equivalence principle.
They further demonstrated that the Yang-Mills color structure constant f?*¢ should respect

the Bianchi identity. [5]

The objective of this thesis is to make initial progress towards the massless four-
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particle test of the cosmological correlator on a fixed time spatial slice in flat space. This
can be considered a simplified model of the cosmological correlator if we set the fixed time
slice at the current time. The time slice will be the boundary of the universe in the past.
We demonstrate that in flat space, we can utilize known properties on singularities [20] [4]
[18][26] and unitarity [12] to reconstruct the correlator on the boundary for the massless
integer and half-integer spins. In the case of the correlator, the massless spinning particle
responds to the conserved operator. It’s reasonable that the physical rules are enough

constrained like the amplitude case.

2 doi:10.6342/NTU202302262
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Chapter 2 Review of flat space

correlators

0.0

o=

0.0

05t

Figure 2.1: The evolution of physical states progresses from the distant past towards the
moment we designate as ¢t = 0, resulting in what is referred to as the cosmological back-
ground. By examining this background spectrum, we can identify N points correlation
functions between pairs, triplets, quartets of points, and so on. In cosmology, the mea-
surable quantities resemble the all-in-state version of amplitude, which, as mentioned in
certain sources [29], is referred to as the ”in-in formalism.”

In the context of cosmology, the physical observable is the cosmological correlation,
which is the expectation value of the product of the boundary field operators. The cos-
mological correlation can be calculated by Feynman path integral, where the integrand is
the wavefunction and the field insertions. Therefore, the wavefunction contains the same
information as the cosmological correlation. The wavefunction can be expanded, and the

coefficients are referred to as wave function coefficients or correlators. To calculate the

tree-level correlator, we need to insert the classical solution of the fields into the action,
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and the classical solutions have to satisfy the Bunch-Davies boundary condition. In this

section, we will introduce the concept of cosmological correlation, the correlators, and the
Bunch-Davies boundary condition. In addition, we also introduce the lifter to.convert a

fermionic boundary field to a propagating bulk field.

2.1 Cosmological Correlation Function (in-in correlator)

Let’s consider the Minkowski spacetime x# with a spatial slice at z° = ¢ = 0. The

bulk field ¢(z#) could have a boundary profile:

¢t = 0,T) = ¢o(T), 2.1)

We will be interested in the boundary correlation which is the observable we measure on

the background |€)y) as we show in Figure 2.1,

(O(F1)O(F2)O(T5) ... O(Tn) )inin = (| S(F1)A(E2) . .. H(Tn)|) (22)

where [€)g) is the wavefunction encoding the probability of the boundary profile ¢y (Z).
This observable can be also called in-in formalism. For a comparison to the following
derivations, in-in formalism could be calculated by the Hamiltonian approach with cre-
ation and annihilation operator [29]. In our thesis, we use the wave function method to

calculate it. In this method, it will useful to consider particular ¢y () as the states |y (Z))

such that

O(T) |90()) = do(@) |0(Z)) (2.3)

'We use the photo from NASA in this figure.[23]
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Then by inserting a complete basis

- / ddo |} (0] (24)

for the two-point correlation, we could obtain

(O(Z1)O(22))inin = (o] P0(Z1)d0(T2) |Q)
~ / [T et @) / [T i @) (0l o(@1) 164"} (04" |65 ) (0571 dn(2) 1)

2D 2
= [TLao ) [ T o @) (u]es?) 60" @)k @506 - o) (667 |0
) #2)

_ / H debo () o (1) o (T2) | ¥ [o] |
; 2.5)

And for the higher point, we could easily extend the above derivation,

(QHE)E) 65 19) = [ ddn R(T)o0(T) . (T al) . 2)

Thus all correlators can be extracted from the wave function on ¢y () basis, i.e.

Wlgo] := (d0[2) 2.7)

the W[¢py] is identified as the path integral,

W] = Do(t, @) ¢! S eH0, (2.8)

/¢(t:07f):¢0(f)7¢(t:_oo):¢oo

where we integral over the path ¢(¢,Z) subject to the boundary conditions. The path

integral could be computed perturbatively by writing

6(t,7) = ¢ (t,7) + 6(1, 7) (2.9)

5 doi:10.6342/NTU202302262
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where (¢, %) is the perturbation of the field and the ¢5P (¢, Z) is the background field
we perturbed at, called Bunch-Davies vacuum, it’s the classical solution-of the E.O.M or
the saddle point of the path integral under some boundary condition configuration we’ll
discuss later.

) 2.~ -
o= [ pg i
0=¢(t=0,Z)=¢(t=—00,%) (210)

= \I/tree [¢0] + Wl—lOOp[¢0] + ‘112—l00p[¢0] + ...
where § is the action, S[¢(¢, T)] = [ d*zL[¢(t, T)]. Then we could find the leading order
will be tree-level contribution like amplitude given by classical path, and the loop con-
tribution could be shown that it’s from the integration of the perturbation [15]. We could
always make the path be normalized such that [ D¢ = 1. Then we could identify the

tree-level correlator for the zero-order expansion of the quantum correction as

Wypeeio] = €587, (2.11)

In the thesis, we focus on Wy,...[¢o], and all the tree-level physics comes from the leading
classical path contribution. And we’ll discuss the classical configuration around ¢5 2 (¢, )

we perturbed at in the section (2.3).

2.2 Boundary Actions

Due to the presence of a boundary, different ways of writing the Lagrangian which are
related by integration by parts identities will now differ by boundary terms. The guideline
for the correct boundary term is that the stationary solution to the variation of the total

action, i.e. 5 = 0, must coincide with the solution to the equation of motion. For the

6 doi:10.6342/NTU202302262
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case of scalars and vectors, this leads to a unique choice of bulk lagrangian with zero
boundary terms. In the case of gravity, one requires the Gibbons-Hawking-York boundary
term [11, 31]. For fermions, additional subtlety arises due to its Lagrangian being first

order in derivatives, which we now review.

We will use the spin-% case as our main example. Let’s begin with the usual bulk

action:
) L
S= /d% (%Wx - %X P x+ m)Zx) : (2.12)

Its variation can be separated into a bulk term and boundary contributions:

5= [ 0 x5 ) < |

t=

i i
d’x (§X0705X0 - §5X070X0) .
0

(2.13)
To ensure that the result of extremelization leads to the usual equations of motion, i.e.
(—i@ — m)x = 0, the boundary contribution must be zero:

1 1
/ d*x (520705)(0 — 55207%(0) =0 (2.14)
t=0

A naive way to satisfy the condition is to require y and x be fixed on the boundary, hence
dxo = 0Xo = 0. However, x and Y are canonical conjugates to each other (similar to
x and p in classical mechanics) 2. Said in another way, the Dirichlet condition on Jyy is
equivalent to a Neumann boundary condition on dx,, and one cannot set both conditions

at once given the first derivative nature.

To proceed, we choose to impose the Dirichlet condition on half of the fermions and

add an additional “boundary action” engineered such that its variation cancels whatever

2While y is the complex adjoint of x, on the path integral they are independently complexified, so their
boundary conditions are independent.

7 doi:10.6342/NTU202302262
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boundary contribution remains. Since the boundary is at a fixed time slice, it is natural to

separate the 4D spinor into
X=x"+x", (2.15)

where v9y* = +x*. We impose Dirichlet boundary conditions §x, = 0y, = 0, that is,

7’x0 = —0x0
(2.16)
726%0 = X -
The LHS of (2.14) then becomes
/ d’x (1)_(0705X0 - 35)207())(0) = —35/ d’zX0X0- (2.17)
=0 2 2 2 Ji=o

An appropriate boundary action Shoundary €an be added to Sy so as to cancel this term

1 )
Sboundary = 5/ d*zXo X0, (2.18)
=0

and the full action is S = Sy 4+ Shoundary- Note that if we instead choose dx, = dxy = 0,
the corresponding boundary action is the same as (2.18) with an additional minus sign.

However, if we choose dx, = dx, = 0ordx, = Iy, = 0, no consistent solution exists.

It is worth noting that after substituting the E.O.M into S, the term S; = 0, and we
are left with the action S = Syoundary- Thus for fermions, tree-level correlation functions

only receive a contribution from the boundary action.

8 doi:10.6342/NTU202302262
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2.3 Choice of Boundary conditions

At the boundary, the bulk fields have to satisfy the boundary conditions. The bound-

ary value of the classical solution at ¢t = 0 is ¢,

ba(Z,t = 0) = ¢o(T), (2.19)

while at ¢ = —o0, the bulk fields have to meet the Bunch-Davies boundary conditions,

which require the field to be well-defined

G (7, t = —00) < 0. (2.20)

For Harmonic fields such as a free scalar, the general of classical solutions for [¢, = 0

is

d30 ) ) L
¢Cl(f, t) = / (27_53 [A(ﬁ)elEt_{_B(ﬁ)e_zEt} i T (2.21)

inwhich we define £ = |p] > 0, p-% = z'p;, n;; = ((—1,0,0,0), (0, —1,0,0), (0,0,0,—1)).
We call them positive/negative energy mode. After we impose all the boundary conditions
including the Bunch-Davies boundary condition, the negative energy mode must be ex-
cluded for certain analytical continuation on the energy of the classical field £ —ie, e > 0.
du” (7,1) = / LB gu()eiEeP (2.22)

cl Y (27T)3 0 .

Note that, in Anti-de Sitter (AdS) space, there’s no natural choice such as ¢ (Z,t =
—0o0) < oo or Bunch Davies boundary condition, because the definition of time is ill-

defined in AdS space. [21]

9 doi:10.6342/NTU202302262
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Photon We now discuss the classical solution of the E.O.M of the free integer spin field.
For the massless vector field A, ,(Z,t) in the temporal gauge A (Z,t) = 0, the E.O.M

1S

01 (0" Ay (2,1)) =0

(2.23)
DAi,Cl (f, t) - QiajAj’d(f, t) - 0,
which has a general solution
3
M@ ) = [ BT (7
(2m) (2.24)

A (P, t) = [me™ — pip;] AV (D) + [mije™ " — pip;) B (p),

where we define 7;; = 7;; + pip;, i = pi/E, and A; and B; are constant coefficients
that will be fixed by the boundary conditions. After we impose the boundary condition

A, a(p,0) = Ap,;(p) and A; 4(p, —o0) < oo, the classical solution becomes
APD (1) = [mie" P — pipi] AL (), (2.25)

which is a positive energy mode. The detailed calculations can be found in the App. (C.2).

Graviton For graviton, the solution of the E.O.M in the temporal gauge h,, = 0 after

we apply the boundary condition is

a3 -

3
2m) (2.26)
hiya(P,t) = [mixmue’ " + (iny — mnmjn) g (9)-
Moreover, we’ll find that one of the E.O.M for graviton reads
(1Y% = 8:0;)hg (F) = 0. (227)

10 doi:10.6342/NTU202302262
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In momentum space, it is

mishg (5) = 0, (2.28)

from which we see the E.O.M of graviton constrains the boundary profile.

Fermion Given that we only have boundary conditions for y_ and x, it is natural to
decompose the classical solution into x+ when solving the E.O.M. The goal is to represent
X— in terms of y,, which yields an E.O.M in terms of y,. This allows us to use the
boundary condition ¢ to derive the classical solution. The E.O.M under decomposition
of the fields x* satisfy

(£i0, + m) x™ = px7, (2.29)
which relates y~ to xy*:
X = L [(z’@t +m) Xﬂ ) (2.30)
_E’2 + m2

where we use boldsymbol to denote the 3D vector and p := p'y;. Then substituting the

equation into (—id; +m) x~ = px ", we have
(07 + E*) xT =0, (2.31)

which is similar to the E.O.M of the scalar field. The solution which that matches the

boundary conditions x(p,0) = x4 and x(p, —00) < oo is

X (P, t) = xg e, (2.32)

11 doi:10.6342/NTU202302262
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which is a positive energy mode. Substituting into (2.30), we have

_ p » P
Xo = <_E2 + m2 t (ZEXSF) + mX(T = <E + m)XOrF' (233)
Similarly, for y, we have
= (s ) [0 m) Y] (e =G @39)
—E2 + m2 9 9 0
_ e __ —p ., P
Xo = | (iEXy) +mXo (_EQ—W = Xo (m)- (2.35)

Plugging the classical solution of ™ into the action, we can derive the two-point
wave function coefficient

3

i&:/ummmm%:/é§GMMW@m@
d3p

- [ G 2 s o+ e+
- [ G (P )

£+ m)X0,+(ﬁ) (2.36)

Gravitino For gravitino, similar to the case of the graviton, the boundary condition is

constrained from E.O.M:

Mt = 0,%) = 0phy(T) — (Vjaj)(Vk%,k(f)) =0 (2.37)

in the momentum space, we have

(U3 () = —B(Bibe(P))- (2.38)

12 doi:10.6342/NTU202302262
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Under the decomposition o1y o = 9%, we could easily check that

(o(P) = BB, (D)) = 0. (2.39)

So EOM indeed applies a constraint on the boundary condition 7 y. Similarly, for the

conjugate field, we have boundary condition constraints,

(W o(D)5) = — (B o (7). (2:40)

2.4 Wave function coefficients (cosmological correlators)

The correlation function is determined by the Wave Function, so we can calculate the

wave function and expand it into

Wleo] =: Z/Hd3pi U (D1, By D) - (G0(P1) G0 (D2) - - - do (i) - 6° (Zﬁa)
" Z ' (2.41)
in which ¢, (p1, pa, . .., Pn) is the n-pt wave function coefficients, or correlator, in mo-
mentum space, respectively. To make a distinction we will always refer to the in-in corre-
lator with its full name, while the correlator is a shorthand for wave function coefficient.

Sometimes, we use the bracket notation to denote the correlator

We will always refer to the correlators as our observables because the analytical structure

of the correlator is more simple than the correlation function. By the relationship [2.6],
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we could calculate the correlation function as [12]

1
2Re(O(-p)O(p))

3
<010203>in-in = -2 (

(O(=P)O(D))inin =

1
U szeo om0

a

) . R€<010203>
(2.43)

1 1
(01050304)in.in = —2 (];[ 2Re(0(—ﬁa)0(ﬁa)>)

R€<01020_5> . R€<030405>
. |:R€<01020304> — Re(O(—E)O(§)) —t—u

In this thesis, we pay attention to the flat space correlator, in which, we do gravitational

perturbation on the flat Minkowski background.

Feynman Rule of the Correlator For the tree-level correlator, we could plug the clas-

sical solution into the action and extract the correlator we defined in the previous section:

\Dtree [¢O] = eiS(d)gD (¢0))

iS(8EP(60)) = 3 / [T @ Grtree B s - Br) - (G0(F)0(B2) - - Go(Fn) - 6 (Zﬁa)
n=2 % a
(2.44)

and the classical action is precisely the action substituted with the solution of the E.O.M.

In general, we could perturbatively solve the E.O.M by what we called the Cosmo-

logical Schwinger-Dyson equation (in the rest of the paper, we use ¢, to represent ¢50):

) ) 0L,
2\ — 3./ = = =/ 3 1 3341 . / B int
bea(po, t, T) = /d o K(Z, ¥ ,t)¢0(:v)+/d VG, Tt < —2&;5(:?’,15’))

P=dci
(2.45)

We refer to K as the bulk-to-boundary propagator, which is the solution of free EOM with

boundary conditions on flat past and current time,

Oz K(7,7,t) =0; K(Z,&,t=0) =0 —7); K(ZZ,t=-00)=0. (2.46)
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In addition, we refer to GG as the bulk-to-boundary propagator, which is the solution of the

Green equation and boundary condition,

Oz:G(Z, 7, t, 1) = 6* (v, — 2)) ; G(@ Tt =0,t' =0)=0; G(T,7,t = —o0,t') =0
(2.47)

Then we could perturbatively build up the classical solution with two propagators

¢£?)(¢07t7£3> :/dg'x/K(fﬂf/at)(bO(f/)

oL,
(1) =) 3.0 3¢y = o [ mt 2.48
by (¢0,t, ) /d VG Tt < 25¢(f’,t’)) ( )

o=0)

Because there are spatial translation and rotation invariance (but there’s no time trans-
lation and boot invariance, for we set ¢ = 0 as our boundary), the bulk-to-boundary and

bulk-to-bulk propagator should only depend on (Z— "), and the Fourier transform of them

are
d? o,
K(fyf/,t):K(f—f/’t>:/(2 ];3 (—”t)elp(x—:c)
" 3 (2.49)
d o,
G(f7 fly t, t/> - G(f — f/, t, t,) = / _pG(ﬁ’ t, t/)ezp(ac—a: )
(2m)3
In the momentum space, (2.46) and (2.47) can be solved
K(ﬁ, t) — ei(E—ie)t
(2.50)
G(p,t,t') = °F (61'(E—ie)(t—t/)9(t/ ) 4 e MBI gty ez‘(E—ie)(t_H/))
in which the step function is defined by
1 220
0(z) = : (2.51)
0 <0
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The correlators in momentum space can be built by the propagators. For the contact
diagram, the correlators take the form (for detailed calculations, see C.1)

Uncontact = Y /dt GV (P, Da - - oy Pny O ) K1 (51, 1) Ko (P2, 1) - . . K (Pins 1)

perm

V_;a_;"'a_'nvENn
:ZQ (pl P2 p 1 )+O(K§})
Krp

(2.52)

perm

in which Kr := >_"_, E, is the total energy, V' is the contact vertices, g is the coupling
constant and the permutation sum sums over all the contribution of the label permutation
for the same field. There will be an extra n! factor if there are n identical external legs.
There is a total energy pole for contact diagrams, which will be further discussed in the

next section. We could represent the correlator with the Feynman diagram in Fig. 2.2.

Figure 2.2: The Contact Feynman diagram of the cosmological correlator and the pattern
of the singularities. The horizontal line on the top represents the fixed time boundary. The
lines stretched below and intersecting to a point represent the bulk-to-boundary propaga-
tor. The intersection point represents the vertices.
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For the exchanging diagram, the correlator takes the form

w4,exchange =

Z/dt/dt/ (ig*) K1 (Py, t) Koo, t) VL (P, P2, Ps, Or)

perm

X G(ﬁs; ES7 t7 t/) X VR(ﬁ3Jﬁ4? _ﬁ& a;)K?)(ﬁ& t/)K4(ﬁ47 t/>

(s) RN - o -
_ 92 Z VL<p17p27p37 E1~47 Es) & VR(p37p47 —DPs, E1~47 Es)

0
e + O(K3.ELEr) + (1) + (u)

perm

(2.53)
in which we define ® to be some indice contractions and the partial energy as the energy
sum of the external legs in the left (right) sub-diagram E;, = Eios (EFr = E345) where we
use the subscript to label the sum of the energy, Fup... = F, + E + E. + .... By the
structure of the bulk-to-bulk propagator, we see that besides the total energy pole, there
are two additional partial energy poles, which will be discussed further in the next chapter.

We can draw a Feynman diagram Fig. 2.3 to represent the exchanging correlator.

Figure 2.3: The Exchanging Feynman diagram of the cosmological correlator and the pat-
tern of the singularities. The line between vertices represents the bulk-to-bulk propagator.

Notice the structure of the correlators (2.52) and (2.53) are derived from the bosonic
fields. However, we can show that the correlators of the fermionic fields are similar, see
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Chapter 3 On-shell approach to

correlators

The idea of the bootstrap program is to fix the correlator by physical constraints.
The necessary constraints include the Ward-Takahashi identity (WT identity), the total
energy pole constraint, and the partial energy pole constraint. The WT identity reflects
the gauge freedom of the boundary fields, the total energy pole restores the flat spacetime
amplitude, and the partial energy pole is a direct consequence of the cosmological optical
theorem (COT). COT can be derived from either the unitary nature of the theory or from
the properties of the correlators, such as discontinuity. In this chapter, we introduce the

above concepts and introduce our bootstrap procedure.

3.1 Ward-Takahashi identities (WT identity)

If there are massless spinning fields, the boundary fields will contain extra gauge

freedom. For example, scalar QED contains a massless vector field A and a scalar ¢,

U[A;0(T), do(7)] = W[A;0(Z) + 645 0(T), do(T) + 50 ()]
0o () = iea(T) o ()
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The wave function should be invariant under the gauge transform. Expanding the above
equation perturbatively, we can derive the Ward Takahashi Identity of the scalar QED for
3pts and 4pts correlator

p1{J1i0303) = —€ (01,5 O3) +¢ (05 O143) = e (B — E3)
(3.2)

P (1005 05,04) = —€ (OFy5 J5,,04) + € (05 J5,j0144)
where we abuse our notation and define O, := O(p, + p,). The detailed derivation
and WT identity of other spinning correlators will be left in the App. E.2. In this paper,
we refer (J; ;0503) as the correlators, which has free indices; and we refer (J,0503) :=
eﬁjO(JLZ-O; O3) as the contracted correlators in which the boundary polarization 61'170 is the

boundary condition of the vector field.

In general, the WT identity will determine the longitudinal parts of the correlator. In
the case of (JO*O), we could decompose the boundary polarization with transverse com-
ponent ef)’T perpendicular to the momentum and the longitudinal component ef)’L parallel
to the momentum.

) = &7 + i
(3.3)
= ¢j0(p) — ' €0(P)
where we defined m;; = n;; + pip;j, b = pi/ E. Then we could decompose the contracted

correlator accordingly

(J10303) = (J] 0303) + (J{ 0305)
(JFO303) = e14mi (J{O303) (3.4)

(JEO303) = —e1 91 pr;(J]0305) = —61,i%(E2 — E3)
1

in which we call the (JTO3;0;) transverse mode of the contracted correlator and (JFO303)
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longitudinal mode of the contracted correlator. The latter can be determined by Ward-

Takahashi identities.

3.2 Singularities and the cosmological optical theorem for

flat space

We define total energy Kr as the sum of the energy of all the external legs. On the
total energy pole, which is a single pole', the energy conservation is restored, and the
residue of the K will be the amplitude:

lim v, = M, (3.5)

Kp—0 Kr

It reflects the fact that in the far past, physics should not be influenced by the boundary
at t = 0. Therefore, the correlator’s path integral formula should get back to amplitude.

The detailed derivation is in App. F.3.

From the Feynman rules in sec.2.4 we can derive the cosmological optical theo-

rem(COT) for the correlator given as

WD By, pra) + 07D (= Bra, pia)
_ 2/;3’““.(1)1’ pg)ps) . PQz’l(g}J/T<ﬁS> . 2/;3’j1._,<_p57p37 p4) (36)

+{t-channel } +-{u-channel},

where a non-zero right-hand side corresponds to the contribution from the exchange dia-

'For comparison, dS/EAds correlator will have higher order total energy pole.[4]
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gram with

1 1

T 2Rein(7,)  2E,

Py, (s) = 1y " (Ps)

7-‘-11.71

Pl () = = (3.7)
2,J s
2F,
Hi1i2j1j2 1
11925172 (= \ __ 5,(2,2) | qritiegige 1171 1272 1192 172
P2,T ( S) T T op. 0 s(22) T Ty g™ — 577'8 7§
s

and the shifted correlator is defined by,

U3ir. (—Dys P3Py Bs) i= V3.4, (—Pss P3, Pay Bs) — V3.4, (—Ps, P3, Py —Es).-

in which v5 ;, is the correlator obtained by pulling out all the internal boundary polariza-
tions from the contracted 3-point correlator. The boundary polarization is constrained for
the graviton. We show all of these constraints at (2.28). If we only have contact diagrams

then the right-hand side is zero. Note that from the Feynman rules (2.53), we have

*, J/T
¢47§¢/ / )(_El~4yE87p1~4)

=X [ [t oy Kr B DRSOV G 1,00

perm

® G;/A/h(ﬁsa Esa t, t,) ® V];(ﬁ?nﬁ% _ﬁsa 3£)K§(—E3,ﬁsa t/)KZ<_E47ﬁ47 t/) (3 8)

= Z/dt/dt/ (_iQQ)Kl(E17ﬁ17t)KQ(E%ﬁQat)VL<ﬁlaﬁ2aﬁsaat)

perm
® Goja/m(Ps, —Es, t,t") @ Vr(Ps, D1, —Ds, 8 K3(Es, ps, ") K4(Ey, P, t')

J/T
= —Tﬂﬁ/ / )(E1~47 _Esap1~4)

inwhich we the factthat Vi1, € R, K (—FE,, p1,t) = Ko(E,, D1, 1) anng/A/h(ﬁs,Es,t, t') =

Goja/m(Ds, —Es, t,t"). In this form, we can rewrite the COT in an equivalent form where
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for each channel

J/T J/T
wz(j;/ / /X/w)(E1N47E87p1~4) - wé(ﬁ)s/ / /X/w)<E1~47_ES7p1~4)

= V3,0,...(P1, P2, Ps) - Pzi}qz};f/T/x/w(ﬁs) “ 3,5, (=Ps, P3y Pa)

(3.9)
with the gluing factor of the fermion and gravitino,
o 1+ Yo ﬁ 1-— Yo
Py ()= — ) Es (20
i = (S5 5 (45
ij [~ |- 11+ ij L iy 4iv (1= i ; .
PQ,th(ps) - §Hsja(3/2,3/2) - 92 ( 2 ) (_Wsjﬁs - 57/ p/sﬂlg) ( ) ) S =Ty = +pip.
(3.10)

We should note that the boundary polarization we pulling out for gravitino is constrained
by (2.39). For contact diagrams, we can naturally incorporate fermions where the complex

conjugate is defined as Ctp, . = ¥f .|x_ ey, - Then we simply have

¢n,c(E1~naﬁ1~n) + C?ﬂn,c(—Eleﬁan) - O . (311)

We could derive the COT from these two frameworks individually:

1. Propagator Property [20] The correlator can be written in terms of the bulk-to-
boundary propagator and the bulk-to-bulk propagator. Take the scalar field as an

example, the propagators have the following properties

Ky(p, E —ie, t) = K3(p, —E — i€, t) (3.12)

and

Disc  Gy(y/zs, t, 1) = Disc  Ky(y/zs,t) - Disc  Ky(\/2s,t').

zs=|Eq|2tie 2F,  z,=|Es|2+tic zs=|Es|2tie

(3.13)
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The two properties lead to the cosmological optical theorem in the form of (3.6).

2. Unitarity [12]

If we expand the time evolution operator U in terms of the correlators, the unitary
constraints UUT = 1 will be translated into a constraint on the correlators, which
give rise to the cosmological optical theorem in the form of (3.9). The unitary

constraint also helps us to relate the contact COT and the exchanging COT.

3.2.1 Bosonic Field

Unitarity There’s another equivalent way to get the correlator from the time evolution
operator based on similar field and operator construction in [27] Ch.7.2. With this method,
we can interpret the unitarity constraint of the time evolution operator to be the COT of the
correlator. To demonstrate our analysis of the time evolution operator in the interacting
picture, supposed that the interaction Hamiltonian operator is ﬁmt = (I;T A+ H p) which
has two pieces with individual coupling constant g4, 5.

A 0 A A

U = Texp(—z’/ dt(Ha + HB))

—00

(3.14)
=1+ (QAUgA + gBUS]B) + QAQBUgAgB + giﬁgAgA + 912309393 + O(QZ/B)~

in which T means the time-ordered products and the expansion of the time-evolution op-

erator will be

n o
UgA/B = _i/ dnHA/B(U)
Uy nanss = — / M/‘mﬂﬂm (M HA'E ()6 (n — ') + HYB (o YHAE () 6 (f — 1)

_ /Tiod/ﬁod HA HB / ‘rB/ I\ TTA o
Ugags = n 7 ()0 (n—n")+H (0 )H" (n)6 (' —n).
(3.15)
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We define the operator known as the Hamiltonian, using the familiar form in the context

of quantum field theory,

Ayalt) = [ EoVa0:,000 H / P (S GV (s )bt (s 1) (. 1),
(3.16)

We restrict the vertices Vg to be real. Then the unitarity constraints U [UIT = 1 gives

Ui + ﬁ;A =0
Uyron + UgAgB = —(U,, UgB + UT U,,)

Unitarity: Contact diagrams The creation operators and the annihilation operators sat-

isfy the commutation relationship

laz, a ] (2m)28* (P — q), (3.18)

where the annihilation operators kill the vacuum state in the far past

ay|0) = 0. (3.19)
Consider the field gEd in the interaction picture, which satisfy the E.O.M:

[ﬁ07 écl(i’: t)] = —Z@tqﬁ(f, t)

dBp 1 1 iZFi
. ez:p-erzEtat_i_ _e*fo'p*ZEtaﬂ 3.20
Gal@,t) = / (27)3 V2B 7 V2E ’ -

dp 1 1
_ | L2 KB a4 ——K,(—E, —f)ay
/(27‘(’)3 ok ¢( 7ﬁ)ap+\/ﬁ ¢( ) ﬁ)ap
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in which Hy = i %Epa;aﬁ, where £, > 0. In the last line, we identify the exponential

term as the bulk-to-boundary propagator. To get the correlator from the time-evolution

operator in the momentum space, we define the momentum basis

) = a;]0)
3.21
_ [ d&p (3-21)
I= @2n) 19) (7]
and the Fock space momentum basis
|P1, Pa - . ) = alal, ...|0) (3.22)

Then we could easily show that we could extract the correlator from the first order of time
evolution operator Ugy4 if we apply (3.20) and (3.22) and do the Wick contraction with

momentum basis and the zero-state |0), >

1
V2E,
(3.23)

0 n
<p17p27 .- |UgA|0> - —i<P17P27 .. | / HA<t)dt’O> - _wn,contact(Ei) H

And for the conjugate of the operator U gT 4> by the same approach

0 n
. . 1
Py — f L :
<p17p27 - |UgA|O> - _Z<p1’p2’ .- | /oo HA(t)dt|0> - _¢n,contact(_Ei - ZE) ’ ];[ \/2—Ta7
(3.24)
we could extract the conjugate of the correlator with flipping energy signs of the external
energy. We should remark that no boundary condition comes in. Then by the first unitarity

constraints on (3.17), we have

(b1, 62, |Uga|0) + (1, b2, . . |U4[0) = 0. (3.25)

2Because |0), = 0% |0) = |0) for Hp |0) = 0, so the zero-state in interaction picture will be just
normal |0).
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If we take (3.23) and (3.24) into this equation, we’ll get the COT as (3.11).

Unitarity: Exchanging Scalar For the scalar exchange diagram, we could derive the

COT by the third equation in (3.17):

(P1p2p3pa| Uy agp + UL 10) = —(p1papspa| (U, UL+ UL Uy,0)|0) (3.26)

in which we extract the scalar correlator for the exchange diagram from the contraction
of the zero-state and the momentum basis, for the first term of LHS, if we apply the wick

contraction, (3.20) and (3.22)

(p1pap3pa] Uy g50)

S
v

perm 1

0 0
'—/ dt/ dt' Ky(Er, t) K (B2, t)Va(t, 0, p1, 2, Ds) - T (0] ¢a(Ds, t) pa(—Ds, ') |0)

: VB(t/a at7ﬁ37ﬁ47 _ﬁs)Ktb(E?n t/)K¢(E47 t/)

0 0
: _Z/ dt/ dt/Kqﬁ(El;t)Kgb(E?a t)VA(ta 8t7ﬁ17ﬁ27ﬁs) : GgsFey)<t7t/7 Esaﬁs)

<

B<t/7 8t7ﬁ37ﬁ47 _ﬁS)KQb(E?n t/>K¢(E47 t,)

4
=- (H ! ) <¢4(E1,E2>E3,E4,Es) " 3E

o (Va1 B, B Bu B, )

(3.27)
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where G((bFey) = T (0] ¢ (t) e (t') |0) is the normal Feynman propagator, which has the

relation

?

Golt,t' Be i) = GV (08, By ) = 5 Ko(Ba ) Ko (B 1), (328)
Similarly (note that the vertices V4,5 are real),
<P1P2p3p4‘UJAgB |O>
1

4
=-(I %) (wZ(—El, —Ey, —By,—Ey, B,) = 5 (s.a(—B1, ~Ey, B ) p(—Es, —Eu, E3>>>

2F

+ (t) + (u).
(3.29)

Combining (3.28) and (3.29), we have

(P1p2p3paUgags + US4, 10)

4
1
= _<H \/E){Q/M(Eh E27 Eg, E47 ES) + ’le(—El, _E27 _E37 _E47 Es)

Y3 a(Er, By, Es)s g(Es, By, Ey)
— (0_50,)in—in + () + (W)},

+ Y3 4(Er, By, —Es)s g(Es, By, —E)
(3.30)

which is the LHS of (3.26). The two-point correlation function 2—;33 = (O_s0q) in—in can
be identified as the propagator for exchanging vertices. The 3-point correlator products

come from the difference between G((fey) and Gy.
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On the other hand, the first term of the RHS of (3.26) is

(p1p2P3p4‘ ga gB ‘O>

_ZH\/E

perm 1

0
—/ dt/ dt' K y(Eq1, t)Kg(Ea, t)Val(t, 0y, p1, Do, Ps) - (0] ¢ (Ps, t) i (—pPs, t') [0)

: Vg(tla abﬁ?nﬁ% _ﬁs)K¢<_E37 t/>K¢<_E47 t/>
4

-0z

7
4

H

O O >m mwS A(E17 E27 s)w&B(_E?n _E47 ES) + (t) + (u)

O O >1n zan A(Eb E27 S)w?),B(ESa E47 _ES) + (t) + <U)
(3.31)

In the second equality we identified (0] do (75, )%, (=, t') |0) = Q_EVSK(ﬁ(ES, ) Ky(Es, t).
We also identified % as the two point in-in formalsim (O_;Oy) ;- 3 In the last equal-
ity, we used the fact that the correlator is real and the 3-pt COT. The conjugate term can

be derived similarly, and we could combine them to get

(p1p2p3p4\(UgAUJB + U}, U,,)[0)
H / d pz
\/_
_<O—sOs>in—in

(W3 a(Er, Eay E)s g(Es, By, —Es) + 03 a(E1, Eo, —Es)s g(Es, Ey, Eg)] + (t) + (u).
(3.32)

Equating (3.30) and (3.32), we can extract the COT channel by channel®, then the

3If we take t, ¢ = 0 on (0] ¢t (Ps, )%, (—Fs, t') |0), then we could identify s = (0] b0 |0). And
by the fact that U; (0, —c0) [0) = |Q0) = |0) + O(ga,5), we could write (0] ¢ [0) = (o dody |0) +
O(ga,/p)- Then for the tree-level contribution we drop the higher order contribution on the coupling con-

stants, the term (0| do b |0) is exactly two-point in-in correlator by definition. We don’t really need the exact
expression of the in-in correlator to identify it in the extraction of the correlator from the time-evolution op-
erator.
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COT reads

51¢)(E1~47 Esap1~4) + 1/}*4(1¢)(_E1~4a Es7p1~4) = 1/;3(191’172;195) ' <O—sOs>in—in : 1’&3(—p37p37p4)

(3.33)
In (3.26), Ugagp+U ; Agp CONtains G((fey) , but the four-point correlator is written in G . The
shifted correlator is needed to absorb the differences between Gé)Fey) and G,. Moreover,
for the in-in correlator

¢4,in—in(E1~4> Esa Et7 Eua p1~4) - w4,in—in(El~4a _Esa Eta EU7 P1~4)

&in—in Tin—in
-3 "3 .

200,

(3.34)

It’s the equation suggested by [ 1 2], it’s the COT written in the in-in correlator. The shifted-
in-in correlator is also needed. We cannot write COT without shifted observable because

the propagator is still not Gé)Fey) even in the case of in-in correlators.

Unitarity: Exchanging Vector/Tensor We can promote the COT of scalar exchanging
diagram (3.33) to the general spin. The 4pt correlator (plus its complex conjugate with
energy flipping) can be obtained by gluing two 3pt shifted correlators. The free indices of

the 3pt shifted correlators will contract with a 2-point in-in correlator. [3]

For example, for the correlator exchanging vector field wi‘]), substituting the COT

with the 2pt in-in correlator of the massless vector field,

wé(lJ) (E1~47 E87 p1~4) + wzy(J)(_E1~47 Esa p1~4)
(3.35)

= U3i(Py, Py, Pas Bs) (J_sT)ih_in U3.5(— Py, P3, Pas Es)

“Division of correlator channel by channel will be ambiguous upto a contact term, but we know contact
term under the Optical theorem should be 0, so every channel by channel division of correlator will give the
same COT.
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in which (J_,J,)i = (F+¢ 5 )

in—in 3E, . Because the dependence on ¢ can be eliminated by

WT identity,

ﬁiws,i(Pupz?Ps? Es) = ewz(pz) - 67/12(171)
(3.36)

kirl;?),i(pl?p%ps? ES) = kiw&i(plup%ps’ ES) - kéw3,i(p17p27psa _ES) - OJ
0171

we’ll get the COT with the gluing factor P’ (p,) = S5

in (3.6).

For the correlator exchanging tensor field z/JiT), substituting the COT with the 2pt

in-in correlator of the graviton,

O (Bras, B pros) + 05" (= Brt, By proy) = Gsij (T oTo), g py | 337

a0 il TN YY)
iRl e pLps nl 4 )

in which (T_,T,)?" — pi (

S L
in—in ER 2FEs

PZ.. The extra projector P/

we add to the in-in correlator is defined by
ija igkl ij koA ik Aj A A AT Ak A
Py =TI + wipipl — wlplipl, + piplptp! (3.38)

such that P/**PFl, = PU* and, for the general tesnor hy o, the hijs0 = PZ*hjy o
satisfy the constriant (2.28) . The projector in the 2-point in-in correlator reflects that it

comes from the correlator with the constrained polarization.

Because the dependence on ¢ can be eliminated by WT identity, we’ll get the COT

ikl
I (2,2)
2F

with the gluing factor PQ”QIfl (ps) = in (3.6). As a remark, we can note that Hilfgz)

captures all the physical boundary conditions, which include traceless and transverse.

Bosonic Field: Propagator Property We now derive COT in another approach, which

relies on the properties of the propagators, such as discontinuity and conjugation relation-
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ships [12, 20].

Propagator Property: Contact Diagram The flat space scalar bulk-to-boundary prop-

agator, K4(p, E,t) = ¢'P! have the following identity,

Ky(p, E —ie,t) = K}(p, —E — i€, t) (3.39)

with
O Ky(p, E —ie,t) = (0 Ky(p, —E — i€, t))" . (3.40)

For integer spin, the above identities still hold, since the only complex term in the bulk-

to-boundary operator K11, E, ) is ¢'F*, and we assumed that the vertices 7V are real
functions of momentum and time derivative.’ The real condition of the vertices is equiv-

alent to requiring the interacting term of the Hamiltonian to be Hermitian

int

According to the Feynman rules (see 2.4 for details), the correlators can be expressed as

Y (Brn, Bion - ) = / A w(iVig...ty.cr. By 0)) K (51, By — e, 1) K25 (3, By — e, 1) ...

(3.42)

According to (3.39) and (3.40), the correlators have the following identity

willz”.<E1NTL7ﬁ1N’n o ) + w:,hlz...(_Ean’ﬁan L ) = ()" (343)

which is the COT for the contact diagram.

30, will apply on any of bulk-to-boundary operator. Be careful, it will bring down i E instead of E.
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Propagator Property: Exchange Scalar There’s an alternative way to derive the COT.
We could investigate the discontinuity of the complexified exchange correlator [20]. We
use z = p'- p to denote the momentum self-contraction, and the on-shell energy E'is the
square root of z. Then if the momentum is complexified, the function F' = /2 will have a
branch cut on z-plane. If we set the branch cut on the positive real axis, the discontinuity

of the correlator reads

Z:%Igcik%(@ = ez = |E|* —i€) — ve(z = |E|* + ic)

(3.44)
= Ye(E = |B] —ie) = ¢e(E = —|E| —i€)
where |E]? = |z| € R. On the F space, the discontinuity is just the difference between

the correlator and its energy flipping.

To explain why this setting of the branch cut is natural, we consider the legal domain

of the energy is

Im(E) < 0. (3.45)

such that e’”! in the bulk-to-boundary and the bulk-to bulk propagator converges at the far

past t = —oo (Bunch-Davies condition). Defining the square root like

E =7 = 2|5 (3.46)

where the principal value of the argument is defined by Arg(z) € [0, —27), we can check

that the square root indeed maps the full complex plane to the lower half plane.

It’s important to mention that only terms with an odd power of energy survive under

the discontinuity defined by (3.44). These terms must come from the e*“* or the derivative

of ' indicating that the discontinuity, or the constraint (3.45), is a result of the expo-
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nential term e*#*, In the exchange diagram, we can apply the discontinuity on the internal
energy square 2z, = E2 = (P + p»)?, which allows us to extract the exponential parts of

the bulk-to-bulk propagator. Especially, for the scalar exchange correlator,

Disc ¢\ (Ey, Es, E3, Ey, 2, ... )

zs=|Es|2+ie

_ / dt / AVt P VK (6 FOK () - Dise  Goly/Ftot)) - Vil B, 00 K (. o) K (£, 1)

zs=|Es|?+ie

1
= 2E’ /dt/dt/VL(t7ﬁa7at)K(t7ﬁ1)K<t7ﬁ2> D]SC 'K(;S(\/Z_S,t)

2s=|Es|%+ie

Vit P ) K (¢, B)K (¢, 51) - Dise  Ky(y/7,t)

zs=|Es|2+ie

1 )
Disc @b:ﬁ/..‘(Eb Ey,Es, Ey, zs, . ..)

—  Di 5i. (F1, By, E3, By, 2, .. ) -
isc iy (B, Bo, By, By 2, ) 2F,  zo=|B,|?+ic
(3.47)

in which we apply the factorization property of the discontinuity of the scalar bulk-to-bulk

propagator,

Disc  Gy(y/zs, t,t') =

zs=|Es|?+ie 2F

Disc  Ky(y/zs,t) - Disc  Ky(\/z5,t"). (3.48)

s zs=|Es|?+tie zs=|Es|%2+ie

It’s just the COT because if we write the discontinuity explicitly, we’ll have
Disc ¢\"(E, By, Es, Ey, 2, . ..
25:|Esl2i’i6w4 ( b > 5 4’2 )

= Y\ (Ey, By, E3, By, By —ic,...) — 0\ (Ey, By, E3, Ey, —E, — ic,...)

Disc 31 (B, B, B, By, 2, . ..) (3.49)

zs=|Es|?+ie
= é:{R(Ela E27 E37 E47 E87 s ) - ?iiR(Eh E27 E37 E47 _E87 s )

= ~§:{R(E17 E27 E37 E4, Eg, Ce ),

Then substituting the (3.47) with (3.49), we can get the COT written in (3.11).
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Propagator Property: Exchange Vector/Tensor Inthe Lorentz gauge orthe transverse

hTT

i » the bulk-to-bulk propagator of

mode of the massless vector and tensor field, A} and

the transverse (and traceless) field is

G (/2 1) = 7oy Gl 1)
hljl_] (\/Z_S,t t) HZ]M Gqﬁ(\/Z_s,t t)

(3.50)

Then the discontinuities on the z, of the bulk-to-bulk propagators are

Disc  Gaii(v/2s, 1, ) = Tsij . Dise Ky(y/zs,t) - Disc  Ky(y/zs, 1)

2s=|Es|2+ie 2E 2s=|Es|2tie 2s=|Es|2+ie
ijkl
) 2,2) . ) ,
Disc G iriiv(\/2s, t, 1) = —=23  Dpise K, VZs,t) - Disc  Ky(/z, ).
2o=|Es|2ic iy (Vs ,t) 2FE,  z.=|E.|2+ic s(V2s 1) 2o=| By |2ic (V2 1)

(3.51)
Similar to the derivation of the COT exchanging scalar by the discontinuity, substituting

the correlator written in the Feynman Rule ¢ with (3.51), we could get (3.35) and (2?) .

3.2.2 Bosonic Partial Energy Pole

The COT gives another constraint on the correlators, which is the partial energy pole

constraint. Let’s use the scalar exchange COT, i.e., (3.6), for demonstration. The 4pt

correlator 104 has energy poles ﬁ and & —, while ¥] has energy poles ﬁ and

m, since the sign of the external energy is flipped. The partial energy pole locates at

E1 = 0, which appears only in 4. On the other hand, 15 also has the energy pole Em

which is the sum of the energy of the external legs of the sub-diagram, and the residue is

the amplitude. As a result, the residues of

_ Ms(py, Py, P.) - ¥s(—D,, P3. Ps)
E§f50w4 (E1~47E87p1~4) - 2ES

®Because the correlator should be invariant under the gauge we choose for internal polarization.
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We’ll get a similar expression for the Fs4 pole, whose residue is also the product of
amplitude and shift-correlator. It’s trivial to promote this result to higher spinning boson

correlators:

) = NIy, T e (—
pRes Wi = Msi(P1, P2 Py) 5 Vsi(=Pys Py Py i) (3.52)
ijkl
Res @/J(T):M3~(p Dy, D.) s’(2’2)%z3k1(—p Py o, ) (3.53)
E125s—0 4 AN F25 s 2F, ) sy P3) P4 s

where M37i, Mg@ is defined by

Ms(py, sy D) = Mi(D1, Do, D) €50
(3.54)

M3(p17p27p5) = M‘;j(pbp%ps) Es,i,Oes,j,O‘

3.2.3 Dirac Fermion Field

In this section, we only use the Feynman Rule to find the COT of the fermion. To
write down the COT, we need to carefully calculate the conjugate of the correlator and

examine the discontinuity of the correlator.

Contact diagram The Dirac fermion operators are also complex, for the correlator, the
operators are x4 , and X_ ,. We define the conjugate of the correlator to be the normal

conjugation (¢, — v}) with x, , <> Y_,. ’ In this paper, we use C to label the conjugate

"If we examine the conjugate in the COT of the scalar QED correlator. It seems like we also need to
interchange the complex operator O, and its conjugate operator Op. If we use C' to label the conjugate of
the correlator and under the conjugate correlator will take complex conjugate and make O <+ O*, then the
COT reads

(OF k.. 020y )e(Bian, Pion) + C(O7 g, Ooy. oo ) e(—E1on; Pian) =0 (3.55)
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of the correlator. Then, we could propose the contact COT of the fermion,

(X—BaX+.42 - )e(Eron, Dins)
(3.58)

+ C{X-BaX+.42 - )e(—=FBiun; Pins) = 0.
where (X_ B1X+.42---)c is the contact correlator obtained by pulling out the boundary
condition X_ g1, X+,4,2,--. in the expansion of the wavefunction. We could apply the

COT to the QED 3-point contact correlator, which is

(X5 2.eX A3 —e) = iT (1= pa)¢, (1 +55)] - (3.59)

And the conjugate of the correlator with energy signs flipping is

C<J1>_(B,f,2,eXA,+,3,fe>(_E1~3) = (<J1XA,+,2,6>_<B,+,3,*6>)T(_E1N3)

(&

- —_KT (1 + a2)v0f 701 — B5)] 4 4 (3.60)

(&

~J

(1 =p2)¢, (1 +95)] 5, -

— I
The equivalence of the last line is because the boundary field y_ and y, absorbs the v, by
X-Y = —X- and yox— = x=. Substituting (3.59) and (3.60), we could check that (3.58)

is satisfied.

Then we could find the Feynman Rule we use for QED can be proved to be applicable

Then, if we apply the COT to the 3-point contact correlator (we use the subscripts to label the charge of the
particle),

<J10;,503,—e> = Kie(m —p3) - €1. (3.56)
T
The conjugate of the correlator will be
* * * 1 * *
CUN 03,05.-c) = ({1 02603 o))" = (=€) (ps =p2) -1 = (] 03,.05,-c)". (357

The operation, O <> O*, makes 2 <+ 3 with e — —e. And, because labels 2 and 3 are anti-commute in the
correlator, we find that C'(J103 O3 ) = (J105 ,O3 _.)*. The conjugate of the correlator is equivalent
to the normal complex conjugate. As a result, the normal Optical theorem, like (3.11), still works for the
contact correlator of the scalar QED.
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to the general theory in the (C.146). Then, we could extend (3.11) to the general theory

by similar calculations.

Exchange Diagram: Exchange Fermion Because of the difficulties to get the COT in
the version including the conjugate of the fermion correlator. ® We only propose the COT

in the version of the discontinuity. (we define p; = —p; — pa = ps3 + P4 here.)

First, we should note that the fermionic COT can’t be rigorously derived by promot-
ing the derivation of the COT of the bosonic field. The reason is that the Feynman rule
we use might not be applied to the fermionic correlators which is expanded the boundary
action Sp. So in App. C.3, we show that, under the discontinuity, the fermionic correlator
indeed shares a similar Feynman Rule structure with the bosonic field. Then in (C.157)
we find the discontinuity of the bulk-to-bulk propagator gives the discontinuity of the

correlator,

Disc ¥\ (p)a, 25
ZS:‘ES‘%Z,S% (Pi~as 25)

B

A
. LS I+7% —®s 11— . LS
= D s)’ . . D ) ) ~S)-
zs:\E}jgiie ¢37A(p1’p2’ & ) 2 QES 2 25:|]17155|(2::|:z‘5 ¢37B(p3 P ;)62)

$Because of the C operation, it will mix different channels in the LHS of the COT because we permute
the label of the field and its conjugate. Then we cannot make the COT to be equal channel by channel. Even
if we sum up all the channels in the COT like

L Dise X (Frenze) + | Dise ) (Press20) = GaFiess B) = 00 (it ) + (1)

v = ”wiﬁ)s)(ﬁlw, Eg, Eyq) + Cwifii) (Pias Br, =Eina)

+ 1#51),(&) (Pi~a, Bty Eroa) + waﬁ‘()s) (Pi~a, Es, —E14),
3.61)
. The last equality, should not be correct for the massive and massless fermion correlator (Jx.Jy) so
the COT version with the conjugate remains unknown.

99__9
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in which on the RHS of the above equation,

}I?EiS'gf V3,4(P1, D2, 25) = ¥3,4(P1, Pas Bs) — ¥3,4(P1, Do, —Es) = 123,14(171,272, By).

(3.63)
is identified as the shifted-correlator. Then (3.62) gives the discontinuity version of the

fermion COT.

_%is‘gi, O (Frmts 26) = Ya(Pinsy Bs) — a(Proa, —E)

L0\ . /1 . (3.64)
:’l/}gr,A(plap%ps) <( 2,70> 2Es ( 270>> w:;,B(_psup37p4uEs).

We should remark that this form of COT is the same for the massive and the massless

AB
fermion. And we could identify the gluing factor, [H% . % . 1*% , as the 2-point

in-in correlator

_ 1+ _ 1l = 1+, 7P, 1 -
s__sABA:—Q sX— —s 1 — s
<X+, X—, >7,n—zn ( 2 )( R6<X-‘r7 X-, >) ( 2 ) ( 2 )ZES( 2 )
(3.65)
in which we the real part of the correlator is
_ 1 _ _
Re(x+sX--s) = 5((X+sX-—s) + O{x+sX- =)
1 _ _

= S (45X —s) + (XesX—=s)))

(3.66)

2
w5 mee(aes) )
g 2E.p.

Es+m E,—m E2-—m?2

where the equivalance ~ means that 7, is absporbed by boundary condition y_/x4. Then
the COT of the correlator exchanging fermions (3.64), is just the discontinuity version of

the COT substituting the two-point in-in correlator with the fermionic one.
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Exchange Diagram: Exchange Massless Spin 3/2 Now for spin 3/2 particle, we could
easily extend our result by substituting the two-point in-in correlator in the COT exchang-
ing fermion field with a 2-point in-in correlator for a 3/2 particle,

() () 3.67
w4,s (E1~47 ) ¢4 s (E1N47 ) w?) A z<w+ s¥— —s>zn lnw?) B,j ( )

5 50 _ _
. . i 14y ~Tsit P HEPL P+ 1—q0 B . ij Pij
inwhich (¢y_ _ g, )9 =Py 5 5 P, ;. The extra projector P/, P

we add to the in-in correlator is defined by

. i nd 1
P;] = ( ﬁ H(3/23/2) +psﬁs/y - pf@) (3 68)

ij 1+70 i
Py = 9 ( 1_[?3/23/21?i + Pl jﬁ )

suchthat Pi* P! = P/ Pi*Pi = P and, forthe general 3D spin 3/2 field ¢/, ; 4, V", o,
the Y4 ;50 = Pijﬁ@/);f;&o, @_7i7_570 = Pij,_s@/),_’j;_sjo satisfy the constriant (2.39) and (2.40).

The projector in the 2-point in-in correlator reflects that it comes from the correlator with

the constrained polarization.

Similar to the in-in correlator of the photon and the graviton, there’s a gauge term
proportional to ¢ in the 2-point in-in correlator. We could use the WT identity to elimi-
nate ¢ dependences. Dropping out the gauge term and simplifying the in-in correlator of
gravitino, we could show that the COT could be written with gluing factor H 5.(3/2,3/2)

defined in (3.10). With the property

VlHZs],(s/Q,:s/z) = p;HZsJ,(3/2,3/2) =11/ s(3/2,3/2)% =0 (3.69)

, the H” captures the sum of the physical gravitino boundary condition, which is

(3/2,3/2)

gamma-traceless and transverse.
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3.2.4 Majorana Fermion Field

We define the B-operator, B = —i7, and the charge conjugation operator

C:x— By

Then Majornara condition of the 4D spinor will be

Ox =x (3.70)
v
X g
(iog)v*

Now we want the Majornara fermion as the boundary condition of the classical solution,

so we split (A.30) into two 3D spinors, Yox+ = FX+:

I+
2

( )C(x+ +x-) = x+ = (—in)x® = (=B)xL (3.71)

in the last equality, we set Y = Xi% again to relate the field and its momentum conjugate

then we have the 3D Majornara condition of fermion

X =—x'B (3.72)

so we find that the dual boundary condition of the 3D Dirichlet boundary condition
and x . is related under the Majorana condition just like fermion and anti-fermion related

with each other in 4D.

In the case of the amplitude, we could show the Majorana flipping relationship by the
property of the B operator, B, B = —(7,)*, and the operator D = iB~, with a property
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Buj = uy = —iDu ;uy(—B) = Uiy = ul (—iD)
(3.73)

U1y ug = (ﬁlfy“ug)T = —ugD’y”Dal = Uy uy

This equality implies that there’s no actual difference between Y and Yy, like for the am-

plitude

M (hiX2x3) = (€1,,(p2 — p3))tsf us = —(€1,u(p3 — P2))Usé us = —M (h1X3X2)-
(3.74)

And this flipping relationship could be extended to the theory with the vertices composed

of Yuvp... = {’YM [/71/7 {’7/) s }]} with a property _D/yuup...D = (r}/ul/p...)T~ ACtuaHy, in our

paper, we only discuss this type of vertices.

To check that we have no problem matching the amplitude to the correlator under the
total energy pole, we show that if we write the fermion polarization u, @ in the boundary

condition (v = (1+p)x+,u = X— (1 —p)), the Majorana flipping relationship still works.

Y ug = X1,-(1 = POV (L + Py)xo+ = (xa,-(1 — P (1 +1§2)X2,+)Jr
= X3, D(L+$,)D*+"D*(1 — ) DX} G.75)
= Xz, (1 +P)7"(1 = P))x1,+ = Uy 'uy
where for convenience, we write the Majorana condition on boundary condition (??) as

Y- = x5 (=iD), (—=iD)x™ = x4

Then although the C-conjugation includes a process that Y _ <+ ., for the Majorana

correlator, this process won’t change the correlator due to the flipping relationship. The
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C-conjugate in the Fermion COT is just equivalent to normal conjugation,

Cdjn,maj - (wn,maj)”x,(—n@r = (wn,maj)T- (376)

3.2.5 Fermionic Partial Energy pole

If we take the partial energy pole residue on both sides of the fermion COT,

(X) 1 + o 1— AB
i S 7 7
RCSE12S—>0 ¢4 = M;:A(plvp%ps) (( 0) p/ ( 0)) 1/1373(—?5,?3:294, Es)

2 2 2
AB
o b (AU o Dam)  —S-m ) )
- 3,A D1, P2 Ps 2Es E34s E34 _ Es 3,B Dy, D3, Py
(3.77)
in which we define
M3 (py, Do P, _yy 2 = M3 ,(P1, P2 P)X ] w0
s (1+E5+m)x+,s,0 (3'78)

MS(p17p27ps) = M;A(plap%ps)u?

and the last equation holds only when we could write the three-point correaltor as

Ps Ds Ny
E. By B = (1 v _ (3.79)
Ya(Es, By, By) (+Es+m)w3 <+Es+m)ES+E3+E4

where N is independent of the E. It’s true for )5 is pure transverse and for QED corre-

lator (Jxx). In these cases, N§' = M. Similarly, we have

ReSE345 —0 %(;X)

~ AB
:77;3,A(p57p17p27Es) (<1+70) _2})?(1_70)> M3:B<p37p47_p5) (380)

2 2
u 1 Y0 (/S—) — AP U
= N37A(p17p25ps) 28 ( E12 - ElfiE M3,B(_ps7p37p4)

43 doi:10.6342/NTU202302262


http://dx.doi.org/10.6342/NTU202302262

in which we define

M3(p37p47 _ps)’

Dls ) = )_(i,sy()M;A(p&p@ps)

a—s:)i(—,—s,o(]-f FEstm

(3.81)
M3(p37p47 _ps) = aésMg,A(p?)upéb _ps)

and the last equation holds only when N could be defined like (3.79). We could check
that (Jx.Jx) we derived in the Lagrangian approach as shown in (D.199) indeed satisfies
these asymmetric residues on the left and right partial energy pole. And we could extend
the result to massless spin 3/2 particle:

(%)

ReSE125 —0 ¢4

.. . . AB
1+70\ =7/ — 5% B (1 — 7 7
= M, (P1, P2, D) << 5 ) P 22 V35 B(—Ds: P3, Py» Es)

2
u 7Téj _’g (_ /S _ m) <_ryo) AP U
= MS,i,A(p17p27ps) 9°F <E34 _E Es+ E,+ E Ns,j,B(_ps>p3aP4>
. . AB
1+ K A ~
+ M;,_A,i(plvp27ps) (( 270) ¢Sf # ( 2’70)> ¢3,j,B(—p5,P3,P4,ES)
(3.82)

Exc3/2
ReSE345 —0 ¢4

y A . AB
~ 14 Y0 _’N? As - l?{.zsﬁs#i 1 - 70 -
= ¢3,A,z‘(p5,p17p2, E;) (( 5 P/ 22 9 M3,j,B<p37p4v -p,)

e <_ E% (70) (5-)

AB
MY, (—
2L o — E * E,+ Ey,+ E; ) SJ,B( Ps, P3; Pa)

. . AB
T 1+ —7. s i 1- -
+,‘7Z)3,A,i(ps7plap27E8) (( 270) ¢Sf # ( 2’70)> M3,j,B(p37p47_ps)
(3.83)

= Nz?,i,A(ppszps)

The last equalities for individual partial energy pole residues are held when n N could be

defined like (3.79).
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3.3 The bootstrap program

3.3.1 2pt correlators

By dimensional analysis and Ward Takahashi identity of two-point correlator dis-
cussed in App. F.1, we can fix the 2pt correlator of scalar fields O, vector fields J¢, and

graviton fields 7% to be

(Op0p) = E
(J' i) = By, (3.84)

(T THY = Br; g

PP

pPibj

where we defined m;; = n;; + £ -

For the graviton two-point correlator we apply the
E.O.M that 7;; hf{p = 0 then in the correlator we apply 7;; ~ 0. And for the fermionic
correlator, by dimension counting of the action, we know it should be a dimensionless
factor. And the two-point correlator should be sandwiched with the 3D boundary spinor

condition y_ /x . With the identity

)_(,7,p[X+,p = X-,—pY0X+,p = 0. (3-85)

the only nonvanishing 3D rotational invariant factor will be

o =L = p (3.86)

p

And for gravitino, the dimension counting is the same as spin half fermion, the two-
point correlator should be a dimensionless factor. By the similar argument to the spin
half fermion, the only nonvanishing matrice sandwiched between 3D gravitino boundary
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condition ¢/* /¢, like §App. F.1 shows will be

() o p (87

And by the WT identity of the two-point correlator,

pi (i pul ™) = 0. (3.88)

Now we know that in the two-point correlator, only the transverse part survives. Now we

get
(WU UhT) = i (3.89)
in which we set the normalization to 1. For the gravitino two-point correlator we apply

the E.O.M that (v;1 (7)) = —p(psbi (i) then in the correlator we apply v; ~ —pp);.

3.3.2 3pt correlators

Procedure to obtain the 3pt correlators:

1. Decompose the correlator and use Ward-Takahashi identity (We list all of these in
§App. E.2) to determine the longitudinal part. And there should not have a total

energy pole in the longitudinal part.

2. Apply total energy pole condition to identify the transversal part correlator to be

M3,L07'entz

e in which the M3 15,ent. 1s the amplitude with polarization in the Lorentz

gauge, said €;p' = 0.

3. Find if we could write an unfix polynomial ansatz by momentum dimension count-
ing.
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3.3.3 4pt correlators

1. Decompose the correlator and use the Ward-Takahashi identity to determine ‘the
longitudinal part. And check that it indeed satisfies the partial energy pole’s residue.

There should not have a total energy pole in this part.

2. We decompose the correspondent amplitude channel by channel, and the numerator
in the s, ¢, u channel is in the certain factorization form we choose and with the

respondent contact term we choose.

_ ‘/L%,L,s ® ‘/}),R,s + ‘/E’),L,t ® Vé,R,t + ‘/S,L,u ® ‘/S,R,u

My S T U

+ (certain contact term, polynomial)
(3.90)

in which we use V7, to denote the left and the right vertices.

3. The partial energy pole residue for the bosonic transverse correlator will be

1 ~ 1 1
R T = —_— / T = ! M — ES
ELe:SO w47boson QES ‘/?),L ® wR VE)%L ® ‘/&R 2Es (EL ’—Es) (3 91)
1 - 11 '
T o T _ / . T |Es
Res Ui poson = 57 o VL @ Vap=Va & Vag- g Es( o Z,)

where the ¢Zs is the pure transverse correlator. On the other hand, we find the
fermionic correlator, the gluing factor of residues of individual partial energy poles

are different.

11,
QES(E_L’_ES)
1 1

S ES
TR

1

5E Vi ® @ZJJTQ =V, @ Vagr-

Res ¢Zfermion =
=0 (3.92)

1 -
EIE%CZSO wg:fermion = Q_Evswg ®/R ‘/E”,R = %,L ®3’% ‘/E”,R :
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4. Use the fact that

1 1

(Ey — Es))Eys S
1

m
Kr—0 FiogFsy,

1 —1 1
lim = (=1) — (3.93)
E12:—0 K7 B34, 2Es | B3, B3+ Ey— E;
) 1 —1 1 1
lim = - .
E31s—0 KpEhos  2Hs | Fas  Eip — E

Then we could build up the pure transverse correlator channel by channel,

Vi =i, + UL+ UL, + Ul

(3.94)
And for the s-channel part, we could build it by
o = — N (3.95)
- KTEREL
and for the bosonic correlator, we could only build a N such that
Klim() Ns,boson = ‘/?),L,s X VE’),R,S
~ (3.96)
lim Ns,boson = VE’),L,S ®/ ‘/3,R,s
ER/EL—)O
we accomplish this by writing a form that
No=Vars®Vans+mKr” ="Vsp & Vags+n,ELER (3.97)

in which the second equality is in general nontrivial but we’ll prove in the context.

And for the fermionic field, the residues of the two partial energy poles are not
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symmetric. Then we need to find /N, such that

limo Ne=V5.s®VaRs

Kr—

limo N, = ‘/E’y,L,s ®IR ‘/S,R,s (398)

Erp—

. /
hm() Ns - ‘/L%,L,s ®L ‘/3,R,s

EL—)
we accomplish this by writing a form that

Ny =V31s@V3ps+ngKp
(3.99)

/ /
P ="VarsQr Vars +NprER” ="V51sQ, Vs rs+nprEL

in which the second and third equality is in general nontrivial but we’ll prove it in

the next section.

. Sometimes, the correlator built by the previous step will violate the COT with a
polynomial term Acor 01, Vanishing on all the residue, and in our case, it’s invariant
under the flipping sign of external energy. Then we could make

—N,

T _
¢4,s B KrERE]

— Acor poly (3.100)

to restore the COT.

. Use dimension analysis to find if there’s an unfixed polynomial term we could not
be constrained by COT and the residue of the singularities. The remaining unfix
polynomial term will reflect the fact that we don’t add a requirement that the cou-

pling is minimal.
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Chapter 4 Bosonic correlators in Flat

Spacetime

In this chapter, we introduce the cosmological correlator for bosonic fields in flat
spacetime. We will show how to decompose the correlator into the transverse compo-
nents and the longitudinal components. The longitudinal part can be fixed by the Ward-
Takahashi identity. The transversal part can be fixed by the total energy pole and partial

energy pole conditions.

4.1 2pt correlators

By dimensional analysis and Ward Takahashi’s identity of two-point correlator dis-
cussed in App. F.1, we can fix the 2pt correlator of scalar fields O, vector fields J¢, and

graviton fields 7% to be
(O_pOp) = E

(JLp )y = Emy (4.1)

<T1jpTIlfl> = Eﬂ'z’,kﬂ'j,l

pibj

where we defined 7;; = n;; + 55
P
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4.2 3pt correlators

Procedure to obtain the 3pt correlators:

1. Decompose the correlator and use Ward-Takahashi identity (We list all of these in

§App. E.2 ) to determine the longitudinal part.

2. Apply total energy pole condition to determine the transversal part.

42.1 (JO*O)

The correlator should satisfy the following two conditions: (we set coupling constant
e=1)

Res €,;(J10303) = €1, (ph — ph) = e1im (0} — pi)
KT*}O

4.2)
pi(J10303) = —(03,,05) + (030143) = (B> — Ej)

In the first condition, we used (E.229). We then show how to determine the correlator.

1. Determine the longitudinal part by Ward-Takahashi identity

AP = 7 ! »

=7€;0(P) — PP ejo(P)

(J10505) = e} j(J]0305) — ip'D;(J]0;05) = emi ;(J{0305) — Gig—ll(@ — E3)

(4.4)
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2. Determine the transversal part by the total energy pole condition

Res, €1:(J10303) = Res e1im ;(JO505) = evimt ;(ph ~'ph) (4-5)

3. Combining the longitudinal part and the transversal part, we get

<J10;og>:—1ﬂ(§2 7 —eipg—( > ) (4.6)
T 1

And we can check that actually in the longitudinal part the Eil co-dimension 1 pole

is spurious:

Res 22— B3 _ B2 — B3 Kr Pri(p2 — ps)' + (E2 — E3)

= =0 4.7
E1—0 E1 E1 KT KT ( )

Another way to say this resultis : If £y = 0 then p, — —p; so we will have E? = E?
thatis Fy + E5 = 0 or By — E3 = 0. For By + E3 = 0, it seems like % will have a
co-dimension 1 residue on F; but actually, now we also have K = F; + Fy + E3 =0

so it’s co-dimension 2 residue. And for F5; — E3 = 0, we know there’s no residue on £

for the numerator is vanishing now.

422 (TOO)

The correlator should satisfy the following two conditions:

Res (TP 0,05) = [eu(ph — o)) = [exmi( — )]
’ (4.8)
1

p1,i<T1ijO2O3> =3

. . 1 ‘ ‘
((014203)ph + (020143)p3) = 3 (Espy + Eaps)

In the first condition, we used (E.232). We then show how to determine the correlator.
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1. The decomposition of graviton boundary condition We write the boundary condition
in the bi-vector form

hij,O = €4,0€5,0 (4-9)

and by the EOM Gy, = 0 on the boundary as (2.28) shows
Wijhij,o =0 = 1€ 0650 = —(ﬁiEi,o)Q (4.10)
We can solve that

€0 = Pijfj’o = (PiD;j + i€ipcPpTej + Wij)gj’o (4.11)

in which §; o is any vector, €, is the Levi-Civita symbol. Then we could decompose

the € to be the transverse and longitudinal mode like vector field in 4.2.

2. Determine the longitudinal part by Ward-Takahashi identity

(T10203) = €] (T10:03) — (e1,1)p1,;{T7 0203)

= €161 ATV 0203) — 2(er i) (Pir el (T} 7 0203)) + (b 1y a(T1  0205))
(4.12)

(TT0203) = €] 61 (T 0505)

Y i'j g —1 j j
(T7F0,03) = =2(e1ip") (prrer (17 0203)) = —2(61,z‘p1)(€{j)(2—El)(E3P§ + Eop3)

~i j E2 - ES
= (6171'2?1)(6{]‘ 3)(T1)
Ey — E5
E,

AN2A A i’ j 1 A~
(IE0,00) = (evstt Phwaby (T 70200) = (et)? (2207 1) (Bt )

(4.13)

by (4.7) we know all the codimension £ pole is spurious. And we define the single
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transverse part of the correlator for the latter convenience

ij —¢€ ,iﬁi j j
€1,i.0,L€1,;,0(T1 0203) = (TF0,03) = % - [Es(e1,3p%) +Ealer ;p3)]
1

(4.14)

. Determine the transversal part by the total energy pole condition

Res (T10,03) = IBG—?0<T1TTOZO3> = (el,ﬂij(pg —pé))2 (4.15)

Kp—0

so we have
€1 (ph — pl
(1770,05) = Th4le = 1) (4.16)
Kr
Notice we cannot add any subleading terms like
(€161 ;)0 - Poly,(Ey, By + Ej) (4.17)

because we have (2.28) we could decompose it into longitudinal and transverse parts

and for the latter one (x is the coupling constant.)

(e’ﬂie’fj)nij = O(k) ~0 (4.18)

So we don’t need to consider the 7;; or trace term in the same order as other terms
in the transverse correlator, our EOM on the boundary makes it vanish. But it’s not
the case in dS space, because we don’t have (2.28), but in addition, we have trace

WT identity from Weyl invariance of the dS action [4]

i (T 00)4s5 = (3 = A0) [(024103)as + (020143) 5] (4.19)

Ao is the conformal dimension of the scalar, so actually, we should decompose the
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h;; more in dS to divide the trace parts determined by conformal WT. Notice now

the bivector form is not ok, instead [ 1]

1
ho; = 5(P W T Pl + Plag + Pobi)how (*420)
in which
(Pl,l)k]l - 27T((k7le)) - d— 17TJ7T}€[ =2 (H272>kjl
ij i17.9) 7 2 ij7. 1
(,PLQ)le = QWElk])kk) — d— 17le€kkl
(4.21)
g n 2 ..
v ? ) )
(Po)yy = 2k kqm)) — T T
o 2d—=2) e
Vo= Kk ek
(PQ,Z)M (d — 1) kM

such that p' (Iy)? = 7 (Iy)% = 0, and we could write the transverse traceless
parts in bi-vector form

(1€t ,) = (Thap); W™ (4.22)

with

now the decomposition of the correlator will be
hoii (T .. Yas = €1 €1 (T )as + 2hom K k(T .. )as

1 _

2d—3 400 1 LJ (i
n ( RFO b — —hkl’owk’) kik;i(T" ... )as
(4.24)
1 o
+ PRk T as
= (T s + (T) a5 + (T*E)as + (T779) s

the last term can be determined by trace WT like (4.19).
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4. Combining the longitudinal part and the transversal part, we get

(TOO) = (TT 0503) + (T{"0203) + (T 0,03) (#-23)

423 (TTT)

The correlator should satisfy the following two conditions:

Res <T1T2T3> = M(hlhghg)

=[(€1-€2) (€3 (p1 — p2)) + (€2 - €3) (€1 - (P2 — p3)) + (3 €1) (€2 - (p3 — p1))]°
= ((el,T,o -€270) (€370 (P1 — P2)) + (€270 - €370) (€170 (P2 — P3))

2
+(e370 - €1.10) (€210 - (P35 — p1))>

ij 1
pl,iel,j,0<T1jT2T3> = (61,0' 6270) P2,k€2,1 (TfigT?,) - 5( 1,0 'Pz)ﬁz,o,kt?zo,l (TﬁgT3>

1
+ (€10 €30) Pagesy(ToTyt,) — 5(61,0 - ps)esonesor(ToTat,)

(4.26)
In the first condition, we used (E.232). We then show the pure transverse correlator will

be:

1
(T Ty = X ((Gl,T,o - €270) (€370 - (P1 — P2)) + (€270 - €370) (€170 - (P2 — P3))

2
+ (€310 - €1.10) (€210 - (P35 — p1)))

(4.27)
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And the Longitudinal parts of the correlator in (77'T") are determined by WT identity,

€1,i0,061,5.0 (T ToTs) = (T ToT5)

—€ ’iﬁi 1
= <}3—1) - (€107 €20) Pageri(TToT5) — 5 (€10 - P3)eannes0. (Tt} 2T5)
1

1
+ (€10 €30) Paxess(ToTat,) — 5(61,0 - P3)es 063,00 (ToT5 )
(4.28)

4.3 4pt correlators

Procedure to obtain the 4pt correlators:

1. Decompose the correlator and use the Ward-Takahashi identity (We list all of these
in §App. E.2 ) to determine the longitudinal part. And check that the longitudinal
part of the correlator determined by step 1 indeed satisfies the partial energy pole’s

residue.

2. We decompose the correspondent amplitude channel by channel and the numerator

in the s, t, u channel is in the factorization form.

LM @My | My@M; | My @ My

M
4 S T U

+ (contact term(polynomial))

(4.29)

in which the Q) means two three-point amplitudes are glued with the sum of the
internal polarization vector. It’s easier to start from a factorized amplitude to match

the partial energy pole residue which is also factorized.

3. Apply total energy pole condition and determine the transverse parts of correlator
up to O(KY).
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4. Apply partial energy pole condition on each channel and determine the transverse
parts of the correlator. If the right and left sides of the factorization channel are
symmetric, we only need to consider the condition on one side, and the other will

be automatically satisfied.

5. Determine the transverse parts of correlator b y requiring O(K?.) and O(E?) on

each channel in the previous steps being consistent.

Notice in the end, by momentum dimension counting (We only count the dimension of ”’
momentum and energy”’ but do not include the dimension of boundary condition and cou-
pling constant, this counting should be the same for every term in the correlator), we could
know is there any term like O( K% E? EY%) without any pole so it cannot be constrained by
residue. (Or, equivalently, we could say that for the contact term if the O(K?.) term is tol-
erated by momentum dimension counting?) If there’s a unfix term, we need to constrain
our correlator more with full Optical theorem, and for minimal gravity and scalar, we need
to impose a soft limit for the correlator to fix the remaining unfix terms to ensure minimal

coupling theory.

If by the dimension counting, there could be no O(KE}E?) because a term like
this should be composed by momentum norm’s contraction and energy, in which only
spurious pole is tolerated, its energy dimension should be bigger than zero. So the energy
dimension of the correlator is negative, there should not be any unfix term.
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43.1 (OO*0OO0O*) exchanging photon

Step 1

The (OO*O0O*) amplitude in the form of factorization numerator in s, ¢, u channel:

1 1

M (¢1950303) = g(lh —p1) - (pa—p3) + f(pz —p3) - (pa—p1)

Step 2

To simplify the equations, we consider only the s-channel, (O,;05030}) = (O,05030%) s+
(01050507);. The computation of the ¢-channel is similar. The correlator should satisfy

the following conditions: (Kp = Ei934; B = Ehas; Er = Fsus; Py = P3 + Py)

(p2 — p1)"(ps — P3)u
S

Res (01050507), = M (61656363) =

T%O

Ty [ (P2 — ps)’ _ (ps —ps)’

2F, Er Es+Ey—Eg|’
(4.30)

* * i * Ms,ij 74 i
15250(01020304% =M (¢1¢27—s)2—Ez¢jsogo4 =(p2—m)"-

in which 7;}3” = (J;(—ps)J;(Ps))in—in (if we drop the vanishing gauge term which won’t

contribute to the residue). The first condition implies

— o) (py — >
(01030507}, = - ZPI e L SE Dy @an

while the second condition implies

)i (s —ps) &
(0:030507), — -2 pﬁm;éﬁf Ps) N (B (4.32)
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Subtracting (4.31) and (4.32), we get

_ (BE2—Eh)(Es—E3)Kr + (E2—E©)(Es—Es3)ELER 00 00
Es E? n n
0= KrErER L + Z C”T)<KT) N Z CnL)(EL)
n=0 n=0
(4.33)
where we used the identity
(B2 — Ev)(E3 — Ey) — (P2 — P1) - $)((p1 — P3) - §)
(4.34)
_ (B — Ey)(Ey — Es)Kr . (BEy — Ey)(Ey — E3)ELER
E, E?
From (4.33), we can see that we have to choose
= Ey,— E\)(E,— E
ZCgT)(KT)n _ ( 2 1)( 4 3)
n0 Fobu (4.35)
iC(L)(E = (Ey — Ev)(Ey — E3) '
n=0 ! : ESZKT
therefore,
(p2 —p)"(pa —p3)u (B2 — En)(Ey — E3)
0,05030%), = — £ _ 4.36
(10300 KrELEg E,ELEg (430
_ (2= p)'mi(pa—ps)  (Ez— En)(Es — Es) (4.37)
KrELEg E2Kr '
so we could write down the full answer:
(01050507 = — (p2 — p1) " (pa — ps)y + Ky - =) BB
B Erp B3, Kr
_ ) e — )yt Ky BEREEEE
Erg Faz K '

Because the energy dimension of (O;0;0505) is (—1),there should not be any unfix term
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In the end, we’ll show that the E% co-dimension 1 pole is spurious (or'we’ll say it’s
co-dimension 3 pole with partial energy pole kinematics). Notice, when E; — 0, we’ll
have p; + p» = 0 = p3 + p4, and we want to avoid partial energy pole kinematics so
E; = E34 # 0 and Er = E15 # 0 should be satisfied, now we only have £y, — Fy = 0
with E5 — E4 = 0 which make Resg, ¢ w = 0, the co-dimension 1 residue

vanishing. And at the same time, we could show that this term only has residue when

E,=F;, = E3ys = Egr = F15 = 0. It’s a co-dimension 3 residue.

432 (JOJO*)

Step 1

Boundary condition decomposition : we can decompose (JOJO*) like:

<J10§J304> = 61’2‘630‘({]{'0;{]%’040
= 6¥,i€§,j<JiO;J§O4> + Efﬁg,jUfO;JgO@ + 6{,i€?€,j<JiO;J:§O4> + efieéj<JfO§J§O4>

= (JTO3J10,) + (JFO3J30,) + (JIO5JF0,) + (JFO3TF0,)

all the terms except the first one are determined by WT identity. So we try to find the form

of the first term in Step 2.

Now because the longitudinal parts are determined by the WT identity. We only need
to check these parts indeed satisfy the partial energy pole residue condition. Equivalently,

we’ll say the WT for photon labeled as 1:

p§<J1’103J37jO4> = —<OT+2J37]'O4> + <O;J37j01+4> (439)
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pi<‘]1,i0;08> = —<OI+203> + <O;Ol+8> = (B, — Ej) (4.40)

is consistent with the partial energy pole residue for the longitudinal parts of the

photon labeled as 1:

Res (JF03J50,4) = My, 36 - V000 =0 (4.41)

F125s—0

Res (J1O;J504) = @JLO*O - Mg

Eg4s—

_ 1 - P2 [p1 j(LO504(Ey, By, EL)) — p1j(J10504(Ey, By, —EL))] (—2e5:p%)

= (€104) '(—2631‘173) (4.42)
Ey

in which we use the Ward identity of the amplitude
My popr = PridLly s ogr = (B1) ™ ua M3, e = 0 (443)

So now we need to get the longitudinal parts by WT identity and take the partial energy

pole residue like

* i A —1 i *
EESiO<JfOstO4> = Res_ {(Gﬂ%) 5 (p1<J1,i02J3,jO4>)}
N —1 * *
= Res, [(€5): 5+ (~(0fan00) + (031,01
=0
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* i A —1 i *
E53i0<J%02J3O4> = Res_ {(ﬁpi) B (p1<J1,iOzJ3,jO4>)}
N —1 * *
= Res (1) B (—(O14273,;04) + <02J3,j01+4>)}
(Elﬁl) i
= £1?1 (—2e3ip4)

Then we have checked that (4.41) and (4.42) are satisfied.

We notice this consistency is also applied to other partial energy pole residues if
we do permutation 1 <+ 3 and 2 <> 4 and it’s similar to prove the consistency between
longitudinal parts and WT identity of the photon labeled as 3. And it’s also easy to see
that in the longitudinal part E% co-dimension 1 pole is spurious, notice that when F; — 0
then p; — 0:

-1
L . N
Res (J703J504) = Res (1) E,

(—(03J3,;04) + (05J5 ;04))

=0

Step 2

(JTO3J304) = (JLO3J304) s + (J[O5J50,4) + (JLO3J30,4). (4.44)

To simplify calculations, we only consider the partial energy pole of the s-channel. The

computation for the ¢-channel is similar. The correlator should satisfy the following con-
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ditions:

T 0yi g T T 0yi gd T
* €1iP2P1€3; €1iP4P2€3; i
K%ejo(JlTOsz,TO4>s = Mygpgr = —4— FoA— 2¢1'ey;
1 - (—2e5p) [ 1 1
Res (JTO:JIO,) = Mgy - —— - R J X
oS (1025 Ot = Migor - 5 bs00r =26 =55 = | 50~ R, — T,
(4.45)
it’s trivial to find that the following form satisfies all the constraints
eTpind el €T pind T 9¢TicT
<J1TO;J:;[O4> .y 1:P2D4€3; 1:P4P2€3; |46 6 (4.46)
ErasE3ys K Ery Fog K Kr
if we apply the trivial identity
1 1 1
lim = = —— (4.47)
Kr—0 B9 Fsys  (Es — E3g) By S
1 -1 1 1
lim = (=1) (4.48)

Bi2o0 KpFays 2B, |Esy Bz + By — E,
and the momentum counting of the (JO*JO) is (-1). So (4.46) is a unique form for the

transverse correlator.

43.3 (OOOO) exchanging graviton
Step 1

The (OOOO) amplitude in the form of factorization numerator in s,t,u channel:'

1 1 1

Meravity(P1020304) = S [(Pz—]?l)‘(]?4—]?3)]2+f [(P2—P3)‘(P4—P1)]2+5 [(p2—pa)-(p1—p3)]?

(4.49)

By double copy M¢ravity (pdpp) = Mg,wt(m (¢*pp* ) or the VL' numpurw VI‘{'”, term sum on all the
channel should be proportional to S + 7"+ U then it’s equal to zero and vanishes.
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Step 2

We decompose the correlator to three channel parts like (O105050%) = (O1050305) .+
(010505075); + (01050303%) .. And without loss of the generality, we demonstrate the

calculation for the s-channel. The residue of the total and partial energy pole will be

. _ 2
K%e_§0<01020304>s = M (p1020304) = (2 pl)#ém Ps)u) (4.50)

Zﬂ ]

Res <010203O4>5 = Mii/(¢1¢2h—8)

E12,—0 wTSOSO4

Ts,ij sl 5’ Vom0 \TsiiTs i’ 7

7TS ZZ 7TS
= Mu (¢1¢2h 5)T¢Tso304 2M” (¢1¢2h—5) 47 ¢T50304

i i TsijTs,il 4
=(p2—p1)'(p2—p1)" - =

2F,
(]94 - ps) (P4 - p3) (p4 - p3) (P4 - p3) }
E34s ES + E4 - Es

1 o~ Ts,ii 7'('5 »»»»»
— SN (G16h—s) LI g
_ ((p2 = p1)" T - (p4 —p3) [ 1 _ 1

2K, B3 Es+E,—E

. 1((192 —p1)' - Tsij * (P2 — p)")((pa —ps)’ - Tsij * (P4 — p3)’)

2 2F,

1 1 ]
E34s ES + E4 - Es
—((p2 — p1)" - Wi - (P4 — p3)?)?
KrE3y,

1 ((p2—p1)" ey (P2 = p1)?) (P — p3)" - Moy - (pa — p3)’)

2 K1 B3y, 7

(4.51)

We could inspired by the (OO*OO*) step 2 calculation we could match the first term
of the partial energy pole residue to the amplitude by the equivalence from (4.36) and

66 doi:10.6342/NTU202302262


http://dx.doi.org/10.6342/NTU202302262

(4.37)

(B — Ey)(Ey — E3)
Es

(p2 — p1)"(pa — p3)u + K7 (4.52)

(Ey — Ey)(Ey = EB3)
E2

s

= (p2 — Pl)iﬂs,zj(m - p3)j + Eios B

(4.53)

and we’re left with the term could be rewrite into the term vanishing at K and vanishing

at each partial energy pole, by the quick idnetification to the follow contraction

(p2 — p1)" (P2 — p1), = —(p1 + p2)"(P1 + Do)y = Eros(— K1 + Es4)

= (By — E1)* + (p2 — p1)im2 (p2 — p1)j — (p2 — p1)ibipl(p2 — p1);
(B3 — E})?
E? ]

S

= (p2 — p1)im (p2 — p1); + [(B2 — E1)* —

Ey, — E;
B

= (p2 — p1)im? (p2 — p1); + ( [EZ — E7)]

(4.54)

[ES — EL)E — B3] = (BizsBaa,)? — KB + KrEy(ES + Ei2Es) (4.53)

((pr — p2)im? (p1 — p2);) (P4 — p3)im¥ (ps — p3);)

Ey—E E,—E
= (Ems(—KT + Ez4s) — ( 2E D2E? - E122]) (E345(—KT + E1as) — ( 4E 2B - E§4])
Ey—F E,— F
= —2E,KrE15,E3s + B}y F3y, 4+ Kr[(Esus)( 2E D2A(E? — B + (Euas)( 4E 2)2(E? - E3))]
E2 - E1 E4 - E3
— Bis B3y(( 7 (B2 — Ef) + ( 7 )} (E? — E3,)]
Ey— F E,—F

+ ( 2E =)%( 4E V(B B3, — KAE? + KrEy(E? + Ey5Eyy))
(4.56)

we could rewrite to make the match explicit

((p1 - p2)i7Tij(p1 - p2)j)((p4 - p3)z'7T§j (P4 - pa)j)

(4.57)

c 2 2 ¢ _ c
+ ErosEsuslly pooo + EtasEaslls 0000 = Er15000
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in which we define the completion term

Ey — F;
1_[10,0000 = _(T)Q(Ez E122) (

FE,
E2—E1 E4—E3
Hg,oooo:—(“r( i )

Ei—E
———)(E: — E3)

Ts000 = | — 2EsE12:Esss + (E345)( T ) (E? — E},) (4.58)
E,—FE
s (BB gy
FEy, — F E,—FE
+ ( QE 1)2( 4E 3)2(_KTE§ + E3 + ESE12E34)]

it’s easy to verify following expression,

2
<(P2 —p1) " (s — p3)y + K1 - WM) - %KTTgOOO

(01020304)s = —

Eri9sEsys K
(4.59)
— —m{ ((p2 P1)iT (pg — ps); + ErosFays - (Ey — E12?(§E4 _ E3))2
(4.60)
;(E123E348H1 0000 + B2 B3I 0000) } (4.61)

satisfies all the pole residue constraints.

Step 3

Notice now the momentum counting of the correlator is (+1). So there is unfix term
on s-channel like:
Yunfiz = (ar12E12 + ar34FE34 + ar(Es)) (4.62)
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in (4.61) would be tolerated. So we need to apply the full Optical Theorem as the con-

straint,

ijkl
5,(2,2)
2F,

((p2 - pl)iﬂs,ik(m - p4)k)2 - % ((pz - p1)i7Ts,ik(p2 - p1)k) ((p4 - p3)i775,ik(p4 - pg)k)
(Ef, — E2) (B3, — E2)

S

Vas(Bres, By D1y) + 0" 40(—Eres, B, P1oy) = U345 (P1, Doy D) Vs xi(=Dy, D3, Ps, Es)

= 2F, -

To match the Optical theorem, we could expand the (4.61) like

(010:0304),

.. — — 2
((p2 —p1)i T (Pa — p3); + ErosFsas - WM)

s

_ N o000 | FrasEsisllf o000
Eros B3y Kp 2Kt 2Kt

- S Zgi;szé;f;(; ;) —2 ((p2 —p1)i m (pa — ps); ) <<E2 — il—:)ﬁ(é?; - ES))

((EQ — E1)(By— Eg))Q 1 H%OOO] M v000

. E123E34s .
Kr

E? 2 * 2Ky

S

Then it should be complemented by a term without changing the poles’ residue like (No-

tice, I1 is invariant under the flipping energy sign.)

1 3 /(B — E)(E; — E)\>
(01020304)s — (01020504)s + E - 5+5 (< 1 22?(2 3 4))

so now the full correlator from 3 different channels will be combined as:

2
((pz — pU)un" (pa — p3)y + Kr - W) — %KTTOCOOO
E125E343KT
1 3 ((E —Ey)(Es—Ey)\’
3 (PRI L+ )

22 E?

(010:0304) = —

+Es'

(4.63)
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Now the remaining unfix parameter without changing the Optical Theorem should satisfy

the following constraint:

]m(aT,lg, CLT734) = O7 RG(U,]) = 0 (464)

The remaining unfix parameters respond to the fact that in the Lagrangian, there is a non-

minimal coupling interaction term is unfix:

L=.9(R+(0.0)°+ fR$) (4.65)

if we constraint f = 0 for minimal coupling scalar, then we could find that there’s a shift

symmetry of scalar in Lagrangian: under the transform

o(7) = ¢(Z) +a (4.66)

and in the momentum space

5¢(p) = ad®(p —0) (4.67)

in which a is a constant, Lagrangian will be invariant for f = 0, and the wave function

should also be invariant:

3
5L =0— 00 = / (‘;:)13 (O(p1)...Y(6¢(pr)...) (4.68)
_/ S Opy)-. )@ (pr —0)..) =0 (4.69)
= (271')3 Pi).-. P1 el ) = .
so we need to require
plligqo(O(pl) ) =0 (4.70)
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in (OOQ0O), the shift symmetry constraints will be

<01020304> =0 (fOf a=1~4) (471)

lim
E,—0

then we could fix the parameter in (4.62), because we can check that (4.63) already satisfies

the (4.71), notice that &1 = 0 = p, = —po with E; = F), at this limit

(0,05050,) = 0 (4.72)

lim
E1—0

and the unfix term under this limit should be

Elllllo wunfi:c = (CLTJQEQ + CLT734E34 + CL](EQ)) ( .. ) =0 (473)
1
the only solution 1s ar 34 = 0, ar12 = —a; but we know ar 12 1s pure real and a; is pure

imaginary after they’re constrained by Optical Theorem, so we only have a3y = ar 12 =

—ay = 0, that is the no unfix term in the correlator in (4.63).

43.4 (TOTO)
Step 1

By the following WT identity of the (TOTO):

| |
pri€jo{Ty O2T504) = —§(p2 - €1)(0241T504) — 5(174 - €1)(02T30441)

/ 1 !
+ (€1 - 63)p3,a<Tf+30204> 5 (€1 - p3)(T1430204)

1
+ —(py - €3)(€1 - €3)(O2414304) + 5(174 -€3)(€1 - €3)(02041143),

1
2
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we can determine the Longitudinal parts,

61,i,O,L€1,j,O<T1ijO2TSO4> = <T1LOZT3O4>
—€ Z'Ai 1 1
= M =5 (py - €)(021T304) — = (py - €1)(O2T50441)
E 2 2
1

+ (61 . 63)p3,a<Tf+30204> -3 ( 1 'P3)<T1+30204>

(P2 €s)(€1+€)(O2111500) + 5(b - €5)(€1 - €5) (O20n11.5)

N | —

+

then we could check that its partial energy pole residue is indeed consistent like

Jim (TFOLT,00) = 0 = M(hféad) - 51 oo, =0 (4.74)
im (10,T50,) = = 'p;éfl ) i (6:h504) = Yrros0, " 5 B M(¢sh3" bs)
(4.75)

iji'y’
Jlim (TFO,T,04) = 0= M(h{hsh,) - ;gf it o,0, =0 (4.76)

: —(€1-P 1 ~
lim <T1LOQT304> = M : (61 : 63)p3,a€3,b - —(61 : p3)63,a63,b H??(%%Q)M(hzT’CdOQOzl)

E24u~)0 El 2
4.77)
Cm
- leLTgTﬁ; : QST) - M(hl) pa4) (4.78)

Notice that the Ward Identity of amplitude makes M (k') = 0. And the Longitudinal parts
of 3pts are given by (4.14) and (4.28). Notice when pick the total energy pole residue of

the longitudinal parts

Res (61 . 63)p37a<T{1+30204>/ = Res (61 . 63)63,bp37a<T1a_~b_30204>/

E24u—0 E24u—0

= Res (€- 63)63,bp3,a<T1ai30204>; (4.79)

E24u—0

= (€1 - €3)esps.alliys) , M (hy *0,0y),
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Step 2

The (TOTO) amplitude in the form of factorization numerator in s, ¢, w channel is

(6{,0 'p2>2 (GsT,o ‘p4)2 (GlT,o 'p4)2 (€3T,0 'P2)2

6 . 2
+ 17 [ (p3 ) €1T) (pz ) Gg) - (p1 ) €3T) (pz ) €1T) + w ((p2 — pa)* (1 _pB)u)

- 8(‘53,T ) e1,T) ( (€1T,0 'Pz) (5:7;,0 'p1> +2 (€1T70 'Pz) (€3T,0 'PQ) + (Erip,o ‘P3) (eép,o ‘pz)

U
+§(63,T . 61,T)>

Step 3

Now we only need to match the transverse part to the total energy pole residue and
partial energy pole residue applied on individual channels. So we also decompose the
correlator into four channels and try to fix them one by one. s, ¢-channel is exchanging

scalar, and the u-channel is exchanging graviton.

(T 02T T 04) = (T 02131 04) s H(T) T Oo T3 O A-(T7 T O T3 T Oy (T T O T3 Os),
(4.80)
Without loss of generality, for the scalar exchanging channel, we demonstrate the calcu-

lation for the s-channel. The residue of the total and partial energy pole will be

(6{0 'P2)2 (esT,o 'p4)2

Res (TTTO, T 04) s = My(hyohsgy) = 16 (4.81)
Kp—0 S
. 1 - (2€1,5,705)* (2€3,5,7p%)?
TT TT T i, TP2 4, TPy
EEseiO<T1 0515 04)s = M(hy ¢pa¢p—s) - 2E, '¢OST§TO4 - E2, — E?
(4.82)
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It’s easy to see that the following correlator we built from amplitude over K¢ and make

S — —ELER,

(¢l p2)" (€50 ps)”

IO, 17 04), = —16
< 1 243 4> KTE125E34S )

(4.83)

satisfies all the residue constraints. Similarly, for the graviton exchanging channel, or

u-channel
Res (TTTO, T804y = My (hipahsds) (4.84)
Kpr—0
16 T T T T (63,T - €17) ?

=7 (Ps-€r) (Pr-€3) = (P €) (P2 €1) + = (12 = )" (01 = P3)n)

(4.85)
o
TT TT (1. TT 3 TT g id’ 2w T4
(Res (IO T3 0)y = M(hy"hs'h,) —5. Voo, (4.86)
—16
= — 4.
£, — E2 (+87)
T T T T (€37 €17) ii 2
: { (ps : 61) (pg'ﬂ'u : 63) - (p1 '63) (Pz Ty 61) + T ((p2 — pa)imy (p1 —p3)j)
(4.88)
1 1
5 [J3,L C Ty J3,L] Z(pQ —Py) Tu - (Py— Dy) } (4.89)
in which the shorthand of the terms are defined as
1
Taw = (el Doy —p) + (e (e~ (e pieh) @90
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i jj’

f ii! (2,2)u  yorjy’
E5510<T1TT02T§TO4>u:w(TfTTgTT,u)~ 2F, Mg (4.91)

16
- B} — E2

u

(4.92)

| o €) (€)= (- €) (- €) 4 ) (- )

(4.93)

1

Ve me gl |- p) w0~ 9|} (499

So, if we start from amplitude over K as correlator and make U — (—FEj3,Fb4,) as
u-channel, we’ll come up with the problem to match 7, contraction to , ;; contraction
of the first term in partial energy pole kinematics. In the first two terms in the square in

the amplitude, the match is trivial,

[(ps-€f) (P2-€5) — (Pr-€3) (P2€r)] = [(ps-€]) (P2 - €5) = (1 €5) (P2 7w €1)]

= - (p3 ) ‘51T) (Py - Pu) (ﬁu : 6;) + (p1 : Gg) (Py - Pu) (ﬁu : 6{)
= - (pu ) 6{) (Py - Pu) (ﬁu : eg) + (pu ) 6?’:) (P2 - Pu) (ﬁu : 6{)

)
(4.95)

And for the last term in the square in the amplitude, it’s similar to the situation in (OOOO).
So we could add a term like (4.53) inside the square on the numerator of amplitude to solve
the problem. But the second term in the partial energy pole residue we need to match it to

be a term vanishing in total energy pole, actually, we could apply the relationship by do
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the 4D trace on the M (h]ThITh*"). Then we found that

1
M (hi"hy"ht") = Z(G? -€)2(p1 — ps) - (p1 — ps)
= M(h{"h3"h) + M (hi"hy R )mus; — M(hi"hS B ) Pu ibuy

1 .
=Jsr mu-Jart g (€7 €))” (B — By)* — (P — ps) - Pu)?)
(4.96)

Then we could rexpress the the second term in the partial energy pole residue by with the

match we derived in previouschapter (4.54),

1 1

_§[J3,L'7Tu'J3,L] Z(?Q—le)'ﬁu‘(l’z—lh)
1 .
= —3—2(61 €D (Busu(— K7 + o) — (By — Bs)> + (py — ps) - %) (497

. (E13u(—KT + E24u) - (EZ - E4)2 + <<p2 - p4) 'pAU)Z)

Then we could apply (4.57) we derive in the previous chapter, then we have the match
(Notice, the IT¢ and T here we relabeling the indices of the momentum such that it’s the

u-channel term.)

[J3r -y J3L][(Py — Py) - T (P2 — Py)]

1 1
+ é_l(é : €§)2E12SE348H10,0000 + Z(GI : Gg)QEfst:ingoooo

1
= Z(‘f{ : €§)2KTTgooo

(4.98)
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Then if we substitute the residue of the pole with the match we mentioned before, we

would get the correlator

(IO, T 04), = %{ [ (ps-€1) (P2 €3) — (1 €3) (P2 €1)
+ —(63’T461’T) ((pz — pa)(p1 — p3)u + Kr ((El —~ E:”;ELEQ — E“)))] B

1
- 3_2(4 : eg)QKTTgooo}
(4.99)

It’s trivial to show it satisfies all the residue constraints. In the end, to match the amplitude

on the total energy pole we add a contact term as the contact term in amplitude over — K,

8
(T 02T O4) = (€7 -evr)
T

(et pe) (e p) 2 (el ) (el )+ (e p0) (€2

_|_

(s m))

Now we’ll find the exact form of U beyond of total energy pole kinematic is ambiguous,
it responds to the fact that some unfixed terms won’t change all the residue constraints.
So, we need to fix it by full Optical Theorem and the soft limit of scalar energy to ensure

minimal coupling.
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Step 4

If we require the correlator to satisfy the full Optical Theorem, the mismatch will

only be on the u channel, like

Aopr = (T102T504) y(Erna, By, Prog) + (110:1304) (= Eres, By, Pry)
1
(Ef, — E2) (B3, — E2)

s

¥ { Py €1) (Do 10u - 1) = (py - €1) (py - - €7) + ST () i, p3>j>]

— (32E,) -

4
1 1
— 5 Jsr-mu Jai] | 7Py = pa) - T (Py = pa)| }
2 2

_ e ((E1— E3)(Ez — Ey) 1 3 ((BEL— E3)(Ey — Ey)

= —32F,(€, - €)" - < 2 13 + 3 2
So we only need to add this term to the correlator
<T1TT02T?:FTO4>u

2 2

TT ) TT (Ey — E5)(E2 — Ey) 1 3 ( (B — E3)(Ey — Ey)

— (17 0515 Oy), + 16E,, - ( £ |3 + 3 £
(4.100)

then the full Optical Theorem is satisfied. Then for minimal coupling scalar, the correla-

tor’s soft limit should vanish. The correlator we get at this limit,

lim (T[T 0,137 0y) = b;im0<T1TT02T§TO4>C = lim U(e] - €3)* =0 (4.101)
2—>

EQ‘)O EQ‘)O

So we need to find a U satisfying the following constraints:

. 2 2
Jim U = By — By (4.102)
lim U = 0 (for a = 2,4) (4.103)
Eq—0
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We can start from the Ansatz

U(E., E,, E;, B,) = B, — E? + KrPoly,(E,, E,, E,, E,) (4.104)

We can solve that

U=E% — E? — Kr(Ey3 + aE, + bEsy) (4.105)

with the unfix coefficient a, b satisfying a + b = —1. But because we also need this term

to satisfy the Optical Theorem of the contact term, so we have

U(Eaa Esa Eta Eu) + U*(_Eaa E57 Et» Eu) =0 (4106)

This constraint that a is pure imaginary while b is purely real. So we musthavea = 0,b =

—1. As aresult, we have

T 2T 2 T 2¢ T 2
TTOTTO.) — —16 (61,0 -p2) (‘53,0 -p4) 16 (61,0 -p4) (63,0 -p2)
3 OaT5 Os) B2, B34, K1 B4 By Kr

16
" BB [ (P €]) (- €]) = (p1 - €}) (P~ €])

1 ((Pz — pa)"(p1 — ps)p + Ko ((El — BB)(Es - E‘*)))] B

+ B,

1
- 3—2(4 ) eg)QKTTgooo}

#1608, - (=B L —E4>>2. [1 o3 (B —E@)?

u

(]

8 .
# MO () () + 2 (o) () + (o) ()

Fi, — E*— Kr(E;3— FE
L Lhis T By 8T( 13 24)(637T'617T>>'

Now similar to the case of (OOOQ) exchanging graviton, eq (4.64) proves that no term
won’t change the value of pole residue, the soft limit on all the legs’ energy, and the full

Optical theorem. So we completely fix the correlator.
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Chapter 5 Fermionic correlators in

Flat Spacetime

5.1 2pt correlators

5.1.1 Massless Spin Half Fermion

For the massless fermion, by dimension counting of the action, we know it should be
a dimensionless factor. And the two-point correlator should be sandwiched with the 3D

boundary spinor condition y_ /x .. With the identity

Xf,fp[XJr,p = X-,—pY0X+,p = 0. (5.1)

the only nonvanishing 3D rotational invariant factor will be

=2 —p (5.2)

p

in which we set the normalization to 1. It’s a unit vector of the momentum, so it’ll be no
1/E, pole on this form. If we want to promote to the massive spin half fermion, if we
write the momentum to be

pzk,/Eg—mQ (5.3)
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so the dimensionless factor without codimension-one pole will be

= 5.4
¢2,m7é0 Ep +m ( )

The positive and the minus sign of the mass will depend on our convention to identify the

3D-spinor under the Bunch-Davies vacuum. If we choose 92 n20(= X_pX;) then

1
Ep+m
wil match our Lagrangian computation result. And If we choose 1 ;,, 20 (= )prx;) ) then

1
Ep—m

wiil match our Lagrangian computation result.

5.1.2 Gravitino

The dimension counting is the same as spin half fermion, the two-point correlator
should be a dimensionless factor. By the similar argument to the spin half fermion, the
only nonvanishing matrice sandwiched between 3D gravitino boundary condition " / Q/Ji

like §App. F.1 shows will be
(W) o p (5-5)

And by the WT identity of the 2-point correlator,

pi{¥i st = 0. (5.6)

Now we know that in the two-point correlator, only the transverse part survives. Now we

get
(WU L) = i P (5.7)

in which we set the normalization to 1.
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5.2 3pt correlators

The rule is the same as bosonic correlator,

1. Decompose the correlator and use Ward-Takahashi identity (We list all of these in

§App. E.2 ) to determine the longitudinal part.

2. Apply total energy pole condition to determine the transversal part.

521 (Jy x*)

The correlator should satisfy the following two conditions: (We already set the cou-

pling constant e = 1)

Res <J1X_27X;,r> = M; = e, (U7 u3)
Kr=0

= —E{i(ﬂwiug) (Coulomb Gauge, p; - €, = 0)

(5.8)
= —(Xa (1= p )¢ (1 +p,)xs)
p17i<Jf>€2_X;> = (_ﬁz - 153)
in which we use the fact that
Puy =0 — up = (1+P)xz+
(5.9)

P =0 — iy = Xp—(1—P)

to write the 4D on shell spinor @/ in 3D spinor boundary condition Y_ /x ..
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1. Determine the longitudinal part by WT identity

__ i\ P1 e i
(Jixa™xq) = —(e, zP1) ~ (JfX2 X3) = —(€1iP1)Xa, = ﬁ2E Py)
1

3,4, g

i +
= (erih ) X2~ = ALl e
1
2. Determine the transverse part by the total energy pole condition

__ -1 _

(e xd) = 7o Yo (L= B)FI(L+ Bo)xss (5.11)

And there is no subleading form we can write proportional to /' on the total energy

pole.

3. Combining the transverse and longitudinal parts, we have

(IiXax3) = (Jixax3) + (e x3)

I_(i Xa,— (1 _ﬁQ)’{ (1 +ﬁ3)X3++ (€1, lpl) (ﬁzglﬁz)))

(5.12)
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522 (Ty ")

The correlator should satisfy the following two conditions: (We already set the cou-

pling constant K = 1)

I%e:SO<T1>ZQ_X§> = Ms gy = —Ms3 j00 - M3 5 (double copy)
—(e1,u(aay"us3)) (€1, (p2 — p3)”) (the only amplitude form satisfying M|, _,,, =
= —e} ,(Wy'us) (€] ;(p2 — ps)?) (Coulomb Gauge, py ik = pyeiel = 0)
= (61, (m2 = p3)) Oz (1 = By (1 + By)xs)
PTG ) =~ (o~ €)By + 5 By~ €)By + [Py Al + B, ]

(5.13)
Then by the first condition, we could show the pure transverse correlator will be
_ -1
(T7' % x3) = X (15 (p2 = 3} ) (%o (1 = By) 1 (1 + By)xa) (5.14)

And the longitudinal parts of the correlator in (1Y) are determined by WT identity,

(TExaxs) = —[(€ pra)priler; (T Xaxs)

= i ] (5 By + 5ol G lpy B+ GBI A)
(5.15)

523 (Tyyt)
We use the fermion vector form to describe the boundary condition of the gravitino

Vo= exX-
(5.16)

Vi = €X+
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and because we have the boundary EOM

v =P Y) =¢x: =0 (5.17)

the € and y are related. And if we write the amplitude polarization in the Coulomb gauge
p-1 = 0, then we could write down the amplitude polarization in the form of the boundary

condition as

Vi(p) =€ x- =€ x-(e) - (1—pP)
(5.18)

VD) = e x4+ =€, (L+P) - x4(¢])

But the readers should be careful that they’re not independent field to the vector component

Then the correlator should satisfy the following two conditions: (We already set the
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coupling constant k = 1)

IBC—SO<T11/;2_Q/}§F> = M37T7];¢ = M3,JJJ,eactracted color algebra * MSJ@Z@[) (dOUble COPY)
=

= [(2e30p10) (€2 - €1) + (2,0€5) (P2 — p3)pel) — (22,07 )(€5,0€7)] (—€1,u(U27 u3))
(the only amplitude form satisfying M|, ,, = 0 and M|e,, o spps = 0)
= —(Gagius) [(2€] - py)(€; - €]) + (€5 - €5)((P, — P3) - €1) — (2€5 - Py) (€5 - €7)]
(Coulomb Gauge, p, - €, = 0, a = 1 ~ 3)
= —(Xa (1= Bo)¢, (1 + P3)xs)
- [(26; - py)(€r - €1) + (&3 - €)((Py — 3) - €1) — (263 - py) (€5 - €7)]
Pr(Ti o, —ths 1) = —Xo,-PaXs+ (€ - €3) (D3 - €1) — Xo—Psxs+ (€2 €5) (Py - €1)
- Xz,—lz2X3,+ (GQT ‘ Pl) (€3-€1) — X27—]53X3,+ (‘53T ‘ Pl) (€2 €1)
— (&) (b o Al s) + 5 (e ) (o [ il o)
Poi(Tils _ahs ) = —(TV T3 3) €13 (Xo—eX3,+) — é p1. €] (ene(¥f o _t34))
= — (e &) (o-flxss) B1 — % (€1 - €3) (Yo [P15 £1] Byxs.+)
pai(Titba k) = (TiTy ) €12 (Xo—TkXs4) + é (e16(V5 _V1134)) [P1, 1)

1
= (Grir . 62) <X2,—¢?X37+) Ey + 3 (61 : Gg) (X2,-Ps [P1, 1) X3.+)
(5.19)

Notice now besides one diffeomorphism WT identity, we also have two SUSY WT iden-

tity. Then by the first condition, we could show the pure transverse correlator will be

(T2 = o (63 (L= B+ )

[(2€3 - 1) (€3 - €1) + (€3 - €3) (P — p3) - €1) — (265 - Py) (€5 - €7)]
(5.20)

Notice that and for the transverse part of the boundary condition should satisfy the bound-
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ary EOM
vl =—pp-p") =¢xs =0 (5:21)

then no polynomial ansatz without total energy pole we could write except for the term

we discuss in (??). Then we completely fix the pure transverse 3-point correlator.

And we could determine the longitudinal parts by the WT identity. Notice in the
§App. (E.2), we already show that the longitudinal parts given by different WT identities

are the same.

1

<T1L152,f¢3,+> = —[(Efﬁl,i')a] : [— 22,7132X3,+ (GzT ‘ 63) (p3 - €1) — 5(2,7]53X3,+ (62 : €3T) (py - €1)

— Xo—PoXxs+ (Gg 'P1) (€3 €1) — X2,—PsX3.+ (Gg 'p1) (€2 - €1)

e e) (ol vs) ¢ (0 ) (o [pie i)
<T11/;2L,_¢3,+> = —[(Gélﬁz,i')E%] : [_ (elT : ‘53) (9227*¢1TX3,+) By — é (‘51 : Grép) (X, [P15 £4] ﬁ3X3,+)]
1

E [ (€1T : 62) (X2,7¢1TX3,+) E, + % (61 : e?) (Xo,—Ps [P1. £1] X3,+)}
(5.22)

(Tida—th5.4) = —l(eshs.0) g

5.3 4pt correlators

The bootstrap rule for the fermionic correlator is the same as the bosonic one. But
the two partial energy pole residues of the correlator are not symmetric. So it’s not trivial

to match them when we want to glue the 3-point into be 4-point correlator.

531 (Jy Jyt)

To match the amplitude, we need to decompose amplitude channel by channel, and on
the individual channel, the numerator of the amplitude is factorized. (p* = p§ + p; p}' =

88 doi:10.6342/NTU202302262


http://dx.doi.org/10.6342/NTU202302262

P+ )

M (7v1X373X4) = Ms(71X373Xa) + Mi(71X373X4)

[P+ P,

M (v1xX373Xa) = Ma, (71X2Xs) 5 } Mp, (73X -sX4)
AgBg

[-m—p _
SRIINCR ] e e I VAE SRS BN CE )
AsBs

it

MG | 2] M bare)
AsBs

My = (M;)]103

And we should notice, only on the s-pole, then p# is on-shell and equal to the sum of the
polarization vector.

lim § = lim ~,pl = ; u ) (5.24)

Because we don’t have energy conservation in the correlator, our definition of the £

is already on the shell, F; # E3 + E,. We can only write the amplitude in the variables

we write the correlator as:

_ § N _
Res (JIX5 JyxT)s = Ma(n1Xa75Xa) = Ma, (11X2Xs) { | M (v-axa)
T—)O S AsBs

_ ——Pp _
= My, (’Y1X2Xs) [%} Mg, (’73X73X4)
AsBs

Mt Py
(E125E34s>

— (- A | [t e

(5.25)

Then we want to write an ansatz for the pure transverse part correlator trivially satisfies
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the partial energy pole residue,

1 _
EESiO<JEX2?J?’TXI>S B faQ#? 2E, < S(EQJ.ZS) By +<£1)— E, > ' ¢§U4
_ L (8
- (B Y

v (-l g (G + )

T
. 1
QES E34s + KT) ¢3( +ﬁ4)X4,+

1 -z _
JRes (D6 IxG)e = (L= B)A - o ( (vbgﬁV ~ <[ﬁ(T> ).¢§(1+ﬁ4)x4’+’
(5.26)

we show in (3.2.5) if we take m = 0 and the trivial ansatz satisfies the total energy residue.

The ansatz will be the mathch of the form like

T 1 [KT$’YO + E318 4+ >0 Crsn B,

U D) = 5o~ (1— )y } A B

" By KrE345(2F;)
_ 1 KT’YoSﬂ - E125$— + ZOO— CLsnE‘n
= 1— T, n=1CLisnl34s | 4T (¢
e [ oy A0+ B
- - 1 [E)(Ps+ Py) + 302 crsnKy
_ 1 — T n=1"-1,s, T| 4T 1
R e e 0+ B

(5.27)

And we could focus on the ¢y, 5 ,,, we’ll find to match the total energy pole residue

Z crLsnlisy, = —Es1s9- + 2E5(Es45v0) + Z crr, sl
" . n=t (5.28)
= E34s$ + Z CLT,s,nEngls
n=1

then to match the other partial energy pole residue set that

oo

> crranE, =0 (5.29)

n=1
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Then we have the fixed s-channel transversal correlator

T I = (1= g K= Bed BBl g,
(Ps+ Py) 1= 9-

= vy (1 — T, . ¢Y(1
=Py {KTEHSEMS 2 ESEHSEMJ PP
(5.30)

we could check this match the (D.199) when m = 0 and ¢; = ¢;. And on t-channel
transverse correlator, the only difference is 1 <+ 3. And By dimension counting, there’s
no contact term ansatz we could write. Then cause we know the longitudinal parts are

determined by the WT identities, we could check these longitudinal parts are consistent

with the partial energy pole residue.

- —p ,iEi P
<J1LX27—J3X+> = ( El 1) p1 (S X2~ JaX+)
o (5.31)
DL€ _ _
= ( 2 ) (—(Xat2,— Saxa+) + (Xo— Ssxa+4,4))

First we take the F5, pole

s
2

1 % AB
. *
(5 Fatata)

~ B 14

(Res (JiXe-Jaxe) = 0= Ms (71 XeXs) (( 2%>
(5.32)

by the amplitude Ward Identities, we know that Mz (yF2xs) = pi Msi(71X2xs) = P Ms,.(11X2Xs) =

0. And for the other pole for s-channel

_ ]51,2‘63 _ ]51,z‘€zi _ AB/ —
Res (JExo_J = R _J = _aM s
E34Sio< IX2.—J3x+) = ( ) )E34§§0<X1+2, 3X44) = ( I )X2,—,aM57 (X —sY3X4) X4,B,+
T — 1+ _As 1_ / _
= \I’?(‘]lLXQ,—Xs,-&-) (( 2%) 2# ( 2%)) M?B(X—573X4)X4,B,+
AA
(5.33)
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in which we use the 3-point WT identity,

_ _ _ﬁl,iei ~ ~
<J1LX2,7XS,+>A = X2,—,C(T11)(—I/2 - P’s)CA

~ A _ _ _
U3 (X Xot) = (T X2 XY = (X2 Xt ) A B (5.34)
}31167;1 — A,
= (— 2X2,-Ps)”,
) 2 -0)
and the identity,
_ A 1"”7 _As 1_7 — A 1+,7 _ﬁs
(i) (LG = xa-m) (L
— 1. (5.35)

= o (5 )2 L

et X277_

Then the last equality is trivially satisfied. For the pole of E35; and E'4, the consistency

could be check if we take 1 — 3 for all the above derivation.

532 (Ty Ty

First, we need to decompose the amplitude of M (hyxhy) channel by channel. We
could refer to [7] and change the momentum and overall normalization convention to

what we use in the thesis. For

Pt = pi + plf

pi =pi + P (5-36)
Ph =15 + 1k
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We could write down the amplitude (We already take x = 1)

M{(hiXahsxa) = Ms(haXahsxa) + Mi(hiXahaxa) + Mu(haX2hsxa) + Me(hixahaxs)

M, (h1Xahsxa) = %(m ~€3)(p2 - €)Ua6h (P + Pu)ehus

My(hyXahsxs) = %(m ~€1)(p2 - €3)Uadh (P + Py)ehus

Ma(huXahaxs) = 7 (205 - €0)(2p2 - 5) — (21~ e5) (2o e2) + (51 = s) - (2 — )+ )]
[0+ ) (—aghs) — (21 - e0)(~iaghud) + (c1 - e2)(~a(Py — Py)u)]
= (s )2 e) = (201 )2 ) + (22T = U)oy 1)
(20 ) (—aghs) — (21 - e9)(~taghue) + (c1 - €0)(~a(~2Py)us)]
(we use U Py = Pyug = 0)

M (hiX2hsxa) = 2(e1 - €3) [(p3 - €1)Uachug — (p1 - €3)Uachuy — (€1 - €3)Ua(P3)us]

+ 2(eq - €3)Uaeh (Py + Po)ehuy
(5.37)
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which makes Ward Identity of the amplitude be satisfied. Actually, we could identify the

amplitude in a double-copy and moreover factorized form.

M(hix2hsxa) = SM(71057304) - Ms(71X27V3X4)

— (Mo M) P oy

= M(hlxgxs)MM(h:%X—sM)

M (739" ;a) M (71X —sX4))

Mi(hiX2hsxa) = TMy(v1057304) - M(1057304)

(=P =P,

= M(hsXoXt) 77— T

M (hix—-tx1)

M, (hixzhsxa) = U(My, (7193%0) My, (1193%)) (M (Y—u @ da) MH (Y X2 X))

nﬂu sVu nﬂ; 1V'ZL

M, (hihshy) My, (h—uX2X4)

1 /
M(hi1X2h3xa) = (71¢273¢4) My (s vu) MY (y—uXaXa) = T Mt(71X273X4):|
(5.38)

In which M (yv7) is Yang-Mills 3-pt amplitude with color factor extracted. Then for the

s-channel pure transverse correlator, the constraints of the correlator will be

Res (TETXQT:;TXI>S = MAS(hUZQXs) }73 P4 MBS(h3>_(—sX4)
K1—0 S ALB.
o + P
(- By)(2€E - py) [5’—] (—2€T - p)(1+ By)xas
(E128E34S>

(5.39)

94 doi:10.6342/NTU202302262


http://dx.doi.org/10.6342/NTU202302262

Res (T7" T3 "X )s

E12:—0
= @26 - (2€1 - py) - 2_Els ( S;Zf) - s +(£)_ E, ) ) (—26:9{ “Pa)- ¢§u4
— v (=L g el p) (T ¢ e ) (2l p T A

— el ) (26 ep (- p g (52 4 20 e g

Res (T7'x Ty 'Xi )s

E345s—0

(’Yo)ﬁ{ _ (/S*)

— o py) (26 p) v (-t g (222 ) A B

(5.40)
So all the constants of transverse (T x2 T3 Tx ), are the the same (J] xo~ J1 x5 ) s except
the factor (2€] - p,) - (—2€3 - p,). Then we could easily extend the bootstrapped result in

(5.30) to

(TG T3 X )s = —4(e1 - p) - (€5 - py)

_ . T (P3+P4> _1_70 ‘577 T
P BB, 2 BB, DU TP
(5.41)

Similar, with 1 — 3, we have the ¢-channel transverse correlator

(L7 T3 i) = —A(es - o) - (€1 py)

- +P) 1-% T

_ 1_ T (P, 4) (14

Xz P2t KrEso By 2 EiEs B Fill+Pu)xas
(5.42)

For u-channel, it’s graviton exchanging in the internal leg. The constraints wiil be

,r],U«uaVu frlﬂ'luv’/'il,
(hahsh) T My, (- X xa)

4 .
e D) (o) = (o1 ) () + (0]

R TTT—fTTT + v :M
KTejo< L Xo T3 X4) o ft

((P2 —p4)“(p1 - p3)u)

Xa (1=1,) [(2p3 - €])fs — (2P - €))¢5 + (€] - €3)(p1 — p3)ur”] (14 B xar
(5.43)
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iy July,

u,(2,2) 3
ngi <T1TTX2 T3TTX4 >u MW (h1h3h ) 2F, \:[j]u]u (TTT X2, —x4,+)
_ 4 {
B E224u - K2

u

(s <) (b2 - €8) = (o1 €b) (- €b) + ST (i — ps),)
(1~ ) [(2ps - €D(elmin) — (21 - €D)(ehmiing) + (€] D)o — po)imiing] (L4 Bvae

- 1(J:%,L cwy - Jan) - [((p2 = Pa) ' Tuigxe” (1= )7 (14 By)xa]}

2
(5.44)
Ei?io<T1TT T3TTX4> - \IJW ATTTTETTIT) 2Eu M, 1 (h—uX2Xa)

(p3 : 6{) (pz FTy €3T) - (p1 STy eg) (pQ : elT) + —(GB,TZ'LGLT)

((p2 - p4)i7TZj(p1 - p3)j)
2 (1= B,) [(2ps - €1)(e5,m)75) — (2P - €5) (€3, ;) + (€1 - €3)(pr — pa)im ;] (1 + By)xas

— %(J:S,L cqry - J3n) (P2 — pa)'muijXe (1 —Py)y (1 + ﬁ4)X4,+]}
(5.45)

In which the J3 1, is defined in the previous chapter. Then we need to match the 7;; con-
traction on total energy pole kinematics to m,, ;; contraction on the first term of the partial
energy pole kinematics. Actually, we can do that term by term. We already successfully

match the following two term in (7’OT'O) and relabeled (O*OO*O) gy ;-

(p1 — p3)" (P2 — a)u + KT(EI — E‘%(EQ — £y (5.46)

. ‘ E, — E3)(Ey — E.
= (pl - pB)lﬂ-u,ij(p2 - P4)j + E13uE24u( : 3;(2 2 4> (5.47)

u
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[(ps-€l) (P2 €3) = (Pr-€3) (Pa-er)] = [(Ps-€1) (P2 u-€5) = (P1-€5) (Do 7w €])]

= —(p3-€) Py Pu) (Pu-€3) + (P1 - €5) Py~ Pu) (Pu - €1)

—0
(5.48)
Now additionally we have the matches:
(=5 (el ) (- + K2 ) [ 4 B
= )52_(1 - ﬁ?)
(€] D E ~ B = (el - ) = pallol
+ (€1 - €3)(p1 — pa)im)v; + (€1 - €3) Ky El];uES )
(L4 Pyxa+
=x2 (1- ﬁ?)
(€] - ey — By + P B (549
(e 0~ s+ (6] D
(14 P)xa+
= X2 (1— ﬁz)

E, - E
(f - €)(p1 = pa)imy; + (€] - €)=

u

(Ei -+ E13E24 -+ KTEu) 70:|

(L4 P)xa+

- — i E - E
= X2 (1= p,)(e1 - &) [(p1r = p3)im) v + Brzu B 1E2 3’70} (14 Py)xa+

u
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and

[(2p5 - €1)(e3,m77;) — (2P, - €3)(e5.m7 ;)] — [(2p5 - €1)(e5,m ;) — 2Py - €3)(eg, ;)]
—(2ps - €])(e3,0,) (D)) + (2, - €3)(e5,07,) (PLy5)
—(2p,, - €1)(e3.00) (Phv;) + (2p,, - €3)(€5,0%) (D)

— 0.
(5.50)

In which we use X», (1 — p,)(Fay0 + B2) = (Exvo + Pa)(1 + P,)xa,+ = 0. Then every
term of the amplitude and the first term of the residue of the partial energy pole will be
matched. For the second term of the residue of the partial energy pole. By the 4D trace of

the amplitude

_UWM<h7u,;w>_(2X4) = EQ(PQ - P4)U4 =0

(2~ (1 — Po)[(B2 — Ex)vo + (02 — pa)' Tuigy’ — [(p2 — pa) ' PulB ) (1 + By) xa v

(1= )2 = pa) T + (20 (B2 = BR)JU+ By,

(5.51)

in the last line, we use the trick that

o (1= B+ B = (1) P2 2o
B (5.52)

) 20

u

in the last equation, we use the Dirac equation.

Then we could rewrite the second term of the partial energy pole residue by the rele-
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beling of (4.55),

(Jap-mu-Jsr) - [(p2— p4)i7Tu,in_27(1 - 152)’Yj(1 + Py x4.+]

Ey — Ej
IR - B

1
= Z(“f - €3)° (EIBu(_KT + Fogu) — (

(P (B B ) v (- B+ B

u

= i(e¥ . 65)2)(_2_(1 — Do) vo(1 + Py)Xat

AKr- {_ Fra ((%) (E2 - Ei))] + B13u B - K(%) (B2~ Ei))]

Ey,—E
. 2 2 4
(5 )« £

) [(E13uE24u)2 — K3E? + KpE? + KTE5E12E34] }
(5.53)

Then we could identify the match of the second term of the total energy pole residue and

the term vanishing at the total energy pole,

(J3,L T Ty, J3,L) [(p2 — p4)i7ru,ij>€2_(1 - ﬁz)Vj(l + 754)X4,+]
(5.54)

+ ERELHIC:TXTX + E%%E%HS:TXTX = Krlrery

in which we define

M, == | (2520 (B2 580 )| (el el (1= Bl + B

u

Ey — E 1 o
TS oy, = ( E )%( 232 2 Z(GI -€3)* X2~ (1= Py)v0(1+ Pyxar

E. B2

E2

u

E,— F
TYC“XTX = [_Eli’»u ((2—4) (Eg - E224)) + (KTES2 - E? - EsE12E34)(
1 _
: 4_1(4 -€5)’ X2 (1= Py)vo(1+By) xas-
(5.55)
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then by all of the above matching we mentioned, we could find

(X2 T3 X )
B 4
KTE13uE24u

A (ps-€) (P> €3)

- (p1 : ‘53T> (Pz : €1T) + M ((p2 —pa)'(pr — p3)u + Krp

4 Ey

(Ey — E3)(Es — E4)) }
X2 (1—1,)

B, —F
Jepgelift - ep D (el (- e+ K

1 C
(T4 Py)xar — B TTT)’(TX}

(5.56)
trivially satisfy all the pole residue constraints. Moreover, if we require the correlator
to satisfy the full Optical Theorem for the current correlator we have, we could find the
mismatch will only be on the u-channel cause the square of the term we use to match of

the 1/ contraction and the 7’/ contraction. To see the mismatch explicitly we could write
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the correlator in the form of

(T %5 T3 X )

4
= b [ e) (b €)= (P €5) (P €l)

(63,T ‘€ T)

+ 1 — ((p2 — pa)'m (01 — p3);) |

(2" (L= B,) [(2ps - €1)(e3,m)75) — (2P - &) (€&,m/ ;) + (€1 - €3)(p1 — Ps)imy/ 3] (1 + By)Xas

4 {(eg,T €1r) ((E1 — By)(F — E@ﬂ

4 E?

“Xe (11— ﬁz) [(2p3 : 6?)(65%]%) (2p; - 63)(63 zﬂ-u %) + (& 1 6;)(}71 - pB)inZj'Yj} (1 +Py)Xa+

b ) (oo ) = oy ) (oo ) + S5 (el - )|

-8 (el D (14 B

u

4Fo4, E13, . E,— Es)(E; — E. o E,—FE
- 2;@ = {<63’T461’T) <( 1 3;% : 4))} X2 (1=p,) {(e?-eg)—lEZ 370]
1
) (1 +ﬁ4)X4,+ - §H2C,T>—<TX}
(5.57)

Notice in the RHS of the Fermion Optical theorem in (3.64), the flipping external energy
term has the C-conjugate which is the conjugate of the correlator with 2 <+ 4 in the grav-

itational interaction case. In this case, the C-operation will give the additional negative
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sign for the third term with 7, sandwiched between the lifters. Then we’ll have

Aopr = (T1X2,—.aTsx4.B,+)u(Eres, By, P1oy) + C{T1X2,— aAT5X44+,8)ul= Eina, By Pray)
(_SEU)
(Ef; — E2)(E3, — E2)

: {(pg €1)(py-mu-€5) — (pr-7u-€) (py-€]) + (ar e1r) ((p2 — pa)'md (p1 — ps)j)]

4
([@2py - €))(e3,m77)) — 2py - €)(e5,mdvy) + (€1 - €3) (1 — p3)imd ;] (L +By)) 4
g, [l o) (B BIEEN] (1) i BB 04 p)

u

So we only need to shift the correlator with the term vanishing on all the pole residue

(T1X2,— AT5X4.B.+)u

— (T'Xo,— AT5X4.B.+)u

) (BB (1o ] o),
(5.58)
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Then the u channel correlator,

(T2 T3 X u

B 4

B KTE13uE24u

A{[(ps-€1) (P2 €5) — (p1-€5) (2 €1)

n (637T4'161,T) ((p2 ) (91 — ps)n + K (Er — E:%’(Ez — E4)) }

‘X2 (1 —p,) (5.59)

Kr
(Ut Bo)xar = = Tigry
_9E (63,T : 61,T) (El - Es)(Ez - E4)
v 4 E?

(- peed p) [ PS04 v

satisfies the full Optical theorem for exchanging gravitons. As a remark, if we write the
COT in discontinuity form, in this form we don’t need to do C conjugate (with 2 <> 4) but
flipping the internal energy F, instead, we could still get the same shift term that makes
COT be satisfied. Then for the contact diagram, we could write it as the contact amplitudes

over K that trivially match the total energy pole residue, like

_ 1
(T1X2,— aAT5X4.B4)c = K_TXQ (1- ﬁz){Q(f} - €3)

[(ps - €Dt — (01 - e)eh” — (€] - €3) (Ps — A)Y'nn”)] 5-€0)

+2(e] - €3)6n (p1 + pa) " ek }(1+ Py)Xat-

We’ll come up with a problem the for the first 7, contraction, we already find an equiv-

alent expression on the total energy pole in (5.49) (But we have no known equivalent
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expression for the second 7, that differs a term vanishing on the total energy pole.),

Ey — Ej
Ey

g E,—E
’Yo) ~ |:(p1 — pa)im v+ E13uE24u%70 ;

u

(<p1 o) + K

(5.61)
when this term is sandwiched between the lifters and the boundary condition of the spinor.
But because we could easily check the equivalent expression or the RHS one won’t sat-
isfy the Fermion COT for the contact term. So the LHS is the only form that satisfies
all the constants for the contact term. Actually with the (5.60), we already fix the full
(TTTYT™ ). We could not write down any additional polynomial ansatz that is vanish-

ing at all the pole residue and the Fermion COT.

Now we need to check the consistency between the partial energy pole residue and

the longitudinal correlator determined by the WT identities.

N
—P1,i€1

7 ) - prjeri (T Xo— Jsx+)
1

<T1L>22,—T3X+> = (

— i€} 1 _ 1 _
= (—1) : { - 5(“31 - Py) (Xo41,-T3Xa4) — 5(51 “Py) (X2~ T3Xa41,4)

Xo,— Tsxas1,+,4) ([P, D) *Pxatn

1 1
+ Ef@,ﬁA([ﬂl, ¢])4? (Xo+1,8-T3Xa4) — 1_6<

a - 1 =
+ (€1 63)p3,a<T3+1X2,7X4,+> - 5(61 - P3) (T341X2,— Xa,+)

1

+ —(€1 - €3)(€3 - Py) (Xo43+1,—Xa+) + 5(61 - €3)(€3 - Py) (X2, Xat+3+1,+)

| —

+ —=(p;- 63)5(2,—,14([’537¢1])AB<)_(2+3+1,—,BX4,+,C>X2+

Bl g~

(Py - €3)X2,-.a <>_<2A,7X4B+3+1,+> (¢, ¢1])BCXA?,+}
(5.62)
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First we take the F5, pole

1+70)_178(1_’70
2 2 2

AB.
)) W3 g(haX—sX4)

(5.63)

E1112620<T1L>7<2,—T3X+> =0= M37A(h1L>ZZXs) ((

by the amplitude Ward Identities, we know that Ms(hfyaxs) = pﬁe{Mg,U(hl)—(zxs) =

phey Ms . (71X2xs) = 0. And for the other pole for s-channel

A AB
L _ o Pui€r, 1 1 B
E§5i0<T1 Xo.-Tax+) = ( B, )X2,—.A ( 2(61 Dy) + 16[ 1 ¢1]> E§330<X1+2,—,BT3X4,+>

o AB
D1i€1  _ 1 1 Y
= ( Ell)X2’_’A (5(61 ‘Pa) — E[ 1’ ¢1]> MBC»3(X—Sh3X4)X‘€+

~ i 1+ .—0s,1— 5,
= 5 (5D EEGD) M
AA
(5.64)

in which we use the 3-point WT identity,

<T1L>Z2,—Xls4,+>

—_

. ii ) 1 ) 1 ) 1 CA
:( pﬂ;’lel))_(z_’cr (-5(])2‘61)ﬁ3+§(ps'€1)d2+1_6[ 179(]#3—’_%17/2[ 1’91/])

~ A _ _ _
Uy (TENo,—Xst) = (TN X24) — (TEXe-x2))

= () (a0 (lerpa) = 1 D28

Es——FE;

(5.65)
and the identity,
B ) (O FHEF)
=t (e pa) - 5lp ) a0 (5 ES)
— v (3lep) - ol ) i) (5 L) (5:66)
= (5 (S p - glpy ) 2 Y

= X27_.
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Then the last equality is trivially satisfied. For the pole of E39, and E'4, the consistency
could be checked if we take 1 — 3 for all the above derivation. Now we check the partial

energy pole residue of the u-channel correlator. First we take the F3, pole

Tl Judy
— "~ u,(2,2 4
Res (TY'Xo-Tox+) =0 = Mz, (hfhghu)#qf% (T %o xas) (5.67)

by the amplitude Ward Identities, we know that Ms3(hihsh,) = piE{M&ij(hlhghu) =

pief M3 ., (hihshy,) = 0. And for the other pole for u-channel

_ ]5 ,iﬁi 1 c _
Res (T} X2 -Tsx+) = (——22) | (€1 €3)psa — 5 (€1 - Ps)esa | €311 b(2d2) Res <Tcd,1+3x2,—X4,+>
E244,=0 E1 2 E244,=0

D 7»€i 1 abed ¥ _
= ( lé 1) (—(61 : €3>p3,a + 5(61 'P3)€3,a> 63,bHulj(2d,2)M3,cd(hqu2X4)
1
iuéﬁju)ji
= iyl w,(2,2) el _
= Uy (T1LT3Tu)TM§ 7 (h—uX2X4)
(5.68)
in the last line we use the 3-point WT identity,
T —¢ n’ﬁi b i 1 i1
(TFTT,) " = % ' {(61' €3) pa ez By mhlvgliv) — 5(61 - py)es gz By mlingl i)
1 ’
+ 65 Du mé““wg )b€3 a€3p iz — 5(61 “PT Z“a7T3“bG:’),aG:a,bE:a}

Tu,ih,

Uy

FEs——Fg

“(TETST,) = (TFTST,) % — (TETST, )i

N 7
P1,i€q
Ey

1 i i,
k(i L ) 4 5(61 . p3)637k€3,lﬂs(zuﬂilu) )

(5.69)

= 2E,( ) [—(61- €3) D3 k€317,

and with the identity,

u1(2’2)

i’éuiu(TlLTBTu) 5 Mguju(h—uXQle)
1

_(61 ' p3)€37k63al:| HZ{gg)M3,mn(h—uX2X4) (570)

. 151,1'63
= ( 5

Ey

]3 ,Z‘Ei 1
= (2 | er ) i+

) {—(61' €3) p3res by, +

€1 - P3)e€s, k:| 631H 22 M3 mn(h—uXaXx4),
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in which we use the fact that amplitude is symmetric.

53.3 (Ty~Ty")

First, we need to decompose the amplitude of M (hihi)) channel by channel. We

could refer to [6] and change the momentum and overall normalization convention to

what we use in the thesis. For

Pt =ph +ply

Py =+l
ph = ph + ply

We could write down the amplitude (We already take x = 1.)

(5.71)

M (hitpahgipy) = My(hihohaths) + My(hibahsibs) + My (hathohsths) + Mo(hitahaiby)

M, (hithahsi)y) = = (M, (11727s) MY (7—57374)] i€k (— P — Pa)ehus

S

My (hyohsiy) = . (M, (37270) MP (y—417a) | tiah (— Py — Pa)ebia

T

_ 1 , B
M, (hitohgi)y) = — ﬂ4p;(71vsvu)ﬂf““(V-uwawq)]-[A4pu(71vsvu)-(——U27““U4ﬂ

U

_ 1
M (h1tohsiy) = = [Mc(y3727471) — Me(v37a%271)] - [M, (71737V0) - (27" uy)]

2

2

+ ! [Me(v2737a7)] [%%(_Ps - P4)§éu4 + ﬂ2€/ﬁ(—P1 - P4)%U4]

(5.72)

where we define the amplitude with Yang-Mills 3-pt and 4-pt contact amplitude with color

factor extracted and polarization extracted as

M(v17273) = [(€1 - €2)(e3 - (p1 — p2)) + (€2 - €3) (€1 (P2 — p3)) + (€3~ 1) (€2 - (p3 — p1))] -

M

s (V17273) = [(€1 - €2)(P1 — P2) s + (€2,5) (2€1 - P2) + (€1,5) (—2€2 - p1))]

M (y1727371) = [2(€1 - €3)(e2 - €4) — (€1 - €2)(€3 - €a) — (€1 €a)(€2 - €3)].
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which makes Ward Identity of the amplitude satisfied. (We already check that with Math-
ematica.) Actually, we could identify the amplitude in a double-copy and moreover fac-

torized form.

Mo (adohiia) = (O (o) M) PP 0 (301350

— M,us (hﬂEﬂ/}s)T]usys : (_‘S}ib?, — P4) Mus (h3'(zsw4)

Mt(h11;2h3¢4) = Mut<h3d—}2wt> Mut<h1d_}tw4>

" (=P = Pa)
T

ny’u7yunu’lu7u’il.

U

M (hythahgipy) = % [M(v3727471) — Me(y3747271)] - [U - Mu(71X273X4)]

Mu(hllﬁ2h3¢4) = M,uu,u,g<h1h3hu) MVuV{L (h7u1;2’l/}4)

1 L L
+3 (M (v2y37a71)] [S - Ms(v1X27v3X4) + T+ My(v1X273X4)]

(5.74)
Moreover in the transverse part bootstrap the amplitude, and the polarization is written in

the Coulomb gauge, especially we write

M, (viravs) = [(€] - €0)(P1 — p2)us + (€37 Mips) (261 - P2) + (€101 1y ) (—262 - 1)] -

(5.75)

s/t channel Then for the s-channel pure transverse correlator, the constraints of the cor-

relator will be

L _ B P i
Res <T1TT¢; T;T¢Z’+>s = M, a,(h1tothg)nt="s {L Mg, o, (hs)_s14)
Kp—0 S ALB.

APy

(E125E34S)] (1+Py)Xar
(5.76)

= (M, (137 M™ (i3] - X2~ (1= ) {
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Res <TTT¢2 T,

Ei25—
—myl ( 8(=) (5) - 1
— u2¢1 is (71 rYnyS) 2E ( E34 - E3 + E4 . E ’ MJ@ (73T74T’Y—3) ’ ¢§U4 - ZPL73/2

= (M, (7173 7s) % My, (73 74 v—s))

2 (1 —p,) - ,éI ' 225 (}8;:4(:) + (K/ST)) . ¢§(1 + D)X — }1 L,3/2

Res <TTT¢2 T,

E345—
= (8, (T, G- (= g g (TR - LD ) s s
1
— 1R
(5.77)
in which

Praps o= W (Td) o (L= BN+ ) - o0 gp g - =00
B B O, wgvzvs)]
1+ Yo

AP —_

Paoa = [V (o133 (- Bl + 8]

1 .
(L4 P (L+Py)Nar - B - My, (371 7-s)

(5.78)

in which we define 7t := 7'/;.

So all the constants of transverse (177, T ihy "), are the same (JTvy JIv])),

except that we need to match the prefactor of n-contraction and the 7, contraction in

(M, (Vi ya ) misds My, (viviv_s)) and My, (4773 7s) M# (v_sv341) to match the first term

of the partial energy pole residue and the amplitude. We could use (5.46) and (5.48) to
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prove that

M

= (M, (v )T My, (374 v-s)) + (€]

e (V72 7s) MP (v_s1374) + (€] - €3) (€ -

Ey — Ey)(E; — Ey)
Eq

GI)KT(

(Ey — Ep)(Es = Ey)

- €) (€3 - €1) Eras B 2

(5.79)

But to match the second term Pr 3,5/ Py, 32 of the partial energy pole we need to make

it to match a term vanishing on the total energy pole. And match Pg3/5/ Py 3/2 with the

term vanishing on the Er/Ey, pole individually. First we need to use the 4D v-trace of

the 3 point amplitude to rexpress the @”S trace term in the Pr 3,2/ P 3/2.

M(T{ g )" = —tng) [(e] - €) (= 1) = 21) + ¢y (€1 - py) — 21 (€5 - py)]

= g (€1 - &) (= 1)

= M (T} 035 0)70 + M (T "1hgibs )T~y — M(TT a0, ) pipln;

— ~taf (] eD)I(FL -

VM(Ts ougtby) = — (1) (€5 - €1)65 ua

Ex)vo — (p1 — pa)ipip,] + M;, (M7 7s) - @2&#2

= —[(E3 — Ex)vo — (ps — pa)ip'B,) (€] - €1)eh ws + M;, (v37iv—s) (€] - €})eh s

(5.80)
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then we could first simplify then rexpress the P, 3o,

1—
2

=R B 05

Yo I+
.ﬁs. 5

Es

Prajp =M, (vi737s) - Xo (L= Bo) g #(1—p,) -

—E,s
I+

= N, T3 (1= B (B0~ )+ B,
=oAL B g WG| |

—E,
14+ 7

= NI 6 (1= B B - B,) 00 ()
A= BIBIR O B i WG]

_E,
1‘*‘%

(B

Es

= M, (%%) % (1= B #, (14 8,) -
| BIR A B g w;vzm]

—E,

= M, (71737) e~ (1 — B 17 (L +B,) - +% L ~n

S BIR A B 01 >} -

= g 1] DB — Babo + (on — pa)idle] - (1+8,) - 20 (=) - 20
: { E;s (1+p,) - [(Es — Ex)yo — (ps — pa)ibiol (€5 - 61)6/3%4} ]jE

= g1l € (B 0 (14 8,) - 20 (=) 20

(B Bl e Dt EE

— o (€7 €l) - [Fun 0 (14 5,) - 20 (<) - 2200 (2p) yofel - €l)epTuy

= 2E1iiaf | (€] - €3) - (1 —p,) -
(5.81)

in which we apply (¢")? = ¢"-¢' = 0 from the amplitude polarization constraints e-e = 0,
p

712,{; = 0 and the Dirac equation with their version for the conjugate field. And we should

notice P(1+ )25 = (P55 = 0and (14 )50 = —(P_)*50 = 0.
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Similar, we’ll have

1+
5 (eg-ez)%Tm (5.82)

Prajs = 2B liaf | (€] - €) - (1 — p,)

So indeed, these two terms won’t contribute to the partial energy pole we don’t need to

consider them. Then we could easily extend the bootstrapped result in (5.30) to find

(T T3 Ty,
(By — Es)(E3 — Ey)
2

s

= [(Mz‘s (VY2 )T My, (v vdv—-s)) + (€] - €3) (€} - €}) Bras Esus

_ — _ T (P3+P4> _1_70 S/, T
X2 (1 ﬁ2)¢1 |:KTE125E345 2 ESE128E345 ¢3 (1 + ﬁ4)X47+

(5.83)
satisfying all the residue constraints. Similarly, with 1 <+ 3, we’ll have the ¢-channel

transverse correlator.

Now to match the full Optical theorem, with a similar calculation to (5.81), we’ll find
(We could do it in the discontinuity version such that it’s channel by channel and easier to

do and write down.)

1
Asaise_cor = COT RHS — COT LHS = —iup¢" (] - €]) - B, - J;% (€] - €N)ehTuy

(5.84)

it’s the polynomial term that won’t affect each of the partial energy pole residues. So we
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could add this term back to the above correlator. Now we find the correlator like

(T 0y T3 Ty ™)
(B — Eo)(E3 — Ey)
E2

s

B [<Mzs (VL3 ve) %> My, (v viv—s)) + (€] - €3)(€} - €5) Eray Ea
_ (P3+P4) I - 577 T
1— : _ (1
» =Py {KTEQSEMS 2 BiBuBa,| DU TP
14+

1
b omfl(e - ed) B, e e

(5.85)
fix all the constraints including the full COT. Similarly, with 1 <+ 3, we’ll have the ¢-

channel transverse correlator.

u-channel For u-channel, it’s graviton exchanging in the internal leg. The constraints

will be

n,uu sV 77/4;7 u

Res <TTTw2 TTT¢ )u M, (hihshy,) M, (h _uathy)

U
1 [ T.T / T T
_ M , ” M:uu u
BBy M (173 Yu) M (Y—u¥2 V1)
G (1—P,) [(2ps - €1)f; — (2P, - €3)¢5 + (€] - €5)(p1 — p3)u 7] (1 + Py)xas
(5.86)
luzLJu)J;
u,(2,2 =
E}Euei <TTT¢2 TTTQ/J >u Mzul (hihshy )Z—EL\Iljujb(TIL%,f%ﬁ)
1

m{[ (3 ) Ty M7 (120377

2 (1= $y) [(2ps - €1)(€5,m/ %) — (2p1 - €)(e5,m0 ;) + (€1 €)(p1 — ps)im ;] (1 + By xas

- % (Jop-mu-Jsr) (Jop-mu X2 (1= Bo) (=) A +By)xas]) }

(5.87)
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HZHZ;L]U‘.L
u,(2,2)
Eﬁfi (T by~ Ty "y >u—\I/W <T1TTT3TTTJT>—2EU gt (h_uthathy)

1
—Efgu—EZ{[ L8 ) Ty M7 (-3 7))

2 (L= y) [(2ps - €1)(€3,m/75) — (2p1 - €)(e5,;m0 ) + (€1 €) (1 — pa)im ;] (1 + By)xa+

Ty ) (T [ (- B0+ B)as]) )
(5.88)

in which we define the

J?,),L = {_2(65 -p1)e] +2(e] ‘ps)eg + (eg -€1)(p; — P3)} (5.89)

Tin=[—2(e1 - po)e; +2(€; - py)e + (€5 &)(P, — py)]
which is indeed the J; ;, defined in the chapter of (7"OT°O) with different normalization

with its relebeling.

Then we need to match the 7;; contraction on total energy pole kinematics to 7, ;;
contraction on the first term of the partial energy pole kinematics. Actually, we can do
that term by term. We already successfully match the following two term in (TOT'O) and
relabeled (O*OO*O) gy -

(Ey — E3)(Es — Ey)
Eu

(p1 — p3)!(p2 — pa)p + Kr (5.90)

(Ey — E3)(Es — Ey)
E2

u

= (p1 — pB)iﬂ-u,ij(p2 - p4)j + Ei3uFoay (5.91)

[(ps-€1) (P2 &5) = (Pr€3) (2 €1)] — [(ps-€1) (P2 - €5) — (P1 - €5) (Po- 7w~ €1)]
(p3 61) (p2 ﬁu) (ﬁu : 6:{) + (p1 63) (p2 ﬁu) (ﬁu : 6?)

= - (pu ) 6?) (P2 - Pu) (ﬁu : eg) + (pu ) 6?’:) (P2 - Pu) (ﬁu : elT)

=0

(5.92)
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and the matches we derive in (T'xT"y) in (5.49):

u

Xo (1 —Py) {(e? - €5) ((pl = p3)uy" + Ky Elb; = 70)} U+ P (5.93)

iy FE,—FE
— ¥ (1= Al &) |0~ i+ Bua B 2] (14 B

u

and

[(2193 : GD(%,WU%‘) — (2p, - 65)(65,1-77“%-)] - [(2193 : 61)(53 ﬂ”%) (2p; - 53)(63 zﬂzj%)]
—(2p; - 5{)(651152)(]%%) + (2p, - 65)(651152)(1%%)
—(2p, - € )(63 zpu)(p] v) + (2p,, - 6;)(%@]52)@2%)

= 0.
(5.94)

In which we use X2, (1 — $,)(E270 + Bo) = (E1vo + Pla) (1 + P,)xa,+ = 0. Then for the
second term of the partial energy pole residue, we can use the 4D trace of the amplitude to

transform the second term to the term vanishing at the total energy pole. Like (4.96) and

WM (houtPaths) = —Tiz (=2(€; - Py)es" +2(€3 - pa)ea’ + (€1 €3)(Py — Pu)) ug =0
— M (h_wo0th3 1) + 70 M (hy i3 1) — Plpl M (hy i3 )
= (€1 €)X (1= Py)[(B2 — Ex)(—0) — (P2 = pa)i(Du) (=B, (1 + Py)xa+
+ g e [T (1= Bo) (=) (1 + By)xas]

— (el el (1 — gy (2

)(=70) (B2 = E3,) (1+ P)Xa+

u

+ T p e [T (1= Py) (=) (1 + Py)xa+]
(5.95)

in which we use the amplitude polarization condition v - ¢ = 0,¢* = e*u such that for

the external field aoe4” = 0 with €4 uy = 0, the Dirac equation Pyuy = x> = 0 ,and
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the similar trick we do at (5.51). Then the second term of the partial energy pole will be

(J:/S,L Ty Jé,L) (st,R Ty [Xf(l - 152)(_'7)(1 + 154>X4,+D

— (e (el e (Bl + Eu) — (P VIR - BL]) L 596)

(B BB ) - B+ B

We found it’s just the (5.53) with different normalization and now we have an addition

factor (€} - €}). So, we could easily identify the match

(Jor-mu-Top) (Jg-mu o (1= By) (=) (1 + B)xas])

— 4(ey - 55)ERELH€TXTX — 4(ey - 55)E12%EinngTx = —4(e} - €§>KTT;XTX'

(5.97)

Then applying all the matches we mentioned before, we could find

(T Ty T3 T )

1
B KTE13UE24U

A [(M (T T )9 5, (4T ) + (€7 - €Y (el - €1) Eigu B

E2

u

(Ey — E3)(Fy — E4)]

J2py Dl = Cpy D+ (€ (- po 4 e ) | ok B

+2(eq - €) KrThery )
(5.98)

trivially satisfy all the pole residue constraints. Moreover, if we require the correlator
to satisfy the full Optical Theorem for the current correlator we have, we could find the
mismatch will only be on the u-channel cause the square of the term we use to match the

n* contraction and the 7% contraction. To see the mismatch explicitly we could write the
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correlator in the form of

(T T3 ™

1 [ -
= — . M w lu]uM' T.T » :|
KB B (M 0137w M;, (05737-0))

X2 (1= $,) [(2p5 - €1)(e3,m ;) — (2p1 - €3)(e5,m0;) + (€1 - €3) (D1 — pa)imi/ ;] (L + By)xas
+iukTTxp®wrﬂw&—&q

€ " €3)(€
1 3 2 2
Eu

X2 (1= py,) [(2273 ) 69(63 ZWZ]’YJ) (2py - 63)(63 zﬂw%) + (€ 1 6;)(}71 - pB)iWZj'Yj} (L+Py)xa+
b ot [0 OISO )] (- A ) (€] e P ] (4 B

u

+ K_T(EZ : eg)niTxTx

FEouy, sy, Ey — Es)(FEy, — F
+ MK—TB . {(637 €17)(€27 - €47) <( ! 3;% 2 4)>]

(- peel gy (e )P (14 B

2E54, 3y
+ 2B 0 1,

(5.99)

Notice in the RHS of the Fermion Optical theorem in (3.64), the flipping external energy
term has the C-conjugate which is the conjugate of the correlator with 2 <+ 4 in the gravi-

tational interaction case. In this case the C-operation will give the additional negative sign
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for the third term with -, sandwiched between the lifters. Then we have

Nopr = (T 0y s T "y 5 u(Brea, Euy pry) + COT 0y s T Y= Eiis, Buy Pria)
(_2Eu)
(Bfy — B (B3, — E2)

A s, (Tl W, (71 7-)

([ 2ps - 61)(63 171-2]7]) (2p; - ‘53)(63 ﬂ”%) + (GI : 65)(?1 - p3)i772j’7j] (1+ 154)),43

SCEYRCERS [(a{
So we only need to shift the correlator with the term vanishing on all the pole residue
(T 3 T3 )

= (T 3 T34
(5.100)

_ % B, |:(63,T ~€1r)(€2r - €47) <(El - Egsz(QEQ . E4))]

u

(a-poee gy (- PB4y

u

AB
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Then the u channel correlator,

(T T3 s )

1
B KTE13UE24U
- o FEy— E3)(Ey — E
{ [(Miu(vagvu)ﬂi““Mju(%T%Tv—u))+(GT-Eg)(Eg'fl)Eleﬂu( 1 327(2 : 4)]
’ X_27(1 - 152)
Ey—FE
J2py Dl = Cpy D+ (€ (=m0 ) | ok B

- % (Jop-mu-Jsr) (Jor-mu- X2 (1= Bo) (=) A+ By)xas]) }

(Ey — E;%(gEg — E4))]

1
- EEU |:(€3,T : €1,T)(€2,T : €4,T) (

(- pee py) (e B ] 04 B

u

(5.101)
satisfies the full Optical theorem for exchanging gravition. As a remark, if we write the
COT in discontinuity form, in this form we don’t need to do C conjugate (with 2 <> 4) but
flipping the internal energy F, instead, we could still get the same shift term that makes
COT be satisfied. Then for the contact diagram we could write it as the contact amplitudes

over K that trivially matches the total energy pole residue, like

. 1
(T T e = 0 {5 M) = Moy v )] - (M (93] - (7))

+ % [Mc(v2v37471)] [%T(—p:a - P4)/ﬂ“f/5T + %T(—Pl - p4)/ﬂ“%q }
(5.102)

We’ll come up with a problem the for the first 77, contraction, we already find an equiv-
alent expression on the total energy pole in (5.49) (But we have no known equivalent ex-

pression for the second and the third 7),,, that differs a term vanishing on the total energy
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pole.),

Ey — Ej
Ey

B — Es
T% )

((Pl —p3) Y+ Kr
(5.103)

’Yo) ~ {(pl — p3)i™ Vi + FisuFoau
when this term is sandwiched between the lifters and the boundary condition of the spinor.
But because we could easily check the equivalent expression or the RHS one won’t sat-
isfy the Fermion COT for the contact term. So the LHS is the only form that satisfies
all the constants for the contact term. Actually with the (5.102), we already fix the full
(TT")TTTT4T). We could not write down any additional polynomial ansatz that is van-

ishing at all the pole residue and the Fermion COT.

WT consistency Now we need to check the consistency between the partial energy
pole residue and the longitudinal correlator determined by the WT identities. There are
two consistent longitudinal parts of the correlator given by diffeomorphism WT identity

and by SUSY WT identity.
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_ — -ei R
(T Tty ) = ( E1 ) - p1ger (T o Jstby)

_ﬁ 26 1 _ —i
= (=) { = Nom (riea (T TVTSY) Xas — <X a ([Pro 1)) (eri(Whsy _ 5T

B, 8
1 .
- §>_(2,—,A ([, &))"’ (€3:(Vhrs_ pTitay))
1 g 1 g
= 5 (o-fixas) gocaiolTohan D) — 5 (Xe-foxat) €350¢400(TohaisTh)’
1 .
16 (X2 - [¢17P3] (63,i,0<¢§+1+3,7¢4,+>) X4,+) (61 : 63)
1 _
+ 32 (X2 - [£1, £5] (637i,0<%+1+3,7¢4,+>) X4,+) (€1-p3)
1 .
16 (X2 - [¢3,m1] (51,i,0<¢§+1+3,7¢4,+>) X4,+) (€1 €3)
1 _
+ 392 (X2 - s, £1] (617i10<%+1+3,7¢4,+>) X4,+) (€1 'pg)}
(5.104)
152@'6%

(v _Tsthay) = (_E; ) - po(Thh _J3ty)

— (M) . { — 227_ (’yi€47j<T2ii4T1T3>) X4,+

Ey
- Ti
- §X2,—,A ([ﬁla ¢1])AB (51,i<¢2+1,7,BT3¢4,+>)
- Ti
—gX2-a ([, )" (esi(thys_ pT1a )
L 1, _
=5 (e—fixa) erjoeaio(TobanTs) — 5 (Xe-faxat) esjoeaio{TotarsTh)
1 i
16 (X2 - [¢1, p3] (53,i,0<¢2+1+3,7¢4,+>> X4,+) (€1 - €3)
1 .
+ 392 (X2 — [¢1, €3] (637i,0<¢§+1+3,7¢4,+>) X4,+) (€1 ps)
1 i
16 (X2 - [¢3, p1] (51,i,0<¢2+1+3,7¢4,+>> X4,+) (€1 - €3)
1 .
+ T (Xa.— (€3, €1] (€10(¥5 103 _tas)) Xar) (€1 P3)}
(5.105)
For the longitudinal part <T1L1527_T3¢47+>, first we take the F 5, pole
7 ~ ’”:f; 2,3/2) 2
s, (T2 -Tstpa 1) = 0 = My, a(h wzws)—; PGy plhsth_gpy)  (5.106)
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by the amplitude Ward Identities, we know that Ms(hFyy),) = pie] My i (hitsths) =
phel M, W(vl%ws) = (. And for the other pole for s-channel. Notice the dressed projec-

tor for the 1)"* extracted boundary condition will be 7" o3 /2 3/2) e e (372.3)2)"

Res < T{ 4y, _Tsths 1)

E34s=

AB
D1,i€} 1
= ( lEll>X2 - ( ( €1 ~p2)€2,k - (61 . 62)p1,k + g[ 1’ ¢1]€2,k)
isjs L=
: (ﬁsﬂ's,(j:s/z,g/z) 5 )BC Res <¢1+2 _ s T3¢y, +)
Pt 5.107)
p ¢ 1 AB (5.
1,i€1\ _
— ( EII)XQ,—,A ([(61 . p2>€2,ks + (61 . 62)p1,ks - g[?l, }éJEQ’kS]ﬁS)
isk! B’ K, -
) 1_15,(:),/2,3/2),3]\/[3,3'0("éb—sh:WA:)Xf,Jr
- H’Cské
7 - 5,(3/2,3/2),AA! ‘B, T
= U3, (T1Lw2,—?/fs,+)%ijfwﬂhza%)%ﬁ&

in which in the third equality we use the fact that in amplitude only the transverse part

survives and in the last equality we use the 3-point WT identity.

_ —p ,z’Ei
<TLw2 s + 15> XQ,*,C( Elw ! )
1

: (ﬁ2 (eg,is) (ps-€1) — ﬁs (egﬁs,jig) (py-€1) — ﬁz

~—

Gg : p1) (Gus)

- ﬁs (Ws,isjp{) (€2-€1) — ; (62 zs) (152 [P‘laﬁ]) (eéﬂs,jis) ([F1>¢1] ﬁz) )CA

(5.108)

OOI>—t

Then

Es——FE;

W, (TEGy by y) = (Thy 2, ;) — (TEGy 0%, )

A

s 8,1s

(5.109)

i€ _ 1
= 2(]% 5) {Xz— <(€1 Pa)ean, + (€ €)pie, — [Py e, e
1

For the pole of Fs35; and E'4, the consistency could be check if we take 1 <> 3 for

all the above derivation. Now we check the partial energy pole residue of the u-channel
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correlator. First we take the F3, pole

PR
TulyJulu

) Y Hu 2,2 -
(Res (T{0 Tphu i) =0 = Miuz-;(hfhghw#xyjmm B OADE

by the amplitude Ward Identities, we know that Ms(hfhsh,) = pie]Ms,;(hihshy) =

pief Ms ., (hihshy,) = 0. And for the other pole for u-channel

n ﬁ 7i€i 1 abc Sed T
ERGSO<T1L¢2,—T3¢4,+> = (= 27 L) ((61 - €3)P3,4 — 5(61 'P3)€3,a> es 11075y Res (T74qtbn by )
240 = 1

S
2,2
7( ’ ) E24’LL:0

P1,i€ 1 abe ~ A

= (1T11) (—(61 : 63)p3,iu + 5(61 'p3)€3,iu) 63,bHu?(§,2)M3,cd(h7u¢2w4)

iy, Ju gy,

= il u,(2,2) 2 piudls -

P g

b (5.111)
in the last line we use the 3-point WT identity,
.y —€ ,L-Ai i i 1 7 i
(TETST, ) = <é—m) : {(61' €3) P3,k€3,1Eu7T5( “Wi“) - 5(61 'p3)63,k€3,lEu7quj( “Wi W)
1

(tu ka,_i7)b E 1 ia_ihb B
+ €] PurT3 T3 €34€3h 3—5(61 'pu)7T3 T3 €3,a€3,pL03

Uy (TVTT,) = (TETT) ™ — (TPTT)

Es——Fg

= 2Eu( 1E1 1) |:—(€1' 63) p37k63,l7r’7j( uﬂiu) + 5(61 . p3)637k63,l7r5( u7T7lJ w) s

(5.112)
and with the identity,

s
tulyJuy

il u,(2,2) 2 piudl "
Uy (TP T,) =5 2 N (b o)

Pric; 1 " _
=( 27 L) [—(61' €3) P3k€a b + 5(61 'p3)€3,k€3,z] €3, 110 (57 M3 g (P_ 021}
1

1 ~ -
= Tl) [—(61' €3) p3 by + 5(61 'p3)€3,k] ES,IH?’T(Z’“Q)MB,mn(hfudeM)a

(5.113)

in which we use the fact that amplitude is symmetric and only transverse amplitude sur-

vives , such that in this case we can replace 7% with 1%,
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Then for the longitudinal part <T11E2L, _T51)4 4), first we take the E95 pole

AB il
Res <T1¢2 Tstpyy) =0= M, o A(Rb3 ) (HM;/Q 3/2)) s . plhs_s1a)

E12:=0

(5.114)
by the amplitude Ward Identities, we know that Ms(hi9pkep,) = p2Ms, (hithaths) =

b2 M., (71902105) = 0. And for the other pole for s-channel

Res <T11P2 _Tapy )

E345=0

AB
p 16 1 1 - Y
= (= 2E 2 )Xa.-, (—g [Pp £ e, k?ﬁf ks/z 3/2)70) ReS <¢1+2 — T30 y)

E345=0

AB
pl 26 » A "
= ( Ell) < P, £ ]El,ksﬁsnikg,(g/z,:’,/z)) M3,Bc(¢—sh3¢4>Xg+

=V (T{ s y) <st(§/2 3/2)) M?f;f(@—sh3w4)¢4,3,+
(5.115)

in which in the third equality we use the fact that in amplitude only the transverse part

survives and in the last equality we use the 3-point WT identity,

— e Lo
(T0h 02 = ool 22 (= () () Br — 5 (elmi) (o s ] )
(5.116)

\iBA,is (TquZJZ,fwsﬁ) <TLw2 s + is > <TL1/}2 ¢s +, 15>

= (P [x (L, ta) o]

Es——Fg
(5.117)

For the pole of E39; and F/14, the consistency could be checked if we take 1 <+ 3 for
all the above derivation. Now we check the partial energy pole residue of the u-channel

correlator. First we take the F3, pole

Gy July
ResO<T11/12 T3y ) =0= \IIW (T1T3T“)%Mgw“(hwdjgw) (5.118)
24u— ”

by the amplitude Ward Identities, we know that Ms(hi9kep,) = p2Ms, (hythaths) =
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ph? Ms.,,, (h11b91bs) = 0. And for the other pole for u-channel

_ ﬁz Z‘Gé ALy i i'j j,
Res (Tyk T = (—= Res (T4 T3T 0w\ T ululu
E13u:0< 1¢2,7 3¢4’+> ( E2 >E13u:0< 1535 > u7(272)
ﬁ?,ieé ~ il G Jud!
= E, JMg" (hahsha) - (I, 557
i Gl
u,(2,2) =

= M, (hihsh,)

2F,

“Xo— (“€as) Xt

) Xo,— (V(ju€4,j;)) X4,

‘I’juj;,<T-uz?£_w4,+>

(5.119)

in which in the second equality we use the fact that in amplitude only the transverse part

survives and its indices are symmetric and in the last equality we use the 3-point WT

identity,

<Tzqﬂj" 152L,Jﬂ4,+>

(—e2iP5)

E, o (7Tu7(juj ) 6%) (Xz,—VkWu,j;)kX?),Jr)

Uy (T TT,) = (T LT — (TETT)

Es——F;s

~ )
P2,i€q
Ey

= QEU( ) [9_(2,7 (7(]@647]}2)) X4:+} :

5.4 SUSY Ward Identity Bootstrap

E, +

L (egj“’T) (22,— [ﬂua ’Yj:‘)} ﬁ3X3,+>}

8

(5.120)

Because we know that SUSY transformation is just an extension of the diffeomor-

phism. So we could bootstrap it from the WT identity of the diffeomorphism.

54.1 (Ty)

The general ansatz of the SUSY WT of the three-point correlator will be:

poi (i _ aths4.B) = Aijap(B3) (T Ty 5) + B aar (131,53)(1%1‘;,71/13#,3)

125

(5.121)
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We require it must be no residue contribution on the total energy pole. And by the energy
dimension counting we know that A € O(E"), B € O(E"). The counting of the polar-
ization vector on both sides must match too. The indices of the two-point function are
symmetric so we don’t need to permute the indices and transverse to the momentum. We
also don’t include the unit vector which is a non-local operator in our ansatz, and because
€, - €1 = (e - p1)?, we also don’t include the self-contraction of the polarization vector of
the graviton. Because we have x _x14+ = 0. A should have an odd number of spatial
gamma matrices and B should have even, then counting of gamma matrices make the term

not vanishing. Then

Aij ap(P3) = aesy;

Bz‘,AB(ﬁlyﬁ?’) = b1€1,i(p1,k:'7k)(61,j'7j) + 5261,i(p1,k€lf) + b3€1,i(1?3,k7k)(€1,ﬂj) + 5461,i(p3,k€lf)
(5.122)

And we require the consistency condition that the (T“1)*v) got from SUSY WT

_ €1.1€
(T{y s ) = L AL Xo— [b1p1iphen + bieri(—E})
EEs

+ bopri(Pgel) + boer i (—E2) + bypripheh + byeripagn O-123)

+ baeri(pspt) + bapri(psner)] €3 PaXat

should match the one got from diffeomorphism WT like (F.251):

(eres)

5.124
BE. (5.124)

_ 1
(TIY_ atbstB) = —3 (p1 - €5) (Xo—[P1, £1] Pyxs.+)

Then by the vanishing of €; ;e}":

bl = —bQ,bg = O,b4 =0 (5.125)
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then

— € € _ i~
<T1L¢2L,J/f3,+> = b2k X2,— [p1,i171€/1 — (Ih,kﬁlf)}ﬁg’ DaX3.+

BB (5.126)
= bl%(m,ﬁg’ib_@,—[ 1, €A DX 3 +
Now we could constrain by = —by; = —%, with b3, by, = 0. But we won’t have a constraint
on a.
Az’j,AB(ﬁ?,) = Q€347
(5.127)

N . 1
Bi ag(p1, P3) = Biap(p1) = —gﬁu[ 1, €]

542 (TYTY)

If we suppose that we could use the same A;; and B;; to write the SUSY WT of the

four-point correlator like

poi{Tihs _ 4 Tsthay 5) = Aijap(Pa) (T34 T5) + Biaar (ﬁl)(iﬁi’fg,_T3¢4,+,B>

+ B, anr (173)<?%,f2,_T11/14,+,B> + Cian (ﬁ1,ﬁ2,ﬁ4)(@i’f2+3,_¢4,+,3>
(5.128)

in the previous section, we found, we only need to fix a in the A;; 5. We could do that
by the match of the correlator longitudinal on leg 1, leg 2, and leg 4 and transverse on the
other legs derived by SUSY WT identities and diffeomorphism WT identities. We only
show the term with F, in the following equations. We have

_ —€ ,iﬁi N i
(TETE AT )susy = (Z52) - Agap(@) - (T TYTT) .. (5129

and

LT, 7L TT, )L
<T1 ¢2,—,AT3 ¢4,+,B>Diffeo

_ (—61,1‘151‘1
Ey

(5.130)
) UBETIUEN s (ad™) = 5 oiel NTATTOA 4.
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Then we could require the term with £, matched under any kinematics, we'could choose

the kinematic to be p; — 0 to simplify the expression.

Jim (CE) () - (T = (B ) ok ) ()l )
(5.131)
and
Jim () AT o) (k™) — S sael HHATTT )
= (L) (T s (™)~ Spasd YT ($13)
= () (Pl L b))
Then comparing the above two expressions, we could find a = —1. Now plug this into

(5.121) and (5.127), we recover the SUSY WT identity,

_ 1 _
p2,k<T1¢’5,—¢3,+> = —(TVT33) €13 (Yo - X3 1) — 3 [P1, €1] (617k<¢]f+2,_¢3,+>)

1
= - (Gip : €3> (22,—¢{X3,+) Ey — 3 (61 : Gg) (Xo,— [P15 €1] P3X3,+)
(5.133)

it’s the same as (F.248) we derived by the supersymmetry transform on the boundary con-

dition.
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5.5 (Y1yn)) and Majorana condition

First, referring to [2], we decompose the amplitude into s, ¢, u channel with the con-

tact term.

T - 1 — I UsUL -
M (1991h31)y) = S (Mo, (1v27s) Mo, (Xax2ys)) 1 ¥ (M (v37ay—s) My (X3 Xa7V—s) )

1 _ R _
= = (M, (75727) Moy (Xx2 7)) W) (M (vivyay—e) My (X1 Xa7v—t))

1 _ TR _
o ﬁ (MMS (7173P)/u)MVu (XlXSqu)) nﬂu(ﬂun wva) (Mu; (72747—U)MV{L (X2X47—u))
2(e3 - €2) (€1 - €4) M, (X3x27e) M (X1 X4V-t)

+ [6(es - €2)(€1 - €4) — 2(eq - €2) (€1 - €3)] M, (Xax3Yu) M (X2 X4YV—u)

(62 ) 64) ) ETtMut(%Xﬂt) : G?Mut@leL’H)

3 _ v _

+ 5(62 - €3) - EZSMus (X1x27s) - €17 M, (X3Xa7V—s)
3 _ v _

+ 5(61 - €3) - EZSMus (X1x27s) - €5° M, (X3X47V—s)
3 B » B

+ 5(63 : 64) : E/ftMm<X3X2’Yt) €9 Mut (X1X4”th)
i
2

— A€y - €3) - €y M, (Xsxae) - €5 My, (X1 Xa7—t)
+4(e1 - €2) - €' My, (Xaxom) - €5 My, (XaXav—¢)
— s(er-eq) - €5 My, (X1X3Va) - €5 My, (X2 X4V-u)

- 2(62 ) E3) ) EZuMuu (9_(1X3’Yu) - €“ M, (X2X4'qu)

- 5(61 -€9) - € My, (Xaix3Vu) - €5 My, (XoXaV—u)
(5.134)
in which where we define
My, (717273) = [(€1 - €2)(p1 — P2)us + (€2,u5) (261 - P2) + (€1,5)(—2€2 - p1)] ( :
5.135

Mo, (X1X273) = X173 X2-
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The Ward identity of the amplitude is satisfied only when the Majorana condition is ap-
plied. Then because the correlator (1)¢)t1)) must match the amplitude on the total en-
ergy pole. The majorana condition for the bulk field imply the relationship (A.35) for the
boundary condition x_ g, x+ ¢ for fermion field. So the total energy pole residue point out

the Majorana condition is necessary for the gravitino correlator.
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Chapter 6 Conclusion

As we’ve shown in our work, the on-shell bootstrap approach to constraining equal-
time correlators is sufficient to fix the four-point function up to terms that can be associated

with field redefinitions. The constraints include:

1. The residue of the total energy pole must be the amplitude.

2. Cosmological Optical theorems, which lead to constraints such as the residue of
parietal energy poles must be the amplitude times the shifted amplitude, manifest

locality, and the absence of certain invariants.

3. The Ward Takashi identity.

There are many interesting and important questions to pursue. First, so far we have
used the WT identities as derived from how the operator (or fields) transform under the
underlying symmetry. It is interesting to ask if one did not know what precisely is the
symmetry, just the fact that there is a conserved current (or tensor), does the above con-
sistency conditions are sufficient to reconstruct the symmetry. This question will be im-
portant when we extend the analysis to the de Sitter bootstrap, where it is known that
supersymmetry does not allow for de Sitter spacetime. It will be interesting to show that
no Ward-Takahashi Identity for a spin-3/2 current exists that is consistent with the de Sit-
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ter bootstrap. On the other hand, in the thesis, we raise the issue that even for flat space
correlators there are still some unfix terms probably related to the boundary E.O.M or the
field redefinition ambiguity of the correlator. We leave the study of this issue to future

work.
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Appendix A — Notation

A.1 Commutation

AuBj) = = - (AiB; + A;B,) (A.1)

N | —

gl

(AiBj — A;B)) (A2)

N | —

for the matrix/operator A and matrix/operator B

[A,B] = AB — BA (A3)

{A,B} = AB + BA (A.4)
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A.2 Vector Indices

A.2.1 4D metric

Nuv =

A.2.2 4D vector

Ay =AY
A-B=A"B,
A.2.3 3D vector
A = Uiin
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A.3 Spin 1/2 polarization and classical field

A.3.1 Gamma Matrices

0 I
Y0,AB ‘=
I 0
01 0 —z 1 0
{Ui,Uj} = 25¢j;01,aa = 302,060 — ;03,06 =
1 0 1 0 0 —1
0 g;
Yi,AB ‘=
—0; 0
I 0
Y5,AB ‘=
0 -1
1
0 7 PN VRN 7
ol 50" 7"]
Brp . 1 HoAVP
7= S
A.3.2 4D spin 1/2 representation
AT 4 A
_ . . +
Xt = = ae o e ydgxal = () e (AY)
A — A
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A.3.3 Momentum notation

» Mom convention : for every boundary condition By(x) , it’s Fourier transform is

defined by

Ble) = [ et (A.6)

and we will use subscripts to label the indices of the momentum like
By := B(p,) (A.7)
and for the composite momentum we slightly abuse our notation

Biys = B(p, + p,) (A.8)
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Pp = {Po P11 P2 p3]

E=|pl=v~p-p#po

p=p/E,

K= ) E
i€external

og=1

p-oi=FE—po

p-o:=FE+po;

) 0 plo
p=n"piy; = = p
—pio; 0
PiZZEipi%
p-o
P/+:P:
p-ag 0
0 p-o
7 =
p-o 0

Ea+b+c+.,. =F,+E,+E.+ ...

Es,t,u = ‘ps,t,u’
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Ps = P3 + Pa
Pt = P1+ Pa
Pu = D2 + D4

S = (p3 + pa)"(p3 + Pa)u
T = (p1 +pa)'(p1 + pa)y

U = (p2 + pa)"(p2 + 1)y

A.3.4 Dirac Equation

7 = Y00 +'0;

- Ep 1
u,(8) (2 — (j) iptx; it
1/) (:L’) /(27T)3 /—2Eup e e
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(A.11)
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(A.13)
(A.14)
(A.15)
(A.16)

(A.17)
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; dp 1 N :
Uv(l) r — (Z) iptx; —iEt
YN(Z ) = / 2n)? o P'Ti g

_ d3 1 P .
z/jv,(z) (f, t) _ / p 7_)(,;3*6”1 xieszt

o
3
s
-9

(T, t) = p alW ' v it
) @r)EVRE TP

A.3.6 3D Boundary Field (3D asymptotic state for correlator, 3D po-

larization) and Related 4D Classical Solution

We could decompose the boundary condition of the 4D bulk filed into two 3D spinor

fields,
YoX+ = X+
YoX+ = X+
, like
s A
X=X+ T XX+ = PX- = (A.18)
Ay A
X=X+ + X=Xy = [Ai )QJ X- = [—A*_ A*_] (A.19)
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Then under the conjugation relationship

X+/ A4 = conjugate — X1 /A%
(A.20)

X_/\" <« conjugate — x_/A_

we could choose (x4, x_) (equivalently A, , \* ) to impose the Dirichlet boundary condi-

tion without certaining field and its conjugate at the same time.

Similarly, the 4D polarization spinors could also be decomposed into two 3D spinors,

like for positive energy mode u,

Uy = Uy 5+ U_ 5. (A.21)

If we insert this into the Dirac equation we’ll find these two 3D spinor components related

by
= P A22
U—p = (Ep +m)u+,p~ (A.22)
Similarly, we have
. fm)_ (A.23)
P

Thus it’s straightforward to match the flat space amplitude with the 3D boundary condition

(X+7 X*)
P
ug = (1+ Jus 5
E
P mll’ (A.24)
U_ 5= 1u_z1— .
And for the negative energy mode v, we could find
P
v =(1- )Vt -5
E ’
ptm (A.25)
_ P
v p_v__p(1+Ep+m>
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A.3.7 Majorana fermions and its images in 3D boundary

We define the B-operator

B = —iy,
in which satisfy the identity
B=pB"
B*=1
By,B =,

and we could define charge conjugate under B

C:x— BY

then Majornara condition of the 4D spinor will be

(iog)v*

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

Now we want the Majornara fermion as the boundary condition of the classical solution,

we want to split it into two 3D spinors:

X =X+ + X-

YoX+ = EX+
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and we should be careful that

YoXi = EXi (A33)
so we put this decomposition into Majornara condition (A.30):
1+ 1+
(5 )00 +x=) = (57 +x-) = x+
. (A.34)
+ Yo - * * . * —
= (5 (=) (G +x2) = (=Xt = (=B)XL
then we have 3D Majornara condition of fermion
- T
X- = —x.B (A.35)

so we find that the dual boundary condition of the 3D Dirichlet boundary condition y_

and y is related under the Majorana condition just like fermion and anti-fermion related

with each other in 4D. And we know there’s no pseudo-Majorana fermion for SO(1, 3)

spinor [24], so it’s only a representation of Majorana spinor.

A.4 Amplitude notation

M in our thesis means the amplitude and the field in the parentheses means the ex-

ternal field’s spin
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(field’s type) notation polarization

scalar @)

fermion X uA

fermion conjugate X ua

vector (photon) ¥ €u
spin 3/2 particle Y UAE,

(gravitino)

spin 3/2 particle conjugate P UAE,
tensor (graviton) h €u€u

and the subscripts mean the label of their momentum, like

o(p1) = ¢ (A.36)

so take QED Compton Amplitude as an example, we have M (v, x2X3) = U2 Arus and
we define the amplitude with the polarization of the field extracted (the indices on the
amplitude M is the same order as the field if not all the polarization field is extracted then

the indices with the same scripted number as its field)

M (y1X2x3) = 2 jhus = € My, (V1X2X3) = €¥ﬂ2,AM,f‘B(71X2X3)U3,B (A.37)

with
Mul (’71EX3) = a2’7u1u3 (A38)

M (vixzxs) = 1P (A.39)
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and because the polarization of amplitude has the following property

ple,=0—=e=p-€= —ﬁiq (A.40)

so we could one step further extract the 3D polarization vector and have vector indices

amplitude

M(iXaxs) = €' My, (mXaxs) = € My, (mXaxs) = € My, (11 X2x3) (A.41)

in explicit form

M;, (71X2x3) = —Pi Mo(11X2X3) + Mi, (71X2X3) = —Pi U2Yous + Uzyius  (A42)

A.5 (Uncontracted) Cosmological Correlator, Contracted

Cosmological Correlator and in-in correlator

We label the correlator with the wedge bracket and the boundary field (as Dirichlet

boundary condition of Equation of Motion) inside the bracket:
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(Field’s Type) Operator Boundary Condition
scalar @) oo
fermion X+ X+0,4
fermion conjugate X— X_0.4
vector (photon) J €0
spin 3/2 particle (N X+,A€0i
(gravitino)
spin 3/2 particle conjugate P X—.A€0i
tensor (graviton) €0,i€0,j

(Uncontracted) Cosmological Correlator

In the main context, we define the correlator with the expansion of the wavefunction

with the boundary condition extracted. So the (Uncontracted) Cosmological Correlator

will have free indices like the QED Compton correlator will be labeled as

i— A —YoDh + 7
(JIX_2.4X+3.B) = ((1 — pé)OK;(l + ﬁg)) (A.43)
t AB

Contracted Cosmological Correlator

For convenience, we could define the correlator contracted with the boundary field

and then just omit the respondent indices

_ AT ]3,1'€i+
(T aavean) = (1= 50 TP 1y ) (A 4)
AB

149 doi:10.6342/NTU202302262


http://dx.doi.org/10.6342/NTU202302262

if every boundary filed is contracted inside the correlator:

i _ - —0B1 + 7
VI ae) =T (0= k) ) v | A
Notice for the fermionic correlator, the four-component fermionic 3D field . /x—
is exactly the two-component 3D fermionic field s embedding, as (A.18),(A.19) shows.
So we also have a two-component form that can be transformed by four-component re-

spondent ones.

I ) =T (1= TPE T ) ) v,

S A
- €y + 3,4
= [—Aé, Aé,] <(1 ~p3) %lejl 0 +ﬁ3))
N

N By 0By e (- 0B )

—(e1:0) + (P -0)(e1-0)(Dy - o)} A3 ¢

= <J1)\§,J\3,+>

2 [_(ﬁz'o') (1521) —(Ps-0) (ﬁ;) — (o) + (P, - o) () (ﬁf‘f)]ad

(TIN5 _aXs40) = K,

(A.46)

in-in correlator

For in-in correlator respondent to correlator we label the in-in correlation function

with

T e s = =00 1 (1+7) _ (=) (= ) (1+%)
—,—p,AX+,D, in—in 2 2(%_’_p’AX+7p’B> 2 2 2 2

(A.47)
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Appendix B — Cosmological

Background and Wave Function

We can construct a physical state as [30] do. And define the state at the current time
as (¢o|. Then, we can date back the (¢g| from current time ¢ = 0 to past timet =7 < 0

by the equation 9.1.34 in [30].

(s — il sr, (— (0 + 1))

— [ dmss{60, 0+ Ddlesp(—TH (G~ + i) (= (0 -+ 1)) 1, (o 1)
A(Tpr1, —(n 4+ 1)dn|dpi1, —(n + 1)dn)

— [ et eapliH (o, ) + (60 — Gui1) ]

1 .
(Tns1, —(n + 1)dn|dpgr, —(n + 1)dn) = %GIP(Z%HMH)'
(B.48)

and if we take dn — 0 and write ¢,,(Z) — ¢(t, &), 7,11 (Z) — 7(t, T)

/ 06(Z) (fn, —ndnlSusr, (—(n + L)) —
(B.49)

[aote3) [ D (it o062, 7(0.2) + 060 Dol

151 doi:10.6342/NTU202302262


http://dx.doi.org/10.6342/NTU202302262

then we’ll have
(énl = [ TT dn(2) (6u.t = Olonst = —d) (61, = ]
S dr'(t, %)
= d
/¢>0=¢’(0) g ¢ (t’x)/g o

exp [z /no d'z {0,/ (t, D)n'(t, ) — H(¢/(t,7), 7' (t, 7)) }| (¢'(n), —oo]|

— 00

Drexp i [ a 7)m(t, ) — ), m(t, T o
:/%:MO)W/ o P [ / e {00, B)(t,3) — H@( 7),m(1, 7))} {9(n), —ocl.
(B.50)

if the boundary field is originated by some field we certain in the far past (¢_..|, then we

could write

D [0 . . . .
= [ o[ Trew|i [" deaen 5.5 - B2, 500} 0l
(B.51)

And because the saddle point of the conjugate field is
7(t,7) = m(t, &) := —0w(t, T). (B.52)

suggested by [30] for quadratic Hamiltonian for the kinematic term. Then if we integral

out the conjugate field 7, we’ll have

0| = exp | " d*z {—(0,0( ), m(t, & o
= poew i [" d{—(@elt.a) - H0.5.70.5)}| 0

70
-/ Déexp [ / d%sw(t,f)]] (6],
$0=¢(0),p—co=0¢(—00) —00

in which the action defined as S[¢ = [ d*z {—(89(t,7))* — H(o(t,Z),7(t,2))}.

(B.53)

It’s the Path Integral formalism of the field with ¢, as a boundary condition in current time
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t = 0. And the ¢ spectrum is decided by the same Path Integral

70

Vi =iy = [ Do i [ asiot. 7| o o)

n

_ N Do exp [z / 0 d%S[qS(t,f)]}
$0=0(0),¢—co=d(—00) —00
(B.54)

in which N = (¢_00|{) is a constant in the path integral and independent of ¢, and
related to our setting at the far past vacuum. Without loss of generality, in this paper, we
set N = 1 in this thesis. As [12] and [4] paper do, we define the ¢y component of the

background as the "Wave function.”

It can be interpreted as the wave function of the universe, called Hartle-Hawking
Wave Function Wh,;, ¢o] when the metric hg;; is metric on the boundary in our La-
grangian. And the Einstein equation GGog = 0 will be interpreted as Wheeler-Dewitt equa-

tiOIl, H\I/[h07ij, qbo} = 0[ ]
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Appendix C — Feynman rules from

£iSe

In this section, we apply the discussion in the section (2.4) into the most simple ¢*
theory to derive the Feynman Rule by expanding the classical action. And because of the
nontrivial boundary action of the fermion, we derive the Feynman Rule for some of the

fermion correlators by expanding the boundary action of the fermion.

C.1 Feynman Rule from Bulk Action

Then we demonstrate how we get the Feynman rule of the bosonic field by ¢3-theory,

7 2
1Sy = 3 /d4x(—8u¢013“¢c1) + ?g 5= SS)) + gsg) + g2sg) + ... (C.55)

The E.O.M reads (Notice coupling constant is normalized in E.O.M.)

O¢a = —g% (€.36)
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with the classical solution perturbatively expand by the Schwinger-Dyson equation (2.45)

da(t,Z) = 60 (00,1, 7) + g8\ (b0, t, &) + ...

(0) 3. [ p (0)
o0 = [ EKEE 00E) = [ GERG D0 : D) (1.5 =0

¢£l1)(t>f) = _/dgl'/dgt/G<f f’ t t) (¢£?)(f/,t/))2

_ Epr [ Ppr [ Eps sy ms s, 0 /
= _/ (2m)3 / (2m)3 / (2r)? A3t e 'G(pl,t,t)(b (Pa, t ) o pg,t 53 (Zpa )
(C.57)

and zero-order expansion will be the two-point correlator will be

= [ @ua) 0 0n) = = [ 0,000 o6 = =5 [ o Pl

1 [ & d’p
:§/< B () = / (0-,0,) - 6o(~H)60(®)

(0_,0,) = > g = E.

(C.58)

The first-order expansion will be the 3-point correlator

0= [ aomard Sty
= H (/ ’ Lo > 5 (Zm) 010203 (C.59)

%
(010205) = (Kr — ie)

in which we apply the integral by parts and the fact that we have three equivalent ¢ fields
so when identifying the correlator we should include all the permutated indices of the

momentum. And we take the boundary value of the perturbative classical solution with

¢ = $o(Z) and

60(Z) = 6a(0,7) = 6(0,7) + g 6)(0,7) + ... (C.60)
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SO
6"=Y(0,7) = 0. (C.61)

cl

The second-order expansion will be the 4-point correlator

3923/ 2(~2)0,090" 6 — 8,606 + 2(64)) (D)?

2
4 4
’pa R 1
- H (/ L a)) &’ (ZPa) <01020304>—2
(010:0304) = ——g Z / dt/ dt' P EDY Q5 4 py 1 1) e BB
perm.
_492
=—F 7 t{)+(u
E125E343KT ( ) ( )
(C.62)
in which we apply the first-order expansion of EOM
Oy’ =~ ()" (C.63)

Notice the correct normalization of the correlator will make the Optical theorem (3.33) be

satisfied.

In this most simple example, we can find the singularity identity is trivially true for

this example. And the correlator could only have total and partial energy singularities.

[BCS <010203> (010203) =2 (C64)
4 4
K1§3j0<01020304>s = M,(010,050,) = (Fn—E2 S (C.65)
1
Res <01020304>s = Ms(OlOQO ) (<0304O > <03040_5>)
E1234)0 2E
(C.66)
B —4
TP

In (C.59) and (C.62), we show that the correlator from expansion should satisfy the Feyn-
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man Rule we suggest in the (2.52) and (2.53). And for other theories, the calculations are
similar to the ¢>-theory that we show in App. C.3. So the (2.52) and (2.53) are generally

correct for the correlator expanded from the classical bulk action.

C.2 Bounary Action

To get the correct correlator with correct relative normalization and WT identity,
we need to be careful to add the correct boundary action, carefully expand the classical
action and when identifying the correlator we should be careful to the permutation of the
same field. And, for the fermion case, we need to consider how to match the 4D classical
solution of the E.O.M to the 3D Dirichlet boundary condition. In general, the action of
massless scalar respecting 3D rotation invariance when there’s a boundary at ¢t = 0 is

t=0
S = 1 / d'z(9,0)* + ¢ / dPPrdOyo (C.67)

2 —0o0 t=0

in which c is a unfix coefficient which will cause a relative coefficient between 2pts and
higher points correlators if we put the Schwinger Dyson equation in. To fix this coefficient

we need to consider the boundary condition setting when we solve the EOM of scalar
o =0 (C.68)

It’s the second derivative differential equation on time, so we know we need to set the
Dirichlet boundary condition ”or” Neumann Boundary condition, for our definition of

Cosmological correlator we choose Dirichlet so we fix the boundary value on ¢(Z,t =
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0) = ¢ but not on its derivative dy¢(Z, t)|;=o:
do(Z,0) = 0;5(0op(%,0)) # 0 (Dirichlet) (C.69)
and do the variation on our action and require it vanish at EOM, ¢ = 0:

5S=c / d*2pd(0yp) = 0 (C.70)
t=0

To render the equation of motion a legitimate saddle point of the Lagrangian, it is necessary
to establish ¢ = (. Thus, the accurate imposition of boundary conditions necessitates an
appropriate formulation of the kinetic Lagrangian, which generally comprises both bulk
and boundary components. Then we get the scalar kinematic action we use to derive the

Feynman rule in the previous section.

There’s another perspective to set the ¢ = 0, it’s the Hamiltonian approach, we view
the Lagrangian as a canonical formalism from some legal Hamiltonian H (¢, 1 = —0y).
Notice it should not have a dependency on 9y = —932¢. Then we rewrite the Lagrangian

to absorb the boundary action in the bulk through the integral by parts

S =— /tzo d*'z(1 - ¢)(9,9)* — coOo (C.71)

—00

and it should be derived from the Hamiltonian approach

t=0
5_ / d* e + H(p, 1 = —0o0)

pal (C.72)
N / d'z — (9,0)° + H'(¢, 7 = —0o¢)
but
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So any Lagrangian with ¢ # 0 could not be derived from any legal Hamiltonian. We
need to set ¢ = (. And we would know the unitary identity of the correlator relies on the
legal Hamiltonian, so the 4pt COT setting the relative coefficient between 2pts and higher

points correlator, equivalently, it set ¢ = 0 here.

After we set a proper Hamiltonian, we put the free-field solution

43 L .
P& 1) = / <27f;3 P o (p)e ™ (C.74)

Notice Bunch-Davies vacuum requires the field to be convergent at far past. Then, We

have

i$ =5 [ 0,07 = =5 [ daon @00 = [ 50,0 - on(-pn(i
(C.75)
(0-,0,) =) § = E. (C.76)

perm

We note that the boundary action for the scalar field is trivial if we write the bulk field in
the quadratic and Lorentz invariant form without the second derivative in time. And by a
similar approach, we could show for the massless vector field, the boundary action is still

trivial

0
S:—% / d%%(FW)QJr / Pz (b A'QgA; + ¢ A'OA° + d - A9 A%) . (C.77)
t=0

—0o0

» Temporal Gauge: Ay(t,Z) = 0.

Then the variation on the boundary will all be Dirichlet like (A;(t = 0,%)) =

dAo(t = 0,%) = 0. We could fix the action (C.77) to be

b=0,c=0,d=0 (C.78)
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by the requirement that the variation of action at 9, /""" = ( vanishing. (Before we

take the gauge condition.)

at(aZAz(f7 t)) =0

(C.79)
OA;(Z,t) — 0;0° A;(Z,t) = 0
The free field equation will be
Ai(pit) = [WijeiEt — Pib;] Ajo(P) (C.80)

in the momentum space. Notice Bunch-Davies vacuum requires the field to be con-
vergent at far past.

Lorentz Gauge: 9y A°(Z,t) = —0; A (%, t).

The boundary condition will be §(A;(t = 0, %)) = §(0pAo)(t = 0,%) = 0. For Ay
it’s the Neumann Boundary condition. We could fix the action (C.77) to be

b=0,c=0,d=0 (C.81)

by the requirement that the variation of action at d,,F'* = 0 vanishing.(Notice, the

variation 0 A,,(t, Z) is vanishing on the boundary but not on the bulk.)

Ai(pyt) = ' A o(p)
(C.82)

Ao(pt) = —piAs(p, 1)

Notice Bunch-Davies vacuum requires the field to be convergent at far past.

No matter what boundary condition setting (with the respondent form of action) and
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the gauge condition we take, the correlator we expand from the classical action is the same

d3 o
’iS[Au,cl] = %/ (271_};3 <J1J]>Ai,0(_ﬁ)14j,0<m (C83)
o E
(T =Y 5 () = B(my) (C84)

Notice this result is satisfied and could be bootstrapped by the 2-point WT identity of the

photon correlator.

Similar to the massless photon, we need to add the boundary action of graviton

S = Sbulk + dery (C85)
t=0
Sbulk = / d4I\/ —deth (C86)
we fix the normalization to be 2 to the 2pt normalization we want. If want to fix the
boundary term of the graviton, we need to apply the proper boundary condition consistent

with the gauge we choose.

* Temporal Gauge : hg, = 0

The consistent boundary condition variation should be dhg,(t = 0,%) = dh,;(t =
0, %) = 0, then the Sy, could be fixed as [28] showed, first proposed by Hawking

and Gibbens.

Shary = / dPx\/—detgK (C.87)
t=0

in which the extrinsic curvature K is defined as

K =2VFn, (C.88)
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n* = (1,0,0,0) is the normal vector of our boundary. This boundary action is

called Hawking-Gibbens boundary action. Then we could solve the EOM

G()() =0= (nijVQ — 828])h”

1 ..
Gij = 0= —0L0uhj — §(th‘j + 9;0;h) + %(Dh - 8k81hkl) =0

and we can solve EOM with the aid of

WG = 82h =0 (C.90)

and because we require lim;_, o, h < oo then dph = 0 = 9y — & hyj, s0o G;; = 0
could be simplified as

(95 + E*)(mixmji)hij = 0 (C.91)

in the momentum space. So the solution will be

= Ep iz i
hi;(t, ) :/Wep ((ranmj)e™ + (narnsy — 7)) by (B)  (C.92)

If we take this back to the Einstein action with the Hawking-Gibbens boundary term

to the second order

2\ a2 d’p ij Kl 3
Ul (7, 1)] = i5® = / s T Tiag B (P + O(")  (€93)

we could get the 2pts correlation function

E

<Tij,prkl,p> = Z g(ﬂ'ikﬂ']’l) = E(Wuﬂjl) (C.94)

perm.

* Lorentz Gauge : 0"h,, For the Lorentz gauge the consistent field variation on the
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boundary must be §0yho;(t = 0,7) = Sho(t = 0,Z) = 0h;;(t = 0,7) =0.
There is some Neumann condition on the gauge component, so we cannot apply
the Hawking Gibbens boundary term. Actually, we can expand the action in the
Lorentz gauge and bootstrap the boundary term with the ansatz of the boundary
term then we’ll get the action (We have checked this action automatically respects

the remanent gauge invariance.)

t=0 1 1 . .
S@ = / d'z — Ol 0PI — S0 hy,0" hiy + / A22h0; 000" + K20 hgg
t

=—00 tIO
(C.95)
such that §S® = 0 under the harmonic EOM
Ohy =0 (C.96)
with the solution
By (B, 1) = Pyo (D)™ (C.97)
and we take back the classical action and replace the hog = p;p;h* and hg; = —p;h*
then we would get the same 2-point correlation as the temporal gauge
=\ — 92 _ d’p ij kl 3
Uhi;(7,t)] = iS5 = ij,—kal,pWo (=p)he (P) + O(h”)  (C.98)
then
(Tij—pThip) = E(Wz‘wﬂ) = E(mimji) (C.99)
perm 2

Just as the bosonic action, we improve the boundary term discussion of AdS fermion in

[16] and adapt it to flat space, we propose that the action of the massless fermion is also
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should be completed with a boundary term which is 3D rotation invariance:

5= [ 5 (i D+ (=i Dx - m da (C1100)

—i—/ b Xoxo + ¢ Xo"xo0 &z (C.101)
Notice the EOM won’t be influenced by the boundary term:
(=t d—m)x =0 (C.102)

i@ —m)=0 (C.103)

and for a nature decomposition on half-space, we define

X=X+t Xx- (C.104)
X =X+ +X- (C.105)
YoX+ = TXx (C.106)
X+Y = £X+ (C.107)

we can choose (x4, Y_) (individual have 2 d.o.f) as our field and their conjugate mo-
mentum will be (x_, x4 ). Notice for our free EOM has a general solution composed of
positive and negative energy modes with 2 coefficients for every momentum, then we can
only have ”Two” boundary conditions. And for a well define wave function correlator de-
pending on the boundary field, we naturally choose the following Two Dirichlet boundary

conditions:

(X—l—(t =0, f)?i-(t =0, f)) = (X+,07 )_C—,O)
(C.108)

(X4 (t = —0o(1 —i€), ), X~ (t = —oo(1 —i€), 7)) = (0,0)
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to select the positive energy mode and it’s easy to check the boundary condition at tilt

negative infinity will set the coefficient of negative energy mode to be zero.

The Dirichlet boundary condition requires that if our EOM solution (classical solu-
tion) is the saddle point of the Lagrangian which respect Lorentz invariant in bulk among

all the function respecting Dirichlet ONLY:
0S)yuxa = 0 (under dx 4 0(p) = 0,0x_o(p)) = 0) (C.109)

We can use this condition to constraint the coefficients in our action to be (we assume

Sint1s simple or it won’t have any derivative on the fermion field)

N 1 _ _ _ _
0S| xaxa = /d5$(25)5X070X0 - Z§X0’YO5X0 + bdXoX + bXodxo + cOXoYoX + XoYoOXo

(C.110)

1 _ 1 _ _ _
— /d3x(z§ +¢)dX+.0X0 — (25 — i+ ¢)Xo0Xo,— + bdXo.+Xo + bXodx0,—

(C.111)
=0 (C.112)
(under 6x5 (p) = 0,6x° ((p)) = 0) (C.113)
so we have i1 + ¢ = i3 — ¢ = —b, then we have
c:&b:—% (C.114)
and because the definition of the correlator is related to the wave function
Ul(x1.0,X—0)] = 5 (Xet (X+,0):Xet (X~ ,0)) (C.115)
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So we start all the theory from the action:

5= / (1/2) X(—i Px — (/2% (i F)x —mxx dae | (C116)

+ / (—i/2) Xoxo d’z (C.117)

And by this, if we take the classical solution, (2.34), and (2.35) into the action, we would
find that the bulk term is just vanishing because it’s proportional to E.O.M. As a remark,
it’s also the reason why completing the bulk action with the boundary term is necessary.

In the end, we would get the two-point correlator:

iSa = [ /2 5000 o = [ 55 (172) xal=Pl@)

- [ G D - p0+ g

E + m)X0,+(ﬁ)

- [ G P )

- [ S PG P P
e (P @) = =2

:E—i—m

(C.118)

for massless fermion what we do for the bootstrap
06 (D) D)o = F = 5 (C.119)

Similarly, we start with the action for massless gravitino with the boundary term, then
constrain the boundary term by the correct variation of the field on the boundary, which

is up to our choice of gauge. Similar discussion for EAdS we can view [&].

167 doi:10.6342/NTU202302262


http://dx.doi.org/10.6342/NTU202302262

« Lorentz gauge: v, = ¥, y* = 0

=0
S = /t d%lﬁ#(z’v“l’p)(—%ay + %gu)iﬁp +/ AP bipgts g + (V) (Y o 5)

=—00 t=0

+ dyyvotie + evyyoton
(C.120)

The bold symbol 0 means the boundary condition to distinguish the boundary con-
dition and 0 vector component. Notice for the Lorentz gauge

Yotbo,e = —Yitk
(C.121)

?/_Jo,i’Yo = —T/JEF%
Then, we could fix the ansatz by the variation of the field on the boundary, we have
the consistent variation §¢, ;(Z,t = 0) = 6_ (¥, = 0) = 0 and §vp_ (7, t =

0) = —0(ynt(Z,t = 0)) = 0 = 6y o(Z,t = 0) = =6(W(Z, ¢t = 0)7:70).

In contrast,0¢)_;(Z,t = 0) # 0 # d, ,(Z,t = 0) and 5, o(Z,t = 0)

—6(y0y ' (Z,t = 0)) # 0 # 6v_o(T,t = 0) = —6(¢*(Z, T = 0)7i70).

- , 1 - - 7 - 7 _
6(5)=0= / d3$§5¢0,+,i%7+ + 5%,7,@'5%7_ + 55%,7,0%},_ + §¢0,+,05¢3+
=0
+ b(0%04.ao,4 + VL 0%, i) + (880,00, + Vg0 4 0)

+ (6t 1% 4 — VL 0%0, i) + (=000 oty _ + Uy 4 0%0,1.0)
(C.122)

The coefficient should be fixed as i(b+d) = i(b—d) = i(c—e) = i(c+e) = 3,then

(C.123)

=0
S = /t d4m/_)u(ify“”p)(—%ay + égl/)qu)p +/

=—00 t=

d%;i}wm (C.124)
0
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Similar to fermion E.O.M, we could solve the E.O.M

v (Optby) = M, =0 (C.125)

after we apply the gauge condition we’ll have the simplified E.O.M.

i, = 0 (C.126)

and under the Lorentz gauge, this also implies 0,7/ = 0. Then it will be like the

case of massless fermion. And if take the classical solution to the boundary ¢t = 0,

LA c.127)
o, = %#(E_fm) (C.128)

Notice that if we take the classical solution into action, the bulk term should be

vanishing too, then the two-point function is determined by the boundary term:

| 1oy Low e Loy T g 0
1S = §¢0 Yo = §w°’_¢0’“ + §¢07+¢0,u - Wd}o’iﬁﬁ]m%#
d?)p _ ~ A
_ /(27)3%,@_,_5(77@ + Db )P

&p dp
:/( )1/}01— p( l]ﬁ)d)ﬂju /( )1/)0’_ p< —=P >¢0J“
(C.129)

(-—p¢+p> Ti;P- (C.130)
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C.3 Fermionic Feynman Rule from Boundary Action

And all the correlators are not expanded from the bulk action but the boundary ac-

tion S,. Then we need to provide some rigorous proof to extract the similar Feynman

Rule structure from the boundary action S,. We should notice like the bosonic, the proof

is independent of the vertices and the interaction type of the fermion. We only use the

property of bulk-to-boundary and bulk-to-bulk propagator of the fermion which reflects

the kinematic of the fermion.

Because we know the bosonic COT for exchanging diagrams depends on the structure

of the bulk-to-bulk propagator, G . So we use the 3D Schwinger-Dyson equation, whose

bulk-to-bulk boundary propagator of the x is just G4, and we should notice the E.O.M

of y, has a dressed interaction term as (D.208) shows.

e = (1) i)

Similarly we could derive

ox 2

(0 + B2 X = 2%, o+ p) (1 _%) :

6Sint

(C.131)

(C.132)

And if we reexpress the interaction term as the vertices:(g is the coupling constant)

5Sint

T gVx

0Sin -
5 L axV
X

(C.133)
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and because they’re deduced from the same Lagrangian, we require that

L; . L
Sint = /d4x><M = /d4xxvx = /d4 0 ity = /d%;yvx (C.134)
0X 5X

then the E.O.M could be rewritten as

(07 + E?) X+=g(1;'yo) (p—i0, +m) V. (C.135)

it’s just the same E.O.M of the scalar with dressed interacting term. Then p;, = p3 + py

(We already label the momentum to match our convention for (J;X2J3X4)s)

0
X(Jr)(pzh t) = """ X0+ (P1)

3 1
)(F, t /dt/ DGy t,t) - ;70-(ys—¢@t/+m) (C.136)

— / 1?/4 o iEqt!
VGO0 e

and we could get the y_ spinor as (D.207) shows by

0
X = (_EQLJFWLQ {(iaﬂrm) X" —yg (127 )VX] 3 (C.137)

Then we have

VO (5 1) = (L) ey ()

E+m

(1) ps
o) = | =3
X2 (s, t) (_E3+m2>

(o - (F51) [ SR v on+

iE4t

)Xo,+(Pa)e
(C.138)

D
E4+TTL

and we should take care of that, on the boundary only the x match the boundary condition

171 doi:10.6342/NTU202302262


http://dx.doi.org/10.6342/NTU202302262

for the Dirichlet requirement, so

Wit=00)=x%=0; xXPe=0p=x"#0 (C.139)

Similarly, we have
We=0p=x%=0 ; Wit=05=x"#0 (C.140)

Now we expand the classical boundary action: (The bulk term is proportional to the E.O.M

and vanishes.)

ow _ L [ om0, 0 « L f_w o | -
St =5 / O 4 = o [ $ O+ $n e (€141

To calculate this, we can exploit the integral by parts of the E.O.M

/ d'ax O (—in, " —m)xW = — / d*zgx OV X
_ [ A0 Gu (1) 4, o (<(0) (i Yy (1)
= [ d*zx"V (v, 0" —m)x"W + | d*x0 (X (—i7,)X )

_ / O 0)x )
(C.142)

Then we could write
/ oy =i / d'rg OV YO (C.143)

Now for the Y E.O.M we could have

. T e
/d%)—(u)(z% or — m)X(l) — —/d4ng(O)VX(O)
= /d%;‘((l)(—w“aﬂ —m)x¥ +/d4xc‘)" (M (i9,)x®)

= / ' 0)x Yy
(C.144)
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Then we could write

/d?’x)_(i)()xf?o = i/d4xg)_<(0)VX(0) (C.145)

Then if we take (C.143) and (C.145) into the boundary action expansion (C.141) then

we have (We define V = ViV

3
. — . ¥ d3 a — —
i) = /d4mx(0)zg(V)x(0) - H/ (2:)353(Zpa)¢3(p1~3) (C.146)

Y3(pi~s) is the correlator contracted with the boundary condition. Here we prove the

Feynman Rule struct for the contact diagram. Then we could recover (D.197) for gV =

gV = —ed

U(Frs) = (%o ot} — / a0 () gV 31, )% © (B, 1)

_ Py (i) Ps
=vo_ |1 : 1
Xe, K +E2+m e +E3—i—m X3, +

The Feynman Rule structure of the spinor is similar to the bosonic one. However, for

(C.147)

the exchanging diagrams, we need to consider the second-order expansion of the bound-
ary action. Actually, it’s too complicated, we could only use the discontinuity to extract
the Feynman Rule structure we could use to build the COT for the diagrams exchanging
Fermions. First, we need to know that similar to the first-order expansion, because the

zero-order expansion of x; and y_ already satisfy the boundary condition. Then

=09 =x%=0 ; xPe=0p=x%#0 (C.148)
WWi=0m)=x7=0 ; WPi=0p=x7#0 (C.149)
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Then the expansion of the boundary action will be

. o(2 1 —(2 0 2 —(1 1 1 —(2 0 —(0 2
ISy = 5 / W % + e dr = o [ X+ xEnd

(C.150)

Then we apply the integral by parts of the E.O.M again, we could get

/ Ty =i / d'zgx OV
(C.151)

9 .
/dgxxi)oxsr)o —z/d4xgx(1)VX(O)

Then if we take these equations back to boundary action expansion,

| e ]
i = 5 [[atax gy + X ig H [ s (S At
(C.152)

o 1 (0 / = . . . _ . e .
a(Preas 2) = 5 / dtx O (i, 1) (igV (1, 1)) x ™M (P, t) + X (=P, 1) (igV (D5, ) X' (P, ).

(C.153)

Notice that the Disc.,_|g, j2+; or the energy flipping differences should only extract
the term with e'¥s! = ¢'VZ! dependence. Then we could apply the discontinuity on the
correlator (contracted with the boundary condition) ¢4(pi4, 2s = —Ps - Ps + m?) with
complexified momentum on the bulk-to-bulk propagator. (We write the energy for the

bulk to bulk propagator as ,/z;).

DiSC 77[}4( 1~4,Zs) =

z2s=|Es|2+ie
1 . . . . -
5 /dt X(O)(p%t)(ZgV(plat)) ( *]?E%S\g:t‘ X(l)(psaz&t)) (C154)

2s=|Es|2+ie

+ < Disc X(l)(_ﬁsvzsyt)> (ZQV(ﬁS,t))X(O)(ﬁ47t)
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And by (C.136) and (C.138) we have

Disc YW (7,. ¢, zs
zS:|E5\2:tieX <p )

, g | . ,
:g/dt <1+_Z—+mQ(28t—|—m) Disc G¢(ps,\/z_s,t,t)

s zs=|Es|%2+ie

L+ , . 4
' 9 0 : (gls - 7'at’ + m) [V(pfivt/)X(O) (p47t/)}
—g/dt/ ! Disc  Ky(Ps, /2, t) 1+L
2E, (B idic OOV VZs +m
1 1+
28, 2 P
.| Disc Ky(ps /2, t) [ 1 B V(P )X (P,
<zs—£f|9ﬂe o(Pss v/ 2s, )( +\/Z_S+m>)[ (s, t)x" (P, t')]

(C.155)

Similarly,

Disc v (=7, t, 2
25:|E5|2:|:i€X ( p )

=g [ & OG0V 5.0 (—ys+@—m>( Dise Gd,(ﬁs,@t,t'))

zs=|Es|?+ie
11— 17/3 R
. i —2 4D
9 ( +—Zs+m2(Z t—i—m))

= [ dt’' X (5o, )V (i, Disc  Ko(fh /7 t)(1 4+ —2o—
/ h@mwmﬂ%ﬁmkwmﬁx+ﬁHM
. s ) 1=

2, 2
. Disc K¢(ﬁs,\/z_s,t')(1+L)

zs=|E4|2tie VZs +m

(C.156)
where we use the integral by parts with the fact that G, (t' = 0,t) = G,(t',t = 0) = 0.
And we should notice that under the discontinuity we find a structure similar to the scalar

Feynman rule with propagator GG, hidden in the above two equations. Then we could
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show that

Disc  ¢4(Pina, 25)

zs=|Es|%+ie
— 5 [ KOGV E0] ( Dise Kal a0+ 2
) ’ 2o=| Es|2tic v VZs +m

It B 11—
2 2B, 2

/ 1 D, / p/s / 0
[ (_pise, s vamtin s ) O] + <V(<:1‘5/;)

Notice the factor (1 + \/Zgim) is just the lifter of ¥°(—p;) and x°(p,). With (C.134) in

zero-order expansion, actually, we can replace the V with V or V in (C.146). Then the
left and the right term are the 3 with the rightest and the most left boundary condition

extracted, denoted as 103 4. We could write down the discontinuity version of the COT

Disc D1, 2
z5:|E5\2:ti577/}4(p1 4, %s)

AB

) L. 1+ — 1-—
= :%Slgﬂei/)s,A(pl,PQ,Zs) : 2% . QZS : 2% N %S'g Ze@ﬁg B(D3, D, 25)
(C.158)

in which on the RHS of the above equation,

zs:%jgﬂe U, a(Prs Py 26) = V3.4, P2, Ba) — U341, Doy —Es) = Us,a(ph, o, Bs)
(C.159)
so the RHS of the COT indeed gives factorization of shift correlators. And the LHS of the
discontinuity

Disc  4(Pina, 25) = Va(Dinas Es) — Ya(Proa, —Es) (C.160)

2s=|Es|%24ie

We should notice it’s not the RHS of the normal COT. This disc version of the COT shares

a similar form to the scalar one in (3.9). It’s because, under the discontinuity, we could
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extract a similar Feynman Rule structure with propagator G in the above calculation.
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Appendix D — Correlator Calculation

by the Lagrangian Approach

To get the correct correlator with correct relative normalization and WT identity, we
need to be careful about adding the correct boundary action, carefully expand the classical
action and when identifying the correlator we should be careful to the permutation of the
same field. And, for the fermion case, we need to consider how to match the 4D classical

solution of the E.O.M to the 3D Dirichlet boundary condition.

D.1 scalar QED : (JO*O) and (JO*JO)

We calculate the correlator of scalar QED in the Lorentz gauge by the Lagrangian
approach, p"A,(p) = 0 in the momentum space. For the bulk to boundary propagator of
the photon in the Lorentz gauge, we can refer (C.82). The calculation will be similar to

the previous section. We’ll write the action like

S0 = [ d'0(-(0, —ieA )6 0"+ ieA,)on) (D.161)
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D.1.1 (JO*O)

Just like what we do for cubic scalar correlator, if we take the Schwinger-Dyson equa-
tion into action, just as we show in the previous section, the kinetic term won’t contribute

to 3pts. And because every field in (JOO*) is different from each other.

Z'SS) _ eAELO)(gb(O)a“gb(o)’* _ ¢*,(0)3u¢(0)) (D.162)

The identification of the correlator in momentum space won’t have permutation on the

label of the momentum like ¢* theory. Then the correlator will be

, e )H
(J10503) = /dtH/ (ie)eru(ps — ps)te™ ™t = e—q’“(p;(T Pa)
_ (=P (Ba — Ey) + €1,4(p2 — p3)' (D.163)
Kr
== 617i<¢]{0;03>
In which, we replace that g = —¢'p;. It’s trivial that it satisfies the constrain that total

energy pole residue is amplitude, and we can check the WT identity as

(E1)(Ey — Es) — (p2 + ps)i(p2 — p3)’
Kr
(B\)(Ey— By) + B2 — B2

—e oo = e(Ey — F3) (D.164)

le(JfO;O?) =€

= ¢(030143) — €(03,,01)

So our unique bootstrap result in the context should match this result.
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D12 (JO*JO)

Just like what we do for cubic scalar correlator, if we take the Schwinger-Dyson
equation into the action, just as we show in the previous section, the second order ex-

pansion of the action will be (Our expansion here includes the coupling coefficient, like

S =504+ SW 4+ 5@ 4+ O(e?))

z’SéiiJo*J@ = /d4x z’(—augzs*v(l)aﬂqs(l))
+eAD (pWare O — 5 Mare© 4 pOgrgh* — ¢ guephy (D.165)

— €2 A A0 = 0) 4O

Notice that the e A} (¢ 9@ — 5+ g1 () will contribute to (O*OO*O) so we won’t
include this term here. We leave this calculation to readers for exercise. Then we use the

E.O.M and integral by parts to re-express the kinetic term contribution

/ d'z i(=0,0"Morel)) = /

t=0

dx i0,(=¢"VorglV) / d'c i(—¢~0gW)

_ / dized M A0 (20060
(D.166)

and we use the fact that 6V (¢ = 0, #) = 0 and E.O.M O = (ie) A (—20"¢()). Then

Z.Sglz,)UO*JO) — 6AL0)(¢(1)5M¢(0)7* + ¢*7(1)3u¢(0) + ¢(0)3u¢(1),* _ ¢*,(0)@u¢(1))
+ ieQALO)A“’(O) ¢ 00
= QALO)(5M¢(0)7* oM 4 gt M0 — pMxgrp0) 4 grgs0) . 61y
— Z'e?ALO)A“’(O)gb*’(O)qS(O)

= e A0 (20490 - 51)) _ 2 A0 40) 5-(0)50)
(D.167)
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in which we use integral by parts with ¢()(¢ = 0,#) = 0 making the boundary term
vanishing and we use the fact that J, A = 0. And we insert the Singer-Dyson equation

in the first order.

cl

oD (1, 7) = / B BEC(E, T 1,1 - (1) AQ (—2006)

d3 S d3 d3 iDs T — i ’ 5 . . B
- / (2:)3 / (2:)33 / (2:;3 d*t' et . G(Ps., t, t')(263,#pﬁf)e Eaat’ 53 (Ds + P3 + D) do(Pa)
(D.168)

so if we label p, = —p3 — Py = P1 + Po

4 4
. d3pa — . 7 14 — ’L !
zSﬁi)(JO*J@ = (H/ (2ﬂ)353(2pb)) [/ dt/dt,le26 128 (2e, ,p5) G (Ps, . 1) (2€3,,p ) e
a b

_ @'eQ/dteiKTteMEf{] P (P2)Po(P1)
4
_ (H /

then we could identify the correlator, and notice two photo field is the same, so we need

Pp. 5~ o o
(27]:)353(217’7)) (J103J304)€x €3, (D2) do (D)
’ (D.169)

to permute the label of the momentum of them

J105J30,) = dt [ dt'ie*e®2(2e, ,p%)G(Ps, t, 1) (2es,,p )Pt — ie? [ dte™rte el
2 b 2 7# 7“ 3

143

= [/ dt/dt’ie2eiE12t(261,l,pg)G(ﬁs,t,t’)(2€3,“pff)eiE34tl + (t)

-2 ieQ/dteiKTtel,#eg”]
_ pRaah) ) | o)
KTE12SE34S KT

(D.170)
And it’s trivial to check that the total energy pole residue is the amplitude and the transverse

parts of the amplitude are indeed what we get at (4.46). The WT identity check will be
o

€ = (—61,iﬁ§,6§) (D.171)
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and when WT-identity we will replace ¢, — pi, we’ll find in the Lorentz gauge it equiv-

alent to € — (Ey, p;) = pY. So we can write

) 2 Y v\ (2 H 2 Y v\ (2 (2 92 K
PrLlJI03T50,) = 62( P1P5)(2€3,,0%) n 62( €3,P5) (2p1,uPy) N 62( P1u€5)
KrEy2sE3ys KrEso1 By Kr
_ 22e) (i =0 = PY) | 2 (2esubh) | 2 (265,05)
Ky Esy Esy
2¢e3.,.04) (2€3,.05)
= (—2¢% —|—62( L M2
( 0) E3ys F3o;
TR B p
(051500 + (03 s0uy1) = —e2 Sl ZPA) | 2 oubh — 1)
Esy E3ay
o gesu((psFpa )t —20) | pe3,(2ph — (p2 + ps 4 pi)*)
= —¢ +e
E34s E32t
 se3,u((p3 F pa+ o)t — 20) 2€3,,(205 — (p2 + ps + D))
= —e€ +e
E34s E32t
2¢e3.,04) (2€3.,.05)
= (—2e%¢ +62( e L L
( 0) E3ys E3g;
(D.172)

in which 5, = (E,, —p,), pi = pi, + pl, = —pi — pi. and

S = (p1+p)"(p1 +p2)y = 20\ p2y) = —Eros(—FEr2 + Es) = —EiosEs45 + K1 Ehos

(D.173)
Indeed, the WT identity is satisfied. Because the transverse parts and WT which means
the longitudinal parts are matched to the bootstrap result in our main context. Then we
should know the partial energy pole residues are also satisfied like what we do in the main

context.
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D.2 TOO

We refer to the notes of Austin Joyce, we use the temporal gauge to calculate the

(TOO) correlator. First, the action of the scalar coupling to graviton will be

iS = —i [ d'z\/—detgD,¢ - D"$ = —i | d*z+/—detgd,¢ - O"¢ (D.174)

and notice we expand the metric like

gMV - /r’uy _|— K/hluy (D175)

and for the temporal guage, we set hg, = 0. There’s still a guage freemdom h;; ~ h;; +
0:€;). So we could have WT identity in this gauge. We use  as our coupling constant
to expand the SD equation and the action. As we know, three points correlator will come

from the first-order expansion of the graviton in the action (Notice it’s just the stress tensor

7}(;)) contracted with g()W = —xp(0))
- 1 -
84 = —inT RO = i (ai¢<°>aj¢<°> - émxaw)?) B0
(D.176)
1
Ti; = —/ —detg (az‘¢aj¢ - 591’;‘(3“(75)2)
Notice we should include the expansion of the determinant.
1 o 1 .
5y/=detg = 5/=detgg" ohy, — (\/— detg) = snhy (D.177)
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Then we plug in the bulk-to-boundary propagator, especially for the temporal gauge gravi-

ton, we could identify it in (C.92)

— Ep ipx i
hg)) (t,7) = /(27)36 P ((mkwﬂ)e Bt 4 (ki — Wikwﬂ)) h’gl(ﬁ) (D.178)
as
Kiju (p,t) = ((Wikﬂjl)eiEt + (U(ikﬂj)l - Wikﬂjz)) . (D.179)

Then we would have

~ i L o4 i S
(T1 10203) = Z/dt(m) (—pgpé + —ﬂ](pz,upg)> e K (P, t)

2
23

= /dt(iﬁ) <—2ng§) + 0 (EqEs +p2,mp§”)> e K (P, 1)
_ : (¢, 4) kl m iKpt
= /dt(m) <—2p2 Py (1,1 50) + 71 (B2 Es 4+ pamph )) e

+ /dt(if‘é) (—2p§ip§) + 0" (EyF +p2,mp§n>) 6iE23t(77(ik7]j)l — M)

K

= (K—T) (=254 (kT g0) + 2D1, P20y (B — B + E3)

e m 1, .
+ PP (Prmpy ) (—Es + E) + §p1,kp1,l(—E§ - E% + Ef — 2E3E, — 2E1E2))
(D.180)

in the last step, we use Mathematica to calculate it in the kinematic and bootstrap algebraic
form then we simplify it. We should remember that in the calculation from boundary

E.O.M of the graviton like (2.28). We could identify 7 ;; as 0.

And we also use Mathematica to check that (D.180) indeed satisfies that total energy
pole is amplitude and WT identity. So it should be equal to the unique result in the main

context we bootstrap from these two constraints.
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D.3 QED: (Jxy) and (JxJy)

The Lagrangian approach to derive the fermionic correlator is similar to what we do
in C.2 to derive the two-point correlator of fermion. We improve the calculation in [22]

and adapt it to flat space.

5= / (1/2) ¥(—i D)X — (1/2%(—i F)x — mxx + Lo d'a
(D.181)

+/ (—i/2) Xoxo d’x

where we define the boundary action as S, = [ (—%/2) Xoxo d*z. Then our E.O.M will

be
(=i @—m)x = —%}i{"’f (D.182)
2 B = m) = — Ont (D.183)
ox

We propose two equivalent approaches to get the Schwinger-Dyson equation to get the

solution of E.O.M under the boundary condition

(D.184)

(X-l—(t = —OO(l - iE), f)?X—(t = —00(1 - 16),5)) = (07 O)
The first approach is the Schwinger-Dyson equation of the full spinor, and get the re-
lationship of x_ o(x+.0) and x+.0(X—0) by Schwinger-Dyson equation, we propose the

Schwinger-Dyson equation like

W) = Kbl + [atGpne) (—200) @ass)
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where

iEptP+m

K(p.t) =
(p,t) =e oF,

Yo (D.186)

G(p,t,t") = if(t —t')e *Fr (H’)H‘QT_m —i0(t —t)e'Pr (t’—“P;Tm (D.187)

p p

to match the full spinor boundary condition

(X(t = 07f>7)_(<t = O?'f)) = (XOa XO)
(D.188)

(x(t = —oo(1 —i€), ), X(t = —oo(1 — ic), T)) = (0,0)
notice in this form of Schwinger-Dyson, unlike the bosonic one, the propagator is Feyn-
man without homogeneous term, and we could perturbatively get the relationship of the
boundary condition to make the boundary condition only have 3D spinor degree of free-
dom, like x_ o(x+.0) and Y+ 0(X—0). We could take the Schwinger-Dyson equation to

t =0, Then

—|—m I ’ _—m 5£1n
Xo(p) = P ot P (— !

0 ; 5 4 D.189
oF, v Xo(p)ﬂ/dt 2E, 5% (p,t)) ( )

and we could use the trick to rewrite by xo = X0+ + Xo,—

2, 5 oF, (2x7 () — x0(p)) (D.190)

then we obtain the recurrence relationship

Xo(p) = (1 __F ) V;mxé(p)+i/dt’eiE”t'P_25m (—MW (7 t’))]

E,+m D D 5%
7) + . 7) / /iEt’Pf_m 0Lint ,
=1 1 — P _
< B m Xo (p) 47 E,+m die O, TR
(D.191)
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Similar derivation for yo(p) yields

%@y:b5<_¢éf)—4/ﬁﬂ(53?@J06@”K§%@}Oﬁj%ﬁm)
(D.192)

Then we could perturbatively expand the boundary field in the 3D spinor boundary degree

of freedom x4 o, X— 0 by the lifter P

3

i) = Fon 0+ [ 4k

@ g (@) + -+
(D.193)

)
Xo(p) = Xo (PP (P) + / (;l;q)gXo(Q)P(el)(ﬁ D+

For the case of QED in the Lorentz gauge, we set p*A,,(p) = 0 in the momentum space.
For the bulk to boundary propagator of the photon in the Lorentz gauge, we can refer
(C.82). sAnd the interaction term of the Lagrangian will be L;,,;(z,,) = —ex(z,) A(x,)x(z,.), A =
A,~", and the Fourier transforms of the interaction term we use in the Schwinger-Dyson

equation are

5£m — d3 — — 4/ — 4/
t(p,t)ze/(—qu(p—q,t)x(q,t)

OX 3) (D.194)
&Cint — 4/ d q _, . / — — 4/
) = — gt
) = [ @A q.)
Then in O(€®) level the expansion of the boundary field reads
W0 =P = (14 5 )()
(D.195)

W@:%@WanO(

)
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we recover the (2.33) and (2.35) where we use the free classical solution of half spinor to

get it. In O(e') level, we have

pleh) — _€ (1_ p ) (P—m) (_Vopi—qi_i_,yz)
Eiot E,+m 2E, E, 4

(52) (1 ) s

= PE(F, Q) Ani(F — @)

g 2 . . (D.196)
P(el):—i(l— )(0 —m)(_ Op—q+ z>
Feo E,+m)\! 2E, T g,
p_+m P
) 1 — Agi (P —
( 2F, E, +m 0i(P— )
=P (5, ) Ao (7 — @)
where By« = E, + E,_4 + E,. Substitute into iS5, we get
1 — L /= e e )i = m(e )i — e
(Ji X —gaXt5a) = 5 (B (=QP(q,p) + P (=, —)P'") ()
2
(D.197)

_ [_(_i [(H— Eqim> Ya-p <1+ﬁ)ka

0¢—p' | 7%, We can see that the residue of the total energy pole is the

where 7, _, = —v o
3pt amplitude of QED sandwiched by P = (1 + Ep%) which represents we map the

4D spinor or free solution of E.O.M uz = X((,O), Uy = )2((,0) to the 3D spinor y ., y_. We

could check that indeed the WT identity is satisfied.

e —cC q 4
(¢ = )il e X = —gaX+pa) = T X—r—q (1 + B+ m) (K7%0) (1 + B+ m) X+.7

— et (D g o (0 — v (A o @

= e(X— X +irq-—p) — eXo—qra—XG )
(D.198)

where we use E.O.M Epvox((,o) (p) = —px((,o) (p) and )Z((,O)(—@Eq% = X((,O)(—(f)g. So We

know this result must match the unique bootstrap result by WT-identity and total energy
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pole amplitude in the main context.

Similarly, we could get the four-point correlator (Jx_.Jx ) by the O(e*) expansion
of the lifter P(¢*), P(¢>) and PP, (For comparison, (Y_Y_x4x..) will be got from
the O(e?) contribution composed by expansion the photon field A) multiplied with the

first order lifter P))(p, = ps + pu) ($ = H, + s> 9 = Hs— 1)

<Jf92—,2J§X+,4>
_ 1—|—L i _P4+P3+m+ 1 L=\ $_—m] 1+L
B, +m) ™| KrBiyFys | EiasBss \ 2 ) B, +m| ™ Er+m

. + + 1 1-— I .
- 1_'_ pQ fy;g _Pﬁl Pl m_'_ 70 T m ”y;l 1+ p4
Ey +m KrEays3i By Easi By 2 Ei+m Ey+m

(D.199)

we already use Mathematica to check its WT identity, Total Energy Pole residue, and
Parital Energy Pole residue. So this result will be the unique result we bootstrap in the

context. Notice p, is the internal momentum. And the factor I;E:m =—

T 1+ps/(Es+m)

and g, /(E + m) factor seems like co-dimension 1 pole. But it’s not because

ik = (V(Es +m)\/(Es —m)) - 7s _ VIE =g (D.200)

(Es +m) (Ep, +m) (Es +m)
or
Res —o = lim (Es + m)L = lim p,=0(.[p| = E? —m?=0)
(Bs+m)=0 (Es +m)  (Bstm)—0 (Es+m)  (Es+m)—0 s

(D.201)

It’s just a reflection of the gluing factor, the two-point correlation 57 % __ on the Fermion

s
Es+m)

Exchange Optical theorem and the respondent partial energy pole.

Actually, it’s easy to analytically check the partial energy pole residue in (3.2.5). By
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the following calculation

Res <P4+P3+m_ 1 (1—70>$—m>

E345—0 \ KrE125F345 EiosFss 2 Es+m
(=Y Am 1 1=\ S —m
-\ KrEp, B 2 Es+m
1 1 1 E, g —m
— 9 — _ _ 1—
2E; (( ’ m><E125 Eqp — Es) E12s( ) Es + m)
1 ((I+(%—I)Eﬂim)(ﬁ——m) S —m )

(D.202)

T 2E, Elas " En- B,

and the following calculation

Res (P4+P3+m 1 (1—%> $_—m>

Fioos0 \ KpBi9sFss  FrasBa, 2 Es+m
_ _Pl_P2+KT'70+m_ 1 (1_%) p_—m

K FEsy, Esys 2 E.4+m
:($+m+ Yoo 1 (1—70)$_—m)
KrFsys  Esys  Eaas 2 Es+m
1
- 2F,
(g —m)( I 1 )+2ES(ES+m)70 1+70+1—70 2B, (=) b —m
Esys B3y — B Esys Es+m 2 2 Esys 2 Es+m
_ 1 (=% — m) 1 1 ) 2E; (Esvo+m)14+v  2Es (Esyo—m)1—
2Es E34s E34 - Es E34s ES +m 2 E34s Es +m 2

1 1 1 1 E,
" 2E, ((_ NG T BB BanBiam ¢ ™0 ”‘”)
1 (EE-mU+ (D) —8-m
- 2E, E3ys FEsy — B,

(D.203)

They’re indeed the gluing factor on the partial energy pole.

There is an alternative way to get the same correlator, by the generalization of the
method in App.C.2. We could express the E.O.M by two 3-D spinors x, /x_ and see they

are related by E.O.M directly, so we only need to solve the harmonic E.O.M of y, like
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a scalar perturbatively. Then the E.O.M gives us the solution of y_ perturbatively. The

E.O.M of 3D-spinor will be the (??) added with interaction terms.

It’s the more natural way to extract the Optical theorem from our calculation of the

Fermion exchange correlator in §(3.2.3).

i 1+ ’70 5Sin
(£i0, +m) x* = pxT + ( 5 ) < 5>_<t) . (D.204)

with the independent Dirichlet boundary condition,

X+(t=0,p) = x+0(p) ;X-(t=0,p) = X-0(P) (D.205)

and Bunch-Davies vacuum state constraints

From the equations above, we can then yield,

v = (=2 ) [0+ m)x* - LAY (9% ] (D.207)
E2+m 2 oX

If we substitute (D.207) into the E.O.M of x~, we would get a second order equation of

xt,

6Sint
ox

(07 + E?) xt = (1 ZVO) (P —i0, +m) (D.208)

Then we could find the x, could be viewed as a scalar with the dressed interaction term,

then it’s trivial to write the Schwinger-Dyson equation of x, by the scalar SD equation.

, , 1+ 0 . 0Sin
bt = Koot + [ dtG¢<p;t,t>( 2”)<p—zat/+m> S (0209
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and the scalar propagator is the same as (2.50)

Ky(pt) = "ot

Co(F i 1) = (ez’(Efie)(tft’)e(t/ )+ efi(Efie)(tft/)e@ ) - ei(E—ie)(tth’))

2F
(D.210)
Next, we can substitute the SD equation of ™ (D.209) back to (??), tuning the time co-

ordinate to 0 on both sides would lead us the explicit dependence of x, in terms of x,,

_ p . ) Bt 1+ 'YO . 0Sint
XO = (T—}—Tn? 1 ZEXS_ —f— dt e Et T (p — z@t/ + m) 55(

1‘|"YO (SSim
+ _
i = (757 ()|

where we have used (9,G )10 = €'F'". Then we’ll get the recurrence equation if we notice

(D.211)

that

. P o/ e 5 S
Xo ~~ (—E?—W (4 ’LEXS— + dt@Et (?-Z@t/ +m) 5)_(

5Sin
- ( 6><t) }
t=0

B (L) {(_EJFm)xo* +’i/dt’e“3t' (p—E+m) 6Sim}

—FE? +m? oX

(integral by parts)

[ p + / ! Bt Z” 6Sint
= -7 dt'e® (14 ) 2
_(E+m)XO+Z ‘ +E—l—m dx

~ —1” Xarﬁ—i/dt'eiEt/ —P - m 05
)

(E+m E+m )%
P / g P = 2B +m (—P_ 4+ mY 08w
(E+m)™° E+m 2(E) O

[t (- 2m) foe ()

X0 = 1+ m Xe+i(1l-— Etm dt' P 2(;?)7” — 5;_;"
(i) (-t S (57) (5]
(D212)

The ~ means that the following expression taken into Lagrangian S, will have the same
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value, notice that in Lagrangian’s classical value, only boundary term S; will contribute

and

/d3$X0Xo = X0,—X0,— + Xo,+Xo,+ (D.213)

so in the xo — the prefix 1‘% always be absorbed into Yo . Actually, the (D.212) is the
same as (D.192). And, by a similar approach, we can derive the equation (D.192) again.
They are the starting point to get the lifter and compose the correlator. So, in this way, we

can get the same result as the previous way using the 4D spinor SD equation.

D.4 Tyx

The Lagrangian of the graviton interacting with the massless fermions will be the

curved space extension of the free fermion action in flat space. So, by (D.181), we have

5= [ V=detg [(1/2) x(-iB)x - (UDX(-iD)] d'o

(D.214)
in which
D =7V, (D.215)
the e is vielbein defined as
9" = elheyn®™
el = 5t (D.216)
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And the covariant derivative of the fermion is defined by (v, :=

1
Vux = ax—4 Wi YapX

1 - ab
_X’Yabw‘u

\V x:8M>2+4

%[7{1’ ’Yb])

(D.217)

in which the wfjb(eg) is the torsion-free spin connection dependent on the vielbein, [10]

w® = ze'/[aa[u]efj]] —e” “eb]”euca es.

And we perturb the metric in the temporal gauge like

Guv = Nuw + /’ihuu ; huO =0
and the respondent vielbein perturbation will be

Guv = Nuw + /’{'huu
a a Kia 2
e“:5M+§hM+O(/@ )
el = gt — ghg +O(k2)

eaV — ,r’au _ Ehay + O(KJ2)

2
K 2
Cav = Nav + §hal/ + O("{ )
with the spin connection perturbation
WD = —pdlop

To get the 3pt correlator (T x), from the E.O.M like

v —detg(—ilD)x =
Vdetg(x(i D)) =0,
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(D.220)

(D.221)

(D.222)
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we need to extract the 3pt vertices from first-order expansion of the E.O.M,

. 5£m R i . K c a K a ]

K o (1a B ar
=177 wM Py x @ + 157 B x©

_ o 6£m — = 7 e K055 a
(1)(13) 5Xt =i =K (O)Véz 2( Jh i) (X (0)(Z$>)+Z X %w w() b—Z§X(O)aJV haj
K c a K05 a
= ZZX(O)%W wgl)’ b ZEX(O) 09 hg;.

(D.223)
(1),ab

Notice that 'V y© — Byt ht 0, — ey, x(0). Because we have volume unit

v/ —detg in the action and the usual Feynman rule, like (C.147), we have

s, =3

2 2
(H/ < pa Zpa ) (73 30)X2—0(1 —92) (1 +91) X140

. —iketErt . — o)l N
+ / dtNa—o (1 — Ph) (T> (Vahgg.) (D5, t)%) (1+941) X140
(D.224)

1/Clgx(D_(())Ct))(l) +%/d3I(v —detg)™ (Yoxo)

in which we use the fact that

O, [ ]} = =R R, s o} = —RO B (230707 — 27677%)
(D.225)

= —KO"h"(27aTe — 20t Ya) = 0.

Then we plug the classical solution of the temporal guage (C.92) into (D.224), we could

identify the correlator

_ K _ 1 R 1 1 R
<T3,in2,—X1,+> = K—TX2,—,0(1 - 152) (Z_l(El - Ez)V(z‘p?,,j) - Zp:a,(ﬁj) - Zp?),(ip&j)

1 k1A n
—[pl,kplgf]p3,(¢p3,j)’70) (1+ ﬁl)Xl,-i-,O

1 .
=P1,(iP3,5)Y0 + 5
(D.226)

| 1 o
—5PLEY) Z(El + Eo)p3py + 5
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We use Mathematica to do the integral under random kinematics and use‘the bootstrap
program to write the answer in the algebraic form. And we also use random kinematics to
check that the algebraic form satisfies the total energy pole residue is the amplitude and
WT identity. So, our unique bootstrap result in the main context should be equal to this

result.
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Appendix E — Ward Identity of the

Amplitude

For a general amplitudes with integer spin s, the amplitude can be written as €., ..., M#17Hs.
In this section, we show how to rewrite the amplitudes as ¢;,...;, M. This will be useful

to determine the transversal part of the correlator.

E.1 Spin 1 field

A scattering amplitude containing a spin 1 field can be written as

M = e M, (E.227)

Ward identity states that we have the residual gauge freedom to transform e* — €* + ap*.

pH

Take oo = —%-, we have
P

€ =0
; iy (E.228)
€ =€ — g—peo =€+ pEZ% e; =1¢;
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Therefore, we can rewrite the amplitude as

M = e M; (E.229)
Note that this equation holds only if the total four-momentum is conserved.
E.2 Spin 2 field
A scattering amplitude containing a spin 2 field can be written as
M = e'e"M,, (E.230)

Ward identity states that we have the residual gauge freedom to transform e# — €* + ap*.

Take o = —g—”, we have
P
€ =0
; iy (E.231)
d e P o + b € = 7Tij€j
2
P P
Therefore, we can rewrite the amplitude as
M = e e M (E.232)

Note that this equation holds only if the total four-momentum is conserved.
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Appendix F — Ward Takahashi

Identities of the Correlator

F.1 2pt WT identity

Notice there’s still gauge freedom in Kinetic action, so there’s a Ward Takahashi
Identity to ensure the gauge invariance. Because there’s no one-point correlator, so no

lower point contribution in 2-pts WT identity.

* (JJ)

For U(1) symmetry parametrized as ¢; o(x) = O;a(x) then the §W(A; o) = 0 tell

us
(o) =2 [ G AN =21 [ G (L) Aol = 0
(F.233)
So we get
P (JiJ;) =0 (F.234)
- (rT)

For the diffeomorphism parametrized as dhq;; = 20;&;),0 + O(h), then similar to
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(F.233), the invariance of wavefunction W (hg ;) = 0 tell us

p (T T) =0 (F.235)

We could know the longitudinal parts of the two-point function should be zero and

by the EOM m;;h§ = 0 the term of 7;; should not contribute.

* (Yy)

For the SUSY parametrized as §tg , ; = diey + O(h) and §tpg_; = die_ + O(h),

then similar to (F.233), the invariance of wavefunction 6 (v, o ,%_ ;) = 0 tell us

P itby ) =P (_ipy ) =0 (F.236)

F.2 3pt WT identity

* Scalar theory:

For U(1) symmetry parametrized as

0o(x) = (—iea(m)) do(®) ; 0¢y = (ica(x)) Po(x) ; deio(x) = i(m) (F.237)

and in momentum space will be

6¢o(p1 +P2) = —iea(py) do(p1)
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0¢y(p1 + o) = ie a(py) ¢o(py) (F.238)

deio(py) =ip1; a(p)

in position space, then the WT-identity will be directly from the invariance of wavefunc-

tion under the boundary condition’ s decomposition

0U(Aio, ¢0) = [ | / (C;:;353 (sz)

{{030115)64(92)000 (91 + P3) + (03,1 03) 5 (12 + P1)360 (13)

(F.239)
+ (J1.:0503)0 A (1) 65 (12) o (P3) }
=0
P1{/1:0303) = =€ (01,5 O3) +¢ (05 O143) = e (Fa — E3) (F.240)
and for the diffeomorphism
Shoi; =2 0a&jy0 + O(h) ; d¢o = Do + O(h) (F.241)

Similar to (F.239), the invariance of wavefunction tells us the WT-identity will be

1

. ‘ ‘ 1 , ,
PrLi{Ty? 0203) = 5 ((O14203)ph + (020143)p%) = 5 (Bsph + Eopl) . (F242)

 Pure Gravity: (double-checked in momentum space and coordinate space)

Ohoij =2 V&0 =2 0680 — 217 6m = 2 060 — 250 00hj)ym0 + " Opnhij + O (r?)
(F.243)
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Similar to (F.239), the invariance of wavefunction tells us the WT identity will be

ij 1
pri€1 oIV ToTs) = (€10 €2,0) p2,k€2,l<T1ler2T3> — 5(61,0 ‘P2)€2,0,k€2,0,l<Tﬂ2T3>

1
+ (€1,0- €30) P3esy(ToThty) — 5(61,0 - P3)esones00(TaTyty)
(F.244)

* Fermion Theory: for the U(1) symmetry parametrized as:

Ixto(®) = (—iea(x)) xto(x) 5 ox—o(x) = (lea(x)) x-o(x) ; deio(x) = Oja(x)
(F.245)

Similar to (F.239), the invariance of wavefunction tells us the WT identity will be

Pi(JriXe,Xs4) = —€ (X142 X4.8) +e€(Xo2 Xta43) = € (=P, —P3)  (F.246)

The last equation is true for the massless spinor. For the diffeomorphism

5h0,ij — 2 5’(1-)\]-)70 ‘|— O(h)

1
X0+ = A" OmXo,+ — gaa)\b [7*,7"] X0+ + O(h)

— 1
0Xo,— = Xo,— O mA" + gf(o,— [7%,7°] 0Ny + O(h)

Similar to (F.239), the invariance of wavefunction tells us the WT identity will be

if — 1 _ 1 -
P17i€1,j<T1JX—,2X+,3> = _5(172 : 61)<X—71+2X+,3> - 5(193 : 61)()(—,2X+,1+3>

1 1
+ 16 [P1, 1] (X 112X +.3) — 1—6<>Z—72X+,1+3> [P, &1]

1 1 1 1
= —5(272 - €1)Ps + 5(173 - €1)pa + 16 [P, 1] Bz + 1—6172 [P, &1
(F.247)
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The last equaily is true for the massless spinor.

* N=I1 Pure Supergravity

for the supersymmetry transform

_ T
e,—eJrB

Oz_hij = i) + O(h) = be, hij = =t 7iy €4 + O(h)

1 1
(Wj =0; €4 + ] Wiab [’Yay’ﬂ € =0y — ] Ol [’Yaa’yb] e+ +0 (hQ)

507 = e — 56w 0] =0 + 56 B[] +0 (1)

Similar to (F.239), the invariance of wavefunction tells us the gravitino WT-identity will

be

_ 1 _
pz,k<T1¢§,f¢3,+> = —(T\THL,) a3 (Xo-WiXa4) — 3 P, €1] (61,k(¢f+2,7¢3,+>)

1
= - (elT : 63) (>_<2,7¢{X3,+) By — 3 (61 : ‘5:{) (Xo,— [P1, £1] Paxs.+)
(F.248)

it will be equivalent to identity (2 < 3, Y- = Xii B)

. i 1 7
Paw(Tie 05 ) = (TiT3L3) €12 (Yo, YkX34) + 3 (eLe(Uh _1yss)) [p1, £1]

1
= (€] - &) (Xo—€1x3+) E1 + 3 (e1-€3) (Xo P [P1, £1] X5.4)
(F.249)

there’ s a consistency check from different WT identities (Notice it" s still holding for

Dirac Fermion)

Er
EyEs

<T11/32L,_¢§,+> == (€1T : Pz) (227—¢1TX3,+) €2,L€3,L = (€1T ' Pz) (XQ,—¢1TX3,+) €2,L€3 L

.
EyFs
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and for the consisent parametrization of diffeomorphism transform

dhoij = 0urjo + O(h)
; ; 1 .
O = A" 0wty + (Ddm)UEs — g0uy [v*,7"] i, + O(h)

. . _ 1 -,
SUh _ =5 0 A" + (O A )y + g%s [7%,9"] udo + O(h)

Similar to (F.239), the invariance of wavefunction tells us the graviton WT-identity will

be

p1,k<Tfl/_f2,f¢3,+> = —X2.—Poxs+ (€2T : 63) (P3 - €1) — Xa2,—P3X3,+ (62 : €3T) (py - €1)
- 5(2,7152X3,+ ((—:2T : P1) (63 : 61) - )Z2,7253X3,+ (Gg ~p1) (62 : 61)

1 1
3 (eg : 63) (5(2,7152 [Fhﬁ] X3.4) T 3 (62 : 6?) (X2,— [?1,¢1]]53X3,+)
(F.250)

and the consistency check from graviton and gravitino will be

B 1 L_L 1 L_L
T ) = (o1 ) (ol B ) G2 = Ly (1 e ) )
(F.251)
B 1 L_L 1 L_L
(Tby by ) = 3 (p1-€)) (Xor-Po [P1, 1] X5.4) (;11653) =73 (€3 - P3) (Xo o [P1s £1] X5.4) (;1121)
(F252)
F.3 4pt WT identity
* Scalar theory:
P1(J1:05J3;04) = =€ (07 15 J3,,04) + ¢ (05 J3,;01,4) (F.253)
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and for the gravity (double-checked in momentum space and coordinate space)

Sho; =2 00 — 260 00hjmo + E™Omhiy + O (B) 5 8o = &0.40"¢0 — Eiohi) Do
(F.254)

Similar to (F.239), the invariance of wavefunction tells us the WT identity will be

ii 1 1
pl,i€1,j,O<T1jO2T3O4> = ——(p2 : 61)<02+1T3O4> - —(p4 : 61)<02T3O4+1>
2 2

1

+ (€1 - €3)p3.o (T 30:04)" — 3 (€1 p3)(T1130:04)

1
+ 5 (py - €3)(€1 - €3)(02414304) + 5(104 - €3)(€1 - €3)(02044143)

1
2

Because we don’t apply the constraint (2.28) of the boundary condition Ay ¢ on the gauge
transformation, so the correlator with free indices is produced by pulling out the uncon-

strained boundary condition h;; ,. We call this unconstrined correlator and define it by

<T1a+30204>/ = €3y <T1a£30204>/
(F.255)

<T1ai30204>/ = P2k,1ab<T1ai302O4>-
such that

M0 (TFE30204)" = g 40 Paon (THE30204). (F.256)

Similarly, we should write the 3-point WT identity like (F.244), (F.248), and (F.249) by the
two-point unconstrained correlator, but actually, in these case the unconstrained correlator

is equal to the original correlator due to the two-point correlator is pure transverse.

The projector P* we define in the (??).

* Fermion theory:
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Pi{(JriXe— I3 ixa+) = —€ (Xis2,-JaXa+) + € (Xo— 35X 144,4) (F.257)
and for gravity, the diffeomorphism is

a i 1 i a b
OXo,+ = A€, Vixo,+ — geavi)\b (7, 7"] xo.+
1
= A"OnXo,+ — gaa)\b [v*,7°] xo0.+
1 1
- §Aahab8bX0,+ + 1_6hcaac)\b [7a7 ’yb} X0,+ + 0 <h2>
5o = Yo Vieh X" + <Xo- [1,7] Vi €

1
X a m)‘m + gXO,— [,ya7 ’Yb] aa>\b
1 1
2)\ h*0yXo,— — 16 X0~ (Y, 7] heaONy + O (B?)

Similar to (F.239), the invariance of wavefunction tells us the WT identity will be

pl,i€1,j,0<T1ij>_62,7T3X4,+>

1 1
= — (€1 Py)(Xow1,-T3Xa+) — 5 (€1 Py) (X2~ T X411,+)
2 2
1 B 1
EXz ([Fl,¢1])AB<X2+1,B,7T3X4,+> — E<X2 _Taxar1.+.4)( [F1,¢1])ABX4,+,B
a - 1 =
+ (€1 - 63)p3,a<T3+1X2,7X4,+> - 5(61 - P3){(T341X2,— Xa,+)

_ 1 _
(€1-€3)(€3 'p2)<X2+3+1,7X4,+> + 5(51 -€3)(€3 'p4)<X2,fX4+3+1,+>

N | —

+
+ —(py - €)X2,— a([€s, €1])*P <)_(2+3+1,—,BX4,+,C>X2+

(P1 - €3)X2,-.4 <>_C§1,7Xf+3+1,+>([¢37¢1])BCX4C:+

%IH%IH

(F.258)

* N=1 Pure Supersymmetry
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The diffeomorphism will be parametrized by

1
5h07i]’ - 6’(1)\]) - )\Z-Lahj)mp + §>\m8mhw + O (h2)
) ) 1 )
Ot = A0t + (@)U — 500 [10"] Wi
) 1 .
+ X ho.ab0" 051+ (0N ho.astls s — Jeheacd N ([7,9"] ¥4.4) + O (1)
70 70 A%y m 7m 1 70 a b
0y, =y O mA™ + (0idm)p + 51/10,7 [’Y Y ] 0a Ny + O(h)

_. _ 1 _.
+ Aaho,abﬁbw[l)’f + (az)\a) hO,abwg,f + 1_6hca,080)\b (1/167, [,ya’ f)/b}) + O (hz)

Similar to (F.239), the invariance of wavefunction tells us the WT identity will be

pri€r (T o Tsths 1) =

— (o1, Totoas ) (Py - €) = Xaa (PratOhh _Tovns)') (&2 €0)

+ %xQ,_,A [ )" (o1 - B Tstha s’

— (o Tytbusa ) (P~ €1) = (1 €0) (Pl TS L)) xamr

— S T (B, &) i

+ (o Tiatasess pas) (€1 &) = 3Py e o)

~ (€1~ €a) Py €0) (ira ) — (€1~ &) (€~ €2) (PraXe () s )
+ 250y €)X Al A Drrss i s

— (€1~ €0)(Ps - €0) (V- tusrias) — (€1~ o) e~ 1) (pralo vl Dxan)

1 _
- 1_6(171 : 63))227—,A<¢£_¢41B+1+37+>([¢3> ¢1])BCXZ+
(F.259)
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and the Supersymmetry transform is

_ 7T
6,—6+B

) 1 )
Oc_hijy = € a1y + €7 hahjp) + O (h?) = 0c, hij = =5 m)

2
1 1
&pj =06, + 3 Wigh [fy“,fyb} €, =0, €, — 3 Ol [’Yaa’Yb} €4
1
16

1

* 32

hajabhij h/a’ 7b]€+ + hjaajh?[7a7 7b]€+ + O (h?’)

0y =0 e — %6 wiah [%,7°] = O e + %E i [7*,7"]

1. . 1
— —h“]abhij (67[%17%)]) - 3_2

T W O;h (€2 [Va, 1)) + O (h?)

€y — 'l/_J_(J h?)’}/a €4 + O (h2)

In above equations, because we don’t apply the constraint (2.39) and (2.39) of the bound-

ary condition 9, ; o on the gauge transformation, so the correlator with free indices is

produced by pulling out the unconstrained boundary condition ¢, ; ,. We call this uncon-

strined correlator and define it by

<1/_)2,—T31/)4+1,+,A>, = <'(Z2,—T3¢4+1,+,A,i>5§1

(o~ Tytas1,4ia) = (Vo T5005 ) Pia,an

such that

(@/32,—T3¢4+1,+,z‘A>¢(/{M = <&27_T3¢fﬁ’+)ﬂmg%f‘.

Similarly, we define

<@E§#A1,_T3¢4,+>, = Praap{Voy1—anTstba ).

The projector PY4B Pii4B we define in the (3.68).

(F.260)

(F.261)

(F.262)

Actually, we should write 3-point WT identity like (F.248), and (F.249) by the two-

point unconstrained correlator, but actually, in these cases the unconstrained correlator is
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equal to the original correlator due to the two-point correlator is pure transverse.

Then similar to (F.239), the invariance of wavefunction tells us the WT identity will

be

Poi(Tus _Tstha i) = =X~ (vi€as (TN T)) v — éXz,—,A ([pr, )™ (eri(Whyr— pTstbat))
- %XZ—,A ([P‘?n ¢3])AB (637i<1/;;+3,—,BT1¢4,+>/)
- % ()ZQ,—¢1X4,+) 61,j,0€4,i,0<T§i4+1T3>/ - % (X27—¢3X4,+) ES,j,OE47i,O<T2ii4+3T1>/
+ 1—16 (Xo— [€1, 23] (€3.0(8h 145 that)) Xat) (€1 - €3)
+ 3% (Xo.— [£1, €3] (€3.0(5 145 _ta4)) Xat) (€1 Ds)
+ 1_16 (Xo— [€3, 21 (€100(Wh 145 that)) Xat) (€1 - €3)
+ 3% (5(27— (€3, £1] (617i70<@5§+1+3,—¢4,+>) X4,+) (€1 ps3)

(F.263)

pl,i<1/_}i¢21/_)3¢4> = —X1,— (%64,]' <¢2@3Tii1>/) — X1,- (%’62,]' <T27;111531/)4>/) - X1,- (%’63,j (Tﬁﬁ%%y)
(F.264)

in which, for the Majorana spinor, there’s no actual difference of the ¢ and 1), or (¢4 4py1)3104) =

—(Vaihsihy).
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Appendix G — Total Energy Pole

We can compare the definition of flat space amplitude M and correlator 1)

S=1+4+iM = (0, f|0,7) = /ng(t) exp(i /OO d*z L(p(t))

0 0

W= (0.90.) = [ Doty eanli [ d'x £(60) ~ [donconli [ s L(outt,n)

= /d%exp(ch@o '1%)

We notice the only difference besides the integral region is conventionally we absorb ¢

in correlator but don’t do that for amplitude so the total energy pole residue reads, the

imaginary comes from 6(X F) — cancels the imaginary rescaling between correlator

(%Y
and amplitude:
. M,
Jm, = (@269

If we encounter the spinning field, we now define ¢ as the correlator contracted with

boundary condition for convenience and ); for the correlator whose boundary condition
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is extracted
n

v = /deo exp ( H €i,0,j; Qpir--dn ) = exp (/ deg Z/Jn)

7

we should take amplitude’s polarization e vector as the boundary condition ¢, for correlator

lim 4, (¢ =) = | (G.266)

KT*)
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