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摘要

在本論文中，我們考慮四維平坦空間等時關聯子的自舉。我們在平坦空間相

關器中回顧了「宇宙光學定理」（COT），然後利用總能量為零和部分能量為零

極限的約束、顯式局部性以及Ward-Takahashi恆等式對樹級關聯子進行約束。為

了應用於費米子關聯子，我們推導出半整數算符的 COT，並給出適用於 Dirac和

Majorana費米子的獨特規則，適用於宇宙的內部體積。

關鍵字：宇宙學關聯子、半自旋、伴重力子、平直時空、邊界項、自舉
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Abstract

In this thesis, we consider the bootstrap of a four-dimensional flat space equal time

correlator. we review the“Cosmological Optical Theorem” (COT) in the context of flat

space correlators and proceed to constrain tree-level correlators using the constraints of

total energy and partial energy poles, manifest locality, and Ward-Takahashi identities. To

apply this to fermionic correlators, we derive the COT for half-integer operators and give

distinctive rules suitable for Dirac and Majorana fermions in the bulk.

Keywords: Cosmological Correlator, SpinHalf, Gravitino, Flat Space, Boundary term, Boot-

strap
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Chapter 1 Introduction

In recent years, a series of studies have been conducted on the bootstrap of physical

observables. These studies have employed fundamental principles to impose constraints

on physical observables. Early research in this field includes amplitude bootstrap, as dis-

cussed in [9] [17], and the bootstrap of Conformal Field Theory (CFT), as outlined in

[25][14]. Contemporary investigations have expanded to include inflationary cosmologi-

cal correlators.

The successful bootstrap program in de Sitter space perturbative cosmological corre-

lators [4], encapsulates the physics of slow-roll inflation. The tree-level structures can be

reconstructed from the residues of singularities, de Sitter isometries, unitarity, and locality.

This research follows the massless four-particle test led by McGady DA, Rodina

L. and Benincasa P, Cachazo F. McGady DA and Rodina L. demonstrated that the four-

particle test in amplitude is enough constrained to necessitate a massless spin 3/2 that

respects supersymmetry.[19] On the other hand, Benincasa P and Cachazo F. established

that there is no higher spin massless particle if we adhere to the equivalence principle.

They further demonstrated that the Yang-Mills color structure constant fabc should respect

the Bianchi identity. [5]

The objective of this thesis is to make initial progress towards the massless four-

1
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particle test of the cosmological correlator on a fixed time spatial slice in flat space. This

can be considered a simplifiedmodel of the cosmological correlator if we set the fixed time

slice at the current time. The time slice will be the boundary of the universe in the past.

We demonstrate that in flat space, we can utilize known properties on singularities [20] [4]

[18] [26] and unitarity [12] to reconstruct the correlator on the boundary for the massless

integer and half-integer spins. In the case of the correlator, the massless spinning particle

responds to the conserved operator. It’s reasonable that the physical rules are enough

constrained like the amplitude case.

2
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Chapter 2 Review of flat space

correlators

Figure 2.1: The evolution of physical states progresses from the distant past towards the
moment we designate as t = 0, resulting in what is referred to as the cosmological back-
ground. By examining this background spectrum, we can identify N points correlation
functions between pairs, triplets, quartets of points, and so on. In cosmology, the mea-
surable quantities resemble the all-in-state version of amplitude, which, as mentioned in
certain sources [29], is referred to as the ”in-in formalism.”

In the context of cosmology, the physical observable is the cosmological correlation,

which is the expectation value of the product of the boundary field operators. The cos-

mological correlation can be calculated by Feynman path integral, where the integrand is

the wavefunction and the field insertions. Therefore, the wavefunction contains the same

information as the cosmological correlation. The wavefunction can be expanded, and the

coefficients are referred to as wave function coefficients or correlators. To calculate the

tree-level correlator, we need to insert the classical solution of the fields into the action,

3
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and the classical solutions have to satisfy the Bunch-Davies boundary condition. In this

section, we will introduce the concept of cosmological correlation, the correlators, and the

Bunch-Davies boundary condition. In addition, we also introduce the lifter to convert a

fermionic boundary field to a propagating bulk field.

2.1 Cosmological Correlation Function (in-in correlator)

Let’s consider the Minkowski spacetime xµ with a spatial slice at x0 = t = 0. The

bulk field φ(xµ) could have a boundary profile:

φ(t = 0, $x) = φ0($x), (2.1)

We will be interested in the boundary correlation which is the observable we measure on

the background |Ω0〉 as we show in Figure 2.11,

〈O($x1)O($x2)O($x3) . . . O($xn)〉in-in = 〈Ω0|φ̂($x1)φ̂($x2) . . . φ̂($xn)|Ω0〉 (2.2)

where |Ω0〉 is the wavefunction encoding the probability of the boundary profile φ0($x).

This observable can be also called in-in formalism. For a comparison to the following

derivations, in-in formalism could be calculated by the Hamiltonian approach with cre-

ation and annihilation operator [29]. In our thesis, we use the wave function method to

calculate it. In this method, it will useful to consider particular φ0($x) as the states |φ0($x)〉

such that

φ̂($x) |φ0($x)〉 = φ0($x) |φ0($x)〉 (2.3)

1We use the photo from NASA in this figure.[23]

4
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Then by inserting a complete basis

I =

∫
dφ0 |φ0〉 〈φ0| (2.4)

for the two-point correlation, we could obtain

〈O($x1)O($x2)〉in-in := 〈Ω0| φ̂0($x1)φ̂0($x2) |Ω0〉

=

∫ ∏

!x(1)

dφ(1)
0 ($x(1))

∫ ∏

!x(2)

dφ(2)
0 ($x(2)) 〈Ω0| φ̂0($x1) |φ(1)

0 〉
〈
φ(1)
0

∣∣∣φ(2)
0

〉
〈φ(2)

0 | φ̂0($x2) |Ω0〉

=

∫ ∏

!x(1)

dφ(1)
0 ($x(1))

∫ ∏

!x(2)

dφ(2)
0 ($x(2))

〈
Ω0

∣∣∣φ(1)
0

〉
φ(1)
0 ($x1)φ

(2)
0 ($x2)δ(φ

(1)
0 − φ

(2)
0 )
〈
φ(2)
0

∣∣∣Ω0

〉

=

∫ ∏

!x

dφ0($x)φ0($x1)φ0($x2)|Ψ[φ0]|2

(2.5)

And for the higher point, we could easily extend the above derivation,

〈Ω| φ̂($x1)φ̂($x2) . . . φ̂($xn) |Ω〉 =
∫

dφ0 φ0($x1)φ0($x2) . . .φ0($xn)| 〈φ0|Ω〉 |2. (2.6)

Thus all correlators can be extracted from the wave function on φ0($x) basis, i.e.

Ψ[φ0] := 〈φ0|Ω〉 (2.7)

the Ψ[φ0] is identified as the path integral,

Ψ[φ0] =

∫

φ(t=0,!x)=φ0(!x),φ(t=−∞)=φ−∞

Dφ(t, $x) ei
∫
d4xL[φ(t,!x)], (2.8)

where we integral over the path φ(t, $x) subject to the boundary conditions. The path

integral could be computed perturbatively by writing

φ(t, $x) = φBD
cl (t, $x) + φ̃(t, $x) (2.9)

5
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where φ̃(t, $x) is the perturbation of the field and the φBD
cl (t, $x) is the background field

we perturbed at, called Bunch-Davies vacuum, it’s the classical solution of the E.O.M or

the saddle point of the path integral under some boundary condition configuration we’ll

discuss later.

Ψ[φ0] = eiS(φ
BD
cl )

[∫

0=φ̃(t=0,!x)=φ̃(t=−∞,!x)

Dφ̃(t, $x)e
i
∫
d4x ∂2L

∂φ2
φ̃2+O(φ̃3)

]

:= Ψtree[φ0] +Ψ1−loop[φ0] +Ψ2−loop[φ0] + . . .

(2.10)

where S is the action, S[φ(t, $x)] =
∫
d4xL[φ(t, $x)]. Then we could find the leading order

will be tree-level contribution like amplitude given by classical path, and the loop con-

tribution could be shown that it’s from the integration of the perturbation [15]. We could

always make the path be normalized such that
∫
Dφ = 1. Then we could identify the

tree-level correlator for the zero-order expansion of the quantum correction as

Ψtree[φ0] = eiS(φ
BD
cl ). (2.11)

In the thesis, we focus on Ψtree[φ0], and all the tree-level physics comes from the leading

classical path contribution. And we’ll discuss the classical configuration around φBD
cl (t, $x)

we perturbed at in the section (2.3).

2.2 Boundary Actions

Due to the presence of a boundary, different ways of writing the Lagrangian which are

related by integration by parts identities will now differ by boundary terms. The guideline

for the correct boundary term is that the stationary solution to the variation of the total

action, i.e. δS = 0, must coincide with the solution to the equation of motion. For the

6
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case of scalars and vectors, this leads to a unique choice of bulk lagrangian with zero

boundary terms. In the case of gravity, one requires the Gibbons–Hawking–York boundary

term [11, 31]. For fermions, additional subtlety arises due to its Lagrangian being first

order in derivatives, which we now review.

We will use the spin-12 case as our main example. Let’s begin with the usual bulk

action:

S =

∫
d4x

(
i

2
χ̄/∂χ− i

2
χ̄
←−
/∂ χ+mχ̄χ

)
, (2.12)

Its variation can be separated into a bulk term and boundary contributions:

δS =

∫
d4x

(
δχ̄(i/∂ +m)χ+ χ̄(−i

←−
/∂ +m)δχ

)
+

∫

t=0

d3x

(
i

2
χ̄0γ

0δχ0 −
i

2
δχ̄0γ

0χ0

)
.

(2.13)

To ensure that the result of extremelization leads to the usual equations of motion, i.e.

(−i/∂ −m)χ = 0, the boundary contribution must be zero:

∫

t=0

d3x

(
i

2
χ̄0γ

0δχ0 −
i

2
δχ̄0γ

0χ0

)
= 0 (2.14)

A naive way to satisfy the condition is to require χ and χ̄ be fixed on the boundary, hence

δχ0 = δχ̄0 = 0. However, χ and χ̄ are canonical conjugates to each other (similar to

x and p in classical mechanics) 2. Said in another way, the Dirichlet condition on δχ0 is

equivalent to a Neumann boundary condition on δχ̄0, and one cannot set both conditions

at once given the first derivative nature.

To proceed, we choose to impose the Dirichlet condition on half of the fermions and

add an additional “boundary action” engineered such that its variation cancels whatever

2While χ̄ is the complex adjoint of χ, on the path integral they are independently complexified, so their
boundary conditions are independent.
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boundary contribution remains. Since the boundary is at a fixed time slice, it is natural to

separate the 4D spinor into

χ = χ+ + χ−, (2.15)

where γ0χ± = ±χ±. We impose Dirichlet boundary conditions δχ+
0 = δχ̄−

0 = 0, that is,

γ0δχ0 = −δχ0

γ0δχ̄0 = δχ̄0 .

(2.16)

The LHS of (2.14) then becomes

∫

t=0

d3x

(
i

2
χ̄0γ

0δχ0 −
i

2
δχ̄0γ

0χ0

)
= − i

2
δ

∫

t=0

d3xχ̄0χ0. (2.17)

An appropriate boundary action Sboundary can be added to S0 so as to cancel this term

Sboundary =
i

2

∫

t=0

d3xχ̄0χ0, (2.18)

and the full action is S = S0 + Sboundary. Note that if we instead choose δχ−
0 = δχ̄+

0 = 0,

the corresponding boundary action is the same as (2.18) with an additional minus sign.

However, if we choose δχ+
0 = δχ−

0 = 0 or δχ̄+
0 = δχ̄−

0 = 0, no consistent solution exists.

It is worth noting that after substituting the E.O.M into S, the term S0 = 0, and we

are left with the action S = Sboundary. Thus for fermions, tree-level correlation functions

only receive a contribution from the boundary action.
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2.3 Choice of Boundary conditions

At the boundary, the bulk fields have to satisfy the boundary conditions. The bound-

ary value of the classical solution at t = 0 is φ0,

φcl($x, t = 0) = φ0($x), (2.19)

while at t = −∞, the bulk fields have to meet the Bunch-Davies boundary conditions,

which require the field to be well-defined

φcl($x, t = −∞) <∞. (2.20)

For Harmonic fields such as a free scalar, the general of classical solutions for !φcl = 0

is

φcl($x, t) =

∫
d3$p

(2π)3
[
A($p)eiEt +B($p)e−iEt

]
ei!p·!x (2.21)

inwhichwe defineE = |$p| > 0, $p·$x = xipi, ηij = ((−1, 0, 0, 0), (0,−1, 0, 0), (0, 0, 0,−1)).

We call them positive/negative energy mode. After we impose all the boundary conditions

including the Bunch-Davies boundary condition, the negative energy mode must be ex-

cluded for certain analytical continuation on the energy of the classical fieldE− iε, ε > 0.

φBD
cl ($x, t) =

∫
d3$p

(2π)3
φ0($p)e

i(E−iε)tei!p·!x (2.22)

Note that, in Anti-de Sitter (AdS) space, there’s no natural choice such as φcl($x, t =

−∞) < ∞ or Bunch Davies boundary condition, because the definition of time is ill-

defined in AdS space. [21]
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Photon We now discuss the classical solution of the E.O.M of the free integer spin field.

For the massless vector field Aµ,cl($x, t) in the temporal gauge A0,cl($x, t) = 0, the E.O.M

is

∂t(∂
iAi,cl($x, t)) = 0

!Ai,cl($x, t)− ∂i∂jAj,cl($x, t) = 0,

(2.23)

which has a general solution

Ai,cl($x, t) =

∫
d3p

(2π)3
ei!p·!xAi,cl($p, t)

Ai,cl($p, t) = [πije
iEt − p̂ip̂j]A

j($p) + [πije
−iEt − p̂ip̂j]B

j($p),

(2.24)

where we define πij ≡ ηij + p̂ip̂j, p̂i = pi/E, and Aj and Bj are constant coefficients

that will be fixed by the boundary conditions. After we impose the boundary condition

Ai,cl($p, 0) = A0,i($p) and Ai,cl($p,−∞) <∞, the classical solution becomes

ABD
i,cl ($p, t) = [πije

i(E−iε)t − p̂ip̂j]A
j
0($p), (2.25)

which is a positive energy mode. The detailed calculations can be found in the App. (C.2).

Graviton For graviton, the solution of the E.O.M in the temporal gauge hµ0 = 0 after

we apply the boundary condition is

hBD
ij,cl($x, t) =

∫
d3p

(2π)3
ei!p·!xhBD

ij,cl($p, t)

hBD
ij,cl($p, t) = [πikπjle

i(E−iε)t + (ηikηjl − πikπjl)]hkl
0 ($p).

(2.26)

Moreover, we’ll find that one of the E.O.M for graviton reads

(ηij∇2 − ∂i∂j)hij
0 ($x) = 0. (2.27)
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In momentum space, it is

πijh
ij
0 ($p) = 0, (2.28)

from which we see the E.O.M of graviton constrains the boundary profile.

Fermion Given that we only have boundary conditions for χ̄− and χ+, it is natural to

decompose the classical solution into χ± when solving the E.O.M. The goal is to represent

χ− in terms of χ+, which yields an E.O.M in terms of χ+. This allows us to use the

boundary condition χ+,0 to derive the classical solution. The E.O.M under decomposition

of the fields χ± satisfy

(±i∂t +m)χ± = /pχ∓, (2.29)

which relates χ− to χ+:

χ− =

(
/p

−E2 +m2

)[
(i∂t +m)χ+

]
. (2.30)

where we use boldsymbol to denote the 3D vector and /p := piγi. Then substituting the

equation into (−i∂t +m)χ− = /pχ+, we have

(
∂2t + E2

)
χ+ = 0, (2.31)

which is similar to the E.O.M of the scalar field. The solution which that matches the

boundary conditions χ+($p, 0) = χ+
0 and χ+($p,−∞) <∞ is

χ+($p, t) = χ+
0 e

i(E−iε)t, (2.32)

11

http://dx.doi.org/10.6342/NTU202302262


doi:10.6342/NTU202302262

which is a positive energy mode. Substituting into (2.30), we have

χ−
0 =

(
/p

−E2 +m2

)[
i
(
iEχ+

0

)
+mχ+

0

]
= (

/p

E +m
)χ0,+. (2.33)

Similarly, for χ̄, we have

χ̄+ =

( −/p
−E2 +m2

)[
(i∂t +m) χ̄−] , χ̄−(p, t) = χ̄−

0 e
iEt (2.34)

χ̄+
0 =

[
i
(
iEχ̄−

0

)
+mχ̄−

0

]( −/p
−E2 +m2

)
= χ̄−

0 (
−/p

E +m
). (2.35)

Plugging the classical solution of χ+ into the action, we can derive the two-point

wave function coefficient

iScl =

∫
(1/2) χ̄0χ0 d

3x =

∫
d3p

(2π)3
(1/2) χ̄0(−$p)χ0($p)

=

∫
d3p

(2π)3
(1/2) χ̄0,−(−$p)(1 +

/p

E +m
)(1 +

/p

E +m
)χ0,+($p)

=

∫
d3p

(2π)3
χ̄0,−(−$p)

/p

E +m
χ0,+($p).

(2.36)

Gravitino For gravitino, similar to the case of the graviton, the boundary condition is

constrained from E.O.M:

γiγ0Mi(t = 0, $x) = ∂iψ
i
0($x)− (γj∂j)(γ

kψ0,k($x)) = 0 (2.37)

in the momentum space, we have

(γjψ
j
0($p)) = −/̂p(p̂iψi

0($p)). (2.38)
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Under the decomposition γ0ψi
±,0 = ±ψi

±,0, we could easily check that

(γjψ
j
+,0($p)) = −/̂p(p̂iψi

+,0($p)) = 0. (2.39)

So EOM indeed applies a constraint on the boundary condition ψ+,0. Similarly, for the

conjugate field, we have boundary condition constraints,

(ψ̄j
−,0($p)γj) = −(p̂iψ̄i

−,0($p))/̂p. (2.40)

2.4 Wave function coefficients (cosmological correlators)

The correlation function is determined by theWave Function, so we can calculate the

wave function and expand it into

Ψ[φ0] =:
∑

n=2

∫ n∏

i

d3pi · ψn($p1, $p2, . . . , $pn) · (φ0($p1)φ0($p2) . . .φ0($pn)) · δ3
(

n∑

a

$pa

)

(2.41)

in which ψn($p1, $p2, . . . , $pn) is the n-pt wave function coefficients, or correlator, in mo-

mentum space, respectively. To make a distinction we will always refer to the in-in corre-

lator with its full name, while the correlator is a shorthand for wave function coefficient.

Sometimes, we use the bracket notation to denote the correlator

〈O($p1)O($p2) . . . O($pn)〉 = 〈O1O2 . . . On〉 := ψn($p1, $p2, . . . , $pn) (2.42)

We will always refer to the correlators as our observables because the analytical structure

of the correlator is more simple than the correlation function. By the relationship [2.6],
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we could calculate the correlation function as [12]

〈O(−$p)O($p)〉in-in =
1

2Re〈O(−$p)O($p)〉

〈O1O2O3〉in-in = −2
(

3∏

a

1

2Re〈O(−$pa)O($pa)〉

)
·Re〈O1O2O3〉

〈O1O2O3O4〉in-in = −2
(

4∏

a

1

2Re〈O(−$pa)O($pa)〉

)

·
[
Re〈O1O2O3O4〉 −

Re〈O1O2O−s〉 · Re〈O3O4Os〉
Re〈O(−$s)O($s)〉 − t− u

]

(2.43)

In this thesis, we pay attention to the flat space correlator, in which, we do gravitational

perturbation on the flat Minkowski background.

Feynman Rule of the Correlator For the tree-level correlator, we could plug the clas-

sical solution into the action and extract the correlator we defined in the previous section:

Ψtree[φ0] = eiS(φ
BD
cl (φ0))

iS(φBD
cl (φ0)) =:

∑

n=2

∫ n∏

i

d3pi · ψn,tree($p1, $p2, . . . , $pn) · (φ0($p1)φ0($p2) . . .φ0($pn)) · δ3
(

n∑

a

$pa

)

(2.44)

and the classical action is precisely the action substituted with the solution of the E.O.M.

In general, we could perturbatively solve the E.O.M by what we called the Cosmo-

logical Schwinger-Dyson equation (in the rest of the paper, we use φcl to represent φBD
cl ):

φcl(φ0, t, $x) =

∫
d3x′K($x, $x′, t)φ0($x

′) +

∫
d3x′d3t′G($x, $x′, t, t′)

(
− δLint

2δφ($x′, t′)

)∣∣∣∣
φ=φcl

(2.45)

We refer toK as the bulk-to-boundary propagator, which is the solution of free EOMwith

boundary conditions on flat past and current time,

!!x,tK($x, $x′, t) = 0 ; K($x, $x′, t = 0) = δ3($x− $x′) ; K($x, $x′, t = −∞) = 0. (2.46)
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In addition, we refer toG as the bulk-to-boundary propagator, which is the solution of the

Green equation and boundary condition,

!!x,tG($x, $x′, t, t′) = δ4(xµ − x′
µ) ; G($x, $x′, t = 0, t′ = 0) = 0 ; G($x, $x′, t = −∞, t′) = 0

(2.47)

Then we could perturbatively build up the classical solution with two propagators

φ(0)
cl (φ0, t, $x) =

∫
d3x′K($x, $x′, t)φ0($x

′)

φ(1)
cl (φ0, t, $x) =

∫
d3x′d3t′G($x, $x′, t, t′)

(
− δLint

2δφ($x′, t′)

)∣∣∣∣
φ=φ

(0)
cl

...

(2.48)

Because there are spatial translation and rotation invariance (but there’s no time trans-

lation and boot invariance, for we set t = 0 as our boundary), the bulk-to-boundary and

bulk-to-bulk propagator should only depend on ($x−$x′), and the Fourier transform of them

are

K($x, $x′, t) = K($x− $x′, t) =

∫
d3p

(2π)3
K($p, t)ei!p·(!x−!x

′)

G($x, $x′, t, t′) = G($x− $x′, t, t′) =

∫
d3p

(2π)3
G($p, t, t′)ei!p·(!x−!x

′).

(2.49)

In the momentum space, (2.46) and (2.47) can be solved

K($p, t) = ei(E−iε)t

G($p, t, t′) =
i

2E

(
ei(E−iε)(t−t′)θ(t′ − t) + e−i(E−iε)(t−t′)θ(t− t′)− ei(E−iε)(t+t′)

) (2.50)

in which the step function is defined by

θ(x) =






1 x " 0

0 x < 0

. (2.51)
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The correlators in momentum space can be built by the propagators. For the contact

diagram, the correlators take the form (for detailed calculations, see C.1)

ψn,contact =
∑

perm

∫
dt (ig)V ($p1, $p2 . . . , $pn, ∂t)K1($p1, t)K2($p2, t) . . . Kn($pn, t)

=
∑

perm

gV ($p1, $p2 . . . , $pn, E1∼n)

KT
+O(K0

T )

(2.52)

in which KT :=
∑n

a=1 Ea is the total energy, V is the contact vertices, g is the coupling

constant and the permutation sum sums over all the contribution of the label permutation

for the same field. There will be an extra n! factor if there are n identical external legs.

There is a total energy pole for contact diagrams, which will be further discussed in the

next section. We could represent the correlator with the Feynman diagram in Fig. 2.2.

Figure 2.2: The Contact Feynman diagram of the cosmological correlator and the pattern
of the singularities. The horizontal line on the top represents the fixed time boundary. The
lines stretched below and intersecting to a point represent the bulk-to-boundary propaga-
tor. The intersection point represents the vertices.
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For the exchanging diagram, the correlator takes the form

ψ4,exchange =

∑

perm

∫
dt

∫
dt′ (ig2)K1($p1, t)K2($p2, t)VL($p1, $p2, $ps, ∂t)

⊗G($ps, Es, t, t
′)⊗ VR($p3, $p4,−$ps, ∂′t)K3($p3, t

′)K4($p4, t
′)

= g2
(s)∑

perm

VL($p1, $p2, $ps, E1∼4, Es)⊗ VR($p3, $p4,−$ps, E1∼4, Es)

KTELER
+O(K0

TELER) + (t) + (u)

(2.53)

in which we define ⊗ to be some indice contractions and the partial energy as the energy

sum of the external legs in the left (right) sub-diagram EL = E12s (ER = E34s) where we

use the subscript to label the sum of the energy, Eabc... := Ea + Eb + Ec + . . . . By the

structure of the bulk-to-bulk propagator, we see that besides the total energy pole, there

are two additional partial energy poles, which will be discussed further in the next chapter.

We can draw a Feynman diagram Fig. 2.3 to represent the exchanging correlator.

Figure 2.3: The Exchanging Feynman diagram of the cosmological correlator and the pat-
tern of the singularities. The line between vertices represents the bulk-to-bulk propagator.

Notice the structure of the correlators (2.52) and (2.53) are derived from the bosonic

fields. However, we can show that the correlators of the fermionic fields are similar, see
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(C.146) and (C.158).
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Chapter 3 On-shell approach to

correlators

The idea of the bootstrap program is to fix the correlator by physical constraints.

The necessary constraints include the Ward-Takahashi identity (WT identity), the total

energy pole constraint, and the partial energy pole constraint. The WT identity reflects

the gauge freedom of the boundary fields, the total energy pole restores the flat spacetime

amplitude, and the partial energy pole is a direct consequence of the cosmological optical

theorem (COT). COT can be derived from either the unitary nature of the theory or from

the properties of the correlators, such as discontinuity. In this chapter, we introduce the

above concepts and introduce our bootstrap procedure.

3.1 Ward-Takahashi identities (WT identity)

If there are massless spinning fields, the boundary fields will contain extra gauge

freedom. For example, scalar QED contains a massless vector field A and a scalar φ,

Ψ[Ai,0($x),φ0($x)] = Ψ[Ai,0($x) + δAi,0($x),φ0($x) + δφ0($x)]

δAi,0($x) = ∂iα($x)

δφ0($x) = ieα($x)φ0($x)

(3.1)
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The wave function should be invariant under the gauge transform. Expanding the above

equation perturbatively, we can derive the Ward Takahashi Identity of the scalar QED for

3pts and 4pts correlator

pi1〈J1,iO∗
2O3〉 = −e 〈O∗

1+2 O3〉 + e 〈O∗
2 O1+3〉 = e (E2 − E3)

pi1〈J1,iO∗
2J3,jO4〉 = −e 〈O∗

1+2 J3,jO4〉 + e 〈O∗
2 J3,jO1+4〉

(3.2)

where we abuse our notation and define Oa+b := O($pa + $pb). The detailed derivation

and WT identity of other spinning correlators will be left in the App. E.2. In this paper,

we refer 〈J1,iO∗
2O3〉 as the correlators, which has free indices; and we refer 〈J1O∗

2O3〉 :=

εi1,0〈J1,iO∗
2O3〉 as the contracted correlators in which the boundary polarization εi1,0 is the

boundary condition of the vector field.

In general, the WT identity will determine the longitudinal parts of the correlator. In

the case of 〈JO∗O〉, we could decompose the boundary polarization with transverse com-

ponent εi,T0 perpendicular to the momentum and the longitudinal component εi,L0 parallel

to the momentum.

εi0($p) = εi,T0 + εi,L0

= πijεj,0($p)− p̂ip̂jεj,0($p)

(3.3)

where we defined πij ≡ ηij + p̂ip̂j, p̂i = pi/E. Then we could decompose the contracted

correlator accordingly

〈J1O∗
2O3〉 = 〈JT

1O
∗
2O3〉+ 〈JL

1 O
∗
2O3〉

〈JT
1O

∗
2O3〉 = ε1.iπ

i
1,j〈J

j
1O

∗
2O3〉

〈JL
1 O

∗
2O3〉 = −ε1,ip̂i1p̂1,j〈J

j
1O

∗
2O3〉 = −ε1,i

p̂i1
E1

(E2 − E3)

(3.4)

in whichwe call the 〈JT
1O

∗
2O3〉 transversemode of the contracted correlator and 〈JL

1 O
∗
2O3〉
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longitudinal mode of the contracted correlator. The latter can be determined by Ward-

Takahashi identities.

3.2 Singularities and the cosmological optical theorem for

flat space

We define total energy KT as the sum of the energy of all the external legs. On the

total energy pole, which is a single pole1, the energy conservation is restored, and the

residue of theKT will be the amplitude:

lim
KT→0

ψn =
Mn

KT

(3.5)

It reflects the fact that in the far past, physics should not be influenced by the boundary

at t = 0. Therefore, the correlator’s path integral formula should get back to amplitude.

The detailed derivation is in App. F.3.

From the Feynman rules in sec.2.4 we can derive the cosmological optical theo-

rem(COT) for the correlator given as

ψ(φ/J/T )
4 (E1∼4,p1∼4) + ψ∗(φ/J/T )

4 (−E1∼4,p1∼4)

= ψ̃3,i1...(p1,p2,ps) · P
i1j1...
2,φ/J/T ($ps) · ψ̃3,j1...(−ps,p3,p4)

+{t-channel}+{u-channel},

(3.6)

where a non-zero right-hand side corresponds to the contribution from the exchange dia-

1For comparison, dS/EAds correlator will have higher order total energy pole.[4]
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gram with

P2,φ($ps) = ψin−in
2,φ ($ps) =

1

2Reψ2($ps)
=

1

2Es

P i1j1
2,J ($ps) =

πi1j1
s

2Es

P i1i2j1j2
2,T ($ps) =

Πi1i2j1j2
s,(2,2)

2Es
;Πi1i2j1j2

s,(2,2) = πi1j1
s πi2j2

s − 1

2
πi1i2
s πj1j2

s

(3.7)

and the shifted correlator is defined by,

ψ̃3,i1...(−ps,p3,p4, Es) := ψ3,i1...(−ps,p3,p4, Es)− ψ3,i1...(−ps,p3,p4,−Es).

in which ψ3,i1... is the correlator obtained by pulling out all the internal boundary polariza-

tions from the contracted 3-point correlator. The boundary polarization is constrained for

the graviton. We show all of these constraints at (2.28). If we only have contact diagrams

then the right-hand side is zero. Note that from the Feynman rules (2.53), we have

ψ∗,(φ/J/T )
4,s (−E1∼4, Es,p1∼4)

=
∑

perm

∫
dt

∫
dt′ (ig2)∗K∗

1(−E1, $p1, t)K
∗
2(−E2, $p2, t)V

∗
L ($p1, $p2, $ps, ∂t)

⊗G∗
φ/A/h($ps, Es, t, t

′)⊗ V ∗
R($p3, $p4,−$ps, ∂′t)K∗

3(−E3, $p3, t
′)K∗

4(−E4, $p4, t
′)

=
∑

perm

∫
dt

∫
dt′ (−ig2)K1(E1, $p1, t)K2(E2, $p2, t)VL($p1, $p2, $ps, ∂t)

⊗Gφ/A/h($ps,−Es, t, t
′)⊗ VR($p3, $p4,−$ps, ∂′t)K3( $E3, p3, t

′)K4(E4, $p4, t
′)

= −ψ(φ/J/T )
4,s (E1∼4,−Es,p1∼4)

(3.8)

inwhichwe the fact thatVR/L ∈ R,K∗
a(−Ea, $p1, t) = Ka(Ea, $p1, t) andG∗

φ/A/h($ps, Es, t, t′) =

Gφ/A/h($ps,−Es, t, t′). In this form, we can rewrite the COT in an equivalent form where
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for each channel

ψ(φ/J/T/χ/ψ)
4,s (E1∼4, Es,p1∼4)− ψ

(φ/J/T/χ/ψ)
4,s (E1∼4,−Es,p1∼4)

= ψ̃3,i1...(p1,p2,ps) · P
i1j1...
2,φ/J/T/χ/ψ($ps) · ψ̃3,j1...(−ps,p3,p4),

(3.9)

with the gluing factor of the fermion and gravitino,

P2,χ($ps) =

(
1 + γ0

2

)
/̂ps

2

(
1− γ0

2

)

P ij
2,ψ($ps) =

1

2
Πij

s,(3/2,3/2) =
1

2

(
1 + γ0

2

)
(−πij

s /̂ps −
1

2
/πi /̂ps /π

j)

(
1− γ0

2

)
; /πi = πijγ

j = γi + p̂i/̂p .

(3.10)

We should note that the boundary polarization we pulling out for gravitino is constrained

by (2.39). For contact diagrams, we can naturally incorporate fermions where the complex

conjugate is defined as Cψn,c = ψ†
n,c|χ̄−,0↔χ+,0 . Then we simply have

ψn,c(E1∼n, $p1∼n) + Cψn,c(−E1∼n, $p1∼n) = 0 . (3.11)

We could derive the COT from these two frameworks individually:

1. Propagator Property [20] The correlator can be written in terms of the bulk-to-

boundary propagator and the bulk-to-bulk propagator. Take the scalar field as an

example, the propagators have the following properties

Kφ($p, E − iε, t) = K∗
φ($p,−E − iε, t) (3.12)

and

Disc
zs=|Es|2±iε

Gφ(
√
zs, t, t

′) =
1

2Es
· Disc
zs=|Es|2±iε

Kφ(
√
zs, t) · Disc

zs=|Es|2±iε
Kφ(
√
zs, t

′).

(3.13)
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The two properties lead to the cosmological optical theorem in the form of (3.6).

2. Unitarity [12]

If we expand the time evolution operator Û in terms of the correlators, the unitary

constraints Û Û † = 1 will be translated into a constraint on the correlators, which

give rise to the cosmological optical theorem in the form of (3.9). The unitary

constraint also helps us to relate the contact COT and the exchanging COT.

3.2.1 Bosonic Field

Unitarity There’s another equivalent way to get the correlator from the time evolution

operator based on similar field and operator construction in [27] Ch.7.2. With this method,

we can interpret the unitarity constraint of the time evolution operator to be the COT of the

correlator. To demonstrate our analysis of the time evolution operator in the interacting

picture, supposed that the interaction Hamiltonian operator is Ĥint = (ĤA + ĤB) which

has two pieces with individual coupling constant gA/B.

ÛI = T exp
(
−i
∫ 0

−∞
dt(ĤA + ĤB)

)

= 1 + (gAÛgA + gBÛgB) + gAgBÛgAgB + g2AÛgAgA + g2BÛgBgB +O(g3A/B).

(3.14)

in which T means the time-ordered products and the expansion of the time-evolution op-

erator will be

UgA/B
= −i

∫ η0

−∞
dηĤA/B(η)

ÛgA/BgA/B
= −

∫ η0

−∞
dη

∫ η0

−∞
dη′ĤA/B(η)ĤA/B (η′) θ (η − η′) + ĤA/B(η′)ĤA/B (η) θ (η′ − η)

ÛgAgB = −
∫ η0

−∞
dη

∫ η0

−∞
dη′ĤA(η)ĤB (η′) θ (η − η′) + ĤB(η′)ĤA (η) θ (η′ − η) .

(3.15)
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We define the operator known as the Hamiltonian, using the familiar form in the context

of quantum field theory,

ĤA/B(t) =

∫
d3xVA(∂!x, ∂t)φ̂

3
cl($x, t) =

3∏

a

∫
d3pa
(2π)3

δ(
∑

$pa)VA/B($p1∼3, ∂t)φ̂cl($p1, t)φ̂cl($p2, t)φ̂cl($p3, t).

(3.16)

We restrict the vertices VA/B to be real. Then the unitarity constraints ÛIÛ
†
I = 1 gives

ÛgA + Û †
gA = 0

ÛgB + Û †
gB = 0

ÛgAgB + Û †
gAgB

= −(ÛgAÛ
†
gB

+ Û †
gA
ÛgB)

...

(3.17)

Unitarity: Contact diagrams The creation operators and the annihilation operators sat-

isfy the commutation relationship

[a!p, a
†
!q] = (2π)3δ3($p− $q), (3.18)

where the annihilation operators kill the vacuum state in the far past

a!p |0〉 = 0. (3.19)

Consider the field φ̂cl in the interaction picture, which satisfy the E.O.M:

[Ĥ0, φ̂cl($x, t)] = −i∂tφ̂($x, t)

φ̂cl($x, t) =

∫
d3p

(2π)3
1√
2E

ei!x·!p+iEta†!p +
1√
2E

e−i!x·!p−iEta!p

=

∫
d3p

(2π)3
1√
2E

Kφ(E, $p)a†!p +
1√
2E

Kφ(−E,−$p)a!p

(3.20)
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in which Ĥ0 =
∫

d3p
(2π)3Epa

†
!pa!p, where Ep > 0. In the last line, we identify the exponential

term as the bulk-to-boundary propagator. To get the correlator from the time-evolution

operator in the momentum space, we define the momentum basis

|$p〉 = a†!p |0〉

I =

∫
d3p

(2π)3
|$p〉 〈$p|

(3.21)

and the Fock space momentum basis

|$p1, $p2, . . .〉 = a†!p1a
†
!p2
. . . |0〉 (3.22)

Then we could easily show that we could extract the correlator from the first order of time

evolution operator UgA if we apply (3.20) and (3.22) and do the Wick contraction with

momentum basis and the zero-state |0〉, 2

〈p1, p2, . . .|ÛgA|0〉 = −i〈p1, p2, . . .|
∫ 0

−∞
ĤA(t)dt|0〉 = −ψn,contact(Ei)

n∏

a

1√
2Ea

(3.23)

And for the conjugate of the operator Û †
gA, by the same approach

〈p1, p2, . . .|Û †
gA|0〉 = −i〈p1, p2, . . .|

∫ 0

−∞
Ĥ†

A(t)dt|0〉 = −ψ∗
n,contact(−Ei − iε) ·

n∏

a

1√
2Ea

,

(3.24)

we could extract the conjugate of the correlator with flipping energy signs of the external

energy. We should remark that no boundary condition comes in. Then by the first unitarity

constraints on (3.17), we have

〈φ1,φ2, . . .|ÛgA|0〉+ 〈φ1,φ2, . . .|Û+
gA|0〉 = 0. (3.25)

2Because |0〉I = eiH0∞ |0〉 = |0〉 for H0 |0〉 = 0, so the zero-state in interaction picture will be just
normal |0〉.
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If we take (3.23) and (3.24) into this equation, we’ll get the COT as (3.11).

Unitarity: Exchanging Scalar For the scalar exchange diagram, we could derive the

COT by the third equation in (3.17):

〈p1p2p3p4|ÛgAgB + Û †
gAgB

|0〉 = −〈p1p2p3p4|(ÛgAÛ
†
gB

+ Û †
gA
ÛgB)|0〉 (3.26)

in which we extract the scalar correlator for the exchange diagram from the contraction

of the zero-state and the momentum basis, for the first term of LHS, if we apply the wick

contraction, (3.20) and (3.22)

〈p1p2p3p4|ÛgAgB |0〉

=
∑

perm

(
4∏

i

1√
2Ei

)

·−
∫ 0

−∞
dt

∫ 0

−∞
dt′Kφ(E1, t)Kφ(E2, t)VA(t, ∂t, $p1, $p2, $ps) · T 〈0| φ̂cl($ps, t)φ̂cl(−$ps, t′) |0〉

· VB(t
′, ∂t, $p3, $p4,−$ps)Kφ(E3, t

′)Kφ(E4, t
′)

=
∑

perm

(
4∏

i

1√
2Ei

)

·−i
∫ 0

−∞
dt

∫ 0

−∞
dt′Kφ(E1, t)Kφ(E2, t)VA(t, ∂t, $p1, $p2, $ps) ·G(Fey)

φ (t, t′, Es, $ps)

· VB(t
′, ∂t, $p3, $p4,−$ps)Kφ(E3, t

′)Kφ(E4, t
′)

=− (
4∏

i

1√
2Ei

)

(
ψ4(E1, E2, E3, E4, Es)−

1

2Es
(ψ3,A(E1, E2, Es)ψ3,B(E3, E4, Es))

)

+ (t) + (u),

(3.27)
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where G(Fey)
φ = T 〈0| φ̂cl(t)φ̂cl(t′) |0〉 is the normal Feynman propagator, which has the

relation

Gφ(t, t
′, Es, $ps) = G(Fey)

φ (t, t′, Es, $ps)−
i

2Es
Kφ(Es, t)Kφ(Es, t

′). (3.28)

Similarly (note that the vertices VA/B are real),

〈p1p2p3p4|Û †
gAgB

|0〉

= −(
4∏

i

1√
Ei

)

(
ψ∗
4(−E1,−E2,−E3,−E4, Es)−

1

2Es
(ψ3,A(−E1,−E2, Es)ψ3,B(−E3,−E4, Es))

)

+ (t) + (u).

(3.29)

Combining (3.28) and (3.29), we have

〈p1p2p3p4|ÛgAgB + Û †
gAgB

|0〉

= −(
4∏

i

1√
Ei

)
{
ψ4(E1, E2, E3, E4, Es) + ψ†

4(−E1,−E2,−E3,−E4, Es)

− 〈O−sOs〉in−in




ψ3,A(E1, E2, Es)ψ3,B(E3, E4, Es)

+ ψ3,A(E1, E2,−Es)ψ3,B(E3, E4,−Es)



+ (t) + (u)
}
,

(3.30)

which is the LHS of (3.26). The two-point correlation function 1
2Es

= 〈O−sOs〉in−in can

be identified as the propagator for exchanging vertices. The 3-point correlator products

come from the difference between G(Fey)
φ and Gφ.
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On the other hand, the first term of the RHS of (3.26) is

−〈p1p2p3p4|UgAU
†
gB
|0〉

=
∑

perm

(
4∏

i

1√
2Ei

)

·−
∫ 0

−∞
dt

∫ 0

−∞
dt′Kφ(E1, t)Kφ(E2, t)VA(t, ∂t, $p1, $p2, $ps) · 〈0| φ̂cl($ps, t)φ̂

∗
cl(−$ps, t′) |0〉

· V ∗
B(t

′, ∂t, $p3, $p4,−$ps)Kφ(−E3, t
′)Kφ(−E4, t

′)

= (
4∏

i

1√
2Ei

) · 〈O−sOs〉in−inψ3,A(E1, E2, Es)ψ3,B(−E3,−E4, Es) + (t) + (u)

= −(
4∏

i

1√
2Ei

) · 〈O−sOs〉in−inψ3,A(E1, E2, Es)ψ3,B(E3, E4,−Es) + (t) + (u).

(3.31)

In the second equalitywe identified 〈0| φ̂cl($ps, t)φ̂∗
cl(−$ps, t′) |0〉 = 1

2Es
Kφ(Es, t)Kφ(Es, t′).

We also identified 1
2Es

as the two point in-in formalsim 〈O−sOs〉in−in. 3 In the last equal-

ity, we used the fact that the correlator is real and the 3-pt COT. The conjugate term can

be derived similarly, and we could combine them to get

〈p1p2p3p4|(UgAU
†
gB

+ U †
gA
UgB)|0〉

= −(
4∏

i

1√
Ei

∫
d3pi
(2π)3

)

·−〈O−sOs〉in−in

· [ψ3,A(E1, E2, Es)ψ3,B(E3, E4,−Es) + ψ3,A(E1, E2,−Es)ψ3,B(E3, E4, Es)] + (t) + (u).

(3.32)

Equating (3.30) and (3.32), we can extract the COT channel by channel4, then the

3If we take t, t′ = 0 on 〈0| φ̂cl(#ps, t)φ̂∗cl(−#ps, t′) |0〉, then we could identify 1
2Es

= 〈0| φ̂0φ̂∗0 |0〉. And
by the fact that UI(0,−∞) |0〉 = |Ω0〉 = |0〉+O(gA/B), we could write 〈0| φ̂0φ̂∗0 |0〉 = 〈Ω0| φ̂0φ̂∗0 |Ω0〉+
O(gA/B). Then for the tree-level contribution we drop the higher order contribution on the coupling con-
stants, the term 〈0| φ̂0φ̂∗0 |0〉 is exactly two-point in-in correlator by definition. We don’t really need the exact
expression of the in-in correlator to identify it in the extraction of the correlator from the time-evolution op-
erator.
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COT reads

ψ(φ)
4 (E1∼4, Es,p1∼4) + ψ∗(φ)

4 (−E1∼4, Es,p1∼4) = ψ̃3(p1,p2,ps) · 〈O−sOs〉in−in · ψ̃3(−ps,p3,p4)

(3.33)

In (3.26),UgAgB+U †
gAgB containsG

(Fey)
φ , but the four-point correlator is written inGφ.The

shifted correlator is needed to absorb the differences between G(Fey)
φ and Gφ. Moreover,

for the in-in correlator

ψ4,in−in(E1∼4, Es, Et, Eu,p1∼4)− ψ4,in−in(E1∼4,−Es, Et, Eu,p1∼4)

=
ψ̃in−in
3 ψ̃in−in

3

2ψin−in
2,s

·
(3.34)

It’s the equation suggested by [12], it’s the COTwritten in the in-in correlator. The shifted-

in-in correlator is also needed. We cannot write COT without shifted observable because

the propagator is still not G(Fey)
φ even in the case of in-in correlators.

Unitarity: Exchanging Vector/Tensor We can promote the COT of scalar exchanging

diagram (3.33) to the general spin. The 4pt correlator (plus its complex conjugate with

energy flipping) can be obtained by gluing two 3pt shifted correlators. The free indices of

the 3pt shifted correlators will contract with a 2-point in-in correlator. [3]

For example, for the correlator exchanging vector field ψ(J)
4 , substituting the COT

with the 2pt in-in correlator of the massless vector field,

ψ(J)
4 (E1∼4, Es,p1∼4) + ψ∗,(J)

4 (−E1∼4, Es,p1∼4)

= ψ̃3,i(p1,p2,ps, Es) 〈J−sJs〉ijin−in ψ̃3,j(−ps,p3,p4, Es)

(3.35)

4Division of correlator channel by channel will be ambiguous upto a contact term, but we know contact
term under the Optical theorem should be 0, so every channel by channel division of correlator will give the
same COT.
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in which 〈J−sJs〉ijin−in =
(πij

s +ξ p̂isp̂
j
s )

2Es
. Because the dependence on ξ can be eliminated by

WT identity,

p̂isψ3,i(p1,p2,ps, Es) = eψ2(p2)− eψ2(p1)

ki
sψ̃3,i(p1,p2,ps, Es) = ki

sψ3,i(p1,p2,ps, Es)− ki
sψ3,i(p1,p2,ps,−Es) = 0,

(3.36)

we’ll get the COT with the gluing factor P i1j1
2,J ($ps) =

π
i1j1
s
2Es

in (3.6).

For the correlator exchanging tensor field ψ(T )
4 , substituting the COT with the 2pt

in-in correlator of the graviton,

ψ(T )
4 (E1∼4, Es,p1∼4) + ψ∗,(T )

4 (−E1∼4, Es,p1∼4) = ψ̃3,ij 〈T−sTs〉ijklin−inψ̃3,kl . (3.37)

in which 〈T−sTs〉ijklin−in = P ij
s,i′j′

(
πi′k′
s πj′l′

s +ξ p̂i
′
s p̂k

′
s η

j′l′+...
)

2Es
P kl
s,k′l′ . The extra projector P ijkl

s

we add to the in-in correlator is defined by

P ijab
s = Πijkl

(2,2) + πij
s p̂

k
s p̂

l
s − πik

s p̂
j
sp̂

l
s + p̂isp̂

j
sp̂

k
s p̂

l
s

(3.38)

such that P ijab
s P kl

s,ab = P ijkl
s and, for the general tesnor h′

kl,s,0, the hij,s,0 = P ijkl
s h′

kl,s,0

satisfy the constriant (2.28) . The projector in the 2-point in-in correlator reflects that it

comes from the correlator with the constrained polarization.

Because the dependence on ξ can be eliminated by WT identity, we’ll get the COT

with the gluing factor P ijkl
2,T ($ps) =

Πikjl
s,(2,2)

2Es
in (3.6). As a remark, we can note that Πikjl

s,(2,2)

captures all the physical boundary conditions, which include traceless and transverse.

Bosonic Field: Propagator Property We now derive COT in another approach, which

relies on the properties of the propagators, such as discontinuity and conjugation relation-
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ships [12, 20].

Propagator Property: Contact Diagram The flat space scalar bulk-to-boundary prop-

agator,Kφ($p, E, t) = eiEt have the following identity,

Kφ($p, E − iε, t) = K∗
φ($p,−E − iε, t) (3.39)

with

∂tKφ($p, E − iε, t) = (∂tKφ($p,−E − iε, t))∗ . (3.40)

For integer spin, the above identities still hold, since the only complex term in the bulk-

to-boundary operatorK l1l′1...($p, E, t) is eiEt, and we assumed that the vertices iV are real

functions of momentum and time derivative.5 The real condition of the vertices is equiv-

alent to requiring the interacting term of the Hamiltonian to be Hermitian

Hint = iV → Hint +H∗
int = 0 (3.41)

According to the Feynman rules (see 2.4 for details), the correlators can be expressed as

ψl1l2...
c (E1∼n, $p1∼n . . . ) =

∫
d4x(iVl′1...,l

′
2...,...

($p1∼n, ∂t))K
l1l′1...($p1, E1 − iε, t)K l2l′2...($p2, E2 − iε, t) . . .

(3.42)

According to (3.39) and (3.40), the correlators have the following identity

ψl1l2...
c (E1∼n, $p1∼n . . . ) + ψ∗,l1l2...

c (−E1∼n, $p1∼n . . . ) = 0., (3.43)

which is the COT for the contact diagram.

5∂t will apply on any of bulk-to-boundary operator. Be careful, it will bring down iE instead of E.
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Propagator Property: Exchange Scalar There’s an alternative way to derive the COT.

We could investigate the discontinuity of the complexified exchange correlator [20]. We

use z = $p · $p to denote the momentum self-contraction, and the on-shell energy E is the

square root of z. Then if the momentum is complexified, the functionE =
√
z will have a

branch cut on z-plane. If we set the branch cut on the positive real axis, the discontinuity

of the correlator reads

Disc
z=|E|2±iε

ψc(z) := ψc(z = |E|2 − iε)− ψc(z = |E|2 + iε)

= ψc(E = |E|− iε)− ψc(E = −|E|− iε)

(3.44)

where |E|2 = |z| ∈ R. On the E space, the discontinuity is just the difference between

the correlator and its energy flipping.

To explain why this setting of the branch cut is natural, we consider the legal domain

of the energy is

Im(E) < 0. (3.45)

such that eiEt in the bulk-to-boundary and the bulk-to bulk propagator converges at the far

past t = −∞ (Bunch-Davies condition). Defining the square root like

E =
√
z := |z|ei

Arg(z)
2 (3.46)

where the principal value of the argument is defined by Arg(z) ∈ [0,−2π), we can check

that the square root indeed maps the full complex plane to the lower half plane.

It’s important to mention that only terms with an odd power of energy survive under

the discontinuity defined by (3.44). These terms must come from the eiEt or the derivative

of eiEt indicating that the discontinuity, or the constraint (3.45), is a result of the expo-
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nential term eiEt. In the exchange diagram, we can apply the discontinuity on the internal

energy square zs = E2
s = ($p1 + $p2)2, which allows us to extract the exponential parts of

the bulk-to-bulk propagator. Especially, for the scalar exchange correlator,

Disc
zs=|Es|2±iε

ψ(s)
4 (E1, E2, E3, E4, zs, . . . )

=

∫
dt

∫
dt′VL(t, $pa, ∂t)K(t, $p1)K(t, $p2) · Disc

zs=|Es|2±iε
Gφ(
√
zs, t, t

′) · VR(t
′, $pa, ∂t′)K(t′, $p3)K(t′, $p4)

=
1

2Es
·
∫

dt

∫
dt′VL(t, $pa, ∂t)K(t, $p1)K(t, $p2) Disc

zs=|Es|2±iε
·Kφ(
√
zs, t)

· VR(t
′, $pa, ∂t′)K(t′, $p3)K(t′, $p4) · Disc

zs=|Es|2±iε
Kφ(
√
zs, t

′)

= Disc
zs=|Es|2±iε

ψL
3,i...(E1, E2, E3, E4, zs, . . . ) ·

1

2Es
· Disc
zs=|Es|2±iε

ψR
3,i′...(E1, E2, E3, E4, zs, . . . )

(3.47)

in which we apply the factorization property of the discontinuity of the scalar bulk-to-bulk

propagator,

Disc
zs=|Es|2±iε

Gφ(
√
zs, t, t

′) =
1

2Es
· Disc
zs=|Es|2±iε

Kφ(
√
zs, t) · Disc

zs=|Es|2±iε
Kφ(
√
zs, t

′). (3.48)

It’s just the COT because if we write the discontinuity explicitly, we’ll have

Disc
zs=|Es|2±iε

ψ(s)
4 (E1, E2, E3, E4, zs, . . . )

= ψ(s)
4 (E1, E2, E3, E4, Es − iε, . . . )− ψ(s)

4 (E1, E2, E3, E4,−Es − iε, . . . )

Disc
zs=|Es|2±iε

ψL/R
3,i...(E1, E2, E3, E4, zs, . . . )

= ψL/R
3,i...(E1, E2, E3, E4, Es, . . . )− ψL/R

3,i...(E1, E2, E3, E4,−Es, . . . )

= ψ̃L/R
3,i...(E1, E2, E3, E4, Es, . . . ),

(3.49)

Then substituting the (3.47) with (3.49), we can get the COT written in (3.11).
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Propagator Property: Exchange Vector/Tensor In the Lorentz gauge or the transverse

mode of the massless vector and tensor field, AT
i and hTTij , the bulk-to-bulk propagator of

the transverse (and traceless) field is

GT
A,ij(
√
zs, t, t

′) = πs,ijGφ(
√
zs, t, t

′)

GTT
h,iji′j′(

√
zs, t, t

′) = Πijkl
s,(2,2)Gφ(

√
zs, t, t

′).

(3.50)

Then the discontinuities on the zs of the bulk-to-bulk propagators are

Disc
zs=|Es|2±iε

GA,ij(
√
zs, t, t

′) =
πs,ij
2Es

· Disc
zs=|Es|2±iε

Kφ(
√
zs, t) · Disc

zs=|Es|2±iε
Kφ(
√
zs, t

′)

Disc
zs=|Es|2±iε

Gh,ii′jj′(
√
zs, t, t

′) =
Πijkl

s,(2,2)

2Es
· Disc
zs=|Es|2±iε

Kφ(
√
zs, t) · Disc

zs=|Es|2±iε
Kφ(
√
zs, t

′).

(3.51)

Similar to the derivation of the COT exchanging scalar by the discontinuity, substituting

the correlator written in the Feynman Rule 6 with (3.51), we could get (3.35) and (??) .

3.2.2 Bosonic Partial Energy Pole

The COT gives another constraint on the correlators, which is the partial energy pole

constraint. Let’s use the scalar exchange COT, i.e., (3.6), for demonstration. The 4pt

correlator ψ4 has energy poles 1
E12s

and 1
E34s

, while ψ∗
4 has energy poles 1

−E12+Es
and

1
−E34+Es

, since the sign of the external energy is flipped. The partial energy pole locates at

1
E12s

= 0, which appears only in ψ4. On the other hand, ψ3 also has the energy pole 1
E12s

,

which is the sum of the energy of the external legs of the sub-diagram, and the residue is

the amplitude. As a result, the residues of

Res
E12s→0

ψ(φ)
4 (E1∼4, Es,p1∼4) =

M3(p1,p2,ps) · ψ̃3(−ps,p3,p4)

2Es

6Because the correlator should be invariant under the gauge we choose for internal polarization.
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We’ll get a similar expression for the E34s pole, whose residue is also the product of

amplitude and shift-correlator. It’s trivial to promote this result to higher spinning boson

correlators:

Res
E12s→0

ψ(J)
4 = M̃3,i(p1,p2,ps)

πij
s

2Es
ψ̃3,j(−ps,p3,p4, Es) (3.52)

Res
E12s→0

ψ(T )
4 = M̃3,ij(p1,p2,ps)

Πijkl
s,(2,2)

2Es
ψ̃3,kl(−ps,p3,p4, Es) (3.53)

where M̃3,i, M̃3,ij is defined by

M3(p1,p2,ps) =: M̃ i
3(p1,p2,ps) εs,i,0

M3(p1,p2,ps) =: M̃ ij
3 (p1,p2,ps) εs,i,0εs,j,0.

(3.54)

3.2.3 Dirac Fermion Field

In this section, we only use the Feynman Rule to find the COT of the fermion. To

write down the COT, we need to carefully calculate the conjugate of the correlator and

examine the discontinuity of the correlator.

Contact diagram The Dirac fermion operators are also complex, for the correlator, the

operators are χ+,p and χ̄−,p. We define the conjugate of the correlator to be the normal

conjugation (ψn → ψ†
n) with χ+,p ↔ χ̄−,p. 7 In this paper, we useC to label the conjugate

7If we examine the conjugate in the COT of the scalar QED correlator. It seems like we also need to
interchange the complex operator Op and its conjugate operator O∗

p . If we use C to label the conjugate of
the correlator and under the conjugate correlator will take complex conjugate and make O ↔ O∗, then the
COT reads

〈O∗
1,k1...O2,l1... . . . 〉c(E1∼n, #p1∼n) + C〈O∗

1,k1...O2,l1... . . . 〉c(−E1∼n, #p1∼n) = 0 (3.55)
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of the correlator. Then, we could propose the contact COT of the fermion,

〈χ̄−,B,1χ+,A,2 . . . 〉c(E1∼n, $p1∼3)

+ C〈χ̄−,B,1χ+,A,2 . . . 〉c(−E1∼n, $p1∼3) = 0.

(3.58)

where 〈χ̄−,B,1χ+,A,2 . . . 〉c is the contact correlator obtained by pulling out the boundary

condition χ̄−,B,1,χ+,A,2, . . . in the expansion of the wavefunction. We could apply the

COT to the QED 3-point contact correlator, which is

〈J1χ̄B,−,2,eχA,+,3,−e〉 =
e

KT

[
(1− /̂p2)/ε1(1 + /̂p3)

]
BA

. (3.59)

And the conjugate of the correlator with energy signs flipping is

C〈J1χ̄B,−,2,eχA,+,3,−e〉(−E1∼3) := (〈J1χA,+,2,eχ̄B,+,3,−e〉)†(−E1∼3)

=
−e
−KT

[
(1 + /̂p2)γ0/ε1γ0(1− /̂p3)

]
BA

∼ e

−KT

[
(1− /̂p2)/ε1(1 + /̂p3)

]
BA

.

(3.60)

The equivalence of the last line is because the boundary field χ̄− and χ+ absorbs the γ0 by

χ̄−γ0 = −χ̄− and γ0χ− = χ+. Substituting (3.59) and (3.60), we could check that (3.58)

is satisfied.

Then we could find the Feynman Rule we use for QED can be proved to be applicable

Then, if we apply the COT to the 3-point contact correlator (we use the subscripts to label the charge of the
particle),

〈J1O∗
2,eO3,−e〉 =

1

KT
e(p2 − p3) · ε1. (3.56)

The conjugate of the correlator will be

C〈JT
1 O∗

2,eO3,−e〉 := (〈JT
1 O2,eO

∗
3,−e〉)∗ =

1

KT
(−e)(p3 − p2) · ε1 = (〈JT

1 O∗
2,eO3,−e〉)∗. (3.57)

The operation, O ↔ O∗, makes 2↔ 3 with e→ −e. And, because labels 2 and 3 are anti-commute in the
correlator, we find that C〈J1O∗

2,eO3,−e〉 = 〈J1O∗
2,eO3,−e〉∗. The conjugate of the correlator is equivalent

to the normal complex conjugate. As a result, the normal Optical theorem, like (3.11), still works for the
contact correlator of the scalar QED.
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to the general theory in the (C.146). Then, we could extend (3.11) to the general theory

by similar calculations.

Exchange Diagram: Exchange Fermion Because of the difficulties to get the COT in

the version including the conjugate of the fermion correlator. 8 We only propose the COT

in the version of the discontinuity. (we define $ps = −$p1 − $p2 = $p3 + $p4 here.)

First, we should note that the fermionic COT can’t be rigorously derived by promot-

ing the derivation of the COT of the bosonic field. The reason is that the Feynman rule

we use might not be applied to the fermionic correlators which is expanded the boundary

action Sb. So in App. C.3, we show that, under the discontinuity, the fermionic correlator

indeed shares a similar Feynman Rule structure with the bosonic field. Then in (C.157)

we find the discontinuity of the bulk-to-bulk propagator gives the discontinuity of the

correlator,

Disc
zs=|Es|2±iε

ψ(χ)
4 ($p1∼4, zs)

= Disc
zs=|Es|2±iε

ψ3,A($p1, $p2, zs) ·
[
1 + γ0

2
·
− /ps

2Es
· 1− γ0

2

]AB

Disc
zs=|Es|2±iε

ψ3,B($p3, $p4, zs).

(3.62)

8Because of the C operation, it will mix different channels in the LHS of the COT because we permute
the label of the field and its conjugate. Then we cannot make the COT to be equal channel by channel. Even
if we sum up all the channels in the COT like

Disc
zs=|Es|2±iε

ψ(χ)
4 (#p1∼4, zs) + Disc

zs=|Et|2±iε
ψ(χ)
4 (#p1∼4, zt) = ψ4(#p1∼4, Es)− ψ(χ)

4 (#p1∼4,−Es) + (t)

” = ”ψ(χ)
4,(s)(#p1∼4, Es, E1∼4) + Cψ(χ)

4,(t)(#p1∼4, Et,−E1∼4)

+ ψ(χ)
4,(t)(#p1∼4, Et, E1∼4) + Cψ(χ)

4,(s)(#p1∼4, Es,−E1∼4),
(3.61)

. The last equality, ”=” should not be correct for the massive and massless fermion correlator 〈J χ̄Jχ〉 so
the COT version with the conjugate remains unknown.

38

http://dx.doi.org/10.6342/NTU202302262


doi:10.6342/NTU202302262

in which on the RHS of the above equation,

Disc
zs=|Es|2±iε

ψ3,A($p1, $p2, zs) = ψ3,A($p1, $p2, Es)− ψ3,A($p1, $p2,−Es) = ψ̃3,A($p1, $p2, Es).

(3.63)

is identified as the shifted-correlator. Then (3.62) gives the discontinuity version of the

fermion COT.

Disc
zs=|Es|2±iε

ψ(χ)
4 ($p1∼4, zs) = ψ4($p1∼4, Es)− ψ4($p1∼4,−Es)

= ψ̃+
3,A(p1,p2,ps)

((
1 + γ0

2

) −/ps

2Es

(
1− γ0

2

))AB

ψ̃−
3,B(−ps,p3,p4, Es).

(3.64)

We should remark that this form of COT is the same for the massive and the massless

fermion. And we could identify the gluing factor,
[
1+γ0
2 · − /ps

2Es
· 1−γ0

2

]AB

, as the 2-point

in-in correlator

〈χ+,sχ̄−,−s〉AB
in−in = (

1 + γ0
2

)(2Re〈χ+,sχ̄−,−s〉)−1(
1− γ0

2
) = (

1 + γ0
2

)
−/ps

2Es
(
1− γ0

2
)

(3.65)

in which we the real part of the correlator is

Re〈χ+,sχ̄−,−s〉 =
1

2
(〈χ+,sχ̄−,−s〉+ C〈χ+,sχ̄−,−s〉)

=
1

2
(〈χ+,sχ̄−,−s〉+ (〈χ̄+,sχ−,−s〉))†

=
1

2
· ( /ps

Es +m
+ (

(
/ps

Es +m

)−1 /ps

Es +m

(
/ps

Es +m

)−1

)†)

∼ /ps

Es +m
+

/ps

Es −m
=

2Es /ps

E2
s −m2

(3.66)

where the equivalance∼means that γ0 is absporbed by boundary condition χ̄−/χ+. Then

the COT of the correlator exchanging fermions (3.64), is just the discontinuity version of

the COT substituting the two-point in-in correlator with the fermionic one.
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Exchange Diagram: Exchange Massless Spin 3/2 Now for spin 3/2 particle, we could

easily extend our result by substituting the two-point in-in correlator in the COT exchang-

ing fermion field with a 2-point in-in correlator for a 3/2 particle,

ψ
(ψ)

4,s (E1∼4, Es)− ψ
(ψ)

4,s (E1∼4,−Es) = ψ̃+
3,A,i〈ψi

+,sψ̄
j
−,−s〉AB

in−inψ̃
−
3,B,j

(3.67)

inwhich 〈ψ−,−sψ+,s〉ijin−in = P i
s,i′

1+γ0
2

−πs,i′j′ /̂ps+ξp̂
i′
s p̂j

′
s +...

2
1−γ0
2 P̄ j

s,j′ .The extra projectorP ij
s , P̄ ij

s

we add to the in-in correlator is defined by

P̄ ij
s =

(
−/̂psΠ

ij
(3/2,3/2) + p̂is/̂psγ

j − p̂isp̂
j
s

) 1− γ0
2

P ij
s =

1 + γ0
2

(
−Πij

(3/2,3/2)/̂ps + p̂isγ
j /̂ps − p̂isp̂

j
s

) (3.68)

such thatP ia
s P j

s,a = P ij
s , P̄ ia

s P̄ j
s,a = P̄ ij

s and, for the general 3D spin 3/2 fieldψ′
+,i,s,0, ψ̄

′
−,i,s,0,

the ψ+,i,s,0 = Pij,sψ
′,j
+,s,0, ψ̄−,i,−s,0 = P̄ij,−sψ

′,j
−,−s,0 satisfy the constriant (2.39) and (2.40).

The projector in the 2-point in-in correlator reflects that it comes from the correlator with

the constrained polarization.

Similar to the in-in correlator of the photon and the graviton, there’s a gauge term

proportional to ξ in the 2-point in-in correlator. We could use the WT identity to elimi-

nate ξ dependences. Dropping out the gauge term and simplifying the in-in correlator of

gravitino, we could show that the COT could be written with gluing factor 1
2Π

ij
s,(3/2,3/2)

defined in (3.10). With the property

γiΠij
s,(3/2,3/2) = pisΠ

ij
s,(3/2,3/2) = Πij

s,(3/2,3/2)γj = 0 (3.69)

, the Πij
s,(3/2,3/2) captures the sum of the physical gravitino boundary condition, which is

gamma-traceless and transverse.

40

http://dx.doi.org/10.6342/NTU202302262


doi:10.6342/NTU202302262

3.2.4 Majorana Fermion Field

We define the B-operator, B = −iγ2 and the charge conjugation operator

C : χ→ Bχ∗.

Then Majornara condition of the 4D spinor will be

Cχ = χ (3.70)

χ =




υ

(iσ2)υ∗





Now we want the Majornara fermion as the boundary condition of the classical solution,

so we split (A.30) into two 3D spinors, γ0χ± = ±χ±:

(
1 + γ0

2
)C(χ+ + χ−) = χ+ = (−iγ2)χ∗

− = (−B)χ̄T
−

(3.71)

in the last equality, we set χ̄− = χ†
−γ0 again to relate the field and its momentum conjugate

then we have the 3D Majornara condition of fermion

χ̄− = −χT
+B (3.72)

so we find that the dual boundary condition of the 3D Dirichlet boundary condition χ̄−

and χ+ is related under the Majorana condition just like fermion and anti-fermion related

with each other in 4D.

In the case of the amplitude, we could show theMajorana flipping relationship by the

property of the B operator, BγµB = −(γµ)∗, and the operator D = iBγ0 with a property
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−DγµD = (γµ)T, D.D = I . [10]

Bu∗
1 = u1 = −iDūT

1 ; ū
∗
2(−B) = ū2 = uT

2 (−iD)

ū1γ
µu2 = (ū1γ

µu2)
T = −uT

2Dγ
µDū1 = ū2γ

µu1

(3.73)

This equality implies that there’s no actual difference between χ̄ and χ, like for the am-

plitude

M(h1χ̄2χ3) = (ε1,µ(p2 − p3))ū2/ε1u3 = −(ε1,µ(p3 − p2))ū3/ε1u2 = −M(h1χ̄3χ2).

(3.74)

And this flipping relationship could be extended to the theory with the vertices composed

of γµνρ... = {γµ[γν , {γρ . . . }]} with a property −Dγµνρ...D = (γµνρ...)T . Actually, in our

paper, we only discuss this type of vertices.

To check that we have no problem matching the amplitude to the correlator under the

total energy pole, we show that if we write the fermion polarization u, ū in the boundary

condition (u = (1+/p)χ+, ū = χ̄−(1−/p)), the Majorana flipping relationship still works.

ū1γ
µu2 = χ̄1,−(1− /̂p1)γ

µ(1 + /̂p2)χ2,+ = (χ̄1,−(1− /̂p1)γ
µ(1 + /̂p2)χ2,+)

†

= −χT
2,+D(1 + /̂p2)D

2γµD2(1− /̂p1)Dχ̄
T
1,−

= χ̄2,−(1 + /̂p2)γ
µ(1− /̂p1)χ1,+ = ū2γ

µu1

(3.75)

where for convenience, we write the Majorana condition on boundary condition (??) as

χ̄− = χT
+(−iD), (−iD)χ̄T

− = χ+.

Then although the C-conjugation includes a process that χ̄− ↔ χ+, for the Majorana

correlator, this process won’t change the correlator due to the flipping relationship. The
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C-conjugate in the Fermion COT is just equivalent to normal conjugation,

Cψn,maj = (ψn,maj)
†|χ̄−↔χ+ = (ψn,maj)

†. (3.76)

3.2.5 Fermionic Partial Energy pole

If we take the partial energy pole residue on both sides of the fermion COT,

ResE12s→0 ψ
(χ)

4 = M+
3,A(p1,p2,ps)

((
1 + γ0

2

)
−!!̂ps

2

(
1− γ0

2

))AB

ψ̃3,B(−ps,p3,p4, Es)

= Mu
3,A(p1,p2,ps)

1

2Es

(
(− . S −m)(I + (−γ0 − I) Es

Es+m)

E34s
− −""S −m

E34 − Es

)AB

Nu
3,B(−ps,p3,p4)

(3.77)

in which we define

M3(p1,p2,ps)|us=(1+ /ps
Es+m )χ+,s,0

=: M+
3,A(p1,p2,ps)χ

A
+,s,0

M3(p1,p2,ps) =: Mu
3,A(p1,p2,ps)u

A
s

(3.78)

and the last equation holds only when we could write the three-point correaltor as

ψ3(Es, E3, E4) = (1 +
p̂s

Es +m
)ψu

3 = (1 +
p̂s

Es +m
)

Nu
3

Es + E3 + E4

(3.79)

where Nµ
3 is independent of the Es. It’s true for ψ3 is pure transverse and for QED corre-

lator 〈J χ̄χ〉. In these cases, Nu
3 = Mu

3 . Similarly, we have

ResE34s→0 ψ
(χ)
4

= ψ̃3,A(ps,p1,p2, Es)

((
1 + γ0

2

)
−!!̂ps

2

(
1− γ0

2

))AB

M−
3,B(p3,p4,−ps)

= Nu
3,A(p1,p2,ps)

1

2Es

(
γ0 ( . S−)

E12s
− ##S−

E12 − Es

)AB

Mu
3,B(−ps,p3,p4)

(3.80)
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in which we define

M3(p3,p4,−ps)|ū−s=χ̄−,−s,0(1− /ps
Es+m )

=: χ̄A
−,−s,0M

+
3,A(p3,p4,ps)

M3(p3,p4,−ps) =: ūA
−sM

u
3,A(p3,p4,−ps)

(3.81)

and the last equation holds only when N could be defined like (3.79). We could check

that 〈J χ̄Jχ〉 we derived in the Lagrangian approach as shown in (D.199) indeed satisfies

these asymmetric residues on the left and right partial energy pole. And we could extend

the result to massless spin 3/2 particle:

ResE12s→0 ψ
(ψ)

4

= M+
3,A,i(p1,p2,ps)

((
1 + γ0

2

) −πij
s !!̂ps − 1

2 /π
i
s/̂ps/π

j
s

2

(
1− γ0

2

))AB

ψ̃3,j,B(−ps,p3,p4, Es)

= Mu
3,i,A(p1,p2,ps)

πij
s

2Es

(
−""S

E34 − Es
− (− . S −m) (−γ0)

E3 + E4 + Es

)AB

Nu
3,j,B(−ps,p3,p4)

+ M+
3,A,i(p1,p2,ps)

((
1 + γ0

2

)
−/πi

s/̂ps/π
j
s

4

(
1− γ0

2

))AB

ψ̃3,j,B(−ps,p3,p4, Es)

(3.82)

ResE34s→0 ψ
Exc3/2
4

= ψ̃3,A,i(ps,p1,p2, Es)

((
1 + γ0

2

) −πij
s !!̂ps − 1

2 /π
i
s/̂ps/π

j
s

2

(
1− γ0

2

))AB

M−
3,j,B(p3,p4,−ps)

= Nu
3,i,A(p1,p2,ps)

πij
s

2Es

(
− ##S−

E12 − Es
+

(γ0) ( . S−)

E1 + E2 + Es

)AB

Mu
3,j,B(−ps,p3,p4)

+ ψ̃3,A,i(ps,p1,p2, Es)

((
1 + γ0

2

)
−/πi

s/̂ps/π
j
s

4

(
1− γ0

2

))AB

M−
3,j,B(p3,p4,−ps)

(3.83)

The last equalities for individual partial energy pole residues are held when n N could be

defined like (3.79).
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3.3 The bootstrap program

3.3.1 2pt correlators

By dimensional analysis and Ward Takahashi identity of two-point correlator dis-

cussed in App. F.1, we can fix the 2pt correlator of scalar fields O, vector fields J i, and

graviton fields T ij to be

〈O−pOp〉 = E

〈J i
−pJ

j
p〉 = Eπij

〈T ij
−pT

kl
p 〉 = Eπi,kπj,l

(3.84)

where we defined πij ≡ ηij +
pipj
E2

p
. For the graviton two-point correlator we apply the

E.O.M that πijhij
0,p = 0 then in the correlator we apply πij ∼ 0. And for the fermionic

correlator, by dimension counting of the action, we know it should be a dimensionless

factor. And the two-point correlator should be sandwiched with the 3D boundary spinor

condition χ̄−/χ+. With the identity

χ̄−,−pIχ+,p = χ̄−,−pγ0χ+,p = 0. (3.85)

the only nonvanishing 3D rotational invariant factor will be

〈χ̄−
−pχ

+
p 〉 =

/p

Ep
= /̂p (3.86)

And for gravitino, the dimension counting is the same as spin half fermion, the two-

point correlator should be a dimensionless factor. By the similar argument to the spin

half fermion, the only nonvanishing matrice sandwiched between 3D gravitino boundary
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condition ψ̄i
−/ψ

j
+ like §App. F.1 shows will be

〈ψ̄i,−
−pψ

j,+
p 〉 ∝ /̂p (3.87)

And by the WT identity of the two-point correlator,

pi〈ψ̄i,−
−pψ

j,+
p 〉 = 0. (3.88)

Now we know that in the two-point correlator, only the transverse part survives. Now we

get

〈ψ̄i,−
−pψ

j,+
p 〉 = πij,p/̂p (3.89)

in which we set the normalization to 1. For the gravitino two-point correlator we apply

the E.O.M that (γjψj
0($p)) = −/̂p(p̂iψi

0($p)) then in the correlator we apply γj ∼ −/̂pp̂j .

3.3.2 3pt correlators

Procedure to obtain the 3pt correlators:

1. Decompose the correlator and use Ward-Takahashi identity (We list all of these in

§App. E.2 ) to determine the longitudinal part. And there should not have a total

energy pole in the longitudinal part.

2. Apply total energy pole condition to identify the transversal part correlator to be

M3,Lorentz

KT
, in which theM3,Lorentz is the amplitude with polarization in the Lorentz

gauge, said εipi = 0.

3. Find if we could write an unfix polynomial ansatz by momentum dimension count-

ing.
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3.3.3 4pt correlators

1. Decompose the correlator and use the Ward-Takahashi identity to determine the

longitudinal part. And check that it indeed satisfies the partial energy pole’s residue.

There should not have a total energy pole in this part.

2. We decompose the correspondent amplitude channel by channel, and the numerator

in the s, t, u channel is in the certain factorization form we choose and with the

respondent contact term we choose.

M4 =
V3,L,s

⊗
V3,R,s

S
+

V3,L,t

⊗
V3,R,t

T
+

V3,L,u

⊗
V3,R,u

U
+ (certain contact term, polynomial)

(3.90)

in which we use VL/R to denote the left and the right vertices.

3. The partial energy pole residue for the bosonic transverse correlator will be

Res
EL=0

ψT
4,boson =

1

2Es
V3,L ⊗′ ψ̃T

R = V3,L ⊗′ V3,R · 1

2Es
(
1

EL
|Es
−Es

)

Res
ER=0

ψT
4,boson =

1

2Es
ψ̃T
L ⊗′ V3,R = V3,L ⊗′ V3,R · 1

2Es
(
1

ER
|Es
−Es

)

(3.91)

where the ψT
4,s is the pure transverse correlator. On the other hand, we find the

fermionic correlator, the gluing factor of residues of individual partial energy poles

are different.

Res
EL=0

ψT
4,fermion =

1

2Es
V3,L ⊗′

L ψ̃
T
R = V3,L ⊗′

L V3,R · 1

2Es
(
1

EL
|Es
−Es

)

Res
ER=0

ψT
4,fermion =

1

2Es
ψ̃T
L ⊗′

R V3,R = V3,L ⊗′
R V3,R · 1

2Es
(
1

ER
|Es
−Es

)

(3.92)
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4. Use the fact that

lim
KT→0

1

E12sE34s
=

1

(Es − E34)E34s
= − 1

S

lim
E12s→0

1

KTE34s
=

(−1)
2Es

[
1

E34s
− 1

E3 + E4 − Es

]

lim
E34s→0

1

KTE12s
=
−1
2Es

[
1

E12s
− 1

E12 − Es

]
.

(3.93)

Then we could build up the pure transverse correlator channel by channel,

ψT
4 = ψT

4,s + ψT
4,t + ψT

4,u + ψT
4,c. (3.94)

And for the s-channel part, we could build it by

ψT
4,s =

−Ns

KTEREL

(3.95)

and for the bosonic correlator, we could only build a Ns such that

lim
KT→0

Ns,boson = V3,L,s ⊗ V3,R,s

lim
ER/EL→0

Ns,boson = V3,L,s ⊗′ V3,R,s

(3.96)

we accomplish this by writing a form that

Ns = V3,L,s ⊗ V3,R,s + nkKT ” = ”V3,L,s ⊗′ V3,R,s + npELER
(3.97)

in which the second equality is in general nontrivial but we’ll prove in the context.

And for the fermionic field, the residues of the two partial energy poles are not
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symmetric. Then we need to find Ns such that

lim
KT→0

Ns = V3,L,s ⊗ V3,R,s

lim
ER→0

Ns = V3,L,s ⊗′
R V3,R,s

lim
EL→0

Ns = V3,L,s ⊗′
L V3,R,s

(3.98)

we accomplish this by writing a form that

Ns = V3,L,s ⊗ V3,R,s + nkKT

” = ”V3,L,s ⊗′
R V3,R,s + np,RER” = ”V3,L,s ⊗′

L V3,R,s + np,LEL

(3.99)

in which the second and third equality is in general nontrivial but we’ll prove it in

the next section.

5. Sometimes, the correlator built by the previous step will violate the COT with a

polynomial term∆COT,poly vanishing on all the residue, and in our case, it’s invariant

under the flipping sign of external energy. Then we could make

ψT
4,s =

−Ns

KTEREL
−∆COT,poly (3.100)

to restore the COT.

6. Use dimension analysis to find if there’s an unfixed polynomial term we could not

be constrained by COT and the residue of the singularities. The remaining unfix

polynomial term will reflect the fact that we don’t add a requirement that the cou-

pling is minimal.
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Chapter 4 Bosonic correlators in Flat

Spacetime

In this chapter, we introduce the cosmological correlator for bosonic fields in flat

spacetime. We will show how to decompose the correlator into the transverse compo-

nents and the longitudinal components. The longitudinal part can be fixed by the Ward-

Takahashi identity. The transversal part can be fixed by the total energy pole and partial

energy pole conditions.

4.1 2pt correlators

By dimensional analysis and Ward Takahashi’s identity of two-point correlator dis-

cussed in App. F.1, we can fix the 2pt correlator of scalar fields O, vector fields J i, and

graviton fields T ij to be

〈O−pOp〉 = E

〈J i
−pJ

j
p〉 = Eπij

〈T ij
−pT

kl
p 〉 = Eπi,kπj,l

(4.1)

where we defined πij ≡ ηij +
pipj
E2

p
.
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4.2 3pt correlators

Procedure to obtain the 3pt correlators:

1. Decompose the correlator and use Ward-Takahashi identity (We list all of these in

§App. E.2 ) to determine the longitudinal part.

2. Apply total energy pole condition to determine the transversal part.

4.2.1 〈JO∗O〉

The correlator should satisfy the following two conditions: (we set coupling constant

e = 1)

Res
KT→0

ε1,i〈J i
1O

∗
2O3〉 = ε1,µ(p

µ
2 − pµ3) = ε1,iπ

i
1,j(p

j
2 − pj3)

pi〈J i
1O

∗
2O3〉 = −〈O∗

2+1O3〉+ 〈O∗
2O1+3〉 = (E2 − E3)

(4.2)

In the first condition, we used (E.229). We then show how to determine the correlator.

1. Determine the longitudinal part by Ward-Takahashi identity

εi0($p) = εi,T0 + εi,L0

= πijεj,0($p)− p̂ip̂jεj,0($p)

(4.3)

〈J1O∗
2O3〉 = εiπ

i
1,j〈J

j
1O

∗
2O3〉 − εip̂ip̂j〈J j

1O
∗
2O3〉 = εiπ

i
1,j〈J

j
1O

∗
2O3〉 − εi

p̂i1
E1

(E2 − E3)

(4.4)
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2. Determine the transversal part by the total energy pole condition

Res
KT→0

ε1,i〈J i
1O

∗
2O3〉 = Res

KT→0
ε1,iπ

i
1,j〈J

j
1O

∗
2O3〉 = ε1,iπ

i
1,j(p

j
2 − pj3) (4.5)

3. Combining the longitudinal part and the transversal part, we get

〈J1O∗
2O3〉 =

εiπi
1,j(p

j
2 − pj3)

KT
− εip̂i1

(E2 − E3)

E1

(4.6)

And we can check that actually in the longitudinal part the 1
E1

co-dimension 1 pole

is spurious:

Res
E1→0

E2 − E3

E1
=

E2 − E3

E1

KT

KT
=

p̂1,i(p2 − p3)i + (E2 − E3)

KT
= 0 (4.7)

Another way to say this result is : If E1 = 0 then p2 → −p3 so we will have E2
2 = E2

3

that is E2 + E3 = 0 or E2 − E3 = 0. For E2 + E3 = 0, it seems like (E2−E3)
E1

will have a

co-dimension 1 residue on E1 but actually, now we also have KT = E1 + E2 + E3 = 0

so it’s co-dimension 2 residue. And for E2 − E3 = 0, we know there’s no residue on E1

for the numerator is vanishing now.

4.2.2 〈TOO〉

The correlator should satisfy the following two conditions:

Res
KT→0

εiεj〈T ij
1 O2O3〉 = [εµ(p

µ
2 − pµ3)]

2 =
[
εiπ

i
j(p

j
2 − pj3)

]2

p1,i〈T ij
1 O2O3〉 = −

1

2

(
〈O1+2O3〉pj2 + 〈O2O1+3〉pj3

)
= −1

2

(
E3p

j
2 + E2p

j
3

)
(4.8)

In the first condition, we used (E.232). We then show how to determine the correlator.
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1. The decomposition of graviton boundary conditionWewrite the boundary condition

in the bi-vector form

hij,0 = εi,0εj,0 (4.9)

and by the EOM G00 = 0 on the boundary as (2.28) shows

πijhij,0 = 0→ ηijεi,0εj,0 = −(p̂iεi,0)2 (4.10)

We can solve that

εi,0 = Pijξ
j,0 := (p̂ip̂j + iεibcp̂bπcj + πij)ξ

j,0 (4.11)

in which ξi,0 is any vector, εijk is the Levi-Civita symbol.Then we could decompose

the ε to be the transverse and longitudinal mode like vector field in 4.2.

2. Determine the longitudinal part by Ward-Takahashi identity

〈T1O2O3〉 = εT1,i〈T i
1O2O3〉 − (ε1,ip̂

i
1)p̂1,j〈T

j
1O2O3〉

= εT1,iε
T
1,j〈T

ij
1 O2O3〉 − 2(ε1,ip̂

i
1)(p̂i′,1ε

T
1,j〈T

i′j
1 O2O3〉) + (p̂i′,1p̂j′,1〈T i′j

1 O2O3〉)
(4.12)

〈T TT
1 O2O3〉 := εT1,iε

T
1,j〈T

ij
1 O2O3〉

〈T TL
1 O2O3〉 := −2(ε1,ip̂i)(p̂i′εT1,j〈T

i′j
1 O2O3〉) = −2(ε1,ip̂i1)(εT1,j)(

−1
2E1

)(E3p
j
2 + E2p

j
3)

= (ε1,ip̂
i
1)(ε

T
1,jp

j
3)(

E2 − E3

E1
)

〈TLL
1 O2O3〉 := (ε1,ip̂

i
1)

2p̂i′,1p̂j′,1〈T i′j
1 O2O3〉 =

1

4
(ε1,ip̂

i
1)

2

(
(
E2 − E3

E1
)2 − 1

)
(E2 + E3)

(4.13)

by (4.7) we know all the codimensionE1 pole is spurious. And we define the single
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transverse part of the correlator for the latter convenience

ε1,i,0,Lε1,j,0〈T ij
1 O2O3〉 = 〈TL

1 O2O3〉 =
(−ε1,ip̂i1)

2E1
·
[
E3(ε1,jp

j
2) + E2(ε1,jp

j
3)
]

(4.14)

3. Determine the transversal part by the total energy pole condition

Res
KT→0

〈T1O2O3〉 = Res
KT→0

〈T TT
1 O2O3〉 =

(
ε1,iπ

i
1,j(p

j
2 − pj3)

)2 (4.15)

so we have

〈T TT
1 O2O3〉 =

(
ε1,iπi

1,j(p
j
2 − pj3)

)2

KT
(4.16)

Notice we cannot add any subleading terms like

(εT1,iε
T
1,j)η

ij · Poly1(E1, E2 + E3) (4.17)

because we have (2.28) we could decompose it into longitudinal and transverse parts

and for the latter one (κ is the coupling constant.)

(εT1,iε
T
1,j)η

ij = O(κ) ∼ 0 (4.18)

So we don’t need to consider the ηij or trace term in the same order as other terms

in the transverse correlator, our EOM on the boundary makes it vanish. But it’s not

the case in dS space, because we don’t have (2.28), but in addition, we have trace

WT identity from Weyl invariance of the dS action [4]

ηij〈T ijOO〉dS = (3−∆O) [〈O2+1O3〉dS + 〈O2O1+3〉dS] (4.19)

∆O is the conformal dimension of the scalar, so actually, we should decompose the
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hij more in dS to divide the trace parts determined by conformal WT. Notice now

the bivector form is not ok, instead [1]

h0,ij =
1

2
(P kl

1,1,ij + P kl
2,1,ij + P kl

1,2,ij + P kl
2,2,ij)h0,kl

(4.20)

in which

(P1,1)
ij
kl = 2π(i

(kπ
j)
l) −

2

d− 1
πijπkl = 2 (Π2,2)

ij
kl

(P1,2)
ij
kl = 2π(i

(l k̂
j)k̂k) −

2

d− 1
πij k̂kk̂l

(P2,1)
ij
kl = 2k̂(ik̂(lπ

j)
k) −

2

d− 1
k̂ik̂jπlm

(P2,2)
ij
kl =

2(d− 2)

(d− 1)
k̂ik̂j k̂kk̂l

(4.21)

such that pi (Π2,2)
ij
kl = ηij (Π2,2)

ij
kl = 0, and we could write the transverse traceless

parts in bi-vector form

(εT1,iε
T
1,j) = (Π2,2)

kl
ij h

kl (4.22)

with

εT1,iε
T
1,jηij = εT1,iε

T
1,jpj = 0 (4.23)

now the decomposition of the correlator will be

h0,ij〈T ij . . . 〉dS = εT1,iε
T
1,j〈T ij〉dS + 2hkl,0π

(i
l k̂

j)k̂k〈T ij . . . 〉dS

+

(
2d− 3

d− 1
hkl,0k̂lk̂k −

1

d− 1
hkl,0πkl

)
k̂ik̂j〈T ij . . . 〉dS

+
1

d− 1
hij,0k̂ik̂jδ

kl〈T kl . . . 〉dS

= 〈T TT 〉dS + 〈TLT 〉dS + 〈TLL〉dS + 〈T Trace〉dS

(4.24)

the last term can be determined by trace WT like (4.19).
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4. Combining the longitudinal part and the transversal part, we get

〈TOO〉 = 〈T TT
1 O2O3〉+ 〈T TL

1 O2O3〉+ 〈TLL
1 O2O3〉 (4.25)

4.2.3 〈TTT 〉

The correlator should satisfy the following two conditions:

Res
KT→0

〈T1T2T3〉 = M(h1h2h3)

= [(ε1 · ε2) (ε3 · (p1 − p2)) + (ε2 · ε3) (ε1 · (p2 − p3)) + (ε3 · ε1) (ε2 · (p3 − p1))]
2

=

(
(ε1,T,0 · ε2,T,0) (ε3,T,0 · (p1 − p2)) + (ε2,T,0 · ε3,T,0) (ε1,T,0 · (p2 − p3))

+(ε3,T,0 · ε1,T,0) (ε2,T,0 · (p3 − p1))

)2

p1,iε1,j,0〈T ij
1 T2T3〉 = (ε1,0· ε2,0) p2,kε2,l〈T kl

1+2T3〉 −
1

2
(ε1,0 · p2)ε2,0,kε2,0,l〈T kl

1+2T3〉

+ (ε1,0· ε3,0) p3,kε3,l〈T2T
kl
3+1〉 −

1

2
(ε1,0 · p3)ε3,0,kε3,0,l〈T2T

kl
3+1〉

(4.26)

In the first condition, we used (E.232). We then show the pure transverse correlator will

be:

〈T TT
1 T TT

2 T TT
3 〉 =

1

KT

(
(ε1,T,0 · ε2,T,0) (ε3,T,0 · (p1 − p2)) + (ε2,T,0 · ε3,T,0) (ε1,T,0 · (p2 − p3))

+ (ε3,T,0 · ε1,T,0) (ε2,T,0 · (p3 − p1))

)2

(4.27)
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And the Longitudinal parts of the correlator in 〈TTT 〉 are determined by WT identity,

ε1,i,0,Lε1,j,0〈T ij
1 T2T3〉 = 〈TL

1 T2T3〉

=
(−ε1,ip̂i1)

E1
·
[
(ε1,0· ε2,0) p2,kε2,l〈T kl

1+2T3〉 −
1

2
(ε1,0 · p2)ε2,0,kε2,0,l〈T kl

1+2T3〉

+ (ε1,0· ε3,0) p3,kε3,l〈T2T
kl
3+1〉 −

1

2
(ε1,0 · p3)ε3,0,kε3,0,l〈T2T

kl
3+1〉

]

(4.28)

4.3 4pt correlators

Procedure to obtain the 4pt correlators:

1. Decompose the correlator and use the Ward-Takahashi identity (We list all of these

in §App. E.2 ) to determine the longitudinal part. And check that the longitudinal

part of the correlator determined by step 1 indeed satisfies the partial energy pole’s

residue.

2. We decompose the correspondent amplitude channel by channel and the numerator

in the s, t, u channel is in the factorization form.

M4 =
M3

⊗
M3

S
+

M3

⊗
M3

T
+

M3

⊗
M3

U
+ (contact term(polynomial))

(4.29)

in which the
⊗

means two three-point amplitudes are glued with the sum of the

internal polarization vector. It’s easier to start from a factorized amplitude to match

the partial energy pole residue which is also factorized.

3. Apply total energy pole condition and determine the transverse parts of correlator

up to O(K0
T ).
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4. Apply partial energy pole condition on each channel and determine the transverse

parts of the correlator. If the right and left sides of the factorization channel are

symmetric, we only need to consider the condition on one side, and the other will

be automatically satisfied.

5. Determine the transverse parts of correlator b y requiring O(K0
T ) and O(E0

L) on

each channel in the previous steps being consistent.

Notice in the end, by momentum dimension counting (We only count the dimension of ”

momentum and energy” but do not include the dimension of boundary condition and cou-

pling constant, this counting should be the same for every term in the correlator), we could

know is there any term likeO(K0
TE

0
LE

0
R) without any pole so it cannot be constrained by

residue. (Or, equivalently, we could say that for the contact term if theO(K0
T ) term is tol-

erated by momentum dimension counting?) If there’s a unfix term, we need to constrain

our correlator more with full Optical theorem, and for minimal gravity and scalar, we need

to impose a soft limit for the correlator to fix the remaining unfix terms to ensure minimal

coupling theory.

If by the dimension counting, there could be no O(K0
TE

0
RE

0
L) because a term like

this should be composed by momentum norm’s contraction and energy, in which only

spurious pole is tolerated, its energy dimension should be bigger than zero. So the energy

dimension of the correlator is negative, there should not be any unfix term.
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4.3.1 〈OO∗OO∗〉 exchanging photon

Step 1

The 〈OO∗OO∗〉 amplitude in the form of factorization numerator in s, t, u channel:

M (φ1φ
∗
2φ3φ

∗
4) =

1

S
(p2 − p1) · (p4 − p3) +

1

T
(p2 − p3) · (p4 − p1)

Step 2

To simplify the equations, we consider only the s-channel, 〈O1O∗
2O3O∗

4〉 = 〈O1O∗
2O3O∗

4〉s+

〈O1O∗
2O3O∗

4〉t. The computation of the t-channel is similar. The correlator should satisfy

the following conditions: (KT = E1234;EL = E12s;ER = E34s;ps = p3 + p4)

Res
KT→0

〈O1O
∗
2O3O

∗
4〉s = M (φ1φ

∗
2φ3φ

∗
4) =

(p2 − p1)µ(p4 − p3)µ
S

Res
EL→0

〈O1O
∗
2O3O

∗
4〉s = M̃ i(φ1φ

∗
2γ−s)

πs,ij
2Es

ψ̃j
JsO3O4

= (p2 − p1)
i · πs,ij

2Es

[
(p4 − p3)j

ER
− (p4 − p3)j

E3 + E4 − Es

]
,

(4.30)

in which πs,ij
2Es

= 〈Ji(−ps)Jj(ps)〉in−in (if we drop the vanishing gauge term which won’t

contribute to the residue). The first condition implies

〈O1O
∗
2O3O

∗
4〉s = −

(p2 − p1)µ(p4 − p3)µ
KTELER

−
∞∑

n=0

c(T )
n (KT )

n (4.31)

while the second condition implies

〈O1O
∗
2O3O

∗
4〉s = −

(p2 − p1)iπs,ij(p4 − p3)j

KTELER
−

∞∑

n=0

c(L)n (EL)
n (4.32)
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Subtracting (4.31) and (4.32), we get

0 =
− (E2−E1)(E4−E3)KT

Es
+ (E2−E1)(E4−E3)ELER

E2
s

KTELER
+

∞∑

n=0

c(T )
n (KT )

n −
∞∑

n=0

c(L)n (EL)
n

(4.33)

where we used the identity

(E2 − E1)(E3 − E4)− ((p2 − p1) · ŝ)((p4 − p3) · ŝ)

= −(E2 − E1)(E4 − E3)KT

Es
+

(E2 − E1)(E4 − E3)ELER

E2
s

(4.34)

From (4.33), we can see that we have to choose

∞∑

n=0

c(T )
n (KT )

n =
(E2 − E1)(E4 − E3)

EsELER

∞∑

n=0

c(L)n (EL)
n =

(E2 − E1)(E4 − E3)

E2
sKT

(4.35)

therefore,

〈O1O
∗
2O3O

∗
4〉s = −

(p2 − p1)µ(p4 − p3)µ
KTELER

− (E2 − E1)(E4 − E3)

EsELER
(4.36)

= −(p2 − p1)iπij(p4 − p3)j

KTELER
− (E2 − E1)(E4 − E3)

E2
sKT

(4.37)

so we could write down the full answer:

〈O1O
∗
2O3O

∗
4〉 = −

(p2 − p1)µηµν(p4 − p3)ν +KT · (E2−E1)(E4−E3)
Es

E12sE34sKT

−
(p4 − p1)µηµν(p2 − p3)ν +KT · (E4−E1)(E2−E3)

Et

E14tE23tKT
(4.38)

Because the energy dimension of 〈O1O∗
2O3O∗

4〉 is (−1),there should not be any unfix term

.
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In the end, we’ll show that the 1
Es

co-dimension 1 pole is spurious (or we’ll say it’s

co-dimension 3 pole with partial energy pole kinematics). Notice, when Es → 0, we’ll

have p1 + p2 = 0 = p3 + p4, and we want to avoid partial energy pole kinematics so

EL = E34 .= 0 and ER = E12 .= 0 should be satisfied, now we only have E1 − E2 = 0

with E3 − E4 = 0 which make ResEs→0
(E2−E1)(E3−E4)

Es
= 0, the co-dimension 1 residue

vanishing. And at the same time, we could show that this term only has residue when

Es = EL = E34 = ER = E12 = 0. It’s a co-dimension 3 residue.

4.3.2 〈JOJO∗〉

Step 1

Boundary condition decomposition : we can decompose 〈JOJO∗〉 like:

〈J1O∗
2J3O4〉 = ε1,iε3,j〈J i

1O
∗
2J

j
3O4〉

= εT1,iε
T
3,j〈J i

1O
∗
2J

j
3O4〉+ εL1,iε

T
3,j〈J i

1O
∗
2J

j
3O4〉+ εT1,iε

L
3,j〈J i

1O
∗
2J

j
3O4〉+ εL1,iε

L
3,j〈J i

1O
∗
2J

j
3O4〉

=: 〈JT
1O

∗
2J

T
3O4〉+ 〈JL

1 O
∗
2J

T
3O4〉+ 〈JT

1O
∗
2J

L
3 O4〉+ 〈JL

1 O
∗
2J

L
3 O4〉

all the terms except the first one are determined byWT identity. So we try to find the form

of the first term in Step 2.

Now because the longitudinal parts are determined by theWT identity. We only need

to check these parts indeed satisfy the partial energy pole residue condition. Equivalently,

we’ll say the WT for photon labeled as 1:

pi1〈J1,iO∗
2J3,jO4〉 = −〈O∗

1+2J3,jO4〉+ 〈O∗
2J3,jO1+4〉 (4.39)
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pi1〈J1,iO∗
2Os〉 = −〈O∗

1+2Os〉+ 〈O∗
2O1+s〉 = (E2 − Es) (4.40)

is consistent with the partial energy pole residue for the longitudinal parts of the

photon labeled as 1:

Res
E12s→0

〈JL
1O

∗
2J3O4〉 = MγLφφ∗ · Ψ̃JO∗O = 0 (4.41)

Res
E34s→0

〈JL
1O

∗
2J3O4〉 = Ψ̃JLO∗O ·Mγφφ∗

=
εi1p̂i · (−1

E1
)

2Es
[p1,j〈J1O∗

2Os(E1, E2, Es)〉 − p1,j〈J1O∗
2Os(E1, E2,−Es)〉] (−2ε3ipi4)

=
(εi1p̂i)

E1
· (−2ε3ipi4) (4.42)

in which we use the Ward identity of the amplitude

Mγ1,Lφφ∗ = p̂1,iM̃
i
γ1,Lφφ∗

= (E1)
−1pµ,1M

µ
γ1,Lφφ∗

= 0 (4.43)

So now we need to get the longitudinal parts by WT identity and take the partial energy

pole residue like

Res
E12s→0

〈JL
1O

∗
2J3O4〉 = Res

E12s→0

[
(εi1p̂i) ·

−1
E1

·
(
pi1〈J1,iO∗

2J3,jO4〉
)]

= Res
E12s→0

[
(εi1p̂i) ·

−1
E1

·
(
−〈O∗

1+2J3,jO4〉+ 〈O∗
2J3,jO1+4〉

)]

= 0
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Res
E34s→0

〈JL
1O

∗
2J3O4〉 = Res

E34s→0

[
(εi1p̂i) ·

−1
E1

·
(
pi1〈J1,iO∗

2J3,jO4〉
)]

= Res
E34s→0

[
(εi1p̂i) ·

−1
E1

·
(
−〈O∗

1+2J3,jO4〉+ 〈O∗
2J3,jO1+4〉

)]

=
(εi1p̂i)

E1
· (−2ε3ipi4)

Then we have checked that (4.41) and (4.42) are satisfied.

We notice this consistency is also applied to other partial energy pole residues if

we do permutation 1 ↔ 3 and 2 ↔ 4 and it’s similar to prove the consistency between

longitudinal parts and WT identity of the photon labeled as 3. And it’s also easy to see

that in the longitudinal part 1
E1

co-dimension 1 pole is spurious, notice that when E1 → 0

then p1 → 0:

Res
E1→0
〈JL

1O
∗
2J3O4〉 = Res

E34s→0

[
(εi1p̂i) ·

−1
E1

· (−〈O∗
2J3,jO4〉+ 〈O∗

2J3,jO4〉)
]

= 0

Step 2

〈JT
1O

∗
2J

T
3O4〉 = 〈JT

1O
∗
2J

T
3O4〉s + 〈JT

1O
∗
2J

T
3O4〉t + 〈JT

1O
∗
2J

T
3O4〉c (4.44)

To simplify calculations, we only consider the partial energy pole of the s-channel. The

computation for the t-channel is similar. The correlator should satisfy the following con-
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ditions:

Res
KT→0

〈JT
1O

∗
2J

T
3O4〉s = Mγφγφ∗ = −4

εT1ip
i
2p

j
4ε

T
3j

S
− 4

εT1ip
i
4p

j
2ε

T
3j

T
− 2εTi1 ε

T
3i

Res
E12s→0

〈JT
1O

∗
2J

T
3O4〉s = Mγφφ∗ ·

1

2Es
· ψ̃JOO∗ = 2εT1ip

i
2 ·

(−2εT3jp
j
4)

2Es

[
1

E34s
− 1

E3 + E4 − Es

]

(4.45)

it’s trivial to find that the following form satisfies all the constraints

〈JT
1O

∗
2J

T
3O4〉 = 4

εT1ip
i
2p

j
4ε

T
3j

E12sE34sKT
+ 4

εT1ip
i
4p

j
2ε

T
3j

E14tE23tKT
− 2εTi1 ε

T
3i

KT

(4.46)

if we apply the trivial identity

lim
KT→0

1

E12sE34s
=

1

(Es − E34)E34s
= − 1

S
(4.47)

lim
E12s→0

1

KTE34s
=

(−1)
2Es

[
1

E34s
− 1

E3 + E4 − Es

]
(4.48)

and the momentum counting of the 〈JO∗JO〉 is (-1). So (4.46) is a unique form for the

transverse correlator.

4.3.3 〈OOOO〉 exchanging graviton

Step 1

The 〈OOOO〉 amplitude in the form of factorization numerator in s,t,u channel:1

MGravity(φ1φ2φ3φ4) =
1

S
[(p2−p1)·(p4−p3)]2+

1

T
[(p2−p3)·(p4−p1)]2+

1

U
[(p2−p4)·(p1−p3)]2

(4.49)

1By double copyMGravity(φφφφ) = M2
photon(φ

∗φφ∗φ) or the V µν
L ηµνηµ′ν′V µ′ν′

R term sum on all the
channel should be proportional to S + T + U then it’s equal to zero and vanishes.
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Step 2

Wedecompose the correlator to three channel parts like 〈O1O∗
2O3O∗

4〉 = 〈O1O∗
2O3O∗

4〉s+

〈O1O∗
2O3O∗

4〉t + 〈O1O∗
2O3O∗

4〉u. And without loss of the generality, we demonstrate the

calculation for the s-channel. The residue of the total and partial energy pole will be

Res
KT→0

〈O1O2O3O4〉s = M (φ1φ2φ3φ4) =
((p2 − p1)µ(p4 − p3)µ)2

S
(4.50)

Res
E12s→0

〈O1O2O3O4〉s = M̃ ii′(φ1φ2h−s)
Πiji′j′

s,(2,2)

2Es
ψ̃jj′

TsO3O4

= M̃ ii′(φ1φ2h−s)
πs,ijπs,i′j′

2Es
ψ̃jj′

TsO3O4
− 1

2
M̃ ii′(φ1φ2h−s)

πs,ii′πs,jj′

2Es
ψ̃jj′

TsO3O4

= (p2 − p1)
i(p2 − p1)

i′ · πs,ijπs,i
′j′

2Es

·
[
(p4 − p3)j(p4 − p3)j

′

E34s
− (p4 − p3)j(p4 − p3)j

′

E3 + E4 − Es

]

− 1

2
M̃ ii′(φ1φ2h−s)

πs,ii′πs,jj′

2Es
ψ̃jj′

TsO3O4

=
((p2 − p1)i · πs,ij · (p4 − p3)j)2

2Es

[
1

E34s
− 1

E3 + E4 − Es

]

− 1

2

((p2 − p1)i · πs,ij · (p2 − p1)j)((p4 − p3)i · πs,ij · (p4 − p3)j)

2Es

·
[

1

E34s
− 1

E3 + E4 − Es

]

=
−((p2 − p1)i · πs,ij · (p4 − p3)j)2

KTE34s

− 1

2

−((p2 − p1)i · πs,ij · (p2 − p1)j)((p4 − p3)i · πs,ij · (p4 − p3)j)

KTE34s
,

(4.51)

We could inspired by the 〈OO∗OO∗〉 step 2 calculation we could match the first term

of the partial energy pole residue to the amplitude by the equivalence from (4.36) and
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(4.37)

(p2 − p1)
µ(p4 − p3)µ +KT

(E2 − E1)(E4 − E3)

Es
(4.52)

= (p2 − p1)
iπs,ij(p4 − p3)

j + E12sE34s
(E2 − E1)(E4 − E3)

E2
s

(4.53)

and we’re left with the term could be rewrite into the term vanishing atKT and vanishing

at each partial energy pole, by the quick idnetification to the follow contraction

(p2 − p1)
µ(p2 − p1)µ = −(p1 + p2)

µ(p1 + p2)µ = E12s(−KT + E34s)

= (E2 − E1)
2 + (p2 − p1)iπ

ij
s (p2 − p1)j − (p2 − p1)ip̂

i
sp̂

j
s(p2 − p1)j

= (p2 − p1)iπ
ij
s (p2 − p1)j + [(E2 − E1)

2 − (E2
2 − E2

1)
2

E2
s

]

= (p2 − p1)iπ
ij
s (p2 − p1)j + (

E2 − E1

Es
)2[E2

s − E2
12]

(4.54)

[E2
s − E2

12][E
2
s − E2

34] = (E12sE34s)
2 −K2

TE
2
s +KTEs(E

2
s + E12E34) (4.55)

((p1 − p2)iπ
ij
s (p1 − p2)j)((p4 − p3)iπ

ij
s (p4 − p3)j)

=

(
E12s(−KT + E34s)− (

E2 − E1

Es
)2[E2

s − E2
12]

)(
E34s(−KT + E12s)− (

E4 − E3

Es
)2[E2

s − E2
34]

)

= −2EsKTE12sE34s + E2
12sE

2
34s +KT [(E34s)(

E2 − E1

Es
)2(E2

s − E2
12) + (E12s)(

E4 − E3

Es
)2(E2

s − E2
34)]

− E12sE34s[(
E2 − E1

Es
)2(E2

s − E2
12) + (

E4 − E3

Es
)2(E2

s − E2
34)]

+ (
E2 − E1

Es
)2(

E4 − E3

Es
)2(E2

12sE
2
34s −K2

TE
2
s +KTEs(E

2
s + E12E34))

(4.56)

we could rewrite to make the match explicit

((p1 − p2)iπ
ij
s (p1 − p2)j)((p4 − p3)iπ

ij
s (p4 − p3)j)

+ E12sE34sΠ
C
1,OOOO + E2

12sE
2
34sΠ

C
2,OOOO = KTT

C
OOOO

(4.57)
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in which we define the completion term

ΠC
1,OOOO = −(E2 − E1

Es
)2(E2

s − E2
12)− (

E4 − E3

Es
)2(E2

s − E2
34)

ΠC
2,OOOO = −

(
1 + (

E2 − E1

Es
)2(

E4 − E3

Es
)2
)

TC
OOOO =

[
− 2EsE12sE34s + (E34s)(

E2 − E1

Es
)2(E2

s − E2
12)

+ (E12s)(
E4 − E3

Es
)2(E2

s − E2
34)

+ (
E2 − E1

Es
)2(

E4 − E3

Es
)2(−KTE

2
s + E3

s + EsE12E34)
]

(4.58)

it’s easy to verify following expression,

〈O1O2O3O4〉s = −

(
(p2 − p1)µηµν(p4 − p3)ν +KT · (E2−E1)(E4−E3)

Es

)2
− 1

2KTTC
OOOO

E12sE34sKT

(4.59)

= − 1

E12sE34sKT

{(
(p2 − p1)iπ

ij
s (p4 − p3)j + E12sE34s ·

(E2 − E1)(E4 − E3)

E2
s

)2

(4.60)

− 1

2
(E12sE34sΠ

C
1,OOOO + E2

12sE
2
34sΠ

C
2,OOOO)

}
, (4.61)

satisfies all the pole residue constraints.

Step 3

Notice now the momentum counting of the correlator is (+1). So there is unfix term

on s-channel like:

ψunfix = (aT,12E12 + aT,34E34 + aI(Es)) (4.62)
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in (4.61) would be tolerated. So we need to apply the full Optical Theorem as the con-

straint,

ψ4,s(E1∼4, Es,p1∼4) + ψ∗
4,s(−E1∼4, Es,p1∼4) = ψ̃3,ij(p1,p2,ps)

Πijkl
s,(2,2)

2Es
ψ̃3,kl(−ps,p3,p4, Es)

= 2Es ·
(
(p2 − p1)iπs,ik(p3 − p4)k

)2 − 1
2

(
(p2 − p1)iπs,ik(p2 − p1)k

) (
(p4 − p3)iπs,ik(p4 − p3)k

)

(E2
12 − E2

s ) (E
2
34 − E2

s )

To match the Optical theorem, we could expand the (4.61) like

〈O1O2O3O4〉s

= −

(
(p2 − p1)i πij

s (p4 − p3)j + E12sE34s · (E2−E1)(E4−E3)
E2

s

)2

E12sE34sKT
+

ΠC
1,OOOO

2KT
+

E12sE34sΠC
2,OOOO

2KT

= −((p2 − p1)i πij
s (p4 − p3)j )

2

E12sE34sKT
− 2

(
(p2 − p1)i π

ij
s (p4 − p3)j

)((E2 − E1)(E4 − E3)

KTE2
s

)

− E12sE34s

KT
·
[(

(E2 − E1)(E4 − E3)

E2
s

)2

− 1

2
ΠC

2,OOOO

]
+

ΠC
1,OOOO

2KT

Then it should be complemented by a term without changing the poles’ residue like (No-

tice, ΠC is invariant under the flipping energy sign.)

〈O1O2O3O4〉s → 〈O1O2O3O4〉s + Es ·
[
1

2
+

3

2

(
(E1 − E2)(E3 − E4)

E2
s

)2
]

so now the full correlator from 3 different channels will be combined as:

〈O1O2O3O4〉 = −

(
(p2 − p1)µηµν(p4 − p3)ν +KT · (E2−E1)(E4−E3)

Es

)2
− 1

2KTTC
OOOO

E12sE34sKT

+ Es ·
[
1

2
+

3

2

(
(E1 − E2)(E3 − E4)

E2
s

)2
]
+ (t) + (u)

(4.63)
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Now the remaining unfix parameter without changing the Optical Theorem should satisfy

the following constraint:

Im(aT,12, aT,34) = 0;Re(aI) = 0 (4.64)

The remaining unfix parameters respond to the fact that in the Lagrangian, there is a non-

minimal coupling interaction term is unfix:

L =
√
g
(
R + (∂µφ)

2 + fRφ2
)

(4.65)

if we constraint f = 0 for minimal coupling scalar, then we could find that there’s a shift

symmetry of scalar in Lagrangian: under the transform

φ($x)→ φ($x) + a (4.66)

and in the momentum space

δφ(p) = aδ3(p− 0) (4.67)

in which a is a constant, Lagrangian will be invariant for f = 0, and the wave function

should also be invariant:

δL = 0→ δΨ =

∫
d3p1
(2π)3

∑
〈O(p1) . . . 〉(δφ0(p1) . . . ) (4.68)

=

∫
d3p1
(2π)3

∑
〈O(p1) . . . 〉(aδ3(p1 − 0) . . . ) = 0 (4.69)

so we need to require

lim
p1→0
〈O(p1) . . . 〉 = 0 (4.70)
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in 〈OOOO〉, the shift symmetry constraints will be

lim
Ea→0
〈O1O2O3O4〉 = 0 (for a=1∼4) (4.71)

thenwe could fix the parameter in (4.62), becausewe can check that (4.63) already satisfies

the (4.71), notice that E1 = 0 = ps = −p2 with Es = E2 at this limit

lim
E1→0
〈O1O2O3O4〉 = 0 (4.72)

and the unfix term under this limit should be

lim
E1→0

ψunfix = (aT,12E2 + aT,34E34 + aI(E2)) (. . . ) = 0 (4.73)

the only solution is aT,34 = 0, aT,12 = −aI but we know aT,12 is pure real and aI is pure

imaginary after they’re constrained by Optical Theorem, so we only have aT,34 = aT,12 =

−aI = 0, that is the no unfix term in the correlator in (4.63).

4.3.4 〈TOTO〉

Step 1

By the following WT identity of the 〈TOTO〉:

p1,iε1,j,0〈T ij
1 O2T3O4〉 = −

1

2
(p2 · ε1)〈O2+1T3O4〉 −

1

2
(p4 · ε1)〈O2T3O4+1〉

+ (ε1 · ε3)p3,a〈T a
1+3O2O4〉′ −

1

2
(ε1 · p3)〈T1+3O2O4〉′

+
1

2
(p2 · ε3)(ε1 · ε3)〈O2+1+3O4〉+

1

2
(p4 · ε3)(ε1 · ε3)〈O2O4+1+3〉,
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we can determine the Longitudinal parts,

ε1,i,0,Lε1,j,0〈T ij
1 O2T3O4〉 =: 〈TL

1 O2T3O4〉

=
(−ε1,ip̂i1)

E1
·
[
−1

2
(p2 · ε1)〈O2+1T3O4〉 −

1

2
(p4 · ε1)〈O2T3O4+1〉

+ (ε1 · ε3)p3,a〈T a
1+3O2O4〉 −

1

2
(ε1 · p3)〈T1+3O2O4〉

+
1

2
(p2 · ε3)(ε1 · ε3)〈O2+1+3O4〉+

1

2
(p4 · ε3)(ε1 · ε3)〈O2O4+1+3〉

]
.

then we could check that its partial energy pole residue is indeed consistent like

lim
E12s→0

〈TL
1 O2T3O4〉 = 0 = M̃(hL

1φ2φ−s) ·
1

2Es
· ψ̃OsT3O4 = 0 (4.74)

lim
E34s→0

〈TL
1 O2T3O4〉 =

(ε1 · p̂1)(ε1 · p2)

2E1
· M̃(φsh

TT
3 φ4) = ψ̃TL

1 O2O−s
· 1

2Es
· M̃(φsh

TT
3 φ4)

(4.75)

lim
E13u→0

〈TL
1 O2T3O4〉 = 0 = M̃(hL

1 h3h
ii′

−u) ·
Πiji′j′

s,(2,2)

2Eu
· ψ̃

T jj′
u O2O4

= 0 (4.76)

lim
E24u→0

〈TL
1 O2T3O4〉 =

−(ε1 · p̂1)

E1
·
[
(ε1 · ε3)p3,aε3,b −

1

2
(ε1 · p3)ε3,aε3,b

]
Πabcd

s,(2,2)M̃(hTT,cdu O2O4)

(4.77)

= ψ̃TL
1 T3T ii′

−u
·
Πii′jj′

s,(2,2)

2Eu
· M̃(hjj′

u φ2φ4) (4.78)

Notice that theWard Identity of amplitude makes M̃(hL) = 0. And the Longitudinal parts

of 3pts are given by (4.14) and (4.28). Notice when pick the total energy pole residue of

the longitudinal parts

Res
E24u→0

(ε1 · ε3)p3,a〈T a
1+3O2O4〉′ = Res

E24u→0

(ε1 · ε3)ε3,bp3,a〈T ab
1+3O2O4〉′

= Res
E24u→0

(ε1 · ε3)ε3,bp3,a〈T ab
1+3O2O4〉;

= (ε1 · ε3)ε3,bp3,aΠabcd
(2,2),uM̃(hTT,cdu O2O4),

(4.79)
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Step 2

The 〈TOTO〉 amplitude in the form of factorization numerator in s, t, u channel is

M̃(h1φ2h3φ4) = 16

(
εT1,0 · p2

)2 (
εT3,0 · p4

)2

S
+ 16

(
εT1,0 · p4

)2 (
εT3,0 · p2

)2

T

+
16

U

[ (
p3 · εT1

) (
p2 · εT3

)
−
(
p1 · εT3

) (
p2 · εT1

)
+

(ε3,T · ε1,T )
4

((p2 − p4)
µ(p1 − p3)µ)

]2

− 8(ε3,T · ε1,T )
((
εT1,0 · p2

) (
εT3,0 · p1

)
+ 2

(
εT1,0 · p2

) (
εT3,0 · p2

)
+
(
εT1,0 · p3

) (
εT3,0 · p2

)

+
U

8
(ε3,T · ε1,T )

)

Step 3

Now we only need to match the transverse part to the total energy pole residue and

partial energy pole residue applied on individual channels. So we also decompose the

correlator into four channels and try to fix them one by one. s, t-channel is exchanging

scalar, and the u-channel is exchanging graviton.

〈T TT
1 O2T

TT
3 O4〉 = 〈T TT

1 O2T
TT
3 O4〉s+〈T TT

1 O2T
TT
3 O4〉t+〈T TT

1 O2T
TT
3 O4〉u+〈T TT

1 O2T
TT
3 O4〉c

(4.80)

Without loss of generality, for the scalar exchanging channel, we demonstrate the calcu-

lation for the s-channel. The residue of the total and partial energy pole will be

Res
KT→0

〈T TT
1 O2T

TT
3 O4〉s = M̃s(h1φ2h3φ4) = 16

(
εT1,0 · p2

)2 (
εT3,0 · p4

)2

S
(4.81)

Res
E12s→0

〈T TT
1 O2T

TT
3 O4〉s = M̃(hTT1 φ2φ−s) ·

1

2Es
· ψ̃OsT TT

3 O4
= −(2ε1,i,Tpi2)

2(2ε3,i,Tpi4)
2

E2
34 − E2

s

(4.82)
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It’s easy to see that the following correlator we built from amplitude over KT and make

S → −ELER,

〈T TT
1 O2T

TT
3 O4〉s = −16

(
εT1,0 · p2

)2 (
εT3,0 · p4

)2

KTE12sE34s
, (4.83)

satisfies all the residue constraints. Similarly, for the graviton exchanging channel, or

u-channel

Res
KT→0

〈T TT
1 O2T

TT
3 O4〉u = M̃u(h1φ2h3φ4) (4.84)

=
16

U

[ (
p3 · εT1

) (
p2 · εT3

)
−
(
p1 · εT3

) (
p2 · εT1

)
+

(ε3,T · ε1,T )
4

((p2 − p4)
µ(p1 − p3)µ)

]2

(4.85)

Res
E13u→0

〈T TT
1 O2T

TT
3 O4〉u = M̃(hTT1 hTT3 hii′

−u) ·
Πii′jj′

(2,2),u

2Eu
· ψ̃jj′

T TT
u O2O4

(4.86)

=
−16

E2
24 − E2

u

(4.87)

·
{ [ (

p3 · εT1
) (

p2 · πu · εT3
)
−
(
p1 · εT3

) (
p2 · πu · εT1

)
+

(ε3,T · ε1,T )
4

(
(p2 − p4)iπ

ij
u (p1 − p3)j

)]2

(4.88)

− 1

2
[J3,L · πu · J3,L]

[
1

4
(p2 − p4) · πu · (p2 − p4)

] }
(4.89)

in which the shorthand of the terms are defined as

J3,L =

(
1

2
(εT1 · εT3)(p1 − p3) + (εT1 · p3)(ε

T
3)− (εT3 · p1)(ε

T
1)

)
(4.90)
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Res
E24u→0

〈T TT
1 O2T

TT
3 O4〉u = ψ̃(T TT

1 T TT
3 T ii′

−u) ·
Πii′jj′

(2,2),u

2Eu
· M̃ jj′

hTTu φ2φ4
(4.91)

=
−16

E2
13 − E2

u

(4.92)

·
{ [ (

p3 · εT1
) (

p2 · πu · εT3
)
−
(
p1 · εT3

) (
p2 · πu · εT1

)
+

(ε3,T · ε1,T )
4

(
(p2 − p4)iπ

ij
u (p1 − p3)j

)]2

(4.93)

− 1

2
[J3,L · πu · J3,L]

[
1

4
(p2 − p4) · πu · (p2 − p4)

] }
(4.94)

So, if we start from amplitude over KT as correlator and make U → (−E13uE24u) as

u-channel, we’ll come up with the problem to match ηµν contraction to πu,ij contraction

of the first term in partial energy pole kinematics. In the first two terms in the square in

the amplitude, the match is trivial,

[(
p3 · εT1

) (
p2 · εT3

)
−
(
p1 · εT3

) (
p2 · εT1

)]
−
[(
p3 · εT1

) (
p2 · πu · εT3

)
−
(
p1 · εT3

) (
p2 · πu · εT1

)]

= −
(
p3 · εT1

)
(p2 · p̂u)

(
p̂u · εT3

)
+
(
p1 · εT3

)
(p2 · p̂u)

(
p̂u · εT1

)

= −
(
pu · εT1

)
(p2 · p̂u)

(
p̂u · εT3

)
+
(
pu · εT3

)
(p2 · p̂u)

(
p̂u · εT1

)

= 0

(4.95)

And for the last term in the square in the amplitude, it’s similar to the situation in 〈OOOO〉.

So we could add a term like (4.53) inside the square on the numerator of amplitude to solve

the problem. But the second term in the partial energy pole residue we need to match it to

be a term vanishing in total energy pole, actually, we could apply the relationship by do
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the 4D trace on theM(hTT1 hTT3 hµν
u ). Then we found that

M(hTT1 hTT3 hµν
u ) =

1

4
(εT1 · εT3)2(p1 − p3) · (p1 − p3)

= M(hTT1 hTT3 h00
u ) +M(hTT1 hTT3 hij

u )πu,ij −M(hTT1 hTT3 hij
u )p̂u,ip̂u,j

= J3,L · πu · J3,L +
1

4

(
εT1 · εT3

)2 (
(E1 − E3)

2 − ((p1 − p3) · p̂u)
2
)

(4.96)

Then we could rexpress the the second term in the partial energy pole residue by with the

match we derived in previouschapter (4.54),

− 1

2
[J3,L · πu · J3,L]

[
1

4
(p2 − p4) · πu · (p2 − p4)

]

= − 1

32
(εT1 · εT3)2

(
E13u(−KT + E24u)− (E1 − E3)

2 + ((p1 − p3) · p̂u)
2
)

·
(
E13u(−KT + E24u)− (E2 − E4)

2 + ((p2 − p4) · p̂u)
2
)

(4.97)

Then we could apply (4.57) we derive in the previous chapter, then we have the match

(Notice, the ΠC and TC here we relabeling the indices of the momentum such that it’s the

u-channel term.)

[J3,L · πu · J3,L] [(p2 − p4) · πu · (p2 − p4)]

+
1

4
(εT1 · εT3)2E12sE34sΠ

C
1,OOOO +

1

4
(εT1 · εT3)2E2

12sE
2
34sΠ

C
2,OOOO

=
1

4
(εT1 · εT3)2KTT

C
OOOO

(4.98)
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Then if we substitute the residue of the pole with the match we mentioned before, we

would get the correlator

〈T TT
1 O2T

TT
3 O4〉u =

(−16)
E13uE24uKT

{ [ (
p3 · εT1

) (
p2 · εT3

)
−
(
p1 · εT3

) (
p2 · εT1

)

+
(ε3,T · ε1,T )

4

(
(p2 − p4)

µ(p1 − p3)µ +KT

(
(E1 − E3)(E2 − E4)

Eu

))]2
.

− 1

32
(εT1 · εT3)2KTT

C
OOOO

}

(4.99)

It’s trivial to show it satisfies all the residue constraints. In the end, to match the amplitude

on the total energy pole we add a contact term as the contact term in amplitude over−KT ,

〈T TT
1 O2T

TT
3 O4〉c =

8

KT
(ε3,T · ε1,T )

·
((
εT1,0 · p2

) (
εT3,0 · p1

)
+ 2

(
εT1,0 · p2

) (
εT3,0 · p2

)
+
(
εT1,0 · p3

) (
εT3,0 · p2

)

+
U

8
(ε3,T · ε1,T )

)

Now we’ll find the exact form of U beyond of total energy pole kinematic is ambiguous,

it responds to the fact that some unfixed terms won’t change all the residue constraints.

So, we need to fix it by full Optical Theorem and the soft limit of scalar energy to ensure

minimal coupling.
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Step 4

If we require the correlator to satisfy the full Optical Theorem, the mismatch will

only be on the u channel, like

∆OPT = 〈T1O2T3O4〉u(E1∼4, Eu,p1∼4) + 〈T1O2T3O4〉u(−E1∼4, Eu,p1∼4)

− (32Eu) ·
1

(E2
12 − E2

s ) (E
2
34 − E2

s )

·
{ [ (

p3 · εT1
) (

p2 · πu · εT3
)
−
(
p1 · εT3

) (
p2 · πu · εT1

)
+

(ε3,T · ε1,T )
4

(
(p2 − p4)iπ

ij
u (p1 − p3)j

)]2

− 1

2
[J3,L · πu · J3,L]

[
1

4
(p2 − p4) · πu · (p2 − p4)

] }

= −32Eu(ε
T
1 · εT3)2 ·

(
(E1 − E3)(E2 − E4)

E2
u

)2

·
[
1

2
+

3

2

(
(E1 − E3)(E2 − E4)

E2
u

)2
]

So we only need to add this term to the correlator

〈T TT
1 O2T

TT
3 O4〉u

→ 〈T TT
1 O2T

TT
3 O4〉u + 16Eu ·

(
(E1 − E3)(E2 − E4)

E2
u

)2

·
[
1

2
+

3

2

(
(E1 − E3)(E2 − E4)

E2
u

)2
]

(4.100)

then the full Optical Theorem is satisfied. Then for minimal coupling scalar, the correla-

tor’s soft limit should vanish. The correlator we get at this limit,

lim
E2→0
〈T TT

1 O2T
TT
3 O4〉 = lim

E2→0
〈T TT

1 O2T
TT
3 O4〉c = lim

E2→0
U(εT1 · εT3)2 = 0 (4.101)

So we need to find a U satisfying the following constraints:

lim
KT→0

U = E2
13 − E2

u (4.102)

lim
Ea→0

U = 0 (for a = 2, 4) (4.103)
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We can start from the Ansatz

U(Ea, Es, Et, Eu) = E2
13 − E2

u +KTPoly1(Ea, Es, Et, Eu) (4.104)

We can solve that

U = E2
13 − E2

u −KT (E13 + aEu + bE24) (4.105)

with the unfix coefficient a, b satisfying a+ b = −1. But because we also need this term

to satisfy the Optical Theorem of the contact term, so we have

U(Ea, Es, Et, Eu) + U∗(−Ea, Es, Et, Eu) = 0 (4.106)

This constraint that a is pure imaginary while b is purely real. So we must have a = 0, b =

−1. As a result, we have

〈T T
1 O2T

T
3 O4〉 = −16

(
εT1,0 · p2

)2 (
εT3,0 · p4

)2

E12sE34sKT
− 16

(
εT1,0 · p4

)2 (
εT3,0 · p2

)2

E14tE23tKT

− 16

E13uE24uKT

{ [ (
p3 · εT1

) (
p2 · εT3

)
−
(
p1 · εT3

) (
p2 · εT1

)

+
(ε3,T · ε1,T )

4

(
(p2 − p4)

µ(p1 − p3)µ +KT

(
(E1 − E3)(E2 − E4)

Eu

))]2
.

− 1

32
(εT1 · εT3)2KTT

C
OOOO

}

+ 16Eu ·
(
(E1 − E3)(E2 − E4)

E2
u

)2

·
[
1

2
+

3

2

(
(E1 − E3)(E2 − E4)

E2
u

)2
]

+
8(ε3,T · ε1,T )

KT

((
εT1,0 · p2

) (
εT3,0 · p1

)
+ 2

(
εT1,0 · p2

) (
εT3,0 · p2

)
+
(
εT1,0 · p3

) (
εT3,0 · p2

)

+
E2

13 − E2
u −KT (E13 − E24)

8
(ε3,T · ε1,T )

)
.

Now similar to the case of 〈OOOO〉 exchanging graviton, eq (4.64) proves that no term

won’t change the value of pole residue, the soft limit on all the legs’ energy, and the full

Optical theorem. So we completely fix the correlator.
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Chapter 5 Fermionic correlators in

Flat Spacetime

5.1 2pt correlators

5.1.1 Massless Spin Half Fermion

For the massless fermion, by dimension counting of the action, we know it should be

a dimensionless factor. And the two-point correlator should be sandwiched with the 3D

boundary spinor condition χ̄−/χ+. With the identity

χ̄−,−pIχ+,p = χ̄−,−pγ0χ+,p = 0. (5.1)

the only nonvanishing 3D rotational invariant factor will be

〈χ̄−
−pχ

+
p 〉 =

/p

Ep
= /̂p (5.2)

in which we set the normalization to 1. It’s a unit vector of the momentum, so it’ll be no

1/Ep pole on this form. If we want to promote to the massive spin half fermion, if we

write the momentum to be

/p = /k
√
E2

p −m2 (5.3)
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so the dimensionless factor without codimension-one pole will be

ψ2,m )=0 =
/p

Ep ±m
(5.4)

The positive and the minus sign of the mass will depend on our convention to identify the

3D-spinor under the Bunch-Davies vacuum. If we choose ψ2,m )=0〈= χ̄−
−pχ

+
p 〉 then 1

Ep+m

wil match our Lagrangian computation result. And If we choose ψ2,m )=0〈= χ̄+
−pχ

−
p 〉 then

1
Ep−m wiil match our Lagrangian computation result.

5.1.2 Gravitino

The dimension counting is the same as spin half fermion, the two-point correlator

should be a dimensionless factor. By the similar argument to the spin half fermion, the

only nonvanishing matrice sandwiched between 3D gravitino boundary condition ψ̄i
−/ψ

j
+

like §App. F.1 shows will be

〈ψ̄i,−
−pψ

j,+
p 〉 ∝ /̂p (5.5)

And by the WT identity of the 2-point correlator,

pi〈ψ̄i,−
−pψ

j,+
p 〉 = 0. (5.6)

Now we know that in the two-point correlator, only the transverse part survives. Now we

get

〈ψ̄i,−
−pψ

j,+
p 〉 = πij,p/̂p (5.7)

in which we set the normalization to 1.
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5.2 3pt correlators

The rule is the same as bosonic correlator,

1. Decompose the correlator and use Ward-Takahashi identity (We list all of these in

§App. E.2 ) to determine the longitudinal part.

2. Apply total energy pole condition to determine the transversal part.

5.2.1 〈J χ̄−χ+〉

The correlator should satisfy the following two conditions: (We already set the cou-

pling constant e = 1)

Res
KT=0
〈J1χ̄2

−χ+
3 〉 = M3 = ε1,µ(ū2γ

µu3)

= −εT1,i(ū2γ
iu3) (Coulomb Gauge, $p1 · $ε1 = 0)

= −(χ̄−
2 (1− /p2

)/εT1(1 + /p3
)χ3)

p1,i〈J i
1χ̄2

−χ+
3 〉 = (−/̂p2 − /̂p3)

(5.8)

in which we use the fact that

/Pu!p = 0→ u!p = (1 + /̂p)χ!p,+

ū!p /P = 0→ ū!p = χ̄!p,−(1− /̂p)

(5.9)

to write the 4D on shell spinor ū/u in 3D spinor boundary condition χ̄−/χ+.
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1. Determine the longitudinal part by WT identity

〈JL
1 χ̄2

−χ+
3 〉 = −(ε1,ip̂i1)

p1,j
E1
〈J j

1 χ̄2
−χ+

3 〉 = −(ε1,ip̂i1)χ̄2,−
(−/̂p2 − /̂p3)

E1

= (ε1,ip̂
i
1)χ̄2,−

(/̂p2 + /̂p3)

E1
χ+
3

(5.10)

2. Determine the transverse part by the total energy pole condition

〈JT
1 χ̄

−
2 χ

+
3 〉 =

−1
KT

· χ̄2,−(1− /̂p2)/ε
T
1(1 + /̂p3)χ3,+ (5.11)

And there is no subleading form we can write proportional toKT on the total energy

pole.

3. Combining the transverse and longitudinal parts, we have

〈J1χ̄−
2 χ

+
3 〉 = 〈JT

1 χ̄
−
2 χ

+
3 〉+ 〈JL

1 χ̄2
−χ+

3 〉

=
−1
KT

· χ̄2,−(1− /̂p2)/ε
T
1(1 + /̂p3)χ3,+ + (ε1,ip̂

i
1)χ̄

−
2

(/̂p2 + /̂p3)

E1
χ+
3

(5.12)

84

http://dx.doi.org/10.6342/NTU202302262


doi:10.6342/NTU202302262

5.2.2 〈T χ̄−χ+〉

The correlator should satisfy the following two conditions: (We already set the cou-

pling constant κ = 1)

Res
KT=0
〈T1χ̄2

−χ+
3 〉 = M3,T χ̄χ = −M3,JOO ·M3,Jχ̄χ (double copy)

= −(ε1,µ(ū2γ
µu3))(ε1,ν(p2 − p3)

ν) (the only amplitude form satisfyingM |ε1→p1 = 0)

= −εT1,i(ū2γ
iu3)(ε

T
1,j(p2 − p3)

j) (Coulomb Gauge, p1,ihij
1 = p1,iε

i
1ε

j
1 = 0)

= −(εT1,j(p2 − p3)
j)(χ̄−

2 (1− /̂p2)/ε
T
1(1 + /̂p3)χ3)

p1,i〈T i
1χ̄2

−χ+
3 〉 = −

1

2
(p2 · ε1)/̂p3 +

1

2
(p3 · ε1)/̂p2 +

1

16
[/p1

,/ε1]/̂p3 +
1

16
/̂p2[/p1

,/ε1]

(5.13)

Then by the first condition, we could show the pure transverse correlator will be

〈T TT
1 χ̄2

−χ+
3 〉 =

−1
KT

(εT1,j(p2 − p3)
j)(χ̄−

2 (1− /̂p2)/ε
T
1(1 + /̂p3)χ3) (5.14)

And the longitudinal parts of the correlator in 〈T χ̄χ〉 are determined by WT identity,

〈TL
1 χ̄2χ3〉 := −[(εi

′

1 p̂1,i′)p̂1,i]ε1,j〈T
ij
1 χ̄2χ3〉

= −[(εi′1 p̂1,i′)
1

E1
]

(
−1

2
(p2 · ε1)/̂p3 +

1

2
(p3 · ε1)/̂p2 +

1

16
[/p1

,/ε1]/̂p3 +
1

16
/̂p2[/p1

,/ε1]

)

(5.15)

5.2.3 〈T ψ̄−ψ+〉

We use the fermion vector form to describe the boundary condition of the gravitino

ψ̄−,i = εiχ̄−

ψ+,i = εiχ̄+

(5.16)
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and because we have the boundary EOM

γ ·ψT = −/̂p(p̂ ·ψT) = /εTχ+ = 0 (5.17)

the ε and χ are related. And if we write the amplitude polarization in the Coulomb gauge

%p·ψ = 0, then we could write down the amplitude polarization in the form of the boundary

condition as

ψ̄u
i ($p) = εTi χ̄− = εTi χ̄−(ε

T
i ) · (1− /̂p)

ψu
i ($p) = εTi χ+ = εTi (1 + /̂p) · χ+(ε

T
i )

(5.18)

But the readers should be careful that they’re not independent field to the vector component

ε.

Then the correlator should satisfy the following two conditions: (We already set the
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coupling constant κ = 1)

Res
KT=0
〈T1ψ̄2

−
ψ+
3 〉 = M3,T ψ̄ψ = M3,JJJ,extracted color algebra ·M3,Jψ̄ψ (double copy)

= [(2ε3,νp1,ν)(ε2 · ε1) + (ε2,νε
ν
3)((p2 − p3)ρε

ρ
1)− (2ε2,νp

ν
1)(ε3,ρε

ρ
1)] (−ε1,µ(ū2γ

µu3))

(the only amplitude form satisfyingM |ε1→p1 = 0 andM |ε2or3→p2or3 = 0 )

= −(ū2/ε
T
1u3)

[
(2εT3 · p1)(ε

T
2 · εT1) + (εT2 · εT3)((p2 − p3) · εT1)− (2εT2 · p1)(ε

T
3 · εT1)

]

(Coulomb Gauge, pa · εa = 0, a = 1 ∼ 3)

= −(χ̄−
2 (1− /̂p2)/ε

T
1(1 + /̂p3)χ3)

·
[
(2εT3 · p1)(ε

T
2 · εT1) + (εT2 · εT3)((p2 − p3) · εT1)− (2εT2 · p1)(ε

T
3 · εT1)

]

p1,k〈T k
1 ψ̄2,−ψ3,+〉 = −χ̄2,−$$̂p2χ3,+

(
εT2 · ε3

)
(p3 · ε1)− χ̄2,−$$̂p3χ3,+

(
ε2 · εT3

)
(p2 · ε1)

− χ̄2,−$$̂p2χ3,+

(
εT2 · p1

)
(ε3 · ε1)− χ̄2,−$$̂p3χ3,+

(
εT3 · p1

)
(ε2 · ε1)

− 1

8

(
εT2 · ε3

)
(χ̄2,−$$̂p2 ["p1, $ε1]χ3,+) +

1

8

(
ε2 · εT3

)
(χ̄2,− ["p1, $ε1] $$̂p3χ3,+)

p2,k〈T1ψ̄
k
2,−ψ3,+〉 = −〈T1T

kl
2+3〉 εl,3 (χ̄2,−γkχ3,+)−

1

8
["p1, $ε1]

(
ε1,k〈ψ̄k

1+2,−ψ3,+〉
)

= −
(
εT1 · ε3

) (
χ̄2,−$ε

T
1 χ3,+

)
E1 −

1

8

(
ε1 · εT3

)
(χ̄2,−["p1, $ε1] $$̂p3χ3,+)

p3,k〈T1ψ̄2,−ψ
k
3,+〉 = 〈T1T

kl
2+3〉 εl,2 (χ̄2,−γkχ3,+) +

1

8

(
ε1,k〈ψ̄k

2,−ψ1+3,+〉
)
["p1, $ε1]

=
(
εT1 · ε2

) (
χ̄2,−$ε

T
1 χ3,+

)
E1 +

1

8

(
ε1 · εT2

)
(χ̄2,−$$̂p2 ["p1, $ε1]χ3,+)

(5.19)

Notice now besides one diffeomorphism WT identity, we also have two SUSY WT iden-

tity. Then by the first condition, we could show the pure transverse correlator will be

〈T TT
1 ψ̄2

−,T
ψ+,T
3 〉 =

−1
KT

(χ̄−
2 (1− /̂p2)/ε

T
1(1 + /̂p3)χ3)

·
[
(2εT3 · p1)(ε

T
2 · εT1) + (εT2 · εT3)((p2 − p3) · εT1)− (2εT2 · p1)(ε

T
3 · εT1)

]

(5.20)

Notice that and for the transverse part of the boundary condition should satisfy the bound-
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ary EOM

γ ·ψT = −/̂p(p̂ ·ψT) = /εTχ+ = 0 (5.21)

then no polynomial ansatz without total energy pole we could write except for the term

we discuss in (??). Then we completely fix the pure transverse 3-point correlator.

And we could determine the longitudinal parts by the WT identity. Notice in the

§App. (E.2), we already show that the longitudinal parts given by different WT identities

are the same.

〈TL
1 ψ̄2,−ψ3,+〉 = −[(εi

′

1 p̂1,i′)
1

E1
] ·
[
− χ̄2,−$$̂p2χ3,+

(
εT2 · ε3

)
(p3 · ε1)− χ̄2,−$$̂p3χ3,+

(
ε2 · εT3

)
(p2 · ε1)

− χ̄2,−$$̂p2χ3,+

(
εT2 · p1

)
(ε3 · ε1)− χ̄2,−$$̂p3χ3,+

(
εT3 · p1

)
(ε2 · ε1)

− 1

8

(
εT2 · ε3

)
(χ̄2,−$$̂p2 ["p1, $ε1]χ3,+) +

1

8

(
ε2 · εT3

)
(χ̄2,− ["p1, $ε1] $$̂p3χ3,+)

]

〈T1ψ̄
L
2,−ψ3,+〉 = −[(εi

′

2 p̂2,i′)
1

E2
] ·
[
−
(
εT1 · ε3

) (
χ̄2,−$ε

T
1 χ3,+

)
E1 −

1

8

(
ε1 · εT3

)
(χ̄2,−["p1, $ε1] $$̂p3χ3,+)

]

〈T1ψ̄2,−ψ
L
3,+〉 = −[(εi

′

3 p̂3,i′)
1

E3
] ·
[ (
εT1 · ε2

) (
χ̄2,−$ε

T
1 χ3,+

)
E1 +

1

8

(
ε1 · εT2

)
(χ̄2,−$$̂p2 ["p1, $ε1]χ3,+)

]

(5.22)

5.3 4pt correlators

The bootstrap rule for the fermionic correlator is the same as the bosonic one. But

the two partial energy pole residues of the correlator are not symmetric. So it’s not trivial

to match them when we want to glue the 3-point into be 4-point correlator.

5.3.1 〈J χ̄−Jχ+〉

Tomatch the amplitude, we need to decompose amplitude channel by channel, and on

the individual channel, the numerator of the amplitude is factorized. (pµs = pµ3 + pµ4 ; p
µ
t =
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pµ1 + pµ4 )

M(γ1χ̄3γ3χ4) = Ms(γ1χ̄3γ3χ4) +Mt(γ1χ̄3γ3χ4)

Ms(γ1χ̄3γ3χ4) = MAs(γ1χ̄2χs)

[
/P1 + /P 2

S

]

AsBs

MBs(γ3χ̄−sχ4)

= MAs(γ1χ̄2χs)

[
− /P3 − /P 4

S

]

AsBs

MBs(γ3χ̄−sχ4)

= MAs(γ1χ̄2χs)

[
−/S
S

]

AsBs

MBs(γ3χ̄−sχ4)

Mt = (Ms)|1↔3

(5.23)

And we should notice, only on the s-pole, then pµs is on-shell and equal to the sum of the

polarization vector.

lim
S→0

/S = lim
S→0

γµp
µ
s =

∑

(i)

u(i)
s ū(i)

s (5.24)

Because we don’t have energy conservation in the correlator, our definition of theEs

is already on the shell, Es .= E3 + E4. We can only write the amplitude in the variables

we write the correlator as:

Res
KT→0

〈JT
1 χ̄

−
2 J

T
3 χ

+
4 〉s = Ms(γ1χ̄3γ3χ4) = MAs(γ1χ̄2χs)

[
/P1 + /P 2

S

]

AsBs

MBs(γ3χ̄−sχ4)

= MAs(γ1χ̄2χs)

[
− /P3 − /P 4

S

]

AsBs

MBs(γ3χ̄−sχ4)

= χ̄2
−(1− /̂p2) /ε1

T
[

/P3 + /P 4

(E12sE34s)

]
/ε3
T(1 + /̂p4)χ4,+

(5.25)

Then we want to write an ansatz for the pure transverse part correlator trivially satisfies
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the partial energy pole residue,

Res
E12s→0

〈JT
1 χ̄2

−JT
3 χ

+
4 〉s = ū2/ε

T
1 ·
−1
2Es

(
""S(−γ0)
E34s

− ( . S)
E3 + E4 − Es

)
· /εT3u4

= χ̄2
−(1− /̂p2)/ε

T
1 ·

1

2Es

(
""S(γ0)

E34s
+

( . S)
E3 + E4 − Es

)
· /εT3(1 + /̂p4)χ4,+

= χ̄2
−(1− /̂p2)/ε

T
1 ·

1

2Es

(
""S(γ0)

E34s
+

( . S)
KT

)
· /εT3(1 + /̂p4)χ4,+

Res
E34s→0

〈JT
1 χ̄2

−JT
3 χ

+
4 〉s = χ̄2

−(1− /̂p2)/ε
T
1 ·

1

2Es

(
(γ0)##S−

E12s
− ( . S−)

KT

)
· /εT3(1 + /̂p4)χ4,+,

(5.26)

we show in (3.2.5) if we takem = 0 and the trivial ansatz satisfies the total energy residue.

The ansatz will be the mathch of the form like

〈JT
1 χ̄2

−JT
3 χ

+
4 〉s = χ̄2

−(1− /̂p2)/ε
T
1 ·

1

E12s

[
KT /Sγ0 + E34s/S +

∑∞
n=1 cR,s,nEn

12s

KTE34s(2Es)

]
· /εT3(1 + /̂p4)χ4,+

= χ̄2
−(1− /̂p2)/ε

T
1 ·

1

E34s

[
KTγ0 /S− − E12s/S− +

∑∞
n=1 cL,s,nE

n
34s

KTE12s(2Es)

]
· /εT3(1 + /̂p4)χ4,+

= χ̄2
−(1− /̂p2)/ε

T
1 ·

1

KT

[
(2Es)( /P 3 + /P 4) +

∑∞
n=1 cT,s,nK

n
T

E12sE34s(2Es)

]
· /εT3(1 + /̂p4)χ4,+

(5.27)

And we could focus on the cL,s,n, we’ll find to match the total energy pole residue

∞∑

n

cL,s,nE
n
34s = −E34s /S− + 2Es(E34sγ0) +

∞∑

n=1

cLT,s,nE
n
34s

= E34s/S +
∞∑

n=1

cLT,s,nE
n
34s

(5.28)

then to match the other partial energy pole residue set that

∞∑

n=1

cLT,s,nE
n
34s = 0 (5.29)
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Then we have the fixed s-channel transversal correlator

〈JT
1 χ̄2

−JT
3 χ

+
4 〉s = χ̄2

−(1− /̂p2)/ε
T
1 ·

1

E34s

[
KTγ0 /S− − E12s/S− + E34s/S

KTE12s(2Es)

]
· /εT3(1 + /̂p4)χ4,+

= χ̄2
−(1− /̂p2)/ε

T
1 ·
[
( /P 3 + /P 4)

KTE12sE34s
− 1− γ0

2

/S−

EsE12sE34s

]
· /εT3(1 + /̂p4)χ4,+

(5.30)

we could check this match the (D.199) when m = 0 and εi = εTi . And on t-channel

transverse correlator, the only difference is 1 ↔ 3. And By dimension counting, there’s

no contact term ansatz we could write. Then cause we know the longitudinal parts are

determined by the WT identities, we could check these longitudinal parts are consistent

with the partial energy pole residue.

〈JL
1 χ̄2,−J3χ+〉 = (

−p̂1,iεi1
E1

) · p1,j〈J j
1 χ̄2,−J3χ+〉

= (
−p̂1,iεi1
E1

) (−〈χ̄1+2,−J3χ4,+〉+ 〈χ̄2,−J3χ1+4,+〉)
(5.31)

First we take the E12s pole

Res
E12s=0

〈JL
1 χ̄2,−J3χ+〉 = 0 = M3,A(γ

L
1 χ̄2χs)

(
(
1 + γ0

2
)
− /̂ps
2

(
1− γ0

2
)

)AB

Ψ̃3,B(γ3χ̄−sχ4)

(5.32)

by the amplitudeWard Identities, we know thatM3(γL1 χ̄2χs) = pi1M̃3,i(γ1χ̄2χs) = pµ1M3,µ(γ1χ̄2χs) =

0. And for the other pole for s-channel

Res
E34s=0

〈JL
1 χ̄2,−J3χ+〉 = (

p̂1,iεi1
E1

) Res
E34s=0

〈χ̄1+2,−J3χ4,+〉 = (
p̂1,iεi1
E1

)χ̄2,−,AM
AB
3 (χ̄−sγ3χ4)χ4,B,+

= Ψ̃A
3 (J

L
1 χ̄2,−χs,+)

(
(
1 + γ0

2
)
− /̂ps
2

(
1− γ0

2
)

)

AA′
MA′B

3 (χ̄−sγ3χ4)χ4,B,+

(5.33)
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in which we use the 3-point WT identity,

〈JL
1 χ̄2,−χs,+〉A = χ̄2,−,C(

−p̂1,iεi1
E1

)(− /̂p2 − /̂ps)
CA

Ψ̃3
A
(JL

1 χ̄2,−χs,+) = 〈JL
1 χ̄2,−χs,+〉A − 〈JL

1 χ̄2,−χs,+〉A|Es→−Es

= (
p̂1,iεi1
E1

)(2χ̄2,− /̂ps)
A,

(5.34)

and the identity,

χ̄2,−(2 /̂ps)

(
(
1 + γ0

2
)
− /̂ps
2

(
1− γ0

2
)

)
= χ̄2,−(2 /̂ps)

(
(
1 + γ0

2
)
− /̂ps
2

)

= χ̄2,−(
1− γ0

2
)(2 /̂ps)

− /̂ps
2

= χ̄2,−.

(5.35)

Then the last equality is trivially satisfied. For the pole of E32t and E14t, the consistency

could be check if we take 1→ 3 for all the above derivation.

5.3.2 〈T χ̄−Tχ+〉

First, we need to decompose the amplitude of M(hχ̄hχ) channel by channel. We

could refer to [7] and change the momentum and overall normalization convention to

what we use in the thesis. For

pµs = pµ3 + pµ4

pµt = pµ1 + pµ4

pµu = pµ2 + pµ4

(5.36)
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We could write down the amplitude (We already take κ = 1)

M(h1χ̄2h3χ4) = Ms(h1χ̄2h3χ4) +Mt(h1χ̄2h3χ4) +Mu(h1χ̄2h3χ4) +Mc(h1χ̄2h3χ4)

Ms(h1χ̄2h3χ4) =
4

S
(p4 · ε3)(p2 · ε1)ū2 /ε1( /P 3 + /P 4) /ε3u4

Mt(h1χ̄2h3χ4) =
4

T
(p4 · ε1)(p2 · ε3)ū2 /ε1( /P 1 + /P 4) /ε3u4

Mu(h1χ̄2h3χ4) =
1

U
[(2p3 · ε1)(2p2 · ε3)− (2p1 · ε3)(2p2 · ε1) + (p1 − p3) · (p2 − p4)(ε3 · ε1)]

·
[
(2p3 · ε1)(−ū2 /ε3u4)− (2p1 · ε3)(−ū2 /ε3u4) + (ε1 · ε3)(−ū2( /P 1 − /P 3)u4)

]

=
1

U
[(2p3 · ε1)(2p2 · ε3)− (2p1 · ε3)(2p2 · ε1) + (−2T − U)(ε3 · ε1)]

·
[
(2p3 · ε1)(−ū2 /ε3u4)− (2p1 · ε3)(−ū2 /ε3u4) + (ε1 · ε3)(−ū2(−2/P 3)u4)

]

(we use ū2 /P 2 = /P 4u4 = 0)

Mc(h1χ̄2h3χ4) = 2(ε1 · ε3)
[
(p3 · ε1)ū2 /ε3u4 − (p1 · ε3)ū2 /ε3u4 − (ε1 · ε3)ū2( /P 3)u4

]

+ 2(ε1 · ε3)ū2 /ε1( /P 1 + /P 4) /ε3u4

(5.37)
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which makes Ward Identity of the amplitude be satisfied. Actually, we could identify the

amplitude in a double-copy and moreover factorized form.

Ms(h1χ̄2h3χ4) = SMs(γ1φ
∗
2γ3φ4) ·Ms(γ1χ̄2γ3χ4)

= (M(γ1φ
∗
2φs)M(γ1χ̄2χs))

(−/P 3 − /P 4)

S
(M(γ3φ

∗
−sφ4)M(γ1χ̄−sχ4))

= M(h1χ̄2χs)
(−/P 3 − /P 4)

S
M(h3χ̄−sχ4)

Mt(h1χ̄2h3χ4) = TMt(γ1φ
∗
2γ3φ4) ·Mt(γ1φ

∗
2γ3φ4)

= M(h3χ̄2χt)
(−/P 1 − /P 4)

T
M(h1χ̄−tχ4)

Mu(h1χ̄2h3χ4) = U(Mµu(γ1γ3γu)Mµ′
u
(γ1γ3γu))(M

µu(γ−uφ
∗
2φ4)M

µ′
u(γ−uχ̄2χ4))

= Mµuµ′
u
(h1h3hu)

ηµu,νuηµ
′
u,ν

′
u

U
Mνuν′u(h−uχ̄2χ4)

Mc(h1χ̄2h3χ4) = Mc(γ1φ
∗
2γ3φ4)

[
1

2
Mµ′

u
(γ1γ3γu)M

µ′
u(γ−uχ̄2χ4)− T ·Mt(γ1χ̄2γ3χ4)

]

(5.38)

In whichM(γγγ) is Yang-Mills 3-pt amplitude with color factor extracted. Then for the

s-channel pure transverse correlator, the constraints of the correlator will be

Res
KT→0

〈T TT
1 χ̄−

2 T
TT
3 χ+

4 〉s = MAs(h1χ̄2χs)

[
− /P3 − /P 4

S

]

AsBs

MBs(h3χ̄−sχ4)

= χ̄2
−(1− /̂p2)(2ε

T
1 · p2)

[
/P3 + /P 4

(E12sE34s)

]
(−2εT3 · p4)(1 + /̂p4)χ4,+

(5.39)
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Res
E12s→0

〈T TT
1 χ̄2

−T TT
3 χ+

4 〉s

= ū2/ε
T
1 · (2ε

T
1 · p2) ·

−1
2Es

(
""S(−γ0)
E34s

− ( . S)
E3 + E4 − Es

)
· (−2εT3 · p4) · /ε

T
3u4

= χ̄2
−(1− /̂p2)/ε

T
1 ·

1

2Es
· (2εT1 · p2)

(
""S(γ0)

E34s
+

( . S)
E3 + E4 − Es

)
· (−2εT3 · p4) · /ε

T
3(1 + /̂p4)χ4,+

= (2εT1 · p2) · (−2εT3 · p4) · χ̄2
−(1− /̂p2) · /ε

T
1 ·

1

2Es

(
""S(γ0)

E34s
+

( . S)
KT

)
· /εT3(1 + /̂p4)χ4,+

Res
E34s→0

〈T TT
1 χ̄2

−T TT
3 χ+

4 〉s

= (2εT1 · p2) · (−2εT3 · p4) · χ̄2
−(1− /̂p2)/ε

T
1 ·

1

2Es

(
(γ0)##S−

E12s
− ( . S−)

KT

)
· /εT3(1 + /̂p4)χ4,+,

(5.40)

So all the constants of transverse 〈T TT
1 χ̄2

−T TT
3 χ+

4 〉s are the the same 〈JT
1 χ̄2

−JT
3 χ

+
4 〉s except

the factor (2εT1 · p2) · (−2εT3 · p4). Then we could easily extend the bootstrapped result in

(5.30) to

〈T TT
1 χ̄2

−T TT
3 χ+

4 〉s = −4(εT1 · p2) · (εT3 · p4)

· χ̄2
−(1− /̂p2)/ε

T
1 ·
[
( /P 3 + /P 4)

KTE12sE34s
− 1− γ0

2

/S−

EsE12sE34s

]
· /εT3(1 + /̂p4)χ4,+

(5.41)

Similar, with 1→ 3, we have the t-channel transverse correlator

〈T TT
1 χ̄2

−T TT
3 χ+

4 〉t = −4(εT3 · p2) · (εT1 · p4)

· χ̄2
−(1− /̂p2)/ε

T
3 ·
[
( /P 1 + /P 4)

KTE32tE14t
− 1− γ0

2

/T−

EtE32tE14t

]
· /εT1(1 + /̂p4)χ4,+

(5.42)

For u-channel, it’s graviton exchanging in the internal leg. The constraints wiil be

Res
KT→0

〈T TT
1 χ̄−

2 T
TT
3 χ+

4 〉u = Mµuµ′
u
(h1h3hu)

ηµu,νuηµ
′
u,ν

′
u

U
Mνuν′u(h−uχ̄2χ4)

=
4

E13uE24u

[ (
p3 · εT1

) (
p2 · εT3

)
−
(
p1 · εT3

) (
p2 · εT1

)
+

(ε3,T · ε1,T )
4

((p2 − p4)
µ(p1 − p3)µ)

]

· χ̄2
−(1− /̂p2)

[
(2p3 · εT1)/ε

T
3 − (2p1 · εT3)/ε

T
3 + (εT1 · εT3)(p1 − p3)µγ

µ
]
(1 + /̂p4)χ4,+

(5.43)
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Res
E13u→0

〈T TT
1 χ̄−

2 T
TT
3 χ+

4 〉u = M̃iui′u(h1h3hu)
Πiui′ujuj

′
u

u,(2,2)

2Eu
Ψ̃juj′u,〈T TT

−uχ̄2,−χ4,+〉

=
4

E2
24u − E2

u

{

[ (
p3 · εT1

) (
p2 · πu · εT3

)
−
(
p1 · πu · εT3

) (
p2 · εT1

)
+

(ε3,T · ε1,T )
4

(
(p2 − p4)

iπij
u (p1 − p3)j

)]

· χ̄2
−(1− /̂p2)

[
(2p3 · εT1)(εT3,iπij

u γj)− (2p1 · εT3)(εT3,iπij
u γj) + (εT1 · εT3)(p1 − p3)iπ

ij
u γj
]
(1 + /̂p4)χ4,+

− 1

2
(J3,L · πu · J3,L) · [(p2 − p4)

iπu,ijχ̄2
−(1− /̂p2)γ

j(1 + /̂p4)χ4,+]
}

(5.44)

Res
E24u→0

〈T TT
1 χ̄−

2 T
TT
3 χ+

4 〉u = Ψ̃iui′u,〈T TT
1 T TT

3 T TT
u 〉

Πiui′ujuj
′
u

u,(2,2)

2Eu
Mjuj′u(h−uχ̄2χ4)

=
4

E2
13u − E2

u

{

[ (
p3 · εT1

) (
p2 · πu · εT3

)
−
(
p1 · πu · εT3

) (
p2 · εT1

)
+

(ε3,T · ε1,T )
4

(
(p2 − p4)

iπij
u (p1 − p3)j

)]

· χ̄2
−(1− /̂p2)

[
(2p3 · εT1)(εT3,iπij

u γj)− (2p1 · εT3)(εT3,iπij
u γj) + (εT1 · εT3)(p1 − p3)iπ

ij
u γj
]
(1 + /̂p4)χ4,+

− 1

2
(J3,L · πu · J3,L) · [(p2 − p4)

iπu,ijχ̄2
−(1− /̂p2)γ

j(1 + /̂p4)χ4,+]
}

(5.45)

In which the J3,L is defined in the previous chapter. Then we need to match the ηij con-

traction on total energy pole kinematics to πu,ij contraction on the first term of the partial

energy pole kinematics. Actually, we can do that term by term. We already successfully

match the following two term in 〈TOTO〉 and relabeled 〈O∗OO∗O〉Exc J :

(p1 − p3)
µ(p2 − p4)µ +KT

(E1 − E3)(E2 − E4)

Eu
(5.46)

= (p1 − p3)
iπu,ij(p2 − p4)

j + E13uE24u
(E1 − E3)(E2 − E4)

E2
u

(5.47)
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[(
p3 · εT1

) (
p2 · εT3

)
−
(
p1 · εT3

) (
p2 · εT1

)]
−
[(
p3 · εT1

) (
p2 · πu · εT3

)
−
(
p1 · εT3

) (
p2 · πu · εT1

)]

= −
(
p3 · εT1

)
(p2 · p̂u)

(
p̂u · εT3

)
+
(
p1 · εT3

)
(p2 · p̂u)

(
p̂u · εT1

)

= −
(
pu · εT1

)
(p2 · p̂u)

(
p̂u · εT3

)
+
(
pu · εT3

)
(p2 · p̂u)

(
p̂u · εT1

)

= 0

(5.48)

Now additionally we have the matches:

χ̄2
−(1− /̂p2)

[
(εT1 · εT3)

(
(p1 − p3)µγ

µ +KT
E1 − E3

Eu
γ0

)]
(1 + /̂p4)χ4,+

= χ̄2
−(1− /̂p2)

·
[
(εT1 · εT3)(E1 − E3)γ0 −

1

E2
u

(εT1 · εT3)(p1 − p3)ip
i
up

j
uγj

+ (εT1 · εT3)(p1 − p3)iπ
ij
u γj + (εT1 · εT3)KT

E1 − E3

Eu
γ0
]

· (1 + /̂p4)χ4,+

= χ̄2
−(1− /̂p2)

·
[
(εT1 · εT3)(E1 − E3)γ0 +

(E2
1 − E2

3)(E2 + E4)γ0
E2

u

(εT1 · εT3)

+ (εT1 · εT3)(p1 − p3)iπ
ij
u γj + (εT1 · εT3)KT

E1 − E3

Eu
γ0
]

· (1 + /̂p4)χ4,+

= χ̄2
−(1− /̂p2)

·
[
(εT1 · εT3)(p1 − p3)iπ

ij
u γj + (εT1 · εT3)

E1 − E3

E2
u

(
E2

u + E13E24 +KTEu

)
γ0

]

· (1 + /̂p4)χ4,+

= χ̄2
−(1− /̂p2)(ε

T
1 · εT3)

[
(p1 − p3)iπ

ij
u γj + E13uE24u

E1 − E3

E2
u

γ0

]
(1 + /̂p4)χ4,+

(5.49)
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and

[
(2p3 · εT1)(εT3,iηijγj)− (2p1 · εT3)(εT3,iηijγj)

]
−
[
(2p3 · εT1)(εT3,iπij

u γj)− (2p1 · εT3)(εT3,iπij
u γj)

]

= −(2p3 · εT1)(εT3,ip̂iu)(p̂juγj) + (2p1 · εT3)(εT3,ip̂iu)(p̂juγj)

= −(2pu · εT1)(εT3,ip̂iu)(p̂juγj) + (2pu · εT3)(εT3,ip̂iu)(p̂juγj)

= 0.

(5.50)

In which we use χ̄2,−(1− /̂p2)(E2γ0 + /p2) = (E4γ0 + /p4)(1 + /̂p4)χ4,+ = 0. Then every

term of the amplitude and the first term of the residue of the partial energy pole will be

matched. For the second term of the residue of the partial energy pole. By the 4D trace of

the amplitude

−ηµνM(h−u,µνχ̄2χ4) = ū2( /P 2 − /P 4)u4 = 0

= χ̄2
−(1− /̂p2)[(E2 − E4)γ0 + (p2 − p4)

iπu,ijγ
j − [(p2 − p4)

ip̂iu]/̂pu](1 + /̂p4)χ4,+

= χ̄2
−(1− /̂p2)[(p2 − p4)

iπu,ijγ
j + (

E2 − E4

E2
u

)γ0
(
E2

u − E2
24

)
](1 + /̂p4)χ4,+,

(5.51)

in the last line, we use the trick that

χ̄2
−(1− /̂p2)/̂pu(1 + /̂p4)χ4,+ = χ̄2

−(1− /̂p2)
/p2

+ /p4

Eu
(1 + /̂p4)χ4,+

= χ̄2
−(1− /̂p2)

(−E24)γ0
Eu

(1 + /̂p4)χ4,+.

(5.52)

in the last equation, we use the Dirac equation.

Then we could rewrite the second term of the partial energy pole residue by the rele-
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beling of (4.55),

(J3,L · πu · J3,L) · [(p2 − p4)
iπu,ijχ̄2

−(1− /̂p2)γ
j(1 + /̂p4)χ4,+]

=
1

4
(εT1 · εT3)2

(
E13u(−KT + E24u)− (

E1 − E3

Eu
)2[E2

u − E2
13]

)

·
(
(
E2 − E4

E2
u

)
(
E2

u − E2
24

))
χ̄2

−(1− /̂p2)γ0(1 + /̂p4)χ4,+

=
1

4
(εT1 · εT3)2χ̄2

−(1− /̂p2)γ0(1 + /̂p4)χ4,+

·
{
KT ·

[
−E13u

(
(
E2 − E4

E2
u

)
(
E2

u − E2
24

))]
+ E13uE24u ·

[(
(
E2 − E4

E2
u

)
(
E2

u − E2
24

))]

− (
E1 − E3

Eu
)2(

E2 − E4

E2
u

)
[
(E13uE24u)

2 −K2
TE

2
s +KTE

3
s +KTEsE12E34

] }
.

(5.53)

Then we could identify the match of the second term of the total energy pole residue and

the term vanishing at the total energy pole,

(J3,L · πu · J3,L) · [(p2 − p4)
iπu,ijχ̄2

−(1− /̂p2)γ
j(1 + /̂p4)χ4,+]

+ ERELΠ
C
1,T χ̄Tχ + E2

RE
2
LΠ

C
2,T χ̄Tχ = KTT

c
T χ̄Tχ.

(5.54)

in which we define

ΠC
1,T χ̄Tχ = −

[(
(
E2 − E4

E2
u

)
(
E2

u − E2
24

))]
· 1
4
(εT1 · εT3)2χ̄2

−(1− /̂p2)γ0(1 + /̂p4)χ4,+

ΠC
2,T χ̄Tχ = (

E1 − E3

Eu
)2(

E2 − E4

E2
u

) · 1
4
(εT1 · εT3)2χ̄2

−(1− /̂p2)γ0(1 + /̂p4)χ4,+

T c
T χ̄Tχ =

[
−E13u

(
(
E2 − E4

E2
u

)
(
E2

u − E2
24

))
+ (KTE

2
s − E3

s − EsE12E34)(
E1 − E3

Eu
)2(

E2 − E4

E2
u

)

]

· 1
4
(εT1 · εT3)2χ̄2

−(1− /̂p2)γ0(1 + /̂p4)χ4,+.

(5.55)
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then by all of the above matching we mentioned, we could find

〈T TT
1 χ̄−

2 T
TT
3 χ+

4 〉u

=
4

KTE13uE24u

·
{[ (

p3 · εT1
) (

p2 · εT3
)

−
(
p1 · εT3

) (
p2 · εT1

)
+

(ε3,T · ε1,T )
4

(
(p2 − p4)

µ(p1 − p3)µ +KT
(E1 − E3)(E2 − E4)

Eu

)]

· χ̄2
−(1− /̂p2)

·
[
(2p3 · εT1)/ε

T
3 − (2p1 · εT3)/ε

T
3 + (εT1 · εT3)

(
(p1 − p3)µγ

µ +KT
E1 − E3

Eu
γ0

)]

· (1 + /̂p4)χ4,+ −
1

2
KTT

c
T χ̄Tχ

}

(5.56)

trivially satisfy all the pole residue constraints. Moreover, if we require the correlator

to satisfy the full Optical Theorem for the current correlator we have, we could find the

mismatch will only be on the u-channel cause the square of the term we use to match of

the ηij contraction and the πij
u contraction. To see the mismatch explicitly we could write
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the correlator in the form of

〈T TT
1 χ̄−

2 T
TT
3 χ+

4 〉u

=
4

KTE13uE24u
·
[ (

p3 · εT1
) (

p2 · πu · εT3
)
−
(
p1 · πu · εT3

) (
p2 · εT1

)

+
(ε3,T · ε1,T )

4

(
(p2 − p4)

iπij
u (p1 − p3)j

) ]

· χ̄2
−(1− /̂p2)

[
(2p3 · εT1)(εT3,iπij

u γj)− (2p1 · εT3)(εT3,iπij
u γj) + (εT1 · εT3)(p1 − p3)iπ

ij
u γj
]
(1 + /̂p4)χ4,+

+
4

KT
·
[
(ε3,T · ε1,T )

4

(
(E1 − E3)(E2 − E4)

E2
u

)]

· χ̄2
−(1− /̂p2)

[
(2p3 · εT1)(εT3,iπij

u γj)− (2p1 · εT3)(εT3,iπij
u γj) + (εT1 · εT3)(p1 − p3)iπ

ij
u γj
]
(1 + /̂p4)χ4,+

+
4

KT
·
{ [ (

p3 · εT1
) (

p2 · πu · εT3
)
−
(
p1 · πu · εT3

) (
p2 · εT1

)
+

(ε3,T · ε1,T )
4

(
(p2 − p4)

iπij
u (p1 − p3)j

)]

− 1

2
ΠC

1,T χ̄Tχ

}

· χ̄2
−(1− /̂p2)

[
(εT1 · εT3)

E1 − E3

E2
u

γ0

]
(1 + /̂p4)χ4,+

+
4E24uE13u

KT
·
{ [(ε3,T · ε1,T )

4

(
(E1 − E3)(E2 − E4)

E2
u

)]
· χ̄2

−(1− /̂p2)

[
(εT1 · εT3)

E1 − E3

E2
u

γ0

]

· (1 + /̂p4)χ4,+ −
1

2
ΠC

2,T χ̄Tχ

}

(5.57)

Notice in the RHS of the Fermion Optical theorem in (3.64), the flipping external energy

term has the C-conjugate which is the conjugate of the correlator with 2↔ 4 in the grav-

itational interaction case. In this case, the C-operation will give the additional negative
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sign for the third term with γ0 sandwiched between the lifters. Then we’ll have

∆OPT = 〈T1χ̄2,−,AT3χ4,B,+〉u(E1∼4, Eu,p1∼4) + C〈T1χ̄2,−,AT3χ4,+,B〉u(−E1∼4, Eu,p1∼4)

− (−8Eu)

(E2
13 − E2

u)(E
2
24 − E2

u)

·
[ (

p3 · εT1
) (

p2 · πu · εT3
)
−
(
p1 · πu · εT3

) (
p2 · εT1

)
+

(ε3,T · ε1,T )
4

(
(p2 − p4)

iπij
u (p1 − p3)j

)]

·
([
(2p3 · εT1)(εT3,iπij

u γj)− (2p1 · εT3)(εT3,iπij
u γj) + (εT1 · εT3)(p1 − p3)iπ

ij
u γj
]
(1 + /̂p4)

)
AB

= 4Eu

[
(ε3,T · ε1,T )

4

(
(E1 − E3)(E2 − E4)

E2
u

)]
·
(
(1− /̂p2)

[
(εT1 · εT3)

E1 − E3

E2
u

γ0

]
(1 + /̂p4)

)

AB

So we only need to shift the correlator with the term vanishing on all the pole residue

〈T1χ̄2,−,AT3χ4,B,+〉u

→ 〈T1χ̄2,−,AT3χ4,B,+〉u

− 2Eu

[
(ε3,T · ε1,T )

4

(
(E1 − E3)(E2 − E4)

E2
u

)]
·
(
(1− /̂p2)

[
(εT1 · εT3)

E1 − E3

E2
u

γ0

]
(1 + /̂p4)

)

AB

.

(5.58)
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Then the u channel correlator,

〈T TT
1 χ̄−

2 T
TT
3 χ+

4 〉u

=
4

KTE13uE24u

·
{[ (

p3 · εT1
) (

p2 · εT3
)
−
(
p1 · εT3

) (
p2 · εT1

)

+
(ε3,T · ε1,T )

4

(
(p2 − p4)

µ(p1 − p3)µ +KT
(E1 − E3)(E2 − E4)

Eu

)]

· χ̄2
−(1− /̂p2)

·
[
(2p3 · εT1)/ε

T
3 − (2p1 · εT3)/ε

T
3 + (εT1 · εT3)

(
(p1 − p3)µγ

µ +KT
E1 − E3

Eu
γ0

)]

· (1 + /̂p4)χ4,+ −
KT

2
TC
T χ̄Tχ

}

− 2Eu

[
(ε3,T · ε1,T )

4

(
(E1 − E3)(E2 − E4)

E2
u

)]

· χ̄−
2

(
(1− /̂p2)(2ε

T
1 · p2)

[
(εT1 · εT3)

E1 − E3

E2
u

γ0

]
· (1 + /̂p4)

)
χ4,+.

(5.59)

satisfies the full Optical theorem for exchanging gravitons. As a remark, if we write the

COT in discontinuity form, in this form we don’t need to do C conjugate (with 2↔ 4) but

flipping the internal energy Eu instead, we could still get the same shift term that makes

COT be satisfied. Then for the contact diagram, we could write it as the contact amplitudes

overKT that trivially match the total energy pole residue, like

〈T1χ̄2,−,AT3χ4,B,+〉c =
1

KT
χ̄−
2 (1− /̂p2)

{
2(εT1 · εT3)

[
(p3 · εT1) /ε3T − (p1 · εT3) /ε3T − (εT1 · εT3)((P3 − P1)

µηµνγ
ν)
]

+ 2(εT1 · εT3) /ε1T(p1 + p4)µη
µνγν /ε3

T}(1 + /̂p4)χ4,+.

(5.60)

We’ll come up with a problem the for the first ηµν contraction, we already find an equiv-

alent expression on the total energy pole in (5.49) (But we have no known equivalent
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expression for the second ηµν that differs a term vanishing on the total energy pole.),

(
(p1 − p3)µγ

µ +KT
E1 − E3

Eu
γ0

)
∼
[
(p1 − p3)iπ

ij
u γj + E13uE24u

E1 − E3

E2
u

γ0

]
,

(5.61)

when this term is sandwiched between the lifters and the boundary condition of the spinor.

But because we could easily check the equivalent expression or the RHS one won’t sat-

isfy the Fermion COT for the contact term. So the LHS is the only form that satisfies

all the constants for the contact term. Actually with the (5.60), we already fix the full

〈T TTχ̄T TTχ〉. We could not write down any additional polynomial ansatz that is vanish-

ing at all the pole residue and the Fermion COT.

Now we need to check the consistency between the partial energy pole residue and

the longitudinal correlator determined by the WT identities.

〈TL
1 χ̄2,−T3χ+〉 = (

−p̂1,iεi1
E1

) · p1,jε1,j′〈T jj′

1 χ̄2,−J3χ+〉

= (
−p̂1,iεi1
E1

) ·
{
− 1

2
(ε1 · p2)〈χ̄2+1,−T3χ4,+〉 −

1

2
(ε1 · p4)〈χ̄2,−T3χ4+1,+〉

+
1

16
χ̄2,−,A(["p1, $ε1])

AB〈χ̄2+1,B,−T3χ4,+〉′ −
1

16
〈χ̄2,−T3χ4+1,+,A〉′(["p1, $ε1])

ABχ4,+,B

+ (ε1 · ε3)p3,a〈T a
3+1χ̄2,−χ4,+〉 −

1

2
(ε1 · p3)〈T3+1χ̄2,−χ4,+〉

+
1

2
(ε1 · ε3)(ε3 · p2)〈χ̄2+3+1,−χ4,+〉+

1

2
(ε1 · ε3)(ε3 · p4)〈χ̄2,−χ4+3+1,+〉

+
1

32
(p1 · ε3)χ̄2,−,A([$ε3, $ε1])

AB〈χ̄2+3+1,−,Bχ4,+,C〉χC
4,+

− 1

32
(p1 · ε3)χ̄2,−,A〈χ̄A

2,−χ
B
4+3+1,+〉([$ε3, $ε1])BCχ

C
4,+

}

(5.62)
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First we take the E12s pole

Res
E12s=0

〈TL
1 χ̄2,−T3χ+〉 = 0 = M3,A(h

L
1 χ̄2χs)

(
(
1 + γ0

2
)
− /̂ps
2

(
1− γ0

2
)

)AB

Ψ̃3,B(h3χ̄−sχ4)

(5.63)

by the amplitude Ward Identities, we know that M3(hL
1 χ̄2χs) = pi1ε

j
1M̃3,ij(h1χ̄2χs) =

pµ1ε
ν
1M3,µν(γ1χ̄2χs) = 0. And for the other pole for s-channel

Res
E34s=0

〈TL
1 χ̄2,−T3χ+〉 = (− p̂1,iεi1

E1
)χ̄2,−,A

(
−1

2
(ε1 · p2) +

1

16
[/p1

,/ε1]

)AB

Res
E34s=0

〈χ̄1+2,−,BT3χ4,+〉

= (
p̂1,iεi1
E1

)χ̄2,−,A

(
1

2
(ε1 · p2)−

1

16
[/p1

,/ε1]

)AB

MBC,3(χ̄−sh3χ4)χ
C
4,+

= Ψ̃A
3 (T

L
1 χ̄2,−χs,+)

(
(
1 + γ0

2
)
− /̂ps
2

(
1− γ0

2
)

)

AA′
MA′B

3 (χ̄−sh3χ4)χ4,B,+

(5.64)

in which we use the 3-point WT identity,

〈TL
1 χ̄2,−χ

A
s,+〉

= (
−p̂1,iεi1
E1

)χ̄2,−,C

(
−1

2
(p2 · ε1) /̂ps +

1

2
(ps · ε1) /̂p2 +

1

16
["p1,##ε1] /̂ps +

1

16
/̂p2 ["p1,##ε1]

)CA

Ψ̃3
A
(TL

1 χ̄2,−χs,+) = 〈TL
1 χ̄2,−χ

A
s,+〉 − 〈TL

1 χ̄2,−χ
A
s,+〉|Es→−Es

= (
p̂1,iεi1
E1

) (χ̄2,−,C)

(
(
1

2
(ε1 · p2)−

1

16
[/p1

,/ε1])(2/̂ps)

)CA

(5.65)

and the identity,

Ψ̃A
3 (T

L
1 χ̄2,−χs,+)

(
(
1 + γ0

2
)
− /̂ps
2

(
1− γ0

2
)

)

= χ̄2,−

(
1

2
(ε1 · p2)−

1

16
[/p1

,/ε1]

)
(2 /̂ps)

(
(
1 + γ0

2
)
− /̂ps
2

(
1− γ0

2
)

)

= χ̄2,−

(
1

2
(ε1 · p2)−

1

16
[/p1

,/ε1]

)
(2 /̂ps)

(
(
1 + γ0

2
)
− /̂ps
2

)

= χ̄2,−(
1− γ0

2
)

(
1

2
(ε1 · p2)−

1

16
[/p1

,/ε1]

)
(2 /̂ps)

− /̂ps
2

= χ̄2,−.

(5.66)
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Then the last equality is trivially satisfied. For the pole of E32t and E14t, the consistency

could be checked if we take 1→ 3 for all the above derivation. Now we check the partial

energy pole residue of the u-channel correlator. First we take the E13u pole

Res
E13u=0

〈TL
1 χ̄2,−T3χ+〉 = 0 = M̃iui′u(h

L
1 h3hu)

Πiui′ujuj
′
u

u,(2,2)

2Eu
Ψ̃juj′u,〈T TT

−uχ̄2,−χ4,+〉
(5.67)

by the amplitude Ward Identities, we know that M3(h1h3hu) = pi1ε
j
1M̃3,ij(h1h3hu) =

pµ1ε
ν
1M3,µν(h1h3hu) = 0. And for the other pole for u-channel

Res
E24u=0

〈TL
1 χ̄2,−T3χ+〉 = (− p̂1,iεi1

E1
)

(
(ε1 · ε3)p3,a −

1

2
(ε1 · p3)ε3,a

)
ε3,bΠ

abcd
u,(2,2) Res

E24u=0
〈T̂cd,1+3χ̄2,−χ4,+〉

= (
p̂1,iεi1
E1

)

(
−(ε1 · ε3)p3,a +

1

2
(ε1 · p3)ε3,a

)
ε3,bΠ

abcd
u,(2,2)M̃3,cd(h−uχ̄2χ4)

= Ψ̃iui′u
3 (TL

1 T3Tu)
Πiui′ujuj

′
u

u,(2,2)

2Eu
M̃ juj′u

3 (h−uχ̄2χ4)

(5.68)

in the last line we use the 3-point WT identity,

〈TL
1 T3Tu〉iu,i

′
u =

(−ε1,ip̂i1)
E1

·
[
(ε1· ε3) p3,kε3,lEuπ

k(iu
u πli′u)

u − 1

2
(ε1 · p3)ε3,kε3,lEuπ

k(iu
u πl i′u)

u

+ ε(iu1 pu,kπ
ka
3 π

i′u)b
3 ε3,aε3,bE3 −

1

2
(ε1 · pu)π

iua
3 πi′ub

3 ε3,aε3,bE3

]

Ψ̃3
iu,i′u(TL

1 T3Tu) = 〈TL
1 T3Tu〉iu,i

′
u − 〈TL

1 T3Tu〉iu,i
′
u |Es→−Es

= 2Eu(
p̂1,iεi1
E1

)

[
−(ε1· ε3) p3,kε3,lπk(iu

u πli′u)
u +

1

2
(ε1 · p3)ε3,kε3,lπ

k(iu
u πl i′u)

u

]
,

(5.69)

and with the identity,

Ψ̃iui′u
3 (TL

1 T3Tu)
Πiui′ujuj

′
u

u,(2,2)

2Eu
M̃ juj′u

3 (h−uχ̄2χ4)

= (
p̂1,iεi1
E1

)

[
−(ε1· ε3) p3,kε3,lEu +

1

2
(ε1 · p3)ε3,kε3,l

]
Πklmn

u,(2,2)M̃3,mn(h−uχ̄2χ4)

= (
p̂1,iεi1
E1

)

[
−(ε1· ε3) p3,kEu +

1

2
(ε1 · p3)ε3,k

]
ε3,lΠ

klmn
u,(2,2)M̃3,mn(h−uχ̄2χ4),

(5.70)
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in which we use the fact that amplitude is symmetric.

5.3.3 〈T ψ̄−Tψ+〉

First, we need to decompose the amplitude of M(hψ̄hψ) channel by channel. We

could refer to [6] and change the momentum and overall normalization convention to

what we use in the thesis. For

pµs = pµ3 + pµ4

pµt = pµ1 + pµ4

pµu = pµ2 + pµ4

(5.71)

We could write down the amplitude (We already take κ = 1.)

M(h1ψ̄2h3ψ4) = Ms(h1ψ̄2h3ψ4) +Mt(h1ψ̄2h3ψ4) +Mu(h1ψ̄2h3ψ4) +Mc(h1ψ̄2h3ψ4)

Ms(h1ψ̄2h3ψ4) =
1

S
[Mµs(γ1γ2γs)M

µs(γ−sγ3γ4)] ū2 /ε1(−/P 3 − /P 4) /ε3u4

Mt(h1ψ̄2h3ψ4) =
1

T
[Mµt(γ3γ2γt)M

µt(γ−tγ1γ4)] ū2 /ε1(−/P 1 − /P 4) /ε3u4

Mu(h1ψ̄2h3ψ4) =
1

U

[
Mµ′

u
(γ1γ3γu)M

µ′
u(γ−uγ2γ4)

]
· [Mµu(γ1γ3γu) · (−ū2γ

µuu4)]

Mc(h1ψ̄2h3ψ4) =
1

2
[Mc(γ3γ2γ4γ1)−Mc(γ3γ4γ2γ1)] · [Mµu(γ1γ3γu) · (−ū2γ

µuu4)]

+
1

2
[Mc(γ2γ3γ4γ1)]

[
ū2 /ε1(−/P 3 − /P 4) /ε3u4 + ū2 /ε1(−/P 1 − /P 4) /ε3u4

]

(5.72)

where we define the amplitude with Yang-Mills 3-pt and 4-pt contact amplitude with color

factor extracted and polarization extracted as

M(γ1γ2γ3) = [(ε1 · ε2)(ε3 · (p1 − p2)) + (ε2 · ε3)(ε1 · (p2 − p3)) + (ε3 · ε1)(ε2 · (p3 − p1))] .

Mµ3(γ1γ2γ3) = [(ε1 · ε2)(p1 − p2)µ3 + (ε2,µ3)(2ε1 · p2) + (ε1,µ3)(−2ε2 · p1)]

Mc(γ1γ2γ3γ4) = [2(ε1 · ε3)(ε2 · ε4)− (ε1 · ε2)(ε3 · ε4)− (ε1 · ε4)(ε2 · ε3)] .
(5.73)
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which makes Ward Identity of the amplitude satisfied. (We already check that with Math-

ematica.) Actually, we could identify the amplitude in a double-copy and moreover fac-

torized form.

Ms(h1ψ̄2h3ψ4) = (Mµs(γ1γ2γs)M(γ1ψ̄2ψs))
(−/P 3 − /P 4)

S
(Mµs(γ3γ4γ−s)M(γ1ψ̄−sψ4))

= Mµs(h1ψ̄2ψs)
ηµsνs · (−/P 3 − /P 4)

S
Mνs(h3ψ̄sψ4)

Mt(h1ψ̄2h3ψ4) = Mµt(h3ψ̄2ψt)
ηµtνt · (−/P 1 − /P 4)

T
Mνt(h1ψ̄tψ4)

Mu(h1ψ̄2h3ψ4) = Mµuµ′
u
(h1h3hu)

ηµu,νuηµ
′
u,ν

′
u

U
Mνuν′u(h−uψ̄2ψ4)

Mc(h1ψ̄2h3ψ4) =
1

2
[Mc(γ3γ2γ4γ1)−Mc(γ3γ4γ2γ1)] · [U ·Mu(γ1χ̄2γ3χ̄4)]

+
1

2
[Mc(γ2γ3γ4γ1)] [S ·Ms(γ1χ̄2γ3χ̄4) + T ·Mt(γ1χ̄2γ3χ̄4)]

(5.74)

Moreover in the transverse part bootstrap the amplitude, and the polarization is written in

the Coulomb gauge, especially we write

Mµ3(γ
T
1γ

T
2γ3) =

[
(εT1 · εT2)(p1 − p2)µ3 + (εT,i2 ηi,µ3)(2ε1 · p2) + (εT,i1 ηi,µ3)(−2ε2 · p1)

]
.

(5.75)

s/t channel Then for the s-channel pure transverse correlator, the constraints of the cor-

relator will be

Res
KT→0

〈T TT
1 ψ̄T,−

2 T TT
3 ψT,+

4 〉s = Mµs,As(h1ψ̄2ψs)η
µsνs

[
− /P3 − /P 4

S

]

AsBs

MBs,νs(h3ψ̄−sψ4)

=
[
Mµs(γ

T
1γ

T
2γs)M

µs(γ−sγ
T
3γ

T
4 )
]
· χ̄2

−(1− /̂p2)

[
/P3 + /P 4

(E12sE34s)

]
(1 + /̂p4)χ4,+

(5.76)
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Res
E12s→0

〈T TT
1 ψ̄T,−

2 T TT
3 ψT,+

4 〉s

= ū2/ε
T
1 · M̃is(γ

T
1γ

T
2γs) ·

−πisjs
s

2Es

(
""S(−γ0)
E34s

− ( . S)
E3 + E4 − Es

)
· M̃js(γ

T
3γ

T
4γ−s) · /εT3u4 −

1

4
PL,3/2

= (M̃is(γ
T
1γ

T
2γs)π

isjs
s M̃js(γ

T
3γ

T
4γ−s))

· χ̄2
−(1− /̂p2) · /ε

T
1 ·

1

2Es

(
""S(γ0)

E34s
+

( . S)
KT

)
· /εT3(1 + /̂p4)χ4,+ −

1

4
PL,3/2

Res
E34s→0

〈T TT
1 ψ̄T,−

2 T TT
3 ψT,+

4 〉s

= (M̃is(γ
T
1γ

T
2γt)π

isjs
s M̃js(γ

T
3γ

T
4γ−s)) · χ̄2

−(1− /̂p2)/ε
T
1 ·

1

2Es

(
(γ0)##S−

E12s
− ( . S−)

KT

)
· /εT3(1 + /̂p4)χ4,+

− 1

4
PR,3/2,

(5.77)

in which

PL,3/2 := M̃is(γ
T
1γ

T
2γs) · χ̄2

−(1− /̂p2)/ε
T
1(1 + /̂ps) ·

1 + γ0
2

· /πis
s /̂ps/π

js
s · 1− γ0

2

·
[
(1 + /̂ps)/ε

T
3(1 + /̂p4)χ4,+ · 1

E34s
· M̃js(γ

T
3γ

T
4γ−s)

]∣∣∣∣
Es

−Es

PR,3/2 :=
[
M̃is(γ

T
1γ

T
2γs) · χ̄2

−(1− /̂p2)/ε
T
1(1 + /̂ps)

]∣∣∣
Es

−Es

· 1 + γ0
2

· /πis
s /̂ps/π

js
s · 1− γ0

2

· (1 + /̂ps)/ε
T
3(1 + /̂p4)χ4,+ · 1

E34s
· M̃js(γ

T
3γ

T
4γ−s)

(5.78)

in which we define /πi
s := πijγj .

So all the constants of transverse 〈T TT
1 ψ̄T,−

2 T TT
3 ψT,+

4 〉s are the same 〈JT
1 ψ̄2

−
JT
3ψ

+
4 〉s

except that we need to match the prefactor of η-contraction and the πs contraction in

(M̃is(γ
T
1γ

T
2γt)π

isjs
s M̃js(γ

T
3γ

T
4γ−s)) andMµs(γ

T
1γ

T
2γs)M

µs(γ−sγT3γ
T
4 ) tomatch the first term

of the partial energy pole residue and the amplitude. We could use (5.46) and (5.48) to
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prove that

Mµs(γ
T
1γ

T
2γs)M

µs(γ−sγ
T
3γ

T
4 ) + (εT1 · εT2)(εT3 · εT4)KT

(E1 − E2)(E3 − E4)

Es

= (M̃is(γ
T
1γ

T
2γt)π

isjs
s M̃js(γ

T
3γ

T
4γ−s)) + (εT1 · εT2)(εT3 · εT4)E12sE34s

(E1 − E2)(E3 − E4)

E2
s

(5.79)

But to match the second term PR,3/2/PL,3/2 of the partial energy pole we need to make

it to match a term vanishing on the total energy pole. And match PR,3/2/PL,3/2 with the

term vanishing on the ER/EL pole individually. First we need to use the 4D γ-trace of

the 3 point amplitude to rexpress the /πi
s trace term in the PR,3/2/PL,3/2.

M(T TT
1 ψ̄T

2ψs,µ)γ
µ = −ū2/ε

T
1

[
(εT1 · εT2)((− /Ps)− 2 /P2) + /εT2(ε

T
1 · p2)− 2/εT1(ε

T
2 · p1)

]

= −ū2/ε
T
1(ε

T
1 · εT2)(− /Ps)

= M(T TT
1 ψ̄T

2ψs,0)γ0 +M(T TT
1 ψ̄T

2ψs,i)π
ij
s γj −M(T TT

1 ψ̄T
2ψs,i)p̂

i
sp̂

j
sγj

= −ū2/ε
T
1(ε

T
1 · εT2)[(E1 − E2)γ0 − (p1 − p2)ip̂

i
s/̂ps] + M̃is(γ

T
1γ

T
2γs) · ū2/ε

T
1 /π

is
s

γµM(T TT
3 ψ̄−u,µψ

T
4 ) = −( /Ps)(ε

T
3 · εT4) /ε3Tu4

= −[(E3 − E4)γ0 − (p3 − p4)ip̂
i
s/̂ps](ε

T
3 · εT4) /ε3Tu4 + M̃is(γ

T
3γ

T
4γ−s)(ε

T
3 · εT4) /ε3Tu4

(5.80)
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then we could first simplify then rexpress the PL,3/2,

PL,3/2 = M̃is(γ
T
1γ

T
2γs) · χ̄2

−(1− /̂p2)/ε
T
1 /π

is
s (1− /̂ps) ·

1− γ0
2

· /̂ps ·
1 + γ0

2

·
[
(1− /̂ps)/π

js
s /ε

T
3(1 + /̂p4)χ4,+ · 1

E34s
· M̃js(γ

T
3γ

T
4γ−s)

]∣∣∣∣
Es

−Es

= M̃is(γ
T
1γ

T
2γs) · χ̄2

−(1− /̂p2)/ε
T
1 /π

is
s (/̂ps)

2(1− /̂ps) ·
1− γ0

2
· /̂ps ·

1 + γ0
2

·
[
(1− /̂ps)(/̂ps)

2/πjs
s /ε

T
3(1 + /̂p4)χ4,+ · 1

E34s
· M̃js(γ

T
3γ

T
4γ−s)

]∣∣∣∣
Es

−Es

= M̃is(γ
T
1γ

T
2γs) · χ̄2

−(1− /̂p2)/ε
T
1 /π

is
s (/̂ps)(1− /̂ps) ·

1 + γ0
2

· (/̂ps)
3 · 1− γ0

2

·
[
(1− /̂ps)(/̂ps)/π

js
s /ε

T
3(1 + /̂p4)χ4,+ · 1

E34s
· M̃js(γ

T
3γ

T
4γ−s)

]∣∣∣∣
Es

−Es

= M̃is(γ
T
1γ

T
2γs) · χ̄2

−(1− /̂p2)/ε
T
1 /π

is
s (1 + /̂ps) ·

1 + γ0
2

· (−/̂ps) ·
1− γ0

2

·
[
(1 + /̂ps)/π

js
s /ε

T
3(1 + /̂p4)χ4,+ · 1

E34s
· M̃js(γ

T
3γ

T
4γ−s)

]∣∣∣∣
Es

−Es

= M̃is(γ
T
1γ

T
2γs) · χ̄2

−(1− /̂p2)/ε
T
1 /π

is
s (1 + /̂ps) ·

1 + γ0
2

· (−/̂ps) ·
1− γ0

2

·
[

1

E34s
(1 + /̂ps)/π

js
s /ε

T
3(1 + /̂p4)χ4,+ · M̃js(γ

T
3γ

T
4γ−s)

]∣∣∣∣
Es

−Es

= ū2/ε
T
1(ε

T
1 · εT2)[(E1 − E2)γ0 + (p1 − p2)ip̂

i
sγ0] · (1 + /̂ps) ·

1 + γ0
2

· (−/̂ps) ·
1− γ0

2

·
[

1

E34s
· (1 + /̂ps) · [(E3 − E4)γ0 − (p3 − p4)ip̂

i
sγ0](ε

T
3 · εT4) /ε3Tu4

]∣∣∣∣
Es

−Es

= ū2/ε
T
1(ε

T
1 · εT2) · [E12s] · γ0 · (1 + /̂ps) ·

1 + γ0
2

· (−/̂ps) ·
1− γ0

2

·
[

1

E34s
· (1 + /̂ps) · [E34s] · γ0(εT3 · εT4) /ε3Tu4

]∣∣∣∣
Es

−Es

= ū2/ε
T
1(ε

T
1 · εT2) · [E12s] · γ0 · (1 + /̂ps) ·

1 + γ0
2

· (−/̂ps) ·
1− γ0

2
· (2/̂ps) · γ0(ε

T
3 · εT4) /ε3Tu4

= 2E12sū2/ε
T
1(ε

T
1 · εT2) · (1− /̂ps) ·

1 + γ0
2

(εT3 · εT4) /ε3Tu4

(5.81)

in which we apply (/εT)2 = /εT·/εT = 0 from the amplitude polarization constraints ε·ε = 0,

ū2/ε
T
2 = 0 and the Dirac equation with their version for the conjugate field. And we should

notice /P s(1 + /ps
)1+γ02 = (/P s)

2 1+γ0
2 = 0 and /P−s(1 + /ps

)1−γ02 = −( /P−s)
2 1+γ0

2 = 0.
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Similar, we’ll have

PL,3/2 = 2E34sū2/ε
T
1(ε

T
1 · εT2) · (1− /̂ps) ·

1 + γ0
2

(εT3 · εT4) /ε3Tu4
(5.82)

So indeed, these two terms won’t contribute to the partial energy pole we don’t need to

consider them. Then we could easily extend the bootstrapped result in (5.30) to find

〈T TT
1 ψ̄T,−

2 T TT
3 ψT,+

4 〉s

=

[
(M̃is(γ

T
1γ

T
2γt)π

isjs
s M̃js(γ

T
3γ

T
4γ−s)) + (εT1 · εT2)(εT3 · εT4)E12sE34s

(E1 − E2)(E3 − E4)

E2
s

]

· χ̄2
−(1− /̂p2)/ε

T
1 ·
[
( /P 3 + /P 4)

KTE12sE34s
− 1− γ0

2

/S−

EsE12sE34s

]
· /εT3(1 + /̂p4)χ4,+

(5.83)

satisfying all the residue constraints. Similarly, with 1 ↔ 3, we’ll have the t-channel

transverse correlator.

Now to match the full Optical theorem, with a similar calculation to (5.81), we’ll find

(We could do it in the discontinuity version such that it’s channel by channel and easier to

do and write down.)

∆s,disc−COT = COT RHS− COT LHS = −ū2/ε
T
1(ε

T
1 · εT2) · /̂ps ·

1 + γ0
2

(εT3 · εT4) /ε3Tu4

(5.84)

it’s the polynomial term that won’t affect each of the partial energy pole residues. So we
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could add this term back to the above correlator. Now we find the correlator like

〈T TT
1 ψ̄T,−

2 T TT
3 ψT,+

4 〉s

=

[
(M̃is(γ

T
1γ

T
2γt)π

isjs
s M̃js(γ

T
3γ

T
4γ−s)) + (εT1 · εT2)(εT3 · εT4)E12sE34s

(E1 − E2)(E3 − E4)

E2
s

]

· χ̄2
−(1− /̂p2)/ε

T
1 ·
[
( /P 3 + /P 4)

KTE12sE34s
− 1− γ0

2

/S−

EsE12sE34s

]
· /εT3(1 + /̂p4)χ4,+

+
1

2
ū2/ε

T
1(ε

T
1 · εT2) · /̂ps ·

1 + γ0
2

(εT3 · εT4) /ε3Tu4

(5.85)

fix all the constraints including the full COT. Similarly, with 1 ↔ 3, we’ll have the t-

channel transverse correlator.

u-channel For u-channel, it’s graviton exchanging in the internal leg. The constraints

will be

Res
KT→0

〈T TT
1 ψ̄T,−

2 T TT
3 ψT,+

4 〉u = Mµuµ′
u
(h1h3hu)

ηµu,νuηµ
′
u,ν

′
u

U
Mνuν′u(h−uψ̄2ψ4)

=
1

E13uE24u

[
Mµ′

u
(γT1γ

T
3γu)M

µ′
u(γ−uγ

T
2γ

T
4 )
]

· χ̄2
−(1− /̂p2)

[
(2p3 · εT1)/ε

T
3 − (2p1 · εT3)/ε

T
3 + (εT1 · εT3)(p1 − p3)µγ

µ
]
(1 + /̂p4)χ4,+

(5.86)

Res
E13u→0

〈T TT
1 ψ̄T,−

2 T TT
3 ψT,+

4 〉u = M̃iui′u(h1h3hu)
Πiui′ujuj

′
u

u,(2,2)

2Eu
Ψ̃juj′u,〈T TT

−uψ̄2,−ψ4,+〉

=
1

E2
24u − E2

u

{ [
M̃i′u(γ

T
1γ

T
3γu)πu,i′j′M̃

j′u(γ−uγ
T
2γ

T
4 )
]

· χ̄2
−(1− /̂p2)

[
(2p3 · εT1)(εT3,iπij

u γj)− (2p1 · εT3)(εT3,iπij
u γj) + (εT1 · εT3)(p1 − p3)iπ

ij
u γj
]
(1 + /̂p4)χ4,+

− 1

2

(
J ′

3,L · πu · J ′
3,L

) (
J ′

3,R · πu ·
[
χ̄2

−(1− /̂p2)(−γ)(1 + /̂p4)χ4,+

]) }

(5.87)
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Res
E24u→0

〈T TT
1 ψ̄T,−

2 T TT
3 ψT,+

4 〉u = Ψ̃iui′u,〈T TT
1 T TT

3 T TT
u 〉

Πiui′ujuj
′
u

u,(2,2)

2Eu
Mjuj′u(h−uψ̄2ψ4)

=
1

E2
13u − E2

u

{ [
M̃i′u(γ

T
1γ

T
3γu)πu,i′j′M̃

j′u(γ−uγ
T
2γ

T
4 )
]

· χ̄2
−(1− /̂p2)

[
(2p3 · εT1)(εT3,iπij

u γj)− (2p1 · εT3)(εT3,iπij
u γj) + (εT1 · εT3)(p1 − p3)iπ

ij
u γj
]
(1 + /̂p4)χ4,+

− 1

2

(
J ′

3,L · πu · J ′
3,L

) (
J ′

3,R · πu ·
[
χ̄2

−(1− /̂p2)(−γ)(1 + /̂p4)χ4,+

]) }

(5.88)

in which we define the

J ′
3,L =

[
−2(εT3 · p1)ε

T
1 + 2(εT1 · p3)ε

T
3 + (εT3 · εT1)(p1 − p3)

]

J ′
3,R =

[
−2(εT4 · p2)ε

T
2 + 2(εT2 · p4)ε

T
4 + (εT4 · εT2)(p2 − p4)

]
(5.89)

which is indeed the J3,L defined in the chapter of 〈TOTO〉 with different normalization

with its relebeling.

Then we need to match the ηij contraction on total energy pole kinematics to πu,ij

contraction on the first term of the partial energy pole kinematics. Actually, we can do

that term by term. We already successfully match the following two term in 〈TOTO〉 and

relabeled 〈O∗OO∗O〉Exc J :

(p1 − p3)
µ(p2 − p4)µ +KT

(E1 − E3)(E2 − E4)

Eu
(5.90)

= (p1 − p3)
iπu,ij(p2 − p4)

j + E13uE24u
(E1 − E3)(E2 − E4)

E2
u

(5.91)

[(
p3 · εT1

) (
p2 · εT3

)
−
(
p1 · εT3

) (
p2 · εT1

)]
−
[(
p3 · εT1

) (
p2 · πu · εT3

)
−
(
p1 · εT3

) (
p2 · πu · εT1

)]

= −
(
p3 · εT1

)
(p2 · p̂u)

(
p̂u · εT3

)
+
(
p1 · εT3

)
(p2 · p̂u)

(
p̂u · εT1

)

= −
(
pu · εT1

)
(p2 · p̂u)

(
p̂u · εT3

)
+
(
pu · εT3

)
(p2 · p̂u)

(
p̂u · εT1

)

= 0

(5.92)
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and the matches we derive in 〈T χ̄Tχ〉 in (5.49):

χ̄2
−(1− /̂p2)

[
(εT1 · εT3)

(
(p1 − p3)µγ

µ +KT
E1 − E3

Eu
γ0

)]
(1 + /̂p4)χ4,+

= χ̄2
−(1− /̂p2)(ε

T
1 · εT3)

[
(p1 − p3)iπ

ij
u γj + E13uE24u

E1 − E3

E2
u

γ0

]
(1 + /̂p4)χ4,+

(5.93)

and

[
(2p3 · εT1)(εT3,iηijγj)− (2p1 · εT3)(εT3,iηijγj)

]
−
[
(2p3 · εT1)(εT3,iπij

u γj)− (2p1 · εT3)(εT3,iπij
u γj)

]

= −(2p3 · εT1)(εT3,ip̂iu)(p̂juγj) + (2p1 · εT3)(εT3,ip̂iu)(p̂juγj)

= −(2pu · εT1)(εT3,ip̂iu)(p̂juγj) + (2pu · εT3)(εT3,ip̂iu)(p̂juγj)

= 0.

(5.94)

In which we use χ̄2,−(1− /̂p2)(E2γ0 + /p2) = (E4γ0 + /p4)(1 + /̂p4)χ4,+ = 0. Then for the

second term of the partial energy pole residue, we can use the 4D trace of the amplitude to

transform the second term to the term vanishing at the total energy pole. Like (4.96) and

ηµνM(h−u,µνψ̄
T
2ψ

T
4 ) = −ū2

(
−2(εT4 · p2) /ε2

T + 2(εT2 · p4) /ε4
T + (εT4 · εT2)( /P 2 − /P 4)

)
u4 = 0

= M(h−u,00ψ̄
T
2ψ

T
4 ) + πij

u M(h−u,ijψ̄
T
2ψ

T
4 )− p̂iup̂

j
uM(h−u,ijψ̄

T
2ψ

T
4 )

= (εT4 · εT2)χ̄2
−(1− /̂p2)[(E2 − E4)(−γ0)− (p2 − p4)i(p̂u)

i(−/̂pu)](1 + /̂p4)χ4,+

+ J ′
3,R · πu ·

[
χ̄2

−(1− /̂p2)(−γ)(1 + /̂p4)χ4,+

]

= (εT4 · εT2)χ̄2
−(1− /̂p2)(

E2 − E4

E2
u

)(−γ0)
(
E2

u − E2
24

)
(1 + /̂p4)χ4,+

+ J ′
3,R · πu ·

[
χ̄2

−(1− /̂p2)(−γ)(1 + /̂p4)χ4,+

]

(5.95)

in which we use the amplitude polarization condition γ · ψ = 0,ψµ = εµu such that for

the external field ū2 /ε2
T = 0 with /ε4

Tu4 = 0, the Dirac equation /P4u4 = ū2 /P2 = 0 ,and
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the similar trick we do at (5.51). Then the second term of the partial energy pole will be

(
J ′

3,L · πu · J ′
3,L

) (
J ′

3,R · πu ·
[
χ̄2

−(1− /̂p2)(−γ)(1 + /̂p4)χ4,+

])

= (εT1 · εT3)2(εT4 · εT2)
(
E13u(−KT + E24u)− (

E1 − E3

Eu
)2[E2

u − E2
13]

)

·
(
(
E2 − E4

E2
u

)
(
E2

u − E2
24

))
χ̄2

−(1− /̂p2)(−γ0)(1 + /̂p4)χ4,+

(5.96)

We found it’s just the (5.53) with different normalization and now we have an addition

factor (εT4 · εT2). So, we could easily identify the match

(
J ′

3,L · πu · J ′
3,L

) (
J ′

3,R · πu ·
[
χ̄2

−(1− /̂p2)(−γ)(1 + /̂p4)χ4,+

])

− 4(εT4 · εT2)ERELΠ
C
1,T χ̄Tχ − 4(εT4 · εT2)E2

RE
2
LΠ

C
2,T χ̄Tχ = −4(εT4 · εT2)KTT

c
T χ̄Tχ.

(5.97)

Then applying all the matches we mentioned before, we could find

〈T TT
1 ψ̄T,−

2 T TT
3 ψT,+

4 〉u

=
1

KTE13uE24u

·
{ [

(M̃iu(γ
T
1γ

T
3γu)π

iuju
u M̃ju(γ

T
3γ

T
4γ−u)) + (εT1 · εT3)(εT2 · εT4)E13uE24u

(E1 − E3)(E2 − E4)

E2
u

]

· χ̄2
−(1− /̂p2)

·
[
(2p3 · εT1)/ε

T
3 − (2p1 · εT3)/ε

T
3 + (εT1 · εT3)

(
(p1 − p3)µγ

µ +KT
E1 − E3

Eu
γ0

)]
(1 + /̂p4)χ4,+

+ 2(εT4 · εT2)KTT
c
T χ̄Tχ

}

(5.98)

trivially satisfy all the pole residue constraints. Moreover, if we require the correlator

to satisfy the full Optical Theorem for the current correlator we have, we could find the

mismatch will only be on the u-channel cause the square of the term we use to match the

ηij contraction and the πij
u contraction. To see the mismatch explicitly we could write the
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correlator in the form of

〈T TT
1 ψ̄T,−

2 T TT
3 ψT,+

4 〉u

=
1

KTE13uE24u
·
[
(M̃iu(γ

T
1γ

T
3γu)π

iuju
u M̃ju(γ

T
3γ

T
4γ−u))

]

· χ̄2
−(1− /̂p2)

[
(2p3 · εT1)(εT3,iπij

u γj)− (2p1 · εT3)(εT3,iπij
u γj) + (εT1 · εT3)(p1 − p3)iπ

ij
u γj
]
(1 + /̂p4)χ4,+

+
1

KT
·
[
(εT1 · εT3)(εT2 · εT4)

(E1 − E3)(E2 − E4)

E2
u

]

· χ̄2
−(1− /̂p2)

[
(2p3 · εT1)(εT3,iπij

u γj)− (2p1 · εT3)(εT3,iπij
u γj) + (εT1 · εT3)(p1 − p3)iπ

ij
u γj
]
(1 + /̂p4)χ4,+

+
1

KT
·
[
(M̃iu(γ

T
1γ

T
3γu)π

iuju
u M̃ju(γ

T
3γ

T
4γ−u))

]
· χ̄2

−(1− /̂p2)(2ε
T
1 · p2)

[
(εT1 · εT3)

E1 − E3

E2
u

γ0

]
(1 + /̂p4)χ4,+

+
2

KT
(εT4 · εT2)Πc

1,T χ̄Tχ

+
E24uE13u

KT
·
[
(ε3,T · ε1,T )(ε2,T · ε4,T )

(
(E1 − E3)(E2 − E4)

E2
u

)]

· χ̄2
−(1− /̂p2)(2ε

T
1 · p2)

[
(εT1 · εT3)

E1 − E3

E2
u

γ0

]
(1 + /̂p4)χ4,+

+
2E24uE13u

KT
· (εT4 · εT2)Πc

2,T χ̄Tχ

(5.99)

Notice in the RHS of the Fermion Optical theorem in (3.64), the flipping external energy

term has the C-conjugate which is the conjugate of the correlator with 2↔ 4 in the gravi-

tational interaction case. In this case the C-operation will give the additional negative sign

117

http://dx.doi.org/10.6342/NTU202302262


doi:10.6342/NTU202302262

for the third term with γ0 sandwiched between the lifters. Then we have

∆OPT = 〈T TT
1 ψ̄T,−

2,AT
TT
3 ψT,+

4,B 〉u(E1∼4, Eu,p1∼4) + C〈T TT
1 ψ̄T,−

2,AT
TT
3 ψT,+

4,B 〉u(−E1∼4, Eu,p1∼4)

− (−2Eu)

(E2
13 − E2

u)(E
2
24 − E2

u)

·
{ [

(M̃iu(γ
T
1γ

T
3γu)π

iuju
u M̃ju(γ

T
3γ

T
4γ−u))

]

·
([
(2p3 · εT1)(εT3,iπij

u γj)− (2p1 · εT3)(εT3,iπij
u γj) + (εT1 · εT3)(p1 − p3)iπ

ij
u γj
]
(1 + /̂p4)

)
AB

− 1

2

(
J ′

3,L · πu · J ′
3,L

) (
J ′

3,R · πu · [(1− /̂p2)(−γ)(1 + /̂p4)]AB

) }

= Eu

[
(ε3,T · ε1,T )(ε2,T · ε4,T )

(
(E1 − E3)(E2 − E4)

E2
u

)]

·
(
(1− /̂p2)(2ε

T
1 · p2)

[
(εT1 · εT3)

E1 − E3

E2
u

γ0

]
(1 + /̂p4)

)

AB

So we only need to shift the correlator with the term vanishing on all the pole residue

〈T TT
1 ψ̄T,−

2,AT
TT
3 ψT,+

4,B 〉

→ 〈T TT
1 ψ̄T,−

2,AT
TT
3 ψT,+

4,B 〉u

− 1

2
Eu

[
(ε3,T · ε1,T )(ε2,T · ε4,T )

(
(E1 − E3)(E2 − E4)

E2
u

)]

·
(
(1− /̂p2)(2ε

T
1 · p2)

[
(εT1 · εT3)

E1 − E3

E2
u

γ0

]
(1 + /̂p4)

)

AB

(5.100)
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Then the u channel correlator,

〈T TT
1 ψ̄T,−

2 T TT
3 ψT,+

4 〉u

=
1

KTE13uE24u

·
{ [

(M̃iu(γ
T
1γ

T
3γu)π

iuju
u M̃ju(γ

T
3γ

T
4γ−u)) + (εT1 · εT3)(εT2 · εT4)E13uE24u

(E1 − E3)(E2 − E4)

E2
u

]

· χ̄2
−(1− /̂p2)

·
[
(2p3 · εT1)/ε

T
3 − (2p1 · εT3)/ε

T
3 + (εT1 · εT3)

(
(p1 − p3)µγ

µ +KT
E1 − E3

Eu
γ0

)]
(1 + /̂p4)χ4,+

− 1

2

(
J ′

3,L · πu · J ′
3,L

) (
J ′

3,R · πu ·
[
χ̄2

−(1− /̂p2)(−γ)(1 + /̂p4)χ4,+

]) }

− 1

2
Eu

[
(ε3,T · ε1,T )(ε2,T · ε4,T )

(
(E1 − E3)(E2 − E4)

E2
u

)]

·
(
χ̄2,−(1− /̂p2)(2ε

T
1 · p2)

[
(εT1 · εT3)

E1 − E3

E2
u

γ0

]
(1 + /̂p4)χ4,+

)

(5.101)

satisfies the full Optical theorem for exchanging gravition. As a remark, if we write the

COT in discontinuity form, in this form we don’t need to do C conjugate (with 2↔ 4) but

flipping the internal energy Eu instead, we could still get the same shift term that makes

COT be satisfied. Then for the contact diagram we could write it as the contact amplitudes

overKT that trivially matches the total energy pole residue, like

〈T TT
1 ψ̄T,−

2 T TT
3 ψT,+

4 〉c =
1

KT
·
{1
2

[
Mc(γ

T
3γ

T
2γ

T
4γ

T
1 )−Mc(γ

T
3γ

T
4γ

T
2γ

T
1 )
]
·
[
Mµu(γ

T
1γ

T
3γu) · (−γµu)

]

+
1

2

[
Mc(γ

T
2γ

T
3γ

T
4γ

T
1 )
] [

/ε1
T(−p3 − p4)µγ

µ /ε3
T + /ε1

T(−p1 − p4)µγ
µ /ε3

T] }

(5.102)

We’ll come up with a problem the for the first ηµν contraction, we already find an equiv-

alent expression on the total energy pole in (5.49) (But we have no known equivalent ex-

pression for the second and the third ηµν that differs a term vanishing on the total energy
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pole.),

(
(p1 − p3)µγ

µ +KT
E1 − E3

Eu
γ0

)
∼
[
(p1 − p3)iπ

ij
u γj + E13uE24u

E1 − E3

E2
u

γ0

]
,

(5.103)

when this term is sandwiched between the lifters and the boundary condition of the spinor.

But because we could easily check the equivalent expression or the RHS one won’t sat-

isfy the Fermion COT for the contact term. So the LHS is the only form that satisfies

all the constants for the contact term. Actually with the (5.102), we already fix the full

〈T TTψ̄TT TTψT〉. We could not write down any additional polynomial ansatz that is van-

ishing at all the pole residue and the Fermion COT.

WT consistency Now we need to check the consistency between the partial energy

pole residue and the longitudinal correlator determined by the WT identities. There are

two consistent longitudinal parts of the correlator given by diffeomorphism WT identity

and by SUSY WT identity.
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〈TL
1 ψ̄2,−T3ψ4,+〉 = (

−p̂1,iεi1
E1

) · p1,jε1,j′〈T jj′

1 ψ̄2,−J3ψ+〉

= (
−p̂1,iεi1
E1

) ·
{
− χ̄2,−

(
γiε4,j〈T ij

2+4T1T3〉′
)
χ4,+ −

1

8
χ̄2,−,A (["p1, $ε1])

AB (ε1,i〈ψ̄i
2+1,−,BT3ψ4,+〉′

)

− 1

8
χ̄2,−,A (["p3, $ε3])

AB (ε3,i〈ψ̄i
2+3,−,BT1ψ4,+〉′

)

− 1

2
(χ̄2,−$ε1χ4,+) ε1,j,0ε4,i,0〈T ij

2+4+1T3〉′ −
1

2
(χ̄2,−$ε3χ4,+) ε3,j,0ε4,i,0〈T ij

2+4+3T1〉′

+
1

16

(
χ̄2,− [$ε1,"p3]

(
ε3,i,0〈ψ̄i

2+1+3,−ψ4,+〉
)
χ4,+

)
(ε1 · ε3)

+
1

32

(
χ̄2,− [$ε1, $ε3]

(
ε3,i,0〈ψ̄i

2+1+3,−ψ4,+〉
)
χ4,+

)
(ε1 · p3)

+
1

16

(
χ̄2,− [$ε3,"p1]

(
ε1,i,0〈ψ̄i

2+1+3,−ψ4,+〉
)
χ4,+

)
(ε1 · ε3)

+
1

32

(
χ̄2,− [$ε3, $ε1]

(
ε1,i,0〈ψ̄i

2+1+3,−ψ4,+〉
)
χ4,+

)
(ε1 · p3)

}

(5.104)

〈T1ψ̄
L
2,−T3ψ4,+〉 = (

−p̂2,iεi2
E2

) · p2,j〈T1ψ̄
j
2,−J3ψ+〉

= (
−p̂2,iεi2
E2

) ·
{
− χ̄2,−

(
γiε4,j〈T ij

2+4T1T3〉
)
χ4,+

− 1

8
χ̄2,−,A (["p1, $ε1])

AB (ε1,i〈ψ̄i
2+1,−,BT3ψ4,+〉

)

− 1

8
χ̄2,−,A (["p3, $ε3])

AB (ε3,i〈ψ̄i
2+3,−,BT1ψ4,+〉

)

− 1

2
(χ̄2,−$ε1χ4,+) ε1,j,0ε4,i,0〈T ij

2+4+1T3〉 −
1

2
(χ̄2,−$ε3χ4,+) ε3,j,0ε4,i,0〈T ij

2+4+3T1〉

+
1

16

(
χ̄2,− [$ε1,"p3]

(
ε3,i,0〈ψ̄i

2+1+3,−ψ4,+〉
)
χ4,+

)
(ε1 · ε3)

+
1

32

(
χ̄2,− [$ε1, $ε3]

(
ε3,i,0〈ψ̄i

2+1+3,−ψ4,+〉
)
χ4,+

)
(ε1 · p3)

+
1

16

(
χ̄2,− [$ε3,"p1]

(
ε1,i,0〈ψ̄i

2+1+3,−ψ4,+〉
)
χ4,+

)
(ε1 · ε3)

+
1

32

(
χ̄2,− [$ε3, $ε1]

(
ε1,i,0〈ψ̄i

2+1+3,−ψ4,+〉
)
χ4,+

)
(ε1 · p3)

}

(5.105)

For the longitudinal part 〈TL
1 ψ̄2,−T3ψ4,+〉, first we take the E12s pole

Res
E12s=0

〈TL
1 ψ̄2,−T3ψ4,+〉 = 0 = M̃3,is,A(h

L
1 ψ̄2ψs)

Πisjs
s,(3/2,3/2)

2
Ψ̃3,js,B(h3

ˆ̄ψ−sψ4) (5.106)
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by the amplitude Ward Identities, we know that M3(hL
1 ψ̄2ψs) = pi1ε

j
1M̃3,ij(h1ψ̄2ψs) =

pµ1ε
ν
1M3,µν(γ1ψ̄2ψs) = 0. And for the other pole for s-channel. Notice the dressed projec-

tor for the ψ̄T,i
− extracted boundary condition will be /̂psπ

ij
s,(3/2,3/2)

1−γ0
2 = 1−γ0

2 /̂psπ
ij
s,(3/2,3/2).

Res
E34s=0

〈TL
1 ψ̄2,−T3ψ4,+〉

= (− p̂1,iεi1
E1

)χ̄2,−,A

(
−(ε1 · p2)ε2,k − (ε1 · ε2)p1,k +

1

8
[/p1

,/ε1]ε2,k

)AB

· (/̂psπ
isjs
s,(3/2,3/2)

1− γ0
2

)BC Res
E34s=0

〈 ˆ̄ψC
1+2,−,jsT3ψ4,+〉

= (
p̂1,iεi1
E1

)χ̄2,−,A

(
[(ε1 · p2)ε2,ks + (ε1 · ε2)p1,ks −

1

8
[/p1

,/ε1]ε2,ks ]/̂ps

)AB

· Πisk′s,B
′

s,(3/2,3/2),BM
k′s
3,B′C(ψ̄−sh3ψ4)χ

C
4,+

= ˜̂ΨA
3,is(T

L
1 ψ̄2,−ψs,+)

Πksk′s
s,(3/2,3/2),AA′

2
MA′B

3,js (ψ̄−sh3ψ4)ψ4,B,+

(5.107)

in which in the third equality we use the fact that in amplitude only the transverse part

survives and in the last equality we use the 3-point WT identity.

〈TL
1 ψ̄2,−ψ̂

A
s,+,is〉 = χ̄2,−,C(

−p̂1,iεi1
E1

)

·
(
/̂p2

(
εT2,is

)
(ps · ε1)− /̂ps

(
εj2πs,ji′s

)
(p2 · ε1)− /̂p2

(
εT2 · p1

)
(ε1,is)

− /̂ps

(
πs,isjp

j
1

)
(ε2 · ε1)−

1

8

(
εT2,is

)
(/̂p2 ["p1, $ε1]) +

1

8

(
εj2πs,jis

)
(["p1, $ε1] /̂p2)

)CA

(5.108)

Then

˜̂ΨA
3,is(T

L
1 ψ̄2,−ψs,+) = 〈TL

1 ψ̄2,−ψ̂
A
s,+,is〉 − 〈T

L
1 ψ̄2,−ψ̂

A
s,+,is〉|Es→−Es

= 2(
p̂1,iεi1
E1

)

[
χ̄2,−

(
(ε1 · p2)ε2,ks + (ε1 · ε2)p1,ks −

1

8
[/p1

,/ε1]ε2,ks

)
/̂psπ

ks
s,is

]A
.

(5.109)

For the pole of E32t and E14t, the consistency could be check if we take 1 ↔ 3 for

all the above derivation. Now we check the partial energy pole residue of the u-channel
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correlator. First we take the E13u pole

Res
E13u=0

〈TL
1 ψ̄2,−T3ψ4,+〉 = 0 = M̃iui′u(h

L
1 h3hu)

Πiui′ujuj
′
u

u,(2,2)

2Eu

˜̂Ψjuj′u,〈T TT
−uψ̄2,−ψ4,+〉

(5.110)

by the amplitude Ward Identities, we know that M3(hL
1 h3hu) = pi1ε

j
1M̃3,ij(h1h3hu) =

pµ1ε
ν
1M3,µν(h1h3hu) = 0. And for the other pole for u-channel

Res
E24u=0

〈TL
1 ψ̄2,−T3ψ4,+〉 = (− p̂1,iεi1

E1
)

(
(ε1 · ε3)p3,a −

1

2
(ε1 · p3)ε3,a

)
ε3,bΠ

abcd
u,(2,2) Res

E24u=0
〈T̂ cd

1+3ψ̄2,−ψ4,+〉

= (
p̂1,iεi1
E1

)

(
−(ε1 · ε3)p3,iu +

1

2
(ε1 · p3)ε3,iu

)
ε3,bΠ

abcd
u,(2,2)M̃3,cd(h−uψ̄2ψ4)

= Ψ̃iui′u
3 (TL

1 T3Tu)
Πiui′ujuj

′
u

u,(2,2)

2Eu
M̃ juj′u

3 (h−uψ̄2ψ4)

(5.111)

in the last line we use the 3-point WT identity,

〈TL
1 T3Tu〉iu,i

′
u =

(−ε1,ip̂i1)
E1

·
[
(ε1· ε3) p3,kε3,lEuπ

k(iu
u πli′u)

u − 1

2
(ε1 · p3)ε3,kε3,lEuπ

k(iu
u πl i′u)

u

+ ε(iu1 pu,kπ
ka
3 π

i′u)b
3 ε3,aε3,bE3 −

1

2
(ε1 · pu)π

iua
3 πi′ub

3 ε3,aε3,bE3

]

Ψ̃3
iu,i′u(TL

1 T3Tu) = 〈TL
1 T3Tu〉iu,i

′
u − 〈TL

1 T3Tu〉iu,i
′
u |Es→−Es

= 2Eu(
p̂1,iεi1
E1

)

[
−(ε1· ε3) p3,kε3,lπk(iu

u πli′u)
u +

1

2
(ε1 · p3)ε3,kε3,lπ

k(iu
u πl i′u)

u

]
,

(5.112)

and with the identity,

Ψ̃iui′u
3 (TL

1 T3Tu)
Πiui′ujuj

′
u

u,(2,2)

2Eu
M̃ juj′u

3 (h−uψ̄2ψ4)

= (
p̂1,iεi1
E1

)

[
−(ε1· ε3) p3,kε3,lEu +

1

2
(ε1 · p3)ε3,kε3,l

]
ε3,lΠ

klmn
u,(2,2)M̃3,mn(h−uψ̄2ψ4)

= (
p̂1,iεi1
E1

)

[
−(ε1· ε3) p3,kEu +

1

2
(ε1 · p3)ε3,k

]
ε3,lΠ

klmn
u,(2,2)M̃3,mn(h−uψ̄2ψ4),

(5.113)

in which we use the fact that amplitude is symmetric and only transverse amplitude sur-

vives , such that in this case we can replace πij
u with ηij .
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Then for the longitudinal part 〈T1ψ̄L
2,−T3ψ4,+〉, first we take the E12s pole

Res
E12s=0

〈T1ψ̄
L
2,−T3ψ4,+〉 = 0 = M̃3,is,A(h1ψ̄

L
2 ψs)

(
Πisjs

s,(3/2,3/2)

)AB

Ψ̃3,js,B(h3ψ̄−sψ4)

(5.114)

by the amplitude Ward Identities, we know that M3(h1ψ̄L
2 ψs) = pi22 M̃3,i2(h1ψ̄2ψs) =

pµ2
2 M3,µ2(γ1ψ̄2ψs) = 0. And for the other pole for s-channel

Res
E34s=0

〈T1ψ̄
L
2,−T3ψ4,+〉

= (− p̂2,iεi2
E2

)χ̄2,−,A

(
−1

8
[/p1

,/ε1]ε1,k/ps
πk,k′

s,(3/2,3/2)

1− γ0
2

)AB

Res
E34s=0

〈 ˆ̄ψ1+2,−,B,k′T3ψ4,+〉

= (
p̂1,iεi1
E1

)χ̄2,−,A

(
1

8
[/p1

,/ε1]ε1,ks/ps
Πks

s,k′s,(3/2,3/2)

)AB

Mk′s
3,BC(ψ̄−sh3ψ4)χ

C
4,+

= Ψ̃A
3,is(T

L
1 ψ̄2,−ψs,+)

(
Πisjs

s,(3/2,3/2)

)

AA′
MA′B

3,js (ψ̄−sh3ψ4)ψ4,B,+

(5.115)

in which in the third equality we use the fact that in amplitude only the transverse part

survives and in the last equality we use the 3-point WT identity,

〈T1ψ̄
L
2,−ψ̂

A
s,+,is〉 = χ̄2,−,C(

−p̂2,iεi2
E2

) ·
(
−
(
εT1,is

) (
$ε
T
1

)
E1 −

1

8

(
εj1πjis

)
(χ̄2,−["p1, $ε1] $$̂ps)

)CA

(5.116)
˜̂ΨA
3,is(T

L
1 ψ̄2,−ψs,+) = 〈TL

1 ψ̄2,−ψ̂
A
s,+,is〉 − 〈T

L
1 ψ̄2,−ψ̂

A
s,+,is〉|Es→−Es

= (
p̂1,iεi1
E1

)

[
χ̄2,−

(
1

8
[/p1

,/ε1]ε1,ks

)
(2 /̂psπ

ks
s,is)

]A
.

(5.117)

For the pole of E32t and E14t, the consistency could be checked if we take 1↔ 3 for

all the above derivation. Now we check the partial energy pole residue of the u-channel

correlator. First we take the E13u pole

Res
E24u=0

〈T1ψ̄
L
2,−T3ψ4,+〉 = 0 = Ψ̃iui′u

3 (T1T3Tu)
Πiui′ujuj

′
u

u,(2,2)

2Eu
M̃ juj′u

3 (h−uψ̄
L
2 ψ4) (5.118)

by the amplitude Ward Identities, we know that M3(h1ψ̄L
2 ψs) = pi22 M̃3,i2(h1ψ̄2ψs) =
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pµ2
2 M3,µ2(h1ψ̄2ψs) = 0. And for the other pole for u-channel

Res
E13u=0

〈T1ψ̄
L
2,−T3ψ4,+〉 = (− p̂2,iεi2

E2
) Res
E13u=0

〈T1T3T̂
iui′u
u 〉Πiui′ujuj

′
u

u,(2,2) · χ̄2,−
(
−γjuε4,j′u

)
χ4,+

= (
p̂2,iεi2
E2

)M̃ iui′u
3 (h1h3hu) · (Πiui′ujuj

′
u

u,(2,2) ) · χ̄2,−
(
γ(juε4,j′u)

)
χ4,+

= M̃iui′u(h1h3hu)
Πiui′ujuj

′
u

u,(2,2)

2Eu
Ψ̃juj′u,〈T−uψ̄L

2,−ψ4,+〉

(5.119)

in which in the second equality we use the fact that in amplitude only the transverse part

survives and its indices are symmetric and in the last equality we use the 3-point WT

identity,

〈T ju,j′u
−u ψ̄L

2,−ψ4,+〉

=
(−ε2,ip̂i2)

E2
·
[
−
(
πu,(juj · ε

j
3

) (
χ̄2,−γ

kπu,j′u)kχ3,+

)
Eu +

1

8

(
ε(ju,T3

)(
χ̄2,−

[
"pu, γ

j′u)
]
$$̂p
3
χ3,+

)]

Ψ̃3
iu,i′u(TL

1 T3Tu) = 〈TL
1 T3Tu〉iu,i

′
u − 〈TL

1 T3Tu〉iu,i
′
u |Es→−Es

= 2Eu(
p̂2,iεi1
E2

)
[
χ̄2,−

(
γ(juε4,j′u)

)
χ4,+

]
.

(5.120)

5.4 SUSY Ward Identity Bootstrap

Because we know that SUSY transformation is just an extension of the diffeomor-

phism. So we could bootstrap it from the WT identity of the diffeomorphism.

5.4.1 〈T ψ̄ψ〉

The general ansatz of the SUSY WT of the three-point correlator will be:

p2,i〈T1ψ̄
i
2,−,Aψ3,+,B〉 = Aij,AB($p3)〈T1T

ij
2+3〉+Bi,AA′($p1, $p3)〈ψ̄i,A′

1+2,−ψ3,+,B〉 (5.121)
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We require it must be no residue contribution on the total energy pole. And by the energy

dimension counting we know that A ∈ O(E0), B ∈ O(E1). The counting of the polar-

ization vector on both sides must match too. The indices of the two-point function are

symmetric so we don’t need to permute the indices and transverse to the momentum. We

also don’t include the unit vector which is a non-local operator in our ansatz, and because

ε1 · ε1 = (ε · p̂1)2, we also don’t include the self-contraction of the polarization vector of

the graviton. Because we have χ2,−χ1,+ = 0. A should have an odd number of spatial

gammamatrices and B should have even, then counting of gammamatrices make the term

not vanishing. Then

Aij,AB($p3) = aε3,iγj

Bi,AB($p1, $p3) = b1ε1,i(p1,kγ
k)(ε1,jγ

j) + b2ε1,i(p1,kε
k
1) + b3ε1,i(p3,kγ

k)(ε1,jγ
j) + b4ε1,i(p3,kε

k
1)

(5.122)

And we require the consistency condition that the 〈TLψ̄Lψ〉 got from SUSY WT

〈TL
1 ψ̄

L
2,−ψ3,+〉 =

ε1,Lε2,L
E1E2

χ̄2,−
[
b1p1,i /p1 /ε1 + b1ε1,i(−E2

1)

+ b2p1,i(p1,kε
k
1) + b2ε1,i(−E2

1) + b3p1,i /p3 /ε1 + b3ε1,i /p3 /p1

+ b4ε1,i(p3,kp
k
1) + b4p1,i(p3,kε

k
1)
]
εT,i3 /̂p3χ3,+

(5.123)

should match the one got from diffeomorphism WT like (F.251):

〈TL
1 ψ̄

L
2,−,Aψ3,+,B〉 = −

1

8

(
p1 · εT3

)
(χ̄2,−["p1, $ε1] $$̂p3χ3,+)

(
εL1 ε

L
2

)

E1E2

(5.124)

Then by the vanishing of ε1,iεT,i3 :

b1 = −b2, b3 = 0, b4 = 0 (5.125)
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then

〈TL
1 ψ̄

L
2,−ψ3,+〉 = b1

ε1,Lε2,L
E1E2

χ̄2,−
[
p1,i /p1 /ε1 − (p1,kε

k
1)
]
εT,i3 /̂p3χ3,+

= b1
ε1,Lε2,L
2E1E2

(p1,iε
T,i
3 )χ̄2,−[ /p1, /ε1] /̂p3χ3,+

(5.126)

Now we could constrain b1 = −b2 = −1
4 , with b3, b4 = 0. But we won’t have a constraint

on a.

Aij,AB($p3) = aε3,iγj

Bi,AB($p1, $p3) = Bi,AB($p1) := −
1

8
ε1,i[ /p1, /ε1]

(5.127)

5.4.2 〈T ψ̄Tψ〉

If we suppose that we could use the same Aij and Bij to write the SUSY WT of the

four-point correlator like

p2,i〈T1ψ̄
i
2,−,AT3ψ4,+,B〉 = Aij,AB($p4)〈T1T

ij
2+4T3〉+Bi,AA′($p1)〈ψ̄i,A′

1+2,−T3ψ4,+,B〉

+Bi,AA′($p3)〈ψ̄i,A′

3+2,−T1ψ4,+,B〉+ Ci,AA′($p1, $p2, $p4)〈ψ̄i,A′

1+2+3,−ψ4,+,B〉
(5.128)

in the previous section, we found, we only need to fix a in the Aij,AB . We could do that

by the match of the correlator longitudinal on leg 1, leg 2, and leg 4 and transverse on the

other legs derived by SUSY WT identities and diffeomorphism WT identities. We only

show the term with Eu in the following equations. We have

〈TLT
1 ψ̄L

2,−,AT
TT
3 ψL

4,+,B〉SUSY = (
−ε2,ip̂i2
E2

) · Aij,AB($p4) · 〈TLT
1 T ij

u T TT
3 〉+ . . . (5.129)

and

〈TLT
1 ψ̄L

2,−,AT
TT
3 ψL

4,+,B〉Diffeo

= (
−ε1,ip̂i1
E1

) · [〈ψ̄L
2 T

ij
u ψ

L
4 〉(εT3,ip3,j)(εT1,kε

k,T
3 )− 1

2
(p3,iε

T
1,i)〈ψ̄L

2 T
TT
u ψL

4 〉] + . . . .

(5.130)
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Then we could require the term with Eu matched under any kinematics, we could choose

the kinematic to be $p1 → 0 to simplify the expression.

lim
E1→0

(
−ε2,ip̂i2
E2

) · Aij,AB($p4) · 〈TLT
1 T ij

u T TT
3 〉 = (

ε2,ip̂i2
E2

)(
ε1,ip̂i1
E1

) · (aεL4,iγj)(−
1

2
(εT1,kp

k
3)ε

T,i
3 εT,j3 )E3

(5.131)

and

lim
E1→0

(
−ε1,ip̂i1
E1

) · [〈ψ̄L
2 T

ij
u ψ

L
4 〉(εT3,ip3,j)(εT1,kε

k,T
3 )− 1

2
(p3,iε

T
1,i)〈ψ̄L

2 T
TT
u ψL

4 〉]

= (
−ε1,ip̂i1
E1

) · [〈ψ̄L
2 T

ij
3 ψ

L
4 〉(εT3,ip3,j)(εT1,kε

k,T
3 )− 1

2
(p3,iε

T
1,i)〈ψ̄L

2 T
TT
3 ψL

4 〉]

= (
ε2,ip̂i2
E2

)(
ε1,ip̂i1
E1

)(
1

2
(p3,kε

k
1,T)(ε

T
3,iε

L,i
4 )(γjε

T,j
3 )).

(5.132)

Then comparing the above two expressions, we could find a = −1. Now plug this into

(5.121) and (5.127), we recover the SUSY WT identity,

p2,k〈T1ψ̄
k
2,−ψ3,+〉 = −〈T1T

kl
2+3〉 εl,3 (χ̄2,−γkχ3,+)−

1

8
["p1, $ε1]

(
ε1,k〈ψ̄k

1+2,−ψ3,+〉
)

= −
(
εT1 · ε3

) (
χ̄2,−$ε

T
1 χ3,+

)
E1 −

1

8

(
ε1 · εT3

)
(χ̄2,−["p1, $ε1] $$̂p3χ3,+)

(5.133)

it’s the same as (F.248) we derived by the supersymmetry transform on the boundary con-

dition.
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5.5 〈ψ̄ψψ̄ψ〉 and Majorana condition

First, referring to [2], we decompose the amplitude into s, t, u channel with the con-

tact term.

M(ψ̄1ψ2ψ̄3ψ4) =
1

S
(Mµs(γ1γ2γs)Mνs(χ̄1χ2γs)) η

µs(µ′
sηνsν

′
s)
(
Mµ′

s
(γ3γ4γ−s)Mν′s(χ̄3χ4γ−s)

)

− 1

T
(Mµt(γ3γ2γt)Mνt(χ̄3χ2γt)) η

µt(µ′
tηνtν

′
t)
(
Mµ′

t
(γ1γ4γ−t)Mν′t

(χ̄1χ4γ−t)
)

− 1

U
(Mµs(γ1γ3γu)Mνu(χ̄1χ3γu)) η

µu(µ′
uηνuν

′
u)
(
Mµ′

u
(γ2γ4γ−u)Mν′u(χ̄2χ4γ−u)

)

+
1

2





2(ε3 · ε2)(ε1 · ε4)Mµt(χ̄3χ2γt)M
µt(χ̄1χ4γ−t)

+ [6(ε3 · ε2)(ε1 · ε4)− 2(ε4 · ε2)(ε1 · ε3)]Mµu(χ̄1χ3γu)M
µu(χ̄2χ4γ−u)

+
3

2
(ε2 · ε3) · εµs

4 Mµs(χ̄1χ2γs) · ενs1 Mνs(χ̄3χ4γ−s)

+
3

2
(ε1 · ε3) · εµs

4 Mµs(χ̄1χ2γs) · ενs2 Mνs(χ̄3χ4γ−s)

+
3

2
(ε3 · ε4) · εµt

1 Mµt(χ̄3χ2γt) · ενt2 Mνt(χ̄1χ4γ−t)

− 5

2
(ε2 · ε4) · εµt

1 Mµt(χ̄3χ2γt) · ενt3 Mνt(χ̄1χ4γ−t)

− 4(ε1 · ε3) · εµt
4 Mµt(χ̄3χ2γt) · ενt2 Mνt(χ̄1χ4γ−t)

+ 4(ε1 · ε2) · εµt
4 Mµt(χ̄3χ2γt) · ενt3 Mνt(χ̄1χ4γ−t)

− 1

2
(ε1 · ε4) · εµu

2 Mµu(χ̄1χ3γu) · ενu3 Mνu(χ̄2χ4γ−u)

− 2(ε2 · ε3) · εµu
4 Mµu(χ̄1χ3γu) · ενu1 Mνu(χ̄2χ4γ−u)

− 2

5
(ε1 · ε2) · εµu

4 Mµu(χ̄1χ3γu) · ενu3 Mνu(χ̄2χ4γ−u)





(5.134)

in which where we define

Mµ3(γ1γ2γ3) = [(ε1 · ε2)(p1 − p2)µ3 + (ε2,µ3)(2ε1 · p2) + (ε1,µ3)(−2ε2 · p1)]

Mν3(χ̄1χ2γ3) = χ̄1γν3χ2.

(5.135)
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The Ward identity of the amplitude is satisfied only when the Majorana condition is ap-

plied. Then because the correlator 〈ψ̄ψψ̄ψ〉 must match the amplitude on the total en-

ergy pole. The majorana condition for the bulk field imply the relationship (A.35) for the

boundary condition χ̄−,0,χ+,0 for fermion field. So the total energy pole residue point out

the Majorana condition is necessary for the gravitino correlator.
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Chapter 6 Conclusion

As we’ve shown in our work, the on-shell bootstrap approach to constraining equal-

time correlators is sufficient to fix the four-point function up to terms that can be associated

with field redefinitions. The constraints include:

1. The residue of the total energy pole must be the amplitude.

2. Cosmological Optical theorems, which lead to constraints such as the residue of

parietal energy poles must be the amplitude times the shifted amplitude, manifest

locality, and the absence of certain invariants.

3. The Ward Takashi identity.

There are many interesting and important questions to pursue. First, so far we have

used the WT identities as derived from how the operator (or fields) transform under the

underlying symmetry. It is interesting to ask if one did not know what precisely is the

symmetry, just the fact that there is a conserved current (or tensor), does the above con-

sistency conditions are sufficient to reconstruct the symmetry. This question will be im-

portant when we extend the analysis to the de Sitter bootstrap, where it is known that

supersymmetry does not allow for de Sitter spacetime. It will be interesting to show that

no Ward-Takahashi Identity for a spin-3/2 current exists that is consistent with the de Sit-
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ter bootstrap. On the other hand, in the thesis, we raise the issue that even for flat space

correlators there are still some unfix terms probably related to the boundary E.O.M or the

field redefinition ambiguity of the correlator. We leave the study of this issue to future

work.
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Appendix A — Notation

A.1 Commutation

A(iBj) =
1

2
· (AiBj + AjBi) (A.1)

A[iBj] =
1

2
· (AiBj − AjBi) (A.2)

for the matrix/operator A and matrix/operator B

[A,B] = AB − BA (A.3)

{A,B} = AB +BA (A.4)
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A.2 Vector Indices

A.2.1 4D metric

ηµν =





1

−1

−1

−1





A.2.2 4D vector

Aµ = ηµνA
ν

A · B = AµBµ

A.2.3 3D vector

Ai = ηijA
i

AiBi = ηijAiBj = A ·B
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A.3 Spin 1/2 polarization and classical field

A.3.1 Gamma Matrices

γ0,AB :=




0 I

I 0





{σi,σj} = 2δij; σ1,αα̇ =




0 1

1 0



 ; σ2,αα̇ =




0 −i

i 0



 ; σ3,αα̇ =




1 0

0 −1





γi,AB :=




0 σi

−σi 0





γ5,AB :=




I 0

0 −I





γµν :=
1

2
[γµ, γν ]

γµνρ :=
1

2
{γµ, γνρ}

A.3.2 4D spin 1/2 representation

χA =




λα+ + λα−

λα̇+ − λα̇−



χ
A =

[
λ∗+

α − λ∗−α λ∗+
α̇ + λ∗−

α̇

]
=
(
χA
)+
γ0 (A.5)
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A.3.3 Momentum notation

• Mom convention : for every boundary condition B0(x) , it’s Fourier transform is

defined by

B0(x) =

∫
d3p

(2π)3
B0(p)e

ip·x (A.6)

and we will use subscripts to label the indices of the momentum like

B1 := B(p1) (A.7)

and for the composite momentum we slightly abuse our notation

B1+2 := B(p1 + p2) (A.8)
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pµ =

[
p0 p1 p2 p3

]

E = |p| =
√
−p · p .= p0

p̂ = p/Ep

Kt :=
∑

i∈external

Ei

σ0 = I

p · σ := E − piσi

p · σ := E + piσi

$$$p := ηijpiγj =




0 piσi

−piσi 0



 =: "p

!!P± :=!!E ± piγi

!!P+ =!!P =:




0 p · σ

p · σ 0





!!P− =:




0 p · σ

p · σ 0





Ea+b+c+... := Ea + Eb + Ec + . . . (A.9)

Es,t,u = |ps,t,u| (A.10)
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ps = p3 + p4 (A.11)

pt = p1 + p4 (A.12)

pu = p2 + p4 (A.13)

S = (p3 + p4)
µ(p3 + p4)µ (A.14)

T = (p1 + p4)
µ(p1 + p4)µ (A.15)

U = (p2 + p4)
µ(p2 + p4)µ (A.16)

(A.17)

A.3.4 Dirac Equation

.∂ := γ0∂0 + γi∂i

(−i .∂ −m)ψ = 0

ψ̄(i .
←−
∂ −m) = 0

A.3.5 Dirac Equation Solution (4D fermionic polarization)

ψ(i)($x, t) = ψu,(i)($x) + ψv,(i)($x)

ψu,(i)($x) =

∫
d3p

(2π)3
1√
2E

u(i)
!p eip

ixieiEt
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ψv,(i)($x, t) =

∫
d3p

(2π)3
1√
2E

v(i)−!pe
ipixie−iEt

ψ̄(i)($x) = ψ̄u,(i)($x) + ψ̄v,(i)($x)

ψ̄v,(i)($x, t) =

∫
d3p

(2π)3
1√
2E

v̄(i)−!pe
ipixie−iEt

ψ̄u,(i)($x, t) =

∫
d3p

(2π)3
1√
2E

ū(i)
!p eip

ixieiEt

.P+u!p = .P−v−!p = 0 = v̄−!p .P− = ū!p .P+

A.3.6 3D Boundary Field (3D asymptotic state for correlator, 3D po-

larization) and Related 4D Classical Solution

We could decompose the boundary condition of the 4D bulk filed into two 3D spinor

fields,

γ0χ± = χ±

γ0χ̄± = χ̄±

, like

χ = χ+ + χ−;χ+ =




λ+

λ+



 ;χ− =




λ−

−λ−



 (A.18)

χ = χ̄+ + χ̄−;χ+ =

[
λ∗+ λ∗+

]
;χ− =

[
−λ∗− λ∗−

]
(A.19)
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Then under the conjugation relationship

χ+/λ+ ← conjugate→ χ+/λ∗+

χ−/λ∗− ← conjugate→ χ−/λ−

(A.20)

we could choose (χ+, χ̄−) (equivalently λ+,λ∗−) to impose the Dirichlet boundary condi-

tion without certaining field and its conjugate at the same time.

Similarly, the 4D polarization spinors could also be decomposed into two 3D spinors,

like for positive energy mode u,

u!p = u+,!p + u−,!p. (A.21)

If we insert this into the Dirac equation we’ll find these two 3D spinor components related

by

u−,!p = (
/p

Ep +m
)u+,!p. (A.22)

Similarly, we have

ū−,!p = ū−,!p(
−/p

Ep +m
). (A.23)

Thus it’s straightforward to match the flat space amplitude with the 3D boundary condition

(χ+, χ̄−)

u!p = (1 +
/p

Ep +m
)u+,!p

ū−,!p = ū−,!p(1−
/p

Ep +m
).

(A.24)

And for the negative energy mode v, we could find

v−!p = (1− /p

Ep +m
)v+,−!p

v̄−,−!p = v̄−,−!p(1 +
/p

Ep +m
).

(A.25)
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A.3.7 Majorana fermions and its images in 3D boundary

We define the B-operator

B = −iγ2 (A.26)

in which satisfy the identity

B = BT (A.27)

B2 = 1 (A.28)

BγµB = −γTµ (A.29)

and we could define charge conjugate under B

C : χ→ Bχ∗

then Majornara condition of the 4D spinor will be

Cχ = χ (A.30)

χ =




υ

(iσ2)υ∗





Now we want the Majornara fermion as the boundary condition of the classical solution,

we want to split it into two 3D spinors:

χ = χ+ + χ− (A.31)

γ0χ± = ±χ± (A.32)
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and we should be careful that

γ0χ
∗
± = ±χ∗

± (A.33)

so we put this decomposition into Majornara condition (A.30):

(
1 + γ0

2
)C(χ+ + χ−) = (

1 + γ0
2

)(χ+ + χ−) = χ+

= (
1 + γ0

2
)(−iγ2)(χ∗

+ + χ∗
−) = (−iγ2)χ∗

− = (−B)χ̄T
−

(A.34)

then we have 3D Majornara condition of fermion

χ̄− = −χT
+B (A.35)

so we find that the dual boundary condition of the 3D Dirichlet boundary condition χ̄−

and χ+ is related under the Majorana condition just like fermion and anti-fermion related

with each other in 4D. And we know there’s no pseudo-Majorana fermion for SO(1, 3)

spinor [24], so it’s only a representation of Majorana spinor.

A.4 Amplitude notation

M in our thesis means the amplitude and the field in the parentheses means the ex-

ternal field’s spin
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(field’s type) notation polarization

scalar O

fermion χ uA

fermion conjugate χ uA

vector (photon) γ εµ

spin 3/2 particle

(gravitino)

ψ uAεµ

spin 3/2 particle conjugate ψ uAεµ

tensor (graviton) h εµεν

and the subscripts mean the label of their momentum, like

φ($p1) = φ1 (A.36)

so take QED Compton Amplitude as an example, we haveM(γ1χ̄2χ3) = ū2 . γ1u3 and

we define the amplitude with the polarization of the field extracted (the indices on the

amplitude M is the same order as the field if not all the polarization field is extracted then

the indices with the same scripted number as its field)

M(γ1χ̄2χ3) = ū2 .γ1u3 = εµ1
1 Mµ1(γ1χ̄2χ3) = εµ1 ū2,AM

AB
µ (γ1χ̄2χ3)u3,B (A.37)

with

Mµ1(γ1χ2χ3) = ū2γµ1u3 (A.38)

MAB
µ (γ1χ2χ3) = γA,B

µ (A.39)
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and because the polarization of amplitude has the following property

pµεµ = 0→ ε0 = p̂ · ε = −p̂iεi (A.40)

so we could one step further extract the 3D polarization vector and have vector indices

amplitude

M(γ1χ̄2χ3) = εµ1
1 Mµ1(γ1χ̄2χ3) = εi11 M̃i1(γ1χ̄2χ3) = εi11 M̃i1(γ1χ̄2χ3) (A.41)

in explicit form

M̃i1(γ1χ̄2χ3) = −p̂i1M0(γ1χ̄2χ3) +Mi1(γ1χ̄2χ3) = −p̂i1ū2γ0u3 + ū2γi1u3 (A.42)

A.5 (Uncontracted)Cosmological Correlator, Contracted

Cosmological Correlator and in-in correlator

We label the correlator with the wedge bracket and the boundary field (as Dirichlet

boundary condition of Equation of Motion) inside the bracket:
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(Field’s Type) Operator Boundary Condition

scalar O φ0

fermion χ+ χ+0,A

fermion conjugate χ− χ−0.A

vector (photon) J ε0,i

spin 3/2 particle

(gravitino)

ψ+ χ+,Aε0,i

spin 3/2 particle conjugate ψ− χ−.Aε0,i

tensor (graviton) T ε0,iε0,j

(Uncontracted) Cosmological Correlator

In the main context, we define the correlator with the expansion of the wavefunction

with the boundary condition extracted. So the (Uncontracted) Cosmological Correlator

will have free indices like the QED Compton correlator will be labeled as

〈J i
1χ−,2,Aχ+,3,B〉 =

(
(1−!!̂p2)

−γ0p̂i1 + γi

Kt
(1 + $$̂p3)

)

AB

(A.43)

Contracted Cosmological Correlator

For convenience, we could define the correlator contracted with the boundary field

and then just omit the respondent indices

〈J1χ−,2,Aχ+,3,B〉 =
(
(1−!!̂p2)

−γ0p̂1,iεi1 +##ε1
Kt

(1 + $$̂p3)

)

AB

(A.44)

149

http://dx.doi.org/10.6342/NTU202302262


doi:10.6342/NTU202302262

if every boundary filed is contracted inside the correlator:

〈J i
1χ−,2χ+,3〉 = χ2,−

(
(1−!!̂p2)

−γ0p̂i1 + γi

Kt
(1 + $$̂p3)

)
χ3,+ (A.45)

Notice for the fermionic correlator, the four-component fermionic 3D field χ+/χ̄−

is exactly the two-component 3D fermionic field＇s embedding, as (A.18),(A.19) shows.

So we also have a two-component form that can be transformed by four-component re-

spondent ones.

〈J1χ−,2χ+,3〉 = χ2,−

(
(1−!!̂p2)

−γ0p̂1 · ε1 +##ε1
Kt

(1 + $$̂p3)

)
χ3+

=

[
−λ∗2,− λ∗2,−

](
(1−!!̂p2)

−γ0p̂1 · ε1 +##ε1
Kt

(1 + $$̂p3)

)



λ3,+

λ3,+





= λ∗2,−{
2

Kt
· [−(p̂2 · σ)(p̂1 · ε1)− (p̂3 · σ)(p̂2 · ε1)

− (ε1 · σ) + (p̂2 · σ)(ε1 · σ)(p̂1 · σ)]}λ3,+

= 〈J1λ
∗
2,−λ3,+〉

〈J i
1λ

∗
2,−,αλ3,+,α̇〉 =

2
[
−(p̂2 · σ)

(
p̂i
1

)
− (p̂3 · σ)

(
p̂i
2

)
− (σi) + (p̂2 · σ) (σi) (p̂1 · σ)

]
αα̇

Kt

(A.46)

in-in correlator

For in-in correlator respondent to correlator we label the in-in correlation function

with

〈χ−,−p,Aχ+,p,B〉in−in =
(1− γ0)

2

1

2〈χ−,−p,Aχ+,p,B〉
(1 + γ0)

2
=

(1− γ0)
2

(− . p̂)
2

(1 + γ0)

2

(A.47)
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Appendix B — Cosmological

Background and Wave Function

We can construct a physical state as [30] do. And define the state at the current time

as 〈φ0|. Then, we can date back the 〈φ0| from current time t = 0 to past time t = η < 0

by the equation 9.1.34 in [30].

〈φn,−ndη|φn+1, (−(n+ 1)dη)〉

=

∫
dπn+1〈φn,−(n+ 1)dη|exp(−iH(φ̂(−(n+ 1)dη), π̂(−(n+ 1)dη))dη)|πn+1,−(n+ 1)dη〉

· 〈πn+1,−(n+ 1)dη|φn+1,−(n+ 1)dη〉

=

∫
dπn+1

2π
exp[−iH(φn,πn+1)dη + i(φn − φn+1)πn+1]

〈πn+1,−(n+ 1)dη|φn+1,−(n+ 1)dη〉 = 1

2π
exp(iφn+1πn+1).

(B.48)

and if we take dη → 0 and write φn($x)→ φ(t, $x),πn+1($x)→ π(t, $x)

∫
dφn($x) 〈φn,−ndη|φn+1, (−(n+ 1)dη)〉 →

∫
dφ(t, $x)

∫
dπ(t, $x)

2π
exp{[−iH(φ(t, $x),π(t, $x)) + i∂tφ(t, $x)πn+1]dt}.

(B.49)
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then we’ll have

〈φ0| =
∫ ∏

!x

dφ1($x) 〈φ0, t = 0|φ1, t = −dη〉 〈φ1, t = −dη|

=

∫ ∏

!x

dφ2($x)

∫ ∏

!x

dφ1($x) 〈φ0, t = 0|φ1, t = −dη〉 〈φ1, t = −dη|φ2, t = −2dη〉 〈φ2, t = −2dη|

=

∫

φ0=φ′(0)

∏

t,!x

dφ′(t, $x)

∫ ∏

t,!x

dπ′(t, $x)

2π

exp
[
i

∫ η0

−∞
d4x {∂tφ′(t, $x)π′(t, $x)−H(φ′(t, $x),π′(t, $x))}

]
〈φ′(η),−∞|

=

∫

φ0=φ(0)

Dφ

∫
Dπ

2π
exp

[
i

∫ η0

−∞
d4x {∂tφ(t, $x)π(t, $x)−H(φ(t, $x),π(t, $x))}

]
〈φ(η),−∞| .

(B.50)

if the boundary field is originated by some field we certain in the far past 〈φ−∞|, then we

could write

〈φ0| =
∫

φ0=φ(0),φ−∞=φ(−∞)

Dφ

∫
Dπ

2π
exp

[
i

∫ η0

−∞
d4x {∂tφ(t, $x)π(t, $x)−H(φ(t, $x),π(t, $x))}

]
〈φ−∞| .

(B.51)

And because the saddle point of the conjugate field is

π(t, $x) = π0(t, $x) := −∂tφ(t, $x). (B.52)

suggested by [30] for quadratic Hamiltonian for the kinematic term. Then if we integral

out the conjugate field π, we’ll have

〈φ0| =
∫

φ0=φ(0),φ−∞=φ(−∞)

Dφ exp
[
i

∫ η0

−∞
d4x

{
−(∂tφ(t, $x))2 −H(φ(t, $x),π(t, $x))

}]
〈φ−∞|

=

∫

φ0=φ(0),φ−∞=φ(−∞)

Dφ exp
[
i

∫ η0

−∞
d4xS[φ(t, $x)]

]
〈φ−∞| .

(B.53)

inwhich the action defined asS[φ(t, $x)] :=
∫ η0
−∞ d4x {−(∂tφ(t, $x))2 −H(φ(t, $x),π(t, $x))}.

It’s the Path Integral formalism of the field with φ0 as a boundary condition in current time
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t = 0. And the φ0 spectrum is decided by the same Path Integral

Ψ[φ0] = 〈φ0|Ω0〉 =
∫

φ0=φ(0),φ−∞=φ(−∞)

Dφ exp
[
i

∫ η0

−∞
d4xS[φ(t, $x)]

]
〈φ−∞|Ω0〉

= N

∫

φ0=φ(0),φ−∞=φ(−∞)

Dφ exp
[
i

∫ η0

−∞
d4xS[φ(t, $x)]

]

(B.54)

in which N = 〈φ−∞|Ω0〉 is a constant in the path integral and independent of φ0 and

related to our setting at the far past vacuum. Without loss of generality, in this paper, we

set N = 1 in this thesis. As [12] and [4] paper do, we define the φ0 component of the

background as the ”Wave function.”

It can be interpreted as the wave function of the universe, called Hartle-Hawking

Wave Function Ψ[h0,ij,φ0] when the metric h0,ij is metric on the boundary in our La-

grangian. And the Einstein equationG00 = 0 will be interpreted as Wheeler-Dewitt equa-

tion, HΨ[h0,ij,φ0] = 0.[13]
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Appendix C — Feynman rules from

eiScl

In this section, we apply the discussion in the section (2.4) into the most simple φ3

theory to derive the Feynman Rule by expanding the classical action. And because of the

nontrivial boundary action of the fermion, we derive the Feynman Rule for some of the

fermion correlators by expanding the boundary action of the fermion.

C.1 Feynman Rule from Bulk Action

Then we demonstrate how we get the Feynman rule of the bosonic field by φ3-theory,

iScl =
i

2

∫
d4x(−∂µφcl∂

µφcl) +
2g

3
φ3
cl =: s(0)cl + gs(1)cl + g2s(2)cl + . . . . (C.55)

The E.O.M reads (Notice coupling constant is normalized in E.O.M.)

!φcl = −gφ2
cl

(C.56)
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with the classical solution perturbatively expand by the Schwinger-Dyson equation (2.45)

φcl(t, $x) = φ(0)
cl (φ0, t, $x) + gφ(1)

cl (φ0, t, $x) + . . .

φ(0)
cl (t, $x) =

∫
d3x′K($x, $x′, t)φ0($x

′) =

∫
d3p

(2π)3
K($p, t)φ0($p) ; !t,!xφ

(0)
cl (t, $x) = 0

φ(1)
cl (t, $x) = −

∫
d3x′d3t′G($x, $x′, t, t′) · (φ(0)

cl ($x
′, t′))2

= −
∫

d3p1
(2π)3

∫
d3p2
(2π)3

∫
d3p3
(2π)3

d3t′ei!p1·!x ·G($p1, t, t
′)φ(0)

cl ($p2, t
′)φ(0)

cl ($p3, t
′)δ3

(
3∑

a

$pa)

)

(C.57)

and zero-order expansion will be the two-point correlator will be

s(0)cl = − i

2

∫
d4(∂µφcl)(∂

µφcl) = −
i

2

∫
d4x∂µ(φ

(0)
cl ∂

µφ(0)
cl )− φ

(0)
cl !φ

(0)
cl = − i

2

∫
d3xφ(0)

cl ∂
0φ(0)

cl

=
1

2

∫
d3p

(2π)3
E · φ0(−$p)φ0($p) =

∫
d3p

(2π)3
〈O−pOp〉 · φ0(−$p)φ0($p)

〈O−pOp〉 =
∑

perm.

E

2
= E.

(C.58)

The first-order expansion will be the 3-point correlator

s(1)cl =
i

2

∫
d4x(−2)∂µφ(1)

cl ∂
µφ(0)

cl +
2

3
(φ(0)

cl )
3

=
3∏

a

(∫
d3pa
(2π)3

φ0($pa)

)
δ3
(

4∑

a

$pa

)
〈O1O2O3〉

1

g

〈O1O2O3〉 =
2g

(KT − iε)

(C.59)

in which we apply the integral by parts and the fact that we have three equivalent φ fields

so when identifying the correlator we should include all the permutated indices of the

momentum. And we take the boundary value of the perturbative classical solution with

φ(0)
cl = φ0($x) and

φ0($x) = φcl(0, $x) = φ(0)
cl (0, $x) + g · φ(1)

cl (0, $x) + . . . (C.60)
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so

φ(n≥1)
cl (0, $x) = 0. (C.61)

The second-order expansion will be the 4-point correlator

s(2)cl =
i

2

∫
d4x(−2)∂µφ(2)

cl ∂
µφ(0)

cl − ∂µφ
(1)
cl ∂

µφ(1)
cl + 2(φ(1)

cl )(φ
(0)
cl )

2

=
4∏

a

(∫
d3pa
(2π)3

φ0($pa)

)
δ3
(

4∑

a

$pa

)
〈O1O2O3O4〉

1

g2

〈O1O2O3O4〉 = (− i

2
g2)

∑

perm.

∫ 0

−∞
dt

∫ 0

−∞
dt′ei(E1+E2)t′G($p1 + $p2, t, t

′)ei(E3+E4)t

=
−4g2

E12sE34sKT
+ (t) + (u)

(C.62)

in which we apply the first-order expansion of EOM

!φ(1)
cl = −(φ(0)

cl )
2. (C.63)

Notice the correct normalization of the correlator will make the Optical theorem (3.33) be

satisfied.

In this most simple example, we can find the singularity identity is trivially true for

this example. And the correlator could only have total and partial energy singularities.

Res
KT→0

〈O1O2O3〉 = M(O1O2O3) = 2 (C.64)

Res
KT→0

〈O1O2O3O4〉s = Ms(O1O2O3O4) =
4

(E12)2 − E2
s

=
4

S
(C.65)

Res
E12s→0

〈O1O2O3O4〉s = Ms(O1O2Os) ·
1

2Es
(〈O3O4Os〉 − 〈O3O4O−s〉)

=
−4

E2
34 − E2

s

(C.66)

In (C.59) and (C.62), we show that the correlator from expansion should satisfy the Feyn-
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man Rule we suggest in the (2.52) and (2.53). And for other theories, the calculations are

similar to the φ3-theory that we show in App. C.3. So the (2.52) and (2.53) are generally

correct for the correlator expanded from the classical bulk action.

C.2 Bounary Action

To get the correct correlator with correct relative normalization and WT identity,

we need to be careful to add the correct boundary action, carefully expand the classical

action and when identifying the correlator we should be careful to the permutation of the

same field. And, for the fermion case, we need to consider how to match the 4D classical

solution of the E.O.M to the 3D Dirichlet boundary condition. In general, the action of

massless scalar respecting 3D rotation invariance when there’s a boundary at t = 0 is

S = −1

2

∫ t=0

−∞
d4x(∂µφ)

2 + c

∫

t=0

d3xφ∂0φ (C.67)

in which c is a unfix coefficient which will cause a relative coefficient between 2pts and

higher points correlators if we put the Schwinger Dyson equation in. To fix this coefficient

we need to consider the boundary condition setting when we solve the EOM of scalar

!φ = 0 (C.68)

It’s the second derivative differential equation on time, so we know we need to set the

Dirichlet boundary condition ”or” Neumann Boundary condition, for our definition of

Cosmological correlator we choose Dirichlet so we fix the boundary value on φ($x, t =
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0) = φ0 but not on its derivative ∂0φ($x, t)|t=0:

δφ($x, 0) = 0; δ(∂0φ($x, 0)) .= 0 (Dirichlet) (C.69)

and do the variation on our action and require it vanish at EOM, !φ = 0:

δS = c

∫

t=0

d3xφδ(∂0φ) = 0 (C.70)

To render the equation ofmotion a legitimate saddle point of the Lagrangian, it is necessary

to establish c = 0. Thus, the accurate imposition of boundary conditions necessitates an

appropriate formulation of the kinetic Lagrangian, which generally comprises both bulk

and boundary components. Then we get the scalar kinematic action we use to derive the

Feynman rule in the previous section.

There’s another perspective to set the c = 0, it’s the Hamiltonian approach, we view

the Lagrangian as a canonical formalism from some legal HamiltonianH(φ,π = −∂0φ).

Notice it should not have a dependency on ∂0π = −∂20φ. Then we rewrite the Lagrangian

to absorb the boundary action in the bulk through the integral by parts

S = −
∫ t=0

−∞
d4x(1− c)(∂µφ)

2 − cφ!φ (C.71)

and it should be derived from the Hamiltonian approach

S =

∫ t=0

−∞
d4xπ∂0φ+H(φ,π = −∂0φ)

=

∫ t=0

−∞
d4x− (∂µφ)

2 +H ′(φ,π = −∂0φ)
(C.72)

but

φ!φ = φ∂0π − φ∇2φ (C.73)
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So any Lagrangian with c .= 0 could not be derived from any legal Hamiltonian. We

need to set c = 0. And we would know the unitary identity of the correlator relies on the

legal Hamiltonian, so the 4pt COT setting the relative coefficient between 2pts and higher

points correlator, equivalently, it set c = 0 here.

After we set a proper Hamiltonian, we put the free-field solution

φ($x, t) =

∫
d3p

(2π)3
ei!p·!x · φ0($p)e

iEt (C.74)

Notice Bunch-Davies vacuum requires the field to be convergent at far past. Then, We

have

iS = − i

2

∫
d4x(∂µφ)

2 = − i

2

∫
d3xφ0(−$p)(∂0φ($p))|t=0 =

∫
d3p

(2π)3
〈O−pOp〉 · φ0(−$p)φ0($p)

(C.75)

〈O−pOp〉 =
∑

perm

E

2
= E. (C.76)

We note that the boundary action for the scalar field is trivial if we write the bulk field in

the quadratic and Lorentz invariant form without the second derivative in time. And by a

similar approach, we could show for the massless vector field, the boundary action is still

trivial

S = −1

2

∫ 0

−∞
d4x

1

4
(Fµν)

2 +

∫

t=0

d3x
(
b · Ai∂0Ai + c · Ai∂iA

0 + d · A0∂0A
0
)
. (C.77)

• Temporal Gauge: A0(t, $x) = 0.

Then the variation on the boundary will all be Dirichlet like δ(Ai(t = 0, $x)) =

δA0(t = 0, $x) = 0. We could fix the action (C.77) to be

b = 0, c = 0, d = 0 (C.78)
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by the requirement that the variation of action at ∂µF µν = 0 vanishing. (Before we

take the gauge condition.)

∂t(∂
iAi($x, t)) = 0

!Ai($x, t)− ∂i∂jAj($x, t) = 0

(C.79)

The free field equation will be

Ai($p, t) = [πije
iEt − p̂ip̂j]Aj,0($p) (C.80)

in the momentum space. Notice Bunch-Davies vacuum requires the field to be con-

vergent at far past.

• Lorentz Gauge: ∂0A0($x, t) = −∂iAi($x, t).

The boundary condition will be δ(Ai(t = 0, $x)) = δ(∂0A0)(t = 0, $x) = 0. For A0

it’s the Neumann Boundary condition. We could fix the action (C.77) to be

b = 0, c = 0, d = 0 (C.81)

by the requirement that the variation of action at ∂µF µν = 0 vanishing.(Notice, the

variation δAµ(t, $x) is vanishing on the boundary but not on the bulk.)

Ai($p, t) = eiEtAi,0($p)

A0($p, t) = −p̂iAi($p, t)

(C.82)

Notice Bunch-Davies vacuum requires the field to be convergent at far past.

No matter what boundary condition setting (with the respondent form of action) and
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the gauge condition we take, the correlator we expand from the classical action is the same

iS[Aµ,cl] =
1

2

∫
d3p

(2π)3
〈J iJ j〉Ai,0(−$p)Aj,0($p) (C.83)

〈J iJ j〉 =
∑

perm.

E

2
(πij) = E(πij) (C.84)

Notice this result is satisfied and could be bootstrapped by the 2-point WT identity of the

photon correlator.

Similar to the massless photon, we need to add the boundary action of graviton

S = Sbulk + Sbdry (C.85)

Sbulk =

∫ t=0

−∞
d4x
√
−detgR (C.86)

we fix the normalization to be 2 to the 2pt normalization we want. If want to fix the

boundary term of the graviton, we need to apply the proper boundary condition consistent

with the gauge we choose.

• Temporal Gauge : h0µ = 0

The consistent boundary condition variation should be δh0µ(t = 0, $x) = δhij(t =

0, $x) = 0, then the Sbdry could be fixed as [28] showed, first proposed by Hawking

and Gibbens.

Sbdry =

∫

t=0

d3x
√
−detgK (C.87)

in which the extrinsic curvature K is defined as

K = 2∇µnµ (C.88)
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nµ = (1, 0, 0, 0) is the normal vector of our boundary. This boundary action is

called Hawking-Gibbens boundary action. Then we could solve the EOM

G00 = 0 = (ηij∇2 − ∂i∂j)hij

G0i = 0 = ∂0(−∂jhij + ∂ih)

Gij = 0 = −∂k∂(ihj)k −
1

2
(!hij + ∂i∂jh) +

ηij
2
(!h− ∂k∂lhkl) = 0

(C.89)

and we can solve EOM with the aid of

ηijGij = ∂20h = 0 (C.90)

and because we require limt→−∞ h < ∞ then ∂0h = 0 = ∂0 − ∂jhij , so Gij = 0

could be simplified as

(∂20 + E2)(πikπjl)hij = 0 (C.91)

in the momentum space. So the solution will be

hij(t, $x) =

∫
d3p

(2π)3
ei!p·!x

(
(πikπjl)e

iEt + (η(ikηj)l − πikπjl)
)
hkl
0 ($p) (C.92)

If we take this back to the Einstein action with the Hawking-Gibbens boundary term

to the second order

Ψ[hij($x, t)] = iS(2) =

∫
d3p

(2π)3
〈Tij,−pTkl,p〉hij

0 (−$p)hkl
0 ($p) +O(h3) (C.93)

we could get the 2pts correlation function

〈Tij,−pTkl,p〉 =
∑

perm.

E

2
(πikπjl) = E(πikπjl) (C.94)

• Lorentz Gauge : ∂µhµν For the Lorentz gauge the consistent field variation on the
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boundary must be δ∂0h0i(t = 0, $x) = δh00(t = 0, $x) = δhij(t = 0, $x) = 0.

There is some Neumann condition on the gauge component, so we cannot apply

the Hawking Gibbens boundary term. Actually, we can expand the action in the

Lorentz gauge and bootstrap the boundary term with the ansatz of the boundary

term then we’ll get the action (We have checked this action automatically respects

the remanent gauge invariance.)

S(2) =

∫ t=0

t=−∞
d4x− 1

4
∂ρhµν∂

ρhµν − 1

2
∂ρhµν∂

νhµ
ρ +

∫

t=0

d3x2h0i∂0h
0i + h0

i ∂
ih00

(C.95)

such that δS(2) = 0 under the harmonic EOM

!hµν = 0 (C.96)

with the solution

hµν($p, t) = hµν,0($p)e
iEt (C.97)

andwe take back the classical action and replace the h00 = p̂ip̂jhij and h0i = −p̂jhij

then we would get the same 2-point correlation as the temporal gauge

Ψ[hij($x, t)] = iS(2) =

∫
d3p

(2π)3
〈Tij,−pTkl,p〉hij

0 (−$p)hkl
0 ($p) +O(h3) (C.98)

then

〈Tij,−pTkl,p〉 =
∑

perm.

E

2
(πikπjl) = E(πikπjl) (C.99)

Just as the bosonic action, we improve the boundary term discussion of AdS fermion in

[16] and adapt it to flat space, we propose that the action of the massless fermion is also
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should be completed with a boundary term which is 3D rotation invariance.

S =

∫
1

2
χ̄(−i .∂)χ+

1

2
χ̄(−i .

←−
∂ )χ−mχ̄χ d4x (C.100)

+

∫
b χ̄0χ0 + c χ̄0γ

0χ0 d
3x (C.101)

Notice the EOM won’t be influenced by the boundary term:

(−i .∂ −m)χ = 0 (C.102)

χ̄(i .
←−
∂ −m) = 0 (C.103)

and for a nature decomposition on half-space, we define

χ = χ+ + χ− (C.104)

χ̄ = χ̄+ + χ̄− (C.105)

γ0χ± = ±χ± (C.106)

χ̄±γ0 = ±χ̄± (C.107)

we can choose (χ+, χ̄−) (individual have 2 d.o.f) as our field and their conjugate mo-

mentum will be (χ−, χ̄+). Notice for our free EOM has a general solution composed of

positive and negative energy modes with 2 coefficients for every momentum, then we can

only have ”Two” boundary conditions. And for a well define wave function correlator de-

pending on the boundary field, we naturally choose the following Two Dirichlet boundary

conditions:

(χ+(t = 0, $x), χ̄−(t = 0, $x)) = (χ+,0, χ̄−,0)

(χ+(t = −∞(1− iε), $x), χ̄−(t = −∞(1− iε), $x)) = (0, 0)

(C.108)
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to select the positive energy mode and it’s easy to check the boundary condition at tilt

negative infinity will set the coefficient of negative energy mode to be zero.

The Dirichlet boundary condition requires that if our EOM solution (classical solu-

tion) is the saddle point of the Lagrangian which respect Lorentz invariant in bulk among

all the function respecting Dirichlet ONLY:

δS|χcl,χ̄cl
= 0 (under δχ+,0(p) = 0, δχ̄−,0(p)) = 0) (C.109)

We can use this condition to constraint the coefficients in our action to be (we assume

Sintis simple or it won’t have any derivative on the fermion field)

δS|χcl,χ̄cl
=

∫
d3x(i

1

2
)δχ̄0γ

0χ0 − i
1

2
χ̄0γ

0δχ0 + bδχ̄0χ+ bχ̄0δχ0 + cδχ̄0γ0χ+ cχ̄0γ0δχ0

(C.110)

=

∫
d3x(i

1

2
+ c)δχ̄+,0χ0 − (i

1

2
− i+ c)χ̄0δχ0,− + bδχ̄0,+χ0 + bχ̄0δχ0,−

(C.111)

= 0 (C.112)

(under δχ0
+,0(p) = 0, δχ̄0

−,0(p)) = 0) (C.113)

so we have i12 + c = i12 − c = −b, then we have

c = 0; b = − i

2
(C.114)

and because the definition of the correlator is related to the wave function

Ψ[(χ+,0, χ̄−,0)] = eiS(χcl(χ+,0),χ̄cl(χ̄−,0)) (C.115)
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So we start all the theory from the action:

S =

∫
(1/2) χ̄(−i .∂)χ− (1/2)χ̄(−i .

←−
∂ )χ−mχ̄χ d4x (C.116)

+

∫
(−i/2) χ̄0χ0 d

3x (C.117)

And by this, if we take the classical solution, (2.34), and (2.35) into the action, we would

find that the bulk term is just vanishing because it’s proportional to E.O.M. As a remark,

it’s also the reason why completing the bulk action with the boundary term is necessary.

In the end, we would get the two-point correlator:

iScl =

∫
(1/2) χ̄0χ0 d

3x =

∫
d3p

(2π)3
(1/2) χ̄0(−$p)χ0($p)

=

∫
d3p

(2π)3
(1/2) χ̄0,−(−$p)(1 +

/p

E +m
)(1 +

/p

E +m
)χ0,+($p)

=

∫
d3p

(2π)3
χ̄0,−(−$p)

/p

E +m
χ0,+($p)

=

∫
d3p

(2π)3
χ̄0,−(−$p)〈χ−

0 (−$p)χ+
0 ($p)〉χ0,+($p)

〈χ−
0 (−$p)χ+

0 ($p)〉 =
/p

E +m
(C.118)

for massless fermion what we do for the bootstrap

〈χ−
0 (−$p)χ+

0 ($p)〉m=0 =
/p

E
= /̂p (C.119)

Similarly, we start with the action for massless gravitino with the boundary term, then

constrain the boundary term by the correct variation of the field on the boundary, which

is up to our choice of gauge. Similar discussion for EAdS we can view [8].
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• Lorentz gauge: γµψµ = ψ̄µγµ = 0

S =

∫ t=0

t=−∞
d4xψ̄µ(iγ

µνρ)(−1

2
∂ν +

1

2

←−
∂ν)ψρ +

∫

t=0

d3xbψ̄i
0ψi,0 + c(ψ̄i

0γi)(γ
jψ0,j)

+ dψ̄i
0γ0ψi,0 + eψ̄0

0γ0ψ0,0

(C.120)

The bold symbol 0 means the boundary condition to distinguish the boundary con-

dition and 0 vector component. Notice for the Lorentz gauge

γ0ψ0,± = −γiψi
∓

ψ̄0,±γ0 = −ψi
∓γi

(C.121)

Then, we could fix the ansatz by the variation of the field on the boundary, we have

the consistent variation δψ+,i($x, t = 0) = δψ̄−,i($x, t = 0) = 0 and δψ−,0($x, t =

0) = −δ(γ0γiψi
+($x, t = 0)) = 0 = δψ̄+,0($x, t = 0) = −δ(ψ̄i

−($x, t = 0)γiγ0).

In contrast,δψ−,i($x, t = 0) .= 0 .= δψ̄+,i($x, t = 0) and δψ+,0($x, t = 0) =

−δ(γ0γiψi
−($x, t = 0)) .= 0 .= δψ̄−,0($x, t = 0) = −δ(ψ̄i

+($x, t = 0)γiγ0).

δ(S) = 0 =

∫

t=0

d3x
i

2
δψ̄0,+,iψ

i
0,+ +

i

2
ψ̄0,−,iδψ

i
0,− +

i

2
δψ̄0,−,0ψ

0
0,− +

i

2
ψ̄0,+,0δψ

0
0,+

+ b(δψ̄0,+,iψ
i
0,+ + ψ̄i

−δψ0,−,i) + c(δψ̄0,−,0ψ
0
0,− + ψ̄0

0,+δψ0,+,0)

+ d(δψ̄0,+,iψ
i
0,+ − ψ̄i

−δψ0,−,i) + e(−δψ̄0,−,0ψ
0
0,− + ψ̄0

0,+δψ0,+,0)

(C.122)

The coefficient should be fixed as i(b+d) = i(b−d) = i(c−e) = i(c+e) = 1
2 ,then

c = e = 0

b = c =
−i
2

(C.123)

S =

∫ t=0

t=−∞
d4xψ̄µ(iγ

µνρ)(−1

2
∂ν +

1

2

←−
∂ν)ψρ +

∫

t=0

d3x
−i
2
ψ̄µ
0ψµ,0 (C.124)
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Similar to fermion E.O.M, we could solve the E.O.M

γν(∂[νψρ]) = Mρ = 0 (C.125)

after we apply the gauge condition we’ll have the simplified E.O.M.

/∂ψρ = 0 (C.126)

and under the Lorentz gauge, this also implies ∂ρψρ = 0. Then it will be like the

case of massless fermion. And if take the classical solution to the boundary t = 0,

ψ−
0,µ = (

/p

E +m
)ψ0,+,µ

(C.127)

ψ̄+
0,µ = ψ̄−

0,µ(
−/p

E +m
). (C.128)

Notice that if we take the classical solution into action, the bulk term should be

vanishing too, then the two-point function is determined by the boundary term:

iScl =

∫
1

2
ψ̄µ
0ψ0,µ =

∫
1

2
ψ̄µ
0,−ψ

−
0,µ +

1

2
ψ̄µ
0,+ψ

+
0,µ =

∫
d3p

(2π)3
ψ̄µ
0,−,−!p/̂pψ

+
0,µ

=

∫
d3p

(2π)3
ψ̄0,i,−,−!p(ηij + p̂ip̂j)/̂pψ

+
0,j,µ

=

∫
d3p

(2π)3
ψ̄0,i,−,−!p(πij /̂p)ψ

+
0,j,µ =

∫
d3p

(2π)3
ψ̄0,i,−,−!p〈ψi

−,−pψ
j
+,p〉ψ+

0,j,µ

(C.129)

〈ψi
−,−pψ

j
+,p〉 = πij /̂p. (C.130)
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C.3 Fermionic Feynman Rule from Boundary Action

And all the correlators are not expanded from the bulk action but the boundary ac-

tion Sb. Then we need to provide some rigorous proof to extract the similar Feynman

Rule structure from the boundary action Sb. We should notice like the bosonic, the proof

is independent of the vertices and the interaction type of the fermion. We only use the

property of bulk-to-boundary and bulk-to-bulk propagator of the fermion which reflects

the kinematic of the fermion.

Becausewe know the bosonic COT for exchanging diagrams depends on the structure

of the bulk-to-bulk propagator, Gφ. So we use the 3D Schwinger-Dyson equation, whose

bulk-to-bulk boundary propagator of the χ+ is just Gφ, and we should notice the E.O.M

of χ+ has a dressed interaction term as (D.208) shows.

(
∂2t + E2

)
χ+ =

(
1 + γ0

2

)(
/p− i∂t +m

) δSint

δχ̄
. (C.131)

Similarly we could derive

(
∂2t + E2

)
χ̄− =

δSint

δχ
(i
←−
∂t −m+ /p)

(
1− γ0

2

)
. (C.132)

And if we reexpress the interaction term as the vertices:(g is the coupling constant)

δSint

δχ̄
=: gV χ

δSint

δχ
=: gχ̄V̄

(C.133)

170

http://dx.doi.org/10.6342/NTU202302262


doi:10.6342/NTU202302262

and because they’re deduced from the same Lagrangian, we require that

Sint =

∫
d4xχ̄

δLint

δχ̄
=

∫
d4xχ̄V̄ χ =

∫
d4x

δLint

δχ̄
χ =

∫
d4xχ̄V χ (C.134)

then the E.O.M could be rewritten as

(
∂2t + E2

)
χ+ = g

(
1 + γ0

2

)(
/p− i∂t +m

)
V χ. (C.135)

it’s just the same E.O.M of the scalar with dressed interacting term. Then $ps = $p3 + $p4

(We already label the momentum to match our convention for 〈J1χ̄2J3χ4〉s)

χ(0)
+ ($p4, t) = eiE4tχ0,+($p4)

χ(1)
+ ($ps, t) = g

∫
dt′
∫

d3p4
(2π)3

Gφ($ps, t, t
′) · 1 + γ0

2
· ( /ps − i∂t′ +m)

[
V ($p3, t

′)(1 +
/p4

E4 +m
)χ0,+($p4)e

iE4t′
]

(C.136)

and we could get the χ− spinor as (D.207) shows by

χ− =

(
/p

−E2 +m2

)[
(i∂t +m)χ+ − g

(
1 + γ0

2

)
V χ

]
, (C.137)

Then we have

χ(0)
− ($p4, t) =

(
/p4

E +m

)
eiE4tχ0,+($p4)

χ(1)
− ($ps, t) =

(
/ps

−E2
s +m2

)

[
(i∂t +m)χ(1)

+ ($ps, t)− g

(
1 + γ0

2

)∫
d3p4
(2π)3

V ($p3, t)(1 +
/p4

E4 +m
)χ0,+($p4)e

iE4t

]

(C.138)

and we should take care of that, on the boundary only theχ0
+ match the boundary condition
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for the Dirichlet requirement, so

χ(1)
+ (t = 0, $p) =: χ(1)

+,0 = 0 ; χ(1)
− (t = 0, $p) =: χ(1)

−,0 .= 0 (C.139)

Similarly, we have

χ̄(1)
− (t = 0, $p) =: χ̄(1)

+,0 = 0 ; χ̄(1)
+ (t = 0, $p) =: χ̄(1)

+,0 .= 0 (C.140)

Nowwe expand the classical boundary action: (The bulk term is proportional to the E.O.M

and vanishes.)

iS(1)
b,cl =

1

2

∫
χ̄(1)
0 χ(0)

0 + χ̄(0)
0 χ(1)

0 d3x =
1

2

∫
χ̄(1)
+,0χ

(0)
+,0 + χ̄(0)

−,0χ
(1)
−,0d

3x (C.141)

To calculate this, we can exploit the integral by parts of the E.O.M

∫
d4xχ̄(0)(−iγµ∂µ −m)χ(1) = −

∫
d4xgχ̄(0)V χ(0)

=

∫
d4xχ̄(0)(iγµ

←−
∂ µ −m)χ(1) +

∫
d4x∂µ

(
χ̄(0)(−iγµ)χ(1)

)

=

∫
d3xχ̄(0)

−,0(i)χ
(1)
−,0

(C.142)

Then we could write
∫

d3xχ̄(0)
−,0χ

(1)
−,0 = i

∫
d4xgχ̄(0)V χ(0) (C.143)

Now for the χ̄ E.O.M we could have

∫
d4xχ̄(1)(iγµ

←−
∂ µ −m)χ(1) = −

∫
d4xgχ̄(0)V̄ χ(0)

=

∫
d4xχ̄(1)(−iγµ∂µ −m)χ(0) +

∫
d4x∂µ

(
χ̄(1)(iγµ)χ

(0)
)

=

∫
d3xχ̄(1)

+,0(i)χ
(0)
+,0

(C.144)
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Then we could write
∫

d3xχ̄(1)
+,0χ

(0)
+,0 = i

∫
d4xgχ̄(0)V̄ χ(0) (C.145)

Then if we take (C.143) and (C.145) into the boundary action expansion (C.141) then

we have (We define Ṽ = V+V̄
2 )

iS(1)
cl =

∫
d4xχ̄(0)ig(Ṽ )χ(0) =

3∏

a

∫
d3pa
(2π)3

δ3(
∑

a

$pa)ψ3($p1∼3) (C.146)

ψ3($p1∼3) is the correlator contracted with the boundary condition. Here we prove the

Feynman Rule struct for the contact diagram. Then we could recover (D.197) for gV =

gV̄ = −e /A

ψ3($p1∼3) = 〈J1χ̄2,−χ3,+〉 =
∫

dtχ̄(0)($p2)(igV ($p1, t))χ
(0)($p4, t)

= χ̄2,−

[(
1 +

/p2

E2 +m

)
(ε1,iγi1)

KT

(
1 +

/p3

E3 +m

)]
χ3,+

(C.147)

The Feynman Rule structure of the spinor is similar to the bosonic one. However, for

the exchanging diagrams, we need to consider the second-order expansion of the bound-

ary action. Actually, it’s too complicated, we could only use the discontinuity to extract

the Feynman Rule structure we could use to build the COT for the diagrams exchanging

Fermions. First, we need to know that similar to the first-order expansion, because the

zero-order expansion of χ+ and χ̄− already satisfy the boundary condition. Then

χ(2)
+ (t = 0, $p) =: χ(2)

+,0 = 0 ; χ(2)
− (t = 0, $p) =: χ(2)

−,0 .= 0 (C.148)

χ̄(2)
− (t = 0, $p) =: χ̄(2)

+,0 = 0 ; χ̄(2)
+ (t = 0, $p) =: χ̄(2)

+,0 .= 0 (C.149)
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Then the expansion of the boundary action will be

iS(2)
b,cl =

1

2

∫
χ̄(2)
0 χ(0)

0 + χ̄(0)
0 χ(2)

0 + χ̄(1)
0 χ(1)

0 d3x =
1

2

∫
χ̄(2)
+,0χ

(0)
+,0 + χ̄(0)

−,0χ
(2)
−,0d

3x

(C.150)

Then we apply the integral by parts of the E.O.M again, we could get

∫
d3xχ̄(0)

−,0χ
(2)
−,0 = i

∫
d4xgχ̄(0)V χ(1)

∫
d3xχ̄(2)

+,0χ
(0)
+,0 = i

∫
d4xgχ̄(1)V̄ χ(0)

(C.151)

Then if we take these equations back to boundary action expansion,

iS(2)
cl =

1

2

∫
d4xχ̄(0)(igV )χ(1) + χ̄(1)(igV̄ )χ(0) =

4∏

a

∫
d3pa
(2π)3

δ3(
4∑

a

$pa)ψ4($p1∼4)

(C.152)

ψ4($p1∼4, zs) =
1

2

∫
dtχ̄(0)($p2, t)(igV ($p1, t))χ

(1)($ps, t) + χ̄(1)(−$ps, t)(igV̄ ($p3, t))χ
(0)($p4, t).

(C.153)

Notice that the Disczs=|Es|2±iε or the energy flipping differences should only extract

the term with eiEst = ei
√
zst dependence. Then we could apply the discontinuity on the

correlator (contracted with the boundary condition) ψ4($p1∼4, zs = −$ps · $ps + m2) with

complexified momentum on the bulk-to-bulk propagator. (We write the energy for the

bulk to bulk propagator as√zs).

Disc
zs=|Es|2±iε

ψ4($p1∼4, zs) =

1

2

∫
dt χ̄(0)($p2, t)(igV ($p1, t))

(
Disc

zs=|Es|2±iε
χ(1)($ps, zs, t)

)

+

(
Disc

zs=|Es|2±iε
χ̄(1)(−$ps, zs, t)

)
(igV̄ ($p3, t))χ

(0)($p4, t)

(C.154)
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And by (C.136) and (C.138) we have

Disc
zs=|Es|2±iε

χ(1)($ps, t, zs)

= g

∫
dt′
(
1 +

/ps

−zs +m2
(i∂t +m)

)(
Disc

zs=|Es|2±iε
Gφ($ps,

√
zs, t, t

′)

)

· 1 + γ0
2

· ( /ps − i∂t′ +m)
[
V ($p3, t

′)χ(0)($p4, t
′)
]

= g

∫
dt′
(

1

2Es
Disc

zs=|Es|2±iε
Kφ($ps,

√
zs, t)

(
1 +

/ps√
zs +m

))

· 1

2Es
· 1 + γ0

2
· /ps

·
(

Disc
zs=|Es|2±iε

Kφ($ps,
√
zs, t

′)

(
1 +

/ps√
zs +m

))[
V ($p3, t

′)χ(0)($p4, t
′)
]

(C.155)

Similarly,

Disc
zs=|Es|2±iε

χ̄(1)(−$ps, t, zs)

= g

∫
dt′
[
χ̄(0)($p2, t)V̄ ($p1, t)

]
(− /ps + i

←−
∂t′ −m)

(
Disc

zs=|Es|2±iε
Gφ($ps,

√
zs, t, t

′)

)

· 1− γ0
2

·
(
1 +

/ps

−zs +m2
(i
←−
∂t +m)

)

=

∫
dt′
[
χ̄(0)($p2, t

′)V̄ ($p1, t
′)
](

Disc
zs=|Es|2±iε

Kφ($ps,
√
zs, t)(1 +

/ps√
zs +m

)

)

·
− /ps

2Es
· 1− γ0

2

·
(

Disc
zs=|Es|2±iε

Kφ($ps,
√
zs, t

′)(1 +
/ps√

zs +m
)

)

(C.156)

where we use the integral by parts with the fact that Gφ(t′ = 0, t) = Gφ(t′, t = 0) = 0.

And we should notice that under the discontinuity we find a structure similar to the scalar

Feynman rule with propagator Gφ hidden in the above two equations. Then we could
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show that

Disc
zs=|Es|2±iε

ψ4($p1∼4, zs)

=
1

2

∫
dt
[
χ̄(0)($p2, t)V ($p1, t)

](
Disc

zs=|Es|2±iε
Kφ($ps,

√
zs, t)(1 +

/ps√
zs +m

)

)

· 1 + γ0
2

·
− /ps

2Es
· 1− γ0

2
∫

dt′ ·
(

Disc
zs=|Es|2±iε

Kφ($ps,
√
zs, t

′)(1 +
/ps√

zs +m
)

)[
V̄ ($p3, t

′)χ(0)($p4, t
′)
]
+ (V̄ ↔ V )

(C.157)

Notice the factor (1 + /ps√
zs+m) is just the lifter of χ̄0(−$ps) and χ0($ps). With (C.134) in

zero-order expansion, actually, we can replace the Ṽ with V or V̄ in (C.146). Then the

left and the right term are the ψ3 with the rightest and the most left boundary condition

extracted, denoted as ψ3,A. We could write down the discontinuity version of the COT

Disc
zs=|Es|2±iε

ψ4($p1∼4, zs)

= Disc
zs=|Es|2±iε

ψ3,A($p1, $p2, zs) ·
[
1 + γ0

2
·
− /ps

2Es
· 1− γ0

2

]AB

Disc
zs=|Es|2±iε

ψ3,B($p3, $p4, zs)

(C.158)

in which on the RHS of the above equation,

Disc
zs=|Es|2±iε

ψ3,A($p1, $p2, zs) = ψ3,A($p1, $p2, Es)− ψ3,A($p1, $p2,−Es) = ψ̃3,A($p1, $p2, Es)

(C.159)

so the RHS of the COT indeed gives factorization of shift correlators. And the LHS of the

discontinuity

Disc
zs=|Es|2±iε

ψ4($p1∼4, zs) = ψ4($p1∼4, Es)− ψ4($p1∼4,−Es) (C.160)

We should notice it’s not the RHS of the normal COT. This disc version of the COT shares

a similar form to the scalar one in (3.9). It’s because, under the discontinuity, we could
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extract a similar Feynman Rule structure with propagator Gφ in the above calculation.
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Appendix D — Correlator Calculation

by the Lagrangian Approach

To get the correct correlator with correct relative normalization and WT identity, we

need to be careful about adding the correct boundary action, carefully expand the classical

action and when identifying the correlator we should be careful to the permutation of the

same field. And, for the fermion case, we need to consider how to match the 4D classical

solution of the E.O.M to the 3D Dirichlet boundary condition.

D.1 scalar QED : 〈JO∗O〉 and 〈JO∗JO〉

We calculate the correlator of scalar QED in the Lorentz gauge by the Lagrangian

approach, pµAµ($p) = 0 in the momentum space. For the bulk to boundary propagator of

the photon in the Lorentz gauge, we can refer (C.82). The calculation will be similar to

the previous section. We’ll write the action like

iScl = i

∫
d4x(−(∂µ − ieAµ)φ

∗
cl · (∂µ + ieAµ)φcl) (D.161)
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D.1.1 〈JO∗O〉

Just like what we do for cubic scalar correlator, if we take the Schwinger-Dyson equa-

tion into action, just as we show in the previous section, the kinetic term won’t contribute

to 3pts. And because every field in 〈JOO∗〉 is different from each other.

iS(1)
cl = eA(0)

µ (φ(0)∂µφ(0),∗ − φ∗,(0)∂µφ(0)) (D.162)

The identification of the correlator in momentum space won’t have permutation on the

label of the momentum like φ3 theory. Then the correlator will be

〈J1O∗
2O3〉 =

∫
dt

3∏

a

∫
d3pa
(2π)3

(ie)ε1,µ(p2 − p3)
µeiKT t = e

ε1,µ(p2 − p3)µ

KT

= e
(−εi1p̂1,i)(E2 − E3) + ε1,i(p2 − p3)i

KT

= ε1,i〈J i
1O

∗
2O3〉

(D.163)

In which, we replace that ε0 = −εip̂i. It’s trivial that it satisfies the constrain that total

energy pole residue is amplitude, and we can check the WT identity as

p1,i〈J i
1O

∗
2O3〉 = e

(E1)(E2 − E3)− (p2 + p3)i(p2 − p3)i

KT

= e
(E1)(E2 − E3) + E2

2 − E2
3

KT
= e(E2 − E3)

= e〈O∗
2O1+3〉 − e〈O∗

2+1O1〉

(D.164)

So our unique bootstrap result in the context should match this result.
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D.1.2 〈JO∗JO〉

Just like what we do for cubic scalar correlator, if we take the Schwinger-Dyson

equation into the action, just as we show in the previous section, the second order ex-

pansion of the action will be (Our expansion here includes the coupling coefficient, like

S = S(0) + S(1) + S(2) +O(e3))

iS(2)
cl,〈JO∗JO〉 =

∫
d4x i(−∂µφ∗,(1)∂µφ(1))

+ eA(0)
µ (φ(1)∂µφ(0),∗ − φ∗,(1)∂µφ(0) + φ(0)∂µφ(1),∗ − φ∗,(0)∂µφ(1))

− ie2A(0)
µ Aµ,(0)φ∗,(0)φ(0)

(D.165)

Notice that the eA(1)
µ (φ(0)∂µφ(0),∗−φ∗,(0)∂µφ(0))will contribute to 〈O∗OO∗O〉 sowewon’t

include this term here. We leave this calculation to readers for exercise. Then we use the

E.O.M and integral by parts to re-express the kinetic term contribution

∫
d4x i(−∂µφ∗,(1)∂µφ(1)) =

∫

t=0

d3x i∂µ(−φ∗,(1)∂µφ(1))−
∫

d4x i(−φ∗,(1)!φ(1))

=

∫
d4xeφ∗,(1)A(0)

µ (2∂µφ(0))

(D.166)

and we use the fact that φ(1)(t = 0, $x) = 0 and E.O.M!φ(1) = (ie)A(0)
µ (−2∂µφ(0)). Then

iS(2)
cl,〈JO∗JO〉 = eA(0)

µ (φ(1)∂µφ(0),∗ + φ∗,(1)∂µφ(0) + φ(0)∂µφ(1),∗ − φ∗,(0)∂µφ(1))

+ ie2A(0)
µ Aµ,(0)φ∗,(0)φ(0)

= eA(0)
µ (∂µφ(0),∗ · φ(1) + φ∗,(1)∂µφ(0) − φ(1),∗∂µφ(0) + ∂µφ∗,(0) · φ(1))

− ie2A(0)
µ Aµ,(0)φ∗,(0)φ(0)

= eA(0)
µ (2∂µφ(0),∗ · φ(1))− ie2A(0)

µ Aµ,(0)φ∗,(0)φ(0)

(D.167)
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in which we use integral by parts with φ(1)(t = 0, $x) = 0 making the boundary term

vanishing and we use the fact that ∂µAµ
0 = 0. And we insert the Singer-Dyson equation

in the first order.

φ(1)
cl (t, $x) =

∫
d3x′d3t′G($x, $x′, t, t′) · (i)A(0)

µ (−2∂µφ(0))

=

∫
d3ps
(2π)3

∫
d3p3
(2π)3

∫
d3p4
(2π)3

d3t′ei!ps·!x ·G($ps, t, t
′)(2ε3,µp

µ
4)e

iE34t′δ3 ($ps + $p3 + $p4)φ0($p4)

(D.168)

so if we label $ps = −$p3 − $p4 = $p1 + $p2

iS(2)
cl,〈JO∗JO〉 =

(
4∏

a

∫
d3pa
(2π)3

δ3(
4∑

b

$pb)

)[∫
dt

∫
dt′ie2eiE12t(2ε1,νp

ν
2)G($ps, t, t

′)(2ε3,µp
µ
4)e

iE34t′

− ie2
∫

dteiKT tε1,µε
µ
3

]
φ∗
0($p2)φ0($p4)

=

(
4∏

a

∫
d3pa
(2π)3

δ3(
4∑

b

$pb)

)
〈J i

1O
∗
2J

j
3O4〉ε1,iε3,jφ∗

0($p2)φ0($p4)

(D.169)

then we could identify the correlator, and notice two photo field is the same, so we need

to permute the label of the momentum of them

〈J1O∗
2J3O4〉 =

∑

1↔3

[∫
dt

∫
dt′ie2eiE12t(2ε1,νp

ν
2)G($ps, t, t

′)(2ε3,µp
µ
4)e

iE34t′ − ie2
∫

dteiKT tε1,µε
µ
3

]

=

[∫
dt

∫
dt′ie2eiE12t(2ε1,νp

ν
2)G($ps, t, t

′)(2ε3,µp
µ
4)e

iE34t′ + (t)

− 2 ie2
∫

dteiKT tε1,µε
µ
3

]

= e2
(2ε1,νpν2)(2ε3,µp

µ
4)

KTE12sE34s
+ (t)− e2

(2ε1,µε
µ
3)

KT
(D.170)

And it’s trivial to check that the total energy pole residue is the amplitude and the transverse

parts of the amplitude are indeed what we get at (4.46). The WT identity check will be

εµ1 = (−ε1,ip̂i1, εi1) (D.171)
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and when WT-identity we will replace εi1 → pi1, we’ll find in the Lorentz gauge it equiv-

alent to εµ1 → (E1, $pi) = pµ1 . So we can write

p1,i〈J i
1O

∗
2J3O4〉 = e2

(2p1,νpν2)(2ε3,µp
µ
4)

KTE12sE34s
+ e2

(2ε3,νpν2)(2p1,µp
µ
4)

KTE32tE14t
− e2

(2p1,µε
µ
3)

KT

= e2
(2ε3,µ)(−pµ4 − pµ2 − pµ1)

KT
+ e2

(2ε3,µp
µ
4)

E34s
+ e2

(2ε3,µp
µ
2)

E32t

= (−2e2ε3,0) + e2
(2ε3,µp

µ
4)

E34s
+ e2

(2ε3,µp
µ
2)

E32t

−e〈O∗
2+1J3O4〉+ e〈O∗

2J3O4+1〉 = −e2
ε3,µ(pµs − pµ4)

E34s
+ e2

ε3,µ(p
µ
2 − p̄µt )

E32t

= −e2 ε3,µ((p3 + p4 + ps)µ − 2pµ4)

E34s
+ e2

ε3,µ(2p
µ
2 − (p2 + p3 + p̄t)µ)

E32t

= −e2 ε3,µ((p3 + p4 + ps)µ − 2pµ4)

E34s
+ e2

ε3,µ(2p
µ
2 − (p2 + p3 + p̄t)µ)

E32t

= (−2e2ε3,0) + e2
(2ε3,µp

µ
4)

E34s
+ e2

(2ε3,µp
µ
2)

E32t
(D.172)

in which p̄t = (Et,−$pt), pit = pi2 + pi3 = −pi1 − pi4 and

S = (p1 + p2)
µ(p1 + p2)µ = 2(pµ1p2,µ) = −E12s(−E12 + Es) = −E12sE34s +KTE12s

(D.173)

Indeed, the WT identity is satisfied. Because the transverse parts and WT which means

the longitudinal parts are matched to the bootstrap result in our main context. Then we

should know the partial energy pole residues are also satisfied like what we do in the main

context.
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D.2 TOO

We refer to the notes of Austin Joyce, we use the temporal gauge to calculate the

〈TOO〉 correlator. First, the action of the scalar coupling to graviton will be

iS = −i
∫

d4x
√
−detgDµφ ·Dµφ = −i

∫
d4x
√
−detg∂µφ · ∂µφ (D.174)

and notice we expand the metric like

gµν = ηµν + κhµν
(D.175)

and for the temporal guage, we set h0µ = 0. There’s still a guage freemdom hij ∼ hij +

∂(iξj). So we could have WT identity in this gauge. We use κ as our coupling constant

to expand the SD equation and the action. As we know, three points correlator will come

from the first-order expansion of the graviton in the action (Notice it’s just the stress tensor

T (0)
ij contracted with g(1),ij = −κh(0),ij)

iS(1)
cl = −iκT (0)

ij h(0),ij = iκ

(
∂iφ

(0)∂jφ
(0) − 1

2
ηij(∂µφ

(0))2
)
h(0),ij

Tij = −
√
−detg

(
∂iφ∂jφ−

1

2
gij(∂µφ)

2

) (D.176)

Notice we should include the expansion of the determinant.

δ
√
− det g =

1

2

√
− det ggµνδhµν →

(√
− det g

)(0)
=

1

2
ηijhij (D.177)
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Then we plug in the bulk-to-boundary propagator, especially for the temporal gauge gravi-

ton, we could identify it in (C.92)

h(0)
ij (t, $x) =

∫
d3p

(2π)3
ei!p·!x

(
(πikπjl)e

iEt + (η(ikηj)l − πikπjl)
)
hkl
0 ($p) (D.178)

as

Kijkl($p, t) =
(
(πikπjl)e

iEt + (η(ikηj)l − πikπjl)
)
. (D.179)

Then we would have

〈T1,klO2O3〉 =
∑

2↔3

∫
dt(iκ)

(
−pi2p

j
3 +

1

2
ηij(p2,µp

µ
3)

)
eiE23tKijkl($p1, t)

=

∫
dt(iκ)

(
−2p(i2 p

j)
3 + ηij(E2E3 + p2,mp

m
3 )
)
eiE23tKijkl($p1, t)

=

∫
dt(iκ)

(
−2p(i2 p

j)
3 (π1,ikπ1,jl) + πkl

1 (E2E3 + p2,mp
m
3 )
)
eiKT t

+

∫
dt(iκ)

(
−2p(i2 p

j)
3 + ηij(E2E3 + p2,mp

m
3 )
)
eiE23t(η(ikηj)l − πikπjl)

= (
κ

KT
)
(
−2pi2p

j
3(π1,ikπ1,jl) + 2p̂1,(kp2,l)(E1 − E2 + E3)

+ p̂1,kp̂1,l(p̂1,mp
m
2 )(−E3 + E2) +

1

2
p̂1,kp̂1,l(−E2

3 − E2
2 + E2

1 − 2E3E2 − 2E1E2)

)

(D.180)

in the last step, we useMathematica to calculate it in the kinematic and bootstrap algebraic

form then we simplify it. We should remember that in the calculation from boundary

E.O.M of the graviton like (2.28). We could identify π1,ij as 0.

And we also use Mathematica to check that (D.180) indeed satisfies that total energy

pole is amplitude and WT identity. So it should be equal to the unique result in the main

context we bootstrap from these two constraints.
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D.3 QED : 〈J χ̄χ〉 and 〈J χ̄Jχ〉

The Lagrangian approach to derive the fermionic correlator is similar to what we do

in C.2 to derive the two-point correlator of fermion. We improve the calculation in [22]

and adapt it to flat space.

S =

∫
(1/2) χ̄(−i .∂)χ− (1/2)χ̄(−i .

←−
∂ )χ−mχ̄χ + Lint d

4x

+

∫
(−i/2) χ̄0χ0 d

3x

(D.181)

where we define the boundary action as Sb =
∫
(−i/2) χ̄0χ0 d3x. Then our E.O.M will

be

(−i .∂ −m)χ = −δLint

δχ̄
(D.182)

χ̄(i .
←−
∂ −m) = −δLint

δχ
(D.183)

We propose two equivalent approaches to get the Schwinger-Dyson equation to get the

solution of E.O.M under the boundary condition

(χ+(t = 0, $x), χ̄−(t = 0, $x)) = (χ+,0, χ̄−,0)

(χ+(t = −∞(1− iε), $x), χ̄−(t = −∞(1− iε), $x)) = (0, 0)

(D.184)

The first approach is the Schwinger-Dyson equation of the full spinor, and get the re-

lationship of χ−,0(χ+,0) and χ̄+,0(χ̄−,0) by Schwinger-Dyson equation, we propose the

Schwinger-Dyson equation like

χ(p, t) = K(p, t)χ0(p) +

∫
dt′G(p, t, t′)

(
− δLint

δχ̄(p, t′)

)
(D.185)
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where

K(p, t) = eiEp t
/P +m

2Ep
γ0 (D.186)

G(p, t, t′) = iθ(t− t′)e−iEp (t−t′) /P− −m

2Ep
− iθ(t′ − t)eiEp (t′−t)

/P +m

2Ep
(D.187)

to match the full spinor boundary condition

(χ(t = 0, $x), χ̄(t = 0, $x)) = (χ0, χ̄0)

(χ(t = −∞(1− iε), $x), χ̄(t = −∞(1− iε), $x)) = (0, 0)

(D.188)

notice in this form of Schwinger-Dyson, unlike the bosonic one, the propagator is Feyn-

man without homogeneous term, and we could perturbatively get the relationship of the

boundary condition to make the boundary condition only have 3D spinor degree of free-

dom, like χ−,0(χ+,0) and χ̄+,0(χ̄−,0). We could take the Schwinger-Dyson equation to

t = 0, Then

χ0(p) =
/P +m

2Ep
γ0χ0(p) + i

∫
dt′eiEpt′

/P− −m

2Ep

(
−δLint

δχ̄
($p, t′)

)
(D.189)

and we could use the trick to rewrite by χ0 = χ0,+ + χ0,−

/P +m

2Ep
γ0χ0(p) =

1

2
χ0(p) +

/P +m

2Ep

(
2χ+

0 (p)− χ0(p)
)

(D.190)

then we obtain the recurrence relationship

χ0(p) =

(
1− /p

Ep +m

)[
/p+m

Ep
χ+
0 (p) + i

∫
dt′eiEpt′

/P− −m

2Ep

(
−δLint

δχ̄
($p, t′)

)]

=

(
1 +

/p

Ep +m

)
χ+
0 (p) + i

(
1− /p

Ep +m

)∫
dt′eiEpt′

/P− −m

2Ep

(
−δLint

δχ̄
($p, t′)

)

(D.191)
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Similar derivation for χ̄0(p) yields

χ̄0(p) =

[
χ̄−
0

(
−/p−m

Ep

)
− i

∫
dt′
(
−δLint

δχ̄
($p, t′)

)
eiEpt′

/P− +m

2Ep

](
1 +

/p

Ep +m

)

(D.192)

Then we could perturbatively expand the boundary field in the 3D spinor boundary degree

of freedom χ+,0, χ̄−,0 by the lifter P

χ0(p) = P(e0)($p)χ+
0 (p) +

∫
d3q

(2π)3
P(e1)($p, $q)χ+

0 (q) + · · ·

χ̄0(p) = χ̄−
0 (p)P̄(e0)($p) +

∫
d3q

(2π)3
χ−
0 (q)P̄(e1)($p, $q) + · · ·

(D.193)

For the case of QED in the Lorentz gauge, we set pµAµ($p) = 0 in the momentum space.

For the bulk to boundary propagator of the photon in the Lorentz gauge, we can refer

(C.82). sAnd the interaction term of the Lagrangianwill beLint(xµ) = −eχ̄(xµ) /A(xµ)χ(xµ), /A :=

Aνγν , and the Fourier transforms of the interaction term we use in the Schwinger-Dyson

equation are
δLint

δχ
($p, t′) = e

∫
d3q

(2π)3
/A($p− $q, t′)χ($q, t′)

δLint

δχ̄
($p, t′) = e

∫
d3q

(2π)3
χ̄($q, t′) /A($p− $q, t′)

(D.194)

Then in O(e0) level the expansion of the boundary field reads

χ(0)
0 (p) = P(e0)($p)χ+

0 (p) =

(
1 +

/p

Ep +m

)
χ+
0 (p)

χ̄(0)
0 (p) = χ̄−

0 (p)P̄(e0)($p) = χ−
0 (p)

(
1− /p

Ep +m

) (D.195)
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we recover the (2.33) and (2.35) where we use the free classical solution of half spinor to

get it. In O(e1) level, we have

P(e1) =
e

Etot

(
1− /p

Ep +m

)(
/P− −m

2Ep

)(
−γ0p

i − qi

Ep−q
+ γi

)

·
(
/q +m

2Eq
γ0
)(

1 +
/q

Eq +m

)
A0i($p− $q)

≡ P(e1)i($p, $q)A0i($p− $q)

P̄(e1) = − e

Etot

(
1− /q

Eq +m

)(
γ0

/Q−m

2Eq

)(
−γ0p

i − qi

Ep−q
+ γi

)

·
(
/p− +m

2Ep

)(
1− /p

Ep +m

)
A0i($p− $q)

≡ P̄(e1)i($p, $q)A0i($p− $q)

(D.196)

where Etot ≡ Ep + Ep−q + Eq. Substitute into iSb, we get

〈J i
!q−!pχ̄−,−!q,αχ+,!p,α̇〉 =

1

2

(
P̄(e0)(−$q)P(e1)i($q, $p) + P̄(e1)i(−$p,−$q)P(e0)($p)

)

=
−e
KT

[(
1 +

/q

Eq +m

)
γiq−p

(
1 +

/p

Ep +m

)]

αα̇

(D.197)

where γiq−p ≡ −γ0 q
i−pi

Eq−p
+ γi. We can see that the residue of the total energy pole is the

3pt amplitude of QED sandwiched by P(e0) =
(
1 + /p

Ep+m

)
which represents we map the

4D spinor or free solution of E.O.M u!p = χ(0)
0 , ū!p = χ̄(0)

0 to the 3D spinor χ+, χ̄−. We

could check that indeed the WT identity is satisfied.

(q − p)i〈J i
!q−!pχ̄−,−!q,αχ+,!p,α̇〉 =

−e
KT

χ̄−,−!q

(
1 +

/q

Eq +m

)
(KTγ0)

(
1 +

/p

Ep +m

)
χ+,!p

= eχ̄−(−$q)
/q

Eq +m
χ+($q)− eχ̄−(−$p)

/p

Ep +m
χ+($p)

= e〈χ̄−,−!qχ+,!p+!q−!p〉 − e〈χ̄−,−!q+!q−!pχ
∗
+,!p〉

(D.198)

where we use E.O.M Epγ0χ
(0)
0 ($p) = −/pχ(0)

0 ($p) and χ̄(0)
0 (−$q)Eqγ0 = χ(0)

0 (−$q)/q. So We

know this result must match the unique bootstrap result by WT-identity and total energy
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pole amplitude in the main context.

Similarly, we could get the four-point correlator 〈J χ̄−Jχ+〉 by the O(e2) expansion

of the lifter P(e2), P̄(e2) and P̄(e1)P(e1). (For comparison, 〈χ̄−χ̄−χ+χ+〉 will be got from

the O(e2) contribution composed by expansion the photon field A(1) multiplied with the

first order lifter P(e1))($ps = $p3 + $p4) (/S = /Es + /ps , /S− = /Es − /ps)

〈J j
1 χ̄−,2J

i
3χ+,4〉

=−
(
1 +

/p2

Ep2 +m

)
γjp1

[
−

/P 4 + /P 3 +m

KTE12sE34s
+

1

E12sE34s

(
1− γ0

2

)
/S− −m

Es +m

]
γip3

(
1 +

/p4

E4 +m

)

−
(
1 +

/p2

E2 +m

)
γip3

[
−

/P 4 + /P 1 +m

KTE23tE14t
+

1

E23tE14t

(
1− γ0

2

)
/T− −m

Et +m

]
γjp1

(
1 +

/p4

E4 +m

)

(D.199)

we already use Mathematica to check its WT identity, Total Energy Pole residue, and

Parital Energy Pole residue. So this result will be the unique result we bootstrap in the

context. Notice $ps is the internal momentum. And the factor
/P s−−m
Es+m = −1+ /ps/(Es+m)

and /ps/(Es +m) factor seems like co-dimension 1 pole. But it’s not because

/ps

(Es +m)
= (
√

(Es +m)
√

(Es −m)) · /̂ps

(Ep2 +m)
=

√
(Es −m) /̂ps√
(Es +m)

(D.200)

or

Res
(Es+m)=0

/ps

(Es +m)
= lim

(Es+m)→0
(Es +m)

/ps

(Es +m)
= lim

(Es+m)→0
/ps = 0(∵ |$ps| = E2

s −m2 = 0)

(D.201)

It’s just a reflection of the gluing factor, the two-point correlation /ps

2(Es+m) on the Fermion

Exchange Optical theorem and the respondent partial energy pole.

Actually, it’s easy to analytically check the partial energy pole residue in (3.2.5). By
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the following calculation

Res
E34s→0

(
/P 4 + /P 3 +m

KTE12sE34s
− 1

E12sE34s

(
1− γ0

2

)
/S− −m

Es +m

)

=

(
− /S− +m

KTE12s
− 1

E12s

(
1− γ0

2

)
/S− −m

Es +m

)

=
1

2Es

(
( /S− −m)(

1

E12s
− 1

E12 − Es
)− Es

E12s
(1− γ0)

/S− −m

Es +m

)

=
1

2Es

(
(I + (γ0 − I) Es

Es+m) ( . S− −m)

E12s
− ##S− −m

E12 − Es

)

(D.202)

and the following calculation

Res
E12s→0

(
/P 4 + /P 3 +m

KTE12sE34s
− 1

E12sE34s

(
1− γ0

2

)
/S− −m

Es +m

)

=
−/P 1 − /P 2 +KTγ0 +m

KTE34s
− 1

E34s

(
1− γ0

2

)
/S− −m

Es +m

=

(
/S +m

KTE34s
+

γ0
E34s

− 1

E34s

(
1− γ0

2

)
/S− −m

Es +m

)

=
1

2Es

·
(
(−/S −m)(

1

E34s
− 1

E34 − Es
) +

2Es

E34s

(Es +m)γ0
Es +m

(
1 + γ0

2
+

1− γ0
2

)
− 2Es

E34s

(1− γ0)
2

/S− −m

Es +m

)

=
1

2Es

(
(−/S −m)(

1

E34s
− 1

E34 − Es
) +

2Es

E34s

(Esγ0 +m)

Es +m

1 + γ0
2

+
2Es

E34s

(Esγ0 −m)

Es +m

1− γ0
2

− 2Es

E34s

(1− γ0)
2

/S− −m

Es +m

)

=
1

2Es

(
(−/S −m)(

1

E34s
− 1

E34 − Es
)− 1

E34s

Es

Es +m
(−/S −m) (1 + γ0)

)

=
1

2Es

(
(− . S −m)(I + (−γ0 − I) Es

Es+m)

E34s
− −""S −m

E34 − Es

)

(D.203)

They’re indeed the gluing factor on the partial energy pole.

There is an alternative way to get the same correlator, by the generalization of the

method in App.C.2. We could express the E.O.M by two 3-D spinors χ+/χ− and see they

are related by E.O.M directly, so we only need to solve the harmonic E.O.M of χ+ like
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a scalar perturbatively. Then the E.O.M gives us the solution of χ− perturbatively. The

E.O.M of 3D-spinor will be the (??) added with interaction terms.

It’s the more natural way to extract the Optical theorem from our calculation of the

Fermion exchange correlator in §(3.2.3).

(±i∂t +m)χ± = /pχ∓ +

(
1± γ0

2

)(
δSint

δχ̄

)
. (D.204)

with the independent Dirichlet boundary condition,

χ+(t = 0, $p) = χ+,0($p) ; χ̄−(t = 0, $p) = χ̄−,0($p) (D.205)

and Bunch-Davies vacuum state constraints

χ+(t = −∞, $p) = 0 ; χ̄−(t = −∞, $p) = 0 (D.206)

From the equations above, we can then yield,

χ− =

(
/p

−E2 +m2

)[
(i∂t +m)χ+ −

(
1 + γ0

2

)(
δSint

δχ̄

)]
, (D.207)

If we substitute (D.207) into the E.O.M of χ−, we would get a second order equation of

χ+,
(
∂2t + E2

)
χ+ =

(
1 + γ0

2

)(
/p− i∂t +m

) δSint

δχ̄
. (D.208)

Then we could find the χ+ could be viewed as a scalar with the dressed interaction term,

then it’s trivial to write the Schwinger-Dyson equation of χ+ by the scalar SD equation.

χ+(p, t) = Kφ (p, t)χ+
0 +

∫
dt′Gφ(p; t, t′)

(
1 + γ0

2

)(
/p− i∂t′ +m

) δSint

δχ̄
. (D.209)
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and the scalar propagator is the same as (2.50)

Kφ($p, t) = ei(E−iε)t

Gφ($p, t, t
′) =

i

2E

(
ei(E−iε)(t−t′)θ(t′ − t) + e−i(E−iε)(t−t′)θ(t− t′)− ei(E−iε)(t+t′)

)

(D.210)

Next, we can substitute the SD equation of χ+ (D.209) back to (??), tuning the time co-

ordinate to 0 on both sides would lead us the explicit dependence of χ−
0 in terms of χ+

0 ,

χ−
0 =

(
/p

−E2 +m2

)[
i

(
iEχ+

0 +

∫
dt′eiEt′

(
1 + γ0

2

)(
/p− i∂t′ +m

)(δSint

δχ̄

))

+mχ+
0 −

(
1 + γ0

2

)(
δSint

δχ̄

)

t=0

]
,

(D.211)

where we have used (∂tGφ)t=0 = eiEt′ . Then we’ll get the recurrence equation if we notice

that

χ−
0 ∼

(
/p

−E2 +m2

)[
i

(
iEχ+

0 +

∫
dt′eiEt′

(
/p− i∂t′ +m

) δSint

δχ̄

)

+mχ+
0 −

(
δSint

δχ̄

)

t=0

]

=

(
/p

−E2 +m2

)[
(−E +m)χ+

0 + i

∫
dt′eiEt′

(
/p− E +m

) δSint

δχ̄

]

(integral by parts)

=

[
/p

(E +m)
χ+
0 + i

∫
dt′eiEt′

(
1 +

/p

E +m

)
δSint

δχ̄

]

∼
[

/p

(E +m)
χ+
0 + i

∫
dt′eiEt′

(
−/P− +m

E +m

)
δSint

δχ̄

]

∼
[

/p

(E +m)
χ+
0 + i

∫
dt′eiEt′

/P− − 2 /E +m

E +m

(
−/P− +m

2(E)

)
δSint

δχ̄

]

∼
[

/p

(E +m)
χ+
0 + i

(
1− /p

E +m

)∫
dt′eiEt′

(
−/P− +m

2(E)

)
δSint

δχ̄

]

χ0 =

[(
1 +

/p

(E +m)

)
χ+
0 + i

(
1− /p

E +m

)∫
dt′eiEt′

(
/P− −m

2(E)

)(
−δSint

δχ̄

)]

(D.212)

The ∼ means that the following expression taken into Lagrangian Sb will have the same

193



doi:10.6342/NTU202302262

value, notice that in Lagrangian’s classical value, only boundary term Sb will contribute

and
∫

d3xχ̄0χ0 = χ̄0,−χ0,− + χ̄0,+χ0,+ (D.213)

so in the χ0,− the prefix 1−γ0
2 always be absorbed into χ̄0,−. Actually, the (D.212) is the

same as (D.192). And, by a similar approach, we can derive the equation (D.192) again.

They are the starting point to get the lifter and compose the correlator. So, in this way, we

can get the same result as the previous way using the 4D spinor SD equation.

D.4 T χ̄χ

The Lagrangian of the graviton interacting with the massless fermions will be the

curved space extension of the free fermion action in flat space. So, by (D.181), we have

S =

∫ √
−detg

[
(1/2) χ̄(−i /D)χ− (1/2)χ̄(−i

←−
/D)χ

]
d4x

+

∫
(−i/2) χ̄0χ0 d

3x

(D.214)

in which

/D = γaeµa∇µ
(D.215)

the eµa is vielbein defined as

gµν = eµae
ν
bη

ab

eaµe
µ
b = δab

eµae
a
ν = δµν .

(D.216)
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And the covariant derivative of the fermion is defined by (γab := 1
2 [γa, γb])

∇µχ = ∂µχ−
1

4
wab

µ γabχ

∇µχ̄ = ∂µχ̄+
1

4
χ̄γabw

ab
µ

(D.217)

in which the wab
µ (eµa) is the torsion-free spin connection dependent on the vielbein, [10]

wab
µ = 2eν[a∂[µ]e

b]
ν] − eν[aeb]σeµc∂νe

c
σ. (D.218)

And we perturb the metric in the temporal gauge like

gµν = ηµν + κhµν ; hµ0 = 0 (D.219)

and the respondent vielbein perturbation will be

gµν = ηµν + κhµν

eaµ = δaµ +
κ

2
ha
µ +O(κ2)

eµa = δµa −
κ

2
hµ
a +O(κ2)

eaν = ηaν − κ

2
haν +O(κ2)

eaν = ηaν +
κ

2
haν +O(κ2)

(D.220)

with the spin connection perturbation

w(1),ab
µ = −κ∂[ahb]

µ
(D.221)

To get the 3pt correlator 〈T χ̄χ〉, from the E.O.M like

√
−detg(−i /D)χ = 0

√
−detg(χ̄(i

←−
/D)) = 0,

(D.222)
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we need to extract the 3pt vertices from first-order expansion of the E.O.M,

−i/∂χ(1) = −δLint

δχ̄
=: −κV3χ

(0) =
κ

2
(ηijhij)(i/∂χ

(0)) + i
κ

4
γcw(1),ab

c γabχ
(0) + i

κ

2
γahaj∂

jχ(0)

= i
κ

4
γcw(1),ab

c γabχ
(0) + i

κ

2
γahaj∂

jχ(0)

χ̄(1)(i
←−
/∂ ) = −δLint

δχ
=: −κχ̄(0)V̄3 = −

κ

2
(ηijhij)(χ̄

(0)(i
←−
/∂ )) + i

κ

4
χ̄(0)γabγ

cw(1),ab
c − i

κ

2
χ̄(0)←−∂ jγahaj

= i
κ

4
χ̄(0)γabγ

cw(1),ab
c − i

κ

2
χ̄(0)←−∂ jγahaj.

(D.223)

Notice that /D
(1)
χ(0) = κ

2γ
ahµ

a∂µχ
(0) − κw

(1),ab
c
4 γcγabχ(0). Because we have volume unit

√
−detg in the action and the usual Feynman rule, like (C.147), we have

iS(1)
b =

1

2

∫
d3x(χ̄0χ0)

(1) +
1

2

∫
d3x(

√
−detg)(1)(χ̄0χ0)(0)

= iκ

∫
d4xχ̄(0)(

V3 + V̄3

2
)χ(0) +

1

2

∫
d3x(

√
−detg)(1)(χ̄0χ0)(0)

=

(
3∏

a

∫
d3pa
(2π)3

δ(
3∑

a

$pa)

)
κ

4
(ηijh

ij
3,0)χ̄2,−,0 (1− /̂p2) (1 + /̂p1)χ1,+,0

+

∫
dtχ̄2,−,0 (1− /̂p2) (

−iκeiE12t

2
)

(
γah(0)

aj ($p3, t)
(p1 − p2)j

2

)
(1 + /̂p1)χ1,+,0.

(D.224)

in which we use the fact that

w(1),ab
c {γc, [γa, γb]} = −κ∂ahb

c{γc, [γa, γb]} = −κ∂ahbc(2γaγbγc − 2γcγbγa)

= −κ∂ahbc(2γaηbc − 2ηcbγa) = 0.

(D.225)

Then we plug the classical solution of the temporal guage (C.92) into (D.224), we could

identify the correlator

〈T3,ijχ̄2,−χ1,+〉 =
κ

KT
χ̄2,−,0(1− /̂p2)

(
1

4
(E1 − E2)γ(ip̂3,j) −

1

4
p3,(iγj) −

1

4
p3,(ip̂3,j)

−1

2
p1,(iγj) −

1

4
(E1 + E2)p̂

i
3p̂

j
3 +

1

2
p1,(ip̂3,j)γ0 +

1

2
[p1,kp̂

k
3]p̂3,(ip̂3,j)γ0

)
(1 + /̂p1)χ1,+,0

(D.226)
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We use Mathematica to do the integral under random kinematics and use the bootstrap

program to write the answer in the algebraic form. And we also use random kinematics to

check that the algebraic form satisfies the total energy pole residue is the amplitude and

WT identity. So, our unique bootstrap result in the main context should be equal to this

result.

197

http://dx.doi.org/10.6342/NTU202302262


doi:10.6342/NTU202302262198

http://dx.doi.org/10.6342/NTU202302262


doi:10.6342/NTU202302262

Appendix E —Ward Identity of the

Amplitude

For a general amplitudeswith integer spin s, the amplitude can bewritten as εµ1···µsM
µ1···µs .

In this section, we show how to rewrite the amplitudes as εi1···isM i1···is . This will be useful

to determine the transversal part of the correlator.

E.1 Spin 1 field

A scattering amplitude containing a spin 1 field can be written as

M = εµMµ
(E.227)

Ward identity states that we have the residual gauge freedom to transform εµ → εµ+αpµ.

Take α ≡ − pµ

Ep
, we have

ε0 → 0

εi → εi − pi

Ep
ε0 = εi +

pipj

E2
p

εj = πijεj

(E.228)
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Therefore, we can rewrite the amplitude as

M = εiπ
ijMj

(E.229)

Note that this equation holds only if the total four-momentum is conserved.

E.2 Spin 2 field

A scattering amplitude containing a spin 2 field can be written as

M = εµενMµν
(E.230)

Ward identity states that we have the residual gauge freedom to transform εµ → εµ+αpµ.

Take α ≡ − pµ

Ep
, we have

ε0 → 0

εi → εi − pi

Ep
ε0 = εi +

pipj

E2
p

εj = πijεj

(E.231)

Therefore, we can rewrite the amplitude as

M = εiπ
ii’εj’π

jj’Mi’j’ (E.232)

Note that this equation holds only if the total four-momentum is conserved.
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Appendix F —Ward Takahashi

Identities of the Correlator

F.1 2pt WT identity

Notice there’s still gauge freedom in Kinetic action, so there’s a Ward Takahashi

Identity to ensure the gauge invariance. Because there’s no one-point correlator, so no

lower point contribution in 2-pts WT identity.

• 〈JJ〉

For U(1) symmetry parametrized as δεi,0(x) = ∂iα(x) then the δΨ(Ai,0) = 0 tell

us

δΨ(Ai,0) = 2

∫
d3p

(2π)3
〈JiJj〉Ai

0(−$p)δA
j
0($p) = 2i

∫
d3p

(2π)3
(pj〈JiJj〉)Ai

0(−$p)α0($p) = 0

(F.233)

So we get

pj〈JiJj〉 = 0 (F.234)

• 〈TT 〉

For the diffeomorphism parametrized as δh0,ij = 2∂(iξj),0 + O(h), then similar to
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(F.233), the invariance of wavefunction δΨ(h0,ij) = 0 tell us

pi〈TijTkl〉 = 0 (F.235)

We could know the longitudinal parts of the two-point function should be zero and

by the EOM πijh
ij
0 = 0 the term of πij should not contribute.

• 〈ψ̄ψ〉

For the SUSY parametrized as δψ0,+,i = ∂iε+ + O(h) and δψ̄0,−,i = ∂iε̄− + O(h),

then similar to (F.233), the invariance of wavefunction δΨ(ψ+,0,i, ψ̄−,0,i) = 0 tell us

pi〈ψ̄−,iψ+,j〉 = pj〈ψ̄−,iψ+,j〉 = 0 (F.236)

.

F.2 3pt WT identity

• Scalar theory:

For U(1) symmetry parametrized as

δφ0(x) = (− ieα(x)) φ0(x) ; δφ∗
0 = (ieα(x)) φ0(x) ; δεi,0(x) = ∂iα(x) (F.237)

and in momentum space will be

δφ0(p1 + p2) = − ie α(p1) φ0(p1)
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δφ∗
0(p1 + p2) = ie α(p1) φ0(p1) (F.238)

δεi,0(p1) = i p1,i α(p1)

in position space, then the WT-identity will be directly from the invariance of wavefunc-

tion under the boundary condition＇s decomposition

δΨ(Ai,0,φ0) =
3∏

a

∫
d3pa
(2π)3

δ3
(

3∑

a

$pa

)

{
〈O∗

2O1+3〉φ∗
0($p2)δφ0($p1 + $p3) + 〈O∗

2+1O3〉φ∗
0($p2 + $p1)δφ0($p3)

+ 〈J1,iO∗
2O3〉δAi

0($p1)φ
∗
0($p2)φ0($p3)

}

= 0

(F.239)

pi1〈J1,iO∗
2O3〉 = −e 〈O∗

1+2 O3〉 + e 〈O∗
2 O1+3〉 = e (E2 − E3) (F.240)

and for the diffeomorphism

δh0,ij = 2 ∂(iξj),0 +O(h) ; δφ0 = ξi0∂iφ0 +O(h) (F.241)

Similar to (F.239), the invariance of wavefunction tells us the WT-identity will be

p1,i〈T ij
1 O2O3〉 = −

1

2

(
〈O1+2O3〉pj2 + 〈O2O1+3〉pj3

)
= −1

2

(
E3p

j
2 + E2p

j
3

)
. (F.242)

• Pure Gravity: (double-checked in momentum space and coordinate space)

δh0,ij = 2∇(iξj),0 = 2 ∂(iξj),0 − 2Γm
ij ξm = 2 ∂(iξj),0 − 2ξm(i,0∂hj)m,0 + ξm∂mhij +O

(
h2
)

(F.243)

203

http://dx.doi.org/10.6342/NTU202302262


doi:10.6342/NTU202302262

Similar to (F.239), the invariance of wavefunction tells us the WT identity will be

p1,iε1,j,0〈T ij
1 T2T3〉 = (ε1,0· ε2,0) p2,kε2,l〈T kl

1+2T3〉 −
1

2
(ε1,0 · p2)ε2,0,kε2,0,l〈T kl

1+2T3〉

+ (ε1,0· ε3,0) p3,kε3,l〈T2T
kl
3+1〉 −

1

2
(ε1,0 · p3)ε3,0,kε3,0,l〈T2T

kl
3+1〉
(F.244)

• Fermion Theory: for the U(1) symmetry parametrized as:

δχ+,0(x) = (− ieα(x))χ+,0(x) ; δχ̄−,0(x) = (ieα(x)) χ̄−,0(x) ; δεi,0(x) = ∂iα(x)

(F.245)

Similar to (F.239), the invariance of wavefunction tells us the WT identity will be

pi1〈J1,iχ̄2,−χ3,+〉 = −e 〈χ̄−,1+2 χ+,3〉 + e 〈χ̄−,2 χ+,1+3〉 = e (−/̂p2 − /̂p3) (F.246)

The last equation is true for the massless spinor. For the diffeomorphism

δh0,ij = 2 ∂(iλj),0 +O(h)

δχ0,+ = λm∂mχ0,+ −
1

8
∂aλb

[
γa, γb

]
χ0,+ +O(h)

δχ̄0,− = χ̄0,−
←−
∂ mλ

m +
1

8
χ̄0,−

[
γa, γb

]
∂aλb +O(h)

Similar to (F.239), the invariance of wavefunction tells us the WT identity will be

p1,iε1,j〈T ij
1 χ̄−,2χ+,3〉 = −

1

2
(p2 · ε1)〈χ̄−,1+2χ+,3〉 −

1

2
(p3 · ε1)〈χ̄−,2χ+,1+3〉

+
1

16
["p1,##ε1] 〈χ̄−,1+2χ+,3〉 −

1

16
〈χ̄−,2χ+,1+3〉 ["p1,##ε1]

= −1

2
(p2 · ε1) /̂p3 +

1

2
(p3 · ε1) /̂p2 +

1

16
["p1,##ε1] /̂p3 +

1

16
/̂p2 ["p1,##ε1]

(F.247)
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The last equaily is true for the massless spinor.

• N=1 Pure Supergravity

for the supersymmetry transform

ε̄− = εT+ B

δε̄−hij = ε̄−γ(iψj,+) +O(h) = δε+hij = −ψ̄−(j γi) ε+ +O(h)

δψ+
i = ∂i ε+ +

1

8
wiab

[
γa, γb

]
ε+ = ∂i ε+ −

1

8
∂ahbi

[
γa, γb

]
ε+ +O

(
h2
)

δψ̄−
i = ∂i ε̄− −

1

8
ε̄− wiab

[
γa, γb

]
= ∂i ε̄− +

1

8
ε̄− ∂ahbi

[
γa, γb

]
+O

(
h2
)

Similar to (F.239), the invariance of wavefunction tells us the gravitino WT-identity will

be

p2,k〈T1ψ̄
k
2,−ψ3,+〉 = −〈T1T

kl
2+3〉 εl,3 (χ̄2,−γkχ3,+)−

1

8
["p1, $ε1]

(
ε1,k〈ψ̄k

1+2,−ψ3,+〉
)

= −
(
εT1 · ε3

) (
χ̄2,−$ε

T
1 χ3,+

)
E1 −

1

8

(
ε1 · εT3

)
(χ̄2,−["p1, $ε1] $$̂p3χ3,+)

(F.248)

it will be equivalent to identity (2 ↔ 3, χ̄− = χT
+ B)

p3,k〈T1ψ̄2,−ψ
k
3,+〉 = 〈T1T

kl
2+3〉 εl,2 (χ̄2,−γkχ3,+) +

1

8

(
ε1,k〈ψ̄k

2,−ψ1+3,+〉
)
["p1, $ε1]

=
(
εT1 · ε2

) (
χ̄2,−$ε

T
1 χ3,+

)
E1 +

1

8

(
ε1 · εT2

)
(χ̄2,−$$̂p2 ["p1, $ε1]χ3,+)

(F.249)

there＇s a consistency check from different WT identities (Notice it＇s still holding for

Dirac Fermion)

〈T1ψ̄
L
2,−ψ

L
3,+〉 = −

(
εT1 · p3

) (
χ̄2,−$ε

T
1 χ3,+

) E1

E2E3
ε2,Lε3,L =

(
εT1 · p2

) (
χ̄2,−$ε

T
1 χ3,+

) E1

E2E3
ε2,Lε3,L
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and for the consisent parametrization of diffeomorphism transform

δh0,ij = ∂(iλj),0 +O(h)

δψi
0,+ = λm∂mψ

i
0,+ + (∂iλm)ψ

m
0,+ −

1

8
∂aλb

[
γa, γb

]
ψi
0,+ +O(h)

δψ̄i
0,− = ψ̄i

0,−
←−
∂ mλ

m + (∂iλm)ψ̄
m
0,− +

1

8
ψ̄i
0,−
[
γa, γb

]
∂aλb +O(h)

Similar to (F.239), the invariance of wavefunction tells us the graviton WT-identity will

be

p1,k〈T k
1 ψ̄2,−ψ3,+〉 = −χ̄2,−$$̂p2χ3,+

(
εT2 · ε3

)
(p3 · ε1)− χ̄2,−$$̂p3χ3,+

(
ε2 · εT3

)
(p2 · ε1)

− χ̄2,−$$̂p2χ3,+

(
εT2 · p1

)
(ε3 · ε1)− χ̄2,−$$̂p3χ3,+

(
εT3 · p1

)
(ε2 · ε1)

− 1

8

(
εT2 · ε3

)
(χ̄2,−$$̂p2 ["p1, $ε1]χ3,+) +

1

8

(
ε2 · εT3

)
(χ̄2,− ["p1, $ε1] $$̂p3χ3,+)

(F.250)

and the consistency check from graviton and gravitino will be

〈TL
1 ψ̄

L
2,−ψ3,+〉 = −

1

8

(
p1 · εT3

)
(χ̄2,−["p1, $ε1] $$̂p3χ3,+)

(
εL1 ε

L
2

)

E1E2
=

1

8

(
p2 · εT3

)
(χ̄2,− ["p1, $ε1] $$̂p3χ3,+)

(
εL1 ε

L
2

)

E1E2

(F.251)

〈TL
1 ψ̄2,−ψ

L
3,+〉 =

1

8

(
p1 · εT2

)
(χ̄2,−$$̂p2 ["p1, $ε1]χ3,+)

(
εL1 ε

L
3

)

E1E3
= −1

8

(
εT2 · p3

)
(χ̄2,−$$̂p2 ["p1, $ε1]χ3,+)

(
εL1 ε

L
3

)

E1E3

(F.252)

F.3 4pt WT identity

• Scalar theory:

pi1〈J1,iO∗
2J3,jO4〉 = −e 〈O∗

1+2 J3,jO4〉 + e 〈O∗
2 J3,jO1+4〉 (F.253)
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and for the gravity (double-checked in momentum space and coordinate space)

δh0,ij = 2 ∂(iξj),0 − 2ξm(i,0∂hj)m,0 + ξm∂mhij +O
(
h2
)

; δφ0 = ξ0,i∂
iφ0 − ξi,0hij

0 ∂jφ0

(F.254)

Similar to (F.239), the invariance of wavefunction tells us the WT identity will be

p1,iε1,j,0〈T ij
1 O2T3O4〉 = −

1

2
(p2 · ε1)〈O2+1T3O4〉 −

1

2
(p4 · ε1)〈O2T3O4+1〉

+ (ε1 · ε3)p3,a〈T a
1+3O2O4〉′ −

1

2
(ε1 · p3)〈T1+3O2O4〉′

+
1

2
(p2 · ε3)(ε1 · ε3)〈O2+1+3O4〉+

1

2
(p4 · ε3)(ε1 · ε3)〈O2O4+1+3〉

Because we don’t apply the constraint (2.28) of the boundary condition hkl,0 on the gauge

transformation, so the correlator with free indices is produced by pulling out the uncon-

strained boundary condition h′
ij,0. We call this unconstrined correlator and define it by

〈T a
1+3O2O4〉′ := ε3,b〈T ab

1+3O2O4〉′

〈T ab
1+3O2O4〉′ := P kl

2,ab〈T ab
1+3O2O4〉.

(F.255)

such that

h1+3,kl,0〈T kl
1+3O2O4〉′ := h′

1+3,kl,0P
kl
2,k′l′〈T kl

1+3O2O4〉. (F.256)

Similarly, we should write the 3-pointWT identity like (F.244), (F.248), and (F.249) by the

two-point unconstrained correlator, but actually, in these case the unconstrained correlator

is equal to the original correlator due to the two-point correlator is pure transverse.

The projector P ijkl we define in the (??).

• Fermion theory:
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pi1〈J1,iχ̄2,−J3,jχ4,+〉 = −e 〈χ̄1+2,−J3,jχ4,+〉 + e 〈χ̄2,−J3,jχ1+4,+〉 (F.257)

and for gravity, the diffeomorphism is

δh0,ij = 2 ∂(iλj),0 − 2λm(i,0∂hj)m,0 + λm∂mhij +O
(
h2
)

δχ0,+ = λaeia∇iχ0,+ −
1

8
eia∇iλb

[
γa, γb

]
χ0,+

= λm∂mχ0,+ −
1

8
∂aλb

[
γa, γb

]
χ0,+

− 1

2
λah

ab∂bχ0,+ +
1

16
hca∂

cλb
[
γa, γb

]
χ0,+ +O

(
h2
)

δχ̄0,− = χ̄0,−
←−∇ ie

i
aλ

a +
1

8
χ̄0,−

[
γa, γb

]
∇iλb e

i
a

= χ̄0,−
←−
∂ mλ

m +
1

8
χ̄0,−

[
γa, γb

]
∂aλb

− 1

2
λah

ab∂bχ̄0,− −
1

16
χ̄0,−

[
γa, γb

]
hca∂

cλb +O
(
h2
)

Similar to (F.239), the invariance of wavefunction tells us the WT identity will be

p1,iε1,j,0〈T ij
1 χ̄2,−T3χ4,+〉

= −1

2
(ε1 · p2)〈χ̄2+1,−T3χ4,+〉 −

1

2
(ε1 · p4)〈χ̄2,−T3χ4+1,+〉

+
1

16
χ̄2,−,A(["p1, $ε1])

AB〈χ̄2+1,B,−T3χ4,+〉′ −
1

16
〈χ̄2,−T3χ4+1,+,A〉′(["p1, $ε1])

ABχ4,+,B

+ (ε1 · ε3)p3,a〈T a
3+1χ̄2,−χ4,+〉 −

1

2
(ε1 · p3)〈T3+1χ̄2,−χ4,+〉

+
1

2
(ε1 · ε3)(ε3 · p2)〈χ̄2+3+1,−χ4,+〉+

1

2
(ε1 · ε3)(ε3 · p4)〈χ̄2,−χ4+3+1,+〉

+
1

32
(p1 · ε3)χ̄2,−,A([$ε3, $ε1])

AB〈χ̄2+3+1,−,Bχ4,+,C〉χC
4,+

− 1

32
(p1 · ε3)χ̄2,−,A〈χ̄A

2,−χ
B
4+3+1,+〉([$ε3, $ε1])BCχ

C
4,+

(F.258)

• N=1 Pure Supersymmetry
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The diffeomorphism will be parametrized by

δh0,ij = ∂(iλj) − λm(i∂hj)m,0 +
1

2
λm∂mhij +O

(
h2
)

δψi
0,+ = λm∂mψ

i
0,+ + (∂iλm)ψ

m
0,+ −

1

8
∂aλb

[
γa, γb

]
ψi
0,+

+ λah0,ab∂
bψi

0,+ + (∂iλ
a)h0,abψ

b
0,+ −

1

16
hca,0∂

cλb
([
γa, γb

]
ψi
0,+

)
+O

(
h2
)

δψ̄i
0,− = ψ̄i

0,−
←−
∂ mλ

m + (∂iλm)ψ̄
m
0,− +

1

8
ψ̄i
0,−
[
γa, γb

]
∂aλb +O(h)

+ λah0,ab∂
bψ̄i

0,− + (∂iλ
a)h0,abψ̄

b
0,− +

1

16
hca,0∂

cλb
(
ψ̄i
0,−
[
γa, γb

])
+O

(
h2
)

Similar to (F.239), the invariance of wavefunction tells us the WT identity will be

p1,iε1,j〈T ij
1 ψ̄2,−T3ψ4,+〉 =

− 〈ψ̄2+1,−T3ψ4,+〉′(p2 · ε1)− χ̄2,−,A

(
p1,k〈ψ̄k,A

2+1,−T3ψ4,+〉′
)
(ε2 · ε1)

+
1

8
χ̄2,−,A ["p1, $ε1]

AB 〈ψ̄2+1,−,BT3ψ4,+〉′

− 〈ψ̄2,−T3ψ4+1,+〉′(p4 · ε1)− (ε4 · ε1)
(
p1,k〈ψ̄2+1,−T3ψ

k,B
4+1,+〉′

)
χ4,B,+

− 1

8
〈ψ̄2,−T3ψ4+1,+,A〉′ (["p1, $ε1])

AB χ4,+,B

+
(
〈ψ̄2,−T

ij
3+1ψ4,+〉′ε3,i p3,j

)
(ε1 · ε3)−

1

2
(p3 · ε1)〈ψ̄2,−T3+1ψ4,+〉′

− (ε1 · ε3)(p2 · ε3)〈ψ̄2+1+3,−ψ4,+〉 − (ε1 · ε3)(ε3 · ε2)
(
p1,kχ̄2,−,A〈ψ̄k,A

2+1+3,−ψ4,+〉
)

+
1

16
(p1 · ε3)χ̄2,−,A([$ε3, $ε1])

AB〈ψ̄2+1+3,−,Bψ4,+,C〉χC
4,+

− (ε1 · ε3)(p4 · ε3)〈ψ̄2,−ψ4+1+3,+〉 − (ε1 · ε3)(ε3 · ε4)
(
p1,k〈ψ̄2,−ψ

k,B
4+1+3,+〉χ4,+,B

)

− 1

16
(p1 · ε3)χ̄2,−,A〈ψ̄A

2,−ψ
B
4+1+3,+〉([$ε3, $ε1])BCχ

C
4,+

(F.259)
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and the Supersymmetry transform is

ε̄− = εT+ B

δε̄−hij = ε̄−γ(iψj,+) +
1

2
ε̄−γ

aha(iψj,+) +O
(
h2
)
= δε+hij = −ψ̄−(j γi) ε+ − ψ̄−(j h

a
i)γa ε+ +O

(
h2
)

δψ+
i = ∂i ε+ +

1

8
wiab

[
γa, γb

]
ε+ = ∂i ε+ −

1

8
∂ahbi

[
γa, γb

]
ε+

+
1

16
haj∂bhij[γa, γb]ε+ +

1

32
hja∂jh

b
i [γa, γb]ε+ +O

(
h3
)

δψ̄−
i = ∂i ε̄− −

1

8
ε̄− wiab

[
γa, γb

]
= ∂i ε̄− +

1

8
ε̄− ∂ahbi

[
γa, γb

]

− 1

16
haj∂bhij (ε̄−[γa, γb])−

1

32
hja∂jh

b
i (ε̄−[γa, γb]) + O

(
h3
)

In above equations, because we don’t apply the constraint (2.39) and (2.39) of the bound-

ary condition ψ+,i,0 on the gauge transformation, so the correlator with free indices is

produced by pulling out the unconstrained boundary condition ψ′
+,i,0. We call this uncon-

strined correlator and define it by

〈ψ̄2,−T3ψ4+1,+,A〉′ := 〈ψ̄2,−T3ψ4+1,+,A,i〉εi4

〈ψ̄2,−T3ψ4+1,+,iA〉 := 〈ψ̄2,−T3ψ
B,a
4+1,+〉Pia,AB.

(F.260)

such that

〈ψ̄2,−T3ψ4+1,+,iA〉ψ
′,iA
0 = 〈ψ̄2,−T3ψ

B,a
4+1,+〉Pia,ABψ

iA
0 . (F.261)

Similarly, we define

〈ψ̄k,A
2+1,−T3ψ4,+〉′ := Pka,AB〈ψ̄2+1,−,a,BT3ψ4,+〉. (F.262)

The projector P ijAB, P̄ ijAB we define in the (3.68).

Actually, we should write 3-point WT identity like (F.248), and (F.249) by the two-

point unconstrained correlator, but actually, in these cases the unconstrained correlator is
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equal to the original correlator due to the two-point correlator is pure transverse.

Then similar to (F.239), the invariance of wavefunction tells us the WT identity will

be

p2,i〈T1ψ̄
i
2,−T3ψ4,+〉 = −χ̄2,−

(
γiε4,j〈T ij

2+4T1T3〉′
)
χ4,+ −

1

8
χ̄2,−,A (["p1, $ε1])

AB (ε1,i〈ψ̄i
2+1,−,BT3ψ4,+〉′

)

− 1

8
χ̄2,−,A (["p3, $ε3])

AB (ε3,i〈ψ̄i
2+3,−,BT1ψ4,+〉′

)

− 1

2
(χ̄2,−$ε1χ4,+) ε1,j,0ε4,i,0〈T ij

2+4+1T3〉′ −
1

2
(χ̄2,−$ε3χ4,+) ε3,j,0ε4,i,0〈T ij

2+4+3T1〉′

+
1

16

(
χ̄2,− [$ε1,"p3]

(
ε3,i,0〈ψ̄i

2+1+3,−ψ4,+〉
)
χ4,+

)
(ε1 · ε3)

+
1

32

(
χ̄2,− [$ε1, $ε3]

(
ε3,i,0〈ψ̄i

2+1+3,−ψ4,+〉
)
χ4,+

)
(ε1 · p3)

+
1

16

(
χ̄2,− [$ε3,"p1]

(
ε1,i,0〈ψ̄i

2+1+3,−ψ4,+〉
)
χ4,+

)
(ε1 · ε3)

+
1

32

(
χ̄2,− [$ε3, $ε1]

(
ε1,i,0〈ψ̄i

2+1+3,−ψ4,+〉
)
χ4,+

)
(ε1 · p3)

(F.263)

p1,i〈ψ̄i
1ψ2ψ̄3ψ4〉 = −χ̄1,−

(
γiε4,j〈ψ2ψ̄3T

ij
4+1〉′

)
− χ̄1,−

(
γiε2,j〈T ij

2+1ψ̄3ψ4〉′
)
− χ̄1,−

(
γiε3,j〈T ij

3+1ψ̄2ψ4〉′
)

(F.264)

inwhich, for theMajorana spinor, there’s no actual difference of the ψ̄ andψ, or 〈ψ̄i
1ψ2ψ̄3ψ4〉 =

−〈ψ̄2ψi
1ψ̄3ψ4〉.
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Appendix G — Total Energy Pole

We can compare the definition of flat space amplitudeM and correlator ψ

S = 1 + iM = 〈0, f |0, i〉 =
∫

Dφ(t) exp(i

∫ ∞

−∞
d4x L(φ(t))

Ψ = 〈0,Ω|0, i〉 =
∫

Dφ(t) exp(i

∫ 0

−∞
d4x L(φ(t)) ∼

∫
dφ0 exp(i

∫ 0

−∞
d4x L(φcl(t,φ0))

=

∫
dφ0 exp

(
n∏

i

φi,0 · ψn

)

We notice the only difference besides the integral region is conventionally we absorb i

in correlator but don’t do that for amplitude so the total energy pole residue reads, the

imaginary comes from δ(ΣE)→ 1

i KT
cancels the imaginary rescaling between correlator

and amplitude:

lim
KT→0

ψn =
Mn

KT
(G.265)

If we encounter the spinning field, we now define ψ as the correlator contracted with

boundary condition for convenience and ψi for the correlator whose boundary condition
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is extracted

Ψ =

∫
dε0 exp

(
n∏

i

εi,0,ji · ψj1...jn
n

)
= exp

(∫
dε0 ψn

)

we should take amplitude’s polarization ε vector as the boundary condition ε0 for correlator

lim
KT→0

ψn

(
εi0 = εi

)
=

Mn (εi)

KT
(G.266)
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