
doi:10.6342/NTU202300271

國立臺灣大學生物資源暨農學院生物機電工程學系

碩士論文

Department of Biomechatronics Engineering

College of Bioresources and Agriculture

National Taiwan University

Master Thesis

AIoT技術在設施栽培中精密監控小型害蟲與優化蜜蜂
授粉之應用

Applications of AIoT Technology for Precision Monitoring
of Small Pests and Optimization of Bee Pollination in

Protected Cultivation

張善程

Shan-Cheng Chang

指導教授: 周呈霙博士

Advisor: Cheng-Ying Chou, Ph.D.

中華民國 112年 6月

June, 2023

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Acknowledgements

在兩年的碩士生涯中，其中遇到許多困難，但由於師長、家人以及同學的無

私幫助及陪伴，最終也得以完成此本碩論。首先，衷心感謝我的指導教授周呈霙

教授。感謝您在整個研究過程中的耐心指導和悉心指教。您的寶貴意見和建議對

於我的研究工作至關重要，讓我受益匪淺。也感謝口試委員江昭皚教授、楊恩誠

教授以及王人正老師的建議與鼓勵，讓我得以更加完善我的論文內容。

另外，我要特別感謝我的家人。感謝父母對我學業的支持和鼓勵，是您們給

予我堅強的後盾，讓我有信心走過每一個學術挑戰。同時，我也要感謝我的實驗

室夥伴們。感謝你們在我研究上的相互扶持和共同成長。有你們的陪伴，讓我在

做實驗時不會太孤單，每一次的討論和交流都讓我重新獲得向前邁進的動力。

最後，我還想感謝所有實驗場地內的昆蟲。在害蟲實驗中，如果沒有粉蝨及

薊馬的犧牲，我的黏蟲紙影像就沒有用處；而在蜜蜂實驗中，如果蜜蜂們無法忍

受我的打擾，繼續專心採集花粉粒，我就無法收集到花粉粒影像，真心感謝牠們

的配合。希望這份誌謝能夠表達出我內心深處的感激之情。我將永誌不忘，將來

也會以更積極的態度回饋社會，繼續努力，報答所有支持和幫助過我的人。

i

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

摘要

在臺灣，為提高作物單位面積產量，通常採用易於管理的溫室種植方法。然

而即便作物採用溫室種植，仍無法完全避免蟲害爆發。另一方面，蜜蜂不太適

應於密閉空間內飛行，進而導致作物授粉效率不太穩定。因此，在蟲害防治方

面，基於過去研究，本研究利用物聯網系統搭配 Faster R-CNN、YOLO系列以及

Transformer系列物件偵測模型進行大數據分析，我們提出更加輕量化且客製化的

方法，以提供溫室害蟲防治之有效參考指標；另外授粉效率評估方面，過去研

究多利用蜜蜂進出巢數量評估作物授粉效率，此法無法得知蜜蜂攜帶花粉粒大

小，進而無法精確掌握與授粉效率節節相關的花粉量，因此本研究提出利用Mask

R-CNN、YOLACT以及 Transformer系列等實例分割模型的方法，針對花粉粒面

積進行辨識以及計算，並進一步與實際花粉粒重量進行相關性分析，以優化蜜蜂

授粉。基於以上研究成果，將對溫室中種植作物之蟲害防治以及蜜蜂授粉優化提

供一個較智能的解決方案，進而提昇作物產量。

關鍵字：溫室種植、物聯網、物件偵測、實例分割

ii

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Abstract

In Taiwan, to increase the yield per unit area of cultivation, greenhouse cultivation

methods that are easy to manage are usually adopted. However, even if crops are grown in

greenhouses, pest outbreaks cannot be completely avoided, and bees are not well adapted

to flying in confined space, resulting in unstable pollination efficiency of crops. There-

fore, in terms of pest control, based on past research, this research uses an IoT system with

Faster R-CNN, YOLO series, and Transformer series object detection models to conduct

big data analysis. We propose a more lightweight and customized method to provide

greenhouse pest control with effective reference indicators. In addition, in terms of polli-

nation efficiency assessment, past studies mostly used the number of honey bees entering

and leaving the hive to evaluate crop pollination efficiency. Such methods cannot know

the size of pollen grains carried by honey bees and thus cannot accurately grasp the amount

of pollen-related to pollination efficiency. The study proposes a method of instance seg-

mentation models such as Mask R-CNN, YOLACT, and Transformer series to detect and

iii

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

calculate the pollen grain area and conduct correlation analysis with crop pollination to

provide a more reliable pollination efficiency evaluation index. Based on the above re-

search results, a more intelligent solution will be provided for pest control and pollination

efficiency assessment of crops grown in greenhouses, thereby maximizing crop yields.

Keywords: Greenhouse cultivation, IoT, Object detection, Instance segmentation

iv

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Contents

Page

Acknowledgements i

摘要 ii

Abstract iii

Contents v

List of Figures viii

List of Tables xii

Chapter 1 Introduction 1

1.1 Background . 1

1.2 Research purpose . 2

Chapter 2 Literature Review 5

2.1 Common insects in crop cultivation and management 5

2.1.1 Whiteflies & thrips . 6

2.1.2 Honey bee . 7

2.2 AIoT systems in crop cultivation and management 7

2.2.1 Environmental sensing . 8

2.2.2 Monitoring of pests . 8

2.2.3 Optimization of bee pollination . 9

v

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

2.3 IoT technology . 10

2.4 Deep learning algorithm . 11

2.4.1 Object detection . 11

2.4.2 Instance segmentation . 26

2.4.3 Tracking algorithm . 30

Chapter 3 Materials & Methods 35

3.1 Monitoring of pests . 35

3.1.1 IoT system . 36

3.1.2 Image preprocessing . 38

3.1.3 Model training . 41

3.1.4 Combining environmental monitoring and pest counting 43

3.2 Optimization of bee pollination . 44

3.2.1 Image acquisition system . 44

3.2.2 Image preprocessing . 46

3.2.3 Counting of honey bees entering and leaving the hive 48

3.2.4 Calculation of pollen grain area . 51

3.2.5 Correlation analysis between calculated area and actual weight of

pollen grains . 55

Chapter 4 Results & Discussion 56

4.1 Monitoring of pests . 56

4.1.1 Model comparison . 56

4.1.2 Results obtained by YOLOv5 model with “x6” backbone. 57

4.1.3 Combining environmental sensing and pest monitoring measures . . 63

vi

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

4.1.4 Practical applications . 64

4.2 Optimization of bee pollination . 67

4.2.1 Counting of honey bees entering and leaving the hive 67

4.2.2 Calculation of pollen grain area . 73

4.2.3 Correlation analysis between pollen count and actual pollination sta-

tus of crops . 81

Chapter 5 Conclusion 85

Chapter 6 Future work 87

References 88

vii

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

List of Figures

2.1 The architecture of the Faster R-CNN model (Ren et al., 2015). 13

2.2 The architecture of the YOLOv3model, drawn according to (Redmon and

Farhadi, 2018). 14

2.3 The architecture of the YOLOv5 (5.0) model, drawn according to (Jocher,

2020). 16

2.4 The architecture of the YOLOv5 (6.0) model, drawn according to (Jocher,

2020). 16

2.5 The architecture of the YOLOR model, drawn according to (Wang et al.,

2021). 18

2.6 The architecture of the YOLOv6 model (Li et al., 2022). 19

2.7 The neck internal corresponding components of the YOLOv6 model ver-

sion 3.0 (Li et al., 2023). 19

2.8 The architecture of the YOLOv7 model, drawn according to (Wang et al.,

2023). 20

2.9 The architecture of the YOLOv8 model, drawn according to (Jocher et al.,

2023). 21

2.10 The architecture of the RetinaNet model (Lin et al., 2017b). 24

2.11 The architecture of the swin transformer model (Liu et al., 2021). 25

2.12 The architecture of the swin transformer block (Liu et al., 2021). 25

2.13 The architecture of theMask R-CNNmodel, drawn according to (He et al.,

2017). 27

2.14 The architecture of the YOLACT model (Bolya et al., 2019, 2022). 28

viii

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

2.15 The flow chart of DeepSORT tracking algorithm (Wojke et al., 2017; Du

et al., 2023). 31

2.16 The flow chart of StrongSORT tracking algorithm (Du et al., 2023). . . . 32

2.17 The flow chart of AFLink (Du et al., 2023). 34

3.1 Flow chart of pest monitoring. 35

3.2 Schematic of pest monitoring. 36

3.3 Locations of greenhouse nodes. 37

3.4 The sticky paper trap monitoring node. 38

3.5 Original images of sticky pest traps for (a) whiteflies and (b)-(c) thrips. . 38

3.6 Optical wavelength test results of yellow sticky paper samples (IATP). . . 39

3.7 Optical wavelength test results of blue sticky paper samples (IATPBL). . 39

3.8 Optical wavelength test results of white sticky paper samples (FATP). . . 39

3.9 (a) Original sticky pest trap image after division. (b) Image after HSV

processing. (c) Image after CIELAB processing. 41

3.10 Flow chart of bee pollination optimization. 44

3.11 Schematic of bee pollination optimization. 45

3.12 The honey bee monitoring system. 47

3.13 Mechanisms for observation box version 2. 48

3.14 Images (a)-(c) show the observation aisle in version 1 of the observation

box. Images (d)-(f) depict the observation aisle in version 2 of the obser-

vation box. The images are positioned below, to the left of, and to the

right of the observation aisle. 49

3.15 (a) The pollen grains scraped by the mechanism. (b) The electronic scale

(TP-214). 55

4.1 Results of pest detection with YOLOv5 model using “x6” backbone. The

thrips sticky paper trap images are represented by blue and white rectangles. 58

4.2 Curve of precision versus recall for pest detection with YOLOv5 model

using “x6” backbone. 60

ix

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

4.3 Curve of F1 scores for pest detection with YOLOv5 model using “x6”

backbone. 61

4.4 Confusion matrix of pests detected using YOLOv5 model with backbone

“x6”. 61

4.5 Results of object classification and counting using YOLOv5 model with

“x6” backbone . 62

4.6 Combining sensing values and pest numbers. Boxplots of sensing values

and line graphs of pest numbers from January 19, 2022, to February 25,

2022, for (a) air temperature and (b) air humidity. 65

4.7 Results showing variations in the whitefly population during the pest out-

break from January 01, 2020 to January 31, 2020. 67

4.8 The resulting bounding boxes of honey bee using the YOLOv8model with

“s” backbone. 69

4.9 Curve of precision vs. recall for honey bee with YOLOv8 model using

“s” backbone. 70

4.10 Curve of F1 scores for honey bee with YOLOv8 model using “s” backbone. 70

4.11 Confusion matrix of honey bees detected with YOLOv8 model using “s”

backbone. 71

4.12 The honey bee tracking results of version 1 (a) and version 2 (b) obser-

vation boxes using the YOLOv8 model with “s” backbone in conjunction

with the StrongSORT (Du et al., 2023) tracking algorithm. 73

4.13 Scoring examples of segmentation score for version 1 and 2 observation

boxes, where red numbers are segmentation scores. 76

4.14 The Mask R-CNN model with Swin-T backbone was used to obtain seg-

mentation results for pollen grains in both version 1 and version 2 obser-

vation boxes. Images (a) and (b) show the segmentation results for pollen

grains on the left and right sides of version 1. Images (c) and (d) display

the segmentation results for pollen grains on the left and right sides of

version 2. 79

x

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

4.15 The detection curve of precision vs. recall for pollen grains with the Mask

R-CNN model using Swin-T backbone. The numbers in the upper left

corner of the figure represent bounding box mAP. 80

4.16 The segmentation curve of precision vs. recall for pollen grains with the

Mask R-CNN model using Swin-T backbone. The numbers in the upper

left corner of the figure represent mask mAP. 80

4.17 Confusion matrix of pollen grains detected with the Mask R-CNN model

using Swin-T backbone. 81

4.18 Images (a) and (c) show the segmentation results for pollen grains in ver-

sion 1 and version 2 observation boxes, respectively. The Mask R-CNN

model with Swin-T backbone was used for both. Images (b) and (d) depict

the calculation results for version 1 and version 2, respectively, using the

algorithm (white pixels indicate calculated pixels). 82

4.19 Regression curve of the experimental data on January 13, March 05, and

March 06, 2023. 84

xi

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

List of Tables

3.1 Training parameters of the models. 43

3.2 Training parameters of the models used by the tracking algorithm. 50

3.3 Training parameters of the instance segmentation models. 53

4.1 Comparison of the precision, recall, and mAP of the models. 57

4.2 Mean count accuracy per day for seven consecutive days. 63

4.3 Cross-correlation of environmental temperature and humidity with pest

numbers on various days. d0, d−1, d−2, and d−3 represent the current day,

1 day prior, 2 days prior, and 3 days prior, respectively. 64

4.4 Comparison of the precision, recall, and mean average precision (mAP)

of all models. 68

4.5 Comparison of the StrongSORT tracking accuracy of differentmodel weight

files. 72

4.6 Comparing the mAP of all instance segmentation models. 74

4.7 Comparing the segmentation result of all instance segmentation models. . 77

4.8 The experimental data on January 13, 2023 (1 mm2 = 256 pixels). 83

4.9 The experimental data on March 05, 2023 (1 mm2 = 256 pixels). 83

4.10 The experimental data on March 06, 2023 (1 mm2 = 256 pixels). 84

xii

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Chapter 1 Introduction

1.1 Background

In recent years, smart greenhouse agricultural technology has become increasingly

mature. Farmers can automatically adjust the sunlight, temperature, water, and nutrient

solution of planting in greenhouse facilities through the Internet of Things (IoT) technol-

ogy and use smart cultivation technology to grow crops with high economic value (Liao

et al., 2017). Although greenhouse cultivation can effectively control environmental fac-

tors and reduce the occurrence of pests and diseases, it still cannot completely isolate crop

pests and diseases.

Asparagus is prone to infestation by Silverleaf whiteflies (Bemisia tabaci) (Guo et al.,

2019) and thrips (Thysanoptera) (Hsieh et al., 2020; Guo et al., 2020). To enhance yields

and reduce the pest population, growers employ passive pest control methods, classified

into physical and chemical techniques. Yellow sticky paper traps are commonly utilized

to observe and control pest activity. In cases where more pests are detected, asparagus is

splashed with water, while severe cases call for the use of insecticides for chemical pest

control (Guo et al., 2017, 2019). Asparagus’ vulnerability towhitefly and thrip infestations

can cause significant economic losses as it can weaken the plant, making it incapable of

photosynthesizing and resulting in wilting of the stem and buckling of shoot tips.

1

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

In addition, greenhouse cultivation is also well isolated from the outside world, so

pollinating insects such as honey bees and butterflies cannot pollinate crops, which makes

greenhouse crops face great challenges in terms of pollination requirements. The current

greenhouse pollination method is to allocate at least one beehive for pollination in each

greenhouse, and each beehive must be equipped with an expensive queen bee, resulting in

a very high cost in the pollination stage (Washitani et al., 1994). Although most farmers

and beekeepers cooperate in pollination operations, whenever there is a need for honey

production, the needs of beekeepers and farmers to use beehives will conflict, resulting in

a gap in greenhouse crop pollination needs. If the number of beehives in the greenhouse

is too few, pollination will be incomplete, and the yield will be affected. However, if the

number of beehives is too large, the honey bee colony may hit the wall in the greenhouse.

Hence, there is a need to establish a comprehensive system that not only can track

real-time pest populations but also can effectively optimize the pollination of bees. By

doing so, this system can help mitigate economic losses for farmers in pest infestation

while enhancing bees’ pollination, thereby increasing overall profits.

1.2 Research purpose

Starting from the emergence of precision agriculture during the 1990s (Heuvel, 1996),

modern agricultural technology has made significant strides towards enhancing the effi-

ciency of agricultural production and resolving the labor shortage challenges faced by the

industry. The practical implementation of the IoT and Artificial Intelligence (AI) in smart

agriculture (Li et al., 2020a) has enabled farmers to monitor crop growth remotely and

receive recommendations for planting. This development marks a noteworthy milestone

2

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

in the agricultural sector’s quest for advanced solutions.

Over the past few years, Convolutional Neural Networks (CNN) has become a ubiq-

uitous AI technique for detecting objects. The development of deep learning algorithms

has enabled the detection of object features, facilitating various detection tasks (Liu and

Wang, 2021). Compared to traditional image processing techniques, these methods have

become more prominent. Object detection, a widely-researched field, utilizes bounding

boxes to select object boxes (Zhao et al., 2019; Zou et al., 2023; Xu et al., 2022). For in-

stance, the two-stage model, Faster R-CNN (Ren et al., 2015), was developed to achieve

high detection accuracy, but it has a lengthy inference time. Currently, the YOLO model

family (Redmon and Farhadi, 2018; Jocher, 2020; Wang et al., 2023; Jocher et al., 2023;

Li et al., 2023), the most commonly used one-stage model, accelerates model inference

while maintaining comparable accuracy. The Transformer model family (Liu et al., 2021;

Xu et al., 2022), known for its exceptional performance in natural language processing,

has recently garnered significant attention in computer vision. These models have all es-

tablished themselves as leading object detection techniques.

Instance segmentation is a relatively new research topic (Tian et al., 2022). At present,

there is still a problem of excessive computation for real-time image recognition. It is to

first select objects through the bounding box, and thenmark the object area in the bounding

box. An example of an early two-stage model, Mask R-CNN (He et al., 2017), has been

improved by leveraging the architecture of Faster R-CNN (Ren et al., 2015). The one-

stage models currently available for instant application are the YOLACT model (Bolya

et al., 2019, 2022) and the YOLO model (Jocher, 2020; Jocher et al., 2023). The Trans-

former models are among the relatively new models (Liu et al., 2021; Xu et al., 2022).

These models are all instance segmentation models.

3

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

The goal of this study is to create an AIoT system that harnesses the power of IoT

and AI technology to optimize crop insect management as neural network image recogni-

tion technology continues to progress. To achieve this goal, I have installed various IoT

sensors that can monitor the crop-growing environment while leveraging more precise

deep-learning models to monitor insect populations. The primary objective is to enhance

the pollination of bees and minimize the risk of pest outbreaks. Through the analysis of

big data, this study aims to uncover potential correlations between ambient changes and

insect activity, leading to improved insect control in crop fields.

4

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Chapter 2 Literature Review

2.1 Common insects in crop cultivation and management

In recent years, the intensification of climate change worldwide has underscored the

significance of protected cultivation as a vital solution for safeguarding crops against ex-

treme weather conditions. As the area dedicated to facility planting continues to expand

rapidly, the industry has recognized the pressing challenges posed by the high instability

and cost associated with facility pest monitoring and pollination. In light of the climate

change impact, facility planting has emerged as the most effective response. Notably,

the area of protected cultivation in Taiwan has seen significant growth in the past decade,

accompanied by an increase in the number of protected cultivation farmers who now en-

joy considerably higher incomes compared to traditional farmers. Given Taiwan’s limited

farmland, farmers have prioritized maximizing crop yield per unit area through the use

of indoor greenhouses. These greenhouses provide precise control over crop growth by

allowing farmers to regulate environmental conditions and minimize pest infestations us-

ing protective nets. However, despite the comprehensive protection offered by four-sided

nets, pest outbreaks can still inflict significant damage on crops in the absence of effec-

tive pest control strategies. Furthermore, as the greenhouse environment is isolated from

the outdoors, farmers must manually introduce beehives to ensure proper pollination. To

5

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

address these challenges, it is imperative to monitor pests and optimize pollination within

the greenhouse setting.

2.1.1 Whiteflies & thrips

The common small pests of facility asparagus are Silverleaf whitefly and thrips. Sil-

verleaf whitefly is small in size, has strong migration ability, and high reproductive po-

tential. When the population density is high, its secretions often induce soot mold, hinder

the photosynthesis of asparagus leaves, and affect the yield (Guo et al., 2017, 2019).

The thrips are small in size and highly concealed. The nymphs often hide in the scales

of the tender stems after hatching, and suck the sap in the tissues through the rasping-

mouthparts, which not only causes the shoot tips of the tender stems to bend and shrink,

but also causes the scales to brown. This directly affects the value of the commodity and

causes damage to the mother stem (Hsieh et al., 2020; Guo et al., 2020).

In outdoor cultivation environments, the severity of infestations from these two small

pests tends to increase during dry and warm periods. However, in the controlled environ-

ment of a greenhouse, they can occur annually and persist at high population densities over

extended periods. Therefore, it becomes crucial to implement effective monitoring mea-

sures, such as utilizing sticky paper traps and employing image recognition technology, to

accurately assess and count the pest population within the greenhouse. These monitoring

techniques are essential for timely intervention and efficient pest management strategies.

6

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

2.1.2 Honey bee

In natural conditions, approximately 80% of human food relies on pollination by

insects (Solomon, 1971; Kevan, 1999; Delaplane et al., 2000; Klein et al., 2006). How-

ever, the adoption of facility cultivation methods hinders the natural pollination process.

Consequently, the use of chemical agents or labor-intensive manual pollination practices

becomes necessary, resulting in reduced fruit quality, lower production efficiency, and in-

creased costs (Chautá-Mellizo et al., 1999; Sáez et al., 2019). To address these challenges,

some facility farmers have introduced bumblebees or honey bee colonies into greenhouses

to aid in pollination (Fisher and Pomeroy, 1989; Sabara and Winston, 2003; Sun et al.,

2021). Among these methods, honey bee colonies are the most commonly employed for

pollination assistance. However, the confinement of the greenhouse environment causes

field bees, essential for crop pollination, to attempt to escape, leading to a significant num-

ber of field bee deaths and hindering efficient pollination (Nicodemo et al., 2018). Thus, it

becomes necessary for experts to enhance the pollination performance of honey bee hives

and utilize image recognition technology to optimize honey bee pollination in the green-

house setting. These advancements will contribute to improving pollination efficiency

and overall crop productivity.

2.2 AIoT systems in crop cultivation and management

In greenhouses, environmental controls are frequently established based on farmers’

heuristics rather than objective quantitative analysis. As a result, crop growers must de-

vise effective pest management strategies and pollination optimization methods to avoid

pest infestation and monitor honey bee activity in the greenhouse while enhancing the

7

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

pollination of bees.

2.2.1 Environmental sensing

Integrating IoT (Ajao et al., 2017; Maraveas and Bartzanas, 2021) and AI technol-

ogy (Rupnik et al., 2017; Tripathy et al., 2021; Chang et al., 2021) with the environmental

monitoring system of crop greenhouses can greatly enhance the precision of crop growth

control. By utilizing various sensors, the greenhouse environment can be monitored and

relevant data wirelessly transmitted for remote monitoring and subsequent analysis. Stud-

ies have demonstrated the practical application of IoT-based systems for environmental

monitoring in farmland (Ajao et al., 2017; Maraveas and Bartzanas, 2021). Rupnik et al.

developed a cloud-based decision system that utilized random forest algorithm (Rupnik

et al., 2017). Tripathy et al. presented an IoT system that provides decision support for the

challenges encountered in growing roses in a greenhouse (Tripathy et al., 2021). Chang et

al. proposed an AIoT approach that combines IoT and AI technology to predict leaf lettuce

(Lactuca sativa L.) growth-related physiological parameters. The data collected through

IoT technology and imaging systems is analyzed using fuzzy logic and integrated neural

networks (Chang et al., 2021). These studies illustrated the effectiveness and feasibility

of the AIoT system in providing decisive management information to farmers.

2.2.2 Monitoring of pests

Different deep learning algorithms have been suggested for detecting various pest

types on agricultural fields, including whiteflies and thrips. Rustia et al. employed image

processing techniques and support vector machines (SVM) to classify and count insects on

8

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

tomato seedling farms, achieving an average accuracy of 93% (Rustia et al., 2020). They

also used cascaded neural networks to detect and count flies, gnats, thrips, and whiteflies

on tomato seedling and Lisianthus (Eustoma) farms, with an average accuracy of 89%

(Rustia et al., 2018). Furthermore, Rustia et al. utilized CNN object detectors and image

classifiers to detect and count gnats, mothflies, shoreflies, and whiteflies in vegetable

seedlings and cabbage farms, achieving an average accuracy of 91% and 90%, respectively

(Rustia et al., 2021). They also analyzed a correlation between the pest count results

and environmental perception values, enabling farmers to predict pest trends based on

ambient conditions (Rustia et al., 2020). In another study, Chen et al. utilized the deep

learning model YOLOv3 for object detection to locate Tessaratoma papillosa achieving

a detection accuracy of 90%. In addition, Long Short-Term Memory (LSTM) was used

to analyze environmental information from weather stations and predict the occurrence of

pests (Chen et al., 2020).

2.2.3 Optimization of bee pollination

The typical method for evaluating the pollination effectiveness of honey bees is by

counting the number of bees entering and exiting their hive. Ngo et al. introduced an im-

age processing technique utilizing a Kalman Filter and Hungarian algorithm for tracking

to automatically count honey bees entering and leaving their hive. Their method achieved

an automatic counting accuracy of 93.9± 1.1% compared to manual counting (Ngo et al.,

2019). Additionally, Ngo et al. employed a deep learning model that used the same track-

ing algorithm to count bees entering and leaving the hive. The average percent errors for

the count of pollen-bearing honey bees and total incoming honey bees were 8.45± 2.72%

and 10.55± 2.10%, respectively (Ngo et al., 2021). Yang et al. implemented a multi-step

9

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

approach for their study, achieving a measurement error of 7%. Initially, they employed

image processing techniques and a Kalman filter to track the bees. Next, they utilized

an object detection model to detect pollen grains and distinguish whether the honey bees

were carrying them. Finally, a bee count specifically focusing on those carrying pollen

grains was conducted (Yang and Collins, 2019).

2.3 IoT technology

Wireless Sensor Networks (WSNs) play a crucial role in the realm of IoT technology

(Ouni and Saleem, 2022). WSNs consist of front-end data detection and back-end data

analysis components. The gateway serves as the intermediary, transmitting data collected

by wireless sensor nodes to the back-end database for analysis. These nodes are equipped

with sensing, computing, and wireless transmission capabilities to gather environmental

data. The collected data is then organized and categorized through back-end analysis,

catering to various purposes in different domains.

To enable seamless communication within WSNs, multiple protocols have been pro-

posed, including the IEEE 802.11 standard for Wi-Fi and Zigbee. Wi-Fi offers a transmis-

sion distance of 100 meters and a speed of 54 Mbps. However, its higher power consump-

tion and costs restrict its suitability for certain applications. In contrast, Zigbee provides

a low-power alternative with a shorter transmission distance of 50-100 meters, a rate of

250 Kbps, and support for diverse network topologies (Baronti et al., 2007). Zigbee has

gained wide adoption in the industry due to its cost-effectiveness and user-friendly nature.

A typical wireless sensor node comprises essential components such as a micropro-

cessor control unit, memory, power supply module, sensor module, analog-to-digital con-

10

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

verter (ADC), and wireless communication module. The back-end process controls the

system program, allowing for the management of hardware devices on the node. The

node’s operating system interacts with the wireless communication module to transmit

data to other nodes or gateways. The gateway, implemented using various devices, col-

lects sensor information and facilitates its transmission to the external network.

WSNs have been specifically developed to meet the demands of wide-area monitor-

ing in the IoT landscape. They provide real-time information and exhibit high adaptabil-

ity, allowing for the integration of different sensors based on specific user requirements.

WSNs find applications in diverse fields, including ecological monitoring, marine ecolog-

ical monitoring, medical care, and smart grid systems (Caicedo-Ortiz et al., 2018). These

applications harness the capabilities of wireless sensor nodes, encompassing communica-

tion chips, sensing elements, and computing processors.

In summary, WSNs serve as a robust solution for collecting, transmitting, and analyz-

ing data from sensor nodes in the context of IoT. They offer a wide range of applications

across various domains, presenting a powerful tool for addressing monitoring needs and

facilitating efficient data utilization in the ever-expanding IoT ecosystem.

2.4 Deep learning algorithm

2.4.1 Object detection

In order to respond promptly to pest infestations and enhance bee pollination, IoT

sticky paper trap monitoring nodes are commonly used to obtain trap images and beehive

entrances. Previously, image processing algorithms were utilized to count pests captured

11

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

on yellow sticky paper traps and honey bees entering and exiting hives (Rustia and Lin,

2017; Ngo et al., 2019). However, the accuracy of these algorithmsmay diminish when in-

sects of various kinds have comparable appearance features. To address this issue, IoT sys-

tems and AI algorithms including convolutional neural networks can be combined (Chang

et al., 2022; Chou et al., 2023). Furthermore, since the counting of pests and honey bees

is focused on the number, using an object detection model is suitable.

2.4.1.1 Faster R-CNN

The model architecture of Faster R-CNN is shown in Fig. 2.1 (Ren et al., 2015).

Faster R-CNN is a two-stage model that divides the detection step into two stages. In

the first stage, Faster R-CNN builds Feature Pyramid Network (Lin et al., 2017a) through

multi-layer convolutional layers, and uses ReLU activation function (Agarap, 2018) and

pooling layer. Anchors then grab features on the generated feature maps. Region Pro-

posal Networks judges that the features captured by anchors belong to positive or nega-

tive through softmax, and then uses bounding box regression to correct anchors to obtain

accurate region proposals. The ROI Pooling layer collects input feature maps and propos-

als, and extracts proposal feature maps after synthesizing this information. In the second

stage, the proposal feature maps are used to calculate the proposal category through the

fully connected layer, and the bounding box regression is used again to obtain the final

precise position of the detection frame.

2.4.1.2 YOLOv3

Themodel architecture of YOLOv3 is shown in Fig. 2.2. The three basic components

of YOLOv3 are CBL (Conv+BN+Leakyrelu), Bottleneck, and Bottleneck_X (Redmon

12

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Figure 2.1: The architecture of the Faster R-CNN model (Ren et al., 2015).

and Farhadi, 2018). CBL is the smallest component in the YOLOv3 network structure,

consisting of the convolution layer, batch normalization (BN), and LeakyReLU activa-

tion function. Bottleneck is based on the residual structure in the Resnet network, so

that the network can be built deeper. Bottleneck_X consists of a CBL and X Bottleneck

components, where the CBL in front of each Bottleneck plays the role of downsampling.

In the YOLOv3 architecture, after a CBL and 5 Bottlenecks, a Darknet53 without fully

connected layer can be formed.

2.4.1.3 YOLOv5

Building upon the research achievements of YOLOv3 (Redmon and Farhadi, 2018),

the YOLOv5 model was introduced in 2020 (Jocher, 2020). However, due to ongoing

improvements, YOLOv5 has undergone different versions. In the subsequent discussion,

13

doi:10.6342/NTU202300271

CBL CBL Conv

C
oncat

CBL

Bottleneck = CBL CBL = CBLBottleneck_X

CBL = Conv BN LeakyReLU

704x704x3

88x88x255

44x44x255

22x22x255

Bottleneck

*X

Bottleneck_1 Bottleneck_2 Bottleneck_8 Bottleneck_8 Bottleneck_4 CBL

Up
sampling

ConvCBL

C
oncat

CBL Up
sampling

ConvCBL

*5

*5

*5

CBLCBLCBLCBL

CBLCBLCBLCBLCBL

CBLCBLCBLCBLCBL

Darknet 53 without fully connected layer

Figure 2.2: The architecture of the YOLOv3 model, drawn according to (Redmon and
Farhadi, 2018).

YOLOv5 (5.0) refers to the 5.0 version of YOLOv5, while YOLOv5 (6.0) represents the

6.0 version of YOLOv5. The YOLOv5 (5.0) model architecture can be mainly divided

into four parts: input layer, backbone layer, neck layer and detection layer. In the input

layer, Mosaic data augmentation (Bochkovskiy et al., 2020), adaptive anchor box calcu-

lation and adaptive image scaling are mainly added based on YOLOv3. Mosaic data aug-

mentation can increase dataset diversity, model robustness, and reduce GPU usage. The

backbone layer adds Focus architecture and Cross Stage Partial Network (Wang et al.,

2020a). The Focus architecture increases the amount of model computation and param-

eters, so that there is no information loss during downsampling. The Cross Stage Partial

Network reduces the computational bottleneck of the model, the memory cost required for

computation, and enhances the learning ability of the model, making it lightweight while

maintaining accuracy. The neck layer is changed to an Feature Pyramid Networks (FPN)

(Lin et al., 2017a) + Path Aggregation Network (PAN) (Liu et al., 2018) architecture,

which conveys semantic features through upsampling, and conveys localization features

through downsampling, which improves the ability of parameter aggregation and feature

extraction.

14

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

The detection layer uses the CIoU loss function (Zheng et al., 2020) for detection. The

model architecture of YOLOv5 (5.0) is shown in Fig. 2.3 (Jocher, 2020). The five basic

components of YOLOv5 are CBL, Bottleneck, C3_X, Focus, and SPP. CBL is the smallest

component in the YOLOv5 network structure, consisting of the convolution layer, batch

normalization (BN), and SiLU activation function. Bottleneck is divided into two types,

one is based on the residual structure in the Resnet network, so that the network can be

built deeper, and the other is composed of two CBLs alone. C3_X is also divided into two

types by matching X different Bottlenecks. Both are composed of CBL and Bottleneck.

One is applied to the backbone network, and the other is mainly applied to Neck. Focus

utilizes slicing operations and increases the amount of model computation and parameters,

so that there is no information loss during downsampling. SPP uses the maximum pooling

method to perform multi-scale fusion. The model architecture of YOLOv5 (6.0) is shown

in Fig. 2.4 (Jocher, 2020). The YOLOv5 (6.0) mainly makes five changes based on the

YOLOv5 (5.0): replacement of Focus with an equivalent layer for improved exportability,

new SPPF replacement for SPP layer for reduced ops, placement of SPPF at the end of

backbone, reintroduction of shortcut in the last C3 backbone layer, and increase of mixup

and copy-paste augmentation.

YOLOv5 (5.0) and YOLOv5 (6.0) employ four main types of loss functions: box

loss, object loss, class loss (Redmon et al., 2016), and segment loss (Jocher, 2020). The

CIoU loss (Zheng et al., 2020) serves as the box loss, quantifying the disparity between

the predicted and actual bounding box as:

CIoU loss = 1− CIoU = 1− [IoU− ρ2(b, bgt)

c2
− αυ], (2.1)

where ρ2(b, bgt) denotes the distance between the centers of the predicted and ground-truth

15

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Focus CBL C3_1 CBL C3_3 CBL C3_3 CBL C3_1SPP CBL Up
sampling

C
oncat

C3_1 CBL Up
sampling

C
oncat

C3_1 Conv

C
oncat

C3_1 Conv
CBL

C
oncat

C3_1 Conv
CBL

C3_X = CBL Bottleneck C
oncat

CBL

CBL
= CBL Bottleneck C

oncat

CBL

CBL
C3_X

Bottleneck = CBL CBL = CBL CBLBottleneck

CBL = Conv BN SiLU

Focus =

Slice

Slice

Slice

Slice

C
oncat

CBL

SPP = CBL

Maxpool

Maxpool

Maxpool

C
oncat

CBL

Input Backbone

704x704x3

Neck Detection

88x88x255

44x44x255

22x22x255

*X *X

Figure 2.3: The architecture of the YOLOv5 (5.0) model, drawn according to (Jocher,
2020).

CBL C3_1 CBL C3_2 CBL C3_3 CBL SPPF CBL Up
sampling

C
oncat

C3_1 CBL Up
sampling

C
oncat

C3_1 Conv

C
oncat

C3_1 Conv
CBL

C
oncat

C3_1 Conv
CBL

C3_X = CBL Bottleneck C
oncat

CBL

CBL
= CBL Bottleneck C

oncat

CBL

CBL
C3_X

Bottleneck = CBL CBL = CBL CBLBottleneck

CBL = Conv BN SiLU

SPPF = CBL MaxpoolMaxpool Maxpool C
oncat

CBL

Input Backbone

704x704x3

Neck Detection

88x88x255

44x44x255

22x22x255

C3_1CBL

*X *X

Figure 2.4: The architecture of the YOLOv5 (6.0) model, drawn according to (Jocher,
2020).

16

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

bounding boxes, calculated using the Euclidean distance. b and bgt denote the center point

of the predicted and ground-truth bounding boxes, respectively. c indicates the diagonal

distance of the minimum area that is able to fully enclose both the predicted and ground-

truth bounding boxes. α and υ represent a positive trade-off and a measurement of aspect

ratio consistency, respectively.

The object loss initially verifies whether there are objects present within each bound-

ing box, and then utilizes the CIoU value to calculate the BCEWithLogitsLoss, represented

as:

BCEWithLogitsLoss = − 1

N

N∑
i=1

yi · logσ(xi) + (1− yi) · log(1− σ(xi)), (2.2)

where N denotes the batch size. yi is a binary variable that determines whether an object

is present in the bounding box. xi represents the CIoU value of the predicted and ground-

truth bounding box calculated in Eq. (2.1), and σ is the sigmoid function. To calculate the

class loss, BCEWithLogitsLoss is applied to the predicted and ground truth categories,

following the same format as Eq. (2.2). In this equation, yi represents the ground truth

class, xi represents the predicted class, and N denotes the batch size. The segment loss is

computed by calculating BCEWithLogitsLoss on the predicted mask and the ground truth

mask using the same form as Eq. (2.2). N , yi, and xi represent the batch size, the ground

truth mask, and the predicted mask, respectively.

2.4.1.4 YOLOR

The YOLOR (You Only Learn One Representation) model was introduced in 2021

(Wang et al., 2021), featuring its architecture which is depicted in Fig. 2.5. The basic

17

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Focus CBL C3_3 CBL C3_7 CBL C3_7
C3_3

C3_X = CBL Bottleneck C
oncat

CBL

CBL
= CBL Bottleneck C

oncat

CBL

CBL
C3_X

Bottleneck = CBL CBL = CBL CBLBottleneck

CBL = Conv BN SiLU

Focus =

Slice

Slice

Slice

Slice

C
oncat

CBLSPP = CBL

Maxpool

Maxpool

Maxpool

C
oncat

CBL
704x704x3

44x44x255

22x22x255

*X *X

CBL CBL C3_3 CBL C3_3 Res_SPP_x CBL Up
sampling

C
oncat

CBL Up
sampling

C3_3

C
oncat

CBL Up
sampling C

oncat

CBL

CBL

C3_3 Outprocess

C
oncat

C3_1
CBL

C
oncat

C3_1
CBL

C
oncat

C3_1
CBL

Outprocess

Outprocess

Outprocess

88x88x255

Res_SPP_X = CBL C
oncat

CBL

CBL

*X

SPPCBL Bottleneck Outprocess = CBL ConvShift-Channels Control-Channels

11x11x255

Figure 2.5: The architecture of theYOLORmodel, drawn according to (Wang et al., 2021).

components of YOLOR are similar to YOLOv5, Implicit knowledge is introduced, and

two main components are added: Res_SPP_X and outprocess. The Res_SPP_X module

is mainly composed of CBL and SPP, combined with residual structure. The Outpro-

cess module is composed of CBL, shift-channels, convolution layer and control-channels.

Shift-channels and control-channels extract the Implicit knowledge vector, which is sim-

ilar to the self-attention in the transformer model (Xu et al., 2022).

2.4.1.5 YOLOv6

The YOLOv6 model was officially released in 2022 (Li et al., 2022), and its model

architecture can be observed in Fig. 2.6. YOLOv6, built upon the architecture of the

YOLOv5 model, introduced three major enhancements. Firstly, there was a uniform de-

sign for a more efficient Backbone and Neck. Drawing inspiration from the hardware-

aware neural network concept, an EfficientRep Backbone and Rep-PAN Neck were de-

vised based on the RepVGG style (Ding et al., 2021). These components offer reparam-

eterizability and enhanced efficiency. Secondly, a concise and effective Efficient Decou-

pled Head was optimized and designed to minimize additional delays typically caused

by general decoupled heads while maintaining accuracy. Lastly, the training strategy in-

18

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Figure 2.6: The architecture of the YOLOv6 model (Li et al., 2022).

Figure 2.7: The neck internal corresponding components of the YOLOv6 model version
3.0 (Li et al., 2023).

volved adopting an anchor-free paradigm, complemented by the SimOTA label assign-

ment strategy (Ge et al., 2021) and the SIoU bounding box regression loss (Gevorgyan,

2022). This combination aimed further to enhance the detection accuracy of the YOLOv6

model.

In 2023, YOLOv6 received an update to version 3.0 (Li et al., 2023), and the research

team asserted that its accuracy surpassed that of YOLOv7 and YOLOv8. This enhanced

version is built upon the previous architecture while incorporating three key modifica-

tions. Firstly, a reparameterizable bidirectional fused PAN (RepBi-PAN) Neck network

with enhanced representation capability was designed, as shown in Fig. 2.7. Secondly,

a new Anchor-Aided Training strategy was introduced. Lastly, a Decoupled Location

Distillation strategy was proposed to elevate the performance of smaller models. These

updates collectively contributed to the improved accuracy and capabilities of YOLOv6

model version 3.0.

19

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

MP1CBL CBL ELAN ELAN
ELAN

ELAN = CBL C
oncat

CBL

CBL
=ELAN

=

CBL = Conv BN SiLU

SPPCSPC = CBL

Maxpool

Maxpool

Maxpool

C
oncat

CBL
704x704x3

88x88x255

44x44x255

22x22x255

CBL ELAN ELAN CBL Up
sampling

C
oncat

CBL Up
sampling

ELAN

C
oncat C

oncat

CBL

REP

= CBL

CBL MP1 MP1 SPPCSPC

Input Backbone Head

MP2

ELAN

C
oncat

MP2

C3_3 Conv

REP Conv

REP Conv

CBL CBL CBL CBL CBL C
oncat

CBL

CBL
CBL CBL CBL CBL

MP1 C
oncat

CBL CBL

CBLMaxpool

c c/2

c/2

MP1：c -> c MP2：c -> 2c

C
oncat

CBL

CBL

CBL CBL CBL Maxpool

Maxpool

C
oncat

CBL CBL

BN

BN

CBL BN

REP

c

Figure 2.8: The architecture of the YOLOv7 model, drawn according to (Wang et al.,
2023).

2.4.1.6 YOLOv7

In 2022, the YOLOv7 model was introduced (Wang et al., 2023). YOLOv7 first

resizes the input image and inputs it into the backbone network, then outputs three layers

of feature maps of different sizes through the head layer network, and finally outputs

the prediction results through the Rep and convolution layers. The model architecture of

YOLOv7 is shown in Fig. 2.8. The ELANmodule is divided into two types, both of which

are composed of multiple CBLs. The main difference between the two is that the number

of concatenations is different and they are applied to the backbone and head networks

respectively. The MP module is mainly composed of Maxpool and CBL, among which

MP1 and MP2 mainly change the ratio of the number of input and output channels. Rep

consists of CBL and BN. It adjusts the number of channels of P3, P4 and P5 feature maps

output by PAFPN (Liu et al., 2018), and uses 1x1 convolution to predict objectness, class,

and bbox.

20

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

CBL C2f_1 CBL C2f_2 CBL C2f_2 CBL SPPF Up
sampling

C
oncat

C2f_1 Up
sampling

C
oncat

C2f_1 Conv

C
oncat

C2f_1 Conv
CBL

C
oncat

C2f_1 Conv
CBL

C2f_X = CBL Bottleneck C
oncat

CBL

Bottleneck = CBL CBL = CBL CBLBottleneck

CBL = Conv BN SiLU

SPPF = CBL MaxpoolMaxpool Maxpool C
oncat

CBL

Input Backbone

704x704x3

Neck Detection

88x88x255

44x44x255

22x22x255

C2f_1CBL

*X

Split

Bottleneck

Bottleneck

= CBL C
oncat

CBL

*X

SplitC2f_X Bottleneck

Bottleneck

Bottleneck

Figure 2.9: The architecture of the YOLOv8 model, drawn according to (Jocher et al.,
2023).

2.4.1.7 YOLOv8

The YOLOv8 model was introduced in early 2023, featuring its architecture depicted

in Fig. 2.9. Its idea is based on YOLOv5, and it is mainly improved for modules, loss func-

tions and anchors (Jocher et al., 2023). First, the C3_Xmodule that is distributed through-

out the YOLOv5 model is replaced by the C2f_X module. The main idea of the module is

still CSPNet (Wang et al., 2020a), but instead of vertical operations, parallel operations are

used to reduce the amount of model computation without losing feature information. In

addition, YOLOv8 employs four main types of loss functions: box loss, class loss, DFL,

and segment loss. The box loss and segment loss are the same as YOLOv5, using CIoU

loss and BCEWithLogitsLoss respectively, as shown by Eq. (2.1) and Eq. (2.2). The class

loss is changed from BCEWithLogitsLoss to Varifocal Loss (VFL) (Zhang et al., 2021).

When the classification is correct, it is similar to BCEWithLogitsLoss and weighted to

highlight the object classification; when it is wrongly predicted, it reduces the impact on

21

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

loss value, as shown in Eq. (2.3):

VFL(p, q) =

−q(q log(p) + (1− q) log(1− p)) q > 0

−αpγ log(1− p) q = 0

, (2.3)

where p represents the classification score (predicted classification probability). q is the

Intersection over Union (IoU) of the predicted bounding box and ground truth bounding

box, otherwise it is 0. α is the constant of proportionality. γ is a hyperparameter.

DFL represents Distribution Focal Loss (Li et al., 2020b), which models the possible

bounding box location information as a general distribution, allowing the model to predict

the bounding box to quickly focus on the target location, as shown in Eq. (2.4):

DFL(Si, Si+1) = −((yi+1 − y) log(Si) + (y − yi) log(Si+1)), (2.4)

where Si and Si+1 are the softmax results of the confidence score (predicted positioning

probability) of two predicted bounding boxes closest to the ground truth bounding box.

yi and yi+1 are two predicted bounding box coordinate information. y is the coordinate

information of the ground truth bounding box.

Finally, YOLOv8 replaces the anchor pairing method from anchor-based to anchor-

free, which can directly grab the center point of the object and predict its distance to the

four sides to build anchor box. And the Task-Aligned Assigner guides the model to focus

on anchors with better positioning and classification results through the metric and the

aforementioned loss function. The metric is shown in Eq. (2.5):

t = sα + uβ, (2.5)

22

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

where s represents the classification score (predicted classification probability). u is the

IoU between the anchor box and ground truth bounding box. α and β are hyperparameters.

2.4.1.8 RetinaNet

To assess the performance between the transformer series model and other models,

the RetinaNet model with the Swin-T backbone was utilized for identifying pests. There-

fore, the subsequent discussion also includes an introduction to the RetinaNet model. The

model backbone is Resnet-based FPN (Lin et al., 2017b). FPN is a bottom-up, top-down,

and horizontally connected network structure. Through horizontal connections, features

at different levels can be integrated to enhance the feature extraction capabilities of the

network (Lin et al., 2017a). From Fig. 2.10, we can know that each layer of FPN connects

subnets, and the weights of these subnets are shared within themselves. The class subnet

is used to predict the prediction probability ofK categories for each anchor. The network

model uses a total of five layers, four of which are Fully Convolutional Network (FCN)

networks using the ReLU activation function, and the last layer is FCN networks using the

Sigmoid activation function. The dimension of the last layer is 3×3×KA because there

are K-dimensional one-hot vectors for A anchors, representing the prediction probability

of each category. The box subnet is the same as the class subnet. The difference is the

dimension of the last layer because the box subnet is used to predict the offset from the

ground truth position (x, y, w, h).

2.4.1.9 Swin transformer

Unlike the previous Convolutional Neural Network (CNN), which uses the convolu-

tional layer to extract features, the transformer series model uses self-attention to calculate

23

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Figure 2.10: The architecture of the RetinaNet model (Lin et al., 2017b).

the current pixel features, and calculates the relationship with other pixels at the same time,

similar to combining the functions of CNN and Recurrent Neural Network (RNN). How-

ever, compared with the shorter audio length in the field of Natural Language Processing

(NLP), the application of transformers to high-resolution images requires a large amount

of computation, which leads to higher training difficulties and longer time-consuming (Xu

et al., 2022).

Swin transformer is similar to a backbone and can be applied to most imaging tasks,

such as object detection or instance segmentation (Liu et al., 2021). It mainly divides an

image into multiple windows for self-attention, and allows the model to see a larger field

of view through a multi-layer structure, similar to CNN. The model architecture of swin

transformer is shown in Fig. 2.11. The operation process of the swin transformer mainly

includes four stages, but the operation mode of each stage is almost the same, only the

size of the data processed is different. Each stage includes patch merging and swin trans-

former block, and patch merging includes patch partition and linear embedding. Patch

merging captures features by setting the window size, similar to CNN pooling, but with-

out losing information. The swin transformer block is shown in Fig. 2.12, which contains

windowmulti-head self-attention (W-MSA) and shifted-windowmulti-head self-attention

(SW-MSA).W-MSAperforms self-attention calculation on each pixel in the window com-

pared with calculating the entire image, the computational complexity is reduced to linear

24

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Figure 2.11: The architecture of the swin transformer model (Liu et al., 2021).

Figure 2.12: The architecture of the swin transformer block (Liu et al., 2021).

complexity. In addition, SW-MSA moves the window to the upper left by half the size

of the window, so that the middle window can obtain the information of all windows in

the upper layer, and then learn the correlation with other windows. Finally, after the Swin

Transformer completes the calculation in all stages, it first obtains a feature vector with

a length of 768 through a Global Average Pooling, and then obtains the final prediction

result through a LayerNorm (LN) and a fully connected layer.

Currently, the transformer is a newer image recognition method, and the swin trans-

former can also be used as a general purpose backbone through many designs similar to

CNN. In addition, compared with the general transformer, the swin transformer only cal-

culates self-attention within the window. When facing the visual task of large images,

the input can be divided into more windows to achieve linear computational complexity.

25

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

However, the computing resources required for self attention are still large, which also

causes a large gap between the speed of the swin transformer and the CNN of the same

level.

2.4.2 Instance segmentation

In order to more accurately optimize the pollination of honey bees, I intend to detect

the area using images of pollen grains on honey bees to estimate the amount of pollen

collected by honey bees. Because the pollen grain area needs to be accurately marked, it

needs to be detected using the instance segmentation model, instead of object detection

models, which simply select the bounding box.

2.4.2.1 Mask R-CNN

Themodel architecture ofMask R-CNN is shown in Fig. 2.13 (He et al., 2017). Mask

R-CNN is mainly based on the architecture of Faster R-CNN, and adds a mask prediction

branch, mask loss, and corrects the problem of mis-alignment between the Faster R-CNN

feature map and the original image. Mask loss mainly calculates binary cross entropy for

the category whose predicted category is the same as the ground truth category. Mask

R-CNN uses RoiAlign to replace RoiPooling, so that the position of proposals can be rep-

resented by floating point numbers, which can more effectively integrate the input feature

map and proposal information and extract the proposal feature map. Bounding box regres-

sion is to select the best bounding box for the object from the bounding box candidates.

Mask R-CNN’s loss function is mainly divided into five types: RPN classification

loss, RPN regression loss, mrcnn classification loss, mrcnn regression loss, and mask loss.

26

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Input Feature maps

Proposals

Softmax

Bounding box regression

3x3 convolution

1x1 convolution

1x1 convolution

Fully connected layer

Bounding box regression

Softmax
Coordinates

Category

Mask

Feature Pyramid Network

Fully convolution networks

Head

Backbone

RPN

Three branches

Roi Align

Figure 2.13: The architecture of the Mask R-CNN model, drawn according to (He et al.,
2017).

The RPN classification loss is a cross entropy loss between the predicted class (xi) of RPN

and the ground truth class (yi) in the batch size (N), as shown in Eq. (2.6):

Cross Entropy Loss = − 1

N

N∑
i=1

yi · log(xi) + (1− yi) · log(1− xi). (2.6)

The RPN regression loss is a smooth L1 loss between the parameters of the predicted

box of RPN (xi) and the ground truth box (yi) by regressing to offsets for the center of the

default bounding box and for its width and height, as shown in Eq. (2.7):

SmoothL1(xi, yi) =

0.5|xi − yi|2 if |xi − yi| < 1

|xi − yi| − 0.5 otherwise
. (2.7)

The classification loss and the regression loss of mrcnn follow the same format as

Eq. (2.6) and Eq. (2.7), respectively. The mask loss is computed using the same formula

as Eq. (2.2), which involves calculating BCEWithLogitsLoss between the predicted mask

and the ground truth mask. N represents the batch size, yi represents the ground truth

mask, and xi represents the predicted mask.

27

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Figure 2.14: The architecture of the YOLACT model (Bolya et al., 2019, 2022).

2.4.2.2 YOLACT

YOLACT is one of the few instance segmentation models that can be applied in real-

time at present. Despite its fast speed, it also comes with a price that its mAP is slightly

lower than other two-stage models (Bolya et al., 2019, 2022). The model architecture of

YOLACT is shown in Fig. 2.14. The YOLACT model first generates the prototype of the

entire input image through the prototype constructed by multiple convolutional layers, and

the prototype is similar to the feature map. In addition, anchor-based detectors are used

to predict class, box, mask coefficients and pass Fast Non-Maximum Suppression (Fast

NMS). There is information on how to combine prototypes in mask coefficients. Finally,

the prototype and mask coefficients are directly multiplied by the matrix and combined

with a sigmoid function as:

M = σ(PCT), (2.8)

where M is the assembled mask, σ is the sigmoid function, P represents the matrix of

prototypes, C represents the matrix of mask coefficients, and T represents the transpose

operation.

YOLACT employs four main types of loss functions: box regression loss, classifica-

28

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

tion loss, mask loss, and semantic loss. Let xp
ij be an indicator for matching the i-th default

box to the j-th ground truth box of category p. The box regression loss is a Smooth L1

loss between the predicted box (l) and the ground truth box (g) parameters by regressing

to offsets for the center (cx,cy) of the default bounding box (d) and for its width (w) and

height (h) as (Liu et al., 2016):

Lbox(x, l, g) =
N∑

i∈Pos

∑
m∈cx,cy ,w,h

xp
ijsmoothL1(lmi − ĝmj). (2.9)

The classification loss is the softmax loss over multiple classes confidences (c) as (Liu

et al., 2016):

Lcls(x, c) = −
N∑

i∈Pos

xp
ij log(ĉ

p
i)−

N∑
i∈Neg

log(ĉ0i),

where ĉpi =
exp(cpi)∑
p exp(c

p
i)
.

(2.10)

The mask loss is the pixel-wise binary cross entropy between assembled masksM and the

ground truth masksMgt as:

Lmask = BCE(M,Mgt). (2.11)

Based on the YOLACT architecture, YOLACT++ was proposed (Bolya et al., 2022).

YOLACT++ increases the detection accuracy of the model without reducing the speed

as much as possible. There are three main improvements: adding semantic segmenta-

tion Loss, adding fast mask re-scoring network, and changing to a deformable convolu-

tion layer. Semantic segmentation loss is applied to our feature space for layers that are

only evaluated during training, which effectively increases feature richness with no speed

penalty. Fast mask re-scoring network calculates the IoU of each object’s prediction mask

29

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

and ground truth mask through an FCN, and then modifies the previous classification con-

fidence. The addition of the deformable convolution layer aims to enhance feature cap-

turing capabilities in YOLACT. This is essential as YOLACT necessitates more precise

convolutional operation information compared to two-stage models in order to generate

highly accurate prototypes.

2.4.3 Tracking algorithm

In the bee pollination optimization, because honey bees entering and leaving the hive

were counted using videos, I tracked each honey bee through a tracking algorithm to avoid

counting the same bee repeatedly in adjacent frames. There are two main categories of

algorithms for Multi-Object Tracking (MOT): tracking-by-detection and joint-detection-

association, with similar accuracy. Tracking-by-detection is based on the detection re-

sults of other models, and then uses the tracking algorithm to connect the adjacent frame

relationships (features, positions) to achieve the tracking effect. The advantage is that

the model dataset is easy to handle, but the disadvantage is that the processing speed is

slower than joint-detection association (similar to two-stage detection and tracking). Joint-

detection association directly uses a special model to detect objects and the relationship

between adjacent frames. The advantage is that the processing speed is fast (one-stage

direct detection and tracking), but the disadvantage is that the model dataset needs pre-

processing to let the model know the relationship between adjacent frames. In the opti-

mization of bee pollination, the object detection model employed for honey bee detection

offers a combination of high accuracy and fast computation. Therefore, I primarily uti-

lized the tracking-by-detection tracking algorithm to monitor the entry and exit of honey

bees from the hive for bee counting purposes.

30

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Figure 2.15: The flow chart of DeepSORT tracking algorithm (Wojke et al., 2017; Du
et al., 2023).

2.4.3.1 DeepSORT

DeepSORT is a tracking-by-detection type multi-object tracking algorithm (Wojke

et al., 2017; Du et al., 2023). The flow chart of DeepSORT is shown in Fig. 2.15. Deep-

SORT tracking algorithm is mainly divided into two branches: appearance and motion.

The appearance branch first extracts the object features in the trajectory through a sim-

ple CNN, and puts the object features of the first 100 frames of the same trajectory into

the feature bank. The cosine distance of the object features of the current frame and the

object features in the feature bank was calculated as the cost. The motion branch uses

the Kalman filter (Kalman, 1960) to predict the object’s position in the trajectory in the

current frame from the previous frame, and uses the Mahalanobis distance to measure the

spatio-temporal dissimilarity between the predicted object in the trajectory and the actual

object as a gate. Finally, through the matching cascade algorithm, the objects that fre-

quently appear in the first few frames are prioritized, and the Hungarian algorithm (Kuhn,

1955) is combined with cost and gate to track each object in sequence.

2.4.3.2 StrongSORT

StrongSORT is a tracking-by-detection typemulti-object tracking algorithm (Du et al.,

2023), which is improved based on DeepSORT to obtain better tracking accuracy. The

31

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Figure 2.16: The flow chart of StrongSORT tracking algorithm (Du et al., 2023).

flow chart of StrongSORT is shown in Fig. 2.16. StrongSORT tracking algorithm is also

divided into two branches: appearance and motion. In the appearance branch, the new

feature extractor, BoT (Luo et al., 2019), replaces the past simple CNN and utilizes the

ResNeSt50 backbone (Zhang et al., 2022) for object feature extraction in the trajectory.

In addition, the feature bank has also been changed to filter object features through a fea-

ture updating strategy (Wang et al., 2020b). In the feature updating strategy, the cosine

similarity between the object feature of the current frame and each track feature is calcu-

lated to confirm the trajectory category to which the object feature of the current frame

belongs. Each trajectory feature is updated through Exponential Moving Average (EMA).

The formula is as follows:

eti = αet−1
i + (1− α)f t

i , (2.12)

where eti is the feature embedding of the i-th trajectory at time t (updated trajectory fea-

ture). et−1
i is the feature embedding of the i-th trajectory at time t− 1 (the feature of the

trajectory before the update). f t
i is the feature embedding (feature of the current object)

of the object corresponding to the i-th trajectory at time t, and α is the proportionality

constant (usually set to 0.9).

In the motion branch, an ECC image alignment algorithm (Evangelidis and Psarakis,

2008) is added for image alignment. In addition, the vanilla Kalman filter (Stadler and

Beyerer, 2022) is replaced by the NSA Kalman filter (Du et al., 2021) to reduce the in-

32

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

fluence of noise and predict the position of the trajectory in the current frame, and then

the Mahalanobis distance is calculated as the gate. Different from DeepSort, which only

calculates the appearance branch information, the cost function of StrongSort combines

both the appearance and motion branch information (Wang et al., 2020b). The formula is

as follows:

C = λAa + (1− λ)Am, (2.13)

whereC is the total cost, λ is the weight factor (set to 0.98),Aa is the appearance cost (co-

sine similarity), and Am is the motion cost (Mahalanobis distance). To avoid amplifying

the priority of wrong object features, the final solution is performed by vanilla global linear

assignment instead of the matching cascade algorithm. Finally, the Hungarian algorithm

(Kuhn, 1955) is combined with cost and gate to track each object in sequence.

Based on the StrongSORT architecture, StrongSORT++ was proposed (Du et al.,

2023). StrongSORT++ presents two lightweight tracking algorithms, Appearance-Free

Link (AFLink) and Gaussian-smoothed interpolation (GSI), which do not require appear-

ance branch information. AFLink simply uses time and position information for connec-

tivity confidence calculations. The flow chart is shown in Fig. 2.17. First, two trajec-

tories (tracklet in Fig. 2.17) are used as input, and the information of the first 30 frames

is taken (if it is insufficient, 0 is added). Then, the features of different dimensions are

extracted, squeezed, and pooled into the feature vector rich in time and position infor-

mation. Ultimately, the multilayer perceptron (MLP) is used to determine connectivity

confidence. Furthermore, GSI uses the interpolation algorithm with Gaussian process re-

gression (Williams and Rasmussen, 1995) to fill in the blank frame identification results.

Compared with linear interpolation (average of front and rear frames), GSI adds position

information to make the results closer to ground truth without increasing the calculation

33

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Figure 2.17: The flow chart of AFLink (Du et al., 2023).

time. The replacement of appearance branch information by AFLink and GSI proves ben-

eficial in enhancing tracking performance due to their sophisticated operations.

34

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Chapter 3 Materials & Methods

The following will be explained in two parts: monitoring of pests and optimization

of bee pollination.

3.1 Monitoring of pests

This research aims to count the number of pests on sticky paper traps, and to measure

the greenhouse environmental data through IoT sensors. Based on the correlation analysis

results of the number of pests and environmental data, relevant indicators of pest control

were established. The flow chart and schematic of pest monitoring are shown in Fig. 3.1

and Fig. 3.2, respectively.

Figure 3.1: Flow chart of pest monitoring.

35

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Figure 3.2: Schematic of pest monitoring.

3.1.1 IoT system

The location of the study, Yichu Branch Station at Tainan District Agricultural Re-

search and Extension Station in Chiayi County of Taiwan, is depicted in Fig. 3.2. The field

is enclosed with four-sided nets to prevent initial pest infestation. In order to establish an

IoT system, environmental sensing nodes and sticky paper trap monitoring nodes were

placed in the greenhouse. The network transmitted the data and images collected from

these nodes back to our cloud database. Each environmental sensing node consisted of a

gateway and a wireless temperature and humidity sensor. Six nodes were placed in dif-

ferent locations (A to F in Fig. 3.3) throughout the greenhouse. 7fb39b-87ca2c in Fig. 3.3

were the nodes’ respective IDs. Air temperature and humidity within the greenhouse were

recorded by the DHT-22 sensor every 30 seconds. The gateway, integrated with a Rasp-

berry Pi 3B, initiated the wireless sensors and confirmed the transmission paths by sending

a command packet. Subsequently, the gateway commanded the wireless sensors to gather

36

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Figure 3.3: Locations of greenhouse nodes.

sensing data and transmit it back. Finally, the collected environmental sensing data was

transmitted through Wi-Fi or 4G LTE. to the MySQL database.

The greenhouse was equipped with sticky paper trap monitoring nodes, consisting of

a Raspberry Pi camera module and a yellow sticky paper trap placed at a height of 1 meter

above the soil to capture pests in flight (as illustrated in Fig. 3.4). The Raspberry Pi 3B con-

trolled the module, which had a static image resolution of up to 3280×2464. Three nodes

were placed at different positions (C1 to C3 in Fig. 3.3) to capture images of the sticky

paper traps every 10 minutes, starting from 6:00 am until 8:00 pm. The Raspberry Pi 3B

is a single-board computer that features a central processing unit (CPU), graphics process-

ing unit (GPU), and system-on-chip (SoC). It also includes GPIO pins and a USB hub for

enhanced connectivity and expandability. To optimize the efficacy of sticky paper traps

in capturing small pests like silverleaf whitefly and thrips, the selection of an appropriate

light wavelength played a crucial role (Fig. 3.5). Previous studies have demonstrated that

silverleaf whitefly was highly attracted to optical wavelengths within the range of 500 nm

to 600 nm (Kim et al., 2012). Based on this finding, the study specifically opted for IATP

sticky paper trap with a light wavelength of around 600 nm. Similarly, previous studies

have demonstrated that thrips exhibit a strong attraction to optical wavelengths between

37

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Figure 3.4: The sticky paper trap monitoring node.

(a) Whiteflies (b) Thrips (c) Thrips

Figure 3.5: Original images of sticky pest traps for (a) whiteflies and (b)-(c) thrips.

420 nm and 470 nm (Lopez-Reyes et al., 2022). Consequently, the study selected IATPBL

and FATP sticky paper traps with light wavelengths of around 450 nm. The experimental

results of the adhesive trap sample are presented in Figures 3.6-3.8, illustrating the “rel-

ative sensitivity” of the sticky paper trap to different light wavelengths. The dimensions

of the sticky paper traps were 15 cm × 11 cm, manufactured by KK Enterprise Co., Ltd.

The images of sticky paper traps were transmitted through Wi-Fi or 4G LTE. to the FTP

server for further analysis.

3.1.2 Image preprocessing

In Fig. 3.5, whiteflies and thrips are pests commonly found in areas where asparagus

is grown. When whiteflies get caught in sticky paper traps, their appearance changes over

38

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Figure 3.6: Optical wavelength test results of yellow sticky paper samples (IATP).

Figure 3.7: Optical wavelength test results of blue sticky paper samples (IATPBL).

Figure 3.8: Optical wavelength test results of white sticky paper samples (FATP).

39

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

time. Initially, they are white and stay that way for around two to three weeks. After three

weeks, they gradually turn gray and then eventually darken after about four weeks. To

avoid confusion in the model, whiteflies that were recently caught on sticky paper traps

were classified as white whiteflies (WWF), while those that stayed on the traps for a few

weeks were classified as black whiteflies (BWF). The experimental asparagus greenhouse

had no thrips present, but images of thrips on sticky paper traps from other greenhouses

provided by Yichu Branch Station were also utilized to make pest detection more versatile.

An extra class was allocated for thrips, making the models capable of detecting three

categories: white whitefly, black whitefly, and thrips.

In Fig. 3.9(a), the sticky paper trapmonitoring node captured images with dimensions

of 3280×2464. However, the pests’ small size in the image posed a challenge in manually

labeling them and extracting relevant features for model training. To address this issue, the

original image was cropped into 16 smaller images, each having a resolution of 820×616,

and subsequently labeled using LabelImg software (Tzutalin, 2015).

Our objective is to accurately count pests, so image enhancement techniques such

as rotation and inversion have minimal impact on improving accuracy. Instead, the pri-

mary challenge is changes in sunlight brightness. To address this challenge, two methods

were used. Firstly, The hue (H) in the HSV color space was modified to replicate color

differences caused by varying lighting conditions. This modification changed the color

of the sticky paper to an almost orange hue, as seen in Fig. 3.9(b). Secondly, the average

brightness (L*) of all images was computed in the CIELAB color space and mapped onto

all images to ensure consistent brightness data, thereby enhancing the model’s consistency

during training. The CIELAB processing resulted in a darkening of the original image, as

illustrated in Fig. 3.9(c).

40

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

(a) original (b) HSV (c) CIELAB

Figure 3.9: (a) Original sticky pest trap image after division. (b) Image after HSV pro-
cessing. (c) Image after CIELAB processing.

3.1.3 Model training

The main goal of pest monitoring was to determine the number of pests, so it was

more feasible to train a deep learning model for precise pest detection and counting rather

than accurate pest segmentation. Therefore, instead of using an instance segmentation

model, an object detection model was selected for pest counting, which utilizes bounding

boxes to detect the position of pests and provide an accurate count of their numbers. In this

study, various models, including YOLOv5 models with backbones “x” and “x6” (Jocher,

2020), the YOLOR model (Wang et al., 2021), the YOLOv7 model (Wang et al., 2023),

the YOLOv8 model (Jocher et al., 2023), the YOLOv6 model (Li et al., 2023), the Faster

R-CNN model (Ren et al., 2015), and the RetinaNet model with Swin-T backbone (Liu

et al., 2021), were trained to identify white whiteflies, black whiteflies, and thrips.

After manually eliminating out images of sticky paper traps obstructed by crops, a

total of 1151 images were chosen for further analysis. Of those, 111 images of whitefly

underwent image augmentation of HSV and CIELAB, resulting in an extra 222 images.

There were 1040 images left, with 560 images depicting whiteflies and 480 images de-

picting thrips. A dataset of 1373 images, with dimensions of 820×616, was used to train

the models. The dataset included 893 images of whitefly and 480 images of thrips, which

were split into training and validation sets, with a ratio of 80% and 20%, respectively.

The training set consisted of 714 images of whitefly and 384 images of thrips, while the

41

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

validation set consisted of 179 images of whitefly and 96 images of thrips. To prevent

any duplication between the original and enhanced images, 333 images of whitefly were

exclusively included in the training set.

Parameters for model training are listed in Table 3.1, but there are variations in the in-

put size, batch size, and training epochs between the models. As each model had a distinct

architectural design, the corresponding input size required fine-tuning. For instance, the

YOLO series model mandated a multiple of 32 for compatibility. By finishing fine-tuning

the input size, the optimal dimensions for each model were selected to facilitate accurate

bounding box localization, considering the initial goal of a sticky paper trap image size of

820×616. The Faster R-CNN and RetinaNet models, for instance, were determined with

an input size of 820×616. In addition, the choice of batch size was influenced by the need

to optimize GPU memory utilization for efficient calculations while ensuring consistent

resource allocation across models. Hence, the batch size varied with the number of pa-

rameters of each model. In terms of training epochs, the objective was to ensure that each

model reaches convergence, guaranteeing the presence of the most favorable results for

comparison. Consequently, the training process continued until confirmation of conver-

gence was obtained, resulting in varying values for the number of training epochs across

the models.

In this study, the YOLOv5, YOLOR, YOLOv7, YOLOv8, and YOLOv6 models

required input sizes that were multiples of 32 to match the kernel and stride of the models.

Therefore, the dimensions were chosen to be 704×704. The process of resizing the images

involved first downsampling their dimensions to approximately 704×529, then padding

to the shorter side to achieve a final size of 704×704. The input size for the Faster R-

CNN and RetinaNet models was kept the same as the original image size. In addition, the

42

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

learning rates were set to increase linearly for 1,000 iterations in the YOLOv5, YOLOR,

and YOLOv7 models, and for 100 iterations in the YOLOv8 model, before being decayed

by the one-cycle learning rate policy (Smith and Topin, 2019). The learning rates in the

YOLOv6, Faster R-CNN, and RetinaNet were warmed up linearly for 1,000 iterations

before being decayed using the cosine annealing method (Loshchilov and Hutter, 2016).

The training was conducted using Python 3.7.10 and PyTorch 1.7.1 on a CentOS Linux 7

(Core) system with Xeon(R) Silver 4110 for CPU, NVIDIA GeForce RTX 3090 for GPU,

and CUDA 11.2 for Computation Unified DEVICE Architecture.

Table 3.1: Training parameters of the models.

Model Backbone Input size Batch size Learning rate Training epoch

YOLOv5 YOLOv5x 704x704 24 0.001 500
YOLOv5 YOLOv5x6 704x704 24 0.001 500
YOLOR YOLOR-D6 704x704 24 0.001 500
YOLOv6 YOLOv6-L6 704x704 24 0.001 500
YOLOv7 YOLOv7x 704x704 24 0.001 500
YOLOv8 YOLOv8x6 704x704 24 0.001 500
Faster R-CNN ResNet101 820x616 12 0.001 1500
RetinaNet Swin-T 820x616 12 0.001 1500

3.1.4 Combining environmental monitoring and pest counting

This study aims to establish a correlation between environmental changes and pest

infestation using AIoT data. The pest populations, measured from January 19, 2022, to

February 25, 2022, along with the environmental temperature and humidity data collected

using IoT technology, were analyzed for daily correlations. However, variations in envi-

ronmental sensing data may not necessarily mirror the pest populations on that particular

day. Hence, correlation coefficients were computed between the daily change in pest

populations and sensing data from the past three days, two days, and one day. Given that

whiteflies were the primary pests in the field of asparagus, the count of whiteflies was

43

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Figure 3.10: Flow chart of bee pollination optimization.

employed as the pest population.

3.2 Optimization of bee pollination

This study aimed to count the number of bees entering and leaving the hive and

estimate the amount of pollen carried by bees. Pollen grains could be estimated based

on the pollen image pixels captured by the camera. Ultimately, this study combined bee

entry and exit counts and pollen grain detection to enhance bee pollination. The flow

chart and schematic of bee pollination optimization are shown in Fig. 3.10 and Fig. 3.11,

respectively.

3.2.1 Image acquisition system

The honey bee monitoring system based on IoT technology was regularly monitored

in the greenhouse of the oriental melon (Cucumis melo Linn.) depicted in Fig. 3.11. The

system mainly consisted of an acrylic observation box, three Raspberry Pi HQ cameras

with a video resolution of 1920×1080 and 25 frames per second, an LED light bar, and

a relay module. The observation box was installed at the entrance of the beehive, and

the honey bees must pass through the observation aisle to enter or exit the beehive. Three

44

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Figure 3.11: Schematic of bee pollination optimization.

cameras controlled by corresponding Raspberry Pi 3B were installed under, to the left, and

to the right of the observation aisle to record the videos of the bee entering and leaving

the hive. The SMD 5730 white LED light bar, manufactured by JIN HUA ELECTRONIC

Co., Ltd., was mounted at a height of 20cm above the observation aisle. The relay module

was installed under the observation aisle. Please note that there were two versions of

the observation box, as it was undergoing modifications throughout the study. This can

be observed in Fig. 3.12. The second iteration of the observation box boasted several

upgrades that provided a better observation experience and enhanced its ability to resist

water. In the observation aisle part, four mechanisms could be replaced to accommodate

different situations, as highlighted in Fig. 3.13. Furthermore, the waterproof part of the

box incorporated most of the circuits found in the junction box in Fig. 3.12(a), and the

opening method of the observation box had been altered to prevent water droplets from

seeping into the box from the top down.

Because this study only aims to find the correlation between the area and weight of

45

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

pollen collected by bees rather than recording complete bee activities, there is no need to

implement continuous recording, which tends to result in overheating cameras. Therefore,

the system was set to record videos for the first minute every 10 minutes from 5:00 to

19:00 every day. At the same time, when the cameras were turned on, the relay module

controlled by the Raspberry Pi 3B turned on the LED light bar. The videos were saved

to a hard disk and sent back to the server simultaneously through Wi-Fi or 4G LTE. Each

video was named according to the time that the camera began to record.

3.2.2 Image preprocessing

Crop pollination is largely dependent on the effectiveness of honey bees, and the

amount of pollen they carry serves as a crucial indicator for evaluating pollination effi-

ciency (Bernauer et al., 2022). To accurately calculate the pollen grain area, it is pivotal to

train a deep learning model that not only can identify and count pollen grains but also pre-

cisely segment each one. Thus, an instance segmentation model was opted for detecting

pollen grains rather than using an object detection model. In addition, the current instance

segmentation model in real-time applications still consumes a lot of computing resources

and the accuracy is slightly lower, so I first used the object detection model to detect honey

bees, and then used the tracking algorithm to calculate the number of honey bees entering

and leaving the hive, and finally used the instance segmentation model to segment pollen

grains on the images of honey bees entering the hive.

In the object detection part, although the camera images under the observation aisle

were in poor lighting, the color of honey bees can be ignored in the bee detection. The

dataset without color features provided better accuracy and was suitable for tracking.

Hence, I chose the images under the observation aisle, i.e., Fig. 3.14(a) and Fig. 3.14(d),

46

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

(a) Version 1

(b) Version 2

Figure 3.12: The honey bee monitoring system.

47

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Figure 3.13: Mechanisms for observation box version 2.

as the dataset. Furthermore, I manually filtered the recorded videos and took screenshots

of the number of frames where honey bees appeared. There was only one category of

honey bees (bee). Bounding box labeling is performed using LabelImg software (Tzu-

talin, 2015).

In the instance segmentation part, because the pollen grain detection needs to consider

the pollen color to obtain better accuracy, I chose the camera images on both sides of

the observation aisle as the dataset, as shown in Fig. 3.14(b)-(c) and Fig. 3.14(e)-(f). I

manually filtered the recorded videos and took screenshots of the number of frames where

pollen grains appeared. There was only one category of pollen grains (pollen). Mask

labeling was performed using LabelMe software (Russell et al., 2008).

3.2.3 Counting of honey bees entering and leaving the hive

3.2.3.1 Object detection model training

The object detection model employs bounding boxes to indicate the precise position

of honey bees, and the tracking algorithm tracks the honey bees to count the number of

48

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

(a) Under (b) Left (c) Right

(d) Under (e) Left (f) Right

Figure 3.14: Images (a)-(c) show the observation aisle in version 1 of the observation box.
Images (d)-(f) depict the observation aisle in version 2 of the observation box. The images
are positioned below, to the left of, and to the right of the observation aisle.

honey bees entering and leaving the hive. Since the honey bee detection was relatively

simple, themodels with simpler structures and faster inference speedwere trained to detect

honey bees. In this study, because the high compatibility of YOLO models with tracking

algorithms, the YOLOv3 model with backbone “tiny” (Redmon and Farhadi, 2018), the

YOLOv5 model with backbones “n6” and “s6” (Jocher, 2020), the YOLOv7 model with

backbone “tiny” (Wang et al., 2023), and the YOLOv8 model with backbones “n” and “s”

(Jocher et al., 2023) were trained to detect honey bees.

After the manual screening, the model was trained with 686 honey bee images cap-

tured from the video under the observation aisle. The dataset was split 4:1 into training

and validation sets, with 549 images in the training set and 137 images in the validation

set. The image resolution was 1920×1080, the same as the video captured by the honey

bee monitoring system. Considering the minimal variations in lighting and color among

the images captured under the observation channel, including screenshots from the same

video in both the training and validation sets simultaneously does not introduce any op-

portunity for the model to gain an unfair advantage. Therefore, in this task, there was no

49

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

specific avoidance of allocating images from the same video screenshot to the training and

validation sets simultaneously. Table 3.2 displays the training parameters. These param-

eters were adjusted to fully utilize GPU memory and maximize computing resources.

Table 3.2: Training parameters of the models used by the tracking algorithm.

Model Backbone Input size Batch size Learning rate Training epoch

YOLOv3 YOLOv3-tiny 704x704 24 0.001 500
YOLOv5 YOLOv5n6 704x704 24 0.001 500
YOLOv5 YOLOv5s6 704x704 24 0.001 500
YOLOv7 YOLOv7-tiny 704x704 24 0.001 500
YOLOv8 YOLOv8n 704x704 24 0.001 500
YOLOv8 YOLOv8s 704x704 24 0.001 500

In this study, the YOLOv3, YOLOv5, YOLOv7, and YOLOv8models required input

sizes that were multiples of 32 to match the kernel and stride of the models. Therefore, the

dimensions were chosen to 704×704. The process of resizing the images involved first

downsampling their dimensions to approximately 704×529, then padding to the shorter

side to achieve a final size of 704×704. In addition, the learning rates were set to increase

linearly for 1,000 iterations in the YOLOv3, YOLOv5, and YOLOv7 models, and for

100 iterations in the YOLOv8 model, before being decayed by the one-cycle learning rate

policy (Smith and Topin, 2019). The training was conducted using Python 3.8.15 and

PyTorch 1.10.0 on a CentOS Linux 7 (Core) system with Xeon(R) Silver 4110 for CPU,

NVIDIAGeForce RTX 3090 for GPU, and CUDA11.2 for ComputationUnified DEVICE

Architecture.

3.2.3.2 Tracking algorithm

To avoid double counting, I concatenated the YOLO detection results to the the Deep-

SORT (Wojke et al., 2017) and StrongSORT (Du et al., 2023) tracking algorithm. The

counting rules for entering and leaving the hive was set by tracking the starting point,

50

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

ending point, and length of the trajectory. The trajectory of each tracked honey bee was

drawn, and then by setting the starting and ending positions of the trajectory, it was es-

timated whether the honey bee was entering or leaving the hive. In addition, only when

the Euclidean distance between the start and end points of the trajectory is greater than

480 pixels, will the trajectory be counted to avoid misjudgment. Through the shooting

time recorded by the honey bee monitoring system (video name) and the frame recorded

by DeepSORT and StrongSORT, the duration of the honey bee appearance was obtained.

Based on the above honey bee detection, tracking, and counting, the entry and exit time

of each honey bee in the video could be accurately found.

3.2.4 Calculation of pollen grain area

3.2.4.1 Instance segmentation models training

To find out the pollen grain area, an instance segmentation model was used for detec-

tion. Because the images under the observation box faced the light source, the color of the

honey bees was all black and lacked color features. Therefore, the images on both sides

of the observation box were used for pollen grain detection. In this study, the YOLACT

model (Bolya et al., 2019, 2022), YOLOv5 model (Jocher, 2020), YOLOv7 model (Wang

et al., 2023), YOLOv8 model (Jocher et al., 2023), Mask R-CNN model with ResNet50

backbone (He et al., 2017), and theMask R-CNNmodel with Swin-T backbone (Liu et al.,

2021) were trained to segment pollen grains carried by bees.

There were 1284 honey bee images on both sides of the observation box in the total

dataset. The dataset was split in the ratio of 4:1 into training and validation sets, with 1025

images in the training set and 259 images in the validation set. All images contained honey

51

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

bees carrying pollen grains. The image resolution was also 1920×1080, the same as the

video captured by the honey bee monitoring system. Furthermore, to avoid misjudging

the model result, images from the same video screenshot would not be allocated to the

training set and validation simultaneously.

Table 3.3 lists the training parameters, but there are variations in the input size, batch

size, and training epochs between the models. As each model had a distinct architectural

design, the corresponding input size required fine-tuning. For instance, the YOLACT

model necessitated a multiple of 550, whereas the YOLO series model mandated a mul-

tiple of 32 for compatibility. By finishing fine-tuning the input size, the optimal dimen-

sions for each model were selected to facilitate accurate bounding box localization and

mask generation, considering the initial goal of an approximate image size of 1000×1000.

Through rigorous testing, the Mask R-CNN model, for instance, was determined to per-

form optimally with an input size of 1333×800. In addition, the choice of batch size

was influenced by the need to optimize GPU memory utilization for efficient calculations

while ensuring consistent resource allocation across models. Hence, the batch size varied

with the number of parameters of each model. In terms of training epochs, the objec-

tive was to ensure that each model reaches convergence, guaranteeing the presence of the

most favorable results for comparison. Consequently, the training process continued until

confirmation of convergence was obtained, resulting in varying values for the number of

training epochs across the models.

The YOLACT model requires the input width and height to be the same due to its

design. Therefore, in this study, after balancing detection accuracy and computation time,

the input image dimensions were set to 1100×1100 pixels. The image was downsampled

using bilinear interpolation. On the other hand, the YOLOv5, YOLOv7, and YOLOv8

52

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Table 3.3: Training parameters of the instance segmentation models.

Model Backbone Input size Batch size Learning rate Training epoch

YOLACT ResNet50 1100x1100 16 0.001 1994
YOLOv5 YOLOv5x-seg 960x960 24 0.001 500
YOLOv7 YOLOv7-seg 960x960 24 0.001 500
YOLOv8 YOLOv8x-seg 960x960 12 0.001 500
Mask R-CNN ResNet50 1333x800 12 0.001 500
Mask R-CNN Swin-T 1333x800 6 0.001 500

models required input sizes to be multiples of 32 to match the kernel and stride of the

models. Therefore, the dimensions were chosen to 960×960. The process of resizing the

images involved first downsampling their dimensions to approximately 960×540, then

padding to the shorter side to achieve a final size of 960×960. For the Mask R-CNN,

the image resizing process initially chose the smaller ratio between the input size and

the image size (1333/1920 and 800/1080) and downscaled the image to approximately

1333×750 pixels according to this ratio. Since the model required input sizes that were

multiples of 32 to match the kernel and stride of the models, the image was padded to

the final dimensions of 1344×768 pixels. Additionally, the YOLACT and Mask R-CNN

models’ learning rates were first linearly warmed up for 1000 iterations and then decayed

using the step learning rate scheduler. The YOLOv5 model’s learning rates were initially

linearly warmed up for 1000 iterations and then decayed using the one-cycle learning rate

policy (Smith and Topin, 2019). In contrast, the YOLOv7 and YOLOv8 models’ learning

rates were first linearly warmed up for 100 iterations and decayed using the one-cycle

learning rate policy (Smith and Topin, 2019). The training was conducted using Python

3.7.9 and PyTorch 1.10.1 on a CentOS Linux 7 (Core) system with Xeon(R) Silver 4110

for CPU, NVIDIAGeForce RTX 3090 for GPU, and CUDA 11.2 for Computation Unified

DEVICE Architecture.

53

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

3.2.4.2 Algorithm of pollen grain area calculation

Based on the count results of honey bees entering and leaving the hive, the time when

each entering honey bee appeared in the image under the observation box was recorded.

However, because the slight difference in the shooting time of the three cameras existed,

it could result in the image of the pollen grains carried by honey bees not being captured.

To ensure consistency in the data, two steps were taken. First, the footage from the three

cameras was carefully aligned. This alignment process ensured that the captured images

were synchronized and properly matched. Second, to capture comprehensive informa-

tion about each honey bee, the videos of the cameras on both sides were configured to

screenshot five images for each bee. This allowed for a more detailed and complete rep-

resentation of the bees’ activities. The videos were captured with 25 frames per second.

The frame at which the bee first appeared in the video was marked as a zero frame. The

13th and 25th frames before and the 13th and 25th frames after that were extracted from

the video clips of the cameras on both sides.

To find the pollen grain area, after the instance segmentation model had detected the

area of pollen grains, I calculated the area of the masked image through image processing.

To avoid calculating the area of the non-mask area, through the HSV color space, the

bounding box area was found from the segmented image, and the bounding box area was

cropped. Then the mask area was found from the bounding box area. Finally, the number

of pixels contained in the mask area was calculated to obtain the pollen grain area. For

the same bee, I calculated the pollen grain area for a zero frame, the 13th and 25th frames

before, and the 13th and 25th frames after, respectively. To ensure the optimum pollen

area was found, I took the maximum value as the representative of the bee’s pollen area.

54

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

(a) (b)

Figure 3.15: (a) The pollen grains scraped by the mechanism. (b) The electronic scale
(TP-214).

3.2.5 Correlation analysis between calculated area and actual weight

of pollen grains

The calculation result of the pollen area algorithm with the actual pollen grain weight

was analyzed to ensure that the pollen area output by the system could replace the actual

pollen weight to evaluate the actual pollination status of crops. First, version 2 of the

observation box was used with a narrow aisle for pollen grain collection (Fig. 3.15(a)) that

could automatically scrape the pollen grains from the honey bees. Then, according to the

operation of the honey bee monitoring system, the pollen grains scraped by the mechanism

in the first minute of every 10 minutes were collected in sequence and weighed by the

TP-214 electronic scale (Fig. 3.15(b)). The DENVER INSTRUMENT TP-214 electronic

scale has a measurement accuracy of 0.1 mg. Finally, the correlation analysis of the pollen

grain area calculation result of the recorded video and the actual pollen grain weight in

the corresponding time interval was carried out. It could be observed whether the area

of pollen grains carried by the honey bees actually reflected the weight of pollen grains

collected from the honey bees. The validity of the estimation method can ensure that the

pollen area could be used as an indicator for enhancing the pollination of honey bees.

55

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Chapter 4 Results & Discussion

This chapter discusses two main aspects: pest monitoring and optimization of bee

pollination. In the first part, we dive into the methods and techniques used for monitor-

ing pests, with the aim of enhancing the efficiency of pest control measures. The second

part focuses on the optimization of bee pollination, exploring strategies to maximize pol-

lination effectiveness and crop yield. These two critical aspects play a crucial role in

sustainable agriculture and the overall success of crop cultivation in various settings.

4.1 Monitoring of pests

4.1.1 Model comparison

To determine the optimal solution for greenhouse pest counting, three different types

of models were evaluated for their pest detection accuracy. These models included the

one-stage model YOLO (Jocher, 2020; Wang et al., 2021, 2023; Jocher et al., 2023; Li

et al., 2023), the two-stage model Faster R-CNN (Ren et al., 2015), and the transformer

series model RetinaNet with Swin-T backbone (Liu et al., 2021). For conducting a com-

parison between themodels, the training and validation sets of pests consisted of 1,098 and

275 pest images, respectively. Table 3.1 displays the training parameters. The model test-

56

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

ing results, with an Intersection over Union (IoU) threshold of 0.5, are shown in Table 4.1.

Please note that the precision and recall were not calculated during the model inference of

YOLOv6, Faster R-CNN, and RetinaNet. Among the YOLO series of one-stage models,

YOLOv5 with backbone “x6” achieved the highest precision of 0.938, recall of 0.919, and

mean average precision (mAP) of 0.953, whichwere superior to the latest YOLOv8model.

Despite the official claim of YOLOv6 surpassing YOLOv7 and YOLOv8 in detection ac-

curacy, it fell short when applied to pest detection tasks, exhibiting the lowest mAP among

the YOLO series models. Furthermore, YOLOv5 with backbone “x6” was also compared

to other models. It was found that both YOLOv5 with backbone “x6” and RetinaNet with

transformer family Swin-T backbone achieved higher mAP. However, YOLOv5 model

with “x6” backbone reached faster convergence than the RetinaNet model with Swin-T

backbone, as shown in Table 3.1. Hence, YOLOv5 with backbone “x6” was chosen as the

optimal solution for field pest counting.

Table 4.1: Comparison of the precision, recall, and mAP of the models.

Model Backbone Precision Recall mAP

YOLOv5 YOLOv5x 0.875 0.842 0.880
YOLOv5 YOLOv5x6 0.938 0.919 0.953
YOLOR YOLOR-D6 0.741 0.871 0.862
YOLOv7 YOLOv7x 0.901 0.867 0.915
YOLOv8 YOLOv8x6 0.867 0.846 0.896
YOLOv6 YOLOv6-L6 - - 0.806
Faster R-CNN ResNet101 - - 0.774
RetinaNet Swin-T - - 0.946

4.1.2 Results obtained by YOLOv5 model with “x6” backbone.

Typically, different colored sticky paper traps are utilized to attract whiteflies and

thrips. However, as the experimental asparagus greenhouse had no thrips present, images

of thrips captured on sticky paper traps from another greenhouse were randomly inserted

57

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Figure 4.1: Results of pest detection with YOLOv5 model using “x6” backbone. The
thrips sticky paper trap images are represented by blue and white rectangles.

into the whitefly images as a testing set. The testing set consisting of images of whiteflies

and thrips was used to assess the efficacy of the YOLOv5 model with backbone “x6”,

which demonstrated the highest mAP, in detecting and locating these pests. Fig. 4.1 il-

lustrates the outcomes of the YOLOv5 model with backbone “x6”, where the bounding

boxes accurately display the pest’ positions. The model successfully detected the majority

of pests on the images of sticky paper traps. Please note that the count of bounding boxes

generated by the model was also compared to the count of manually labeled pests.

The YOLOv5model with backbone “x6” was evaluated based on its precision, recall,

and F1 score for detecting black and white whiteflies under different thresholds. The

model predicted bounding boxes based on the IoU threshold of 0.5. If the IoU was greater

than 0.5, the model considered the predicted bounding box as positive. Otherwise, the

model considered it as negative. Please note that this was just what the model thought,

not the real true positive (TP), false positive (FP). The above-mentioned prediction results

with the threshold of 0.5 could be compared with the ground truth, and values such as

precision, recall, and F1 score could be calculated.

However, it was not enough to calculate precision, recall, and F1 score with IoU as the

58

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

threshold, and confidence should be added as the threshold because sometimes a predicted

bounding box with a very low IoU and high confidence will be generated. In other words,

because the bounding box predicted by the model only captured a small part of the features

of the pest, although its category was correct (high confidence), the bounding box could

not cover the overall outline of the pest (low IoU). Hence, in addition to IoU, needed to

use confidence as the threshold.

Confidence was defined as the probability that the predicted bounding box belonged

to a certain category. For example, the confidence was used as the threshold, so the proba-

bility of 0% 100% was divided into 1000 equal parts to form 1000 confidence thresholds,

combined with the threshold of IoU equal to 0.5, precision, recall, and F1 score under

1000 threshold were calculated and drawn as a curve, which was precision versus recall

curve and F1 score curve. In precision versus recall curve and F1 score curve, when the

Area Under the Curve (AUC) is larger, it means that the category classification effect of

the model is better, otherwise it means that the category classification effect of the model

is worse.

Figs1. 4.2-4.3 show the precision-recall (PR) and F1 score curves of the YOLOv5

model with backbone “x6”. Fig. 4.2 displays the AUCs for each category, with thrips

having the highest and black whiteflies having the lowest AUCs. This outcome is because

black whiteflies can be easily mistaken for dust or debris, while thrips have distinct mor-

phological characteristics and a larger size, making them simpler to identify. The F1 score,

which represents the harmonic mean of precision and recall, is used to assess the model’s

performance in solving multiclass classification problems. A perfect F1 score has a value

of 1.0, implying both ideal precision and recall. Conversely, a score of 0 suggests that

either precision or recall is 0. Setting the IoU threshold to 0.5 yields a precision of 93.8%,

59

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Figure 4.2: Curve of precision versus recall for pest detection with YOLOv5 model using
“x6” backbone.

a recall of 91.9%, and an mAP of 95.3%, as achieved by the model. The probability for

identifying white whiteflies and thrips, displayed on the diagonal of the confusion matrix

in Fig. 4.4, is above 96%, while for black whiteflies it is around 90%. Hence, the selec-

tion and classification of whiteflies and thrips’ bounding boxes exhibit strong precision

and dependability in the selected pest detection model.

The proposed system using AIoT technology aimed to establish favorable growth

situations for asparagus by sensing the environment and monitoring pests in greenhouses.

The primary objective of the object detection model was to detect changes in pest popula-

tions on a daily basis, while simultaneously monitoring the air temperature and humidity

to avoid potential pest outbreaks. Fig. 4.5 displays the detection results of the YOLOv5

model with backbone “x6”. The model detected white whiteflies (WWF), black whiteflies

60

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Figure 4.3: Curve of F1 scores for pest detection with YOLOv5 model using “x6” back-
bone.

Figure 4.4: Confusionmatrix of pests detected using YOLOv5model with backbone “x6”.

61

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Figure 4.5: Results of object classification and counting using YOLOv5 model with “x6”
backbone

(BWF), and thrips, denoted by the corresponding labels. “WWF_label”, “BWF_label”,

and “THRIPS_label” correspond to the numbers of labeled white whiteflies, black white-

flies, and thrips, respectively. “WWF_ratio”, “BWF_ratio”, and “THRIPS_ratio” repre-

sent the count accuracy of detected and labeled white whiteflies, black whiteflies, and

thrips calculated in Eq. 4.1:

count accuracy (%) = (1− |D −M |
M

)× 100 %, (4.1)

where D represents the number of pests detected by the model and M is the number of

manually labeled pests. This formula directly calculates the error between the model de-

tected and the manually labeled number of pests. However, this algorithm may misesti-

mate the actual results. Therefore, it is still necessary to compare with other indexes to

obtain the actual model training results. Fig. 4.5 shows that the count accuracy of white

and black whiteflies is 93.7% and 100%, respectively, in this example. Because no thrips

were observed in the greenhouse, none was labeled nor detected.

To assess the practical usefulness and applicability of the trained pest detectionmodel,

62

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

it was utilized to analyze images captured for one week, ranging from April 15, 2022, to

April 21, 2022. Table 4.2 presents the results of the counting accuracy, which indicate an

average accuracy of 95.8%.

Table 4.2: Mean count accuracy per day for seven consecutive days.

Date Mean count accuracy

2022/04/15 0.972
2022/04/16 0.931
2022/04/17 0.957
2022/04/18 0.950
2022/04/19 0.974
2022/04/20 0.972
2022/04/21 0.951

4.1.3 Combining environmental sensing and pest monitoring mea-

sures

The influence of weather on crop disease and field pests is of utmost importance.

Sunlight, wind direction, temperature, and rainfall are some of the weather parameters that

significantly affect the population dynamics of pests. In particular, hot and dry weather

has been found to have a positive correlation with the population growth of whiteflies

and thrips (Das et al., 2011; Kumar, 2016; Abedin et al., 2020). The count of whiteflies

displayed an upward trend with rising temperature, as shown in Fig. 4.6. Specifically, an

increase was observed from day 1 to day 3, day 4 to day 10, and day 11 to day 22. A

notable surge occurred from days 36 to 38, coinciding with a rise in temperature and a

decrease in humidity. Moreover, the correlation analysis presented in Table 4.3 indicates

that the whitefly counts exhibit a positive correlation with environmental temperature and

a negative correlation with humidity. The pest numbers increased significantly on the

same day with high temperature, whereas low humidity resulted in a rise in pest counts

63

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

the next day. Unfortunately, the correlation analysis between weather and thrips counts

could not be performed due to their absence in the field.

The findings of the correlation analysis align with the typical climatic conditions

known to affect whiteflies, thus highlighting the possibility of establishing a link between

ambient conditions and pest counts. This approach can provide early detection and pre-

emptive warning of potential pest outbreaks. The correlation analysis findings from pest

monitoring can be also effectively integrated into the on-site control system, enabling

proactive measures such as activating fans to regulate temperature in case of excessive

heat and spraying water mist when humidity levels are too low. This integration facili-

tates the realization of Integrated PestManagement (IPM) principles, which aim to address

pest issues through a comprehensive and sustainable approach. By utilizing the correla-

tion analysis results, the on-site control system can implement timely and targeted inter-

ventions, minimizing the reliance on chemical pesticides and promoting environmentally

friendly pest management strategies.

Table 4.3: Cross-correlation of environmental temperature and humidity with pest num-
bers on various days. d0, d−1, d−2, and d−3 represent the current day, 1 day prior, 2 days
prior, and 3 days prior, respectively.

Environment
temperature Correlation coefficient Environment humidity Correlation coefficient

d0 0.519 d0 -0.065
d−1 0.123 d−1 -0.793
d−2 0.162 d−2 -0.399
d−3 -0.056 d−3 0.295

4.1.4 Practical applications

In addition, to enable real-time monitoring of pests, cameras in the asparagus field

captured images of sticky paper traps every 10 minutes from 6 am until 8 pm, which

64

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

20
22

-0
1-
19

01
-2
0

01
-2
1

01
-2
2

01
-2
3

01
-2
4

01
-2
5

01
-2
6

01
-2
7

01
-2
8

01
-2
9

01
-3
0

01
-3
1

02
-0
1

02
-0
2

02
-0
3

02
-0
4

02
-0
5

02
-0
6

02
-0
7

02
-0
8

02
-0
9

02
-1
0

02
-1
1

02
-1
2

02
-1
3

02
-1
4

02
-1
5

02
-1
6

02
-1
7

02
-1
8

02
-1
9

02
-2
0

02
-2
1

02
-2
2

02
-2
3

02
-2
4

02
-2
5

Day

0

200

400

600

800

1000

1200

Pe
st
 N
um

be
r

white whiteflies

15

20

25

30

35

Ai
r T
em

pe
ra
tu
re
 (°
C)

(a) Changes in pest counts and air temperature over 38 days.

20
22

-0
1-
19

01
-2
0

01
-2
1

01
-2
2

01
-2
3

01
-2
4

01
-2
5

01
-2
6

01
-2
7

01
-2
8

01
-2
9

01
-3
0

01
-3
1

02
-0
1

02
-0
2

02
-0
3

02
-0
4

02
-0
5

02
-0
6

02
-0
7

02
-0
8

02
-0
9

02
-1
0

02
-1
1

02
-1
2

02
-1
3

02
-1
4

02
-1
5

02
-1
6

02
-1
7

02
-1
8

02
-1
9

02
-2
0

02
-2
1

02
-2
2

02
-2
3

02
-2
4

02
-2
5

Day

0

200

400

600

800

1000

1200

Pe
st
 N
um

be
r

white whiteflies
85

90

95

100

Ai
r H

um
id
ity
 (%

)

(b) Changes in pest counts and air humidity over 38 days.

Figure 4.6: Combining sensing values and pest numbers. Boxplots of sensing values
and line graphs of pest numbers from January 19, 2022, to February 25, 2022, for (a) air
temperature and (b) air humidity.

65

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

were then transmitted to the FTP server. The proposed model was applied to identify

whiteflies or thrips in the images, and the identified results were uploaded to the database.

However, despite the high accuracy of our model in identifying both pests, thrips were

absent in the experimental field. The website presents sensing values from the AIoT

system, providing up-to-date information such as air temperature, humidity, pest pop-

ulation, and other ambient conditions in the experimental field of asparagus. (http:

//140.112.94.126/project/asparagus/Yizhu_Station_camdata1.php)

Compared to previous studies, our pest detection model’s architecture is more effec-

tive for detecting little objects, resulting in higher accuracy and faster convergence. With

the method’s improved pest counting capabilities, farmers can now monitor pest popu-

lations in real-time and implement targeted pest control measures at different stages of

growth, leading to more effective pest management in asparagus greenhouses. Control

measures may include spraying with water, releasing natural predators, applying pesti-

cides, and using pheromones to either attract and kill pests or disrupt their mating.

During the data collection period, no pest outbreaks were observed due to the diligent

efforts of the cooperative farmers in maintaining optimal environmental conditions. How-

ever, Fig. 4.7 displays a pest outbreak of early 2020 indicated by an immediate surge in

pest population on the fourth day. Our AIoT system of asparagus anticipates potential pest

outbreaks by analyzing daily changes in pest populations (Fig. 4.7) in combination with

environmental factors such as environmental temperature, humidity, and more. This ap-

proach provides farmers with additional sensing data to develop suitable control strategies

for pests in different ambient conditions.

66

http://dx.doi.org/10.6342/NTU202300271
http://140.112.94.126/project/asparagus/Yizhu_Station_camdata1.php
http://140.112.94.126/project/asparagus/Yizhu_Station_camdata1.php

doi:10.6342/NTU202300271

20
20

-0
1-
01

01
-0
2

01
-0
3

01
-0
4

01
-0
5

01
-0
6

01
-0
7

01
-0
8

01
-0
9

01
-1
0

01
-1
1

01
-1
2

01
-1
3

01
-1
4

01
-1
5

01
-1
6

01
-1
7

01
-1
8

01
-1
9

01
-2
0

01
-2
1

01
-2
2

01
-2
3

01
-2
4

01
-2
5

01
-2
6

01
-2
7

01
-2
8

01
-2
9

01
-3
0

01
-3
1

Day

3000

4000

5000

6000

7000

8000

9000
Nu

m
be

r o
f w

hi
te
fli
es

Figure 4.7: Results showing variations in the whitefly population during the pest outbreak
from January 01, 2020 to January 31, 2020.

4.2 Optimization of bee pollination

4.2.1 Counting of honey bees entering and leaving the hive

4.2.1.1 Comparison of object detection models

The camera under the observation aisle was used to record the videos of honey bees

entering and leaving the hive. To determine the optimal detection method for honey bees,

we evaluated the performance of several models, including YOLOv3with the “tiny” back-

bone (Redmon and Farhadi, 2018), YOLOv5 with the “n6” and “s6” backbones (Jocher,

2020), YOLOv7 with the “tiny” backbone (Wang et al., 2023), and YOLOv8 with the “n”

and “s” backbones (Jocher et al., 2023). The training and validation sets consisting of

549 and 137 honey bee images, respectively, were used to compare the accuracy of each

model. The training parameters used in the evaluation are listed in Table 3.2. Precision,

recall, and mAP with an IoU threshold of 0.5 and average mAP with an IoU threshold

of 0.5 to 0.95 are shown in Table 4.4. Because the difference in precision, recall, and

mAP among the models was minimal when using an IoU threshold of 0.5, the average

mAP within the IoU range of 0.5 to 0.95 was incorporated. This broader IoU threshold

67

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

range ensures a comprehensive evaluation while considering the negligible distinctions

observed at the IoU threshold of 0.5 for each model. It can be seen that the precision of

YOLOv8 with the backbone “s” is 98.7%, the recall is 99.6%, the mAP 0.5 is 99.5% , and

the mAP 0.5:0.95 is 88.6%, which are all the best.

Table 4.4: Comparison of the precision, recall, and mean average precision (mAP) of all
models.

Model Backbone Precision Recall mAP 0.5 mAP 0.5:0.95

YOLOv3 YOLOv3-tiny 0.990 0.987 0.993 0.782
YOLOv5 YOLOv5n6 0.990 0.997 0.996 0.811
YOLOv5 YOLOv5s6 1 0.999 0.996 0.825
YOLOv7 YOLOv7-tiny 0.997 0.990 0.995 0.836
YOLOv8 YOLOv8n 1 0.996 0.995 0.865
YOLOv8 YOLOv8s 0.987 0.996 0.995 0.886

4.2.1.2 Results of the YOLOv8 model with backbone “s”

The model’s performance was evaluated on testing data consisting of video screen-

shots that were not included in the training and validation sets. The YOLOv8 model with

backbone “s” was considered as the optimal model due to its high mAP and low compu-

tation time. This model was then applied to classify and locate honey bees in the testing

data, with the resulting bounding boxes shown in Fig. 4.8. All honey bees in the obser-

vation aisle images were accurately detected. The number of bounding boxes detected by

the model was compared to the number of manually labeled honey bees.

By setting the IoU threshold to 0.5, the high AUC observed for honey bees in Fig. 4.9,

alongwith the 100%probability shown on the diagonal of the confusionmatrix in Fig. 4.11,

clearly demonstrates the accurate identification of honey bees by the model. This success

can be attributed to the distinctive morphological characteristics and larger size of honey

bees. As a result, the selection of bounding boxes for honey bees exhibited good precision,

68

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Figure 4.8: The resulting bounding boxes of honey bee using the YOLOv8 model with
“s” backbone.

thus demonstrating the reliability of our honey bee detection model.

4.2.1.3 Comparison of the tracking performance

The AIoT system proposed aimed to optimize the pollination of honey bees in crop

greenhouses. This was achieved by tracking the number of honey bees entering and leav-

ing the hive, as well as the area of pollen grain carried by the bees. To prevent duplicate

counting of honey bees and pollen grains, the tracking algorithmwas designed to primarily

monitor the honey bees’ entry and exit from the hive.

To validate the effectiveness and practicality of the object detection model and track-

ing algorithm, the system for counting honey bees entering and leaving the hive was ap-

plied to videos captured over six consecutive days from July 06, 2022 to July 11, 2022.

There were 50 videos, each 1 minute in length, recorded at different times by the honey

bee monitoring system as testing data. The videos’ resolution was 1920×1080 with 25

frames per second. In general, only the honey bees entering the hive would carry pollen

69

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Figure 4.9: Curve of precision vs. recall for honey bee with YOLOv8 model using “s”
backbone.

Figure 4.10: Curve of F1 scores for honey bee with YOLOv8 model using “s” backbone.

70

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Figure 4.11: Confusion matrix of honey bees detected with YOLOv8 model using “s”
backbone.

grains. Therefore, the number of honey bees entering the hive in the videos was counted

for subsequent pollen grain area calculations. The testing result automatically counted by

the DeepSORT or StrongSORT tracking algorithm was compared with the result manu-

ally counted. The tracking accuracy of automatically and manually counted honey bees

calculated in Eq. (4.2)(Ngo et al., 2021):

Tracking accuracy (%) =
1

n
(1− |A−M |

M
)× 100 %, (4.2)

where n is the number of testing videos, A represents the total number of honey bees

counted automatically by the tracking algorithm in n testing videos, and M is the total

number of honey bees counted manually in n testing videos.

When the same weight file of YOLOv5 with backbone ”s6” was used, the tracking

71

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

accuracy of DeepSORT and StrongSORTwere 73.7% and 93.4%. Since StrongSORTwas

modified based on DeepSORT, it has better tracking performance. In addition, ID Switch

is a common challenge in the tracking algorithm, that is, when two objects overlap, the IDs

of the two objects will be exchanged, which will lead to tracking errors. However, through

the improvement of each component of StrongSORT and our repeated testing, it was also

found that the ID Switch situation was less common after tracking through StrongSORT

from the testing results.

After confirming that StrongSORT did have better tracking performance than Deep-

SORT, I put the weight files of the YOLOv3 model with backbone “tiny”, the YOLOv5

model with backbone “n6” and “s6”, and the YOLOv8 model with backbone “n” and “s”

into StrongSORT to compare its tracking accuracy, as shown in Table 4.5.

Table 4.5: Comparison of the StrongSORT tracking accuracy of different model weight
files.

Model Backbone Tracking accuracy

YOLOv3 YOLOv3-tiny 0.892
YOLOv5 YOLOv5n6 0.901
YOLOv5 YOLOv5s6 0.934
YOLOv7 YOLOv7-tiny 0.911
YOLOv8 YOLOv8n 0.967
YOLOv8 YOLOv8s 0.977

In general, the backbone of the object detection model paired with the tracking algo-

rithm should be as simple as possible to save the calculation time of each frame. However,

since the calculation of the pollen grain area after the counting of honey bees entering and

leaving the hive does not require real-time calculation, accuracy is more important than

computation speed. Therefore, the counting of honey bees entering and leaving the hive

in this study should focus on accuracy instead. In Table 4.4, the detection performance of

YOLOv3, YOLOv5, and YOLOv7 models is not much different, while the detection per-

72

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

(a) (b)

Figure 4.12: The honey bee tracking results of version 1 (a) and version 2 (b) observation
boxes using the YOLOv8 model with “s” backbone in conjunction with the StrongSORT
(Du et al., 2023) tracking algorithm.

formance of YOLOv8 is significantly better, and the detection performance of YOLOv8

with backbone “s” is the best. Moreover, as depicted in Table 4.5, there is a noticeable

enhancement in tracking accuracy when utilizing newer object detection models or em-

ploying the same model with more intricate backbones. Therefore, YOLOv8 with back-

bone “s” was considered to be paired with StrongSORT to count honey bees entering and

leaving the hive. The honey bee tracking results of the combination are shown in Fig. 4.12.

4.2.2 Calculation of pollen grain area

4.2.2.1 Comparison of instance segmentation models

To find the best calculation result for the area of pollen grain carried by honey bees,

three types of models were evaluated for their pollen grain segmentation accuracy. These

models included the one-stage model YOLACT (Bolya et al., 2019, 2022), YOLOv5

model (Jocher, 2020), YOLOv7 model (Wang et al., 2023), YOLOv8 model (Jocher et al.,

2023), the two-stage model Mask R-CNN using ResNet50 backbone (He et al., 2017) and

the transformer series model Mask R-CNN using Swin-T backbone (Liu et al., 2021). The

training and validation sets consisting of 1025 and 259 pollen grain images, respectively,

73

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

were used to compare the accuracy of each model. The training parameters used in the

evaluation are listed in Table 3.3. The model testing results, with an IoU threshold of 0.5,

are shown in Table 4.6. For the Mask R-CNN with transformer series Swin-T backbone,

it can be seen that the bounding box mAP is 0.884 and the mask mAP is 0.869, which are

all the best.

Although the mask mAP provides an evaluation of the combined performance of

bounding box localization and mask generation, when the individual effects of localiza-

tion and mask need to be clarified, it is necessary to focus solely on the bounding box

mAP. Analyzing Table 4.6 reveals that there is minimal difference between the YOLACT

model and the Mask R-CNN model with the Swin-T backbone in terms of mask mAP. In

fact, YOLACT even outperforms Mask R-CNN with the Swin-T backbone in this aspect.

However, when considering only the bounding box mAP, YOLACT falls short compared

to Mask R-CNN with the Swin-T backbone. In conclusion, considering the already satis-

factory mask generation effects, this task leans towards selecting the Mask R-CNNmodel

with the Swin-T backbone due to its superior localization capabilities. After all, when the

detection of pollen grains is not achieved, the quality of mask generation becomes irrele-

vant. Therefore, prioritizing accurate localization is crucial for ensuring the effectiveness

of the model in this task.

Table 4.6: Comparing the mAP of all instance segmentation models.

Model Backbone Bounding box mAP Mask mAP

YOLACT ResNet50 0.878 0.872
YOLOv5 YOLOv5x-seg 0.872 0.845
YOLOv7 YOLOv7-seg 0.891 0.859
YOLOv8 YOLOv8x-seg 0.888 0.862
Mask R-CNN ResNet50 0.831 0.821
Mask R-CNN Swin-T 0.884 0.869

To further compare the pollen grain segmentation of various models, we calculate the

74

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

segmentation score through Eq. (4.3):

segmentation score =
1

NM

N∑
i=1

M∑
j=1

Pr · IoU score, (4.3)

where N is the number of testing images. M is the number of segmented objects in each

image. Pr represents whether each object is detected, and it is 1 if it is detected, otherwise

it is 0. IoU score represents the ranking of the mask segmentation effect between the

models by manual recognition. Please note that it will be distinguished between different

models with a score value, such as 6, 5, 4, 3, 2, and 1.

Scoring examples of the segmentation score are shown in Fig. 4.13. Taking Fig. 4.13(a)

as an example, the image of the first row of bees in YOLOv8 is analyzed. In this case,

M represents a single image, and N indicates the total number of segmented objects in

the row, which is 2. The upper object (Pr = 1) is considered the best segmentation result

among the models in the same row, resulting in an IoU score of 6. However, the lower

object is not detected (Pr = 0). Taking Fig. 4.13(b) as another example, the image of the

third row of bees in YOLOv5 is considered. Similarly,M represents a single image, and

N indicates the total number of segmented objects in the row, which is 3. Among these

objects, the upper-left one (Pr = 1) is ranked third based on the segmentation results of the

models in the same row, yielding an IoU score of 4. The lower-left object is a reflection

and should not be recognized, so as long as it is not detected, it receives an IoU score of

6. Finally, the right object (Pr = 1) is considered the second-best segmentation result in

the row, resulting in an IoU score of 5.

The segmented images of several models, including the YOLACT model, YOLOv5

model, YOLOv7 model, YOLOv8 model, the Mask R-CNN using ResNet50 backbone,

75

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

(a) Version 1

(b) Version 2

Figure 4.13: Scoring examples of segmentation score for version 1 and 2 observation
boxes, where red numbers are segmentation scores.

76

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

and the Mask R-CNN model using Swin-T backbone, were evaluated. The pollen grain

testing set was used in the comparison, with 259 pollen grain images. The model seg-

mentation results are shown in Table 4.7. For the Mask R-CNN with transformer series

Swin-T backbone, it can be seen that the segmentation score is 4.994, which is all the best.

Table 4.7: Comparing the segmentation result of all instance segmentation models.

Model Backbone Segmentation score

YOLACT ResNet50 4.404
YOLOv5 YOLOv5x-seg 3.809
YOLOv7 YOLOv7-seg 3.971
YOLOv8 YOLOv8x-seg 3.830
Mask R-CNN ResNet50 4.484
Mask R-CNN Swin-T 4.994

By amalgamating the findings presented in Fig. 4.13 and Table 4.7, two key obser-

vations come to light. Firstly, the one-stage model YOLACT falls slightly behind the

transformer series model in terms of segmentation outcomes but outperforms the two-

stage model. Secondly, within the one-stage model, the YOLO family of models priori-

tizes bounding box detection over generating complete masks. This is evident in the first

row of Fig. 4.13(a) and the second row of Fig. 4.13(b), where the bounding box detection

results are comparable to those of the transformer series models, but the mask is not as

refined.

In relation to the first observation, the reason behind YOLACT achieving the highest

segmentation score among the one-stage models appears to lie in its increased emphasis on

mask extraction within its model architecture. This heightened focus enables YOLACT

to produce more precise and intricate masks once the bounding box is delineated. Fur-

thermore, YOLACT outperforms the two-stage Mask R-CNN model with a ResNet50

backbone in terms of segmentation results. This can be attributed to YOLACT’s utiliza-

tion of newer feature extraction techniques, which allow the one-stage model to extract

77

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

features that are on par with those of the two-stage model.

The second observation relates to the YOLO series models’ inability to generate fine

masks. I believe this limitation stems from the fact that the YOLO series models are

primarily built upon the architecture of object detection models, with added components

for mask feature extraction and generation. While these models excel in bounding box

detection and demonstrate commendable performance in this aspect, their capacity for

comprehensive mask feature extraction is not as refined as that of other models, such as

the YOLACT model, the Mask R-CNN using ResNet50 backbone, and the Mask R-CNN

model using Swin-T backbone.

However, given the emphasis on achieving high segmentation accuracy in this par-

ticular task of pollen grain segmentation, the final selection was made based on a compre-

hensive evaluation of bounding box detection capabilities and complete mask generation

capabilities. As a result, the Mask R-CNNmodel, utilizing the Swin-T backbone from the

transformer series, emerged as the preferred choice due to its exceptional performance in

both aspects.

4.2.2.2 Results of the Mask R-CNN model with backbone Swin-T

The Mask R-CNN model with Swin-T backbone, which had the highest mAP, was

applied to segment pollen grains of honey bees in the testing data. The images on both

sides of the observation box were equally allocated to the dataset. The masks of pollen

grains detected by the Mask R-CNNmodel with backbone Swin-T are shown in Fig. 4.14,

respectively. It can be seen that almost all the pollen grains on images on both sides of

the observation box have been segmented. The results of segmentations for pollen grains

78

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

(a) (b)

(c) (d)

Figure 4.14: The Mask R-CNNmodel with Swin-T backbone was used to obtain segmen-
tation results for pollen grains in both version 1 and version 2 observation boxes. Images
(a) and (b) show the segmentation results for pollen grains on the left and right sides of
version 1. Images (c) and (d) display the segmentation results for pollen grains on the left
and right sides of version 2.

were compared with the results of manual labels.

By setting the IoU threshold to 0.5, the AUC depicted in Fig. 4.15-4.16, combined

with the 87% probability displayed on the diagonal of the confusion matrix in Fig. 4.17,

serves as evidence of the model’s proficiency in performing instance segmentation for

pollen grains. The task presents a significant challenge as pollen grains can be easily

mistaken for the honey bee’s body color and reflections. However, despite this difficulty,

the model achieved commendable precision in detecting and segmenting pollen grains,

thereby establishing the reliability of our pollen grain model.

4.2.2.3 Results of the algorithm of pollen grain area calculation

As can be seen from Fig. 4.18, after the Mask R-CNN model with backbone Swin-T

segmented the pollen grain area, the bounding box area would be cropped by setting the

range of the HSV color space to avoid calculating the area of the non-mask area. Then the

79

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Figure 4.15: The detection curve of precision vs. recall for pollen grains with the Mask
R-CNNmodel using Swin-T backbone. The numbers in the upper left corner of the figure
represent bounding box mAP.

Figure 4.16: The segmentation curve of precision vs. recall for pollen grains with the
Mask R-CNN model using Swin-T backbone. The numbers in the upper left corner of the
figure represent mask mAP.

80

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Figure 4.17: Confusion matrix of pollen grains detected with the Mask R-CNN model
using Swin-T backbone.

mask area was found from the bounding box area by setting the range of the HSV color

space again. Finally, the number of pixels contained in the mask area was calculated to

obtain the pollen grain area, as shown in Fig. 4.18(b) and Fig. 4.18(d).

4.2.3 Correlation analysis between pollen count and actual pollina-

tion status of crops

The experiment data of the comparison are shown in Tables 4.8-4.10. During the

experiment, data were collected at approximately 10-minute intervals. However, due to

unforeseen circumstances, there were variations in the time intervals recorded, ranging

from 10 minutes to 30 minutes, as shown in Tables 4.8-4.10. To ensure the fairness of

data processing, the area and weight of all pollen grains corresponding to each time in-

terval were still recorded. The calculation results of the pollen grain area algorithm were

81

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

(a) (b)

(c) (d)

Figure 4.18: Images (a) and (c) show the segmentation results for pollen grains in version
1 and version 2 observation boxes, respectively. The Mask R-CNN model with Swin-T
backbone was used for both. Images (b) and (d) depict the calculation results for version
1 and version 2, respectively, using the algorithm (white pixels indicate calculated pixels).

compared with the actual pollen grain weight, and we found that the coefficient of determi-

nation between the two was 0.930, shown in Fig. 4.19. The translucent bands surrounding

the regression line in Fig. 4.19 represent the 95% confidence interval for the regression

estimate. Therefore, we can confirm that the pollen area algorithm can indeed reflect the

real pollen weight, then infer the actual pollination status of the crop, and optimize the

pollination of honey bees.

82

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Table 4.8: The experimental data on January 13, 2023 (1 mm2 = 256 pixels).

Time interval Pollen grain area (mm2) Pollen grain weight (g)

1040-1050 74.433594 0.0170
1050-1100 67.125000 0.0127
1100-1110 110.335938 0.0260
1110-1120 65.664062 0.0105
1120-1130 69.796875 0.0080
1130-1140 74.183594 0.0092
1140-1150 47.886719 0.0077
1150-1200 14.542969 0.0027
1210-1230 103.339844 0.0318
1230-1400 163.183594 0.0503
1400-1420 51.597656 0.0238
1430-1510 160.308594 0.0078
1510-1540 159.207031 0.0019

Table 4.9: The experimental data on March 05, 2023 (1 mm2 = 256 pixels).

Time interval Pollen grain area (mm2) Pollen grain weight (g)

1020-1030 41.453125 0.1963
1030-1040 669.492188 0.4333
1040-1050 111.605469 0.2338
1100-1110 15.023437 0.0709
1110-1120 130.863281 0.1540
1120-1130 175.566406 0.1605
1130-1140 47.285156 0.0437
1140-1150 0.000000 0.0079
1150-1200 39.851562 0.0276
1200-1220 26.683594 0.0684
1220-1320 115.812500 0.1777
1320-1340 70.000000 0.1291
1350-1400 45.855469 0.0437
1400-1420 22.421875 0.0358
1420-1430 62.796875 0.0611
1430-1440 29.828125 0.0210
1440-1450 35.207031 0.0344
1450-1500 20.480469 0.0124
1500-1510 51.71875 0.0417
1510-1520 46.023438 0.0491
1520-1530 18.535156 0.0097

83

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Table 4.10: The experimental data on March 06, 2023 (1 mm2 = 256 pixels).

Time interval Pollen grain area (mm2) Pollen grain weight (g)

1010-1020 356.941406 0.1569
1020-1030 96.6875 0.1152
1030-1050 344.867188 0.2873
1050-1100 189.082031 0.1306
1100-1110 107.500000 0.0445
1110-1120 81.867188 0.0215
1120-1130 153.941406 0.0691
1130-1140 245.859375 0.0769
1140-1150 110.191406 0.0358
1150-1200 79.894531 0.0242
1200-1210 112.023438 0.0291
1210-1310 186.054688 0.0586
1310-1330 155.417969 0.0486
1330-1340 54.828125 0.0129
1340-1350 105.531250 0.0411
1350-1400 95.941406 0.0318
1400-1410 35.433594 0.0150
1410-1420 109.695312 0.0316
1420-1430 34.019531 0.0093
1430-1440 56.667969 0.0232
1440-1450 151.210938 0.0391
1450-1500 79.265625 0.0293
1500-1510 100.410156 0.0290
1510-1520 205.144531 0.0522
1520-1530 36.570312 0.0225

Figure 4.19: Regression curve of the experimental data on January 13, March 05, and
March 06, 2023.

84

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Chapter 5 Conclusion

This thesis introduced an innovative AIoT system that integrated IoT-based environ-

mental sensor measurements and pest count analysis using an AI-based YOLOv5 model

with the backbone “x6”. The selection of the YOLOv5 model with backbone “x6” was

based on its superior mAP compared to two-stage models and its faster convergence rate

compared to transformer series models. By harnessing big data analysis, the system uti-

lized environmental data and pest population information to forecast pest outbreak trends,

thereby maximizing the yield of high-quality asparagus through appropriate control strate-

gies for pests in facility cultivation.

Additionally, the thesis proposed an AIoT system that combined an IoT-based obser-

vation box with AI-based models to address honey bee monitoring and pollination opti-

mization. The YOLOv8 object detection model with the backbone “s”, the latest YOLO

model, along with the StrongSORT tracking algorithm, accurately captured the counts of

honey bees entering and leaving the beehive. Furthermore, the calculation of pollen grain

area was performed using theMask R-CNN instance segmentation model with the Swin-T

backbone from the transformer series, in conjunction with image processing technology.

The choice of the Mask R-CNN model with the Swin-T backbone prioritized accuracy in

pollen grain area estimation rather than segmentation speed, as it demonstrated excellent

mask generation by practical tests and the best bounding box localization capabilities in

85

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

model comparison. By applying correlation analysis, the pollen grain area information

can be effectively utilized to enhance honey bee pollination.

These research findings presented a more efficient and comprehensive solution for

greenhouse monitoring of pests and optimization of honey bee pollination, contributing to

the realization of the vision of smart agriculture.

86

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Chapter 6 Future work

In the future, several follow-up studies can be conducted based on the current re-

search findings. Firstly, the correlation analysis results of pest monitoring can be inte-

grated with the on-site control system, such as turning on the fan when the temperature

is too high, and spraying water mist when the humidity is too low, so as to achieve the

vision of IPM. Secondly, a correlation analysis between the area of pollen grains and the

actual pollination status of crops can be carried out. Since suitable crops were unavailable

during the research period, this experiment can be pursued in the future to further vali-

date the research results. Thirdly, big data analysis of the pollen grain area results and

environmental sensing data can be performed to optimize bee pollination that aligns with

environmental monitoring values. This analysis will enhance the understanding of the

relationship between pollen grain area and environmental factors. Lastly, real-time pest

counting and bee pollination optimization can be conducted in the field using advanced

edge devices or faster and more reliable communication technologies. This would allow

farmers to promptly receive the pest population and bee pollination optimization results,

enabling them to make immediate adjustments to their pest control and pollination meth-

ods. This approach would provide convenience and timely feedback for optimizing pest

control and pollination practices.

87

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

References

Abedin, S., Alireza, Z.-R., Hassan, V., Amin, A., Reza, F.-F., Amir, H., and Ali, H. (2020).

Relationship between some environmental and climatic factors on outbreak of white-

flies, the human annoying insects. Journal of Arthropod-Borne Diseases, 14:78–87.

Agarap, A. F. (2018). Deep learning using rectified linear units (ReLU). arXiv preprint

arXiv:1803.08375.

Ajao, L. A., Agajo, J., Kolo, J. G., Maliki, D., and Adegboye, M. A. (2017). Wireless

sensor networks based-internet of thing for agro-climatic parameters monitoring and

real-time data acquisition. Asian Scientific Research, 7:240–252.

Baronti, P., Pillai, P., Chook, V. W., Chessa, S., Gotta, A., and Hu, Y. F. (2007). Wireless

sensor networks: A survey on the state of the art and the 802.15. 4 and zigbee standards.

Computer communications, 30(7):1655–1695.

Bernauer, O. M., Tierney, S. M., and Cook, J. M. (2022). Efficiency and effectiveness

of native bees and honey bees as pollinators of apples in new south wales orchards.

Agriculture, Ecosystems & Environment, 337:108063.

Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. M. (2020). Yolov4: Optimal speed and

accuracy of object detection. arXiv preprint arXiv:2004.10934.

88

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Bolya, D., Zhou, C., Xiao, F., and Lee, Y. J. (2019). YOLACT: Real-time instance seg-

mentation. In Proceedings of the IEEE/CVF International Conference on Computer

Vision, pages 9157–9166.

Bolya, D., Zhou, C., Xiao, F., and Lee, Y. J. (2022). YOLACT++ better real-time in-

stance segmentation. IEEE Transactions on Pattern Analysis andMachine Intelligence,

44(2):1108–1121.

Caicedo-Ortiz, J. G., De-la Hoz-Franco, E., Ortega, R. M., Piñeres-Espitia, G., Combita-

Niño, H., Estévez, F., and Cama-Pinto, A. (2018). Monitoring system for agronomic

variables based in wsn technology on cassava crops. Computers and Electronics in

Agriculture, 145:275–281.

Chang, C.-L., Chung, S.-C., Fu, W.-L., and Huang, C.-C. (2021). Artificial intelligence

approaches to predict growth, harvest day, and quality of lettuce (Lactuca sativa L.) in

a IoT-enabled greenhouse system. Biosystems Engineering, 212:77–105.

Chang, S.-C., Zhong, Z.-P., Guo, M.-C., Hsieh, M.-H., Peng, J.-C., Tai, L.-C., Chung,

P.-L., Wang, J.-C., Jiang, J.-A., and Chou, C.-Y. (2022). AIoT based pest counting

system for asparagus cultivation. In Proceedings of the 10th International Symposium

on Machinery and Mechatronics for Agriculture and Biosystems Engineering (ISMAB).

Chautá-Mellizo, A., Campbell, S., Bonilla, M., Thaler, J., and Poveda, K. (1999). Effects

of natural and artificial pollination on fruit and offspring quality. Basic and Applied

Ecology, 13:524–532.

Chen, C.-J., Huang, Y.-Y., Li, Y.-S., Chang, C.-Y., and Huang, Y.-M. (2020). An AIoT

based smart agricultural system for pests detection. IEEE Access, 8:180750–180761.

89

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Chou, C.-Y., Chang, S.-C., Zhong, Z.-P., Guo, M.-C., Hsieh, M.-H., Peng, J.-C., Tai, L.-

C., Chung, P.-L., Wang, J.-C., and Jiang, J.-A. (2023). Development of AIoT system for

facility asparagus cultivation. Computers and Electronics in Agriculture, 206:107665.

Das, S., Pandey, V., and Patel, H. R. (2011). Effect of weather parameters on pest-disease

of okra during summer season in middle gujarat. Journal of Agrometeorology, 13:38–

42.

Delaplane, K. S., Mayer, D. F., et al. (2000). Crop pollination by bees. CABI publishing.

Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., and Sun, J. (2021). Repvgg: Making vgg-

style convnets great again. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 13733–13742.

Du, Y., Wan, J., Zhao, Y., Zhang, B., Tong, Z., and Dong, J. (2021). Giaotracker: A

compre- hensive framework for mcmot with global information and optimizing strate-

gies in visdrone 2021. In Proceedings of the IEEE/CVF International Conference on

Computer Vision., pages 2809–2819.

Du, Y., Zhao, Z., Song, Y., Zhao, Y., Su, F., Gong, T., and Meng, H. (2023). Strongsort:

Make deepsort great again. IEEE Transactions on Multimedia, pages 1–14.

Evangelidis, G. and Psarakis, E. (2008). Parametric image alignment using enhanced

correlation coefficient maximization. IEEE transactions on pattern analysis and ma-

chine intelligence, 30:1858–1865.

Fisher, R. and Pomeroy, N. (1989). Pollination of greenhouse muskmelons by bumble

bees (hymenoptera: Apidae). Journal of Economic Entomology, 82:1061–1066.

90

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Ge, Z., Liu, S., Wang, F., Li, Z., and Sun, J. (2021). YOLOX: Exceeding YOLO series in

2021. arXiv preprint arXiv:2107.08430.

Gevorgyan, Z. (2022). SIoU loss: More powerful learning for bounding box regression.

arXiv preprint arXiv:2205.12740.

Guo, M.-C., Hsieh, M.-H., and Chang, C.-C. (2019). Benefit of water mist reduction of

small pest density for facility asparagus. Tainan District Agricultural News NO.107,

pages 09–12.

Guo, M.-C., Hsieh, M.-H., Chang, C.-C., and Chen, S.-H. (2017). Application of spray

(water) to reduce the harm of small pests. Tainan District Agricultural News NO.102,

pages 04–06.

Guo, M.-C., Hsieh, M.-H., Chang, W.-P., Jiang, J.-A., Chou, C.-Y., Wang, J.-C., and

Chang, C.-C. (2020). Facility asparagus and thrips friendly integrated control tips.

Tainan District Agricultural News NO.113, pages 13–16.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask R-CNN. In Proceedings

of the IEEE International Conference on Computer Vision, pages 2961–2969.

Heuvel, R. M. V. (1996). The promise of precision agriculture. Journal of Soil and Water

Conservation, 51:38–40.

Hsieh, M.-H., Guo, M.-C., Jiang, J.-A., Chou, C.-Y., Liu, L.-Y., and Wang, J.-C. (2020).

Facility asparagus friendly integrated thrip control demonstration observation session.

Tainan District Agricultural News NO.112, pages 25–29.

Jocher, G. (2020). YOLOv5 by Ultralytics.

Jocher, G., Chaurasia, A., and Qiu, J. (2023). YOLO by Ultralytics.

91

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Kalman, R. (1960). A new approach to linear filtering and prediction problems. Journal

of Basic Engineering, 82D:35–45.

Kevan, P. G. (1999). Pollinators as bioindicators of the state of the environment: species,

activity and diversity. Agriculture, Ecosystems Environment, 74:373–393.

Kim, M.-G., Yang, J.-Y., Chung, N.-H., and Lee, H.-S. (2012). Photo-response of tobacco

whitefly, bemisia tabaci gennadius (hemiptera: Aleyrodidae), to light-emitting diodes.

Journal of the Korean Society for Applied Biological Chemistry, 55:567–569.

Klein, A., Vaissière, B., Cane, J., Steffan-Dewenter, I., Cunningham, S., Kremen, C.,

and Tscharntke, T. (2006). Importance of pollinators in changing landscapes for world

crops. In Proceedings of the Royal Society B: Biological Sciences., volume 274, pages

303–313.

Kuhn, H. (1955). The hungarian method for the assignment problem. Naval research

logistics quarterly, 2:83–97.

Kumar, A. (2016). Weather Induced Insects/Pests/Diseases Occurrence Their Manage-

ment, pages 65–72.

Li, C., Li, L., Geng, Y., Jiang, H., Cheng, M., Zhang, B., Ke, Z., Xu, X., and Chu, X.

(2023). Yolov6 v3. 0: A full-scale reloading. arXiv preprint arXiv:2301.05586.

Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., Ke, Z., Li, Q., Cheng, M., Nie,W., et al.

(2022). Yolov6: A single-stage object detection framework for industrial applications.

arXiv preprint arXiv:2209.02976.

Li, L.-C., Lin, C.-Y., Yang, C.-K., and Hsu, W.-H. (2020a). Research and analysis on

92

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

the development status of smart agriculture application and potential talent demand.

Agriculture Policy & Review, pages 66–72.

Li, X., Wang, W., Wu, L., Chen, S., Hu, X., Li, J., Tang, J., and Yang, J. (2020b). Gen-

eralized focal loss: Learning qualified and distributed bounding boxes for dense object

detection. Advances in Neural Information Processing Systems, 33:21002–21012.

Liao, M.-S., Chen, S.-F., Chou, C.-Y., Chen, H.-Y., Yeh, S.-H., Chang, Y.-C., and Jiang,

J.-A. (2017). On precisely relating the growth of phalaenopsis leaves to greenhouse

environmental factors by using an IoT-based monitoring system. Computers and Elec-

tronics in Agriculture, 136:125–139.

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., and Belongie, S. (2017a). Feature

pyramid networks for object detection. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 2117–2125.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2017b). Focal Loss for Dense

Object Detection. In Proceedings of the IEEE International Conference on Computer

Vision, pages 2980–2988.

Liu, J. and Wang, X. (2021). Plant diseases and pests detection based on deep learning:

A review. Plant Methods, 17.

Liu, S., Qi, L., Qin, H., Shi, J., and Jia, J. (2018). Path aggregation network for instance

segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 8759–8768.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., and Berg, A. C. (2016).

Ssd: Single shot multibox detector. In Computer Vision–ECCV 2016: 14th European

93

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I

14, pages 21–37. Springer.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. (2021). Swin

transformer: Hierarchical vision transformer using shifted windows. In Proceedings of

the IEEE/CVF International Conference on Computer Vision, pages 10012–10022.

Lopez-Reyes, K., Armstrong, K. F., Van Tol, R. W., Teulon, D. A., and Bok, M. J. (2022).

Colour vision in thrips (thysanoptera). Philosophical Transactions of the Royal Society

B, 377(1862):20210282.

Loshchilov, I. and Hutter, F. (2016). SGDR: Stochastic gradient descent with warm

restarts. arXiv preprint arXiv:1608.03983.

Luo, H., Jiang, W., Gu, Y., Liu, F., Liao, X., Lai, S., and Gu, J. (2019). A strong baseline

and batch normalization neck for deep person re-identification. IEEE Transactions on

Multimedia, 22:2597–2609.

Maraveas, C. and Bartzanas, T. (2021). Application of internet of things (IoT) for opti-

mized greenhouse environments. AgriEngineering, 3:954–970.

Ngo, T. N., Rustia, D. J. A., Yang, E.-C., and Lin, T.-T. (2021). Automated monitoring

and analyses of honey bee pollen foraging behavior using a deep learning-based imaging

system. Computers and Electronics in Agriculture, 187:106239.

Ngo, T. N., Wu, K.-C., Yang, E.-C., and Lin, T.-T. (2019). A real-time imaging system

for multiple honey bee tracking and activity monitoring. Computers and Electronics in

Agriculture, 163:104841.

94

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Nicodemo, D., Malheiros, E., Jong, D., and Couto, R. (2018). Improved pollination effi-

ciency and reduced honey bee colony decline in greenhouses by allowing access to the

outside during part of the day. Sociobiology, 65:714–721.

Ouni, R. and Saleem, K. (2022). Framework for sustainable wireless sensor network based

environmental monitoring. sustainability, 14(14):8356.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You Only Look Once: Uni-

fied, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 779–788.

Redmon, J. and Farhadi, A. (2018). YOLOv3: An incremental improvement. arXiv

preprint arXiv:1804.02767.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster R-CNN: Towards real-time object

detection with region proposal networks. Advances in Neural Information Processing

Systems, 28:91–99.

Rupnik, R., Kukar, M., Vračar, P., Košir, D., Pevec, D., and Bosnić, Z. (2017). AgroDSS:

A decision support system for agriculture and farming. Computers and Electronics in

Agriculture, 161:260–271.

Russell, B. C., Torralba, A., Murphy, K. P., and Freeman, W. T. (2008). Labelme: a

database and web-based tool for image annotation. International Journal of Computer

Vision, 77:157–173.

Rustia, D. J. A., Chao, J.-J., Chiu, L.-Y., Wu, Y.-F., Chung, J.-Y., Hsu, J.-C., and Lin, T.-T.

(2021). Automatic greenhouse insect pest detection and recognition based on a cascaded

deep learning classification method. Journal of Applied Entomology, 145(3):206–222.

95

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Rustia, D. J. A., Lin, C. E., Chung, J. Y., and Lin, T.-T. (2018). A real time multi class

insect pest identification method using cascaded convolutional neural networks. In

Proceedings of the 9th International Symposium on Machinery and Mechatronics for

Agriculture and Biosystems Engineering (ISMAB).

Rustia, D. J. A., Lin, C. E., Chung, J.-Y., Zhuang, Y.-J., and Lin, T.-T. (2020). Application

of an image and environmental sensor network for automated greenhouse insect pest

monitoring. Journal of Asia-Pacific Entomology, 23:17–28.

Rustia, D. J. A. and Lin, T.-T. (2017). An iot-based wireless imaging and sensor node

system for remote greenhouse pest monitoring. Chemical Engineering Transactions,

58:601–606.

Sabara, H. and Winston, M. (2003). Managing honey bees (hymenoptera: Apidae) for

greenhouse tomato pollination. J Econ Entomol, 96:574–54.

Smith, L. N. and Topin, N. (2019). Super-convergence: Very fast training of neural net-

works using large learning rates. In Artificial Intelligence and Machine Learning for

Multi-domain Operations Applications, volume 11006, pages 369–386. SPIE.

Solomon, M. (1971). Insect pollination of crops by jb free london: Academic press (1970),

pp. 544,£ 7.25. Experimental Agriculture, 7(4):367–368.

Stadler, D. and Beyerer, J. (2022). Modelling ambiguous assignments for multi-person

tracking in crowds. InProceedings of the IEEE/CVFWinter Conference on Applications

of Computer Vision., pages 133–142.

Sun, Q., Zhao, X., Wu, L., Zhao, J., Yang, Y., and Zhang, Y. (2021). Differences in

pollination efficiency among three bee species in a greenhouse and their effects on yield

96

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

and fruit quality of northern highbush“bluecrop＂blueberry. Amer Soc Horticul Sci,

56:603–607.

Sáez, A., Negri, P., Viel, M., and Aiden, M. (2019). Pollination efficiency of artificial and

bee pollination practices in kiwifruit. Scientia Horticulturae, 246:1017–1021.

Tian, D., Han, Y., Wang, B., Guan, T., Gu, H., and Wei, W. (2022). Review of ob-

ject instance segmentation based on deep learning. Journal of Electronic Imaging,

31(4):041205–041205.

Tripathy, P. K., Tripathy, A. K., Agarwal, A., and Mohanty, S. P. (2021). Mygreen: An

IoT-Enabled smart greenhouse for sustainable agriculture. IEEE Consumer Electronics

Magazine, 10:57–62.

Tzutalin (2015). Labelimg. Free Software: MIT License.

Wang, C.-Y., Bochkovskiy, A., and Liao, H.-Y. M. (2023). YOLOv7: Trainable bag-of-

freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the

IEEE/CVFConference onComputer Vision and Pattern Recognition, pages 7464–7475.

Wang, C.-Y., Liao, H.-Y. M., Wu, Y.-H., Chen, P.-Y., Hsieh, J.-W., and Yeh, I.-H. (2020a).

CSPNet: A new backbone that can enhance learning capability of cnn. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,

pages 390–391.

Wang, C.-Y., Yeh, I.-H., and Liao, H.-Y. M. (2021). You only learn one representation:

Unified network for multiple tasks. arXiv preprint arXiv:2105.04206.

Wang, Z., Zheng, L., Liu, Y., Li, Y., and Wang, S. (2020b). Towards real-time multi-

97

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

object tracking. in: European conference on computer vision. In European Conference

on Computer Vision., pages 107–122.

Washitani, I., Kato, M., J., N., and Suzuki, K. (1994). Importance of queen bumble bees as

pollinators facilitating inter‐morph crossing in primula sieboldii. Plant Species Biology,

9:169–176.

Williams, C. and Rasmussen, C. (1995). Gaussian processes for regression. Advances in

Neural Information Processing Systems, 8.

Wojke, N., Bewley, A., and Paulus, D. (2017). Simple online and realtime tracking with a

deep association metric. In 2017 IEEE International Conference on Image Processing

(ICIP), pages 3645–3649. IEEE.

Xu, Y., Wei, H., Lin, M., Deng, Y., Sheng, K., Zhang, M., Tang, F., Dong, W., Huang,

F., and Xu, C. (2022). Transformers in computational visual media: A survey. Com-

putational Visual Media, 8:33–62.

Yang, C. and Collins, J. (2019). Deep learning for pollen sac detection and measurement

on honeybee monitoring video. In 2019 International Conference on Image and Vision

Computing New Zealand (IVCNZ), pages 1–6. IEEE.

Zhang, H., Wang, Y., Dayoub, F., and Sunderhauf, N. (2021). VarifocalNet: An IoU-

Aware Dense Object Detector. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 8514–8523.

Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Lin, H., Zhang, Z., Sun, Y., He, T., Mueller, J.,

Manmatha, R., et al. (2022). ResNeSt: Split-Attention Networks. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2736–

2746.

98

http://dx.doi.org/10.6342/NTU202300271

doi:10.6342/NTU202300271

Zhao, Z.-Q., Zheng, P., Xu, S.-T., andWu, X. (2019). Object detection with deep learning:

A review. IEEE Transactions on Neural Networks and Learning Systems, 30:3212–

3232.

Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., and Ren, D. (2020). Distance-iou loss: Faster

and better learning for bounding box regression. InProceedings of the AAAI Conference

on Artificial Intelligence, volume 34, pages 12993–13000.

Zou, Z., Chen, K., Shi, Z., Guo, Y., and Ye, J. (2023). Object detection in 20 years: A

survey. Proceedings of the IEEE, 111(3):257–276.

99

http://dx.doi.org/10.6342/NTU202300271

	Acknowledgements
	摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Research purpose

	Literature Review
	Common insects in crop cultivation and management
	Whiteflies & thrips
	Honey bee

	AIoT systems in crop cultivation and management
	Environmental sensing
	Monitoring of pests
	Optimization of bee pollination

	IoT technology
	Deep learning algorithm
	Object detection
	Instance segmentation
	Tracking algorithm

	Materials & Methods
	Monitoring of pests
	IoT system
	Image preprocessing
	Model training
	Combining environmental monitoring and pest counting

	Optimization of bee pollination
	Image acquisition system
	Image preprocessing
	Counting of honey bees entering and leaving the hive
	Calculation of pollen grain area
	Correlation analysis between calculated area and actual weight of pollen grains

	Results & Discussion
	Monitoring of pests
	Model comparison
	Results obtained by YOLOv5 model with ``x6'' backbone.
	Combining environmental sensing and pest monitoring measures
	Practical applications

	Optimization of bee pollination
	Counting of honey bees entering and leaving the hive
	Calculation of pollen grain area
	Correlation analysis between pollen count and actual pollination status of crops

	Conclusion
	Future work
	References

