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Abstract

We consider the semi-classical Einstein equation for conformal
matter fields and mainly study the interior geometry of 4D
spherical static black holes. By adopting an equation of state
and 4D Weyl anomaly, we solve the trace of the Einstein
equation, which is geometric and state independent. We analyze
the solution space 1n two steps. First, we 1identify 3
asymptotic solutions and their local behaviors in the solution
space. Then, we numerically find the transition between those
asymptotic solutions. After obtaining a full picture of the
solution space of our setup, we then apply the physical
boundary conditions, and show some possible structures of
black holes, which consists of a dense part with near-
Planckian curvatures at the surface and shell structures
beneath. The shell structure below the surface provides a
variety patterns. By considering the most probable set of
patterns, we recover the entropy area law. In addition, we

also show that the internal structures are time dependent.
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Chapter 1

Introduction

To find the correct path toward quantum gravity, researchers have been studying in details
about quantum field theory in curved backgrounds [1-4]. That is how spacetime can influence
quantum fields. On the other hand, general relativity tells us that matter and spacetime are
in a dynamical relation through Einstein equation [5]. That suggests a consistent quantum
theory must also satisfy the other direction, that is, quantum fields can have impact on
spacetime (or geometry) [6-12].

Hawking radiation is one of the nontrivial consequence when we talk about quantum field
theory in curved spacetime [1,13]. Take Schwarzschild black hole in 4 dimensional spacetime

for example, which has the metric

-1
ds? — (1 _ %) 2 + (1 _ %) dr? + 12dS,. (1.0.1)

This metric has a fictitious singularity at » = a. That means this is only due to the limit of
chosen coordinate system, and the region is nothing more than empty space [4]. However,
this description only applies when we consider classical physics. As pointed out by Hawking,

the region near horizon is not exactly vacuum from a distant observer’s viewpoint [1]. This
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nontrivial contribution can be understood as cancellation of Weyl anomalies, allowing us to
consider it in terms of energy momentum tensor [14]. As a consistent theory, this contribu-
tion can set some corrections on the spacetime geometry through (semi-classical) Einstein

equation.

Figure 1.1: A graph to show the considered system in configuration space.

In this thesis, we are going to consider an uncharged, rotationless black hole in a 4
dimensional spherically symmetric universe. As we have mentioned above, we can classify the
universe into 2 regions depending on whether quantum effects, such as vacuum polarization
and particle creations, are important. We place the black hole at the center of our coordinate
systems, and split the universe into white and blue regions shown in Fig. 1.1. In the figure,
the center is assumed to coincide with the white region, and the separation is identified at
r = rg, wWhere the subscript will be clearer later in Sec. 6.2.

Within the blue region, we assume quantum effects are small, and the region can be well-
approximated by the Schwarzschild metric, Eq. (1.0.1). On the other hand, in the white
region, we assume quantum effects cannot be neglected, and its size should be similar to
that of the black hole, according to Hawking. In there, we treat it consistently with a semi-
classical approach. That is, we assume the matter building up the black hole is well-described
by a theory consists of N quantum fields, which are quantized under curved spacetime, and

are consistent with semi-classical Einstein equation.
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After having a full picture to what we are exploring in, let’s write down our theory in
terms of an effective field theory.
First, for the metric inside rg,,., since we are in a 4 dimensional spherically symmetric

spacetime, the most general ansatz is

¢ 1
ds? — — <1 N M) AN+ e dr? + 7D, (1.0.2)

r

T

Note that since we are not connecting to asymptotic flat region, the metric will not be fixed
to Schwarzschild metric [4]. It would be great if we are able to solve the semi-classical
Einstein equation with this metric, but it is in general a highly complicated task. Therefore,
in this paper, we mainly focus on solving the static case, that is,
a(r 1
d82 = — (1 — (—)> GA(T)dtz + —a(r)dT’Z + 7"2(192, (103)

r 1—

and discuss the time dependent case latter.
The physics in r < 7., as mentioned above, is described by semi-classical Einstein

equation, which is our equation of motion, and takes the form

G = 87Cx (0] Ty [8) (1.0.4)

where Gy is the Newton’s constant, and we have inserted the renormalized value for the
quantum matter field on the right hand side. This equation should, in general, be evaluated
case by case. Note that in the 4D spherically symmetric case, we determine a(r) and A(r)
in the metric (1.0.3) using (1.0.4), and thus the solution must satisfy (1.0.4). At the same
time, we know that since the considered region (inside a Schwarzschild black hole) is expected

to have high energy density, the matter field can be well-approximated by conformal field
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theories. Hence, we consider the 4 dimensional Weyl anomaly on the right hand side of

Eq. (1.0.4), and it takes the form
(| T, 1), e, = BlewF — awG + by OR), (1.0.5)

where F is the square of Weyl tensor, G is the Gauss-Bonnet term, which are

1
F = CoprsC = Ropys R — 2R, 5 R - §R2,

G = RupsR*™° — AR,sR*® + R2.

aw and cy are dependent on the content of matter fields, see Sec. 3.2 for more details. by,
is a coefficient dependent of ay and cy, after regularization. In this thesis, we set by = 0
for simplicity. The discussion for generic by, is considered in [15]. We then obtain a state-
independent constraint, that is, the trace of semi-classical Einstein equation (1.0.4) with 4D
Weyl anomaly (1.0.5). Still, since we have 2 functional degrees of freedom, a(r) and A(r) to
fix, we are still one constraint short.

Therefore, we consider an equation of state in order to make this system solvable. Since
we can regard the diagonal part of Einstein tensor as energy density, radial pressure, and
tangential pressures (the tt, rr, and 00/¢p¢ components, respectively), we assume their pro-
portionality to set an equation of state. For simplicity, we consider an equation of state with

one parameter, providing us three possibilities:

-G x G, (1.0.6)

G o< G, (1.0.7)

—G < GY. (1.0.8)
4
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In chapter 4, we discuss all three cases, and find only one of them is stable thermodynamically
to implement. After adopting a suitable equation of state along with the trace equation, we
have a nonlinear differential equation for a(r) to solve.

In chapter 5, we analyze how the solutions can be found using asymptotic series. From
the analysis, we find a special type of solutions. It predicts a region of high energy density,
cannot be obtained in perturbative (in /) analysis, and is responsible to determine the value
of 7gyr-

The value of 7, turns out to be larger than the size of horizon: 7, ~ ag+ O(ag™!),
where ag is the Schwarzschild radius of a black hole and the coefficient of O(a™!) term
is positive. It suggests a horizonless structure, but different from dark stars! in that the
potentially large back-reactions are included in our analysis. As a matter of fact, in the
region between Schwrzschild radius a and r,,, > a, the matter fields are highly excited, and
the curvature at » = a is infinite, suggesting a firewall paradigm.

All possible solutions with proper physical conditions are constructed in chapter 6. In
there, we find that given ADM mass of a black hole, there exists variety of possible internal
(r < rg,) structures. Combining with the feature of horizonless, this suggests a similar
situation with fuzzballs [16].

Due to the degenerate nature of the solutions found in previous chapter (several internal
structures correspond to a single observable), we tried to calculate the entropy in chapter 6.
Surprisingly, we recover the entropy area law.

After discovering all the possible static solutions, it is important to check whether these
solutions are stable, that is, to check the time-evolution of these static solutions. However,

it is almost impossible to check their full time-dependent behaviors. Hence, in chapter 7, we

'Dark stars are astronomical objects that has size slightly larger than its Schwarzschlid radius, evaporat-
ing, but the back-reaction of particle creation on geometry is ignored [16].
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are going to check their time-dependence in short time interval. That means first we assume

a(t,r) = asaric(r) + €b(t, 1), (1.0.9)

where agq4.(r) are the solutions obtained in previous chapters. Then, we solve the time-
dependent equation up to O(e;). The O(¢;) time dependence results we obtain suggest some
instability, and thus equations with higher order in ¢, are important to understand, which
will be done in future work.

Note that in chapter 2 we briefly mention about the history of quantum black holes.
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Chapter 2

Brief History of Quantum Black Holes

In 1973, Penrose and Hawking proposed their singularity theorems based on general relativ-
ity [17]. The theorem states that the collapse of objects, due to gravity, will not stop even
after horizon forms, but shrink to a point to create a singularity. This implies 2 things: black
hole exists and quantum aspects of black holes are essential. That is because nothing stops
a collapse of matters, and eventually physics at short distance, that is, quantum theory,
becomes important.

At the time, physicists were interested in formulating black hole mechanics in analogy
to thermodynamics; for example, Benkenstein conjectured black holes have finite entropy
proportional to its surface area A [18]. These works caught Hawking’s attention. He then
tried to understand the relationship between thermodynamics and geometries. His approach
starts from formulating matters that build up a black hole as matter fields and consider
quantum field theory under the influence of classical black holes. In mid-70s, he discussed in
great details about this semi-classical system, and found that black holes can radiate, which
is now known as the Hawking radiation [1,13]. These radiation not only can have back-

reactions to the background geometries, but it also makes black holes can have influence on
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regions outside horizon, resulting a way to properly define temperature of black holes. Based
on the result, Hawking further went on to complete the formulation of black hole mechanics.
In his calculation, he also showed the formula for entropy S to be S = A/4, which is known
as Bekenstein-Hawking entropy.

Since then, physicists have been conducting extensive research on the quantum nature
of black holes using various approaches, such as quantum field theory in curved spacetime
and semi-classical gravity [19].

The first one deals with how fields can be quantized in curved background. Researchers
discussed a variety of phenomenons with this setup. Casimir effects from boundaries and
topology [20-26], and Hawking radiation of black holes [1,13,27-30] are some of the examples
that were discussed.

The second one takes a step further and considers the back-reactions of the quantum
effects on background geometries. In this case, since the background is not quantized,
the back-reactions from quantum fields on background geometries should be evaluated as
their expectation values. However, these expectation values can be divergent, meaning that
regularizing them becomes important. Adiabatic [31-34], “n-wave” [35-37], and zeta func-
tion [38-41] regularizations are some of the well-developed schemes. Despite the existence of
different schemes, Wald showed the eventual results is independent of regularization [42,43].

To sum up, in semi-classical gravity, solving semi-classical Einstein equation (1.0.4) is key
to make the whole theory self-consistent. An interesting example is the KMY model [11].
They discuss from formation to evaporation of a black hole. Surprisingly, they find that
throughout the process, neither horizons nor singularities appear, and the static solution
exists, which implies thermodynamics still applies. That is an example to fix the problem
we mentioned in the first paragraph of this chapter! Due to its robust correctness in field

theoretics, it catches some eyes, and several follow-up works are done [6-10,12,44-46].
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Chapter 3

Equation of Motion and Constraints

In this chapter, we are going to write down our equation of motion, and physical constraints.

3.1 Equation of Motion

In this section, we are going to write down the equation of motion with 4 dimensional
spherically symmetric static metric. The general form of the time-independent metric is as

mentioned in Eq. (1.0.3), and for convenient we state it here again:

r

1
ds? = —eAM (1 - @) dt® + 1—a(r>d7”2 + r2d€Qy, (3.1.1)

r

where a(r) can be interpreted up to a proportional constant as mass, M(r), enclosed in a

sphere of raidus r centered at origin [47]:

M(r) = gg]\)[ = 41 /07" drr® (=T"(r)) . (3.1.2)
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Note again that since we are connecting to external Schwarzschild metric, not asymptotic

A(") a5 an additional factor.

flat at infinity, we, in general, have e
Next, we set up the semi-classical Einstein equation with conformal matter field in 4
dimension. Since the quantum effect is on the trace of energy momentum tensor, we pick up

only the trace equation, which takes the form

Gl = 8nGn (Y| T, |¢)

Ten

= 87TGNh(Cw.F — CLWg) (313)

=~vF —ag

where F is the square of Weyl tensor, G is the Gauss-Bonnet term, which are

1
F = CoprsC = Rops R — 2R, 5 R + §R2,

G = RupsR*° — AR,3 R + R?,

and a and v are defined as (87lp*h)aw and (87lp?)cy !, respectively. Note that Eq. (3.1.3)
is independent of state |¢)), so we are not concentrating on any specific field configurations
up to this point.

Here we have one constraint from the trace equation, but 2 functions, a(r) and A(r), to
be solved. Hence, we are going to introduce an equation of state to complete the setup in
chapter 4. In the chapter, we discuss suitable choice of equation of state, rather using the
naive isotropic assumption. After adopting an additional constraint, we then can solve the

whole setup without ambiguity.

1p? = Gnh

10
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3.2 Constraints on Parameters

In this section, we are going to consider the physical constraints of the parameters in our
system.
First, ay and ¢y depend on the content of matter fields. In free theory, they are

aw (ns + 11ns + 62n,),

= 57602

Cw (ns + 6ng + 12n,),

= 102072

where ng, ny, and n, are the number of scalar, fermion, and vector fields, respectively [2,48].

Their ratio is also bounded as

w

1
<

< _ , (3.2.1)
Cw

1

Wl =
=2 |Q
oo

where the left bound is obtained from by taking n, — oo, and the right one comes from
the limit n, — oco. Interestingly, this bound is still valid even when interactions are intro-
duced [49].

Second, since we consider only unitrary fields, ay, cy (or «, ) are assumed to be positive.

To elaborate, we have

o,y >0, (3.2.2)
a,v~ NhGxn = Nlp?, (3.2.3)

<= (3.2.4)

11
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3.3 Constraints on a(r)

Since our setup is designed to solve the region where r < rg,. and connect to the external
Schwarzschild metric at r = rg,,, a(r) here is defined within r < rg,,. and must connect, at
least, continuous at junction point r = rg,.. That is to ask a(rg,) = ag, where aq is the
ADM mass of the black hole.

Speaking of the singularity of the system in terms of a(r), the naive expectation will be
that a(r) itself is singular, which means that a — +o00. However, the system singularity can
be checked with curvature invariants. Take scalar curvature for example, it has the form

R 2ra’(r) +d'(r) 3rA'(r) +4) + (a(r) — 4r)A'(r) — r(r — a(r)) (24" (r) + A'(r)?)
2r2 '

(3.3.1)

First of all, we have an expected singularity at » = 0, which is the same as with the
Schwarzschild metric. The news here is the singularity also depends on A’(r) and its deriva-
tive. As we will see in the next chapter, all three kinds of equations of state we considered
have an expression A’(r) ~ (r — a(r))™™ where m is some positive integer. This makes the

curvature invariants go to +00, making another singularity, a(r) = r, of our system.

a(r

200+

100 -

50+~

L L L L r
50 100 150 200

Figure 3.1: Graph to script

12
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To sum up, when we are at r > rg,,., ag is less than r, since we are outside horizon. That
will look something like the blue line in Fig. (3.1). However, when we are at r < r,, region,
the value of a(r) can never grow beyond a = r, which is the limit where we start to have
event horizon. In fact, when a(r), or naively just mass, grows to this limit, the curvature
becomes singular, suggesting that our system is proposing a firewall paradigm. Also, since
a(r) represents cumulative mass from origin to r, its value is expected to be positive. Hence,
the singularity of our system in terms of a(r) should be a = 0 and a = r. That is, the allowed

region is the triangle region in between the orange dotted line and a = 0 in Fig. (3.1).

13
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Chapter 4

Equation of State and Asymptotic

Solutions

Up to now we have 2 unknown functions, A(r) and a(r), to solve but with only 1 constraint
Eq. (3.1.3). A common treatment is to introduce an equation of state to drop the additional
degrees of freedom. The physical observables we can use to introduce equation of state are
the energy density and pressures. These are the components on the trace of Einstein tensor
(through semi-classical Einstein tensor), that is, —G,!, G,", and G, for energy density,
radial pressure, and tangential pressure, respectively. By assuming a proportional relation

among them, we can obtain a one-parameter equation of state, which are

G, = u G, (4.0.1)
—G'y = wyGY, (4.0.2)
—G' = wsG,. (4.0.3)

In the following sections, we are going to talk about the physical asymptotic solutions at

14

doi:10.6342/NTU202302515



large r for each case. That is to consider the ansatz
a(r) € span{r® vkt F72 ook € R}, (4.0.4)

where we assume 7 is the leading order of the series of solutions. Due to the above assump-
tion of ansatz, we should first find the leading order k. That can be done through solving
the equation of motion for a(r) in each cases at leading order in large r limit. After finding
the leading order individually, we then complete the asymptotic series.

Next we discuss the principle to select form of equation of state.

4.1 Eq. (4.0.1) and its Asymptotic Solutions

By combining Eq. (3.1.3) with the equation of state, Eq. (4.0.1), we obtain the equation of
motion for a(r). The general case is, however, lengthy and not informative, so we omit it
here. We, in the following, only mention main results derived from this procedure.

First of all, from Eq. (4.0.1), we obtain an equation of a(r), A'(r), and A”(r). That is,

A/(r) = — 10 (4.1.1)

© 2rwy(r — a(r))

where

Q1(r) =2rwya”(r) + d'(r) 3rw A'(r) — 4)

+ A'(r) (rwy(a(r) = r)A'(r) — (w1 + 4) a(r) — 2r (wy — 2)).

This shows A”(r) ~ (r —a(r))~. One can also check the form of A’(r) explicitly with the

setup, and find that A’(r) ~ (r—a(r))™™ where m is some positive integer. Hence, the claim

15
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made in Sec. 3.3 about the singularity structure in a(r) is true.
Next, we focus on the asymptotic solutions. With Eqgs. (1.0.4) and (4.0.1), we can write
down the differential equation that a(r) must satisfy. Then, by inserting the ansatz (4.0.4)

to the differential equation for a(r) at r > [p, we solve it at leading order (of r). From

the differential equation, we select out all possible leading orders at large r. They are 74,

,,,3k-i—37 T2k+6 k+7

, and 7" and we plot their powers with respect to k in Fig. 4.1 There are two

Power of Possible Leading Terms

15t /
i — 4k
10} 3k+3
2k+6
5 — K+7
R

Figure 4.1: Plot for power of possible leading terms with respect to k£ with equation of state,
Eq. (4.0.1)

ways for these leading terms (dependent on k) to vanish. One is to have the coefficient of
a single leading term vanish, and the other one is to have multiple leading terms to cancel
each other. From Fig. 4.1, we can see that single leading term to vanish, we will separate the
cases into 3: k < 1,1 < k < 3, and k£ > 3. However, it can happen only when £ = 0 or k£ > 3.

k+7 with coefficient

Here we provide a sufficient proof: When k < 1, the leading power is r
27k(k — 3). It vanishes when k& = 0,3, where only k£ = 0 is in the range. When 1 < k < 3,
the leading power is r?**¢ with coefficient —9k(k — 15). It vanishes when k = 0,15, where
nothing is in the range. Therefore, single leading term cancellation can only happen when

k =0 and k > 3. Since k > 3 can only hit singularities (as mentioned in Sec. 3.3) quickly,

we simply discard this case, leaving only £ = 0. As for multiple leading terms cancellation,
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it can happen only when k£ = 1, 3, see Fig. 4.1. For the same reason, we only consider k£ = 1
case.

Next, we can find the asymptotic solutions starting from leading order £ = 0,1. These
series are

Ay =) 3¢5 (wi +2) (a—)

_ -5
ao,(3.0.1) (1) =co + 3 T (10w, + 4) +O(r™), (4.1.2)

o (w +2)
Cwy (wy +3) + 3
4(wy + 1) (w? +wy + 1) 2aw, (wy +2) — 3y (wy; + 1) 2)

N (wl (wl + 3) + 3) 2 (wl (wl (wl —+ 2) + 3) + 3) r + O(T_S), (413)

a1,(3.0.1) (7”)

where ¢j is some real constant to be fixed.

4.2 Eq. (4.0.2) and its Asymptotic Solutions

In this section, we are going to proceed with the same procedure as in Sec. 4.1.

First, we verify the claim in Sec. 3.3. The form of A”(r) is

41(r) = ——2lr) (4.2.1)

© 2rwy(r — a(r))

where
Qa(r) = 2rwaad” (r) + d'(r) (Brwa A'(r) + 4) — w A'(r) (r(r — a(r))A'(r) + a(r) + 2r) .
Again, A”(r) ~ (r—a(r))~', and one can check that A’(r) ~ (r—a(r))~™ where m is positive

integer. That proves the statement in Sec. 3.3.

Next, we focus on the asymptotic solutions with Eq. (4.0.2). In this case, we obtain the
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equation of motion for a(r) by inserting Eq. (4.0.2) into Eq. (3.1.3). By assuming Eq. (4.0.4),

k+19’ r

we obtain all possible the leading order of equation of motion for a(r). They are r Zk+18

T3k+15, 7,4k+12, T5k+9 6k+6

,and r , and we plot their power with respect to k in Fig. 4.2.

Power of Possible Leading Terms

30F
; — k+19
25;— 2k+18
20{__________,,___———! 3k+15
} — 4 k+12
156
[ — 5k+9
10¢ — B6k+6
ek

Figure 4.2: Plot for power of possible leading terms with respect to k with equation of state,
Eq. (4.0.2)

For single leading term cancellation, we again split the case into 3: £k < 1,1 < k < 3,
and k > 3. We again only focus on the two cases where k < 3, since k > 3 is singular. When

k < 1, we have r*19 to be the leading term with coefficient proportional to k (w — k (w — 2)).

w

This vanishes when & = 0, —%5,

which clearly captures & = 0. For k = —“5 within k < 1,
we can fix the range as w < 2. At the same time, since w should be positive!, we can fix
the range of w as 0 < w < 2. With this range of w, the value of k is negative. Since energy
density is proportional to a/(r), the asymptotic solution of this kind must describe negative
energy density, creating instability, and therefore, we discard this case. When 1 < k < 3, we
have the leading term with coefficient to be proportional to k (k (w — 2) + w — 2w?) r2k+18,
Then its coefficient vanishes at £ = 0, (2 + ﬁ) w. k = 0 does not fit in this case, and one

can check neither does k = (2 + %) w. Hence, up to now we only have candidate k£ = 0.

After the single leading term case, we can read of from Fig. 4.2 that the cancellation

!Otherwise, between energy density and tangential pressure, there must be one to be negative, creating
instability to the system.
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among multiple leading terms happens at k = 1,3. Again, since k = 3 is singular, we keep

only £ = 1, making the physical candidates k£ = 0,1 only, just like in Sec. 4.1.

Sagwa(y — @)  3agws (2wy — 1) (a — )
3 (2wy — 3) 2rt (2wy — 3) (bwg — 8)
w? —w + 1

4(w —2)(w — Dw (3y(w — 1)? = 2a(w — 2)w)
(w—1Dw+ 1) (w((w—4Hw+T7) = 3)r

ao,(3.02) (1) =co + +0(r™), (4.2.2)

a1,(3.o.2)(7“) =

+O(r ), (4.2.3)

where, again, cq is some real parameter to be fixed.

4.3 Eq. (4.0.3) and its Asymptotic Solutions

In this section, we proceed with equation of state Eq. (4.0.3) and the same procedure as in
Sec. 4.1.
We first prove the claim stated in Sec. 3.3. A'(r) takes the form
2a/(r)

A) = oy (4.3.1)

In this case, we have A'(r) ~ (r — a(r))™!, implying A”(r) ~ (r — a(r))~2. Since all three
cases have (r — a(r)) in the denominator of A’(r) and A”(r), the singular structure of our
system in terms of a(r) is as claimed in Sec. 3.3.

The asymptotic solutions can also be obtained from the same procedure. By inserting
Eq. (4.0.3) to Eq. (3.1.3) with ansatz Eq. (4.0.4), we have the possible leading order terms:

l<:-l—57 T2k+4, T’Sk+3

r . and 7** and their powers are plotted with respect to &k in Fig. 4.3.

Then, we again consider conditions when single and multiple leading terms vanishes.
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Power of Possible Leading Terms

15+

I — k+5
10} 2k+4
I 3k+3
s ——" — 4k

Figure 4.3: Plot for power of possible leading terms with respect to k with equation of state,

Eq. (4.0.3)

Starting with single leading term, we have three possible domains of k: £ < 1, 1 < k < 3,

and k > 3. We will only focus on the first two as the third one is identified as singular.
When k < 1, the leading term is r**® with coefficient proportional to k(k — ws). The

coefficient vanishes when k£ = 0, w3. Here we pick up kK = 0. For k£ = w3 < 1, as we will see

in the next subsection, it predicts a velocity field of the corresponding matter field exceed

the speed of light, so we do not consider it in the following discussion. When 1 < k < 3,

3k+3 w3 (1+3ws)
w.

—7), which vanishes

the leading term is r with coefficient proportional to k(k —

at k = 0, % One can check that neither do these two possibility have values in
1 < k < 3. Hence, we only pick up £ = 0 from single leading term cancellation. When

k = 1,3, we can have cancellation among multiple leading terms. Since k = 3 is singular,

we, overall, only focus on £ =0, 1.
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The corresponding asymptotic solutions are

oy (r) =r — 3?737“ + 2 lnla +9?717; 2) = 6am) | o), (4.3.3)
Jotovety oy (n=Dn 2(n —1)’n(3y — 2c(2 — 1)) 3
w09 ) =0 1 G g G - @— w1y T OV 43

where ¢y is some real parameter to be fixed, and we switch the proportional constant from

ws to 7 such that ws = 371 (or n = j;”fl), that is
Gt =1 g, (4.3.5)

:ﬂ

and we will use this convention through the paper.

4.4 Why Eq. (4.0.3)

Since our setup is to patch the region r < ry,,. ~ ag where ag is the Schwarzschild radius
in 7 > rg, region, we expect a(rs,,) = ap so that we can connect to external Schwarzschild
metric. Since we have identify all the asymptotic solutions in Secs. 4.1- 4.3, and find the only
possible type is those with a(r) ~ r. Note that asymptotic solutions with a(r) = ¢ are as
well options to connect at junction, but they will soon hit a = r singularity; therefore, we do
not consider this type as a possibility here. Therefore, we have to test whether asymptotic
solutions, a(r) = r, in all three case are physical, which means their energy density and
pressures must be positive. In the following, we calculate the diagonal components of Einstein
tensor in each cases, and we will see only the case with Eq. (4.0.3) is physical.

With Eq. (4.0.1), the asymptotic solution with a(r) = r is described by Eq. (4.1.3) with
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w; = —1. The form of a(r) and the diagonal components of the corresponding Einstein

tensor are

1602 512a° e
alry=r— e O(r™"), (4.4.1)
1 4802 256003 _
Gl = = + : + - +O0(r 19, (4.4.2)
. 1 8a 1440 128a*(105c + 87) 10
0= - - T LRI o,
1 8a  144a*  128a%(105a + 87)
o _ ~10
G 0 — ﬁ + ﬁ 7"6 + 37"8 —|— O(’I“ ) (444)

From the expression, we can find two things. First, at junction position r = r,,, we have

1602
Qg = CL(Tsur) = Tsur — a (445)
We, therefore, can find the size of the inner region as
1602
sur ~ a9 446
r ag + CL03 ( )

suggesting rg,, > ag. Second, the radial pressure, G",, is negative, so we should discard this
case.
With Eq. (4.0.2), the asymptotic solution with a(r) = r is described by Eq. (4.2.3) with

wy = 1. The form of a(r) and the diagonal components of the corresponding Einstein tensor
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are

afr) =r - 28 B 06, (44.7)
o g, o
L ) (14.9)
R (4.4.10)

which is very similar to the case with Eq. (4.0.1), and the difference comes in from O(r~?)

in a(r). Again, from the same argument as above,

162
CL03

Tour = Qg + > ag, (4.4.11)

and since its radial pressure is negative, we discard this case.
However, with Eq. (4.0.3), the asymptotic solution with a(r) & r is described by Eq. (4.3.3).

The form of a(r) and the diagonal components of its Einstein tensor are

ZA (v(n(n +6) = 2) — 6an?)

- -5
a(r) =T 3n*r Intr3 T O(T )’ <4'4'12>
1 _4 r 2— n 1 —4 0 3 -2
_Gtt:ﬁ“‘O(r )a GT:Tﬁ+O(T )7 G 9:%—{—0(7“ ) (4413)
In this case,
2y

T sur ~ Qg + (4414)

3nao’
and all physical quantities are positive.
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Overall, from elimination due to physical constraints (positive energy density and positive
pressure), we are left with only one option: Eq. (4.0.3).

After we see Eq. (4.0.3) is the equation of state to choose, we would like to note the
problem remaining from previous subsection. That is, when k& < 1, single leading term
cancellation can happen when k£ = w3 < 1. It seems fine, until we consider consistency
on Eq. (4.4.12) inside metric. After these inputs are inserted, we can check the causality
condition of the matter fields. That means that the speed of these matter fields at classical

level cannot exceed the speed of light in local Lorentz frame. The speed takes the form

dl

oo 4.4.15
o n, ( )

which implies that a physical theory can only have 7 in between 1 and 2. After we translate
this range into w3, it demands w3 > 1, and that is a contraction. Hence we do not have new

physical asymptotic solutions in that case.

4.5 The a(r)-Equation

After using Eq. (4.0.3), we can eliminate one functional degree of freedom (A(r)) in the
equation of motion Eq. (3.1.3). This becomes an equation of motion for a(r) and we call it

the a(r)-equation. It takes the form

———————a"(r)*> + C1(r)d" (r) 4+ Ca(r) = 0, (4.5.1)

24

doi:10.6342/NTU202302515



where

_ Qu(r)
a0 =3 =gt —
r) = 7(7] — 2) a (r)4 Q2(T) d ()3
“0) =gt a5 et —atyr
Q?’(r) (1,(7">2 . Q4(T)

and

Q1(r) =(n —2)r*d'(r)*(2y(n — 2)) + nra’ (r)(2y(n — 2)(4n — 5)a(r) — 8y(n — 2)(n — 1)r)
+3n°ra(r) (—4a(n — 2) + 4y(n — 2) — ((n — 2)r*))
+3n’a(r)*(4o(n — 2) — 4y(n — 2))

3Py — 2)r?,

Qa(r) =8ry(n —2)(n — 1) — 2(n — 2)a(r)y(4n — 5),

Qs(r) =ra(r) (2n(6a(5 —2n) 4+ 2v(8n — 21)) — 24a + 64y + 3(n — 2)7"2>
+a(r)’(12a(n = 2)(n — 1) + 7(4(13 — 4n)n — 49))

+1? (6n(2a(n — 2)) = 16v(n = 1)* = 3(n — 2)r*) ,
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Q4(r) =a(r) (m(r) (4n(—8c + 8y) + 36 — 36 + (2n — 1)1?)
+ 4a(r)*(a(4n — 5) — 40y + 57) + (3 — 4n)r
+2r%(8au(n — 1) — Sny + 87)) +2(n—1)r°.

This is a singular equation, since the power of highest order derivative term is not 1. To

make it non-singular, we solve for a”(r) algebraically, and find 2 branches of equations:

a’(r) — 1 r 32 (r — a(r 5(r)) =
") = e ey O E = a ) VED) =0 (152

with

Fi(r) =—=2v(2—n)r’d(r)?

= 2ynr ((5—4n)a(r) +4(n—1)r)a'(r)

+ 307 (r —a(r)) (4 (y — @) a(r) +r*) (4.5.3)
Fo(r) = =712y (n—1)r'd(r)

—48ay (2 —n)r?d (r)?

+ 99 (8 (a — ) a(r) (2aa(r) — r®) +r%), (4.5.4)

where we, for simplicity, call the +/— one +/— branch equation.
In chapter 5, we are going to analyze these equations in details and extract physical

picture of black holes in chapter 6.
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4.6 Brief Discussion on Equation of State and Slope-1
Asymptotic Solution

So far, we have been assuming conformal symmetry and equation of state, and here we are
going to discuss what we have found.

First of all, the usage of equation of state implicitly assumes the mean free path of the
particle in the region is small. That means, in principle, we can only apply it to regions with
high energy density.

Meanwhile, we have considered 3 different kinds of equations of state in our setup, and
all of them seems to suggest 2 types of asymptotic behaviors. They are Schwarzschild-like
(O(r?)) and linear one (O(r)).

As we have calculated the energy density (~ —G%;), we can argue the latter is totally
fine. The problem is the former. It has low energy density, but always appears. A possible
implication is that in regions with low energy densities, Schwarzschild metric can be used for
approximation. Hence, in principle, we shall use Schwarzschild metric to represent those low
energy density regions; however, since we know our Schwarzschild-like solution are the same
as that of Schwarzschild at leading order, we still use the solution we got, and in chapter 5,
we justify this movement numerically.

Note that this can be researched in more details. After finding the correct equation of
state, or other constraint, one can fix this part of the model.

Second, regarding the linear asymptotic solutions with slope 1 (see Sec. 4.4), they are all

non-perturbative results. That means the metric is singular at A — 0 limit, since their g,
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components take the form

1 1
g = 2 T (4.6.1)

T

where k = 1 for equation of state (4.0.3), k = 3 for equations of state (4.0.1) and (4.0.2),
and h comes from « and 7. Also, independent of equations of state, they all predict rg,, to
be larger than ag, where ag is the ADM mass of the black hole. Even though only one of
them has all positive energy density and pressures, they all predict horizonless “black holes”.
That means there are extra structure around horizon, in contrast to the classical description.

In other words, black holes are NOT just empty holes.
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Chapter 5

Structure of Solution Space of the

a(r)-Equation

We have established the reasoning of our setup including the usage of equation of state. In
this chapter, we are going to focus on solving the a(r)-equation Eq. (4.5.1) asymptotically.
In Sec. 5.1, for completeness, we write the asymptotic solutions again with one additional
case not mentioned above. Even though it is nonphysical due to its large negative energy
density, it shows an example of why we did not discuss singular solutions in chapter 4.
Beyond the asymptotic solutions discovered in chapter 4, we as well analyze the linearized

equation around each asymptotic solution in Sec. 5.2. That is, with assumption:

a(r) = aasymp(r)(l +€D(r)),

we solve the equation up to O(e) for D(r) given an aqsymy(r). The solution D(r) tells us
how the difference between true solution a(r) and asymptotic solution Ggsym,(r) varies as

r increases. When the difference is small, D(r) provides qualitative information. However,
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the difference may be large, and thus for completeness and rigor, we check the full equation,
including all orders of ¢, numerically in Sec. 5.3.
Throughout the procedure, we can extract all the desired information, that is, physical

solutions allowed by both branches in Eq. (4.5.2).

5.1 Asymptotic Solutions

With the same procedure mentioned in Sec. 4.3, we can find three physical asymptotic
solutions and one nonphysical one, where the nonphysical one was not mentioned previously.

Note that we discuss the physical asymptotic solutions in Sec. 5.1.1.

Physical Asymptotic Solutions

The physical ones are the same as those in Sec. 4.3. For convenience, we summarize them here
again each with one additional higher order term and a new name. Also, the corresponding

leading behaviors of metrics, Einstein tensor, and Curvature invariants are summarized.
Low Density Asymptotic Solution: ag(r)
Here we summarize quantities regarding low density asymptotic solution below. The form

of a(r) is

2cin(y — a) 3cgn(y — a)

(3—n)r3 ' 2(8—3n)(3 —n)rt +0(r™), (5.1.1)

CLS<T) =Cp +
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where ¢ is a free parameter to be fixed. The leading behavior (r > lp) of metric is

— 2 (a—7)c 2
r —n)r
92 _ 2
L (12 2la =)
ro @B

= (5.1.2)
) dr? +r*dQ?,

where ¢4 is determined by Eq. (4.3.1), and the corresponding energy density, pressures,

and curvature invariants
o, (e = )e”
B =nrt
el :6(2 - 77)(a - 7)602
' B=mrt
qr, — _ 22— ne — v’
(3 —mn)r® ’

(5.1.3)

and

12(a — )2 _
,_T2(57° =18y +18) (a — 7)*c 13
R;LVRM = (3 — 77)27“12 + O(T ); (514)
12¢y? N 48(6 — 5n) (o — )<
r6 (3 —mn)r?

R:

RHvab —

Ryvas +0(r ).

Medium Density Asymptotic Solutions: a,(r)

Here we summarize quantities regarding moderate density asymptotic solution below. The

form of a(r) is

o (r) == 2(n = 1)*n(3y = 2a(2 = n)n)
T =D+l (0= Dn+1)2G = (2 -0+ 1)r

+0(r ). (5.1.5)
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The leading behavior (r > lp) of metric is

1 2(77_1)
dﬁ%_$f?17<§) dt* + (" —n + Ddr® + r*dQ?, (5.1.6)
- 0

with corresponding energy density, pressures, and curvature invariants

ot (n—1)n

C oy
r_ 2-nh-1)

== T (5.1.7)
0 (n—1)?

S e FEA

and

+0(r™),
2(n —1)*(2n° — 4n + 3) 6
R, R" = +O(r9),
” P —n 17 (r™) (5.1.8)
—1)2(n2 -2
Ruww}ywa5::807 )= (n ”'%3)4-cxr—%

(12 =n+1)"r
High Density Asymptotic Solutions: age,(r)

Here we summarize quantities regarding high density asymptotic solution below. The form

of a(r) is

2y | 4y (y(n(n+6) —2) — 6an?) 5
Agen (1) =T — S + 9rirs +O(r™). (5.1.9)
The leading behavior (r > [p) of metric is
2 2y sw? o, 30T, o
ds* ~ — e dt* + ——dr® + r°dQ°, (5.1.10)
3n?r? 2y
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with corresponding energy density, pressures, and curvature invariants

-G = 2 +0(r™),
G" = 2;—”712 +0(r™), (5.1.11)
G% = % +0(r™?),
and
R= - +0(r7?),
R, R" = 2%2 +O(r™?), (5.1.12)
RuapRM"P = % +0(r ).

Nonphysical but Interesting Asymptotic Solution
Negative Energy Density Asymptotic Solution a,,(r)

This asymptotic solution is not mentioned in Sec. 4.3, since it is nonphysical and do not
affect the argument in fixing equation of state. Here, we take it as an example of singular
behaviors, and discuss in Sec. 5.1.1 why we do not include them in our physical solutions.
This series stems from the other case of multiple leading term cancellation, which has leading
order 73, see Sec. 4.3.

Here we summarize its details below. The form of a(r) is

_ n* (2n° —4n+3)r’ Pa(r) 1
(neg (1) = 20— 3) ol =D — =3 T par) T O(r™), (5.1.13)
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where

pa(r) =3r (20m* + 7 (40° — 197° + 241 — 9))

pa(r) =n(2an (n° — 8n* + 157 — 9)) + v (4n* + 9n*> — 409> + 42 — 9) .

The leading behavior (r > lp) of metric is

ds® ~ — (1 — Kr?) (:ﬂ—()); dt?* + (1 — Kr?) ™" dr? + r2dQ?, (5.1.14)
where
2
n°(2(2 —n)n—3)
K= , 5.1.15
2B ) 2oy — L+ 2B 1) (5:1.15)

with corresponding energy density, pressures, and curvature invariants

3n? (2n* — 4n+3)
2(3—=mn) 2a(n—1)n*+~(3—n))
s 3n@2—mn)2n* —4n+3) 2
= S E ) Gl DE t G O (5-1.16)
3((* =3n+3) (20" —4n+3))

—Gy = +0(r),

o _ ~
and
_ 3(2n% —4n+ 3)2 -
= (3—n) 2a(n—1)n2+~(3—1n)) +0(r—),
Ry = L2 O~ 0t Y +0(r™?) (5.1.17)
" 23— )2 (v(3 —n) + 2a(n — 1)n?)? )
P T 1 it s 3" (20! = 80+ 2402 =360 4+27) )

(3—n)2(v(3—1n) +2a(n — 1)n2)°
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5.1.1 Brief Discussion on the Asymptotic Solutions

Before proceeding to the next section, we first understand these asymptotic solutions better
with a brief discussion here.

Regarding physical cases, we can classify them in terms of their curvature invariants,
which are proportional to energy density. From the highest one to the lowest one, we
have agen(r), a,(r), and then ag(r), so they have their names. Among them, the age,(r)

asymptotic solution is the most interesting, since its curvature is constant and near Planckian

1

m), as we read off from the ~

for normal sized N. It has curvature invariants of order O(
in the denominator. When we consider large N limit, or semi-classical limit, those curvature
invariants are no longer Planckian, and therefore, our assumption still holds.

Note that the first two cases, ag(r) and a,(r), are still finite at # — 0 limit, meaning
that their classical descriptions exist. However, the latter two cases, age,(r) and aye,(r),
are singular at h — 0 limit. That suggests they exist due to quantum effects, and are
non-perturbative in A.

The reason why Eq. (5.1.13) is named nonphysical is because within the physical domain
of 1, the value of K in Eq. (5.1.15) is always negative, making the mass given in Eq. (3.1.2)
always negative. That means a(r) < 0 which violates the physical conditions mentioned in

Sec. 3.3.

In the following, we are going to solely focus on the physical ones.

5.2 Linearized Equations
In this section, we focus on the true solutions that are near the physical asymptotic solutions,
which are summarized in Sec. 5.1. That means we are going to substitute in to the a(r)-
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equation Eq. (4.5.1) the ansatz

a(r) = Gasymp(r) + €f(r), (5.2.1)

where f(1) = @asymp(r)D(r), and solve it up to O(e), which are linearized differential equa-
tions. Note that in the following, we use the same subscript to denote which asymptotic
solution we are expanding around. For example, differential equation of fg(r) is expanded
around ag(r).

The following are the equation:

) = ) =0 (5:2:2)
(2 — -+ 1) fyr =T 202D o
5.2.3
nn—1)02n—1)(n> —n+1)
+ (2 —n)r? fn<7’) =0
322 =) 5y 2y A=) 210 B
16”)/2(2 — 7]) den ( ) 32+3 ( )fden ( ) 64~3 ( )fden ( ) =0, (5.2.4)

where the bar in the last equation is to emphasize the derivative is # not %. These equation

can be solved as follows.
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fs-equation

Eq. (5.2.2) can be rewritten as

2(n — 1))
= (D -2 Dfs(r), 5.2.5
(-5 Pty (5:2:9)
where D = %. The equation then can be solved by hand in this form from the left-most

operator, <D — ?é:;g), to the right. Then we obtain

fs(r) e span{l,rﬁ}. (5.2.6)

Jy-equation

k

For Eq. (5.2.3), we observe that it can be solved with power ansatz, that is, f(r) = r", to
obtain characteristic equation, and solve for k.
The form of the characteristic equation is
2 -V —n+1),  nn-1@2n—1) (" —n+1)
— 1) k(k—1 k =0, (5.2.7
(* —n+1)k(k—1)+ . + TR , (5.2.7)
which is just a quadratic equation in k, and the solution is
1 24
k==(2—n+4/I?*+——+16). 5.2.8
2( n\/n+n_2+) (5.2.8)

Hence the general solution for f,(r) is

fn(r) € span{ré(%ni\/ o+ 72 +16) } (5.2.9)
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faen-equation

The f4., case is the easiest one to solve, since it can directly be solved with the ansatz for

characteristic equation, fue,(t) = e, of Eq. (5.2.4). The solutions are

3n 3

§= o — . (5.2.10)
2y 4v(2 —n)
Hence,
_ 3n 3n
faen(r) € span{e st g = 2 —} (5.2.11)
2y 4v(2 —n)

Summary of Linearized Equations

Before proceeding, we give a short summary to results obtained int this section. As men-

tioned in the beginning of the chapter, we are measuring the difference between asymptotic

f(r)

Gasymyp(r)

solutions to the true solutions with D(r) = In the following, when we mention
difference increases as r grows, it means D(r) increases as r grows given the corresponding
asymptotic solution.

First, we talk about the ag case. Since fs(r) is some function spanned by 1 and rﬁ,
the difference increases as r grows. That means ag(r) is not a stable fixed point in as r
increases in the phase space of the — branch equation. Note that even though there is some
ambiguity at O(e) level that whether the basis 1 creates instability in the phase space, we
can check it numerically in Sec. 5.3. It turns out it is indeed creating instability.

Next, we focus on a, case. Within the domain of 7 (see Sec. 3.2, both of the bases,
T%@_ni\/ 9"2+%+16), have power smaller than 1, making the form of D(r) ~ r~¢ where ¢
is some positive real number. Hence, given an initial data around a,(r), it will eventually

stabilize at a,(r) as r increases in the phase space of — branch equation.
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The last case is age, (7). It is clear that this represents a fixed point in the phase space of
+ branch equation, since both of fu.,(r)’s bases are Gaussians, forcing D(r) must decrease
as r grows.

These features are going to be summarized graphically in Fig. 5.1 in the next section.

5.3 Structure of Solution Space

After solving the a(r)-equation Eq. (4.5.1) asymptotically in previous sections, here we dis-
cuss the solutions, which are classified by the nearest asymptotic solutions, numerically.
First of all, to solve Eq. (4.5.1) numerically, we have to make the equation itself non-
singular, so that the numerical solver can update the highest order term (in this case, a”(r))
without ambiguity. That means to adopt numerical method we should use Eq. (4.5.2) instead

of Eq. (4.5.1). In Eq. (4.5.2), we have 2 branches of equations, the + and — branch equations.

@)

(a)

€_ branch

€, branch

singularity

ata(r) =r
Figure 5.1: The flowchart representing the structure of the solution space of 3 = 0. Red
(green) arrows represent relevant (irrelevant) directions. The transitions (a) and (b) corre-

spond to Fig.5.2 and Fig.5.3, respectively.
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By substituting the forms of as(r), a,(r), and age,(r) into both equations, we find the first
two satisfy the — branch equation, while the last one solves the + branch equation. Hence we
obtain three blue blobs in Fig. 5.1 and a doubled line separation, which indicates the upper
solutions are obtained from the — branch equation, while the lower one is obtained from the
+ branch equation. Note that the vectors around each solutions, classified by asymptotic
solutions, represents whether an initial data around them will be led toward or away from
the asymptotic behaviors, which are discussed in Sec. 5.2. Red vector means having growing

deviation, while the green one denotes decreasing in deviation.

a(r)

a(r) 1000/

100000 s00]

80000

60000

T

40000

20000

T

L 1 " s " 1 L n n 1 1 s n 1 L 1 n 1 r
20000 40000 60000 80000 100000

Figure 5.2: Transition (a) in Fig. 5.1. Note that orange dotted line represents a = r, and
green dotted line is a,(r).

The remaining tasks are to find where those red vectors go as r increases, and where do
those green vectors comes from in the opposite direction. They are represented by purple lines
connecting among vectors or singularity as shown in Fig. 5.1. For example, the transition
denoted as (a) represents that given an initial data around ag(r) and we evolve it with —
branch equation (denoted around doubled line separation), it will ends up at a,(r). We

give a numerical example of it in Fig. 5.2. Notice that this transition process from ag to
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a, requires a long distance of 7. As for transition (b), the numerical example is shown in
Fig. 5.3. Here we start from larger r with near-ag4.,(r) values, and evolve to smaller r with
+ branch equation. Note that, at smaller r, we hit a = r singularity, so we do not identify it
as Ggen(r). This is checked in Fig. 5.4, where the curvature is singular at small r, not some

constant value as Eq. (5.1.12) suggested. Hence, we complete the flowchart in Fig. 5.1.

RJ-'VﬁUZ

i

ol

o

i

3

w o w W s ow ! “ws wo we w4 we  ms |

Figure 5.3: Transition (b) in Fig. 5.1. Figure 5.4: RFPR,,.5 for Fig. 5.3 di-
Note that orange dotted line represents verges at the point satisfying a(r) = r.

a =r, and green dotted line is a,(r).

Note that it is an illusion from these numerical results that we can only have these 2
types of solutions (Figs. 5.2 and 5.3). Since these are obtained from subjecting to single
branch of equation, we, in fact, still have the freedom to switch to the other branch at any
r, during evolving the data. The resulting solution must as well be a solution to the a(r)-
equation, since the solution satisfies either + or — branch of equation, which are derived
from a(r)-equation! This provides an infinite number of free parameters, and suggesting a

wide varieties of internal geometries given an ADM mass as boundary condition.
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Chapter 6

Internal Geometries and Entropy

In this chapter, we are going to discuss the internal geometries of quantum black holes based

on our analysis in chapter 5 under the criteria mentioned in Secs. 3.2 and 3.3.

6.1 Simplest Internal Structure

To begin with, we construct the simplest possible internal geometry in this section.

As we have discussed in Sec. 3.3, since we expect rg,, &~ ag, the only possible asymptotic
behavior at 7 < 74y 18 @gen(r). That means we must have age, at 7 < 74, and Schwarzschild
at r > g, with suitable junction condition at r = r,,,.!. For other cases, they are far from
the condition to be near a = r, which is the requirement to connect at r = ry,, to external
geometry. At the same time, age,(r) predicts rg, ~ ag + 37722—10 as shown in Eq. (4.4.14),
suggesting a horizonless black hole.

For the simplest possible black hole from what we have so far, it is represented as in

Fig. 6.1. Starting from r > 7., we have Schwarzschild metric with Schwarzschild radius ay.

As we cross r = g, we have a ~ r all the way down to ry & 0 with slope about 0, which

'Here we only assume that they must be continuously connected, and this is some topic for future work.
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a(r)

Qo
- r
To Tsur
Figure 6.1: Plot of a(r) for Fig. 6.2. Note Figure 6.2: The simplest internal
that at r < rg, the metric described by ag, configuration. The darker the (pur-
or well-approximated by Schwarzschild ple) color is, the higher the energy
metric, see Sec. 4.6 for more details. density is.

has the behavior of the lowest point in Fig. 5.3. Then, to avoid hitting singularity, we switch
to — branch equation and connect to ag with ¢y ~ 0, or simply Minkowski metric. This
seemingly extra switching and connection to ag not a, are necessary due to the following
reasons. First, if we do not switch to the other branch of equation at small r, the subleading
term will become large and lead our solution to hit a = r singularity. Next, after switching
to — branch equation, we know from Fig. 5.1, ag(r) is stable in r decreasing direction, while
a,(r) is not. One may argue that we have switch branch at larger ry with slope coinciding
with that of a,. However, this case we will unavoidably require a second (even a third)
switching to prevent singularities. That is because when connecting to a, it will eventually
go to ag at smaller » with ¢y # 0, and hit a = r singularity. To prevent such singular
behavior extra switching is required, and then it is no longer simpler than the case we are
presenting in the first place. Hence, we can argue the solution represented in Fig. 6.1 is the
simplest possible internal structure that is physical (see Sec. 3.3). Note that in configuration
space, it will look something like in Fig. 6.2, where we use darker purple to denote higher

energy density.
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6.2 Internal Structures, Micro-canonical Ensemble, En-
tropy, and Next

In this section, we are going to discuss a more complicated internal structure than the one
mentioned in Sec. 6.1.

As mentioned in Sec. 5.3, the infinite variety of internal structure stems from uncontrolled
switching between different branches of equations. At the same time, we have discussed why
ag is more favorable than a, when switching to — branch in Sec. 6.1. We can conclude that
to construct a general solution to the a(r)-equation Eq. (4.5.1), we can simply consider com-
binations among ag and age,, where ag is nothing more than Schwarzschild (see discussion
in Sec. 4.6. Hence, a more complicated structure can be viewed as inserting vacuum regions
into the simplest internal structure as shown in Fig. 6.1.

In Fig. 6.3, we show examples from the argument above with different number of vacuum
insertion. Interestingly, as the number of substituted vacua (a(r) ~ const.) increases, that is,
starting from the left, center, and then to the right figures, the solution becomes increasingly
closer to the simplest internal structure shown in Fig. 6.1. Hence, we say that the simplest
internal structure shown in Fig. 6.1 can be used to approximate solutions with the most

number of switching.

100 . 100 . 100

40 Rd 40 4 40

20 40 60 80 100 ! 20 40 60 80 100 ! i 20 40 60 80 100 !
Figure 6.3: Examples for different number of vacuum insertions. From left to right, we

increase the number of insertions, and it turns out it is approaching a4e,.
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Entropy

Now, we have the complete picture of how solutions to the a(r)-equation Eq. (4.5.1) look
like. Let’s discuss entropy from this picture.

In analogy to microcanonical ensemble [50], we define every possible internal structure
to be a microstate of our system, and apply the postulate of “equal a priori probabilities”.
Then, to calculate black hole entropy, we first assume the black hole is in equilibrium, that
is, immersing it in a radiation bath of temperature T;.2 Since it is now in equilibrium, we
can calculate macroscopic states from the most probable set in the state space. At the same
time, we know states in the most probable set can be approximated by the simplest internal
structure. Hence, it is reasonable to use the simplest internal structure to estimate entropy
of a black hole.

Since we know the simplest internal structure is filled with highly dense region, agen,
from rg to 4, &~ ag, we can estimate the number of switching with its related results. Due
to the fact that the solutions in the most probable states are well-approximated by agep,
every vacuum insertion can be regarded as small deviation from it. Fortunately, we know
how to describe those small deviations from highly dense regions, that is, to use fg,,! In
Eq. (5.2.11), we know fge, is a function in the span of Gaussians e~ where s = 31, 21

2y 4y(2—n)’

suggesting a natural size of switching to be the width of these Gaussians, that is,

_ 4 82—
a_\/;, T (6.2.1)

3

where o’s are the standard deviation of the Gaussians®. To consider the largest possible

number of switching, we consider distributing the former o, which has smaller value, over

2We don’t specify the actual value for Ty, since it is not affecting our statement.

o p\2
3The standard form for Gaussian distribution is m}%e_%( =) , where p is the mean and o is the
standard deviation.
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region in between rq and rg,,.. Hence, the largest number of switching is

l .
Nmax = e (622)

Omin

where

. [y [&y(2—n)\ |4y
Omin = MIN — | =/ —
3n 3n 3n

Tsur 2
lsize :/ dr < grr‘(r)) = 38% (Tgur _ 7,3)

To

(6.2.3)

is the proper length from r = ry to r = rg,,, and g5 = 4 /3—?}, making

3n? 3
Nmax = < % (Tgur - T%)) < ﬁ)
V (6.2.4)
o 9773 r?ur B T(%
V32 v

Also, consider a double switching structure that is a4, sandwiched by vacua on both sides.
For the matter content of ag.,, this structure has a free choice among N matter fields to
choose from. Therefore, per double switching, we have N bits* of information, making the

total entropy S to be approximately

(6.2.5)

4For example, we label N matter fields from 1 to N, and we use a sequence of 0’s and 1’s of length N to
denote the choice of matter content. That is, 1 represents to select the field, and 0 means not to. Then the
full matter content is described the binary sequence.

46

doi:10.6342/NTU202302515



which suggests an area law for entropy. Note that above we use the fact that ., =~ ao,
ro ~ 0, and v ~ N.

Even though this object we have been discussing is horizonless, it has entropy propor-
tional to area, which is a characteristic of black holes. This means without loss of generality,
we shall identify such objects as black holes.

To brief about this black hole, we state some results we derived related to it. In region
between Schwarzschild radius (ag) and 74, &~ ag + O(ap™"), this type of black hole is filled
with high energy density matter, replacing Schwarzschild radius at r = ag with a surface of
matter at r = rg,,; it has firewall at a = r; This types of horizonless black holes is a totally

quantum object, since it does not exists in A — 0 limit.

Next

After proving this object to be a candidate of the Schwarzschild black hole itself, we can ask
something that we could not ask, or does not make sense, before. That is, “how does the
internal structure evolve with time?”

In this picture, this question is nontrivial. Since the internal metric is not Schwarzschild
metric, so it can have time-dependence. Also, their stability in time still remains unknown,
since we have not discuss any dynamics of the setup. As we know more about the fate of this
type of black hole, we should be able to understand more about other proposals as well. For
example, since firewall is a built-in substructure of this black hole, we can test this proposal
in more details. Also, it should inspire the direction of fuzzball, which suggests building area
law from microstates represented by strings. Thus, in the next chapter, we are going to give
a simple proof in order to suggest the time-dependence is indeed nontrivial, and requires

more research.
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Chapter 7

Time-dependence: A First Leap

In this chapter, we are going to take a first leap to solve the time-dependence of our setup.
That is, we solve the same system, including equation of state Eq. (4.0.3), but this time we

adopt the time-dependent metric, that is,

eA(t,r)

B(t,r)

ds® = — dt* + B(t,r)dr* + r2dQ,. (7.0.1)

After solving a simplified version of the equation, we find it is suggesting the internal geom-
etry, which represents Schwarzschild black hole itself, is time dependent.

In the following, let’s first find the simplified equation, try to solve it, and prove the
above statement.

In general, this is almost an impossible task, due to the nonlinear nature of Einstein

equations. Hence, we are going to consider the following ansatz

a(t,r) = astatic(r) + €b(t, 1), (7.0.2)

where aqsymp(7) is the asymptotic behaviors we obtained in the static analysis, and e here is
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just a small number, which has nothing to do with the former one. We consider this ansatz
and solve the equation up to O(e). That means we solve the time-linearized equation, since
there is not going to be any time-related terms to be mixed®.

The equation, in the canonical form of wave equation, takes the following form,

O(t,s) =v"(t,s) — Uess(s, f(3))v(t, 5), (7.0.3)

where the function b(s) is replaced with a product of 2 functions f(s)v(t,s) to get the

canonical form, s = s(r) is a new coordinate mapped from r with the relation

0s n

— =, /=—DB(r)e = 7.0.4

ar 2 _ n (r)e 2 ) ( )
where A(r), B(r) are obtained from the static result, and the form of f and U, are recorded

in Appendix A. The advantage of this form is the ease of reading of dispersion relation,

meaning after Fourier transforming ¢ and r we have

w? = k? + Ueff, (7.0.5)

where w and k are conjugate to ¢t and r respectively. Since the question we want to answer is
whether the time dependence of the interior geometries is trivial, we can use this dispersion
relation to answer. The idea is simple. For given position r, we can solve for w for all k. If w
turns out to be complex, that means the solution bases responsible for time dependent part
are exponentials, which increases with time exponentially, creating instability to the system.

In practice, since the form of U.s is too complicated, see Appendix A, we cannot do

this qualitatively. Instead, we restore the power of numerical simulations, and solve the

IThat is because the appearance of ¢ in a term of the equation is the same as the order of e. Hence, terms
such as b(t,r)0;b(t,r) is not going to appear in the equation.
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25

20

15

10

1 10 15 20 25 30 35 40

Figure 7.1: a — r plot for the chosen static solution for simulation, which has the form a4,
sandwiched by Schwarzschild metrics, and the switching, or junction, positions are donoted
by the vertical lines at » = 20 and r = 21.6. Note that the window for simulation is set to
be 9 < r < 40.

system under a simple static solution, that is, a high energy density region, described by
Ggen, sandwiched by Schwarzschild metrics, see Fig. 7.1.

For simulation, we also need to supply the initial and boundary conditions for b(¢,r). We
attempt to send a small perturbation into the ag4., region from larger r. Hence, the initial
conditions are set to be Gaussian with center located at r > 21.6 with negative velocities
(0ub(0,7) < 0), see Fig. 7.2 for initial profile for b. For boundary condition, as a trial, we
adopt Dirichlet boundary condition at r = 9,40, the boundary of the solving window. We
summarize the full result in Appendix B. Here we only show one of the time slice in Fig. 7.3

to show there the wavepacket indeed accumulates at the junction, suggesting an instability.
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30

Figure 7.2: Initial profile of b for simulations. The Gaussian is centered at r = 35 with
standard deviation ¢ = 1, and the vertical lines denote the junction positions.

0 1 9 III 3 £

Figure 7.3: After evolving the initial conditions (Fig. 7.2) with the time dependent equation,
we find the wavepacket indeed are trapped at » = 21.6, which is one of the junction positions.
This suggests an instability of junction, and thus it should have nontrivial time dependence.
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Chapter 8

Summary

In this thesis, we have considered Schwarzschild black holes with back-reactions due to
quantum effects. By approximating the matter fields with those with conformal symmetry
at classical level, implying 4 dimensional Weyl anomaly at quantum level, we solve the
semi-classical Einstein equation subjected to a suitable equation of state!.

We first analyze the system with time-independent metric. Through the asymptotic
solutions of this static system, we find a simple classification? of the behavior of solutions.
The behavior with highest energy density, age,, turns out to be the most nontrivial one, and
provides the most information.

First, it cannot be obtained at perturbative (in k) level, so the usual treatment with
perturbation analysis is not good enough to sense this behavior.

Second, it gives a prediction on the size of the region where semi-classical physics cannot
be ignored, meaning where Schwarzschild metric is not good enough. Interestingly, such
region is suggested to be slightly larger than Schwarzschild radius (more precisely, r <

ap + O(ap™t) = reur, where ag is the Schwawrzschild radius), enclosing the black hole itself.

IThis is justified in chapter 4
20nly 3 classes are sufficient: low, medium, high energy densities.
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The extended region from ag is highly dense where the surface is well predicted at r = 7y,
Hence, we derive a horizonless object, inspired from expectation of Schwarzschild black holes.

Third, from the analysis of ag4.,, we derive the entropy of this object follows the entropy
area law. That provides an evidence that this object is a black hole, or more precisely,
Schwarzschild black hole itself.

The calculation on entropy is based on our full understanding of the static solutions.
We find that given the mass of a black hole, its internal geometry is not unique. That
incentivizes us to apply the setup of microcanonical ensemble in statistical mechanics to
calculate entropy. By defining each possible internal geometry as a microstate, we find the
most probable states can be approximated by those with most of the region covered by ager,.
Hence through the characteristic of a4, we predict the area law for entropy. Note that
this picture is very similar to fuzzball with the main difference that we are not considering
microstates from strings but classical geometries.

Now since we can regard Schwarzschild black hole itself as an object without singularities,
we can test whether it is still having no dynamics, that is, always time independent. We
perform an simulation on a simple example to understand the time dependent nature of this
black hole, and the result suggests such object has nontrivial time dependence.

Meanwhile, we find our black hole has firewalls as its substructure internally. Therefore,
by analyzing more about the time dependence of the system, we should gain more inspiration

on firewalls, fuzzballs, and other proposals.

53

doi:10.6342/NTU202302515



Bibliography

[1] S. W. Hawking, Commun. Math. Phys. 43 (1975), 199-220 [erratum: Commun. Math.
Phys. 46 (1976), 206]

[2] N. D. Birrell and P. C. W. Davies, “Quantum Fields in Curved Space,” Cambridge
Univ. Press, 1984

3] L. Parker, Phys. Rev. Lett. 21, 562-564 (1968)

[4] R. M. Wald, “Quantum Field Theory in Curved Space-Time and Black Hole Thermo-

dynamics,” University of Chicago Press
[5] R. M. Wald, “General Relativity,” Chicago Univ. Pr., 1984

[6] H. Kawai and Y. Yokokura, Phys. Rev. D 105, no.4, 045017 (2022) [arXiv:2108.02242
[hep-th]].

[7] H. Kawai and Y. Yokokura, Universe 6, no.6, 77 (2020) [arXiv:2002.10331 [hep-th]].
[8] H. Kawai and Y. Yokokura, Universe 3, no.2, 51 (2017) [arXiv:1701.03455 [hep-th]].

9] H. Kawai and Y. Yokokura, Phys. Rev. D 93, no.4, 044011 (2016) [arXiv:1509.08472
[hep-th]].

o4

doi:10.6342/NTU202302515



[10] H. Kawai and Y. Yokokura, Int. J. Mod. Phys. A 30, 1550091 (2015) [arXiv:1409.5784
[hep-th]].

[11] H. Kawai, Y. Matsuo and Y. Yokokura, Int. J. Mod. Phys. A 28, 1350050 (2013)
[arXiv:1302.4733 [hep-th]].

[12] P. M. Ho, Class. Quant. Grav. 34, no.8, 085006 (2017) [arXiv:1609.05775 [hep-th]].
[13] S. W. Hawking, Nature 248, 30-31 (1974)

[14] S. P. Robinson and F. Wilczek, Phys. Rev. Lett. 95, 011303 (2005) [arXiv:gr-qc/0502074

[gr-qc]].
[15] P. M. Ho, H. Kawai, H. Liao and Y. Yokokura, [arXiv:2307.08569 [hep-th]].
[16] V. Cardoso and P. Pani, Living Rev. Rel. 22, no.1, 4 (2019) [arXiv:1904.05363 [gr-qc]].

[17] S. W. Hawking and G. F. R. Ellis, “The Large Scale Structure of Space-Time,” Cam-

bridge University Press, 2023
[18] J. D. Bekenstein, Lett. Nuovo Cim. 4, 737-740 (1972)

[19] B. L. B. Hu and E. Verdaguer, “Semiclassical and Stochastic Gravity: Quantum Field

Effects on Curved Spacetime,” Cambridge University Press, 2020
[20] S. J. Avis and C. J. Isham, Nucl. Phys. B 156, 441-455 (1979)
[21] B. S. DeWitt, C. F. Hart and C. J. Isham, Physica A 96, no.1-2, 197-211 (1979)
[22] J. S. Dowker and G. Kennedy, J. Phys. A 11, 895 (1978)
(23] E. Elizalde, Int. J. Mod. Phys. A 27, 1260005 (2012) [arXiv:1205.7032 [math-ph]].

[24] L. H. Ford, Phys. Rev. D 14, 3304-3313 (1976)

55

doi:10.6342/NTU202302515



25] L. H. Ford, Phys. Rev. D 11, 3370-3377 (1975)

[26] J. S. Dowker and R. Banach, J. Phys. A 11, 2255 (1978)

[27] W. Israel, Phys. Lett. A 57, 107-110 (1976)

[28] L. Parker, Phys. Rev. D 12, 1519-1525 (1975)

[29] R. M. Wald, Commun. Math. Phys. 45, 9-34 (1975)

[30] J. B. Hartle and S. W. Hawking, Phys. Rev. D 13, 2188-2203 (1976)

[31] L. Parker and S. A. Fulling, Phys. Rev. D 9, 341-354 (1974)

[32] S. A. Fulling and L. Parker, Annals Phys. 87, 176-204 (1974)

[33] S. A. Fulling, L. Parker and B. L. Hu, Phys. Rev. D 10, 3905-3924 (1974)
34] B. L. Hu, Phys. Lett. A 71, 169-173 (1979)

[35] Y. B. Zeldovich and A. A. Starobinsky, Zh. Eksp. Teor. Fiz. 61, 2161-2175 (1971)
[36] B. L. Hu, Phys. Rev. D 18, 4460-4470 (1978)

[37] B. L. Hu, Phys. Rev. D 9, 3263-3281 (1974)

[38] J. S. Dowker and R. Critchley, Phys. Rev. D 13, 3224 (1976)

[39] S. W. Hawking, Commun. Math. Phys. 55, 133 (1977)

[40] E. Elizalde, S. D. Odintsov, A. Romeo, A. A. Bytsenko and S. Zerbini, “Zeta regular-

1zation techniques with applications,” World Scientific Publishing, 1994

[41] D. V. Vassilevich, Phys. Rept. 388, 279-360 (2003) [arXiv:hep-th/0306138 [hep-th]].

56

doi:10.6342/NTU202302515



[42] R. M. Wald, Phys. Rev. D 17, 1477-1484 (1978)
[43] R. M. Wald, Commun. Math. Phys. 54, 1-19 (1977)

[44] P. M. Ho, Y. Matsuo and S. J. Yang, Class. Quant. Grav. 37, no.3, 035002 (2020)
[arXiv:1903.11499 [hep-thl]].

[45] P. M. Ho, Nucl. Phys. B 909, 394-417 (2016) [arXiv:1510.07157 [hep-th]].
[46] P. M. Ho, H. Kawai, H. Liao and Y. Yokokura, [arXiv:2307.08569 [hep-th]].

[47] E. Poisson, “A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics,” Cam-

bridge University Press, 2009
[48] M. J. Duff, J. Phys. A 53, no.30, 301001 (2020) [arXiv:2003.02688 [hep-th]].
[49] D. M. Hofman and J. Maldacena, JHEP 05, 012 (2008) [arXiv:0803.1467 [hep-th]].

[50] R. K. Pathria, “Statistical Mechanics,” Butterworth-Heinemann, 1996

o7

doi:10.6342/NTU202302515



Appendix A

Uey

In this appendix, we give the full form of U.s; mentioned in chapter 7 as a function of r. It

takes the form as follows:
Ueps(r) = 7% (A.0.1)

where

Uepan (1) =1 (r) A" (r) + a12(r) A'(r)? + an (r) A'(r)
+ b31 (T‘)B”/(T)
+ ng(T)B”(T’)S + bQQ(T)BH(T)Q + b21 (’I“)B”(T)
(A.0.2)
+ big(r)B'(r)° + bys(r) B’ (r)® + buu(r) B'(r)*
+ b13(r)B' (1) + bia(r) B'(r)? + by (r) B' (1)

-+ Coo(?“)
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and
Uefﬁd(r) 2167737“23(7”)4
( ~9y(n - 2)(2 — VPB(r)?

+2B(r)? (v(n = 4)rB'(r) = 2 (v(n + 1)* = 3an?)) (A.0.3)
+ 29rB(r) ((77 — 2)nrB"(r) — (2772 +n— 4) B’(T’))

2
+ B(r)’ (4y(n(n +2) + 2) + 31* (r* — 4a)) — 4fyB(r)4> :
where A(r) and B(r) depends on the chosen static solutions, and
ag (1) =4(n — 2)n*r?e™) B(r)?
( —27(n —2)(2n — 1)r*B'(r)”

+2B(r)?* (y(n — 4)rB'(r) = 2 (v(n + 1)* = 3an®)) (A.0.4)

+ 2yrB(r) ((7] —2)nrB"(r) — (2772 +n— 4) B’(r))

+ B(r)? (47(77(77 +2) +2) + 3n? (7’2 — 4&)) — 473(7")4) ,

Cl12(7’) :(7] - 2)7727”26A(T)B(7”)2
( —2y(n = 2)(2n — 1)r*B'(r)*

+2B(r)* (v(n — 4rB'(r) =2 (v(n+1)* = 3an*)) (A.0.5)

+2yrB(r) ((n — 2)nrB"(r) — (20> +n —4) B'(r))

+ B(r)® (4y(n(n +2) +2) + 3n° (r* — 4a)) — 473(7«)4)
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ay(r) = —4(n — 2)7727°2€A(T)B(7’)B/(7”)
( — 29(n— 2)(2n — )r*B ()’

+2B(r)* (y(n = 4)rB'(r) — 2 (v(n + 1)* = 3an?)) (A.0.6)

+ 29rB(r) ((7] —2)nrB"(r) — (2772 +n— 4) B'(r))

+ B(r)? (47(77(7] +2) +2) + 352 (7‘2 — 4a)) — 473(7“)4)

b31(r) =96(n — 2)7757’3€A(T)B(7’)4

(A.0.7)
( —4a(n —2)rB'(r) + B(r)? (3(77 — 1)r* — da(n — 2)) +4a(n — 2)B(r)>

bos(r) = — 327%(n — 2)31° (n + 2)r8eA ) B(r)3 (A.0.8)
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bas(r) = — 16v(n — 2)n*r'e’ ) B(r)?
( — (= 2)*(n(11n +20) — 12)r*B'(r)*
+ B(r)? <24a (> —4) n® +2v (n* — 28y + 48) rB'(r)
+v(n(n(21 —2n(4n +9)) + 88) + 48)> (A.0.9)

—4y(n—2)(n+3) (20* +n—4) rB(r)B'(r)

+2B(r)* (v(n(n(n(4n + 5) +5) = 32) — 48) +3 (* — 4) * (r* — 4a))

+((n —24)n + 48)B(7“)4>
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bai(r) = — 8y B(r)
(472(77 —2)*(2n — 1)(n(5n + 11) — 6)r* B'(r)*
+ 472 (n —2)* (20 +n —4) (n(7Tn +22) — 12)r*B(r)B'(r)*
+4B(r)* (36a2 (n* — 4) n* + 6ay(n(n(—6(n — 1)n — 19) + 64) + 32)7°

+9rB'(r) (= 7(n = 2)(n(n(5n — 1) + 192) — 144)r B'(r)
—v(n(n(n(8n(n(n + 3) + 6) — 187) — 396) + 336) + 576)
+3(n = 2)n°
(167 — 27)5> + 16) 1> — 8a (2 — 11)5° + 16)) ) A0
220+ 120200+ 3) = 3) — 40) ~ 20))
+ B(r)° (472(77 — 4)(n(9n — 40) + 48)rB'(r)
+8y*(n(n(n(n(2n(n +1) +17) 4+ 40) — 22) — 192) — 144)
+12w7( n(20° +n+9) — 16) — 32)

—2a (n (n (49 + 27+ 17) - 16) - 96) )

+9 (772 _ 4) n* (r2 _ 4a)2) + bQLCOmme(r))
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ba1 continue(r) =2B(r)° (67(77 —4)rB'(r) (3y (57° — 16) + 4(n — 2)n* (r* — 4a))
+ 49*(n(n(168 — n(n(4n(n + 3) + 33) — 8)) + 240) +96)
— 39m” (4a(n(n(2(2 ~ 5n)y - 41) + 104) + 96)
+ (100 = 2)n +27) = 56) — 32)r°)
1360 (? —4) 7' (17 — 4a) )
+12y(n — 2)r*B(r)*B'(r)’
(20— 2)(n(199 + 12) - 8)1?
=y =4 —2)(n(n+8) —4)rB'(r)

+ (0 (n (n (612 + 20 — 15) — 87) — 16) +48)>

(A.0.11)
— 2yrB(r)*B'(r)
(—24a(n = 2)(n(n(5n - 28) + 4) + 16)?
+(n—2)rB(r)
(49 (rn(r(7n + 8) + 19) = 111) — 120) + 144)
+3 (70" — 367+ 16) 1 (r — 4a) )
= 29(n+4) (20° + 1 = 4) (n (47 + 27— 17) — 12) )
+ 29B(r)7 (4(n(n(n(5n — 8) — 32) + 16) + 96)
+3(n(5n — 24) + 32)> (> — 4a) )
— 8y*(n(7n — 24) + 24) B(r)®
bis(r) =16(n — 2)*(1(3n + 8) — 4)r’e"") (y — 2yn)? (A.0.12)
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bis(r) = — 3272 (n — 2)%(2n — 1)7’5€A(T)B(7’)

(A.0.13)
((77 —4)(n(n+13) = 6)B(r) =3 (20" +n—4) (n(n +4) — 2))
bis(r) = — 167y(n — 2)T4€A(T)B(T')2
(3 (4a<n ~9)(20 — 1)((0n + 10) — Ay
+ (80 — n(n(n(n(4n(3n + 14) — 43) — 242) + 53) + 200)))
(A.0.14)

+ B(r) (7(17(17(17(77 — 12)n + 653) — 776) + 240)B(r)
+ 2y(n(n(n(n(12n(n + 1) + 67) — 345) — 231) + 688) — 240)

+3(n —2)(2n — 1)(n(3n + 8) — 4)n* (r* — 4«) ))
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bis(r) :16’yr3eA(7")B(r)3
(12a(77 — 2)(n(5n(n(2n — 19) + 6) + 88) — 32)n°

+ B(r) (B(r) (29(n = 9 (n(n(219 ~ 107) + 176) — 80)B(r)

— 29(n(n(n(2n((n — 2)n — 67) + 551) + 140) — 1808) + 960)

= 3(n— 4~ 2)((n — 18)y + 8)n* (* — da) ) (A.0.15)
— 2y(4n" + 4015 + 140n° — 4851 — 92313 + 13401 + 12641 — 960)
+3(n = 2)° ((n(n(fm(ﬁn —13) — 6) + 84) — 32)r?

—8a((n —10)n +4) (3772 +n— 8) ))

+2v (20° + 1 —4) (n(n(2n(n(3n + 22) — 11) — 189) — 40) + 80))
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n—2

(12 (12042(77 —2)*(3n(n+4) — 4)n*

—12ay(n—2) (n (n (2n (n* +n+16) — 77) — 32) +32) °
+ 2 (408 + 801 + 4n° — 346n° — 235" 4 764> 4+ T12n* — 320m — 320)>
+ B(r) <B(r) <4fyB(r)(’y(77(n((548 — TTn)n — 1544) + 1984) — 960) B(r)
+ 27(287° — 109n° — 124n* 4 784n> 4+ 961 — 24967 + 1920)
+3(n — 2)(n(n(14n — 81) + 160) — 96)n° (r* — 4a) )
+ 8v°
(6n° — 161" + 861° + 147"
— 949" — 9881 4 3192n* 4 1536m — 2880)
+ 24~ (n = 2)n* ((n(n(n(3n(n + 1) +10) — 4) — 140) + 96)r”
—2a (n (n (20 (37° + 1+ 20) + 3) — 416) + 288) )
+9(n = 2*(n(B3n +8) — 4)n* (r? — 4@)2)
+ 4(72
(—24n® — 561" — 3681° + 9621° + 2928n*
— 2432n° — T168n* + 8967 + 3840)
—3y(n —2)1° (3(77(77(277(77(377 —11) +19) — 39) — 40) + 32)r*

—4a (n (n (2n (87" — 4n + 83) — 309) — 352) + 288) )

+18a(n — 2)2(n(3n + 10) — 4)5* (r? - 4a) )))

(A.0.16)
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bll(T) =

8reAM) B(r)®

n—2
(24 <12a2(n —2)(5n — 4)n*

— oy (1 (n (n (4n* + 425 — 61) — 212) + 96) + 128)

+7*(+ 1% (20° + 0 —4) (n (20" + 7 — 12) —8))

+ B(r) (B(r) (B (r) (29B(r)(4(n — 4)(n(11n — 32) + 24)B(r)

— 4y(n(n(n(n(13n — 42) — 63) + 160) + 296) — 480)

—3(n — 4)(n(13n — 40) + 32)n* (r* — 4a))

+ 1672 (n(n(n(n((n — 2)n(n + 10) — 80) + 115) + 348) — 168) — 480)

+ 690* ((n(n(n(2n(2n — 9) + 33) — 108) + 368) — 384)r”

— 8a(n((n — 4)n(n(2n + 5) + 6) + 240) — 256)) (4.0.17)
+9(n = 4)(n - 2)" (r? — 4a)”)

+2(— 87%(6n" + 88n° + 80n” — 464n* — 7197 + 332n° + 10967 + 480)
+ 3yn* (8a(n(n(n(n(2n — 27) — 49) + 196) + 144) — 384)

+ (384 — n(n(n(16n — 69) + 108) + 160))r?)

= 9(n = 2)5" (r2 = 4a) ((n(4n = 7) + r* — da((n — 1)+ 12)) ) )

— 82 (n(n(n(2n(n(n(3n + 44) + 40) — 232) — 719) + 332) + 1096) + 480)

+ 6y <8a(n —2)((n(n(2n + 49) + 96) — 88) — 128)

+ (1 (1 (1 (20 (=67 + 8n + 1) = 41) + 124) — 16) — 128) r2)

+ 72a(n — 2)n* (2a((n — 26)n + 24) — ((n — 12)n + 8)r?) ))
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coo(r) = — e

(1677 (B(T)S (4900 +2) +2) + 372 (1 — 40) )

—4B(r)* (v(n+1)> = 3an*) — 473(7~)4)

(23(’)")7 (4v(n(n+2) +2) + 3n° (r* — 4a))

+B(r)” (=8y(n + 1)*(n(n +2) +2) — 6n* (((n — n + 1)r* — da(2n + 3)))
+8(n+1)B(r)* (v(n+1)* — 6an*) — 873(7“)8)

+ 77%2 <<B(r)5( — 8y (1 — 5y — 12) — 6(n — )n? (2 — 4a) )

+ B(r)* (8 (2(n + 3)n° — 13n — 12) — 6n* (8a(3n — 4) + (n(4n — 7) + 4)r?))
+2B(r)? (12a0% (57 — 4) — dy(n + 1)* (21 + 17— 4)) + 8y(n — 4)3(7«)6)2)
+ 2n( = 2 B(r) (= 12(n — Or*r B = 1207 (n(4n — 7) + )rB(r)")

(BOY (@10 +2) +2)

37 (1 — 4a) ) = 4B(r)? (v(n + 1)* = 3a®) — 4yB(r)")

+ 127727’23(r)4<B(r)5 (=8 (if° = By — 12) — 6(n — 4)n* (r* — 4a))

+ B(r)* (8v (2(n + 3)n* — 13n — 12) — 6 (8c(3n — 4) + (n(4n — 7) + 4)r%))
+2B(r)* (120m%(5n — 4) = 4y(n + 1) (20° + 1 — 4)) + 830y = ) B(r)"*)
+2B(r) (B(r)3 (4y(n(n +2) +2) + 3% (r* — 4a))

—4B()? (v(n +1)* = 3a) — 4yB(r)*)

(BOY (=83 (= 50— 12) = 6(n — 4)? (1 ~ 40) )

+ B(r)* (87 (2(n + 3)n® — 13n — 12) — 61> (8a(3n — 4) + (n(4n — 7) + 4)r?))
+2B(r)? (1201 (57 — 4) — dy(n + 1)% (2% + 1 — 4)) + 8(n — 4)B(7~)6)>>
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Appendix B

Results of Time Dependent

Simulation

In this appendix, we show plots of the time dependent result with the setup mentioned in
chapter 7. The figures show the time slices of the result. Their time order are assumed to
be first from left to right and then from top to bottom in the same page, and after the time
order continues to the proceeding page. This set of figures start from the initial condition
and end at the final state shown in chapter 7. For better quality of the figures, we are posting

them from the next page.
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Figure B.1: Result of simulation (1/6).
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Figure B.2: Result of simulation (2/6).
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Figure B.3: Result of simulation (3/6).
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Figure B.4: Result of simulation (4/6).
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Figure B.5: Result of simulation (5/6).
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