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中文摘要

三維物體偵測是三維視覺的一個熱門研究領域，近年來受到廣泛關注。然

而，訓練用於三維物體偵測的深度學習模型通常需要大量帶有三維邊界框

註釋的數據，這是一項耗時的任務並且存在重大挑戰。為了應對這一挑

戰，我們提出了一種通過可變形模板匹配（DTMNet）進行弱監督三維物

體偵測的方法，該方法在圖像和二維實例遮罩的弱監督下，通過將可變形

形狀模板與輸入的LiDAR點雲進行匹配，生成弱監督的三維虛擬邊界框。

生成的三維虛擬邊界框可以用於訓練基於圖像或基於LiDAR的三維物體

偵測器。我們的DTMNet顯著降低了註釋成本，提高了三維物體偵測的效

率。對KITTI基準數據集的實驗結果在定量和定性上證明了我們提出的模

型的有效性和實用性

i



doi:10.6342/NTU202302077

Abstract

3D object detection is an active research topic for 3D vision and has been widely

studied in recent years. However, training deep learning models for 3D object

detection typically requires extensive data with 3D bounding box annotations,

which is a time-consuming task and presents a significant challenge. To address

this challenge, we propose a weakly supervised 3D object detection method via

deformable template matching (DTMNet), which generates weakly supervised 3D

pseudo-bounding boxes by matching a deformable shape template with the input

LiDAR point clouds under the weak supervision of images and 2D instance masks.

The generated 3D pseudo-bounding boxes can be used to train either image-based or

LiDAR-based 3D object detectors. Our DTMNet significantly reduces annotation

costs and improves the efficiency of 3D object detection. Experimental results

on the KITTI benchmark dataset quantitatively and qualitatively demonstrate the

effectiveness and practicality of our proposed model.
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Chapter 1

Introduction

3D object detection has gained substantial attention in recent years, owing to

its potential applications in diverse fields such as autonomous driving, robotics,

and augmented reality [2, 3, 4]. However, to develop models that accurately

detect 3D objects [5, 6, 7], it is typically necessary to gather extensive datasets

annotated with 3D bounding boxes. The time-consuming nature of this annotation

process has been identified as a bottleneck. For example, it takes an average

of 114 seconds to annotate a single 3D bounding box in SUN-RGBD [8]. This

limitation has impeded progress of 3D object detection. To overcome this challenge,

researchers have proposed semi-supervised [9, 10, 11] and weakly supervised

methods [12, 1, 13, 14, 15, 16] for reducing the annotation cost.

Semi-supervised techniques for 3D object detection aim to generate pseudo

labels from unlabeled data using teacher-student strategies for self-training. To

enhance the quality of these pseudo labels, certain approaches [9, 10, 11] eliminate

unreliable ones. On the other hand, WS3D [13] employs a limited number of

object-center annotations in bird’s eye view (BEV) to train cylindrical object

proposals, and approximately 3% 3D bounding box annotations to refine the

proposals, producing cuboids and confidence scores. However, despite utilizing

these semi-supervised methods, a small amount of 3D bounding box annotation

remains necessary, and thus its cost remains a concern.

1
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In contrast, weakly supervised methods rely on less expensive supervision,

such as 2D annotations, to eliminate the need for 3D bounding box annotations.

For instance, VS3D [12] utilizes pre-trained 2D teacher networks to determine

the objectness and 3D orientation of the 3D bounding box proposals generated

from LiDAR point cloud based on normalized density. Zakharov et al. [1] employs

pre-trained normalized object coordinate spaces (NOCS) [17] and DeepSDF [18]

networks to match a 3D car shape with 2D mask and LiDAR point cloud. Nev-

ertheless, these weakly supervised methods generally rely on strong 3D-related

priors that necessitate additional datasets rich in 3D information, which may not

be available in some situations. To address this issue, recent approaches such as

WeakM3D [16] generate virtual rays from the camera to the LiDAR point cloud

for matching the surface of a fixed-size 3D bounding box with the LiDAR point

cloud. Conversely, McCraith et al. [15] leverage a fixed 3D car template to match

with the points in the frustum of a 2D mask. Nevertheless, despite the efforts to

avoid relying on strong 3D-related priors, the use of a single fixed bounding box or

template may not be sufficient to precisely match with the wide range of real-world

cars, making it challenging to achieve accurate 3D object detection solely through

weak supervision without the aid of such priors.

In this paper, we introduce a novel weakly supervised 3D object detection

method via deformable template matching (DTMNet), which is capable of generat-

ing 3D pseudo-bounding boxes suitable for training image-based or LiDAR-based

3D object detectors. The proposed framework utilizes LiDAR point cloud data,

2D images, and 2D instance masks of cars in the images to accurately match a

deformable shape template with the point cloud data filtered by each 2D mask.

In addition, we incorporate dense 2D edge and color supervision to enhance the

learning process and improve the matching of the deformable shape template. Our

experimental results demonstrate that our approach outperforms current state-of-

the-art weakly supervised methods and achieves comparable performance to fully

supervised learning methods.
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We now summarize the contributions of this work below:

• We propose a weakly supervised 3D object detection network via deformable

template matching (DTMNet), utilizing LiADR point clouds and 2D im-

ages with instance masks to generate 3D pseudo-bounding boxes without

observing 3D ground truth annotation.

• By incorporating edge supervision, DTMNet matches 2D edges of the de-

formable template with those of the instance mask, properly resulting in

detailed geometry of the object template with target instances.

• With image color supervision, our DTMNet ensures projected point clouds

and the target instances in the input image share similar color representations,

avoiding detecting non-target objects.

• Through extensive experiments, we demonstrate that our proposed DTMNet

achieves state-of-the-art performance in various settings, including camera-

based and LiDAR-based 3D object detection tasks.
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Chapter 2

Related Work

2.1 Supervised 3D object detection

Supervised 3D object detection methods aim to predict 3D bounding boxes by using

3D bounding box annotations as supervision, given either RGB images or LiDAR

point clouds as input. RGB image-based methods rely solely on RGB images

during training and inference, while LiDAR-based methods use point clouds. For

the image-based method, PatchNet [7] incorporates depth information predicted

by a pre-trained depth predictor into the image representation, dividing samples

from different distance levels into separate branches for 3D detection. For LiDAR-

based methods, PointRCNN [5] adopts a two-stage pipeline for point cloud analysis,

generating region proposals using a point-based backbone network in the first stage,

performing RoI pooling and feature refinement in the second stage for accurate

object localization and classification. Another example is PointPillars [6], which

processes point clouds with a pillar-based representation, followed by 2D networks

for feature extraction and object detection. Despite their effectiveness, supervised

methods have high annotation costs, limiting their practical applicability.

4
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2.2 Semi-supervised 3D object detection

Semi-supervised 3D object detection techniques have been developed to address

the issue of high annotation costs associated with 3D bounding boxes. These

methods leverage unlabeled data to generate pseudo labels, reducing the need

for a large number of annotated examples. One prevalent strategy involves us-

ing a teacher-student framework, in which a teacher model trained on a small

labeled dataset generates pseudo labels for a student model to learn. For instance,

3DIoUMatch [9] predicts IoU-based pseudo labels, which can filter out unreliable

samples and enhance the quality of 3D object detection outcomes. Another ap-

proach proposed by Wang et al. [10] employs a Graph Neural Network (GNN) to

improve the consistency of pseudo labels. Their GNN constructs a graph consisting

of nodes representing the features of pseudo-3D boxes in LiDAR video frames

and edges connecting similar nodes, carrying their differences as edge features.

By learning the temporal and spatial consistency of the graphs, the GNN predicts

the confidence of each pseudo-3D box. Alternatively, Yin et al. [11] use a spatial-

temporal ensemble module and a clustering-based bounding box voting module

to handle false negatives and false positives in pseudo labels, respectively, and

introduce a soft supervision signal through box-wise contrastive learning. Despite

the impressive performance achieved by these semi-supervised techniques, they

still require approximately 10% 3D bounding box annotations to achieve 90%

of the performance of fully supervised methods, making them less practical in

real-world scenarios. To address this, some methods, such as WS3D [13] exploit

weak object-center annotations in bird’s eye view (BEV) to train cylindrical ob-

ject proposals, using only a limited number of 3D bounding box labels to refine

them. With this approach, WS3D generates cuboids and confidence scores with

only about 3% 3D bounding box annotations, demonstrating the potential of weak

supervision in reducing annotation costs even further.
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2.3 Weakly supervised 3D object detection

Weakly supervised methods aim to eliminate the reliance on 3D bounding box

annotations, which are time-consuming and labor-intensive to produce. Instead,

these methods utilize other types of supervision that can be labeled much more

quickly, such as 2D bounding boxes or semantic segmentation masks. For example,

VS3D [12] generates 3D bounding box proposals from LiDAR point cloud data

using a normalized point cloud density approach. It then leverages pre-trained 2D

teacher networks to predict objectness and 3D orientation confidence from images,

which guide the point cloud-based student network to detect cars in the LiDAR

point cloud. Another method [1] utilizes pre-trained normalized object coordinate

spaces (NOCS)[17] and DeepSDF [18] networks to initialize a 3D car shape and

optimizes the 3D car shape using RANSAC [19] to match it precisely with the

2D mask and LiDAR point cloud. However, these weakly supervised methods

rely on pre-trained models that require additional datasets rich in 3D information,

such as the pre-trained 3D orientation network in VS3D and the pre-trained 3D

pose predictor in [1]. To overcome this challenge, some proposed methods rely

on assumptions related to the properties of the vehicles in the scene. For example,

FGR [14]assumes that the LiDAR point clouds of a car are always matched with

two edges of a bounding box in the bird’s eye view (BEV), and optimization is

employed to determine the optimal orientation of the bounding box. However,

FGR may struggle to accurately identify the correct orientation when the LiDAR

sensor observes only one side of a car. WeakM3D [16] estimates the vehicle size

by computing statistics from annotated datasets and generates virtual rays from

the camera to the LiDAR point cloud filtered by a 2D bounding box to match the

surface of a fixed-size 3D bounding box (according to the calculated vehicle size)

with the LiDAR point cloud. Meanwhile, McCraith et al. [15] employs a fixed 3D

shape template to match with the points in the frustum of 2D segmentation masks.

However, fitting the point cloud of a vehicle with a single fixed-size bounding box

or template may not accurately match with the varying sizes of real-world vehicles.
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Method
Input

2D annotation Auxiliary 3D annotations Assumption
Training Inference

VS3D [12] LiDAR + image LiDAR/image - ✓ -

Zakharov et al. [1] LiDAR + image LiDAR/image mask ✓ -

FGR [14] LiDAR + image LiDAR/image box - BEV edges

McCraith1 et al. [15] LiDAR + image LiDAR mask - fixed 3D shape

WeakM3D [16] LiDAR + image image mask - fixed 3D box

Ours LiDAR + image LiDAR/image mask - deformable 3D shape

Table 2.1: Comparisons between different weakly supervised 3D object detec-

tion methods. Note that VS3D requires a pre-trained 2D classifier to determine

objectness and a pre-trained network for 3D orientation prediction. On the other

hand, Zakharov et al. . require a pre-trained 3D pose predictor.

Compared with the methods discussed above, our method relies solely on 2D

segmentation masks of cars as annotated data and does not rely on auxiliary 3D

annotations. Our approach is similar to FGR, McCraith et al. , and WeakM3D

in terms of weakly-supervised settings. However, our method uses deformable

shape template to match the various appearances of cars in LiDAR scenes, which

is different from the fixed-size bounding boxes or templates used in McCraith et

al. and WeakM3D. In Table 2.1, we provide a comparison of our proposed method

with the aforementioned weakly supervised 3D object detection methods.
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Chapter 3

Proposed Method

3.1 Problem formulation and model overview

We first define the problem definition and the notations used in this paper. For

simplicity, we take only one car as an example target to explain our approach. In

our weakly supervised detection task, one observes a LiDAR point cloud L ∈

RN×3 in an outdoor scene, where N represents the number of points in the scene,

and each point is represented in three-dimensional coordinates. An RGB image

I ∈ ZH×W ×3, where H and W denote the height and width of the image, as

well as a 2D car mask m ∈ {0, 1}H×W of the same outdoor scene are also inputs

observed during training. As auxiliary supervision, a deformable 3D car template

M(·) ∈ RNT ×3 composed of a mean shape M0 and r basis [p1, p2, ..., pr] is

provided, where NT is the number of points in the template. To be more specific,

given a set of parameters s = [s1, s2, ..., sr], the corresponding deformed template

M(s) is calculated as:

M(s) = M0 +
r∑

k=1
skpk, (3.1)

where pk and sk are the kth basis and the associated coefficient. Inspired from [20],

the basis is obtained by applying Principal Component Analysis (PCA) [21] to the

sampled point clouds of multiple car CAD models for training. Given the above

training inputs and supervision, our goal is to predict the optimal deformation

8
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Figure 3.1: Architecture of our proposed DTMNet, which contains a Segmentor θS ,

a Predictor θP , and a Color Encoder θC . Our DTMNet matches the car instances

using LiDAR and image inputs, generating a 3D bounding box by matching a

pre-collected car template [p1, p2, ..., pr] without additional 3D annotation.

coefficients s∗ and rigid transformation R∗ of the 3D car template M(·), where

R∗ includes a 3 × 3 yaw rotation matrix and a 3 × 1 translation vector, to match

the template with the target car object in the LiDAR scene and to generate the

corresponding 3D pseudo bounding box without any 3D bounding box annotation.

To tackle the above problem, we propose a novel weakly supervised 3D object

detection method via deformable template matching (DTMNet). Our architecture

is illustrated in Figure 3.1, with a Segmentor θS designed to segment the points

belonging to the target car in the masked LiDAR point cloud Lm (i.e., masking

the input point cloud L with the 2D car mask m) and a Predictor θP which aims

to match the template with the segmented point clouds. Moreover, our proposed

DTMNet architecture utilizes 2D supervision, including edge supervision from the

2D car mask m and color supervision from the RGB image I . By incorporating

these designs, our DTMNet can accurately match the template with the car in the

LiDAR scene and produce a 3D pseudo-bounding box, allowing for the training of

3D object detectors in the absence of 3D annotations.
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3.2 Weakly supervised deformable template match-

ing

3.2.1 Segmentor and Predictor

Provided with the LiDAR point cloud L, the car mask m, and the deformable

car template M(·), the Segmentor θS in Figure 3.1 aims to segment points cor-

responding to the car from the masked point cloud Lm, where Lm is defined

as:

Lm = {z | ∀z ∈ L ∋ mKz = 1}. (3.2)

Here, K denotes the projection function that maps a 3D point z in L onto its

corresponding 2D image coordinate, and the binary mask value mKz corresponds

to the nearest binary mask value of the projected point Kz on the 2D car mask

m. By applying θS , we are able to further filter out the outliers and noises in Lm

caused by the mismatch of 2D masks or LiDAR scanning through transparent

parts of the car such as windows (as addressed in [15]). On the other hand, the

Predictor θP in Figure 3.1 aims to predict deformation coefficients s∗ and rigid

transformation R∗ that transform the deformable template M(·) to match with the

point cloud segmented by θS , denoted as L′
m. The transformed template T can be

expressed as follows:

T = {R∗x | ∀x ∈ M(s∗)}, (3.3)

where T represents the set of all points obtained by transforming the deformed 3D

car template M(s∗) using R∗.

Since we are not allowed to obtain the ground truth segmentation label for θS ,

we use the transformed template T as a weak supervision for θS by treating points

in Lm that are close enough to T as segmentation label y for θS . The segmentation

label y is denoted as:

y = {yx | ∀x ∈ Lm}, (3.4)
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where yx is defined as:

yx =


1 if d(x, T ) < th3D,

0 otherwise.

(3.5)

In the above equation, th3D is a pre-defined threshold and the minimum Euclidean

distance d(x, T ) between a point x and T , defined as:

d(x, T ) = min
x′∈T

∥x′ − x∥ . (3.6)

To this end, we can define the learning objective Lseg for θS as:

Lseg = LBCE(y∗, y), (3.7)

where y∗ denotes the predicted probabilities of points belonging to the car, and

LBCE(·) denotes the binary cross entropy loss. As for the objective for θP , we

propose a point matching loss to encourage T to be closer to each point in Lm:

Lpoint = 1
|Lm|

∑
x∈Lm

dclip3D(x, T )
N(x) , (3.8)

where N(x) denotes the normalization factor to balance the influence of dense

and sparse regions in Lm. It is computed as the number of points in the local

neighborhood of each point x in Lm. Additionally, dclip3D(x, T ) is the clipped

distance between the point x and the transformed template T to reduce the negative

impact of noises and outliers in Lm by clipping the distance that exceeds a certain

threshold. dclip3D(x, T ) is computed as:

dclip3D(x, T ) =


d(x, T ) if d(x, T ) < th3D,

th3D otherwise,

(3.9)

where th3D is a threshold for clipping. By learning from Lpoint, θP can roughly

match the template with the car in the scene.
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Figure 3.2: Example comparisons between occlusion edges and the edges

captured from the transformed template T . We show the example of (a) the car

in the image, (b) its corresponding mask m, (c) the edges of the mask Em, (d) the

transformed template T , (e) the 2D mask projected from T , and (f) the 2D edge of

projection of transformed template ET .

3.2.2 Edge and color supervision

Despite the effectiveness of filtering out noises using θS and matching transformed

templates with the target object using θP , we still face challenges in accurately

matching fine-grained shapes, such as side mirrors, and may erroneously match

with points that partially share similar shapes with cars. To overcome these limita-

tions, we propose the use of 2D supervision, comprising edge and color supervision,

to capture the detailed geometry of the object, including its fine-grained shapes,

while avoiding matching errors with non-target objects, respectively.

Edge supervision. To improve deformable template matching with fine-grained

shapes, such as side mirrors, we incorporate dense 2D edge information to supervise

the deformable template matching. The edge supervision is achieved by matching

the 2D projection edges ET of T with the edges Em of the 2D car mask m. To be
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more specific, Em is obtained by applying a Sobel filter Sobel(·) to m for edge

detection, and ET can be represented using the following formula:

ET = Sobel(mask(KT )), (3.10)

where K is the same projection matrix in Eqn. 3.2 and mask(·) represents the

mask construction operation (please refer to the supplementary materials for further

details). However, matching ET with Em is challenging when the car is occluded

by other objects in the scene as depicted in Figure 3.2, where the occlusion edges

highlighted in (c) should not be matched with ET . To address these challenges, we

propose the edge matching loss to encourage ET to be closer to each pixel in Em

while mitigating the influence of the occlusion edges. The edge matching loss is

defined as:

Ledge = 1
|Em|

∑
u∈Em

dclip2D(u, ET ), (3.11)

where dclip2D(u, ET ) denotes the distance between a 2D edge pixel u in Em and

the entire ET . In order to address the negative effects of occlusion edges in Em,

this distance is clipped by setting a threshold th2D. The clipped distance is defined

as:

dclip2D(u, ET ) =


d2D(u, ET ) if d2D(u, ET ) < th2D,

th2D otherwise,

(3.12)

where d2D(u, ET ) is computed as:

d2D(u, ET ) = min
u′∈ET

∥u′ − u∥ , (3.13)

The incorporation of edge supervision in our proposed framework enables the

extraction of detailed shape information of the vehicle in the input scene. This, in

turn, facilitates the more precise prediction of the deformation coefficients s∗ and

rigid transformation R∗ by the Predictor network θP .

Color supervision. While the use of edge supervision and point matching can

be valuable in accurately identifying objects, they may not be adequate in distin-

guishing between objects with similar shapes. Therefore, the inclusion of color
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supervision is essential as it can improve the accuracy of the deformable template

matching by ensuring that T is matched with the intended target object and not

with something similar in shape. The primary objective of the color supervision is

to facilitate similarity between the global representations of color values CT , which

correspond to the points that are matched by the template, and the color values Cm

of the car present in the image I that has been cropped by m. To be more specific,

CT is obtained by:

CT = {IKx | ∀x ∈ Lm ∋ d(x, T ) < th3D}, (3.14)

where K refers to the same projection matrix as in Eqn. 3.2 and IKx is the nearest

pixel value on I with respect to the projected point Kx. On the other hand, the

color values in the masked image Cm are obtained by selecting the colors of pixels

in the masked image based on m.

To encourage similarity between the global representations of CT and Cm, we

introduce a Color Encoder θC . The Color Encoder is combined with the color

contrastive loss, which is used to promote similarity between positive pairs of

representations. The color contrastive loss, denoted by Lcolor, is defined as follows:

Lcolor = Lcon(fm, fT ), (3.15)

where Lcon(·) is a contrastive loss. Although we do not impose any restrictions

on the selection of this contrastive loss, we acknowledge that some contrastive

learning-based techniques may necessitate a large number of negative pairs, which

can be computationally expensive. Therefore, we adopt the Barlow Twins loss

function [22] in our methodology, which does not necessitate the observation of

negative examples. The global color representations of Cm and CT are denoted as

fm and fT , respectively, and can be computed as follows:

fm = θC(Cm), (3.16)

fT = θC(CT ). (3.17)
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With the color supervision design, our method is able to accurately distinguish

between objects with similar shapes, as the color information helps match T with

the intended target object.

3.3 Training and obtaining pseudo-bounding box

During training, we summed up Lpoint, Lseg, Ledge, and Lcolor to form the full

objective of our proposed DTMNet framework. The objective allows for accurate

matching of the template with the car present in the scene and generates a 3D

pseudo-bounding box (i.e., directly calculate the width, height, and length of

the template as the size of the pseudo-bounding box, with R∗ applied as the

transformation), which in turn facilitates the training of a 3D object detector

without the need for 3D annotations. Our experimental results demonstrate that our

proposed framework outperforms existing methods in various settings, including

image-based and LiDAR-based 3D object detection tasks.

L = Lpoint + Lseg + Ledge + Lcolor, (3.18)
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Experiments

4.1 Dataset and implementation details

4.1.1 Dataset

We utilize the KITTI Object Detection dataset [23] for our experiments. This

benchmark contains 7481 training pairs of RGB images and point clouds along

with 2D instance mask and 3D bounding box annotations of three different classes,

i.e., cars, cyclists, and pedestrians. Note that the only annotation used in our

approach is the 2D instance mask. We follow the standard protocol in [24] and split

the dataset into a training set (3,712 samples) and a validation set (3,769 samples).

In our experiments, we evaluate our approach on the car category samples only.

4.1.2 Implementation Details

We utilize the PyTorch library [25] to implement our proposed approach. To

construct the Predictor θP , Segmentor θS , and Color Encoder θC , we employ

PointNet-like architectures [26]. We set the number of points in the car template

M(·), denoted as NT , to 3072. The threshold th3D defined in Eqn. 3.9 is initialized

at 1.5 meters and is gradually reduced by 0.2 meters per epoch until it reaches 0.7

meters. On the other hand, threshold th2D in Eqn. 3.12 is set to 10. The value of

16
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Method Inference
Supervision APBEV /AP3D(IoU = 0.5)

2D 3D easy moderate hard

Patchnet [7] Mono ✓ 71.70 / 68.26 50.60 / 47.93 43.29 / 41.38

VS3D (Mono) [12] Mono ✓ - / 31.35 - / 23.92 - / 19.34

WeakM3D [16] Mono ✓ 58.20 / 50.16 38.02 / 29.94 30.17 / 23.11

Patchnet (Ours) Mono ✓ 71.07 / 64.53 50.16 / 42.30 42.63 / 38.26

PointRCNN [5] LiDAR ✓ 97.74 / 97.70 89.88 / 89.84 89.35 / 89.25

PointPillars [6] LiDAR ✓ 97.46 / 97.23 93.70 / 93.70 91.37 / 88.99

VS3D (LiDAR) LiDAR ✓ - / 42.43 - / 41.58 - / 32.74

Zakharov et al. [1] LiDAR ✓ 94.90 / 90.70 88.50 / 71.10 - / -

McCraith et al. [15] LiDAR ✓ 86.52 / 83.45 86.22 / 79.53 75.53 / 71.01

PointRCNN (Ours) LiDAR ✓ 95.71 / 94.84 88.37 / 87.60 87.51 / 86.15

PointPillars (Ours) LiDAR ✓ 96.83 / 90.33 89.49 / 88.48 85.13 / 79.46

Table 4.1: Performance comparisons on KITTI validation set for cars.In this

table, the Inference column refers to the input modality for inference, where Mono

denotes monocular images and LiDAR denotes LiDAR point clouds.

N(x) is determined by counting the number of points that are situated within a

distance of 0.1 meters from the point x. During training, we use a single NVIDIA

RTX 3090Ti GPU with a batch size of 32 and a learning rate of 0.01 using the

ADAM optimizer [27] for 30 epochs.

4.2 Weakly supervised 3D object detection

4.2.1 Quantitative evaluation

We now present a quantitative evaluation of our proposed DTMNet. To show the

effectiveness and reliability of our approach, we train several state-of-the-art 3D

object detectors with our 3D pseudo-bounding boxes, including both image-based

(PatchNet [7]) and LiDAR-based (PointRCNN [5], PointPillars [6]) methods. We
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Figure 4.1: Qualitative results of 3D object detection. The green boxes are the

3D object detection results of our method, and the orange boxes are the ground

truth 3D bounding boxes.

compare our results against several state-of-the-art weakly supervised approaches,

including VS3D [12], WeakM3D [16], Zakharov et al. [1], and McCraith et

al. [15]. To ensure a fair comparison, we utilize the average precision for both BEV

and 3D boxes with a 0.5 IoU threshold, as suggested by prior relevant works [12, 1],

in all difficulty categories. We summarize our quantitative comparisons in Table 4.1,

which shows that our proposed DTMNet method achieves the best scores in

all metrics, surpassing many other existing approaches by a significant margin,

particularly in the hard category. It is worth noting that Zakharov et al. used

their method to generate pseudo labels for training PointPillars, which should

be compared with the performance of PointPillars trained with our 3D pseudo-

bounding boxes. Moreover, we also compare our proposed DTMNet approach

with supervised methods by training the aforementioned 3D object detectors with

ground truth 3D bounding boxes. The experimental results reveal that our method

achieves 90% of the performance of the supervised methods in all metrics.

4.2.2 Qualitative result

To further demonstrate the effectiveness of our proposed method, we provide

qualitative results of 3D object detection in Fig. 4.1 to illustrate its superior perfor-

mance. The results show that the detector trained with our 3D pseudo-bounding



doi:10.6342/NTU202302077

4. Experiments 19

Figure 4.2: Qualitative results of 3D pseudo-bounding boxes. The green shapes

are the transformed templates, and the green boxes are the corresponding 3D

pseudo-bounding boxes. The orange boxes are the ground truth 3D bounding

boxes.

boxes is able to detect 3D car objects occluded by other objects. Furthermore, we

showcase some of the transformed templates and their corresponding 3D pseudo-

bounding boxes in Fig. 4.2 to verify the effectiveness of our method. We also

present the qualitative comparison of 3D pseudo-bounding box results generated by

our proposed DTMNet and Zakharov et al. [1]. The results are shown in Fig. 4.3.

From this figure, we observe that although Zakharov et al. optimizes the 3D car

shape to match it with the 2D mask and LiDAR point cloud, such a method is

insufficient in matching cars located far away from the sensors due to the sparsity

of the LiDAR point cloud. On the other hand, our DTMNet is able to precisely

detect distant cars, which validates our claim that the edge and color supervision

in our proposed approach is capable of extracting detailed shape information of

distant cars, even in situations where the LiDAR point cloud is too sparse to be

recognized. The visualizations demonstrate that our approach generates accurate

and precise 3D pseudo-bounding boxes, which in turn leads to improved object

detection performance.
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Figure 4.3: Qualitative comparison of 3D pseudo-bounding boxes. Each column

in the figure represents the result of a single scene. The first row shows the images

of each scene, while the second row displays the LiDAR point cloud of each scene.

The 3D pseudo-bounding boxes predicted by our DTMNet are represented by the

green boxes, while the purple boxes show the 3D pseudo-bounding boxes generated

by Zakharov et al. [1]. The ground truth 3D bounding boxes are represented by the

orange boxes.

4.3 Ablation Study

In this study, we first present an ablation analysis of the architecture of DTMNet in

Table 4.2. Our objective is to investigate the contribution of each component to the

overall performance of the proposed method. We start by establishing the baseline

method A, which employs only the point matching and a mean car template to

generate 3D pseudo-bounding boxes for training a PointRCNN [5] model without

considering filtering out noise, edge supervision, or color supervision. We then filter

out noise with segmentor θS (method B) to reduce noise and improve the overall

performance. By adding back the deformable car template (method C), we obtain

an improvement in average precision. In method D, we introduce edge supervision,

which leads to a further improvement in performance. Finally, the inclusion of color

supervision (method E) results in the best overall performance. Our ablation study

shows that each component of the proposed method contributes to its effectiveness,

and incorporating all components results in the highest performance.

As an essential component of our approach, we compare the methods of
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Method Lpoint Lseg deform. Ledge Lcolor

APBEV /AP3D(IoU = 0.5)

easy moderate hard

A ✓ - - - - 81.53 / 63.89 72.38 / 57.38 63.92 / 50.17

B ✓ ✓ - - - 87.27 / 73.61 81.44 / 68.53 72.19 / 60.37

C ✓ ✓ ✓ - - 94.48 / 87.95 87.43 / 85.65 85.98 / 83.11

D ✓ ✓ ✓ ✓ - 94.75 / 88.48 88.29 / 86.64 87.45 / 84.23

E ✓ ✓ ✓ ✓ ✓ 95.71 / 94.84 88.37 / 87.60 87.51 / 86.15

Table 4.2: Ablation study of our proposed framework. In this table, deform.

denotes the usage of deformable car template. All ablation studies use PointRCNN

as the 3D object detector. Please refer to Sect. 4.3 for the details.

Method
APBEV /AP3D(IoU = 0.5)

easy moderate hard

mask 90.06 / 86.84 86.93 / 84.05 78.33 / 75.86

edge 95.71 / 94.84 88.37 / 87.60 87.51 / 86.15

Table 4.3: Comparisons of edge matching and mask matching. Note that we

use PointRCNN as the 3D object detector.

edge supervision with mask supervision in Table 4.3 to verify the effectiveness

of edge supervision. Specifically, the mask supervision method in Table 4.3

ensures matching with 2D car mask m and the projection mask mask(KT ) of

the transformed template T instead of only matching between their edges as in

our proposed edge supervision. The results demonstrate that the edge matching

method outperforms the mask matching method, indicating that explicitly focusing

on the edges is better suited for guiding our predictor θP .

We also conduct an experiment using a contrastive loss proposed in NT-

Xent [28] as our color supervision loss to compare with the Barlow Twins loss

used in our approach. The results in Table 4.4 show that while our method is not
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Method
APBEV /AP3D(IoU = 0.5)

easy moderate hard

NT-Xent [28] 95.33 / 94.59 87.88 / 87.05 86.21 / 84.36

Barlow Twins [22] 95.71 / 94.84 88.37 / 87.60 87.51 / 86.15

Table 4.4: Comparisons of different contrastive losses. Note that we use PointR-

CNN as the 3D object detector.

restricted to using a specific contrastive loss, Barlow Twins outperforms NT-Xent

by a small margin. Note that NT-Xent loss function requires a large number of

negative samples, and therefore the performance gap in Table 4.4 is reasonable.

Finally, We perform qualitative ablation analysis. As depicted in Figure 4.4,

we compare the template matching results with the mean car template M0 and the

deformable car template M(·) (as mentioned in Sect. 3.1 of our main paper). It

is evident that the mean car template M0 fails to match with the diverse range of

real-world cars, thus affirming the justification for our approach. Our proposed

weakly supervised deformable template matching technique effectively enables

accurate matching with cars of various shapes. With the deformable template

matching technique, we further compare the template matching results using edge

and color supervision versus no edge and color supervision. As illustrated in

Figure 4.5, The results show that integrating both edge and color supervision yields

more robust and accurate matching outcomes when dealing with car occlusions.

4.4 Additional Experiment Results

We now provide more experiment results of our proposed method. we conduct ad-

ditional experiments for pedestrians from KITTI, which consists of 2104 training

samples and 2172 validation samples. Table 4.5 shows that our weakly super-

vised method was able to achieve comparable performance as the fully-supervised
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Figure 4.4: Template Matching with Various Templates Each row in the figure

corresponds to a single car and depicts the outcomes obtained using different

templates. The Image column presents the 2D bounding box of the car. The Mean

column denotes the results using the mean car template M0, while the Deform

column displays the outcomes achieved using a deformable car template M(·).

The transformed template predicted by our DTMNet is represented by the green

points, whereas the red edges correspond to the edges of 2D car masks.

method did. This result also supports the effectiveness of our approach in handling

deformable objects from noisy point cloud data with weak supervision.

Method Inference
Supervision APBEV /AP3D(IoU = 0.25)

2D 3D easy moderate hard

PointRCNN LiDAR ✓ 67.41 / 67.40 60.40 / 60.26 54.51 / 54.45

PointRCNN (Ours) LiDAR ✓ 63.63 / 63.51 57.18 / 57.01 51.13 / 50.90

Table 4.5: Performance comparisons on KITTI validation set for pedestrians. The

Inference column refers to the input modality for inference, where LiDAR denotes LiDAR

point clouds.
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Figure 4.5: Comparison of Using Edge and Color Supervision Each row in the

figure depicts the outcomes obtained for a single car and compares the use of edge

and color supervision versus no edge and color supervision. The Image column

presents the 2D bounding box of the car. The green points depict the transformed

template predicted by our DTMNet, while the red edges indicate the edges of the

2D car masks.
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Conclusion

In this paper, we proposed a weakly supervised 3D object detection method via

deformable template matching. Our DTMNet enables 3D object detection without

3D annotated data during training. The proposed method utilizes LiDAR point

cloud, RGB image of the scene, and 2D car mask in the image to derive 3D

pseudo-bounding boxes for training the 3D detector. Our DTMNet leverages edge

supervision and color supervision to match the detailed geometry of the object and

prevent matching errors with non-target objects, respectively. Experimental results

demonstrated that our DTMNet outperformed state-of-the-art weakly supervised

methods and achieved comparable performance to recent methods trained in fully

supervised fashion. Thus, the use of our proposed DTMNet for 3D object detection

can be sufficiently supported.

25
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