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Abstract

3D object detection is an active research topic for 3D vision and has been widely
studied in recent years. However, training deep learning models for 3D object
detection typically requires extensive data with 3D bounding box annotations,
which is a time-consuming task and presents a significant challenge. To address
this challenge, we propose a weakly supervised 3D object detection method via
deformable template matching (DTMNet), which generates weakly supervised 3D
pseudo-bounding boxes by matching a deformable shape template with the input
LiDAR point clouds under the weak supervision of images and 2D instance masks.
The generated 3D pseudo-bounding boxes can be used to train either image-based or
LiDAR-based 3D object detectors. Our DTMNet significantly reduces annotation
costs and improves the efficiency of 3D object detection. Experimental results
on the KITTI benchmark dataset quantitatively and qualitatively demonstrate the

effectiveness and practicality of our proposed model.
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Chapter 1

Introduction

3D object detection has gained substantial attention in recent years, owing to
its potential applications in diverse fields such as autonomous driving, robotics,
and augmented reality [2, 3, 4]. However, to develop models that accurately
detect 3D objects [5, 6, 7], it is typically necessary to gather extensive datasets
annotated with 3D bounding boxes. The time-consuming nature of this annotation
process has been identified as a bottleneck. For example, it takes an average
of 114 seconds to annotate a single 3D bounding box in SUN-RGBD [8]. This
limitation has impeded progress of 3D object detection. To overcome this challenge,
researchers have proposed semi-supervised [9, 10, 11] and weakly supervised
methods [12, 1, 13, 14, 15, 16] for reducing the annotation cost.
Semi-supervised techniques for 3D object detection aim to generate pseudo
labels from unlabeled data using teacher-student strategies for self-training. To
enhance the quality of these pseudo labels, certain approaches [9, 10, 11] eliminate
unreliable ones. On the other hand, WS3D [13] employs a limited number of
object-center annotations in bird’s eye view (BEV) to train cylindrical object
proposals, and approximately 3% 3D bounding box annotations to refine the
proposals, producing cuboids and confidence scores. However, despite utilizing
these semi-supervised methods, a small amount of 3D bounding box annotation

remains necessary, and thus its cost remains a concern.
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1. Introduction 2

In contrast, weakly supervised methods rely on less expensive supervision,
such as 2D annotations, to eliminate the need for 3D bounding box annotations.
For instance, VS3D [12] utilizes pre-trained 2D teacher networks to determine
the objectness and 3D orientation of the 3D bounding box proposals generated
from LiDAR point cloud based on normalized density. Zakharov et al. [1] employs
pre-trained normalized object coordinate spaces (NOCS) [17] and DeepSDF [18]
networks to match a 3D car shape with 2D mask and LiDAR point cloud. Nev-
ertheless, these weakly supervised methods generally rely on strong 3D-related
priors that necessitate additional datasets rich in 3D information, which may not
be available in some situations. To address this issue, recent approaches such as
WeakM3D [16] generate virtual rays from the camera to the LiDAR point cloud
for matching the surface of a fixed-size 3D bounding box with the LiDAR point
cloud. Conversely, McCraith et al. [15] leverage a fixed 3D car template to match
with the points in the frustum of a 2D mask. Nevertheless, despite the efforts to
avoid relying on strong 3D-related priors, the use of a single fixed bounding box or
template may not be sufficient to precisely match with the wide range of real-world
cars, making it challenging to achieve accurate 3D object detection solely through
weak supervision without the aid of such priors.

In this paper, we introduce a novel weakly supervised 3D object detection
method via deformable template matching (DTMNet), which is capable of generat-
ing 3D pseudo-bounding boxes suitable for training image-based or LiIDAR-based
3D object detectors. The proposed framework utilizes LiDAR point cloud data,
2D images, and 2D instance masks of cars in the images to accurately match a
deformable shape template with the point cloud data filtered by each 2D mask.
In addition, we incorporate dense 2D edge and color supervision to enhance the
learning process and improve the matching of the deformable shape template. Our
experimental results demonstrate that our approach outperforms current state-of-
the-art weakly supervised methods and achieves comparable performance to fully

supervised learning methods.
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. Introduction 3

We now summarize the contributions of this work below:

» We propose a weakly supervised 3D object detection network via deformable
template matching (DTMNet), utilizing LiADR point clouds and 2D im-
ages with instance masks to generate 3D pseudo-bounding boxes without

observing 3D ground truth annotation.

* By incorporating edge supervision, DTMNet matches 2D edges of the de-
formable template with those of the instance mask, properly resulting in

detailed geometry of the object template with target instances.

* With image color supervision, our DTMNet ensures projected point clouds
and the target instances in the input image share similar color representations,

avoiding detecting non-target objects.

» Through extensive experiments, we demonstrate that our proposed DTMNet
achieves state-of-the-art performance in various settings, including camera-

based and LiDAR-based 3D object detection tasks.
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Chapter 2

Related Work

2.1 Supervised 3D object detection

Supervised 3D object detection methods aim to predict 3D bounding boxes by using
3D bounding box annotations as supervision, given either RGB images or LIDAR
point clouds as input. RGB image-based methods rely solely on RGB images
during training and inference, while LiDAR-based methods use point clouds. For
the image-based method, PatchNet [7] incorporates depth information predicted
by a pre-trained depth predictor into the image representation, dividing samples
from different distance levels into separate branches for 3D detection. For LiDAR-
based methods, PointRCNN [5] adopts a two-stage pipeline for point cloud analysis,
generating region proposals using a point-based backbone network in the first stage,
performing Rol pooling and feature refinement in the second stage for accurate
object localization and classification. Another example is PointPillars [6], which
processes point clouds with a pillar-based representation, followed by 2D networks
for feature extraction and object detection. Despite their effectiveness, supervised

methods have high annotation costs, limiting their practical applicability.
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2. Related Work 5

2.2 Semi-supervised 3D object detection

Semi-supervised 3D object detection techniques have been developed to address
the issue of high annotation costs associated with 3D bounding boxes. These
methods leverage unlabeled data to generate pseudo labels, reducing the need
for a large number of annotated examples. One prevalent strategy involves us-
ing a teacher-student framework, in which a teacher model trained on a small
labeled dataset generates pseudo labels for a student model to learn. For instance,
3DIoUMatch [9] predicts IoU-based pseudo labels, which can filter out unreliable
samples and enhance the quality of 3D object detection outcomes. Another ap-
proach proposed by Wang et al. [10] employs a Graph Neural Network (GNN) to
improve the consistency of pseudo labels. Their GNN constructs a graph consisting
of nodes representing the features of pseudo-3D boxes in LiDAR video frames
and edges connecting similar nodes, carrying their differences as edge features.
By learning the temporal and spatial consistency of the graphs, the GNN predicts
the confidence of each pseudo-3D box. Alternatively, Yin ef al. [11] use a spatial-
temporal ensemble module and a clustering-based bounding box voting module
to handle false negatives and false positives in pseudo labels, respectively, and
introduce a soft supervision signal through box-wise contrastive learning. Despite
the impressive performance achieved by these semi-supervised techniques, they
still require approximately 10% 3D bounding box annotations to achieve 90%
of the performance of fully supervised methods, making them less practical in
real-world scenarios. To address this, some methods, such as WS3D [13] exploit
weak object-center annotations in bird’s eye view (BEV) to train cylindrical ob-
ject proposals, using only a limited number of 3D bounding box labels to refine
them. With this approach, WS3D generates cuboids and confidence scores with
only about 3% 3D bounding box annotations, demonstrating the potential of weak

supervision in reducing annotation costs even further.
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2. Related Work 6

2.3 Weakly supervised 3D object detection

Weakly supervised methods aim to eliminate the reliance on 3D bounding box
annotations, which are time-consuming and labor-intensive to produce. Instead,
these methods utilize other types of supervision that can be labeled much more
quickly, such as 2D bounding boxes or semantic segmentation masks. For example,
VS3D [12] generates 3D bounding box proposals from LiDAR point cloud data
using a normalized point cloud density approach. It then leverages pre-trained 2D
teacher networks to predict objectness and 3D orientation confidence from images,
which guide the point cloud-based student network to detect cars in the LiDAR
point cloud. Another method [ 1] utilizes pre-trained normalized object coordinate
spaces (NOCS)[17] and DeepSDF [ 18] networks to initialize a 3D car shape and
optimizes the 3D car shape using RANSAC [19] to match it precisely with the
2D mask and LiDAR point cloud. However, these weakly supervised methods
rely on pre-trained models that require additional datasets rich in 3D information,
such as the pre-trained 3D orientation network in VS3D and the pre-trained 3D
pose predictor in [1]. To overcome this challenge, some proposed methods rely
on assumptions related to the properties of the vehicles in the scene. For example,
FGR [14]assumes that the LiDAR point clouds of a car are always matched with
two edges of a bounding box in the bird’s eye view (BEV), and optimization is
employed to determine the optimal orientation of the bounding box. However,
FGR may struggle to accurately identify the correct orientation when the LiDAR
sensor observes only one side of a car. WeakM3D [16] estimates the vehicle size
by computing statistics from annotated datasets and generates virtual rays from
the camera to the LiDAR point cloud filtered by a 2D bounding box to match the
surface of a fixed-size 3D bounding box (according to the calculated vehicle size)
with the LiDAR point cloud. Meanwhile, McCraith ez al. [15] employs a fixed 3D
shape template to match with the points in the frustum of 2D segmentation masks.
However, fitting the point cloud of a vehicle with a single fixed-size bounding box

or template may not accurately match with the varying sizes of real-world vehicles.
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2. Related Work 7

Input

Method 2D annotation  Auxiliary 3D annotations Assumption
Training Inference
VS3D [12] LiDAR +image LiDAR/image - v <
Zakharov et al. [1] LiDAR +image LiDAR/image mask v -
FGR [14] LiDAR +image LiDAR/image box - BEV edges
McCraithl er al. [15] LiDAR + image LiDAR mask - fixed 3D shape
‘WeakM3D [16] LiDAR + image image mask - fixed 3D box
Ours LiDAR +image LiDAR/image mask - deformable 3D shape

Table 2.1: Comparisons between different weakly supervised 3D object detec-
tion methods. Note that VS3D requires a pre-trained 2D classifier to determine
objectness and a pre-trained network for 3D orientation prediction. On the other

hand, Zakharov et al. . require a pre-trained 3D pose predictor.

Compared with the methods discussed above, our method relies solely on 2D
segmentation masks of cars as annotated data and does not rely on auxiliary 3D
annotations. Our approach is similar to FGR, McCraith et al. , and WeakM3D
in terms of weakly-supervised settings. However, our method uses deformable
shape template to match the various appearances of cars in LiDAR scenes, which
is different from the fixed-size bounding boxes or templates used in McCraith et
al. and WeakM3D. In Table 2.1, we provide a comparison of our proposed method

with the aforementioned weakly supervised 3D object detection methods.
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Chapter 3

Proposed Method

3.1 Problem formulation and model overview

We first define the problem definition and the notations used in this paper. For
simplicity, we take only one car as an example target to explain our approach. In
our weakly supervised detection task, one observes a LiDAR point cloud L €
RY>3 in an outdoor scene, where NN represents the number of points in the scene,
and each point is represented in three-dimensional coordinates. An RGB image
I € Z"*W>3 where H and W denote the height and width of the image, as

well as a 2D car mask m € {0, 1}V

of the same outdoor scene are also inputs
observed during training. As auxiliary supervision, a deformable 3D car template
M(-) € RN7*3 composed of a mean shape M, and 7 basis [p;, P, ..., p,] is
provided, where N is the number of points in the template. To be more specific,
given a set of parameters s = [sq, So, ..., 5;|, the corresponding deformed template

M (s) is calculated as:

M(s) = Mo+ Y sipy, (3.1)
k=1

where p,. and s;, are the k" basis and the associated coefficient. Inspired from [20],
the basis is obtained by applying Principal Component Analysis (PCA) [21] to the
sampled point clouds of multiple car CAD models for training. Given the above

training inputs and supervision, our goal is to predict the optimal deformation

8
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3. Proposed Method 9

Color Supervision

Col
Enc(:)o(c‘lrer Cr
Lcolor fT —_— T
[mage 1 COLOF <_{ 0( Y
N!aSk " shared T —
LI.DAR L T Template

Lpoint

Ledge

Figure 3.1: Architecture of our proposed DTMNet, which contains a Segmentor g,
a Predictor 67, and a Color Encoder €. Our DTMNet matches the car instances
using LiDAR and image inputs, generating a 3D bounding box by matching a

pre-collected car template [p,, ps, ..., p,| without additional 3D annotation.

coefficients s* and rigid transformation R* of the 3D car template M (-), where
R* includes a 3 x 3 yaw rotation matrix and a 3 x 1 translation vector, to match
the template with the target car object in the LiDAR scene and to generate the
corresponding 3D pseudo bounding box without any 3D bounding box annotation.

To tackle the above problem, we propose a novel weakly supervised 3D object
detection method via deformable template matching (DTMNet). Our architecture
is illustrated in Figure 3.1, with a Segmentor 6° designed to segment the points
belonging to the target car in the masked LiDAR point cloud L,, (i.e., masking
the input point cloud L with the 2D car mask m) and a Predictor 6 which aims
to match the template with the segmented point clouds. Moreover, our proposed
DTMNet architecture utilizes 2D supervision, including edge supervision from the
2D car mask m and color supervision from the RGB image /. By incorporating
these designs, our DTMNet can accurately match the template with the car in the
LiDAR scene and produce a 3D pseudo-bounding box, allowing for the training of

3D object detectors in the absence of 3D annotations.
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3. Proposed Method 10

3.2 Weakly supervised deformable template match-
ing
3.2.1 Segmentor and Predictor

Provided with the LiDAR point cloud L, the car mask m, and the deformable
car template M (-), the Segmentor §° in Figure 3.1 aims to segment points cor-
responding to the car from the masked point cloud L,,, where L,, is defined

as:

L,={z|VzeL>mg, =1} (3.2)

Here, K denotes the projection function that maps a 3D point z in L onto its
corresponding 2D image coordinate, and the binary mask value m g, corresponds
to the nearest binary mask value of the projected point K z on the 2D car mask
m. By applying 6°, we are able to further filter out the outliers and noises in L,
caused by the mismatch of 2D masks or LiDAR scanning through transparent
parts of the car such as windows (as addressed in [15]). On the other hand, the
Predictor #% in Figure 3.1 aims to predict deformation coefficients s* and rigid
transformation R* that transform the deformable template M (-) to match with the
point cloud segmented by #°, denoted as L',,. The transformed template 7" can be

expressed as follows:

T ={Rx|Vx e M(s")}, (3.3)

where T’ represents the set of all points obtained by transforming the deformed 3D
car template M (s*) using R*.

Since we are not allowed to obtain the ground truth segmentation label for 6°,
we use the transformed template 7" as a weak supervision for #° by treating points
in L,, that are close enough to 7" as segmentation label y for §°. The segmentation

label y is denoted as:
Y ={yz | V& € Lin}, (3.4)

doi:10.6342/NTU202302077



3. Proposed Method 11

where ¥, is defined as:

1 ifd(z,T) < thsp,
Yo = (3.5)

0 otherwise.

In the above equation, thgp is a pre-defined threshold and the minimum Euclidean

distance d(x,T") between a point « and T, defined as:
d(x,T) = min ||z’ — x| . (3.6)
z'eT
To this end, we can define the learning objective L., for 6% as:

Eseg - 'CBC’E(y*a y>7 (37)

where y* denotes the predicted probabilities of points belonging to the car, and
Lpce(-) denotes the binary cross entropy loss. As for the objective for 07, we

propose a point matching loss to encourage 7' to be closer to each point in L,;,:

1
| L]

£point -

dclip?)D (937 T)
) 3.8
wEXL:m N (@) (3.8)

where N (x) denotes the normalization factor to balance the influence of dense
and sparse regions in L,,. It is computed as the number of points in the local
neighborhood of each point « in L,,. Additionally, d.;,3p(x,T) is the clipped
distance between the point « and the transformed template 7' to reduce the negative
impact of noises and outliers in L,, by clipping the distance that exceeds a certain
threshold. d;p3p (2, T') is computed as:

d(x,T) ifd(x,T) < thsp,
daipsp(x, T) = (3.9)

thsp otherwise,

where thyp is a threshold for clipping. By learning from L,in¢, 6F can roughly

match the template with the car in the scene.
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3. Proposed Method 12

Figure 3.2: Example comparisons between occlusion edges and the edges
captured from the transformed template 7". We show the example of (a) the car
in the image, (b) its corresponding mask m, (c) the edges of the mask F,,, (d) the
transformed template 7', (e) the 2D mask projected from 7°, and (f) the 2D edge of

projection of transformed template Fr.

3.2.2 Edge and color supervision

Despite the effectiveness of filtering out noises using #° and matching transformed
templates with the target object using 6, we still face challenges in accurately
matching fine-grained shapes, such as side mirrors, and may erroneously match
with points that partially share similar shapes with cars. To overcome these limita-
tions, we propose the use of 2D supervision, comprising edge and color supervision,
to capture the detailed geometry of the object, including its fine-grained shapes,

while avoiding matching errors with non-target objects, respectively.

Edge supervision. To improve deformable template matching with fine-grained
shapes, such as side mirrors, we incorporate dense 2D edge information to supervise
the deformable template matching. The edge supervision is achieved by matching

the 2D projection edges Ep of 1" with the edges E,,, of the 2D car mask m. To be

doi:10.6342/NTU202302077



3. Proposed Method 13

more specific, £, is obtained by applying a Sobel filter Sobel(-) to m for edge

detection, and Fr can be represented using the following formula:

Er = Sobel(mask(KT)), (3.10)

where K is the same projection matrix in Eqn. 3.2 and mask(-) represents the
mask construction operation (please refer to the supplementary materials for further
details). However, matching E; with E,, is challenging when the car is occluded
by other objects in the scene as depicted in Figure 3.2, where the occlusion edges
highlighted in (c) should not be matched with E;. To address these challenges, we
propose the edge matching loss to encourage Er to be closer to each pixel in F,,
while mitigating the influence of the occlusion edges. The edge matching loss is

defined as:

1
Eedge Eanire— Z dclip2D(u7 ET)7 (311)
’Em| uEEm

where d;p2p(u, E7) denotes the distance between a 2D edge pixel w in E,,, and
the entire 7. In order to address the negative effects of occlusion edges in E,,,
this distance is clipped by setting a threshold ¢hsp. The clipped distance is defined

as:

ng(’U,, ET) if ng(’U,, ET) < tth,
deipap (u, Er) = (3.12)

thop otherwise,

where dop(u, Er) is computed as:
dop(u, Er) = min [lu’ —uf, (3.13)
u'€Er

The incorporation of edge supervision in our proposed framework enables the
extraction of detailed shape information of the vehicle in the input scene. This, in
turn, facilitates the more precise prediction of the deformation coefficients s* and

rigid transformation R* by the Predictor network 6%,

Color supervision. While the use of edge supervision and point matching can
be valuable in accurately identifying objects, they may not be adequate in distin-

guishing between objects with similar shapes. Therefore, the inclusion of color

doi:10.6342/NTU202302077



3. Proposed Method 14

supervision is essential as it can improve the accuracy of the deformable template
matching by ensuring that 7" is matched with the intended target object and not
with something similar in shape. The primary objective of the color supervision is
to facilitate similarity between the global representations of color values C, which
correspond to the points that are matched by the template, and the color values C,
of the car present in the image I that has been cropped by m. To be more specific,

Cr is obtained by:
CT = {[Kx | Va € L, > d(m,T) < tth}, (314)

where K refers to the same projection matrix as in Eqn. 3.2 and I, is the nearest
pixel value on I with respect to the projected point Kx. On the other hand, the
color values in the masked image C,, are obtained by selecting the colors of pixels
in the masked image based on m.

To encourage similarity between the global representations of C'r and C,,,, we
introduce a Color Encoder 0¢. The Color Encoder is combined with the color
contrastive loss, which is used to promote similarity between positive pairs of

representations. The color contrastive loss, denoted by L., is defined as follows:

‘Ccolor = ‘Ccon(fma fT)a (315)

where L., () is a contrastive loss. Although we do not impose any restrictions
on the selection of this contrastive loss, we acknowledge that some contrastive
learning-based techniques may necessitate a large number of negative pairs, which
can be computationally expensive. Therefore, we adopt the Barlow Twins loss
function [22] in our methodology, which does not necessitate the observation of
negative examples. The global color representations of C),, and C are denoted as

f., and f, respectively, and can be computed as follows:
frn=0°(Cn), (3.16)

fr=09Cr). (3.17)

doi:10.6342/NTU202302077



3. Proposed Method 15

With the color supervision design, our method is able to accurately distinguish
between objects with similar shapes, as the color information helps match 7" with

the intended target object.

3.3 Training and obtaining pseudo-bounding box

During training, we summed up Lyoint, Lsegs Ledge, and Leoior to form the full
objective of our proposed DTMNet framework. The objective allows for accurate
matching of the template with the car present in the scene and generates a 3D
pseudo-bounding box (i.e., directly calculate the width, height, and length of
the template as the size of the pseudo-bounding box, with R* applied as the
transformation), which in turn facilitates the training of a 3D object detector
without the need for 3D annotations. Our experimental results demonstrate that our
proposed framework outperforms existing methods in various settings, including

image-based and LiDAR-based 3D object detection tasks.

L= Epoint + ‘Cseg + £edge + £colora (318)
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Chapter 4

Experiments

4.1 Dataset and implementation details

4.1.1 Dataset

We utilize the KITTI Object Detection dataset [23] for our experiments. This
benchmark contains 7481 training pairs of RGB images and point clouds along
with 2D instance mask and 3D bounding box annotations of three different classes,
1.e., cars, cyclists, and pedestrians. Note that the only annotation used in our
approach is the 2D instance mask. We follow the standard protocol in [24] and split
the dataset into a training set (3,712 samples) and a validation set (3,769 samples).

In our experiments, we evaluate our approach on the car category samples only.

4.1.2 Implementation Details

We utilize the PyTorch library [25] to implement our proposed approach. To
construct the Predictor OF, Segmentor §°, and Color Encoder ¢, we employ
PointNet-like architectures [26]. We set the number of points in the car template
M (-), denoted as Nr, to 3072. The threshold thsp defined in Eqn. 3.9 is initialized
at 1.5 meters and is gradually reduced by 0.2 meters per epoch until it reaches 0.7

meters. On the other hand, threshold thyp in Eqn. 3.12 is set to 10. The value of

16
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Supervision APgpy [APsp(IoU = 0.5)
Method Inference
2D 3D easy moderate hard
Patchnet [7] Mono v 71.70/68.26 50.60/47.93 43.29/41.38
VS3D (Mono) [12] Mono v - /3135 - /2392 - /1934
WeakM3D [16] Mono v 58.20/50.16 38.02/29.94 30.17/23.11
Patchnet (Ours) Mono v 71.07/64.53 50.16/42.30 42.63/38.26
PointRCNN [5] LiDAR v 97.74/97.70  89.88/89.84 89.35/89.25
PointPillars [6] LiDAR v 97.46/97.23 93.70/93.70 91.37/88.99
VS3D (LiDAR) LiDAR v - /4243 - /4158 - /3274
Zakharov et al. [1] LiDAR V 94.90/90.70 88.50/71.10 -/ -
McCraith et al. [15] LiDAR v 86.52/83.45 86.22/79.53 75.53/71.01
PointRCNN (Ours) LiDAR v 95.71/94.84 88.37/87.60 87.51/86.15
PointPillars (Ours) LiDAR Vv 96.83/90.33 89.49/88.48 85.13/79.46

Table 4.1: Performance comparisons on KITTI validation set for cars.In this
table, the Inference column refers to the input modality for inference, where Mono

denotes monocular images and LiDAR denotes LiDAR point clouds.

N(z) is determined by counting the number of points that are situated within a
distance of 0.1 meters from the point . During training, we use a single NVIDIA
RTX 3090Ti GPU with a batch size of 32 and a learning rate of 0.01 using the
ADAM optimizer [27] for 30 epochs.

4.2 Weakly supervised 3D object detection

4.2.1 Quantitative evaluation

We now present a quantitative evaluation of our proposed DTMNet. To show the
effectiveness and reliability of our approach, we train several state-of-the-art 3D
object detectors with our 3D pseudo-bounding boxes, including both image-based

(PatchNet [7]) and LiDAR-based (PointRCNN [5], PointPillars [6]) methods. We
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Figure 4.1: Qualitative results of 3D object detection. The green boxes are the

3D object detection results of our method, and the orange boxes are the ground

truth 3D bounding boxes.

compare our results against several state-of-the-art weakly supervised approaches,
including VS3D [12], WeakM3D [16], Zakharov et al. [1], and McCraith et
al. [15]. To ensure a fair comparison, we utilize the average precision for both BEV
and 3D boxes with a 0.5 IoU threshold, as suggested by prior relevant works [12, 1],
in all difficulty categories. We summarize our quantitative comparisons in Table 4.1,
which shows that our proposed DTMNet method achieves the best scores in
all metrics, surpassing many other existing approaches by a significant margin,
particularly in the hard category. It is worth noting that Zakharov et al. used
their method to generate pseudo labels for training PointPillars, which should
be compared with the performance of PointPillars trained with our 3D pseudo-
bounding boxes. Moreover, we also compare our proposed DTMNet approach
with supervised methods by training the aforementioned 3D object detectors with
ground truth 3D bounding boxes. The experimental results reveal that our method

achieves 90% of the performance of the supervised methods in all metrics.

4.2.2 Qualitative result

To further demonstrate the effectiveness of our proposed method, we provide
qualitative results of 3D object detection in Fig. 4.1 to illustrate its superior perfor-

mance. The results show that the detector trained with our 3D pseudo-bounding
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Figure 4.2: Qualitative results of 3D pseudo-bounding boxes. The green shapes
are the transformed templates, and the green boxes are the corresponding 3D
pseudo-bounding boxes. The orange boxes are the ground truth 3D bounding

boxes.

boxes is able to detect 3D car objects occluded by other objects. Furthermore, we
showcase some of the transformed templates and their corresponding 3D pseudo-
bounding boxes in Fig. 4.2 to verify the effectiveness of our method. We also
present the qualitative comparison of 3D pseudo-bounding box results generated by
our proposed DTMNet and Zakharov ef al. [1]. The results are shown in Fig. 4.3.
From this figure, we observe that although Zakharov et al. optimizes the 3D car
shape to match it with the 2D mask and LiDAR point cloud, such a method is
insufficient in matching cars located far away from the sensors due to the sparsity
of the LiDAR point cloud. On the other hand, our DTMNet is able to precisely
detect distant cars, which validates our claim that the edge and color supervision
in our proposed approach is capable of extracting detailed shape information of
distant cars, even in situations where the LiDAR point cloud is too sparse to be
recognized. The visualizations demonstrate that our approach generates accurate
and precise 3D pseudo-bounding boxes, which in turn leads to improved object

detection performance.
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ik

Figure 4.3: Qualitative comparison of 3D pseudo-bounding boxes. Each column
in the figure represents the result of a single scene. The first row shows the images
of each scene, while the second row displays the LiDAR point cloud of each scene.
The 3D pseudo-bounding boxes predicted by our DTMNet are represented by the
green boxes, while the purple boxes show the 3D pseudo-bounding boxes generated
by Zakharov et al. [1]. The ground truth 3D bounding boxes are represented by the

orange boxes.
4.3 Ablation Study

In this study, we first present an ablation analysis of the architecture of DTMNet in
Table 4.2. Our objective is to investigate the contribution of each component to the
overall performance of the proposed method. We start by establishing the baseline
method A, which employs only the point matching and a mean car template to
generate 3D pseudo-bounding boxes for training a PointRCNN [5] model without
considering filtering out noise, edge supervision, or color supervision. We then filter
out noise with segmentor §° (method B) to reduce noise and improve the overall
performance. By adding back the deformable car template (method C), we obtain
an improvement in average precision. In method D, we introduce edge supervision,
which leads to a further improvement in performance. Finally, the inclusion of color
supervision (method E) results in the best overall performance. Our ablation study
shows that each component of the proposed method contributes to its effectiveness,
and incorporating all components results in the highest performance.

As an essential component of our approach, we compare the methods of
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APBEv/AP3D(IOU = 05)

Method  Lpoint Lseg deform.  Legge  Leotor

easy moderate hard
A v 81.53/63.89 72.38/57.38 63.92/50.17
B v v 87.27/73.61 81.44/68.53 72.19/60.37
C v v v 94.48 /8795 87.43/85.65 85.98/83.11
D v v v v - 94.75/88.48 88.29/86.64 87.45/84.23
E v v v v v’ 95.71/94.84 88.37/87.60 87.51/86.15

Table 4.2: Ablation study of our proposed framework. In this table, deform.
denotes the usage of deformable car template. All ablation studies use PointRCNN

as the 3D object detector. Please refer to Sect. 4.3 for the details.

APBEv/ApgD(IOU = 05)
Method

easy moderate hard

mask  90.06/86.84 86.93/84.05 78.33/75.86
edge  95.71/94.84 88.37/87.60 87.51/86.15

Table 4.3: Comparisons of edge matching and mask matching. Note that we

use PointRCNN as the 3D object detector.

edge supervision with mask supervision in Table 4.3 to verify the effectiveness
of edge supervision. Specifically, the mask supervision method in Table 4.3
ensures matching with 2D car mask m and the projection mask mask(KT') of
the transformed template 7' instead of only matching between their edges as in
our proposed edge supervision. The results demonstrate that the edge matching
method outperforms the mask matching method, indicating that explicitly focusing
on the edges is better suited for guiding our predictor 6%,

We also conduct an experiment using a contrastive loss proposed in NT-
Xent [28] as our color supervision loss to compare with the Barlow Twins loss

used in our approach. The results in Table 4.4 show that while our method is not

doi:10.6342/NTU202302077



4. Experiments 22

APBEv/AP3D<IOU = 05)
Method

easy moderate hard

NT-Xent [28] 05.33/94.59 87.88/87.05 86.21/84.36
Barlow Twins [22] 95.71/94.84 88.37/87.60 87.51/86.15

Table 4.4: Comparisons of different contrastive losses. Note that we use PointR-

CNN as the 3D object detector.

restricted to using a specific contrastive loss, Barlow Twins outperforms NT-Xent
by a small margin. Note that NT-Xent loss function requires a large number of
negative samples, and therefore the performance gap in Table 4.4 is reasonable.
Finally, We perform qualitative ablation analysis. As depicted in Figure 4.4,
we compare the template matching results with the mean car template M, and the
deformable car template M (-) (as mentioned in Sect. 3.1 of our main paper). It
is evident that the mean car template ), fails to match with the diverse range of
real-world cars, thus affirming the justification for our approach. Our proposed
weakly supervised deformable template matching technique effectively enables
accurate matching with cars of various shapes. With the deformable template
matching technique, we further compare the template matching results using edge
and color supervision versus no edge and color supervision. As illustrated in
Figure 4.5, The results show that integrating both edge and color supervision yields

more robust and accurate matching outcomes when dealing with car occlusions.

4.4 Additional Experiment Results

We now provide more experiment results of our proposed method. we conduct ad-
ditional experiments for pedestrians from KITTI, which consists of 2104 training
samples and 2172 validation samples. Table 4.5 shows that our weakly super-

vised method was able to achieve comparable performance as the fully-supervised
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Image Mean. Deform.

Figure 4.4: Template Matching with Various Templates Each row in the figure
corresponds to a single car and depicts the outcomes obtained using different
templates. The Image column presents the 2D bounding box of the car. The Mean
column denotes the results using the mean car template M, while the Deform
column displays the outcomes achieved using a deformable car template M (-).
The transformed template predicted by our DTMNet is represented by the green

points, whereas the red edges correspond to the edges of 2D car masks.

method did. This result also supports the effectiveness of our approach in handling

deformable objects from noisy point cloud data with weak supervision.

Supervision APgppy /APsp(IoU = 0.25)
Method Inference
2D 3D easy moderate hard
PointRCNN LiDAR v 67.41/67.40 60.40/60.26 54.51/54.45
PointRCNN (Ours) LiDAR VvV 63.63/63.51 57.18/57.01 51.13/50.90

Table 4.5: Performance comparisons on KITTI validation set for pedestrians. The
Inference column refers to the input modality for inference, where LiDAR denotes LiDAR

point clouds.
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Figure 4.5: Comparison of Using Edge and Color Supervision Each row in the
figure depicts the outcomes obtained for a single car and compares the use of edge
and color supervision versus no edge and color supervision. The Image column
presents the 2D bounding box of the car. The green points depict the transformed
template predicted by our DTMNet, while the red edges indicate the edges of the

2D car masks.
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Chapter 5

Conclusion

In this paper, we proposed a weakly supervised 3D object detection method via
deformable template matching. Our DTMNet enables 3D object detection without
3D annotated data during training. The proposed method utilizes LiDAR point
cloud, RGB image of the scene, and 2D car mask in the image to derive 3D
pseudo-bounding boxes for training the 3D detector. Our DTMNet leverages edge
supervision and color supervision to match the detailed geometry of the object and
prevent matching errors with non-target objects, respectively. Experimental results
demonstrated that our DTMNet outperformed state-of-the-art weakly supervised
methods and achieved comparable performance to recent methods trained in fully
supervised fashion. Thus, the use of our proposed DTMNet for 3D object detection

can be sufficiently supported.

25
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