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中文摘要 

在訓練於具有偏見數據集上的學習模型往往會觀察到類別和不良特徵之間的

相關性，導致模型性能下降。大多數現有的去偏差化學習模型是為集中式機器學習

而設計的，無法直接應用於保護隱私的分散式設置，如在不同客戶端收集數據的聯

邦學習。為了應對具有挑戰性的去偏差化聯邦學習任務，我們提出了一種新穎的聯

邦學習框架，稱為偏差消除資料增強學習（FedBEAL），該框架學習使用偏差消除資

料增強器（BEA）在每個客戶端生成特定於客戶端的偏差衝突樣本。由於事先不知

道偏差類型或屬性，我們提出了一種獨特的學習策略，以共同訓練 BEA 和提出的

聯邦學習框架。我們對具有各種偏差類型的數據集進行了廣泛的圖像分類實驗，以

證實 FedBEAL 的有效性和可應用性，在去偏差化聯邦學習的性能上表現優於最先

進的去偏差化方法和聯邦學習方法。 
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Abstract

Learning models trained on biased datasets tend to observe correlations between

categorical and undesirable features, which result in degraded performances. Most

existing debiased learning models are designed for centralized machine learning,

which cannot be directly applied to distributed settings like federated learning

(FL), which collects data at distinct clients with privacy preserved. To tackle the

challenging task of debiased federated learning, we present a novel FL framework

of Bias-Eliminating Augmentation Learning (FedBEAL), which learns to deploy

Bias-Eliminating Augmenters (BEA) for producing client-specific bias-conflicting

samples at each client. Since the bias types or attributes are not known in advance,

a unique learning strategy is presented to jointly train BEA with the proposed FL

framework. Extensive image classification experiments on datasets with various

bias types confirm the effectiveness and applicability of our FedBEAL, which

performs favorably against state-of-the-art debiasing and FL methods for debiased

FL.
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Chapter 1

Introduction

Deep neural networks have shown promising progress across different domains

such as computer vision [1] and natural language processing [2]. Their successes

are typically based on the collection of and training on data that properly describe

the inherent distribution of the data of interest. However, in real-world scenarios,

biased data [3] are often observed during data collection. Biased datasets [4, 5, 6]

contain features that are highly correlated to class labels in the training dataset but

not sufficiently describing the inherent semantic meaning. Training on such biased

data thus result in degraded model generalization capability. Take Fig. 1.1 for

example; when addressing the cat-dog classification task, training images collected

by users might contain only orange cats and black dogs. Their color attributes are

strongly correlated with the image labels during training, but such attributes are

not necessarily relevant to the classification task during inference. As pointed out

in [5, 6], deep neural networks trained with such biased data are more likely to

make decisions based on bias attributes instead of semantic attributes. As a result,

during inference, performances of the learned models would dramatically drop

when observing bias-conflicting samples (i.e., data containing semantic and bias

attributes that are rarely correlated in the training set).

To tackle the data bias problem, several works have been proposed to remove

or alleviate data bias when training deep learning models [3, 7, 8, 9, 10, 11, 12, 13].

1
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Figure 1.1: Example of local data bias in FL. When deploying FL to train a

cat-dog classifier with image datasets collected by multiple pet owners, most

of the local images are obtained with their pets with specific colors. Therefore,

the models trained with each local dataset are likely to establish decision rules

on biased attributes (e.g., fur color), which prevents the aggregated model from

learning proper representation for classification.

For example, Nam et al. [10] train an intentionally biased auxiliary model while

enforcing the main model to go against the prejudice of the biased network. Lee

et al. [11] utilize the aforementioned biased model to synthesize diverse bias-

conflicting hidden features for learning debiased representations. Nevertheless,

the above techniques are designed for centralized datasets. When performing

distributed training of learning models, such methods might fail to generalize.

For distributed learning, federated learning (FL) [14] particularly considers data

collection and training conducted at each client, with data privacy needing to be pre-

served. When considering privately distributed datasets, real-world FL applications
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are more likely to suffer data heterogeneity issues [15, 16, 17], i.e., data collected

by different clients are not independent and identically distributed (IID). Recently,

several works [18, 19, 20, 21, 22, 23, 24] propose to alleviate performance degra-

dation caused by data heterogeneity. However, existing methods typically consider

data heterogeneity in terms of label distribution skew [18, 19, 20, 21, 22] or domain

discrepancy [23, 24] among clients. These FL methods are not designed to tackle

potential data bias across different clients, leaving the debiased FL a challenging

task to tackle.

To mitigate the local bias in Federated learning, we propose a novel FL scheme

of Bias-Eliminating Augmentation Learning (FedBEAL). In FedBEAL, we learn

a Bias-Eliminating Augmenter (BEA) for each client, with the goal of producing

bias-conflicting samples. To identify and introduce the desirable semantic and

bias attributes to the augmented samples, our FedBEAL uniquely adopts the

global server model and each client model trained across iterations without prior

knowledge of bias type or annotation. With the introduced augmenter and the

produced bias-conflicting samples, debiased local updates can be performed at

each client, followed by simple aggregation of such models for deriving the server

model.

We now summarize the contributions of this work below:

• To the best of our knowledge, We are among the first to tackle the problem

of debiased federated learning, in which local yet distinct biases exist at the

client level.

• We present FedBEAL for debiased FL, which introduces Bias-Eliminating

Augmenters (BEA) at each client with the goal of generating bias-conflicting

samples to eliminate local data biases.

• Learning of BEA can be realized by utilizing the global server and local

client models trained across iterations, which allows us to identify and embed

desirable semantic and bias features for augmentation purposes.
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Chapter 2

Related Work

2.1 Debiasing in Centralized Machine Learning

With the presence of biased datasets, neural networks are prone to relying on

simpler features (e.g., color information) and remaining invariant to other predictive

complex features [5, 6] (e.g., semantic information), which limit the performances

of the learned models. Several works [25, 7, 26, 9] propose debiasing techniques

to improve the robustness of the model trained on such biased datasets. However,

they either assume the bias type to be known (e.g., texture bias) in advanced [7]

or require auxiliary annotations of the bias attributes (e.g., color information) for

each sample [25, 26, 9]), which might not be practically available. To alleviate this

concern, some research works [10, 11, 12, 27] focus on mitigating dataset biases

without presuming bias categories or involving additional annotations. For instance,

Nam et al. [10] train a biased model by repeatedly amplifying its prejudice. Based

on the assumption that biased models fail on bias-conflicting samples, they further

upweight the bias-conflicting samples so that a debiased model can be trained

accordingly. Lee et al. [11] follow the above approach to debias the main model by

disentangling the semantic and bias features. On the other hand, Hong et al. [12]

apply contrastive learning [28, 29] to encourage intra-bias feature dissimilarities.

Although the above methods have shown promising performances, they are mainly

4
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applicable to centralized learning schemes. For distributed learning like federated

learning, these methods cannot be directly applied.

2.2 Federated Learning with Data Heterogeneity

Label distribution skew.. Under the heterogeneous label distribution, existing

methods [18, 19, 20, 21, 22, 30, 31] focus on correcting client drift using global

information. For example, FedProx [18] adds a regularization term to preserve

consistency between local updates and the global model. SCAFFOLD [19] miti-

gates gradient dissimilarity using control variates. MOON [21] addresses non-IID

problems by applying contrastive learning at the model level.

Distribution shift across clients.. As for feature distribution drift (also known as

domain shift), previous FL works [23, 24] are designed to bridge the domain gap

between different clients. For instance, FedBN [23] choose to fix the parameters

for local Batch Normalization and do not synchronize them with the global model.

As for FCCL [24], it views domain shift as a catastrophic forgetting problem and

approaches it by using knowledge distillation techniques.

Debiased federated learning.. Recently, a number of FL works [32, 33, 34, 35,

36] are proposed to eliminate local biases from the training data. In [33, 34], such

biases are referred to as label distribution skew. For example, [33] uses the term

local learning bias to describe decision boundaries discrepancy among networks

trained on heterogeneous data. As for [35, 36], additional efforts are made to

take care of underprivileged or sensitive data subsets (e.g., racial, gender groups).

For example, Ezzeldin et al. [36] propose a fairness-aware FL framework for

preventing the trained model from being biased toward an underlying demographic

group, aiming to produce a fair model across clients while maintaining high utility.

It can be seen that we are among the first to address the learning task of debiased

federated learning, in which undesirable correlations of bias attributes and class
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labels are observed at each client.
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Chapter 3

Proposed Method

3.1 Problem Definition and Method Overview

Problem definition. For the sake of completeness, we first define the problem

setting and notations used in this paper. We assume that training image data are

privately distributed in K clients D = {D1, D2, ..., DK}, each containing a set of

image-label pairs Dk = {(x, y) | Pk(X = x, Y = y)}. To formulate local data

biases, we follow Hong et al. [12] and assume that images X can be decomposed

into semantic attributes Asem and hidden bias attributes Abias. Note that Asem

is expected to describe categorical information, while Abias contains undesirable

features highly correlated with Y . As depicted in 1.1, we assume each client with

disparate bias-label correlations (i.e., ∀k ̸=k′Pk(Y |Abias) ̸= Pk′(Y |Abias)). On the

other hand, since this work focuses on mitigating local client bias instead of the

bias of the global dataset D, we assume the union of all local training datasets

shares the same bias distribution with the test dataset Dtest (i.e., P (Y |Abias) =

Ptest(Y |Abias)). With a total of T communication rounds, the goal of debiased FL

is to derive a model f that satisfies

arg min
f

ΣK
k=1
|Dk|
|D|
Lk(f), (3.1)

where Lk(f) = E(x,y)∼Dk
[ℓ(f(x), y)] represents the empirical loss of client k.

7
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Method overview. Based on FedAvg [14], our proposed Bias-Eliminating Aug-

mentation Learning (FedBEAL) trains a network robust to data bias observed

at each client. Similar to standard FL, training of FedBEAL requires alternative

optimization between the two stages. More specifically, debiased local update is

performed at the client side, and global aggregation is conducted at the server side.

To address local bias problems, we uniquely propose to learn a Bias-Eliminating

Augmenter (BEA) gk for each client k. As depicted in 3.1, BEA is deployed to

generate bias-conflicting samples and allows updates of each fk. As for the global

aggregation stage, each fk will be uploaded to the server for producing a debiased

global model f . We now detail our proposed learning scheme below.

3.2 Bias-Eliminating Augmenter

To eliminate the local bias in FL, we propose to deploy Bias-Eliminating Aug-

menters at each client. Since the bias information is unknown, how to design BEA

for creating bias-conflicting samples within each local client would be challenging.

With local image data and their class labels observed, we now explain how our

BEA can be learned in an FL scheme.

3.2.1 Design and architecture

As depicted in 3.2, for each client k, we randomly sample two samples xi and xj

with distinct labels from the local dataset Dk. Inspired by recent mixed sample

data augmentation (MSDA) techniques [37, 38, 39, 40, 41, 42, 43], we produce

the mixed bias-conflicting sample x̃ by utilizing U-Net as the backbone, with a

modulator M ∈ [0, 1]H×W ×3 deployed. With the concatenation of xi and xj as the

input to BEA, the output x̃ can be expressed as:

x̃ = M ⊙ xi + (1−M)⊙ xj, (3.2)

where ⊙ indicates the element-wise multiplication, and we have ỹ = yi for the

manipulated output (i.e., the class label of x̃ is identical to that of xi).
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For x̃ being a bias-conflicting example, it would be desirable for x̃ to share the

same semantic attribute with xi (i.e., ãsem of x̃ to be closed to ai
sem of xi), while

sharing the same bias attribute with xj (i.e., ãbias of x̃ to be closed to aj
bias of xj).

Once such bias-conflicting samples are obtained, one can train the associated client

model and update the global model accordingly, which is expected to produce

debiased representations.

3.2.2 Learning of BEA

Without prior knowledge of bias types, providing guidance to train the BEA would

not be straightforward. In order to have BEA identify desirable intrinsic semantic

and inherent bias attributes for manipulating bias-conflicting samples, we propose

a unique learning scheme utilizing the global server model f t and local client

model f t−1
k .

Extracting semantic attributes via unbiased global prediction.. For a bias-

conflicting sample x̃, its semantic attribute ãsem is expected to be similar to ai
sem

of xi. In FL, since the global server model f t is derived by global aggregation,

f t can be considered relatively unbiased when compared to the local model f t−1
k

produced at the previous iteration. Thus, it would be desirable for ãsem and ai
sem

to exhibit large similarity, which can be derived from the difference between the

predictions of x̃ and xi derived from the global model f t. To be precise, the loss

function for encouraging such semantic attribute consistency is defined as:

L = dKL(f t(x̃), f t(xi)), (3.3)

where dKL calculates the KL divergence between the predictions using f t.

Producing bias attributes via biased local prediction.. On the other hand, for

a bias-conflicting sample x̃, its bias attribute ãbias is expected to be similar to aj
bias

of xj , which is sampled from an instance from a different category (as described

in 3.2.1).
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To identify and relate such bias attributes, we take the local client model f t−1
k

as the guidance. Note that, compared to the aggregated server model, client models

produced at prior iterations are considered to be affected more by local biased

data, which is more likely to predict the output f t−1
k (x) based on its hidden bias

attributes. Therefore, we define the similarity between the bias attributes ãbias and

aj
bias, which is now calculated and guided by the difference between the predictions

of x̃ and xi using f t−1
k . Specifically, we minimize:

Lk = dKL(f t−1
k (x̃), f t−1

k (xj)), (3.4)

where (t− 1) denotes the training round.

From the above design and derivation, we have the objective for training BEA

as:

Ltotal = L+ Lk. (3.5)

As depicted in 3.2, via minimization of L, BEA will be optimized so that the

semantic attribute ãsem of x̃ will be updated and be close to ai
sem of xi. On the

other hand, minimizing Lk encourages the bias attribute ãbias of x̃ to be updated as

aj
bias of xj . In other words, optimization of BEA would encourage the generated

samples whose semantic and bias attributes are extracted from training data of

distinct classes.

While our BEA can be viewed as performing mixed-sample data augmentation,

existing MSDA methods [37, 38, 39, 40, 41, 42, 43] are only designed to produce

handcrafted augmentation outputs, which may not necessarily to be bias-conflicting.

For example, spatial location-based augmentations (e.g., CutMix [37], FMix [38])

only fuse two images by replacing a region of one image with that from another,

alleviating only high-level bias (e.g., background bias [10]). Style-based augmen-

tations [40, 39, 43] are only capable of alleviating low-level biases by mixing style

and content from distinct images. As verified in 4, learning of BEA would be

desirable for debiased FL.
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Algorithm 1: Training of FedBEAL
Input: T , Tw, K, D = {D1, D2, ..., Dk}, p, g1, g2, ..., gK , f0, local epochs Eg and Ef ,

learning rate ηg and ηf

1 for t = 0, 1, ..., T − 1 do

2 for k = 1, 2, ..., K in parallel do

3 if t ≥ Tw then

4 TrainBEA(f t, f t−1
k )

5 end

6 f t
k ← LocalUpdate(f t)

7 f t+1 ← ΣK
k=1

|Dk|
|D| f t

k

8 end

9 end

Output: return fT

10 TrainBEA(f t, f t−1
k )

11 for e = 1, 2, ..., Eg do

12 for (xi, xj) of Dk do

13 x̃← gk(xi, xj)

14 L← dKL(f t(x̃), f t(xi))

15 Lk ← dKL(f t−1
k (x̃), f t−1

k (xj))

16 Ltotal ← L + Lk

17 gk ← gk − ηg∇Ltotal

18 end

19 end

20 LocalUpdate(f t)

21 f t
k ← f t

22 for e = 1, 2, ..., Ef do

23 for (xi, xj , yi, yj) of Dk do

24 if t ≥ Tw and Uniform(0, 1) < p then

25 x̃, ỹ ← gk(xi, xj), yi

26 Lcls ← CrossEntropy(f t
k(x̃), ỹ)

27 end

28 else

29 Lcls ← CrossEntropy(f t
k(xi), yi)

30 end

31 f t
k ← f t

k − ηf∇Lcls

32 end

33 end

34 return f t
k
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3.3 Training of FedBEAL

Debiased local update.. After BEA is learned and deployed at each client k, we

perform debias local updates by training each local model f t
k using additionally pro-

duced bias-conflicting data pairs (i.e., x̃ and ỹ). To further improve the robustness

of our framework, we follow [37] to consider several techniques at this local update

stage. That is, we define p ∈ [0, 1] as the probability of augmenting each data batch

to control the degree of debiasing. Moreover, we define the warm-up round Tw

(i.e., BEA is activated after round Tw) to avoid undesirable augmentation outputs

harmful to local training happening in the beginning stage. With bias-conflicting

data and the introduced learning techniques, we are able to enforce the local model

to be better guided by the semantic information while suppressing the bias.

Global aggregation.. For each training iteration, once the debiased local updates

are performed, we then collect and aggregate the learned weights of each local

model (weighted by the size of the corresponding local dataset [14]). To be more

specific, the global model for the next round f t+1 can be calculated as follows:

f t+1 = ΣK
k=1
|Dk|
|D|

f t
k. (3.6)

With the convergence of the overall training process, the final global model can be

applied to perform classification on unbiased test data. The pseudo-code of our

complete FedBEAL framework is summarized in 34.
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(a) FedAvg

(b) FedBEAL

Figure 3.1: Comparisons between (a) FedAvg and (b) FedBEAL. Our FedBEAL

learns Bias-Eliminating Augmenters (BEA) to produce bias-conflicting samples at

each client, allowing the learned model to produce improved debiased representa-

tions.
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Figure 3.2: Design and learning of Bias-Eliminating Augmenter. Given two

randomly selected images xi and xj at client k, the Bias-Eliminating Augmenter

(BEA) learns to produce a bias-conflicting sample x̃. That is, the semantic attribute

asem of x̃ is expected to be close to that of xi, while the bias attribute abias of x̃

would be extracted from xj . Note that f t and f t−1
k denote the server and client

models learned at t-th and (t− 1)-th iterations, respectively.
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Experiments

4.1 Datasets and Implementation Details

Datasets.. To evaluate the effectiveness and applicability of our learning scheme

in different types of bias, we consider three commonly used biased datasets,

including Colored MNIST [44] (with color bias), Corrupted CIFAR-10 [45] (with

corruption bias), and Collage CIFAR-10 [27] (with collaged images as bias).

Colored MNIST contains images of hand-written digits colorized with different

colors. Corrupted CIFAR-10 includes images applied with random corruptions

(e.g., noises, blurring, brightness/contrast adjustment). In Collage CIFAR-10, a

sample is combined with four images originating from four different datasets,

including MNIST [46], Fashion MNIST [47] and SVHN [48] that jointly serve

as bias attributes, and CIFAR-10 [49] as the semantic information. As noted in

3.1, we distribute the training set to K clients, where K is set to 10 across all our

experiments. To quantify the severity of local bias in training data, we further

define the ratio for the amount of biased local data β.

Implementation details.. For Colored MNIST, Corrupted CIFAR-10, and Col-

lage CIFAR-10, input images are resized to 28× 28, 32× 32, and 64× 64 pixels.

For simplicity, we use LeNet [46] as the classifier f for Colored MNIST and

15
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ResNet-18 [1] for Corrupted CIFAR-10 and Collage CIFAR-10. A U-Net [50]

with the encoder of ResNet-18 is adopted as the augmenter g. The communication

round T is set to 100. For each round, each client train their g and f sequentially

for 5 epochs using the SGD optimizer, with the batch size of 64, the learning rate

of 0.01, the momentum of 0.9, and the weight decay of 0.00001. We implement

our model using PyTorch, and conduct training on a single NVIDIA 3090 GPU

with 24GB memory.

4.2 Quantitative Evaluation

4.2.1 Comparisons to debiasing and FL methods

We first compare proposed learning scheme with existing centralized debiasing [10,

12, 11] and heterogeneous federated learning [14, 18, 19, 21, 23] methods. In

our experiments, SOLO and FedAvg [14] are viewed as baselines. The former

only performs local training without global averaging of client models, while the

latter is the fundamental framework for all the other methods reported in this

section. Note that we report the mean accuracy of each local model in SOLO.

As shown in 4.1, we evaluate state-of-the-art methods with the three datasets

with β set from 0.99 to 0.999. From the upper half of 4.1, we applied existing

debiasing methods designed for centralized machine learning [10, 12, 11] to debias

local update at each client. For example, SoftCon [12] enabled each client to

preserve intra-bias features dissimilarities to debias the model, which improved

the results of Colored MNIST with β of 0.999 by 13.72%. On the other hand,

from the bottom half of 4.1, existing FL approaches tackled data heterogeneity

by preserving the consistency between the local and global models. It can be

observed that such constraints were not sufficient to mitigate severe local bias and

only slightly improved the performance (e.g., FedProx [18] improved the accuracy

by 0.4% on Colored MNIST with β of 0.999). Instead, our FedBEAL performed

favorably against the above methods on all datasets (e.g., accuracy improvements
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of 19.32% on Colored MNIST with β of 0.999). These quantitative comparisons

verify that our proposed FL approach removes local biases across different clients

for improved classification performances.

4.2.2 Comparisons to MSDA methods

To further verify the effectiveness of our augmentation scheme, we further com-

pare our method with state-of-the-art mixed sample data augmentation algo-

rithms [51, 37, 40]. Existing handcrafted MSDA methods are generally designed

to handle particular types of bias and cannot easily generalize to bias types not

defined in advance. As shown in 4.2, MixStyle [40] benefited low-level biases

(e.g., color or corruption bias) by transferring style information of the images and

improved the accuracies from 5.99% to 26.53% on Colored MNIST and Corrupted

CIFAR-10. However, such augmentations was not able to mitigate high-level

biases (e.g., background bias [10]), as the performance of MixStyle dropped from

2.82% to 3.18% on Collage CIFAR-10. On the other hand, CutMix significantly

improved the accuracy by 27.07% on Collage CIFAR-10 with β of 0.999 since

the cut-and-paste operation efficiently removed high-level regional bias. How-

ever, it failed to handle low-level color and corruption biases in Colored MNIST

and Corrupted CIFAR-10 and degraded the performance from 7.64% to 13.12%.

Compared to such MSDA methods, our approach learns to find the optimal BEA

and thus exhibits more robust debiasing effects on various bias types. As shown

in the last column of 4.2, our method performed favorably compared to MSDA

approaches and achieved improved accuracy by 14.53%, indicating the robustness

and generalization capability of our augmentation scheme to different bias types.

4.2.3 Debiasing server and client models

As indicated in 3.2.2, the design and learning objectives for our BEA are based

on the assumption that local models are relatively biased compared to the global

aggregated one at each iteration. To verify this assumption, we quantitatively
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(a) Accuracy on biased dataset (b) Accuracy on unbiased dataset

(c) Bias level

Figure 4.1: Learning curve comparisons of global/local models from FedAvg

and FedBEAL on Colored MNIST. (a) and (b) show accuracies for biased and

unbiased datasets, and (c) compares the bias level S (see 4.1). Note that the local

model with FedBEAL shows improved debiased performance, and its global model

also exhibits improved unbias ability over FedAvg.
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compare the bias level of the global and local models in FedAvg and FedBEAL

on the Colored MNIST dataset. Given a biased dataset Dk from client k and an

unbiased testing dataset Dtest, we first define the bias level S of the local model f t
k

and the global model f t as follows:

S = 1− Accunbias

Accbias

, (4.1)

where Accbias and Accunbias are the accuracies evaluated on Dk and Dtest, respec-

tively. In other words, the model is biased (i.e., S is higher) if the model achieves

high accuracy on the biased dataset while performing relatively unfavorable on the

unbiased dataset.

Based on the above setting, we train our model on Colored MNIST with the

bias ratio β of 0.999. As illustrated in 4.1c, while the local model of FedBEAL

was relatively biased compared to the global model (see orange curves), we were

able to gradually debias such models for improved performances when comparing

to FedAvg. The above results support the design and learning scheme for the

proposed BEA.

4.3 Qualitative Evaluation

Representation visualization.. We now qualitatively assess the ability of Fed-

BEAL to derive semantic-aware and debiased feature representations. As shown

in 4.2, we apply t-SNE [52] to compare the hidden representation derived by the

global model of FedAvg and our approach on Colored MNIST. In 4.2a, we see that

features extracted by FedAvg were grouped according to bias attributes and were

not properly separated with respect to the class labels. In contrast, features derived

by our model remained relatively uncorrelated in terms of the bias attributes, and

the separation between different class clusters was more significant. The above

observation indicates that our proposed bias-eliminating augmentation learning

allows the derivation of discriminative and debiased features.
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(a) FedAvg

(b) FedBEAL

Figure 4.2: t-SNE comparisons between FedAvg and FedBEAL on Colored

MNIST. Data points in the left column are colorized based on the bias attributes

(i.e., color), while those in the right column are colorized based on the class labels.
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Figure 4.3: Visualization of images produced by BEA. Based on the mask

learned by the BEA modulator M , the augmented bias-conflicting x̃ can be seen as

the mixture of the content from xi and the bias from xj .

Visualization of augmented bias-conflicting samples.. We now show example

augmented images x̃ produced by our method, which is expected to preserve

the categorical information of xi and impose the bias from xj . In 4.3, we first

see example images for Colored MNIST, and we observe x̃ obtained the digit

color from xj while preserving the original digit shape as of xi. From the second

image set of Corrupted CIFAR-10, x̃ inherited the high chromatic impluse noise

from xj while still maintaining semantically recognizable foreground objects. As

for Collage CIFAR-10, our modulators M successfully captured the unbiased

bottom-left image region for augmentation. From the examples, we confirm that

our proposed BEA is capable of capturing inherent dataset bias while preserving

desirable semantic attributes for augmenting bias-conflicting samples.

Grad-CAM visualization.. Grad-CAM [53] is commonly used to visually ex-

plain how deep learning models make classification decisions. To verify the effec-
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(a) FedAvg

(b) FedBEAL

Figure 4.4: Grad-CAM comparisons between FedAvg and FedBEAL on Col-

lage CIFAR-10. Compared to FedAvg results in (a), the attention map for Fed-

BEAL in (b) better identify the object region of interest for classification (in red

rectangles).
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tiveness of the proposed learning scheme, we consider FedAvg and our proposed

method on the Collage CIFAR-10 dataset with β of 0.99, and we apply Grad-CAM

to interpret the trained global models during classification (see 4.4). From 4.4a, we

see that the global model trained with FedAvg attended to ambiguous or irrelevant

image regions, implying the lack of ability to indicate regions with proper semantic

features for classification. In 4.4a), we see that the global model trained by our

proposed FedBEAL attended image regions on the augmented samples, which are

correlated to the categorical information of interest. This also explains the reason

why our FedBEAL is able to achieve satisfactory performances on debaised FL

tasks.
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Dataset Colored MNIST Corrupted CIFAR-10 Collage CIFAR-10

Bias ratio β 0.99 0.999 0.99 0.999 0.99 0.999

Baselines

SOLO 46.90 14.46 16.80 13.19 12.28 10.58

FedAvg [14] 93.90 72.67 49.03 40.28 52.93 36.91

Centralized Debiasing Methods

LfF [10] 87.64 55.27 53.47 42.25 46.53 26.96

SoftCon [12] 96.75 86.39 55.38 47.61 54.19 42.98

Lee et al. [11] 90.28 61.35 54.86 45.90 41.02 22.58

Data Heterogeneous Federated Learning

FedProx [18] 94.51 73.07 44.06 34.01 41.87 25.94

SCAFFOLD [19] 95.01 68.41 41.73 34.35 38.37 33.85

MOON [21] 93.33 69.37 36.79 26.06 34.71 19.97

FedBN [23] N/A N/A 48.46 36.52 46.51 32.53

Ours 98.58 91.99 59.18 49.09 69.53 64.53

Table 4.1: Comparisons to SOTA federated learning and debiasing algorithms.

Bold denotes the best result, while underline denotes the second best. Note that in

Colored MNIST, FedBN is not applicable due to disregard of Batch Normalization

layers.
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Dataset Colored MNIST Corrupted CIFAR-10 Collage CIFAR-10
Avg.

Bias ratio β 0.99 0.999 0.99 0.999 0.99 0.999

FedAvg [14] 93.90 72.67 49.03 40.28 52.93 36.91 57.62

Mixup [51] 91.38 74.76 53.98 40.85 50.13 37.65 58.13

CutMix [37] 82.73 59.55 41.39 31.69 71.26 63.98 58.43

MixStyle [40] 99.13 99.20 58.99 46.27 49.75 34.09 64.57

Ours 98.58 91.99 59.18 49.09 69.53 64.53 72.15

Table 4.2: Comparisons to MSDA methods for debiased FL. Bold denotes the

best result, while underline denotes the second best.
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Conclusion

In this paper, we addressed the challenging problem of debiased FL and pro-

posed FedBEAL for mitigating local biases. By introducing and learning Bias-

Eliminating Augmenters at each client, bias-conflicting samples can be automat-

ically learned. The learning of BEA can be simply utilized by the global server

and local client models obtained during the training progress, and thus no prior

knowledge of bias type or annotation would be required. We conducted extensive

experiments, including comparisons to state-of-the-art debiasing, FL, and MSDA

methods, and visualization of augmented images, which quantitatively and quali-

tatively confirmed the effectiveness and robustness of our proposed approach in

discovering and solving unknown dataset bias in federated learning schemes.

26
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