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Abstract

Learning models trained on biased datasets tend to observe correlations between
categorical and undesirable features, which result in degraded performances. Most
existing debiased learning models are designed for centralized machine learning,
which cannot be directly applied to distributed settings like federated learning
(FL), which collects data at distinct clients with privacy preserved. To tackle the
challenging task of debiased federated learning, we present a novel FL framework
of Bias-Eliminating Augmentation Learning (FedBEAL), which learns to deploy
Bias-Eliminating Augmenters (BEA) for producing client-specific bias-conflicting
samples at each client. Since the bias types or attributes are not known in advance,
a unique learning strategy is presented to jointly train BEA with the proposed FL.
framework. Extensive image classification experiments on datasets with various
bias types confirm the effectiveness and applicability of our FedBEAL, which
performs favorably against state-of-the-art debiasing and FL. methods for debiased

FL.
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Chapter 1

Introduction

Deep neural networks have shown promising progress across different domains
such as computer vision [1] and natural language processing [2]. Their successes
are typically based on the collection of and training on data that properly describe
the inherent distribution of the data of interest. However, in real-world scenarios,
biased data [3] are often observed during data collection. Biased datasets [4, 5, 6]
contain features that are highly correlated to class labels in the training dataset but
not sufficiently describing the inherent semantic meaning. Training on such biased
data thus result in degraded model generalization capability. Take Fig. 1.1 for
example; when addressing the cat-dog classification task, training images collected
by users might contain only orange cats and black dogs. Their color attributes are
strongly correlated with the image labels during training, but such attributes are
not necessarily relevant to the classification task during inference. As pointed out
in [5, 6], deep neural networks trained with such biased data are more likely to
make decisions based on bias attributes instead of semantic attributes. As a result,
during inference, performances of the learned models would dramatically drop
when observing bias-conflicting samples (i.e., data containing semantic and bias
attributes that are rarely correlated in the training set).

To tackle the data bias problem, several works have been proposed to remove

or alleviate data bias when training deep learning models [3, 7, 8, 9, 10, 11, 12, 13].

d0i:10.6342/NTU202301252



1. Introduction 2

Biased local dataset D, Biased local dataset D x

Cat <— Orange s Cat — Black

Dog <— Black Dog < Orange

Figure 1.1: Example of local data bias in FL. When deploying FL to train a
cat-dog classifier with image datasets collected by multiple pet owners, most
of the local images are obtained with their pets with specific colors. Therefore,
the models trained with each local dataset are likely to establish decision rules
on biased attributes (e.g., fur color), which prevents the aggregated model from

learning proper representation for classification.

For example, Nam et al. [10] train an intentionally biased auxiliary model while
enforcing the main model to go against the prejudice of the biased network. Lee
et al. [11] utilize the aforementioned biased model to synthesize diverse bias-
conflicting hidden features for learning debiased representations. Nevertheless,
the above techniques are designed for centralized datasets. When performing
distributed training of learning models, such methods might fail to generalize.
For distributed learning, federated learning (FL) [14] particularly considers data
collection and training conducted at each client, with data privacy needing to be pre-

served. When considering privately distributed datasets, real-world FL applications
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1. Introduction 3

are more likely to suffer data heterogeneity issues [15, 16, 17], i.e., data collected
by different clients are not independent and identically distributed (IID). Recently,
several works [18, 19, 20, 21, 22, 23, 24] propose to alleviate performance degra-
dation caused by data heterogeneity. However, existing methods typically consider
data heterogeneity in terms of label distribution skew [18, 19, 20, 21, 22] or domain
discrepancy [23, 24] among clients. These FL. methods are not designed to tackle
potential data bias across different clients, leaving the debiased FL a challenging
task to tackle.

To mitigate the local bias in Federated learning, we propose a novel FL scheme
of Bias-Eliminating Augmentation Learning (FedBEAL). In FedBEAL, we learn
a Bias-Eliminating Augmenter (BEA) for each client, with the goal of producing
bias-conflicting samples. To identify and introduce the desirable semantic and
bias attributes to the augmented samples, our FedBEAL uniquely adopts the
global server model and each client model trained across iterations without prior
knowledge of bias type or annotation. With the introduced augmenter and the
produced bias-conflicting samples, debiased local updates can be performed at
each client, followed by simple aggregation of such models for deriving the server
model.

We now summarize the contributions of this work below:

* To the best of our knowledge, We are among the first to tackle the problem
of debiased federated learning, in which local yet distinct biases exist at the

client level.

* We present FedBEAL for debiased FL, which introduces Bias-Eliminating
Augmenters (BEA) at each client with the goal of generating bias-conflicting

samples to eliminate local data biases.

* Learning of BEA can be realized by utilizing the global server and local
client models trained across iterations, which allows us to identify and embed

desirable semantic and bias features for augmentation purposes.

d0i:10.6342/NTU202301252



Chapter 2

Related Work

2.1 Debiasing in Centralized Machine Learning

With the presence of biased datasets, neural networks are prone to relying on
simpler features (e.g., color information) and remaining invariant to other predictive
complex features [5, 6] (e.g., semantic information), which limit the performances
of the learned models. Several works [25, 7, 26, 9] propose debiasing techniques
to improve the robustness of the model trained on such biased datasets. However,
they either assume the bias type to be known (e.g., texture bias) in advanced [7]
or require auxiliary annotations of the bias attributes (e.g., color information) for
each sample [25, 26, 9]), which might not be practically available. To alleviate this
concern, some research works [10, 11, 12, 27] focus on mitigating dataset biases
without presuming bias categories or involving additional annotations. For instance,
Nam et al. [10] train a biased model by repeatedly amplifying its prejudice. Based
on the assumption that biased models fail on bias-conflicting samples, they further
upweight the bias-conflicting samples so that a debiased model can be trained
accordingly. Lee et al. [11] follow the above approach to debias the main model by
disentangling the semantic and bias features. On the other hand, Hong et al. [12]
apply contrastive learning [28, 29] to encourage intra-bias feature dissimilarities.

Although the above methods have shown promising performances, they are mainly

4
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2. Related Work 5

applicable to centralized learning schemes. For distributed learning like federated

learning, these methods cannot be directly applied.

2.2 Federated Learning with Data Heterogeneity

Label distribution skew.. Under the heterogeneous label distribution, existing
methods [18, 19, 20, 21, 22, 30, 31] focus on correcting client drift using global
information. For example, FedProx [18] adds a regularization term to preserve
consistency between local updates and the global model. SCAFFOLD [19] miti-
gates gradient dissimilarity using control variates. MOON [21] addresses non-1ID

problems by applying contrastive learning at the model level.

Distribution shift across clients.. As for feature distribution drift (also known as
domain shift), previous FL works [23, 24] are designed to bridge the domain gap
between different clients. For instance, FedBN [23] choose to fix the parameters
for local Batch Normalization and do not synchronize them with the global model.
As for FCCL [24], it views domain shift as a catastrophic forgetting problem and

approaches it by using knowledge distillation techniques.

Debiased federated learning.. Recently, a number of FL works [32, 33, 34, 35,
36] are proposed to eliminate local biases from the training data. In [33, 34], such
biases are referred to as label distribution skew. For example, [33] uses the term
local learning bias to describe decision boundaries discrepancy among networks
trained on heterogeneous data. As for [35, 36], additional efforts are made to
take care of underprivileged or sensitive data subsets (e.g., racial, gender groups).
For example, Ezzeldin et al. [36] propose a fairness-aware FL framework for
preventing the trained model from being biased toward an underlying demographic
group, aiming to produce a fair model across clients while maintaining high utility.
It can be seen that we are among the first to address the learning task of debiased

federated learning, in which undesirable correlations of bias attributes and class
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labels are observed at each client.
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Chapter 3

Proposed Method

3.1 Problem Definition and Method Overview

Problem definition. For the sake of completeness, we first define the problem
setting and notations used in this paper. We assume that training image data are
privately distributed in K clients D = {Dy, Dy, ..., D}, each containing a set of
image-label pairs Dy = {(z,y) | P(X = z,Y = y)}. To formulate local data
biases, we follow Hong et al. [12] and assume that images X can be decomposed
into semantic attributes A..,, and hidden bias attributes A;;,.. Note that A..,,
is expected to describe categorical information, while A;,s contains undesirable
features highly correlated with Y. As depicted in 1.1, we assume each client with
disparate bias-label correlations (i.e., V2 Pp(Y | Apias) 7# P (Y| Apias))- On the
other hand, since this work focuses on mitigating local client bias instead of the
bias of the global dataset D, we assume the union of all local training datasets
shares the same bias distribution with the test dataset D;.q (i.e., P(Y|Apias) =
Prest (Y| Apias ). With a total of T communication rounds, the goal of debiased FL

is to derive a model f that satisfies

D
argmin 5 24 g (), G.1)
! D

where L, (f) = E)~n, [€(f(x),y)] represents the empirical loss of client k.

7
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3. Proposed Method 8

Method overview. Based on FedAvg [14], our proposed Bias-Eliminating Aug-
mentation Learning (FedBEAL) trains a network robust to data bias observed
at each client. Similar to standard FL, training of FedBEAL requires alternative
optimization between the two stages. More specifically, debiased local update is
performed at the client side, and global aggregation is conducted at the server side.
To address local bias problems, we uniquely propose to learn a Bias-Eliminating
Augmenter (BEA) g;, for each client k. As depicted in 3.1, BEA is deployed to
generate bias-conflicting samples and allows updates of each fj. As for the global
aggregation stage, each f; will be uploaded to the server for producing a debiased

global model f. We now detail our proposed learning scheme below.

3.2 Bias-Eliminating Augmenter

To eliminate the local bias in FL, we propose to deploy Bias-Eliminating Aug-
menters at each client. Since the bias information is unknown, how to design BEA
for creating bias-conflicting samples within each local client would be challenging.
With local image data and their class labels observed, we now explain how our

BEA can be learned in an FL scheme.

3.2.1 Design and architecture

As depicted in 3.2, for each client k, we randomly sample two samples x‘ and z/
with distinct labels from the local dataset D,. Inspired by recent mixed sample
data augmentation (MSDA) techniques [37, 38, 39, 40, 41, 42, 43], we produce
the mixed bias-conflicting sample z by utilizing U-Net as the backbone, with a
modulator M € [0,1]""*? deployed. With the concatenation of z* and 27 as the

input to BEA, the output Z can be expressed as:
=Mooz +(1-M) o, (3.2)

where @ indicates the element-wise multiplication, and we have § = y* for the

manipulated output (i.e., the class label of 7 is identical to that of z%).

d0i:10.6342/NTU202301252



3. Proposed Method 9

For 7 being a bias-conflicting example, it would be desirable for  to share the
same semantic attribute with z° (i.e., @se,, Of 7 to be closed to a’,, of &%), while
sharing the same bias attribute with 27 (i.e., Gpiqs Of 7 to be closed to agws of 27).
Once such bias-conflicting samples are obtained, one can train the associated client
model and update the global model accordingly, which is expected to produce

debiased representations.

3.2.2 Learning of BEA

Without prior knowledge of bias types, providing guidance to train the BEA would
not be straightforward. In order to have BEA identify desirable intrinsic semantic
and inherent bias attributes for manipulating bias-conflicting samples, we propose
a unique learning scheme utilizing the global server model f! and local client

model f{ .

Extracting semantic attributes via unbiased global prediction.. For a bias-

)

conflicting sample 7, its semantic attribute ds.,, 1s expected to be similar to a’,,,

of z*. In FL, since the global server model f* is derived by global aggregation,
f* can be considered relatively unbiased when compared to the local model f} "

i

produced at the previous iteration. Thus, it would be desirable for as.,, and a’,,

to exhibit large similarity, which can be derived from the difference between the
predictions of # and z* derived from the global model f*. To be precise, the loss

function for encouraging such semantic attribute consistency is defined as:

L =dir(f'(7), f'(a")), (3.3)
where d, calculates the KL divergence between the predictions using f*.
Producing bias attributes via biased local prediction.. On the other hand, for
a bias-conflicting sample Z, its bias attribute a;,s is expected to be similar to agias

of 7, which is sampled from an instance from a different category (as described

in3.2.1).

d0i:10.6342/NTU202301252



3. Proposed Method 10

To identify and relate such bias attributes, we take the local client model f{*
as the guidance. Note that, compared to the aggregated server model, client models
produced at prior iterations are considered to be affected more by local biased
data, which is more likely to predict the output f{~'(x) based on its hidden bias
attributes. Therefore, we define the similarity between the bias attributes ay;,s and
aiias, which is now calculated and guided by the difference between the predictions

of # and z' using f;~*. Specifically, we minimize:

Ly, =drr(fi1(@), fi7' (=), (3.4)

where (¢t — 1) denotes the training round.
From the above design and derivation, we have the objective for training BEA
as:

*Ctotal == »C + ﬁk (35)

As depicted in 3.2, via minimization of £, BEA will be optimized so that the
semantic attribute @s.,,, of Z will be updated and be close to a_ of z*. On the
other hand, minimizing £} encourages the bias attribute a;;,s of Z to be updated as
aﬁias of z7. In other words, optimization of BEA would encourage the generated
samples whose semantic and bias attributes are extracted from training data of
distinct classes.

While our BEA can be viewed as performing mixed-sample data augmentation,
existing MSDA methods [37, 38, 39, 40, 41, 42, 43] are only designed to produce
handcrafted augmentation outputs, which may not necessarily to be bias-conflicting.
For example, spatial location-based augmentations (e.g., CutMix [37], FMix [38])
only fuse two images by replacing a region of one image with that from another,
alleviating only high-level bias (e.g., background bias [10]). Style-based augmen-
tations [40, 39, 43] are only capable of alleviating low-level biases by mixing style

and content from distinct images. As verified in 4, learning of BEA would be

desirable for debiased FL.

d0i:10.6342/NTU202301252



3. Proposed Method 11

Algorithm 1: Training of FedBEAL
Input: T, T,,, K, D = {Dy, D5, ..., Dy}, p. g1, 92, ---. i, f°, local epochs E, and E¥,

learning rate 7, and 7

1 fort=20,1,....,T —1do

2 for k = 1,2, ..., K in parallel do
3 if t > T,, then

4 TrainBEA(f*, fi 1)

5 end

6 ft < LocalUpdate(f*)

. F e nK ‘\%k\lf/i

8 end

9 end

Output: return f7
10 TrainBEA(f?, fi~1)
n fore=1,2,...,F; do

12 for (z%, 27) of Dy do

13 T grp(2t, 2?)

14 L+ drr(fH(3), fi(z?))

15 Li + dgp(fi71(@), fi " (a9))

16 Liotar <= L+ Ly,

17 gk < gk — ﬁgVLtotal

18 end

19 end

20 LocalUpdate(f?)

n fl+ f!

2 fore=1,2,...,E¢ do

23 for (z%, 27, y*, y’) of Dy do

24 ift > T, and Uniform(0,1) < p then
25 T, 4+ gr(at, 27), ¥t

26 L5 < CrossEntropy(f}(z),7)
27 end

28 else

29 Les < CrossEntropy(fi(z),y")
30 end

3 fi = f = npVLas

32 end

33 end

34 return f}

doir10.6342/NTU202301252



3. Proposed Method 12

3.3 Training of FedBEAL

Debiased local update.. After BEA is learned and deployed at each client k, we
perform debias local updates by training each local model f}, using additionally pro-
duced bias-conflicting data pairs (i.e.,  and ). To further improve the robustness
of our framework, we follow [37] to consider several techniques at this local update
stage. That is, we define p € [0, 1] as the probability of augmenting each data batch
to control the degree of debiasing. Moreover, we define the warm-up round 75,
(i.e., BEA is activated after round 7,) to avoid undesirable augmentation outputs
harmful to local training happening in the beginning stage. With bias-conflicting
data and the introduced learning techniques, we are able to enforce the local model

to be better guided by the semantic information while suppressing the bias.

Global aggregation.. For each training iteration, once the debiased local updates
are performed, we then collect and aggregate the learned weights of each local
model (weighted by the size of the corresponding local dataset [14]). To be more

specific, the global model for the next round f'*! can be calculated as follows:

Dy
e _ g 1Dil g 3.6
f k=1 |D| ( )

With the convergence of the overall training process, the final global model can be

applied to perform classification on unbiased test data. The pseudo-code of our

complete FedBEAL framework is summarized in 34.
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Server m
o 3 e

Client
ft Client 1 PN Client k ft
1 local update . . local update k
(a) FedAvg
Server N
> ) e
ft+1
Client
Bias-Eliminating Bias-Eliminating
Augmenter g; Augmenter g;,
ft Client1 [ = Clientk j:t
1 local update " local update k
(b) FedBEAL

Figure 3.1: Comparisons between (a) FedAvg and (b) FedBEAL. Our FedBEAL
learns Bias-Eliminating Augmenters (BEA) to produce bias-conflicting samples at

each client, allowing the learned model to produce improved debiased representa-

tions.
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%

I i ~ i
' = {0y Qhigs } Asem " Aoy, Global model
Bias-Eliminating Augmenter (BEA) g;. ft » L
© T = {asem,7 abius} i
- U-Net i F
Random H H
Dk Sample
modulator 7 _ pr Local model
¥ Qi T
2 t—1
k L
i [ J j DY | L
z! = {aiewn a‘bias} @bias " Aiqs

backprop.

Figure 3.2: Design and learning of Bias-Eliminating Augmenter. Given two
randomly selected images z° and 27 at client k, the Bias-Eliminating Augmenter
(BEA) learns to produce a bias-conflicting sample z. That is, the semantic attribute
asem OF T is expected to be close to that of z¢, while the bias attribute ay;, of Z
would be extracted from 27. Note that f* and f{ ' denote the server and client

models learned at ¢-th and (¢ — 1)-th iterations, respectively.
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Chapter 4

Experiments

4.1 Datasets and Implementation Details

Datasets.. To evaluate the effectiveness and applicability of our learning scheme
in different types of bias, we consider three commonly used biased datasets,
including Colored MNIST [44] (with color bias), Corrupted CIFAR-10 [45] (with
corruption bias), and Collage CIFAR-10 [27] (with collaged images as bias).
Colored MNIST contains images of hand-written digits colorized with different
colors. Corrupted CIFAR-10 includes images applied with random corruptions
(e.g., noises, blurring, brightness/contrast adjustment). In Collage CIFAR-10, a
sample is combined with four images originating from four different datasets,
including MNIST [46], Fashion MNIST [47] and SVHN [48] that jointly serve
as bias attributes, and CIFAR-10 [49] as the semantic information. As noted in
3.1, we distribute the training set to / clients, where K is set to 10 across all our
experiments. To quantify the severity of local bias in training data, we further

define the ratio for the amount of biased local data /3.

Implementation details.. For Colored MNIST, Corrupted CIFAR-10, and Col-
lage CIFAR-10, input images are resized to 28 x 28, 32 x 32, and 64 x 64 pixels.
For simplicity, we use LeNet [46] as the classifier f for Colored MNIST and

15
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4. Experiments 16

ResNet-18 [1] for Corrupted CIFAR-10 and Collage CIFAR-10. A U-Net [50]
with the encoder of ResNet-18 is adopted as the augmenter g. The communication
round 7 is set to 100. For each round, each client train their g and f sequentially
for 5 epochs using the SGD optimizer, with the batch size of 64, the learning rate
of 0.01, the momentum of 0.9, and the weight decay of 0.00001. We implement
our model using PyTorch, and conduct training on a single NVIDIA 3090 GPU
with 24GB memory.

4.2 Quantitative Evaluation

4.2.1 Comparisons to debiasing and FL. methods

We first compare proposed learning scheme with existing centralized debiasing [ 10,
12, 11] and heterogeneous federated learning [14, 18, 19, 21, 23] methods. In
our experiments, SOLO and FedAvg [14] are viewed as baselines. The former
only performs local training without global averaging of client models, while the
latter is the fundamental framework for all the other methods reported in this
section. Note that we report the mean accuracy of each local model in SOLO.
As shown in 4.1, we evaluate state-of-the-art methods with the three datasets
with 3 set from 0.99 to 0.999. From the upper half of 4.1, we applied existing
debiasing methods designed for centralized machine learning [10, 12, 11] to debias
local update at each client. For example, SoftCon [12] enabled each client to
preserve intra-bias features dissimilarities to debias the model, which improved
the results of Colored MNIST with 5 of 0.999 by 13.72%. On the other hand,
from the bottom half of 4.1, existing FL approaches tackled data heterogeneity
by preserving the consistency between the local and global models. It can be
observed that such constraints were not sufficient to mitigate severe local bias and
only slightly improved the performance (e.g., FedProx [18] improved the accuracy
by 0.4% on Colored MNIST with 3 of 0.999). Instead, our FedBEAL performed

favorably against the above methods on all datasets (e.g., accuracy improvements
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4. Experiments 17

of 19.32% on Colored MNIST with 5 of 0.999). These quantitative comparisons
verify that our proposed FL approach removes local biases across different clients

for improved classification performances.

4.2.2 Comparisons to MSDA methods

To further verify the effectiveness of our augmentation scheme, we further com-
pare our method with state-of-the-art mixed sample data augmentation algo-
rithms [51, 37, 40]. Existing handcrafted MSDA methods are generally designed
to handle particular types of bias and cannot easily generalize to bias types not
defined in advance. As shown in 4.2, MixStyle [40] benefited low-level biases
(e.g., color or corruption bias) by transferring style information of the images and
improved the accuracies from 5.99% to 26.53% on Colored MNIST and Corrupted
CIFAR-10. However, such augmentations was not able to mitigate high-level
biases (e.g., background bias [10]), as the performance of MixStyle dropped from
2.82% to 3.18% on Collage CIFAR-10. On the other hand, CutMix significantly
improved the accuracy by 27.07% on Collage CIFAR-10 with 3 of 0.999 since
the cut-and-paste operation efficiently removed high-level regional bias. How-
ever, it failed to handle low-level color and corruption biases in Colored MNIST
and Corrupted CIFAR-10 and degraded the performance from 7.64% to 13.12%.
Compared to such MSDA methods, our approach learns to find the optimal BEA
and thus exhibits more robust debiasing effects on various bias types. As shown
in the last column of 4.2, our method performed favorably compared to MSDA
approaches and achieved improved accuracy by 14.53%, indicating the robustness

and generalization capability of our augmentation scheme to different bias types.

4.2.3 Debiasing server and client models

As indicated in 3.2.2, the design and learning objectives for our BEA are based
on the assumption that local models are relatively biased compared to the global

aggregated one at each iteration. To verify this assumption, we quantitatively
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Figure 4.1: Learning curve comparisons of global/local models from FedAvg
and FedBEAL on Colored MNIST. (a) and (b) show accuracies for biased and
unbiased datasets, and (c) compares the bias level S (see 4.1). Note that the local
model with FedBEAL shows improved debiased performance, and its global model

also exhibits improved unbias ability over FedAvg.
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compare the bias level of the global and local models in FedAvg and FedBEAL
on the Colored MNIST dataset. Given a biased dataset D;, from client & and an
unbiased testing dataset D;.;, we first define the bias level S of the local model f{

and the global model f* as follows:

Accunbias
S =1 - unbias 4.1
Accbias ’ ( )

where Accyies and Accynpias are the accuracies evaluated on Dy and Dy, respec-
tively. In other words, the model is biased (i.e., S is higher) if the model achieves
high accuracy on the biased dataset while performing relatively unfavorable on the
unbiased dataset.

Based on the above setting, we train our model on Colored MNIST with the
bias ratio 5 of 0.999. As illustrated in 4.1c, while the local model of FedBEAL
was relatively biased compared to the global model (see orange curves), we were
able to gradually debias such models for improved performances when comparing
to FedAvg. The above results support the design and learning scheme for the

proposed BEA.

4.3 Qualitative Evaluation

Representation visualization.. We now qualitatively assess the ability of Fed-
BEAL to derive semantic-aware and debiased feature representations. As shown
in 4.2, we apply t-SNE [52] to compare the hidden representation derived by the
global model of FedAvg and our approach on Colored MNIST. In 4.2a, we see that
features extracted by FedAvg were grouped according to bias attributes and were
not properly separated with respect to the class labels. In contrast, features derived
by our model remained relatively uncorrelated in terms of the bias attributes, and
the separation between different class clusters was more significant. The above
observation indicates that our proposed bias-eliminating augmentation learning

allows the derivation of discriminative and debiased features.
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Figure 4.2: t-SNE comparisons between FedAvg and FedBEAL on Colored
MNIST. Data points in the left column are colorized based on the bias attributes

(i.e., color), while those in the right column are colorized based on the class labels.
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Colored MNIST Corrupted CIFAR-10 Collage CIFAR-10
(bias: color) (bias: corruption) (bias: region not in red box)

Figure 4.3: Visualization of images produced by BEA. Based on the mask
learned by the BEA modulator M, the augmented bias-conflicting & can be seen as

the mixture of the content from z* and the bias from z7.

Visualization of augmented bias-conflicting samples.. We now show example
augmented images = produced by our method, which is expected to preserve
the categorical information of z* and impose the bias from x7. In 4.3, we first
see example images for Colored MNIST, and we observe 2 obtained the digit
color from 27 while preserving the original digit shape as of x‘. From the second
image set of Corrupted CIFAR-10, % inherited the high chromatic impluse noise
from x’ while still maintaining semantically recognizable foreground objects. As
for Collage CIFAR-10, our modulators M successfully captured the unbiased
bottom-left image region for augmentation. From the examples, we confirm that
our proposed BEA is capable of capturing inherent dataset bias while preserving

desirable semantic attributes for augmenting bias-conflicting samples.

Grad-CAM visualization.. Grad-CAM [53] is commonly used to visually ex-

plain how deep learning models make classification decisions. To verify the effec-
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(b) FedBEAL

Figure 4.4: Grad-CAM comparisons between FedAvg and FedBEAL on Col-
lage CIFAR-10. Compared to FedAvg results in (a), the attention map for Fed-
BEAL in (b) better identify the object region of interest for classification (in red

rectangles).
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tiveness of the proposed learning scheme, we consider FedAvg and our proposed
method on the Collage CIFAR-10 dataset with 3 of 0.99, and we apply Grad-CAM
to interpret the trained global models during classification (see 4.4). From 4.4a, we
see that the global model trained with FedAvg attended to ambiguous or irrelevant
image regions, implying the lack of ability to indicate regions with proper semantic
features for classification. In 4.4a), we see that the global model trained by our
proposed FedBEAL attended image regions on the augmented samples, which are
correlated to the categorical information of interest. This also explains the reason
why our FedBEAL is able to achieve satisfactory performances on debaised FL

tasks.
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Dataset Colored MNIST Corrupted CIFAR-10 Collage CIFAR-10
Bias ratio 3 0.99 0.999  0.99 0.999 0.99 0.999
Baselines

SOLO 4690 1446 16.80 13.19 12.28 10.58
FedAvg [14] 93.90 72.67 49.03 40.28 52.93 36.91
Centralized Debiasing Methods

LfF [10] 87.64 5527 5347 42.25 46.53 26.96
SoftCon [12] 96.75 86.39  55.38 47.61 54.19 42.98
Leeetal. [11] 90.28 61.35 54.86 45.90 41.02 22.58
Data Heterogeneous Federated Learning

FedProx [18] 9451 73.07 44.06 34.01 41.87 25.94
SCAFFOLD [19] 95.01 6841 41.73 34.35 38.37 33.85
MOON [21] 93.33  69.37 36.79 26.06 34.71 19.97
FedBN [23] N/A N/A  48.46 36.52 46.51 32.53
Ours 98.58 91.99 59.18 49.09 69.53 64.53

Table 4.1: Comparisons to SOTA federated learning and debiasing algorithms.

Bold denotes the best result, while underline denotes the second best. Note that in

Colored MNIST, FedBN is not applicable due to disregard of Batch Normalization

layers.
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Dataset Colored MNIST Corrupted CIFAR-10 Collage CIFAR-10 A
vg.
Bias ratio 8 099 0999  0.99 0.999 0.99 0.999
FedAvg [14] 9390 72.67 49.03 40.28 52.93 36.91 57.62
Mixup [51] 91.38 7476  53.98 40.85 50.13 37.65 58.13
CutMix [37] 8273  59.55 41.39 31.69 71.26 63.98 58.43
MixStyle [40] 99.13 99.20 58.99 46.27 49.75 34.09 64.57
Ours 98.58 91.99 59.18 49.09 69.53 64.53 72.15

Table 4.2: Comparisons to MSDA methods for debiased FL. Bold denotes the

best result, while underline denotes the second best.
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Chapter 5

Conclusion

In this paper, we addressed the challenging problem of debiased FL and pro-
posed FedBEAL for mitigating local biases. By introducing and learning Bias-
Eliminating Augmenters at each client, bias-conflicting samples can be automat-
ically learned. The learning of BEA can be simply utilized by the global server
and local client models obtained during the training progress, and thus no prior
knowledge of bias type or annotation would be required. We conducted extensive
experiments, including comparisons to state-of-the-art debiasing, FL., and MSDA
methods, and visualization of augmented images, which quantitatively and quali-
tatively confirmed the effectiveness and robustness of our proposed approach in

discovering and solving unknown dataset bias in federated learning schemes.

26

d0i:10.6342/NTU202301252



Reference

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2016, pp. 770-778. 1, 16

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of

deep bidirectional transformers for language understanding,” arXiv preprint

arXiv:1810.04805, 2018. 1

[3] B. Kim, H. Kim, K. Kim, S. Kim, and J. Kim, “Learning not to learn: Training
deep neural networks with biased data,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp. 9012—
9020. 1

[4] K. Karkkainen and J. Joo, “Fairface: Face attribute dataset for balanced race,
gender, and age for bias measurement and mitigation,” in Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),
January 2021, pp. 1548-1558. 1

[5] H. Shah, K. Tamuly, A. Raghunathan, P. Jain, and P. Netrapalli, “The pit-
falls of simplicity bias in neural networks,” Advances in Neural Information

Processing Systems, vol. 33, pp. 9573-9585, 2020. 1, 4

[6] R. Geirhos, J.-H. Jacobsen, C. Michaelis, R. Zemel, W. Brendel, M. Bethge,
and F. A. Wichmann, “Shortcut learning in deep neural networks,” Nature

Machine Intelligence, vol. 2, no. 11, pp. 665-673, 2020. 1, 4

27

d0i:10.6342/NTU202301252



REFERENCE 28

[7] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann,
and W. Brendel, “Imagenet-trained CNNs are biased towards texture;
increasing shape bias improves accuracy and robustness.” in International
Conference on Learning Representations, 2019. [Online]. Available: https:

/lopenreview.net/forum?1d=Bygh9j09KX 1, 4

[8] Y. Li and N. Vasconcelos, “Repair: Removing representation bias by dataset
resampling,” in Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition, 2019, pp. 9572-9581. 1

[9] H. Bahng, S. Chun, S. Yun, J. Choo, and S. J. Oh, “Learning de-biased
representations with biased representations,” in International Conference on

Machine Learning. PMLR, 2020, pp. 528-539. 1, 4

[10] J. Nam, H. Cha, S. Ahn, J. Lee, and J. Shin, “Learning from failure: De-
biasing classifier from biased classifier,” Advances in Neural Information

Processing Systems, vol. 33, pp. 20 673-20 684, 2020. 1, 2, 4, 10, 16, 17, 24

[11] J. Lee, E. Kim, J. Lee, J. Lee, and J. Choo, “Learning debiased representation
via disentangled feature augmentation,” Advances in Neural Information

Processing Systems, vol. 34, pp. 25 123-25 133, 2021. 1, 2, 4, 16, 24

[12] Y. Hong and E. Yang, “Unbiased classification through bias-contrastive and
bias-balanced learning,” Advances in Neural Information Processing Systems,

vol. 34, pp. 26449-26 461, 2021. 1,4, 7, 16, 24

[13] S. Sagawa*, P. W. Koh*, T. B. Hashimoto, and P. Liang,
“Distributionally robust neural networks,” in International Confer-
ence on Learning Representations, 2020. [Online]. Available: https:

/lopenreview.net/forum?id=ryxGuJrFvS 1

[14] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,

“Communication-efficient learning of deep networks from decentralized data,”

d0i:10.6342/NTU202301252


https://openreview.net/forum?id=Bygh9j09KX
https://openreview.net/forum?id=Bygh9j09KX
https://openreview.net/forum?id=ryxGuJrFvS
https://openreview.net/forum?id=ryxGuJrFvS

REFERENCE 29

in Artificial intelligence and statistics. PMLR, 2017, pp. 1273-1282. 2, 8,
12, 16, 24, 25

[15] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji,
K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al., “Advances and
open problems in federated learning,” Foundations and Trends® in Machine

Learning, vol. 14, no. 1-2, pp. 1-210, 2021. 3

[16] Q.Li, Y. Diao, Q. Chen, and B. He, “Federated learning on non-iid data silos:
An experimental study,” in 2022 IEEE 38th International Conference on Data
Engineering (ICDE). 1EEE, 2022, pp. 965-978. 3

[17] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018. 3

[18] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proceedings of Machine

Learning and Systems, vol. 2, pp. 429-450, 2020. 3, 5, 16, 24

[19] S.P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh,
“Scaffold: Stochastic controlled averaging for federated learning,” in Interna-
tional Conference on Machine Learning. PMLR, 2020, pp. 5132-5143. 3,
5, 16,24

[20] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tackling the objective
inconsistency problem in heterogeneous federated optimization,” Advances

in neural information processing systems, vol. 33, pp. 7611-7623, 2020. 3, 5

[21] Q. Li, B. He, and D. Song, “Model-contrastive federated learning,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 10713-10722. 3, 5, 16, 24

[22] M. Luo, F. Chen, D. Hu, Y. Zhang, J. Liang, and J. Feng, “No fear of

heterogeneity: Classifier calibration for federated learning with non-iid data,”

d0i:10.6342/NTU202301252



REFERENCE 30

Advances in Neural Information Processing Systems, vol. 34, pp. 5972-5984,
2021. 3,5

[23] X. Li, M. Jiang, X. Zhang, M. Kamp, and Q. Dou, “Fedbn: Federated
learning on non-iid features via local batch normalization,” arXiv preprint

arXiv:2102.07623, 2021. 3, 5, 16, 24

[24] W. Huang, M. Ye, and B. Du, “Learn from others and be yourself in hetero-
geneous federated learning,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022, pp. 10 143-10153. 3, 5

[25] H. Wang, Z. He, Z. C. Lipton, and E. P. Xing, “Learning robust representations
by projecting superficial statistics out,” arXiv preprint arXiv:1903.06256,
2019. 4

[26] E. Tartaglione, C. A. Barbano, and M. Grangetto, “End: Entangling and
disentangling deep representations for bias correction,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2021, pp.
13508-13517. 4

[27] D. Teney, E. Abbasnejad, S. Lucey, and A. van den Hengel, “Evading the
simplicity bias: Training a diverse set of models discovers solutions with
superior ood generalization,” in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2022, pp. 16761-16772. 4, 15

[28] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for
unsupervised visual representation learning,” in Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition, 2020, pp. 9729-9738.

4

[29] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot,
C. Liu, and D. Krishnan, “Supervised contrastive learning,” Advances in

Neural Information Processing Systems, vol. 33, pp. 18 661-18 673, 2020. 4

d0i:10.6342/NTU202301252



REFERENCE 31

[30] Z. Zhu, J. Hong, and J. Zhou, ‘“Data-free knowledge distillation for
heterogeneous federated learning,” in Proceedings of the 38th International
Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, M. Meila and T. Zhang, Eds., vol. 139. PMLR, 18-24 Jul 2021,
pp- 12878-12 889. [Online]. Available: https://proceedings.mlr.press/v139/
zhu21b.html 5

[31] T. Lin, L. Kong, S. U. Stich, and M. Jaggi, “Ensemble distillation for ro-
bust model fusion in federated learning,” Advances in Neural Information

Processing Systems, vol. 33, pp. 2351-2363, 2020. 5

[32] D. A. E. Acar, Y. Zhao, R. Zhu, R. Matas, M. Mattina, P. Whatmough, and
V. Saligrama, “Debiasing model updates for improving personalized federated

training,” in International Conference on Machine Learning. PMLR, 2021,

pp.- 21-31. 5

[33] Anonymous, “Learning to aggregate: A parameterized aggregator to
debias aggregation for cross-device federated learning,” in Submitted to The
Eleventh International Conference on Learning Representations, 2023, under
review. [Online]. Available: https://openreview.net/forum?1d=IQM-3_Tzldw
5

[34] Y. Guo, X. Tang, and T. Lin, “Feddebias: Reducing the local learning
bias improves federated learning on heterogeneous data,” 2023. [Online].

Available: https://openreview.net/forum?id=m_thN8e6qrF 5

[35] A. Abay, Y. Zhou, N. Baracaldo, S. Rajamoni, E. Chuba, and H. Ludwig,
“Mitigating bias in federated learning,” arXiv preprint arXiv:2012.02447,
2020. 5

[36] Y. H. Ezzeldin, S. Yan, C. He, E. Ferrara, and S. Avestimehr, ‘“Fairfed: En-
abling group fairness in federated learning,” arXiv preprint arXiv:2110.00857,
2021. 5

d0i:10.6342/NTU202301252


https://proceedings.mlr.press/v139/zhu21b.html
https://proceedings.mlr.press/v139/zhu21b.html
https://openreview.net/forum?id=IQM-3_Tzldw
https://openreview.net/forum?id=m_thN8e6qrF

REFERENCE 32

[37] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cutmix: Reg-
ularization strategy to train strong classifiers with localizable features,” in

Proceedings of the IEEE/CVF international conference on computer vision,

2019, pp. 6023-6032. 8, 10, 12, 17, 25

[38] E. Harris, A. Marcu, M. Painter, M. Niranjan, A. Priigel-Bennett, and
J. Hare, “Fmix: Enhancing mixed sample data augmentation,” arXiv preprint

arXiv:2002.12047, 2020. 8, 10

[39] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and B. Lakshmi-
narayanan, “Augmix: A simple data processing method to improve robustness

and uncertainty,” arXiv preprint arXiv:1912.02781, 2019. 8, 10

[40] K. Zhou, Y. Yang, Y. Qiao, and T. Xiang, “Domain generalization with
mixstyle,” arXiv preprint arXiv:2104.02008, 2021. 8, 10, 17, 25

[41] V. Olsson, W. Tranheden, J. Pinto, and L. Svensson, ‘“Classmix:
Segmentation-based data augmentation for semi-supervised learning,” in
Proceedings of the IEEE/CVF Winter Conference on Applications of Com-
puter Vision, 2021, pp. 1369-1378. 8, 10

[42] A. Dabouei, S. Soleymani, F. Taherkhani, and N. M. Nasrabadi, “Supermix:
Supervising the mixing data augmentation,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2021, pp. 13 794—
13803. 8, 10

[43] M. Hong, J. Choi, and G. Kim, “Stylemix: Separating content and style for
enhanced data augmentation,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2021, pp. 14 862-14 870. 8, 10

[44] M. Arjovsky, L. Bottou, 1. Gulrajani, and D. Lopez-Paz, “Invariant risk
minimization,” arXiv preprint arXiv:1907.02893, 2019. 15

d0i:10.6342/NTU202301252



REFERENCE 33

[45] D. Hendrycks and T. G. Dietterich, “Benchmarking neural network ro-
bustness to common corruptions and surface variations,” arXiv preprint

arXiv:1807.01697, 2018. 15

[46] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278-2324, 1998. 15

[47] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint

arXiv:1708.07747,2017. 15

[48] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,”
in NIPS Workshop on Deep Learning and Unsupervised Feature Learning
2011, 2011. [Online]. Available: http://ufidl.stanford.edu/housenumbers/

nips2011_housenumbers.pdf 15

[49] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny

images,” University of Toronto, Toronto, Ontario, Tech. Rep. 0, 2009. 15

[50] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in International Conference on Medical
image computing and computer-assisted intervention. Springer, 2015, pp.

234-241. 16

[51] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond

empirical risk minimization,” arXiv preprint arXiv:1710.09412, 2017. 17, 25

[52] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal of

machine learning research, vol. 9, no. 11, 2008. 19

[53] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra,

“Grad-cam: Visual explanations from deep networks via gradient-based local-

d0i:10.6342/NTU202301252


http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf

REFERENCE 34

ization,” in Proceedings of the IEEE international conference on computer

vision, 2017, pp. 618-626. 21

d0i:10.6342/NTU202301252



	Abstract
	List of Figures
	List of Tables
	Introduction
	Related Work
	Debiasing in Centralized Machine Learning
	Federated Learning with Data Heterogeneity

	Proposed Method
	Problem Definition and Method Overview
	Bias-Eliminating Augmenter
	Design and architecture
	Learning of BEA

	Training of FedBEAL

	Experiments
	Datasets and Implementation Details
	Quantitative Evaluation
	Comparisons to debiasing and FL methods
	Comparisons to MSDA methods
	Debiasing server and client models

	Qualitative Evaluation

	Conclusion
	Reference



