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摘要

3D人體姿態估計在復健、高爾夫和棒球等領域被廣泛的應用。過去研究分為

從影片中的多張連續圖片或僅單張圖片來進行人體 3D重建。圖卷積因可以定義

人體的骨架關係來增強資料間的關聯，所以普遍被使用在 3D人體姿態估計的領

域，並且過去的研究與實驗結果證實圖卷積可以更精確地重建 3D人體姿態。近

年在多個電腦視覺的子領域發現自注意機制之優越性，且在許多資料集取得優異

的成果。然而，在 3D的領域中，人體關節點間的關聯不盡然可以透過純粹的自

注意力機制來表達，並且過去圖卷積已經提出非常多的方法來考慮人體關節點間

之關聯。本研究主要在改善自注意力機制沒辦法完全的利用人體骨架的問題，並

提升重建 3D人體骨架的表現。我們藉由交替的混合自注意力機制和圖卷積的模

型，來獲取局部和全局的關聯性來得到更全面的特徵向量，進而得到 3D關節點

位置。我們廣泛的測試模型可能的各種變因來證明所提模型之有效性，並且在公

開資料集 Human3.6M和 MPI-INF-3DHP上都取得相當好的結果，並超越現有模

型。

關鍵字：圖卷積、自注意力機制、3D人體姿態
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Abstract

Single-image 3D human pose estimation (HPE) has many applications in rehabili-

tation, golf, and baseball fields. Over the past few years, much research has involved

reconstructing the human skeleton from either a series of video frames or a single im-

age. Previous studies have commonly discussed the utilization of graph convolutional

networks (GCNs) as a means to address 3D HPE, and substantial experiments have ver-

ified the efficacy of GCNs for this purpose. Recently, Transformer-based models have

attracted considerable interest because of their excellent capacity for relating multiple

frames. Nevertheless, the pure Transformer method in the single-frame condition can-

not exploit the characteristics of the human joints. To address this, we introduce AMPose

as an innovative approach that combines Transformer and GCN blocks to capture global

and local dependencies among human joints. By leveraging the strengths of both modules,

AMPose achieves a comprehensive understanding of human joint interactions. In order

to assess the effectiveness of AMPose, we conduct experiments using well-known public
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datasets, includingMPI-INF-3DHP and Human3.6M. Consequently, AMPose beats state-

of-the-art models on both datasets, demonstrating superior generalization ability through

cross-dataset comparisons.

Keywords: Graph convolution neural network, Transformer, 3D human pose
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Chapter 1 Introduction

3D human pose estimation (HPE) involves inferring the posture of the human body

from images/videos taken from the camera, which has found many practical applications

such as rehabilitation [8], golf [22], and baseball [15]. Most previous methods [1, 25, 34]

estimated 3D keypoints by the lifting structure in which the images are fed into the 2DHPE

model to extract 2D keypoints first, and the estimated 2D keypoints are used as the input

of the lifting model to produce the 3D keypoints. The different characteristics of 2D and

3D data can be modeled by 2D HPE models and lifting models, respectively. On the other

hand, 3D human mesh estimation contains both body shape and pose estimation [18]. The

recent work [4] successfully applied the state-of-the-art multi-view 3D human pose model

[10] to 3D human mesh estimation, leveraging the information of multiple 2D joints from

different views to reconstruct accurate human pose and shape. Therefore, the progress in

3D HPE can benefit other fields.

The temporal methods [14, 25, 32, 36] have a longer history than the single-frame

methods [20, 31, 34]. Temporal models take advantage of multiple frames in a video as

input, enabling them to leverage the pair relations between 2D and 3D poses over longer

sequences to predict 3D poses. However, it is important to note that temporal methods

often require significant computational power and exhibit slower computation speeds. In

view of the dire computation cost of temporal methods, this work focuses on the single-

1
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frame method, which is more suitable for real-time and resource-constrained scenarios.

Early studies [25, 31] have proven that the feature representation derived from 2D

posture is effective towards 3D HPE. After that, the exploration of the powerful feature

representation becomes the main target in the field of 3D HPE. To leverage the spatial

information, graph convolutional networks (GCNs) are used to describe spatial relations

in keypoints of the human body, which consider the joint as an independent dimension. A

weakness of the GCNs is weight-sharing within the 1-hop range, which leads to unsatis-

factory performance in 3D HPE since the equal weights cannot capture the various levels

of flexibility in the human skeleton.

The previous works [1, 16, 29, 37] proposed to redesign the kernel within the 1-

hop range to alleviate this issue. On the other hand, the Transformer-based method is

frequently adopted to build 3D HPE models as in the other areas of computer vision. A

crucial part of the Transformer encoder is the self-attention module, as this module can

be used to model the global dependency among joints in 3D HPE. Although the global

relation can be exploited via the Transformer, an interesting question arises as how the

structure of the human skeleton can be incorporated for 3D HPE. The previous studies

[34] adopted ChebNet [6] to link up the Transformer with the physical relations in the

human skeleton. However, the ChebNet is weight-sharing within the same hop range,

which may not capture the variety of human motions. Hence, we propose to combine the

GCN block and Transformer encoder to exploit the local and global relationships among

the human joints, respectively.

In brief, this work makes three contributions: 1) we introduce AMPose as a novel

approach to 3DHPE that integrates Transformer encoders and GCN blocks using a global-

2
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local attention structure. 2) the optimal design for GCN blocks is explored to leverage

physical-connectivity features and enhance the local relation among joints. 3) AMPose

beats state-of-the-art single-frame approaches on the Human3.6M dataset. Additionally,

in cross-dataset evaluations, AMPose demonstrates excellent generalization ability on the

MPI-INF-3DHP dataset.

3
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Chapter 2 Related Works

2.1 3D Human Pose Estimation

The field of 3DHPE is advancing rapidly, with researchers presenting variousmethod-

ologies to tackle this complex challenge. These methodologies can be organized into two

primary groups: direct estimation and lifting estimation. The critical difference between

the two groups is that lifting estimation uses existing 2D models as an intermediate step

in the 3D HPE process, while direct estimation employs end-to-end learning.

In direct estimation methods, the models for 3D HPE are trained through end-to-

end training, enabling the adjustment of the complete model weight. Park et al. [23]

proposed to improve the feature representation obtained from images by fusing the 2D

and 3D information via convolutional neural networks (CNNs). Pavlakos et al. [24]

adopted a pre-trained 2D posture model as the backbone, and the output of the backbone

is fed to two streams in which the 3D human posture and shape are predicted separately.

The pre-trained 2D pose model can improve the data efficiency and alleviate the problem

of scarcely labeled 3D data. There are abundant labels in public datasets for 2D HPE, and

the pre-trained 2D pose models can be exploited to initialize weights of neural networks

in 3D pose models.

5
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In monocular 3D HPE, estimating 3D positions from images is inherently uncertain.

Sun et al. [28] addressed this challenge by employing CNNs to generate 3D heatmaps of

human joints. To compute the expectation of the 3D heatmaps, they introduced a weighted

sum operation for each joint, replacing the max operation. This approach enabled end-to-

end learning, effectively reducing the discrepancy between the 3D and 2D domains.

The lifting method has become increasingly prominent due to its numerous advan-

tages, including privacy preservation, reduced computation, and superior generalization

ability. The proposed method belongs to this category. Previous works [2, 25, 31, 32]

have leveraged the lifting method by using a longer sequence as input, taking advantage

of its reduced computational requirements.

Pavllo et al. [25] explored the capabilities of the lifting method by employing a long-

range temporal sequence as input to output the 3D position of the central frame. Their

lifting model embeds the entire joints of each frame in a feature representation, which

a temporal dilated convolutional model then convolves to produce the feature represen-

tation of the center frame. Taking a different approach, Zeng et al.[31] considered the

relations in the human skeleton by splitting the feature vector of human joints into differ-

ent groups corresponding to the head, limbs, and torso. This technique enhances the local

dependency among joints, and the groups are concatenated along the channel dimensions

to transfer the feature vector after extracting the local information. In a separate study,

Chen et al. [2] decomposed the HPE model into two streams, generating the bone length

and direction to reconstruct the 3D pose. The two-stream method can model the property

of bone length and direction with different networks. In the branch of bone directions,

temporal dilated convolutions are applied to make predictions of the 3D bone directions

for the central frame. Moreover, random samples from the input data are selected and fed

6
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into a regression network to estimate the bone lengths for the corresponding target pose.

2.2 Graph Convolutional Networks

Vanilla GCNs aim to establish connections between input data throughmanually con-

structed graphs. In these models, the features of all nodes are transformed using the same

projection matrix, and the features of neighboring nodes are added together to yield the

convolved feature for the next layer in the network. However, this approach is inadequate

for accurately modeling 3D HPE due to the intricate nature of human actions and the in-

herent flexibility of the human skeleton. To address this issue, prior works have proposed

several solutions such as ST-GCN [30], Semantic GCN [37], and Modulated GCN [33].

Cai et al. [1] introduced ST-GCN to the field of 3D HPE. In the ST-GCN, the neigh-

bor nodes of the hand-crafted graph are split intomultiple groups according to their relative

proximity from the root node. Then, the different transformations are applied to the groups

rather than sharing the same transformation. By splitting the neighbor nodes based on the

proximity to the root node, ST-GCN enhances the ability to capture fine-grained spatial

relationships.

Semantic GCN improved the hand-crafted graph by multiplying it element-wise with

a trainable weight matrix and then applying a softmax operation to obtain an enhanced

graph. This empowers the model to grasp and exploit the semantic connections among

human joints.

Modulation was introduced to Semantic GCN by Zou et al. [37] to improve the

performance of GCNs. The shared transformation matrix is adapted by learning various

modulation vectors for each joint, resulting in substantial enhancements in accuracy with a

7
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reduced parameter count. Overall, these approaches have successfully adapted the GCNs

for 3D HPE.

2.3 Transformer Encoder

In recent years, the Transformer encoder has gained widespread popularity in com-

puter vision applications, mainly due to its self-attention mechanism of the Transformer.

This mechanism has a large receptive field and adaptable attention weights, which have

been thoroughly demonstrated to be effective through extensive experiments [14, 26, 32,

34, 35]. The Poseformer, developed by Zheng et al. [35], was the first to utilize a pure

Transformer model in monocular 3D HPE. In the Poseformer framework, a spatial Trans-

former establishes intricate connections in the human skeletons. At the same time, a

temporal Transformer links each frame with all other frames. This ingenious design led

the Poseformer to achieve remarkable performance, drawing significant attention from

the HPE community. Since the introduction of the Poseformer, Transformer-based ap-

proaches have been widely incorporated into many subsequent 3D HPE models.

Zhang et al. [32] made notable advancements in 3D HPE by modifying the architec-

ture of Poseformer. They proposed to integrate spatial and temporal Transformers in an

interleaved manner. This approach effectively captures spatial and temporal dependen-

cies, improving accuracy in 3D HPE.

While the Transformer-based method is effective, it may not explicitly capture local

relations in 3D HPE. Recent research [12, 26, 34] has shown that combining global and

local information can address this issue. In 3DHPE, the temporal dependencies and spatial

relations among joints can be enhanced by integrating global and local information. Li et

8
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al. [12] integrated stride convolution into the temporal Transformer encoder to utilize

both long-range and local context information in a video sequence. Nonetheless, while

temporal information is considered, the spatial relationships between joints in each frame

are not explicitly modeled. To address this issue, Shan et al. [26] adopted the model

proposed by Li et al. [12] as the backbone and introduced a pre-training technique. In

the initial training phase, the Transformer aims to recover the original 2D keypoints from

the masked 2D keypoints. Following that, the learned weights are transferred to the 3D

HPEmodel, which is then fine-tuned using ground truth 3D positions. To reinforce spatial

relationships, the 2D pose of each frame is embedded using a multilayer perceptron.

9
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Chapter 3 Methodology

3.1 Overview

Figure 3.1: Overall process of the AMPose method.

Our objective is to precisely infer the 3D poses of human subjects from individual

images. As depicted in Figure 3.1, the AMPose approach uses the 2D joint positions

estimated by a readily available 2D pose model [3] as input to our model. We then apply

a trainable linear projection layer to each 2D joint pose, transforming it into a feature

representation with more channels, which serves as the starting point for the proposed

lifting method.

To further reinforce the transformed feature representation, the Transformer encoder

and the GCN block are alternately stacked to extract the global and local dependency, re-

spectively. The Transformer encoder incorporates a self-attention mechanism, facilitating

dynamic interaction among human joints. On the other hand, the GCN block consists of

GCN layers followed by GCN layers with a residual connection. This block explicitly

models the characteristics of the human skeleton.

11
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3.2 Transformer Encoder

Self-attention is a generalized version of GCNs, with distinct differences in attention

weight computation and receptive fields. In GCNs, attentionweights are determined based

on the reciprocal number of neighboring nodes, implying equal treatment of all neighbors.

However, self-attention extends the receptive field to the global scope, relaxing the con-

straint of equal treatment for neighboring nodes. As a result, attention weights are de-

termined by the input feature, leading to adaptable feature representations. Specifically,

the input feature Z ∈ RNj×Nd , where Nj is the number of joints and Nd is the number of

channels, is transformed by three trainable matrices to produce the query, key, and value,

namely

Q = ZΘQ, K = ZΘK , V = ZΘV , (3.1)

where ΘQ, ΘK , and ΘV ∈ RNd×Nd are the trainable matrices.

The pairwise similarity between the querymatrix and the keymatrix is computed, typically

using a dot product. The softmax operation is applied to the similarity scores. In the final

step of the self-attention operation, the resulting similarity scores are multiplied by the

value matrix. This process allows for capturing global relations in the features. The self-

attention mechanism can be mathematically formulated as follows:

Attention (Q,K, V ) = Softmax

(
QKT

√
Nd

)
V. (3.2)

Multi-head self-attention (MSA) serves the specific purpose of introducing diversifica-

tion in attention weights. To achieve this, the query, key, and valuematrices are partitioned

12
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into Nh submatrices denoted as Qi,Ki, and Vi ∈ Nj × Nd

Nh
, respectively, where Nh repre-

sents the number of attention heads. MSA captures diverse patterns and relationships in

the input data by interconnecting the features from different heads using a trainable matrix

Θout ∈ RNd×Nd . The MSA operation can be denoted as:

MSA (Q,K, V ) = concat (head1, ..., headNh
)Θout, (3.3)

where headi = Attention (Qi, Ki, Vi) for all i ∈ [1, ..., Nh].

Multi-layer perceptron (MLP) consists of two fully connected layers (FCs) in the AM-

Pose. An activation function σ is applied between FCs. The MLP can be represented as

follows:

MLP (Z) = FC(σ(FC(Z))), (3.4)

The overall procedure can be expressed as follows:

Z ′ = Zin +Θpos, (3.5)

Z ′′ = MSA(LN(Z ′)) + Z ′, (3.6)

Zout = MLP (LN(Z ′′)) + Z ′′, (3.7)

where Θpos is the positional embedding, LN(·) denotes layer normalization function, Zin

denotes the input feature, and Zout denotes the output feature of the Transformer encoder.

13
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3.3 GCN Blocks

The fountainhead of GCN can be traced back to the spectral graph convolution pro-

posed by Shuman et al. [27], which incorporates the input data with specific relation via

a handcrafted graph. ChebNet [6] approximates the spectral graph convolution through

Chebyshev polynomials, in which the same weights are applied to the same hop range to

convolve the features. In the previous study [11], it is pointed out that multi-hop convolu-

tion may result in over-smoothing. Reducing the hop is a feasible method to overcome this

problem since neural networks with multiple layers can propagate the information effec-

tively. Therefore, Kipf et al. [11] proposed to approximate the spectral graph convolution

with the first order, which limits the receptive field to the 1-hop range. The formula of the

vanilla GCNs can be expressed as follows:

Z = D−0.5AD−0.5XΘ, (3.8)

where the adjacency matrix A ∈ {0, 1}Nj×Nj defines the relation in the input feature,

X ∈ RNj×Nd is the input feature, the diagonal matrix D ∈ RNj×Nj represents the degree

matrix ofA,Θ∈ RNd×ND indicates the filter,Z ∈ RNj×ND indicates the output feature,Nj

denotes the number of nodes in the graph, Nd denotes the input dimension of the feature,

and ND indicates the dimension of the output feature.

Vanilla GCNs can solve the tasks in node and graph classification with fully weight-

sharing [16], but the 3D HPE contains complicated motion and self-occlusion issues. To

accommodate GCNs to 3D HPE, the previous research [1, 33] took account of the se-

mantic relations among human joints. In our work, we adopt the technique introduced in

ST-GCN [1] to model local dependency among human skeletons. The neighbor joint can

14
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be split into three groups:

1. The center node itself.

2. Neighboring nodes which are closer to the hip node than the center node.

3. Neighboring nodes which are farther away from the hip node than the center node.

The formula of GCNs is modified correspondingly: Three transformation matrices are

applied to the neighbor joints for each center joint, and then the neighbor features are

added up to generate the convolved feature, namely

Z =
3∑

k=1

D−0.5
k AkD

−0.5
k XΘk, (3.9)

where k indicates the index of various groups, the vertex matrix A ∈ {0, 1}Nj×Nj is

disassembled into three sub-matrices Ak ∈ {0, 1}Nj×Nj in accord with the human joint

groups which satisfy A1 +A2 +A3 = A, the diagonal matrixDk ∈ RNj×Nj is the degree

matrix of Ak, and Θk is the filter for the k-th group.

3.4 Loss Function

To predict the 3D position with the AMPose, the mean square error is used as the loss

function of our model:

Loss =
1

N

N∑
i=1

∥∥∥Xi − X̃i

∥∥∥2

, (3.10)

where the index i represents the human joint type, N signifies the count of joints, X̃i rep-

resents the estimated 3D coordinates, and Xi represents the ground truth 3D coordinates.

15
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Chapter 4 Experiment

4.1 Dataset

The AMPose is tested on two public datasets: Human3.6M [9] and MPI-INF-3DHP

(3DHP) [21].

Human3.6M is one of the most common datasets for 3D HPE, which is composed of 3.6

million images. The images are taken by four calibrated cameras from different angles.

To preprocess the data, we follow [34, 37] and use the mid-hip joint as the root joint to

localize the 3D human positions. The calibration process establishes the world coordinate

system, while the ground truth (GT) 3D position in the camera-specific coordinate system

is derived by applying translation and rotation to the GT 3D position in the world coordi-

nate system using the camera’s extrinsic parameters. The AMPose is trained with subjects

S1, S5, S6, S7, and S8, while tested on subjects S9 and S11.

MPI-INF-3DHP constitutes a comprehensive dataset encompassing a wide range of in-

door and outdoor settings, intricate and infrequent actions, and varying camera viewpoints.

In accordance with prior research [29, 37], we evaluate the generalization ability of the

AMPose by training on Human3.6M and testing on the test set of 3DHP. Additionally, we

train the AMPosemodel on the training set of 3DHP and conduct a comparative evaluation

17
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against video-based methods [14, 26, 32] by evaluating it on the test set of 3DHP.

4.2 Evaluation Protocol

In our experiment, we use the mean per joint position error (MPJPE) as the perfor-

mance metric for AMPose. MPJPE is computed as the mean Euclidean distance between

the estimated 3D human pose and the GT 3D human pose. When it comes to aligning the

estimated pose with the GT pose, a rigid transformation is applied, which is commonly

referred to as the P-MPJPE.

On 3DHP, we employ two supplementary metrics to evaluate AMPose: the Percent-

age of Correct Keypoints (PCK) and the Area Under the Curve (AUC). PCKmeasures the

correctness of the estimated keypoints based on a fixed threshold. AUC is calculated as

the mean PCK across different thresholds. A prediction is considered successful regard-

ing PCK if the MPJPE falls below the predefined threshold. In line with previous studies

[16, 29, 37], we set the PCK threshold to 150 millimeters (mm).

4.3 Implementation Details

The AMPose is built upon a two-stage approach for 3D HPE, where a pre-trained 2D

pose model first processes input images. For our experiments conducted on Human3.6M,

we employ the cascaded pyramid network (CPN) [3] as our 2D backbone. The CPN is

widely used in previous works for 2D HPE [31, 32, 34, 35, 37].

In our experiments, we set the depthN of the AMPose to 5 and the embedding chan-

nels to 512. The proposed model is trained for 60 epochs. The batch size is set to 128. The
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Table 4.1: MPJPE comparisons on Human3.6M. Top table: CPN with 17 human joints
used as input. Bottom table: GT 2D with 17 human joints used as input. ⋆ indicates
refinement.
CPN WalkT. WalkD. Walk Wait SitD. Smoke Sit Pose Purchu. Photo Greet Phone Eat Dire. Discu. Avg.
Ci et al. [5] 43.3 54.8 40.4 50.0 78.9 51.2 60.2 49.6 46.4 68.9 50.4 52.9 44.7 46.8 52.3 52.7
Pavllo et al. [25] 42.7 55.3 39.5 49.5 67.4 52.4 59.3 49.4 47.4 61.4 51.8 53.6 49.0 47.1 50.6 51.8
Cai et al. [1] ⋆ 41.2 53.5 39.2 48.4 64.4 51.2 59.2 48.3 45.8 61.3 50.9 52.9 47.6 46.5 48.8 50.6
Lutz et al. [19] 42.4 53.8 39.4 47.1 67.1 51.2 59.6 47.0 46.7 60.1 49.4 53.2 46.6 45.0 48.8 50.5
Zou et al. [37] ⋆ 40.8 52.2 38.9 46.6 63.0 49.7 57.5 47.9 46 58.2 49.4 50.4 45.7 45.4 49.2 49.4
Ours 40.6 52.9 39.0 46.4 66.5 49.9 57.1 47.8 44.8 58.6 48.8 51.3 45.2 44.9 49.3 49.5
Ours ⋆ 39.5 50.5 37.9 46.2 63.9 49.6 56.5 46.2 44.9 56.5 48.0 51.0 45.1 42.8 48.6 48.5
GT WalkT. WalkD. Walk Wait SitD. Smoke Sit Pose Purchu. Photo Greet Phone Eat Dire. Discu. Avg.
Ci et al. [5] 34.2 38.2 31.3 38.4 39.5 34.4 36.2 39.8 32.5 42.5 37.8 34.6 29.7 36.3 38.8 36.3
Lutz et al. [19] 29.1 35.0 28.7 33.5 40.1 33.8 37.1 37.1 31.3 39.0 33.4 33.5 30.2 31.0 36.6 34.0
Zeng et al. [31] 27.1 34.4 26.5 34.9 45.9 33.3 38.9 35.1 29.5 42.5 31.7 33.5 27.6 32.9 34.5 33.9
Ours 28.5 34.3 27.5 34.5 41.8 33.2 34.3 37.1 31.9 37.7 33.2 33.9 30.0 30.7 35.9 33.7

Table 4.2: P-MPJPE comparisons on Human3.6M. CPN with 17 human joints used as
input. ⋆ indicates refinement.
CPN WalkT. WalkD. Walk Wait SitD. Smoke Sit Pose Purch. Photo Greet Phone Eat Dire. Disc. Avg.
Ci et al. [5] 37.0 43.5 32.2 39.9 62.1 43.1 49.1 38.2 37.6 51.1 41.0 41.9 38.0 36.9 41.6 42.2
Cai et al. [1] ⋆ 34.7 42.7 31.0 36.8 51.7 41.3 47.6 37.9 35.6 46.8 41.7 40.7 38.2 36.8 38.7 40.2
Pavllo et al. [25] 34.8 43.1 30.3 36.9 53.4 41.4 46.8 37.1 35.4 45.9 41.7 40.1 38.0 36.0 38.7 40.0
Zou et al. [37] ⋆ 33.9 41.7 30.7 35.6 51.2 40.5 46.4 37.0 35.4 44.5 40.5 39.2 36.3 35.7 38.6 39.1
Ours 33.4 41.6 30.4 35.5 52.9 40.4 46.8 36.0 34.3 44.7 39.7 39.6 36.7 34.9 38.2 39.0

Table 4.3: MPJPE comparisons on Human3.6M. Top table: CPN with 16 human joints
used as input. Bottom table: GT 2D with 16 human joints used as input.
CPN WalkTo. WalkDo. Walk Wait SitDo. Smoke Sit Pose Purchu. Photo Greet Phone Eat Direc. Discu. Avg.
Liu et al. [16] 43.7 54.5 40.3 50.1 71.1 51.5 60.4 49.2 46.0 67.1 50.7 55.5 47.3 46.3 52.2 52.4
Xu et al. [29] 44.1 53.9 39.9 48.6 71.5 51.4 59.7 48.5 46.3 66.1 50.9 54.9 47.5 45.2 49.9 51.9
Zhao et al. [34] 43.1 54.1 39.7 48.7 70.0 51.6 60.2 48.0 47.1 65.0 50.0 54.9 48.0 45.2 50.8 51.8
Ours 41.8 53.6 39.9 47.2 68.0 51.1 58.9 46.9 45.8 59.0 50.0 52.9 47.8 45.8 49.1 50.5
GT WalkTo. WalkDo. Walk Wait SitDo. Smoke Sit Pose Purchu. Photo Greet Phone Eat Direc. Discu. Avg.
Liu et al. [16] 32.0 38.6 29.6 38.5 47.7 37.4 40.3 39.7 34.9 45.0 36.3 37.5 33.0 36.8 40.3 37.8
Xu et al. [29] 30.7 36.8 27.9 36.7 45.5 35.4 38.4 37.3 31.7 43.2 35.3 35.8 31.0 35.8 38.1 35.8
Zhao et al. [34] 30.6 36.1 27.4 35.7 46.2 34.2 38.0 35.2 31.4 43.3 34.4 34.7 30.4 32.0 38.0 35.2
Ours 29.8 34.6 28.2 34.4 40.7 34.1 36.0 38.2 32.0 37.8 34.3 34.0 30.0 31.3 36.7 34.1

learning rate is initially assigned a value of 0.000025 and exponentially decreased with a

factor of 0.98 for each epoch. All experimental procedures are performed on a machine

featuring a single NVIDIA RTX 2080 GPU.

4.4 Comparison with the State-of-the-art

Table 4.1, Table 4.2, and Table 4.3 provide comparisons between the AMPose and

state-of-the-art models using CPN and GT keypoints as the input on Human3.6M. Despite

the additional application of a pose refinement module [1] in some methods to enhance

performance, the MPJPE of the AMPose prior to refinement is also reported to ensure fair
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Table 4.4: Evaluation outcomes from conducting a cross-dataset comparison on 3DHP.

Method Outdoor noGS GS AUC PCK
Ci et al. [5] 77.3 70.8 74.8 36.7 74.0
Zhao et al. [34] 74.1 77.9 80.1 43.8 79.0
Liu et al. [16] 80.1 80.5 77.6 47.6 79.3
Xu et al. [29] 75.2 81.7 81.5 45.8 80.1
Zou et al. [37] 85.7 86.0 86.4 53.7 86.1
Ours 87.4 87.5 86.1 55.2 87.0

Table 4.5: The comparison of results on the 3DHP dataset.

Method PCK AUC FLOPs (M) Param. (M) MPJPE
Li et al. (9 frames) [14] 93.8 63.3 1030 18.9 58.0
Zhang et al. (1 frame) [32] 94.2 63.8 645 33.7 57.9
Zhang et al. (27 frames) [32] 94.4 66.5 645 33.7 54.9
Shan et al. (81 frames) [26] 97.9 75.8 493 5.4 32.2
Ours (1 frame) 98.0 79.1 312 18.3 30.8
Ours (9 frames) 98.0 81.2 312 18.4 28.0
Ours (27 frames) 98.0 81.3 313 18.4 27.9

comparisons. The quantitative outcomes depicted in Table 4.1, Table 4.2, and Table 4.3

demonstrate that AMPose outperforms all previous methods.

In Table 4.1, AMPose demonstrates superiority in most actions compared to previous

methods when CPN is employed as the 2D detector. Specifically, our estimated 3D pose

for the photographing and directing action shows 2.9% and 4.5% improvement of MPJPE

over the previous best results, respectively. In addition, our method achieves accurate

predictions for the photographing actions, even when using 2D GT poses as input. We

also observe that the accuracy of photographing action has been improved by 3.3% in

comparison to the previous leading approach.

The 3DHP dataset includes two distinct types of comparison methods. The single-

framemethods are typically evaluated by cross-dataset, while the video-basedmethods are

trained directly on 3DHP’s training set. To comprehensively assess the effectiveness of

AMPose, we conduct both types of comparisons. Table 4.4 displays the AMPosemethod’s

ability to generalize, given that it is trained solely on the Human3.6M dataset without
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Table 4.6: The outcomes obtained from the different variations of the GCN block designs.

Method FLOPs (M) Param. (M) MPJPE (mm) ∆
Two residual 312.2 18.5 50.1 0.6
Transformer 289.8 17.0 50.1 0.6
ConvNeXt 289.9 17.0 50.0 0.5
Ours 312.2 18.3 49.5 -

any fine-tuning for 3DHP. We provide distinct outcomes for various backgrounds: out-

door, green screen (GS), and noGS. Our model achieves an 87% PCK and 55.2% AUC,

surpassing existing approaches in challenging conditions such as noGS and outdoor en-

vironments. Furthermore, AMPose is trained on 3DHP’s training set to compare it with

temporal methods. Table 4.5 shows the superior performance of our method, even with

fewer Floating Point Operations (FLOPs). The video-based methods have higher compu-

tational demands for generating 3D pose outputs, which becomes evident when consid-

ering FLOPs. Consequently, our proposed method is advantageous in real-time scenar-

ios where computational efficiency is crucial. Additionally, we observe that video-based

methods struggle to handle complex conditions, such as 3DHP’s test set.

According to [13], we extend our method into a temporal model by incorporating

sequential data. In this method, the coordinates of the joints across different time frames

are concatenated within their respective joints. Assuming we have T temporal sequences

and J joint nodes, the input data can be interpreted as J individual tokens. In specific terms,

the input X ∈ RT×J×2 is reorganized asX ′ ∈ RJ×(2T ). This allows for the integration of

temporal data into single-frame models without the need for structural modifications. The

outcome of this extension is presented in Table 4.5, where we observed an improvement

in accuracy. Specifically, when T is set to 27, the MPJPE is reduced to 27.9mm.
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Figure 4.1: Instantiation of the proposed AMPose method.

Figure 4.2: Variety of configurations of the GCN block.

4.5 Ablation Study

In the ablation study, we examine different configurations of the GCN block. In Fig-

ure 4.2, we illustrate the various designs of the GCN block, which integrate graph convo-

lution into ConvNeXt [17] and the Transformer [7]. Table 4.6 presents the corresponding

FLOPs and results. As shown in Figure 4.1, our proposed design, featuring a plain GCN

followed by GCN with the residual, outperforms the other designs.

We conduct the ablation study on Human3.6M, using CPN with 16 keypoints as the

input of our proposed model. In this study, we investigate the ramifications of varying the

orders of Transformer encoders and GCN blocks. The model depth is consistently set to
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Table 4.7: Ordering Analysis of Transformer encoders and GCN blocks.

Order MPJPE (mm)
5 Transformers followed by 5 GCN blocks 52.0
5 GCN blocks followed by 5 Transformers 57.2
Alternately (GCN blocks first) 50.9
Alternately (Transformers first) 50.5

Table 4.8: Ablation study for splitting neighbor nodes.

Group MPJPE (mm)
4 groups {(center), (farther), (closer), (symmetry)} 51.1
3 groups {(center), (farther, closer), (symmetry)} 51.0
2 groups {(center), (farther, closer, symmetry)} 51.6
1 group {(center, farther, closer, symmetry)} 53.6
3 groups {(center), (farther), (closer)} 50.5
2 groups {(center), (farther, closer)} 50.8

5 in our experimental setup for this investigation. The results, presented in Table 4.7, re-

veal that the alternately mixed architecture demonstrates superior performance compared

to other configurations. The impact of splitting the neighbor nodes is examined in Table

4.8. Our findings indicate that dividing the neighbor nodes into three groups, without con-

sidering symmetrically-related neighbor nodes, yields the most favorable outcome. The

influence of different model sizes on our proposed method is evaluated and summarized

in Table 4.9. Since Zhao et al. [34] emphasize their performance with fewer parameters,

we use a similar size for a fair comparison, setting the depth and channel to 4 and 108,

respectively. After adjustment, our model size is comparable to that of Zhao et al.’s ap-

proach. MPJPE of our method is 51.3mm, while Zhao et al.’s approach achieves 51.8mm.

These results demonstrate our proposed method’s effectiveness and efficiency, even when

employing a smaller model size.

Additionally, we investigate the effect of adding the toe direction to the input data

and using it as a positional encoding at the start of the Transformer encoder, resulting in

an MPJPE of 50.7mm. While this is 0.2mm worse than the original MPJPE of 50.5mm
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Table 4.9: Quantifying the impact: Ablation study on depth and channel settings.

Depth Channel Param. (M) MPJPE (mm)
4 108 0.67 51.3
4 128 0.93 51.0
5 128 1.17 51.2
4 256 3.70 51.0
4 384 8.31 50.9
5 512 18.38 50.5
6 512 22.13 50.8

(refer to Table 4.3), our experiments reveal that enhancing the precision of the 2D pose

is a more effective strategy, leading to a substantial reduction of the MPJPE to 34.1mm

(refer to Table 4.3).

4.6 Qualitative Results

Visual representations of 3D human pose estimated by the AMPose method, trained

on Human3.6M, are presented in Figure 4.3, Figure 4.4, and Figure 4.5. The 3DHP

dataset’s test set comprises outdoor scenes and backgrounds without a green screen. By

utilizing 2D pose models, the lifting method can effectively mitigate the impact of back-

ground noise. As depicted in Figure 4.4 and Figure 4.5, our proposed method can accu-

rately predict 3D poses across various challenging scenarios.

In contrast to the Human3.6M dataset, we observe notable variations in keypoint

definitionswithin the 3DHP dataset. Specifically, the nose appears flatter, and the shoulder

exhibits a narrower appearance. These observed dissimilarities disclose the importance of

accounting for dataset-specific variations when developing pose estimation models, as

subtle differences in keypoint definitions can affect the accuracy of the predictions.
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Figure 4.3: Graphical display on Human3.6M.

Figure 4.4: Graphical display of indoor scenes from 3DHP.
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Figure 4.5: Graphical display of outdoor scenes from 3DHP.
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Chapter 5 Conclusion

In this work, we have presented a novel method called AMPose for 3D HPE, which

alternately combines the Transformer encoder and GCN blocks. Our approach aims to

modularize human joint relations into global and physically connected relations, which

the Transformer encoder and GCNs can efficiently capture. The proposed method shows

superior accuracy and generalization ability performance by comparing with state-of-the-

art models on the Human3.6M and 3DHP datasets.

In the ablation study, we provide the design rationale behind AMPose and validate

the advantages gained from combining the Transformer encoder and GCNs.

In future research, we propose investigating the application of the AMPose method to

3D human mesh estimation, which encompasses both pose estimation and body shape es-

timation. By harnessing the distinctive capabilities of the Transformer encoder and GCNs,

our approach holds the potential for advancing the estimation of 3D human mesh.
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