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摘要

本論文透過圖形處理器優化極大二分團列舉 (Maximal Biclique Enumeration)

的執行效能。過往最大二分團列舉之演算法皆採用深度優先搜尋技巧，同時需要

大量的遞迴呼叫與集合操作。然而，因為圖形處理器在硬體上的限制，使得深度

優先搜尋與遞迴呼叫並不可行，並且圖形處理器上的計憶體限制也使得過往的資

料結構，會導致計憶體不足的問題。同時，在解決前述之硬體限制之後，也因為

圖形處理器本身高平化度的特性，使得如何平均有效率的將工作量分配給每個執

行單元，變成影響效能的最大問題之一。

本研究改寫過往之極大二分團列舉演算法，將遞迴呼叫改為迴圈形式，減緩

在圖形處理器上呼叫函式所造成的高負擔；同時，也使用新的資料結構，以解決

原集合在圖形處理器上不可用之問題，進而減少了宣告集合對記憶體的需求。後

續進一步使用了輕量化候選項選擇、工作竊取等技巧，緩解在圖形處理器上執行

緒區塊之間工作量不平衡之情形；並使用平行交集計算與雙層平行計算，進一步

利用執行緒區塊內之平行度。在提出極大二分團列舉在圖形處理器上之可能性的

同時，提高此問題在圖形處理器上之效能。

關鍵字：二分團、圖形處理器、平行運算
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Abstract

Maximal biclique is a crucial property in many applications, such as social network

analysis and computational biology. By Maximal Biclique Enumeration (MBE), we can

list all the maximal biclique in a given graph and thus extract the insight of it. Alone with

the growth of graph size, previous studies have introduced different algorithms to solve

the MBE problem with parallelism on CPUs to improve the scalability ; however, to the

best of author’s knowledge, the problem has not been implemented on Graphic Processing

Unit (GPU).

In this study, it aims to improve scalability and runtime of MBE through the paral­

lelism provided by GPUs. First, to successfully migrate the MBE algorithm to the GPUs,

it proposes a loop­based algorithm to replace the recursion, and then uses a new data

structure to solve the memory explosion problem. Lastly, profiting from the parallelism

of GPUs, it develops lightweight candidate selection and work­stealing techniques to alle­

viates the workload imbalance between thread blocks. Furthermore, it leverages parallel

v
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intersection computation and two­level parallelism within each thread block to effectively

utilize the inherent parallelism of these blocks.

Keywords: biclique, GPU, parallel computing
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Chapter 1 Introduction

This paper studies the Maximal Biclique Enumeration (MBE) problem. With a given

bipartite graph, we need to enumerate all the maximal biclique of the graph. A bipartite

graph G = (U, V,E) consists of two disjoint vertex sets, L and R; also, ∀(u, v) ∈ E,

(u, v) ∈ LXR. If there are two vertex sets named A, B, which A ⊆ L and B ⊆ R, and

∀a ∈ A∀b ∈ B, (a, b) ∈ E , then we call G = (A,B,E) is a biclique. Besides, if a

biclique B is not a proper sub­graph of any other larger biclique, we call B is a maximal

biclique.

Maximal bicliques have proven useful in solving the a wide range of other practical

applications, such as web community analysis, graph neural network aggregation acceler­

ation, computational biology and so on. In practical scenarios, such as the aforementioned

applications, bicliques with a small number of vertices are often uninteresting. Thus, it is

preferable to extract only large or even maximal bicliques. However, as the quantity of

maximal bicliques can grow exponentially[14], the computational complexity of MBE is

considerable.

Research on sequential algorithms for solving the MBE problem has been ongoing

for over a decade. iMBEA[16] leverages the fact that all maximal bicliques in a bipartite

graph G can be listed by exploring the sets in either 2L or 2R (the power set for L or

1
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R). It suggests a recursive approach for enumerating maximal bicliques, starting from the

vertex set with the smallest number of vertices. Alexe et al.[3] introduced an output­

sensitive algorithm that constructs large bicliques by merging small bicliques beginning

with stars. Numerous other studies have focused on developing sequential algorithms for

solving MBE in static graphs. On the other hands, parallel algorithms for solving MBE

problem are not investigated as much as sequential ones.

The first parallel algorithm POP­MBC was proposed by [10] in 2009. It utilizes a

round­robin strategy to achieve high load balancing among different processors and re­

duced the overhead of synchronization with reduced vertex set. Besides, Arko et al.[9]

devised a parallel algorithm on MapReduce platform, which clustering the input graph

into seperate graphs, and solve the sub­problem independently. ParMBE[6], on the other

hand, introduced another parallel algorithm based on the MineLMBC[8]. It leverages

memory shared by multiple cores, and is also the state of the art on the problem of MBE.

Previous studies have shown that they made good use of the power of parallelism

between multiples instances and cores. However the current methods do not migrate the

MBE problem to GPUs. As the size of graph growing up, we need more parallelism to

improve to scalability of parallel algorithm on solving MBE. Hence, GPUs could be a

reasonable solution. There are several difficulties when we try to solve the MBE problem

onGPUs. First, most algorithms of theMBE problem are depth first search (DFS) manner,

which means they need a lot of recursion function call during the execution of algorithm.

However, due to the hardware limitation, recursion is not suitable for GPU architecture.

Furthermore, because the previous parallel algorithms were running on the CPU, they had

larger memory space compared to GPUs. This allowed them to declare new data structures

with each recursive call and each core. However, when it comes to GPUs, this solution

2
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does not work on GPU. When we want to use tens of thousands of thread on GPU, it is

not reasonable for us to allocate a group of data structure for each layer of recursion and

each thread, especially under the situation that the GPUs own fewer DRAM than CPUs

do.

As a result, to the best of author’s knowledge, we present the first parallel algorithms

to solve MBE on GPUs. In order to successfully transition the MBE algorithm to GPUs,

we replace the recursion structure into loop to meet the architecture of GPU; also, due to

the limitation of device memory on GPUs, we adopted the compact representation method

proposed in parMCE [4] to reduce the usage of device memory. Besides, in order to deal

with the workload imbalance problems between thread blocks, We propose a lightweight

candidate selection approach to reduce the overall workload and achieve a more balanced

recursion tree. Furthermore, we introduce a work­stealing mechanism, which allows each

thread block to have a fair distribution of tasks. Furthermore, to better utilize the par­

allelism within each thread block, we adopt the Parallel Intersection Computation (PIC)

method proposed in [6]. Additionally, we introduce a two­level parallelism scheme, which

enables us to distribute the workload to threads within each thread block more flexibly.

To sum up, the contributions of this paper are:

• We present the first parallel algorithms to solve MBE on GPUs.

• We transform the recursion structure into loop­based structure and adopt compact

representation to migrate MBE algorithm to GPUs.

• We propose the lightweight candidate selection and work stealing technique to solv­

ing the unbalancing problem inter thread block.

• We adopt parallel intersection computation and introduce the two­level parallelism

3
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skill to make good use the parallelism within each thread block.

• The results show that our approach can s achieve up to 3.83x overall speedup in the

social network datasets, and scale up the size of graph dramatically.

The rest of the thesis is organized as follow. Chapter 2 introduces the GPU architec­

ture manufactured by NVIDIA and the CUDA programming model as well. Besides, it

gives the definition and applications of Maximal Biclique Enumeration (MBE) problem.

Chapter 3 discusses the related works and some optimizations they proposed. Chapter 4

describes the challenges we faced whenmigrating theMBE algorithm to GPU, and the im­

plementation details of our solution. Chapter 5 will delve into the methods we propose to

address the inter­thread block imbalance issue, as well as explain how to better utilize the

parallelism within a single thread block. Chapter 6 evaluates different parallel strategies

for MBE and compares them with prior studies. Chapter 7 concludes the study, covering

the future works as well.

4
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Chapter 2 Background

This section introduces the architecture of Nvidia’s Graphics Processing Unit (GPU),

as well as the Compute Unified Device Architecture (CUDA) [12] programming model.

It also defines the problem of maximal biclique enumeration (MBE) and the application

of it.

2.1 GPU architecture

There are 2 perspectives of GPU architecture,the CUDA programming one and the

hardware one. Each of them can be mapped from one to another. In figure 2.1, it shows the

mapping relation between CUDA programming interface and hardware. From the CUDA

programming aspect, we can see that a group of thread can construct a thread block, and a

group of thread blocks is called a CUDA kernel grid. On the other hand, a GPU hardware

execution resource can be separated into several StreamingMultiprocessor (SM), and each

SM is consisted of a group of thread. Each thread block is executed on a single SM, and

will not be migrated to other SMs. Each grid is executed by one GPU, and a GPU can

execute multiple kernel grids simultaneously.

5
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Figure 2.1: GPU architecture

Figure 2.2: GPU architecture
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2.2 GPU memory hierarchy

The memory hierarchy of GPU has several levels. In figure 2.2, we can see that each

thread has its own register file and local memory. Besides, each thread in a thread block

shares the shared memory, which is also the L1 cache. The thread in thread block A cannot

access the data in the shared memory of thread block B; also, when we declare a shared

variable, this variable will only be allocated once, and all the threads in thread block will

share the variable. Finally, there is a global device memory which is available to all the

threads in all thread block. Because the location of shared memory is on­chip, the latency

of shared memory is roughly 100x lower than the local and global memory [7].

2.3 Compute Unified Device Architecture

The Compute unified device architecture (CUDA) is proposed by Nvidia, which

make programmers and researchers implement the function they want with a C­like pro­

gramming language, executing on the GPUs provided by Nvidia. The functions executed

on GPUs are called device code or kernel function, while the instructions executed on

CPUs are call host code. All the kernel functions need be launched by CPU and specify

the size of grid and block when the kernel is launched.

2.3.1 CUDA synchronization granularity

When we try to implement our function and arrange the behavior of massive thread

on the GPUs, the synchronization granularity plays an important role. If we synchronize

with wrong or improper granularity, the program might be not efficient, or even wrong.

7
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Before CUDA 9, we can only synchronize the threads in the same thread block with

__syncthreads() function. Hence, if we can to synchronize the threads with finer gran­

ularity, we can only decrease the size of thread block. On the other hand, if we want to

synchronize the whole grid, we can only finish the current kernel function, relaunching

the next kernel function to achieve the global synchronization. which is suffered from

extremely heavy overhead of function launching.

In CUDA9 [11], Nvidia proposed two features: cooperativeKernelLaunch and __syncwarp()

functions. With the cooperativeKernelLaunch function, we can synchronize the whole

grid in the kernel function by grid.sync() function without kernel launching overhead.

Because of the function, our the overhead of work stealing features could be relieved. Be­

sides, the __syncwarp() function offers us the opportunity to synchronize the threads in

the granularity of warp, which is the basic scheduling unit for GPUs. With __syncwarp()

function, we can leverage another parallelism in the Parallel Intersection Computation.

2.3.2 CUDA Dynamic Parallelism

As we mentioned in chapter 2.1, a kernel function need be launched from the host.

Under this circumstance, the recursive algorithm is not achievable by kernel function, for

it cannot call itself on the device side. Hence, in CUDA 6, Dynamic Parallelism [2] was

introduced by Nvidia, which offers programmers the ability to launch another kernel func­

tion from the original one. This seems to give programmers the opportunity to implement

the recursive function on the GPUs. However, [15] indicated that the overhead of dynamic

8
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parallelism is considerable. Even if we could implement a recursive function on the GPUs,

it suffers from the launching overhead which is not acceptable. Hence, apply Dynamic

Parallelism naively is obviously not suitable for our task. To deal with this problem, we

rewrite the iMBEA algorithm from a recursive algorithm into a loop­based form.

2.4 Maximal Biclique Enumeration

A bipartite graph is a mathematical structure that consists of two disjoint sets of ver­

tices, denoted as U and V, such that all edges in the graph connect a vertex from U to a

vertex from V. In other word, there isn’t any edge connect two vertices in U or in V at the

same time.

Given a bipartite graphG = (U, V,E), a biclique is a compete subgraph of G, where

every vertex in U is connected to every vertex in V. If a biclique, denoted as B, is not

proper contained by any other biclique, B is defined as a Maximal Biclique.

Maximal Biclique Enueration refers to the process of enumerating all the maximal

biclique in a given bipartite graph. The enumeration of maximal bicliques is critcal in var­

ious appliations such as social network analysis, neural network acceleration, data mining,

and pattern recognition. It gives us the insights into the densest and largest complete bipar­

tite subgraphs within a graph. However, this problem is proved to be NP­complete [13].

Hence, because of the value of the insights MBE provide, how to speedup the runtime of

MBE is an important issue, especially in large graph, for the graph constructed from social

network and biological information are complicated and large.

9
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Chapter 3 Related work

The recent studies [1, 5, 6] are constructed using the iMBEA algorithm [16], which is

specifically designed for bipartite graphs. In this chapter, we discuss the iMBEA algorithm

[16] in detail, including the optimized techniques it introduced. Also, we describe other

optimized techniques proposed by ParMBE[6]. Finally, we also introduce a relevant work

in this field is the GPU­based solution for maximal clique enumeration (MCE) proposed

by [4]. The compact representation of the vertex sets and the workload balancing methods

it proposed inspire us quite much.

3.1 iMBEA

The iMBEA [16] ( Improved Maximal Bicliques Enumeration Algorithm) algorithm

is designed for enumerate all maximal bicliques in a given bipartite graph efficiently. In

the beginning of iMBEA, it select a vertex x from the P set, adding x into R. Based on the

vertices in R, it then decides which vertices in U can remain in L′ set.

Based on the L′, it scan the whole Q set afterward. for each vertex v in Q, it checks

the number of neighbors of v N [v] in L′. If N [v] is equal to the size of L′, it means that

the vertex v should be added into R as well. However, based on the principle of Q, we

cannot add any vertex in Q into R, which means the current biclique cannot be one of the

10
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Algorithm 1 iMBEA
1: procedure IMBEA(G, L, P , Q, R)
2: G: a bipartite graph G = (U ∪ V,E)
3: L: vertex subset of U consisting of common neighbors of vertices in R.
4: R: vertex subset of V consisting the vertices of current maximal biclique in V set.
5: P: vertex subset of V consisting the candidates selected from to be added to R.
6: Q: vertex subset of V consisting the vertices which have been added into P and

cannot be added into R again.
7: while |P | ̸= 0 do
8: P = P − {x}
9: R′ = R ∪ {x}
10: L′ = {u ∈ L|(u, x) ∈ E(G)}
11: P ′ = ∅
12: Q′ = ∅
13: is_maximal = true
14: L′ = L \ L′

15: C = {x}
16: for all v ∈ Q do
17: N [v] = {u ∈ L′|(u, v) ∈ E(G)}
18: if |N [v]| == |L′| then
19: is_maximal = false
20: break
21: else if N [v] > 0 then
22: Q′ = Q′ ∪ {v}
23: end if
24: end for
25: if is_maximal == TRUE then
26: for all v ∈ P do
27: N [v] = {u ∈ L′|(u, v) ∈ E(G)}
28: if |N [v]| == |L′| then
29: R′ = R′ ∪ {v}
30: S = {u ∈ L′|(u, v) ∈ E(G)}
31: if |S| == 0 then
32: C = C ∪ {v}
33: end if
34: else if N [v] > 0 then
35: P ′ = P ′ ∪ {v}
36: end if
37: end for
38: PRINT(L′, R′)
39: if P ′ ̸= ∅ then
40: iMBEA(G,L′, R′, P ′, Q′)
41: end if
42: end if
43: Q = Q ∪ C
44: P = P \ C
45: end while
46: end procedure
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maximal biclique. Hence, we can simply set the is_maximal to false and just finish the

current branch. On the other hand, if the N [v] of each v in Q are smaller than the size of

L′, we can conclude that the current biclique satisfies the maximality. As a result, we can

move to the next step: Iterating all the vertices in P and determining which vertex in P

can be added to R without removing any vertex in L′. It’s also worth mentioning that if

we find the N [v] is equal to 0, which means the vertex v connects to no vertex in L′, we

can directly remove the vertex from Q. This is because we are no longer need to check the

vertex anymore. This property is also hold when we check the vertices in P.

Next, Since we have known the maximality of current biclique is satisfied, we can

now try to add the vertices in P into R to form R’ without reducing the size of L′. To make

sure that the vertex added into R from P will not shrink L′, for each vertex v in P, we need

to calculate the N [v] as well. If N [v] is equal to the size of L′, it means that we can add

v into R ”pain­freely”. Similarly, in this step we check whether the N [v] is larger than 0.

If it is, which means v has the potential to be added R again to construct another maximal

biclique. Consequently, We need to add it into P ′. Otherwise, we can simply remove v

from P ′, for there is no opportunity for v to be added into R′ while maintaining the size

of L′ larger than 1.

Finally, we can conclude that the (L′, R′) is a maximal biclique. At the same time,

if there is at least 1 vertex in P ′, we can base on the state of current biclique, recursively

finding another maximal biclique by adding the vertex from P ′ into R′ and generating the

corresponding L′′. Otherwise, if the P ′ is an empty set, we can finish the current branch,

moving the x from P to Q, and step to the next iteration of while loop.

After describing the algorithm of iMBEA, we would discuss some optimization pro­
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posed by it. Meanwhile, we would also explore whether we can adopt these methods into

our algorithm.

3.1.1 Tree Pruning

As seen in lines 30­32 and lines 43­44 of algorithm 1, iMBEA tried to maintain a

set S to contain the vertices in P whose neighbor is totally equal to the L’. With S, we

can prune these vertices from the P set into Q set, which reduce the number of iterations

of while loop in lines 7 of algorithm 1. While this optimization could effectively reduce

the redundant work of finding process, it will also disrupt the order of while loop, which

originally remove the vertex from P one by one. This is acceptable under the sequential

execution scenario. However, when it comes to the parallel one, we tried to execute each

recursion tree in parallel. In other words, we tried to process the while loop in parallel,

which means we need to know the status of P set and Q set in advance. Hence, this

optimization is not suitable for us.

3.1.2 Candidate Selection

In lines 7 to 8 of Algorithm 1, we can notice that this algorithm try to move a vertex x

fromP into R to generate the next potential maximal biclique. Naively, we could arbitrarily

select any vertex in P, and it would still lead to a correct result. However, drawing from

the findings in the [16],if we select the x in P in non­decreasing order, we could not only

lead to more balance recursion tree, but also avoid the production of numerous subsets

that are not maximal.

As mentioned in section 3.1.1, the parallel algorithm we proposed try to process the
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recursion trees in parallel. Under this situation, whether the workload between each exe­

cution unit is balance or not is highly related to the balance level of recursion tree. Con­

sequently, the candidate selection technique is quite important for our algorithm.

As described in iMBEA[16], it select the x which minimizes the size of L′ from P by

implementing the insertion sort in lines 35 of algorithm 1. Similarly, ParLMBC [6] also

apply this technique by sorting the vertices in tail set before the recursive exploration.

Both of their methods to achieve the non­decreasing order are depending on sorting the

entire P set or tail set. Before they try to launch another recursive function call, they store

the P or tail set, and recover it after returning from the recursive function call.

3.2 Share­Memory parMBE

The main function block2 of ParMBE proposed by [6] is named ParLMBC. Instead

of using L, P ,Q, andR set to describe its algorithm, it uses X, Γ(X), and tail(x). X, Γ(X)

and tail(X) is similar to R, L and P correspondingly. In the following of section3.2, we

will discuss the main challenge we face while trying to migrate this ParMBE algorithm

on CPUs to GPUs. Besides, We also describe parallel intersection computation, which

is a common neighbor optimization techniques we adopt from parMBE [6] into our own

parallel algorithm on GPUs.

3.2.1 First level recursion tree

As seen in 3.1, after entering the entry point, there are lots of recursion tree to be cal­

culate. In the parMBE algorithm, it assigns a core the solve the separate and independent

recursion tree to achieve the parallelism. This inspires us to dispatch the thread blocks to
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Algorithm 2 parLMBC
procedure PARLMBC(X , Γ(X), tail(X))

for v ∈ tail(X) do
if |Γ(X ∪ {v})| < 1 then

tail(X) = tail \ {v}
end if

end for
if |X|+ |tail(X)| < 1 then

return
end if
parallel sort vertices of tail(X) into ascending order of |Γ(X ∪ {v})|
Let the elements of sorted tail(X) be presented in the order 0 . . . k
for i ∈ [0 . . . k] in parallel do

ntail(X) = tail[i+ 1 . . . k]
if |X ∪ {v}|+ |ntail(X)| > 1 then then

Y = Γ(Γ((X ∪ {v})) in parallel
if Y \ (X ∪ {v}) is a subset of ntail(X) then

if |Y | ≥ 1 then
B = B∪ < Y,Γ(X ∪ {v}) >

end if
end if
ParLMBC(Y,Γ(X ∪ {v}), ntail(X) \ Y )

end if
end for

end procedure

Figure 3.1: Recursion tree of MBE algorithm
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solve each recursion tree in the same manner.

3.2.2 Memory consumption

As seen in Algorithm 2, the process of it will launch lots of recursion, and the depth

of the recursion tree can reach up to the maximum degree of a vertex in the graph. At the

same time, because the algorithm needs to maintain X, Γ(X), and tail(x), the memory con­

sumption will grow up linearly with the depth of recursion. This overhead get even worse

when we need to take the advantage of parallelism. In other words, if we execution the

algorithm in parallel with 16 cores (like parMBE 2 does), it needs really lots of memory

space to avoid out of memory situation. As a result, parMBE [6] selected an experimental

environment with 3TBs of RAM. However, when we want to migrate this algorithm to

GPUs, we face a vert intuitive question that the device memory of GPUs is 24GBs only.

Meanwhile, the number of threads on GPUs exceeds that on CPUs by hundreds to thou­

sands of times. Hence, how to maintain a data structure to describe X, Γ(X), and tail(x)

(or L, P , Q, and R) in algorithm is a critical issue to be solved.

3.2.3 Parallel Intersection Computation

Traditionally, the vertex set used in MBE algorithms are stores in the unordered set,

which is suitable to perform some set operation on it. However, when we possess a larger

number of execution units, to perform the set operation in a sequential manner seems to no

longer be as suitable. As a consequence, parMBE [6] proposed the Parallel Intersection

Computation (PIC) technique, which perform the intersecting operation from Γ(X ∪ v) to

generate the Γ(Γ(X ∪ v)). We adopt the concept to perform the computation of N [v] in
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lines 17 and 27 in algorithm 1. We will explain it in detail in chapter 5.

3.3 PMCE on GPUs

PMCE[4] is the first paper who proposed the algorithm to solve the Maximal Clique

Enumeration (MCE) problem on GPUs. While there are certain differences in the al­

gorithms and implementation details when enumerating maximal biclique and maximal

clique, PMCE[4] has provided us with substantial insights regarding how to maintain the

state of vertex sets and how to solve the workload imbalance problem. In the follow­

ing sections, we will introduce the compact representation of the vertex set proposed in

PMCE[4], and explain the workload balance method they used.

3.3.1 Compact Representation

As mentioned in chapter3.2.2, the memory consumption of MBE algorithm is con­

siderable. Hence, how to maintain the status of vertex set with limited memory space is a

necessary issue to be solved. In the PMCE, it leverage the compact representation to store

the status of vertex in a single array. With this data structure, the memory consumption is

no longer related with the depth. In other words, the function in all levels will share the

same single array. While the original usage of this compact representation is to represent

the induced graph for the optimization in PMCE, this compact representation also works

for us in representing to L,P,Q and R set.
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Chapter 4 Migration the parallel

MBE Algorithm to GPUs

In this chapter, we will describe the challenges faced when attempting to migrate

the MBE algorithm from CPU to GPU. Subsequently, we will propose corresponding

solutions to these difficulties and provide an in­depth discussion on the details of their

implementations.

4.1 Obstacles and Overview of Implementation

• Recursion Function Call

As seen in 1, the algorithm operates on a recursive principle, causing lots of func­

tion call during execution. this is acceptable on CPU because the function launching

overhead on CPU is relatively small. However, when it comes to GPUs, the situ­

ation changes dramatically. Referencing 2.3.2, the dynamic parallelism offers us

the opportunity the execute recursive algorithm on GPU, while suffering from seri­

ous overhead. Therefore, implementing the iMBEA algorithm without resorting to

recursion becomes an issue that must be addressed.

• Limitation of Device Memory
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As we observed in Chapter 3.1, the iMBEA algorithm cannot be executed without

for vertex sets ­ L, P, Q and R, leading to a space complexity of O(|V |). Besides,

because of the intrinsic nature of recursion, we would need to allocate these four

vertex sets with each recursive call, thereby escalating the space complexity to O(|

V| * depth). Moreover, because we aim for parallel execution of this algorithm,

each degree of parallelism would require four dedicated vertex set. This in turn

amplifies the space complexity to O(|V| * depth * degree_parallelism), resulting

out­of­memory issue. Consequently, how to maintain the status of those for vertex

sets emerges as a crucial matter.

4.2 Loop­based DFS Control Flow on GPUs

In Algorithm 3, we can observe that we’ve added an outer loop with the condition

while lvl >= 0 around the original iMBEA algorithm. Moreover, the places in the code

where recursion was required have been modified by setting is_recursive to true, subse­

quently breaking the current while |P| > 0 loop. Following this, the instruction pointer

moves to line 44 to determine whether the reason for breaking out of the loop was due to

a need for recursion or a normal condition where |P| == 0. Furthermore, it’s worth not­

ing that in Algorithm 3, we only describe the process at line 8 using pseudocode, without

delving into the detailed explanation of how we maintain the L, P, Q, and R sets across

different levels. This issue will be thoroughly discussed in Chapter 4.3, where we ex­

plain how to manage the contents of a single L, P, Q, R set across different levels without

significantly affecting performance.

19

http://dx.doi.org/10.6342/NTU202302235


doi:10.6342/NTU202302235

Algorithm 3 cuMBE
1: procedure CUMBE(G, L, P , Q, R)
2: G: a bipartite graph G = (U ∪ V,E)
3: L: vertex subset of U consisting of common neighbors of vertices in R.
4: R: vertex subset of V consisting the vertices of current maximal biclique in V set.
5: P: vertex subset of V consisting the candidates selected from to be added to R.
6: Q: vertex subset of V consisting the vertices which have been added into P and cannot be

added into R again.
7: while lvl >= 0 do
8: maintain L,P,Q,R for current level
9: while |P | ̸= 0 do
10: P = P − {x}
11: R′ = R ∪ {x}
12: L′ = {u ∈ L|(u, x) ∈ E(G)}
13: P ′ = ∅, Q′ = ∅
14: is_maximal = true
15: for all v ∈ Q do
16: N [v] = {u ∈ L′|(u, v) ∈ E(G)}
17: if |N [v]| == |L′| then
18: is_maximal = false
19: break
20: else if N [v] > 0 then
21: Q′ = Q′ ∪ {v}
22: end if
23: end for
24: if is_maximal == TRUE then
25: for all v ∈ P do
26: N [v] = {u ∈ L′|(u, v) ∈ E(G)}
27: if |N [v]| == |L′| then
28: P = P − {v}
29: R′ = R′ ∪ {v}
30: else if N [v] > 0 then
31: P ′ = P ′ ∪ {v}
32: end if
33: end for
34: PRINT(L′, R′)
35: if P ′ ̸= ∅ then
36: Q = Q ∪ {x}
37: is_recursive = true
38: break
39: end if
40: end if
41: Q = Q ∪ {x}
42: end while
43: is_maximal = true
44: if is_recursive == TRUE then
45: lvl ++
46: else
47: lvl −−
48: end if
49: end while
50: end procedure
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Figure 4.1: Compact representation

4.3 Compact Representation in cuMBE

In Chapter 3.3.1, we mentioned that compact representation was initially used to

describe induced graphs. However, we found that this data structure is indeed highly

compatible with our MBE algorithm. Firstly, we need to declare an integer array whose

size is equal to depth to serve as the pointer for each level (we name it lp[lvl]). In Figure

4.1, we can see that each time we need to move a point from P to R, there’s no necessity to

declare a new array. Instead, we can use an atomic_swap operation to swap it to the end

of the entire array, and then decrement lp[lvl+1]. In this way, we can determine the size

of P for the next level. If we need a recursive call afterward, we can then use lp[lvl + 1]

as the size of P in the next level. When we finish the recursion and return, we only need

to refer to lp[lvl]. Through this method, we can keep all the points we hope to remain in P

at the next level compact at the front of the array. Additionally, by observing the value of

lp[lvl], we can determine the size of P when we are at different levels. This representation

can also be adopted on L,Q and R set.
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Chapter 5 Optimization of Parallel

MBE Algorithm on GPUs

In this chapter, after successfully migrating the MBE algorithm to GPUs, we encoun­

tered a significant issue. Once each thread block is assigned its own recursion tree, work­

load imbalance arises due to the varying depths of the trees. Therefore, in this chapter,

we strive to address this inter­thread block problem. In addition, there is a corresponding

issue within each thread block (the intra­thread block problem). Given the hundreds of

threads available within a thread block, properly and efficiently assigning work to each

thread is a challenge. This task will be elaborated in detail in this chapter.

5.1 Workload Imbalance

As we mentioned in chapter 3.2.1, our intention is to assign each thread block to ex­

ecute its own independent recursion tree. This idea is indeed feasible, but it confronts a

significant challenge ­ workload imbalance. Since a graph is an unorganized data struc­

ture, when we receive a bipartite graph, we have no way of predicting the depth of each

recursion tree in advance. As a result, when we want to randomly distribute the recursion

trees to different thread blocks, it may occur that some thread blocks end up with several
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Figure 5.1: Normalized execution time of each thread block

deep recursion trees while others get relatively shallow ones. In such a scenario, the thread

blocks that receive the smaller recursion trees enter an idle state prematurely, thereby fail­

ing to fully exploit the benefits of parallelism provided by the entire GPU. As illustrated in

Figure 5.1, we can observe that without any optimization in distributing recursion trees,

most of the thread blocks run for only about 10% to 20% of the time compared to the

longest­running thread block Ideally, we would hope for the completion times of each

thread block to be as close as possible.

5.2 Lightweight Candidate Selection

In Chapter 3.1.2, we mentioned that when we want to select vertex v from P to join

R, we hope that the size of L for this v can be as small as possible. This not only makes

the recursion tree more balanced, but also reduces the overall workload.

In previous studies, both iMBEA and parMBE sorted P according to the size of L

before choosing v, and then sequentially popped points from P to join R. However, as we

can see in Figure 4.1, when the algorithm go down recursively and return to the current
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level, though the members of our P set have not changed, their order has. This makes the

simple method of sorting P infeasible after we use compact representation. Even if we

have sorted the current P according to the size of L, the order of P will change due to the

atomic_swap operation during the recursion when the algorithm goes down recursively

and then returns.

Therefore, we propose another idea, which is to use a linear search method to spend

O(|P|) each time to find the vertex in P that can make L the smallest to join R. Although this

method is feasible, spendingO(|P|) each time brings a non­negligible overhead. Therefore,

we propose a two­level early stop mechanism for the linear search operation:

5.2.1 First Level Early Stop

When we wish to ascertain the size of L after each vertex in P has joinedR, we must

compute this in real time. Unlike the typical linear search where the size of L after the

addition of v1 into R is directly known, this process requires traversal through all edges

of v. During the traversal, we have to verify if each neighbour n of v is in the original L.

If it is, n can remain in L; otherwise, it must be removed.

Suppose we have vertices v1 to vp in P today. If we find that the size of L is 2 after

v1 joinsR, we need to check v2 to vp. Suppose v2 has many neighbours, from n1 to nm. If

we find that both n1 and n2 neighbours are in the original L, it indicates that the size of L

will be at least 2 after v2 joins R. But we aim to find v that minimizes L, so we know we

no longer need to examine n3 to nm as, even if they are not in the original L, the resulting

size of L would still be the same as if v1 had been added. This idea can be applied to the

remaining vertices in P , from v3 to vp.
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In other words, the first level early stop aims to reduce the unnecessary examination

of edge lists while evaluating each v in P . While we need to check each v’s edge list, we

don’t necessarily need to go through the entire edge list.

5.2.2 Second Level Early Stop

As mentioned in Chapter 5.2.1, there are v1 to vp vertices in P for which we need to

compute the size of L after they have been added to R. While the first level early stop

allows us to avoid having to examine all edges in each vertex’s edge list, we can save even

more time in candidate selection by not having to inspect each vertex in P . Imagine that

we found a vertex in the previous candidate selection that reduced the size ofL to 1. When

selecting the next vertex from P to add to R, if we find another vertex that also reduces

the size of L to 1, we can stop inspecting the other vertices in P . That is to say, we always

remember the size of L caused by the last selected vertex, and use that size as our target

for the next selection. As soon as we find a vertex that matches the previous minimum,

we can stop scanning the vertices in array P .

In other words, the goal of the second level early stop is to avoid going through the

entire set P . Of course, we might not always find a vertex v that reduces the size of L to

the same minimum as the previous selection. However, the overhead of maintaining the

previous minimum is almost negligible, and subsequent experiments have shown that this

modification significantly optimizes the process.
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5.3 Work Stealing

While candidate selection has already done a fair job of alleviating the problem of

workload imbalance, we observed from experiments that merely relying on the first level

recursion tree as a unit of work distribution is still too coarse, even with the optimization

of candidate selection. Hence, we propose a work­stealing mechanism that allows thread

blocks that have run out of first level recursion trees to execute in the later stages of exe­

cution, to help other executing thread blocks deal with their second level recursion trees

(RT2) within their assigned first level recursion trees (RT1(blockID)).

In the beginning, we allow each thread block to handle its own RT1(blockID) until

any of them finds no more RT1 to process. At this point, it issues a signal along with

a grid.sync(), and asks all other thread blocks to record which RT2 within their own

RT1(blockID) they are currently handling. The idle thread block then starts checking

fromRT1(blockID+1) all the way toRT1((blockID+NUMblock−1)mod(NUMblock)),

to see if there are any unfinished RT2 in the RT1 that all other thread blocks are respon­

sible for. If there are, it helps process them. Similarly, if other thread blocks also find

themselves becoming idle during this process, they also start checking sequentially from

RT1(blockID + 1). The entire algorithm only ends when all thread blocks realize they

have become idle.

Such a work­stealing mechanism has several advantages. First, we chose to let idle

thread blocks actively seek out other work to do, rather than passively waiting for the

busy thread blocks to distribute their work, meaning that the overhead required for work

reallocation is carried by the idle thread blocks, not the originally busy ones. Second, every

idle thread block starts checking from its own RT1(blockID + 1), rather than uniformly
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starting the check from RT1(0). This design prevents all newly idle thread blocks from

repeatedly checking the same RT1 and also avoids contention problems arising from too

many thread blocks simultaneously accessing the same RT1. Finally, we only choose to

distribute work to different thread blocks at a granularity of RT2 at the very end. This

allows us to enjoy the benefits of lower distribution overhead that comes with distributing

at the granularity of RT1 for most of the time, while still being able to benefit from the

workload balance offered by distributing at a granularity of RT2 when necessary.

5.4 Parallel Intersection Computation

As can be seen in Algorithm 3, we often need to know the value of N[v] (like line 16,

line 26). When calculating N[v], we have two options. Let’s take the for loop from line

25 to line 33 as an example.

First, we can traverse all the points in the P set. Suppose for a certain point v, we

examine whether its edge list can fully encompass the current L set. If so, this means point

v is connected with all points in L, and we can add this point to R. This method essentially

starts from the P set, examining whether the size of N[v] for all points v in P is the same

as the size of L.

Second, we can alternatively start from L. We initially declare an array the same size

as V. For each point’s edge list in L, we perform an atomic add operation on the value of

the array with the vertex number as the array index. After this process, we traverse the

entire array. If someone’s value is the same size as L, then we can also say that this point is

connected with all points in L. The second method essentially starts from L and calculates

the number of connections between each person in the V set and L based on L’s edge list.
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The second method is the parallel intersection computation we said.

As we closely observe theMBE algorithm, wewill find that the rate at which size of L

decreases is significantly greater than the rate at which size of P decreases. Moreover, size

of Q may even grow larger. Hence, choosing the method of parallel intersection computa­

tion intuitively reduces the number of points we need to traverse, thereby accelerating the

overall time for calculating N[v]. Simultaneously, since we always decide on L starting

from R, we will always make V the point with fewer nodes in the bipartite graph. Under

such circumstances, the degree of each node in U will usually be smaller than that of the

nodes in V. In other words, when we traverse each node’s edge list, the edge list of the

nodes in L will also be shorter than the node in V be. Due to these two reasons, we choose

the method of parallel intersection computation, and our experiments have confirmed that

parallel intersection computation can effectively enhance our performance.

5.5 Two Level Parallelism

Given that we have 256 threads in a single thread block, determining how to effec­

tively distribute tasks to each thread is crucial. As we mentioned in Chapter 5.4, we will

need to traverse the edge list of each point in L. At this moment, if we have 256 threads,

intuitively we have two methods of assigning threads. First, we allow each thread to look

at its own points, meaning we can review 256 points at a time. The second method is

to look at just one point at a time, but let 256 threads traverse the edge list of that point

together, allowing us to complete each point’s edge list more quickly. The downside is

that if the degree of the point is less than 256, some threads will be idle. Based on our

observation, the degree of each point usually does not reach 256. Therefore, we chose to
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use a warp (32 threads) as a unit to traverse the edge list of a single point. In other words,

we can look at 8 points simultaneously. In this way, we can enjoy the benefits of looking

at multiple points at the same time and finish the edge list of a single point more quickly.
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Chapter 6 Evaluation

In this chapter, we will first introduce the experimental environment and the datasets

we used. Then, we will discuss the state­of­the­art (SoTA) benchmark we compare against

and why we chose it.

Following that, we will examine the overall speedup in runtime after our optimiza­

tions compared to the SoTA. Additionally, we will investigate whether our proposed so­

lutions indeed equalize the workload across different thread blocks to address the issue of

workload imbalance.

Finally, we will delve deeper to see how much performance improvement each indi­

vidual optimization can bring to the overall runtime.

6.1 Configurations

6.1.1 Platforms and Datasets

In terms of experimental environment, we conducted our experiments on an Nvidia

RTX3090 graphics processing unit, choosing to implement on the stable version of CUDA:

11.6. As for the dataset, since we decided to compare with parMBE, we selected the same

four datasets used in that paper. The property of these datasets are described in table 6.2,
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Table 6.1: Experiment Environment

CPU Intel i9 10900k
Main memory 128GB

GPU RTX 3090
Device memory 24GB
Operating system Ubuntu 20.04
CUDA version 11.6

Table 6.2: Experiment Environment

Dataset #Vertices #Edges #Maximal Bicliques
Youtube 124325 293360 1826587
IMDB 1199919 3782463 5160061

Stack Overflow 641873 1301942 3320824
BookCrossing 445801 1149739 54458953

and the meaning of vertices and nodes the the graph are explained in following:

YouTube: This network represents the bipartite relationship between YouTube users

and the groups they belong to. The nodes represent users and groups, while an edge con­

necting a user and a group indicates the user’s membership in that group.

IMDB: This network illustrates the relationship between individuals and movies or

television programs. It is a bipartite network, with individuals (such as actors and direc­

tors) represented as nodes on the left, and works (such as films and television programs)

represented as nodes on the right. An edge indicates that a person was involved in a par­

ticular work.

Stack Overflow: This network depicts the bipartite relationship of the Stack Over­

flow favorite system. Stack Overflow is a prominent question and answer website within

the Stack Exchange Network. The nodes in the network represent users and posts. An

undirected and unweighted edge indicates that a user has designated a post as a favorite.

BookCrossing: This network captures data related to the reading habits of members

within the BookCrossing community. The nodes in the network represent users and books,
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while an edge signifies an interaction between a user and a book, indicating that the user

has engaged with or interacted in some way with the book.

6.1.2 CPU Baselines

To the best of the authors’ knowledge, this paper proposes the first algorithm to solve

MBE on a GPU. Therefore, we do not have other GPU MBE algorithms for comparison.

As a result, we selected parMBE, which is parallelized on a CPU and is considered state­

of­the­art in terms of execution time, as our benchmark. Although this comparison is not

entirely fair, we hope this experiment will show that implementing on a GPU can lead to

a certain degree of performance improvement.

6.2 Overall Performance

In Figure 6.1, we can see that our algorithm on the GPU achieves a certain speedup

on all datasets. The maximum speedup we can reach is up to 3.6x.

6.3 Workload Balance

Busy Ratio =

∑#blk−1
n=0 runtime(n)

max_runtime× #blk
(6.1)

Table 6.3: Busy Ratio

Youtube IMDB Stack Overflow BookCrossing
CS:X WS:X 0.203 0.710 0.285 0.144
CS:O WS:X 0.523 0.991 0.664 0.720
CS:X WS:O 0.608 0.982 0.633 0.413
CS:O WS:O 0.902 0.992 0.999 0.994
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Figure 6.1: Speedup compared to parMBE
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Table 6.4: Runtime with CS & WS optimization

Youtube IMDB Stack Overflow BookCrossing
CS:X WS:X 10.573 52.516 2757.73 4940.08
CS:O WS:X 3.331 31.213 489.65 713.175
CS:X WS:O 7.695 39.308 1925.35 4021.7
CS:O WS:O 2.221 31.357 349.274 689.811

In order to evaluate the effectiveness of our optimization methods for workload im­

balance, we define the busy ratio as the total time spent by all thread blocks divided by

the product of the maximum time spent by all thread blocks and the number of blocks. In

other words, we take the maximum runtime among all thread blocks as the goal, hoping

that each thread block’s busy time can approach this target. That is, all of them enter the

idle state at similar times, and the ideal value of the busy ratio is 100

In Table 6.4, we can observe that when no optimization is applied, our busy ratio is

generally less than 30%. Only the IMDB dataset shows a better performance due to its

inherently balanced nature. Furthermore, we can also see that when we try to add either

the Candidate Selection (CS) or Work Stealing (WS) technique, our busy ratio shows

significant improvement, but it is still not enough. Finally, when both techniques are

simultaneously incorporated, the busy ratio can reach more than 99%. YouTube, due to

its relatively smaller graph size resulting in fewer workloads, fails to reach a 99% busy

ratio. However, a 90.2% busy ratio is still considerably better than the initial 20.3%.

It is noteworthy that the busy ratio of IMDB after the addition of CS optimization is

almost as good as when both CS and WS are both employed. We believe this is because

IMDB is already well­balanced after adding CS, thus it cannot benefit from the advantages

brought by WS. However, this indirectly shows that WS does not introduce excessive

overhead.
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