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Abstract

Recently, many researchers dived into the intricate realm of latent diffusion mod-
els, renowned for their competence in generating images reflecting a multimodal range of
conditions. This property endows them with enormous potential, rendering them fit for a
host of applications across various disciplines. Simultaneously, the power of such models
introduces pressing ethical dilemmas, primarily revolving around the responsible deploy-
ment of this technology. The indiscriminate use of such models has the potential to cause
significant harm, emphasizing the need for rigorous control measures to mitigate poten-
tial misuse. Root watermarking is introduced as a countermeasure to address these ethical
concerns. This technology allows for the tracing of images that have been maliciously
created back to the originators. By establishing this link, we can assign responsibility for
any misuse, facilitating the enforcement of legal sanctions and deterring misuse. In this
work, we focus on enhancing the resilience of common distortions in the generated im-

ages. We have expanded upon an existing method, refining it through the normalization
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of its module and the strategic injection of noise during the training. This approach has

allowed us to significantly enhance the model’s robustness, all the while-maintaining the

perceptual quality of the generated images. Our quantitative analysis attests to the effi-

cacy of our approach, as it has resulted in a substantial improvement in bitwise accuracy

by up to 24%, even when the images undergo a 10% resizing. This outcome not only

showcases the effectiveness of our method but also represents a significant stride forward

in the ongoing journey to watermarking latent diffusion models.

Keywords: Robust watermarking, Latent diffusion model, Image forensics, Generative

model, Variational autoencoders
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Chapter 1 Introduction

The digital creation realm has witnessed a seismic shift in recent years, propelled by
groundbreaking advancements in generative modeling and natural language processing.
Cutting-edge Al technologies have unlocked new potentialities in generating and manip-
ulating images, thus marking the dawn of a new epoch in digital arts. Pioneering models
such as DALL-E 2[14] and Stable Diffusion[ 6] have demonstrated their capabilities in
transforming text into images, often producing results that mimic genuine artworks with
uncanny accuracy. This progress has spurred the development of numerous image edit-
ing tools like ControlNet[26] and Instruct-Pix2Pix[ | ], laying the foundation for emerging
artists, designers, and average users to utilize Al for their creative exploits. This meteoric
rise of generative Al has not been without its share of ethical dilemmas that need imme-
diate attention. Al-generated images have reached a level of sophistication such that they
closely resemble real pictures, making differentiating between them increasingly com-
plex. This complexity carries profound implications—it probes the core tenets of image
verification and traceability, which brings concerns over possible misuse of Al, such as
infringing copyrights, creating deep fakes, and aiding impersonation. Traditional meth-
ods employed to mitigate these challenges have been image forensics, passive strategies
to discern generated or manipulated images, and watermarking techniques that imprint

a hidden message into the image after it is generated. However, these techniques bear
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significant flaws. For instance, in the case of open-source models like [16], the embed-
ded watermark can be conveniently removed by altering the source code, provided it is
publicly accessible. Stable Signature[3] is a new approach that primarily targets Latent
Diffusion Models (LDM), given their versatility in executing various generative tasks. It
weaves the watermarking process into the core of image generation by fine-tuning a minor
part of the model, which is architecturally non-invasive and does not disrupt the diffusion
process, ensuring its compatibility with most LDM-based generative methodologies. Our
main contribution to this work is to enhance the robustness of the [3] methodology. We
prioritize the robustness performance by introducing a noise layer during the fine-tuning
stage of the VAE decoder, enabling it to learn how to embed invisible watermarks robustly
while being exposed to various types of distortions. However, we encountered challenges
when introducing the noise layer, as it disrupted the stability of the fine-tuning process. To
address this issue, we introduced a normalization step to ensure the stability of the partial
module in the model. Additionally, we discovered an issue of accuracy imbalance among
different watermark bits, which may be attributed to a specific module in the model. This
observation highlights the importance of further investigation of this imbalance to ensure
the overall effectiveness of the watermarking technique. The subsequent chapters of this
thesis are structured as follows: Chapter 2 provides a comprehensive review of related
works in the field. Chapter 3 delves into the intricacies of our implementation, presenting
detailed information about the methodology employed. Chapter 4 presents the experi-
mental results, showcasing the outcomes of our research. Finally, Chapter 5 concludes
this essay by summarizing the essential findings and offering insights into potential future

directions for further exploration.
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Chapter 2 Related Works

In this chapter, we present an overview of the DNN-based watermark method in
Section 2.1. Subsequently, in Section 2.2, we review the concept of rooting watermarks
for model-generated image attribution. Section 2.3 introduces the state-of-the-art image
generation model, known as the diffusion model. Finally, in Section 2.4, we discuss the
recent advancements and developments in rooting watermark techniques related to diffu-

sion models.

2.1 DNN-based watermarking

HiDDeN|[2&] presents the first DNN-based image watermarking method. It contains
an embedder, extractor, and noise layer. Given a cover image, the embedder hides the
invisible watermark inside it called watermarked image. Because the watermark is in-
visible, the watermarked image is perceptually non-differentiable from the original cover
image. The watermark extractor can extract the hidden message from the watermarked
image, achieving IPR protection and other usages. This method allows the user to train an
end-to-end model without adding noises in a specific hand-craft embedding space. This
approach can be replaced by adding anticipated distortion into the noise layer during train-

ing. DA[11] improves the robustness making the noise layer trainable. With the adversar-
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ial training of the noise layer, the model can enhance the robustness even more on unseen
noise. SSL watermarking[4] uses a pre-trained self-supervise feature extractor to convert
images from the image to the latent spaces. Furthermore, aligning the latent representa-
tion with an anchor in a latent space as a watermark is also an adversarial attack base on

a self-supervised feature extractor for watermark embedding.

2.2 Rooting watermark

Deepfakes, which refer to artificially manipulated images and videos using Al tech-
niques, have gained significant attention in recent years. Initially, these manipulations
predominantly relied on GAN methods[2, 5, &]. However, as the issues related to Deep-
fakes became more prominent, a solution [24] emerged that enables tracing the source of
Deepfake images by proactively embedding watermarks into the images. This approach
allows attributing GAN models if the embedded watermark can be detected. [24] lever-
ages the DNN-based watermark method to embed user-specific watermarks into the train-
ing data for the deployed GAN model. Consequently, the watermark becomes transferred
to the model parameters, enabling the detection of the user-specific watermark in every

image generated by this GAN model.

Despite its effectiveness, this method encounters scalability challenges when dealing
with many watermarks. This inefficiency is due to the need to pre-process the training
data and re-train a generator for each watermark. In contrast, [25] offers fundamental
advantages by directly and efficiently watermarking generative models. By training a
single generic watermark model, the model distributor can instantiate numerous generators

with different user-specific watermarks through watermark encoding and filter modulation
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within the generative model. This approach provides a more scalable and flexible solution

for watermarking generative models.

2.3 Diffusion Models

The diffusion model has recently emerged as the leading image generation model,
building upon the early concept proposed in [19]. Subsequent advancements in this ar-
chitecture have been made through essential training and sampling methods such as De-
noising Diffusion Probabilistic Model (DDPM)[7], Denoising Diffusion Implicit Model
(DDIM)[20], and score-based diffusion[21]. These techniques have greatly improved the
model’s ability to generate high-quality images. Furthermore, additional conditions, such
as text, have been integrated with models like [14]. Leveraging powerful CLIP[13] em-
beddings, [14] can produce diverse and photorealistic outputs based on given inputs, rep-
resenting a desirable property of image generation. Another notable text-to-image engine
is Imagen[ | 8], diffusing image pixels using a pyramid structure. Palette[17] is a versa-
tile diffusion model capable of multitasking, including super-resolution, image inpainting,
and JPEG reconstruction. On the other hand, [16] is another multitasking model that sup-
ports multi-modality conditions, such as text, semantic maps, and depth maps, providing
enhanced capabilities. In addition to multi-modality, [ 1 6] performs the diffusion process
in the latent space by converting the image into a latent representation using a well-pre-
trained VAE encoder. Following the diffusion process, the latent representation is trans-
formed into a photo using the VAE decoder. This approach significantly reduces training
and inference time while benefiting from the VAE’s ability to transform input images into

a more learnable distribution.
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2.4 Diffusion Models-related rooting watermark

[27] introduces the rooting watermark technique specifically designed for the diffu-
sion model. The model architecture closely resembles [24], with the key distinction being
the shift from a GAN-based model to a diffusion model. Still, it has to watermark all
training datasets pre-user which is non-scalable because it is challenging to integrate the
watermark extractor into the end-to-end training process when dealing with generated im-
ages. The inferencing phase of the diffusion model involves sampling an image through
multiple diffusion steps, resulting in difficulties and instability in backpropagation during
training. Stable Signature[3] presents an efficient approach for rooting models, primarily
focusing on the latent diffusion model. The methodology involves deploying a diffusion
U-Net and a VAE decoder to generate images. The notable advantage of Stable Signature
lies in its requirement for minimal fine-tuning of the VAE decoder for each user, using a
small amount of training data (< 500) and requiring only a few minutes of training time.
Additionally, this work incorporates a whitening layer to decorrelate the extracted wa-
termark from the vanilla image (i.e., non-watermarked image), which will be discussed

further in Section 3.5.
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Chapter 3 Proposed Method

3.1 Overview

The primary focus of our research is to strengthen the robustness of the Stable Sig-
nature methodology by introducing a supplementary noise layer during the fine-tuning
stage. However, we encountered challenges during the noise and whitening layers imple-
mentation as they did not synergize effectively. Specifically, we observed a substantial
increase in output variance following the addition of the whitening layer. We normalized
the whitening layer to address this issue and ensure a more stable fine-tuning stage. We
adopt a two-step approach as Stable Signature. The overview of our method is shown in
Figure 3.1. First, we engage in pre-training a watermark embedder and extractor to ef-
fectively extract the watermark message from a watermarked image. In the second stage,
we fine-tune the VAE[9, 22] decoder of LDM with a fixed user watermark. This fine-
tuning process ensures that all latent representations transformed to image space by the
decoder serve to conceal the watermark information, which the watermark extractor can

subsequently extract. To achieve the attribution of rooting watermark.
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Figure 3.1: Block Diagram and Information Flow of our proposed two stages of training.
Stage 1 involves pre-training a watermark extractor, while Stage 2 focuses on fine-tuning
a VAE decoder to embed a user-specific watermark.(IRL refers to Image Reconstruction
Loss, which measures the fidelity of reconstructed images. MRL stands for Message Re-
construction Loss, which quantifies the accuracy of reconstructed watermark messages).

3.2 Pre-training the watermark embedder/extractor

We adopt[28] as our watermark backbone, a well-established and widely used net-
work in deep watermarking literature. [28] operates by jointly optimizing the parameters
of the watermark embedder and extractor networks to robustly embed k-bit messages into
images, accounting for various transformations in the noise layer during the training pro-
cess. After pre-training, only the watermark extractor will be used during the fine-tuning

phase. The embedder will no longer need and will be discarded.

Cover Watermarked Noised Decoded
Image Image Image Watermark
Ic . Iw e N ) Ino * Wext Message
~ b = - - ; Mout

oise ]
D e 3 o]
1 1
s AT o
> Ly (I, Iy) -
——————— T
> Ly (Min, M) ===

M;

Watermark Message

Figure 3.2: The detailed information flow in the Pre-training phase.

For ease of explanation, we redraw the Pre-training phase of Figure 3.1 in Figure 3.2,
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as above. The watermark embedder W,.,,,;, receives a cover image I, € RE*#>*W and a k-
bit watermark message M;,, € {0, 1}*, outputs a residual watermark image § € REH>W,
and produces a watermarked image I, = I. + a6, where « is a scaling factor. After
conducting the transformation in the noise layer, we get [,,, from [,,. The watermark

extractor W, extracts a soft message M,,; € |0, 1]’“ from 1,,,.

To maintain the imperceptibility of watermarked images, they should be visually
close to the original cover images. We use Image Reconstruction Loss(/RL) , the M SE
loss between 1. and I,: L£;(I.,I,) = ||I. — L,|5 /(CHW), to measure the objective
quality difference between the original and the watermarked images. Moreover, the de-
coded watermark message should be the same as the input one. We impose a Message
Reconstruction Loss(M RL) also based on the M S'E loss obtained during the pre-training
between the M, and Moys: Larp(Min, Moyt) = || My, — Maut”g /k. We optimize our wa-
termark model according to the loss defined over the distributions of watermark messages

and input images, that is

EICyMi‘n [)‘I'CI(IQ [w> + ‘CMp(Mina Mout)]

The way we pass the watermark message to the watermark embedder is to replicate
the watermark message across spatial dimensions, creating a watermark message tensor.
Then we concatenate this watermark message tensor with the feature map obtained from
the output of conv4 (cf. Figure 3.3). By combining these elements, we enable the in-
tegration of the watermark message within the feature map, thereby imbuing it with the
watermark information. We draw its network architecture and information flow in Figure

3.3 to better understand how our watermark embedder works.
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Figure 3.3: Watermark embedder architecture. The Grey tensor represents the feature map
of convolution. The Blue tensor represents the watermark message-related tensor.

In Figure 3.3, the watermark extractor gets the watermark message tensor after the
convolutional layer, which is then fed into the average pooling layer. This approach proves
advantageous as it removes concerns about different image sizes since the spatial dimen-
sions are compressed into one dimension through the average pooling process, so we can
train at size 256 and input 512 size images during testing. We expect randomness in the
output watermark bits extracted from the vanilla image (non-watermarked image). That
is why after pre-training, we will append a linear layer called the whitening layer after the
watermark extractor (cf. the green-colored sub-block of Figure 3.1) to remove the output
bit correlation of the vanilla image. After pre-training, the watermark embedder will be
discarded, and only the watermark extractor will participate in the subsequent fine-tuning
phase. We draw our watermark extractor’s network architecture and information flow for

completeness and better comprehension in Figure 3.4.

Decoded
Watermark
Message

Noised
Image

Figure 3.4: Watermark extractor architecture. The Grey tensor represents the feature map
of convolution. The Blue tensor represents the watermark message-related tensor.
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3.3 Fine-tuning the VAE decoder

A critical aspect of the LDM (Latent Diffusion Models) framework involves utilizing
a well-pre-trained VAE (Variational Autoencoder) encoder-decoder pair. This pre-trained
VAE serves as a fixed component. The diffusion process exclusively occurs in the latent
space encoded by the VAE encoder, denoted as F, generating a latent representation z,
and converting 2, by the VAE decoder, D, which maps zj to its corresponding image

representation, denoted as .

As shown in Figure 3.5, we fine-tune D to incorporate a predetermined message,
denoted as m, into the generated image. This fine-tuning process ensures that the resulting
image contains the desired message, which can be extracted using the dedicated watermark
extractor, W,,;, as shown in Figure 3.5. An essential advantage of this approach is its
compatibility with various tasks achieved by different latent diffusion models using the
same VAE encoder/decoder. This compatibility stems from the fact that modifications

made exclusively to D do not impact the diffusion process.

) ¢ N Wext
i_' Noise
Layer
Iinput Latent ) Ioutput 1 w
Input Image Representation Watermarked L
Image Whitening
Layer
!
a m . oA m
r 4
[1fof1] . Jof-—-+Lys(mm)e----1]o]1] . Jole
User Watermark Sooooom oo Decoded Watermar

Figure 3.5: Fine-tuning phase. The only trainable module is the VAE decoder.

First, we define a fixed user-specific watermark message m € {0, 1}*, then feed the

input image /;,,,,,+ into &' to get the latent representation z. Reconstruct the image /,yp.: by
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D. By transforming I,,,,+ from the noise layer, we will have the noised image /,,,. We are
then passing I,,, through W, to extract m’ € [0, 1]’“. Considering the generative nature
of the diffusion model, the absence of ground truth during the inferencing phase. In this
regard, we utilize Watson-VGG as the perceptual loss, which ensures the preservation of
the perceptual quality. The M SFE loss is used for Message Reconstruction Loss(M RL)
during the fine-tuning phase. We optimize the VAE decoder according to the loss over

distributions of input images, that is

Elinput [)\P[’P(Iinputu ]Output) + E]Mf (m, m’)]

3.4 Noise layer

To ensure the robustness of images against diverse image transformations, the model
incorporates the capability of handling such variations effectively. To achieve this, we
introduce a noise layer incorporating four distinct types of transformations (cf. Figure 3.6
for details) as [3], each randomly chosen from the available set with equal probabilities
for every batch processed. The Identity layer lets the image remain the same as [,,. The
Crop layer randomly squares crops encoded images with size S x S. We can control the
size of the cropped image using the parameter p € [0, 1], which is the ratio compared to
the original image (S x S)/(H x H). The Resize layer resizes the encoded image to size
H' x W' controlled by p € [0, 1], now the ratio of (H' x W')/(H x H). The JPEG layer
provides a differentiable approximation representation of the JPEG because the original
JPEG distortion is non-differentiable. The JPEG compression technique partitions the
image into 8 x 8 regions and applies a discrete cosine transformation (DCT) within each

region. The frequency-domain coefficients obtained are quantized to varying degrees of
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coarseness, preserving only the perceptually important information. It is important to note
that the quantization step in JPEG compression is non-differentiable, making it unsuitable
for optimization based on gradient-based methods in training. To simulate the effects of
JPEG compression, we employed a masking technique that restricted the representation
of higher frequency information within the DCT coefficients. Specifically, we retained 25
low-frequency DCT coefficients in the Y channel and 9 in both the U and V channels, per
the JPEG compression standard, which prioritizes preserving more information in the Y
channel. The remaining DCT coefficients were effectively eliminated by setting them to

Z€ro.

Original Image
(Identity)

Crop(p=0.3) Resize(p=0.3) JPEG_mask

Figure 3.6: Illustration of all transformations used in the noise layer.

3.5 Whitening module

To address safety considerations, the extracted message obtained from vanilla images
(i.e., non-watermarked images) must adhere to the Bernoulli distribution, representing a
random bitstream distribution. This inherent randomness is paramount as it directly im-
pacts the False Positive Rate (FPR) associated with vanilla images, explicitly referring
to the probability of collision between the user-specific watermark message and the mes-
sage extract from vanilla images. As an illustration, consider an 8-bit message where

the desired collision probability is ideally 1/2%. However, assuming a scenario where
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the first 4 bits exhibit a strong correlation, such as the extreme case of the correlation
coefficient 1, the consequence is that the first 4 bits extracted from vanilla images will
invariably be identical. Consequently, any user whose watermark commences with the bit
sequence (0,0,0,0) or (1,1,1,1) will face a substantially heightened probability of collision

with vanilla images, specifically amounting to 1/25.

To address this issue, a solution proposed by [3] involves implementing a PCA whiten-
ing transformation, which ensures that the extracted watermark message follows a Bernoulli
distribution. After the pre-training stage, a set of vanilla images is required, from which
the extracted messages are denoted as m,,. By calculating the mean, y, and the covariance
matrix Y of m,, we do an eigendecomposition of the covariance matrix ¥ = U A UZ.
We construct a linear layer, named as the whitening layer is constructed, with bias (b)
= — A2 UT and weight (w) = A~Y/2U". Because the whiten message’s mean=0 and
variance=1, we need to modify the bias and weight with b = b/2 + 0.5 and w = w/2
so that the new mean=0.5 and variance=0.25, which follows the Bernoulli distribution of
random bit stream. This whitening layer is appended to the watermark extractor, and the
parameters within the whitening layer are frozen during the fine-tuning stage. The com-
bined watermark extractor and whitening layer can be viewed as a whitened watermark
extractor, effectively mitigating the issue and aligning the extracted watermark messages

with the desired Bernoulli distribution.

Nevertheless, it is observed that the original soft output generated by the watermark
extractor from vanilla images exhibits a notably slight variance. In contrast, the soft out-
put produced by the whitened watermark extractor displays a significantly more signifi-
cant variance. This difference in variances disrupts training stability when a noise layer is

introduced during the fine-tuning stage. To address this challenge, we propose the imple-
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mentation of a normalizing that squeezes the output distribution by leveraging a whitening

scaling factor. This whitening scaling factor is derived from f = tr(%,)/tr(Xy), where

tr(%,) is the trace of the covariance matrix observed from the soft output of the original

watermark extractor, and X, is the covariance matrix observed from the soft output of

whitened watermark extractor. We seamlessly integrate the whitening scaling factor into

the existing whitening layer, where b = f x (b — 0.5) + 0.5 and w = f X w. By incor-

porating this whitening scaling factor, we effectively mitigate the issue and ensure a more

balanced and stable fine-tuning process.

3.6 Training procedure

Algorithm 1 Pre-Training Watermark Embedder/Extractor

Input: Cover image /.

Watermark embedded: W,,,,;

Watermark extractor: W,

Noise layer: N

Watermark length: &

Initialize: Initialize parameters of W, and W,

1: for steps <— 1 to total steps do

9:

sample Watermark message M;,,.; ~ {0, 1}*

[w — Wemb(Ica Minput)

L;+ MSE(I.,1,) > Image Reconstruction Loss
I, < N(I,)

Moutput — Wea}t(Lw)

Loy < MSE(Minput, Moutput) > Message Reconstruction Loss
Epre_training — ‘CMp + )\IEI

update parameters of W,,,;, and Wy With Lprc training

10: end for
11: return

Our methodology can be divided into four stages to achieve the desired outcomes.

Firstly, we initiate the process by pre-training the watermark embedder/extractor (Algo-

rithm 1), yielding the watermark extractor used in stages 2, 3, and 4. Secondly, we con-

struct the whitening layer (Algorithm 2), which plays a crucial role in stages 3 and 4 by
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whitening the output derived from the watermark extractor.

Algorithm 2 Construct Whitening Layer

Input: Vanilla image /,

Input: Pre-trained Watermark Extractor W,
Watermark length: &

Whitening Layer: W,

Whitening Layer bias: b

Whitening Layer weight: w

12 M < Wep(I,) > M e RV*¥k [ € RNXHXWxC
2: 4 Mean(M)

3: ¥ < Covariance_Matrixz(M) > Y € RF>F
4: UNUT <% > eigendecomposition
5: b+ — AYV2UT /2405 >be R
6: w+A"V2UT/2 >w € RFXK
7. M, + Wy(M) > M, € RNk
8: ¥, « Covariance_Matriz(M,)

9: f <« (tr(X)/tr(Xy))"? > scaling factor
10: b+ fx(b—05)+05 > re-weighting bias
1I: w4 fXxXw > re-weighting weight
12: return

Moving on to the third stage, we fine-tune a VAE decoder for each user with a user-

specific watermark (Algorithm 3). This stage ensures the effective integration of the user-

specific watermark into the decoder. Thus, the image decoded from the decoder can be

extracted from the user watermark by the extractor.

Finally, in the fourth stage (Algorithm 4), we carry out the watermark detection pro-

cess, which determination of the user who generated the image or discerns whether the

image is a vanilla image without any embedded watermark. This critical stage enables the

accurate detection and attribution of watermarked images to their respective users, thereby

ensuring the integrity and security of the watermarking system.
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Algorithm 3 Fine-tuning VAE decoder

Input: Input image I,

Input: Pre-trained Watermark Extractor W,
Input: Constructed Whitening Layer IV,
Input: Pre-trained VAE Encoder £

Input: Pre-trained VAE Decoder D

Noise layer: N

User-specific watermark message: M,

(Only D will be fine-tuned. Other modules will be frozen.)

1: for steps < 1 to total_steps do

2: Z 4— E(Imput)

3: Loutput < D(z)

4: Lp +— Watson_VGG(Linput, Loutput)
5: Ino < N(Ioutput)

6: Moutput — Wezt(Ino)

7: Mwhiten — VVI(Moutput)

&: /C]Wf — MSE(Minputa Mwhiten)

9: Efine_tuning — LMf + )\PEP

10: update parameters of D with L tine tuning
11: end for

12: return

> Encoding image
> Decoding latent representation
> Perceptual Loss

> Message Reconstruction Loss

Algorithm 4 Watermark detection

Input: Detected image /
Input: Pre-trained Watermark Extractor W,
Input: Constructed Whitening Layer IV,
Matching threshold: 7
User watermark message database: DB

I: Moutput — Wea:t(l)
Mwhiten — I/Vl(]\ioutput)

for M, in DB do
if Matching(M,, M;) > T then
user_id <@
Image is generated by user;
return
end if
end for
: Image is vanilla image
: return

A b AR AN i

—_ =

M, < Round(Mypiten) > Rounding message bit with threshold 0.5
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Chapter 4 Experiments

4.1 Setting

This section details the training dataset and hyperparameters employed in each ex-

periment stage. The watermark message length is set to 48. We choose [3] as the baseline.

4.2 Watermark embedder/extractor

Following the HiDDeN|[28] framework, we establish the watermark embedder and
extractor using 64 hidden channels. The model is trained on the MS-COCO 2017[10]
training dataset, employing random cropping to the images with size 256 x256. The train-
ing process spans 150 epochs with a batch size of 32. Within the watermark embedder, a
scaling factor of & = 0.3 is utilized. The Image Reconstruction Loss parameter J; is set to
0.7. We employ the Adam optimizer for optimization, with the learning rate following a
cosine annealing schedule. This schedule includes 2.5 epochs of linear warmup, gradually
increasing the learning rate to 102 and decreasing it to 107 at the end of training. The
model’s training is conducted on a single GTX3090 GPU, which requires approximately

three days to complete.
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4.2.1 Noise layer

During the training process, we incorporated different noise levels to enhance the
model’s robustness. These included Identity, Crop p=0.3, Crop p=0.7, Resize p=0.3,
Resize p=0.7, and JPEG_mask. A noise type was randomly selected from this set of

available noises with equal probabilities for each batch processed.

4.2.2 Whitening layer

We leverage a subset of 10,000 vanilla images randomly sampled from the MS-
COCO 2017 training set to construct the whitening layer. We are employing the PyTorch

library for the eigendecomposition calculations.

4.2.3 Fine-tuning VAE decoder

For our experimentation, we utilized the Stable Diffusion v1.5 VAE encoder/decoder
architecture provided by HuggingFace[23]. To fine-tune the decoder, we randomly se-
lected 400 images from the MS-COCO 2017 training dataset and applied random crop-
ping with a size of 256 x256. The training procedure encompassed five epochs, with a
batch size of 4. Additionally, a Perceptual Loss parameter Ap value of 0.2 was employed
to enhance the perceptual quality of the generated images. We employed the Adam opti-
mizer to optimize the model with a cosine annealing schedule for the learning rate. This
schedule encompassed one epoch of linear warmup, gradually increasing the learning rate
to 1074, and subsequently decreasing it to 10~¢ towards the end of training. The model
was trained on a single GTX3090 GPU, with an approximate training duration of three

minutes.
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4.2.4 Testing

During the testing phase, we employed Stable Diffusion v1.5, obtained from Hug-
gingFace, and replaced the VAE decoder with the fine-tuned VAE decoder. Following
the established protocol in [14—16, 18], we generated 5000 images based on the captions
provided in the MS-COCO 2017 validation set. We used DDPM sampler with a guidance
scale of 3.0 and 50 diffusion steps. The generated image size is 512x512. The validation
set consisted of 5000 images, each accompanied by five captions. We utilized the first
caption for each image to generate the testing images, resulting in a total of 5000 testing
images. Subsequently, we computed the Fréchet Inception Distance (FID)[6] score by
comparing these generated images to the MS-COCO 2017 validation set, which was re-
sized to 512x512. During the testing phase, four distortions, namely brightness, contrast,
saturation, and sharpness, were applied to the images. These distortions provided by the
PIL and Torchvision[ 2] libraries were not included in the training or fine-tuning phases
but were employed to evaluate the robustness of the model. We adjust the default factor

utilized for applying these distortions.

4.3 Metric

Researchers usually employ three key metrics when evaluating digital watermarking
performance: imperceptibility, robustness, and capacity (cf. Figure 4.1). These metrics
serve as the primary factors for analyzing the effectiveness of watermarking schemes. Ca-
pacity refers to the ability to embed important watermark information within the cover
image. Imperceptibility ensures that the embedded watermark remains undetectable

to human observers. Robustness measures the resistance of the cover image against
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various attacks or distortions encountered during normal usage. Recognizing that these
three characteristics are interconnected is essential, giving rise to an inherent trade-off.
Capacity-Imperceptibility trade-off: When the payload capacity is high, the detectability
of the watermark message increases, leading to a decrease in the level of imperceptibility.
Robustness-Capacity trade-off: The watermarked image incorporates additional redun-
dancy to enhance its resilience against distortions, thus harming the capacity. Imperceptibility-
Robustness trade-off: The redundancy to maintain robustness have a negative impact on
imperceptibility. Conversely, a lack of redundancy makes detecting the watermark mes-

sage harder. Our primary focus in this work is on the aspect of robustness.

Robustness

Imperceptibility Capacity

Figure 4.1: The watermark metric trade-off triangle.

Capacity: We fixed the watermark bit length in our entire experiment, which is set
to 48 as the setting in [3]. Imperceptibility: Due to the inherent sampling nature of the
inferencing phase in the diffusion model, ground truth for comparison is unavailable. As
a result, we employ the Fréchet Inception Distance (FID) score as a metric to evaluate im-
perceptibility, which is commonly used for assessing the performance of generated images
from the diffusion model. By utilizing FID, we can ensure that the original model’s ca-
pabilities remain intact even after incorporating watermark embedding functionality. The

lower the FID score, the better. Robustness: We utilize bitwise accuracy as a quantitative
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measure to assess the performance of our method under various levels of image distortion.

The higher the bitwise accuracy, the better.

4.4 Adding noise layer during fine-tuning

In this section, we present the experimental results concerning our main contribution,

which focuses on enhancing robustness by introducing a noise layer during the fine-tuning

phase.
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Figure 4.2: Bitwise accuracy between baseline and our method. (Top two charts depict

the results associated with non-naturally robust distortions.)

4.4.1 Robustness

In the fine-tuning stage, our approach incorporates a noise layer between the VAE

decoder and the watermark extractor. Figure 4.2 shows the results of our robustness com-
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Prompt Model Watermark method | FID

MS-COCO 2017 None 19.00
Validation dataset | Stable Diffusion V1.5 | Baseline 19.81
caption Ours 19.70

Table 4.1: Imperceptibility performance in terms of FID scores

parison, highlighting the performance of our model relative to the baseline method. The
results demonstrate that our model outperforms the baseline method when exposed to non-
naturally robust distortions, such as Resize and JPEG. Conversely, our method performs
on par with the baseline method when considering naturally robust distortions, such as
Crop, Brightness, Contrast, Saturation, and Sharpness. These findings indicate that in-
cluding non-naturally robust distortions during the fine-tuning process can enhance ro-

bustness compared to the baseline method.

4.4.2 Imperceptibility

In evaluating the effectiveness of our method, it is crucial to consider not only the
bitwise accuracy of the embedded watermark message but also the impact on the func-
tionality of the VAE decoder; especially, on the perceptual quality. Thus, we conducted
a comparative analysis using the FID score, as presented in Table 4.1. Moreover, Figure

4.3 shows a Qualitative comparison between our method and the baseline approach.

The results obtained from the evaluation demonstrate that our method successfully
maintains a balance between robustness and perceptual quality. Specifically, our approach
did not compromise the perceptual quality of the generated images while enhancing their
robustness against various image distortions. This outcome signifies a favorable outcome,
as it affirms that our method achieves improved robustness without sacrificing the percep-

tual quality of the generated images.
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Original Our Our Method’s Baseline

Prompt Image Method Difference Map Bascline Difference Map

two dogs laying
down on a brown
couch

A european city in
nice a sunny bright
day

A flock of swans
swims in a bay.

Closeup of a plate
of food that
includes chicken,
mushrooms and
broccoli.

Figure 4.3: Qualitative comparison between our method and the baseline approach, asso-
ciated with the same Prompt and resolution (set to 512 for all cases). Difference map is
pixel-wise difference x 10
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4.5 Whitening layer

Figure 4.4 depicts the covariance matrix of the bit stream output obtained from the
original watermark extractor using 10k vanilla images. The left part of the figure reveals
that the diagonal elements of the covariance matrix are characterized by small values,
indicating a limited variance in the soft outputs (i.e., non-rounded outputs). The right part
of the figure clearly illustrates that the covariance matrix of the rounded outputs deviates
noticeably from the expected Bernoulli distribution, thereby highlighting the necessity of

the whitening process.

R N N R

(] [] L] (]
- L

0 10 20 30 40

Non rounded output Rounded output

Figure 4.4: The vanilla images’ Covariance matrices were extracted from the original
watermark extractor. (Left) the non-rounded outputs and (right) the rounded outputs.
Following the whitening process in [3], the resulting covariance matrix is depicted
in Figure 4.5. Notably, an observation can be made that the diagonal elements of the non-
rounded covariance matrix closely align with those of the rounded one, both exhibiting
conformity to the desired Bernoulli distribution. This alignment signifies a significant
improvement, indicating that the issue of imbalanced collision probabilities among vanilla
images has been effectively addressed. The achievement of this alignment is of utmost
importance as it ensures a more equitable distribution of collision probabilities among
vanilla images. This outcome enhances the fairness and reliability of the watermarking
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process, ensuring that the extracted bit stream adheres more consistently to the desired

Bernoulli distribution and mitigating previously existing imbalances.

0.30 0

0.15
0.10
0.05

0.00

—0.05
0 10 20 30 40 0 10 20 30 40

Non rounded output Rounded output

-0.05

Figure 4.5: The vanilla images’ Covariance matrices were extracted from the whitened
watermark extractor. (Left) the non-rounded outputs and (right) the rounded outputs.

4.5.1 Re-weighting

However, it is worth noting that the whitening, as mentioned above, may introduce
a potential issue. This challenge can be observed by comparing the soft output distribu-
tions before and after whitening, as depicted in Figure 4.4 and the left part of Figure 4.5,
respectively. Particularly, when examining a single dimension of the bit stream, the dis-
tributions can be plotted, as shown in Figure 4.6. Following the whitening process, the

new distribution exhibits a significantly wider spread than the original distribution.

This disparity in distribution width can notably impact the fine-tuning process, as it
can lead to divergent convergence losses. We introduce a noise layer to exacerbate this
issue further, creating undesirable and unmanageable turbulence during fine-tuning. Con-
sequently, this poses a challenge in achieving a stable and effective fine-tuning of the
model when incorporating the noise layer. We propose a re-weighting method to address

this issue, as discussed in Section 3.5. Figure 4.7 shows that the re-weighting process
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—— Non whiten
--- Whiten

0 0.5 1

Figure 4.6: Distribution of non-rounded outputs (soft values) at single-bit dimension.

maintains compatibility between the diagonal elements in the covariance matrices of the
non-rounded outputs with and without whitening while ensuring that the rounded output
after the whitening layer follows the desired Bernoulli distribution. This enables us to
achieve a stable fine-tuning stage even after introducing a noise layer, ultimately enhanc-

ing the robustness.

Non whitened output

Whitened output

o 10 20 30 40 [ 10 20 30 40

Non rounded output Rounded output

Figure 4.7: The Comparison of Covariance Matrices. (The bottom two images are the
covariance matrices of the outputs extracted from the vanilla images by re-weighting the
whitened watermark extractor.)

We explore another method to re-weight the whitening layer by applying bitwise
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normalization, which involves independently normalizing each output dimension’s distri-
bution. The results are illustrated in Figure 4.8. Interestingly, the robustness of the bitwise
normalization method is lower when it comes to non-naturally robust distortions. This fact
could be attributed to the whitening layer overfitting the characteristics of the 10k vanilla

images as we manipulate the distribution on a per-bit basis.

> JPEG (Q) Resize (p)
QO 1.0 1.0
<
E 0.9 0.9
Q . . .
g - 08 ® Trace-wise normalization
Qo 07 ® Bit-wise normalization
.-
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z
m 0.5 0.5

100 9% 80 70 60 50 40 30 20 10 10 09 08 07 06 05 04 03 02 01
o Crop (p) Brightness Contrast
g W T 10 = 10 T—% =
5 0.9 0.9 0.9
Gt
2 0.8 0.8 0.8
g 07 0.7 0.7
g 0.6 0.6 0.6
2
m 03 10 09 08 07 06 05 04 03 02 01 0% 10 11 12 13 14 15 16 1.7 18 19 2.0 03 10 11 12 13 14 15 16 17 18 19 2.0
Saturation Sharpness
Q:); 10 T5—% — 10 T—%
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Q
é) 08 08
o o7 0.7
|72]
.E 0.6 0.6
E 0.5 0.5
10 1.1 12 13 14 15 16 1.7 18 19 20 10 11 12 13 14 15 16 1.7 18 19 2.0

Figure 4.8: Bitwise accuracy between the trace-wise normalization method and the bit-
wise normalization method. (Top two charts depict the results associated with non-
naturally robust distortions.)

4.5.2 Bit accuracy imbalance

We have observed an additional effect introduced by the whitening layer. This effect
manifests as an accuracy imbalance among different bits, as Figure 4.9 illustrates. Espe-
cially the last few bits exhibit significantly lower accuracy, indicating they are less reliable
as part of the watermark. Furthermore, we observed that this phenomenon becomes more

pronounced when incorporating a noise layer during fine-tuning.
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Figure 4.9: Bitwise accuracy in the validation phase of the fine-tuning stage.

We attribute this phenomenon to the disparity in eigenvalues. Some eigenvalues

may be too small to contribute significantly to the overall data variance, resulting in

higher noise-like characteristics. During eigendecomposition, the PyTorch library sorts

the eigenvalues, causing the last few bits of the whitened bit stream to be associated with

these noise-like eigenvalues. Consequently, noise-like eigenvalues can amplify, mainly

when a noise layer is introduced during the fine-tuning stage.
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Chapter S Conclusions

In conclusion, our research significantly enhances the robustness of watermarking
schemes by introducing a noise layer during the fine-tuning stage. Notably, we observe
a significant improvement in the robustness of non-naturally robust distortions without
adversely impacting the performance of naturally robust distortions. This improvement
demonstrates our ability to enhance robustness without incurring any penalties. However,
introducing the noise layer disrupts the stability of the fine-tuning process initially. We
successfully addressed the issue by normalizing the whitening layer using a scaling fac-
tor derived from the trace from the covariance matrix of the whitened and non-whiten

watermark messages.

Furthermore, our investigation uncovered a potential problem from the whitening
layer: the accuracy imbalance among the extracted watermark bits. This issue poses a
concern for the reliability and trustworthiness of the watermark bit stream. Overall, our
work contributes to the diffusion model-related rooting watermarking field, particularly

in improving robustness and addressing associated challenges.

For future research, one direction is to integrate a trainable attack network proposed
in [11] as the noise layer. Eliminates the need for explicit modeling of image distortions

during training. Additionally, further enhancing robustness can be achieved by explor-
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ing channel coding techniques for the watermark message. However, it is crucial to en-
sure mathematical proof regarding the safety enhancement and performance impact of the

whitening layer, which remains a topic for future investigation.
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