
doi:10.6342/NTU202302023

國立臺灣大學電機資訊學院資訊工程學研究所

碩士論文

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

加強潛在擴散模型中根源浮水印的強韌性

Enhancing the Robustness of Rooting Watermarks in
Latent Diffusion Models

劉旭庭

Hsu-Ting Liu

指導教授: 吳家麟博士

Advisor: Ja-Ling Wu, Ph.D.

中華民國 112年 6月

June, 2023

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

Acknowledgements

首先，感謝吳家麟老師的栽培。起初接觸研究時並沒太多興趣，覺得就是畢

業的基本條件而已。在修過老師的課程後，以及每一次 meeting，感受到老師滿

腔熱忱，這樣的能量如春風化雨般熏陶著我，不知不覺，埋藏在我心中的種子已

經發芽了。在研究領域之外，老師對於各類議題往往能提出我不曾想過的見解，

其中蘊含的邏輯思維也讓我獲益良多。談吐間更不乏幽默感，跟老師對話總是愉

快，雖然老師常自嘲自己是 screwdriver. But to me, in the ocean of research, you are

the true diver. 十分慶幸能接受老師指導！未來我會努力讓小苗成長茁壯。

接著，感謝陳駿丞學長對我的幫助，撥出時間跟我討論，分享許多學術活動

和資源並且邀請我參與，進一步帶領我深入研究文化之中。也謝謝博班的學長姐

們，一路走來充滿關懷，在學業上給出建議。感謝實驗室的同儕相互照應，有你

們的這兩年氣氛很溫暖。特別是林家毅，在各方面與我暢談、腦力激盪，讓我得

到不少靈感，感謝你的慷慨無私。

最後，感謝父母在背後默默付出，給予我愛與包容，讓我心裡特別踏實，無

後顧之憂盡情探索。還有我的小貓 Vincent，Love u so much!

劉旭庭

國立臺灣大學 06/2023

ii

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

摘要

近期許多研究人員深入探索複雜的潛在擴散模型領域，這些模型能依據多模

態條件生成逼真的圖片，這種特性賦予了它們強大的潛力，適用於各種應用。同

時，這類模型也牽涉到迫在眉睫的倫理困境，主要受限於如何負責任地部署這項

技術。惡意使用者製造的圖像有可能造成重大的社會問題，需要嚴格的控制措施

以減輕可能的危害。根源浮水印技術是解決此問題可行的方法，這項技術允許我

們追踪那些惡意創建的圖像來源，從而利用法律向為非作歹為非作歹者咎責。本

篇論文基於現有的方法加以改善，著重於提升根源浮水印對於圖像失真的抵抗能

力。通過對現有方法模組的正規化和在訓練期間加入圖像噪聲，本篇論文加強了

根源浮水印的強韌性同時保持生成圖像的視覺品質。研究結果顯示，在圖片縮小

為原圖的 10％後，浮水印解碼之為元準確率相較現有方法高出 24％，此結果展現

本篇論文的有效性，也在潛在擴散模型之根源浮水印領域中取得重要的進展。

關鍵字：強韌浮水印、潛在擴散模型、圖像取證、生成模型、變分自動編碼器

iii

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

Abstract

Recently, many researchers dived into the intricate realm of latent diffusion mod-

els, renowned for their competence in generating images reflecting a multimodal range of

conditions. This property endows them with enormous potential, rendering them fit for a

host of applications across various disciplines. Simultaneously, the power of such models

introduces pressing ethical dilemmas, primarily revolving around the responsible deploy-

ment of this technology. The indiscriminate use of such models has the potential to cause

significant harm, emphasizing the need for rigorous control measures to mitigate poten-

tial misuse. Root watermarking is introduced as a countermeasure to address these ethical

concerns. This technology allows for the tracing of images that have been maliciously

created back to the originators. By establishing this link, we can assign responsibility for

any misuse, facilitating the enforcement of legal sanctions and deterring misuse. In this

work, we focus on enhancing the resilience of common distortions in the generated im-

ages. We have expanded upon an existing method, refining it through the normalization

iv

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

of its module and the strategic injection of noise during the training. This approach has

allowed us to significantly enhance the model’s robustness, all the while maintaining the

perceptual quality of the generated images. Our quantitative analysis attests to the effi-

cacy of our approach, as it has resulted in a substantial improvement in bitwise accuracy

by up to 24%, even when the images undergo a 10% resizing. This outcome not only

showcases the effectiveness of our method but also represents a significant stride forward

in the ongoing journey to watermarking latent diffusion models.

Keywords: Robust watermarking, Latent diffusion model, Image forensics, Generative

model, Variational autoencoders

v

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

Contents

Page

Verification Letter from the Oral Examination Committee i

Acknowledgements ii

摘要 iii

Abstract iv

Contents vi

List of Figures viii

List of Tables x

Chapter 1 Introduction 1

Chapter 2 Related Works 3

2.1 DNN-based watermarking . 3

2.2 Rooting watermark . 4

2.3 Diffusion Models . 5

2.4 Diffusion Models-related rooting watermark 6

Chapter 3 Proposed Method 7

3.1 Overview . 7

3.2 Pre-training the watermark embedder/extractor 8

3.3 Fine-tuning the VAE decoder . 11

vi

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

3.4 Noise layer . 12

3.5 Whitening module . 13

3.6 Training procedure . 15

Chapter 4 Experiments 18

4.1 Setting . 18

4.2 Watermark embedder/extractor . 18

4.2.1 Noise layer . 19

4.2.2 Whitening layer . 19

4.2.3 Fine-tuning VAE decoder . 19

4.2.4 Testing . 20

4.3 Metric . 20

4.4 Adding noise layer during fine-tuning 22

4.4.1 Robustness . 22

4.4.2 Imperceptibility . 23

4.5 Whitening layer . 25

4.5.1 Re-weighting . 26

4.5.2 Bit accuracy imbalance . 28

Chapter 5 Conclusions 30

References 32

vii

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

List of Figures

3.1 Block Diagram and Information Flow of our proposed two stages of train-

ing. Stage 1 involves pre-training a watermark extractor, while Stage 2 fo-

cuses on fine-tuning a VAE decoder to embed a user-specific watermark.

(IRL refers to Image Reconstruction Loss, which measures the fidelity

of reconstructed images. MRL stands for Message Reconstruction Loss,

which quantifies the accuracy of reconstructed watermark messages). . . 8

3.2 The detailed information flow in the Pre-training phase. 8

3.3 Watermark embedder architecture. The Grey tensor represents the feature

map of convolution. The Blue tensor represents the watermark message-

related tensor. 10

3.4 Watermark extractor architecture. The Grey tensor represents the feature

map of convolution. The Blue tensor represents the watermark message-

related tensor. 10

3.5 Fine-tuning phase. The only trainable module is the VAE decoder. 11

3.6 Illustration of all transformations used in the noise layer. 13

4.1 The watermark metric trade-off triangle. 21

4.2 Bitwise accuracy between baseline and our method. (Top two charts de-

pict the results associated with non-naturally robust distortions.) 22

4.3 Qualitative comparison between our method and the baseline approach,

associated with the same Prompt and resolution (set to 512 for all cases).

Difference map is pixel-wise difference ×10 24

viii

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

4.4 The vanilla images’ Covariance matrices were extracted from the origi-

nal watermark extractor. (Left) the non-rounded outputs and (right) the

rounded outputs. 25

4.5 The vanilla images’ Covariancematriceswere extracted from thewhitened

watermark extractor. (Left) the non-rounded outputs and (right) the rounded

outputs. 26

4.6 Distribution of non-rounded outputs (soft values) at single-bit dimension. 27

4.7 The Comparison of Covariance Matrices. (The bottom two images are the

covariance matrices of the outputs extracted from the vanilla images by

re-weighting the whitened watermark extractor.) 27

4.8 Bitwise accuracy between the trace-wise normalization method and the

bit-wise normalization method. (Top two charts depict the results associ-

ated with non-naturally robust distortions.) 28

4.9 Bitwise accuracy in the validation phase of the fine-tuning stage. 29

ix

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

List of Tables

4.1 Imperceptibility performance in terms of FID scores 23

x

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

Chapter 1 Introduction

The digital creation realm has witnessed a seismic shift in recent years, propelled by

groundbreaking advancements in generative modeling and natural language processing.

Cutting-edge AI technologies have unlocked new potentialities in generating and manip-

ulating images, thus marking the dawn of a new epoch in digital arts. Pioneering models

such as DALL·E 2[14] and Stable Diffusion[16] have demonstrated their capabilities in

transforming text into images, often producing results that mimic genuine artworks with

uncanny accuracy. This progress has spurred the development of numerous image edit-

ing tools like ControlNet[26] and Instruct-Pix2Pix[1], laying the foundation for emerging

artists, designers, and average users to utilize AI for their creative exploits. This meteoric

rise of generative AI has not been without its share of ethical dilemmas that need imme-

diate attention. AI-generated images have reached a level of sophistication such that they

closely resemble real pictures, making differentiating between them increasingly com-

plex. This complexity carries profound implications—it probes the core tenets of image

verification and traceability, which brings concerns over possible misuse of AI, such as

infringing copyrights, creating deep fakes, and aiding impersonation. Traditional meth-

ods employed to mitigate these challenges have been image forensics, passive strategies

to discern generated or manipulated images, and watermarking techniques that imprint

a hidden message into the image after it is generated. However, these techniques bear

1

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

significant flaws. For instance, in the case of open-source models like [16], the embed-

ded watermark can be conveniently removed by altering the source code, provided it is

publicly accessible. Stable Signature[3] is a new approach that primarily targets Latent

Diffusion Models (LDM), given their versatility in executing various generative tasks. It

weaves the watermarking process into the core of image generation by fine-tuning a minor

part of the model, which is architecturally non-invasive and does not disrupt the diffusion

process, ensuring its compatibility with most LDM-based generative methodologies. Our

main contribution to this work is to enhance the robustness of the [3] methodology. We

prioritize the robustness performance by introducing a noise layer during the fine-tuning

stage of the VAE decoder, enabling it to learn how to embed invisible watermarks robustly

while being exposed to various types of distortions. However, we encountered challenges

when introducing the noise layer, as it disrupted the stability of the fine-tuning process. To

address this issue, we introduced a normalization step to ensure the stability of the partial

module in the model. Additionally, we discovered an issue of accuracy imbalance among

different watermark bits, which may be attributed to a specific module in the model. This

observation highlights the importance of further investigation of this imbalance to ensure

the overall effectiveness of the watermarking technique. The subsequent chapters of this

thesis are structured as follows: Chapter 2 provides a comprehensive review of related

works in the field. Chapter 3 delves into the intricacies of our implementation, presenting

detailed information about the methodology employed. Chapter 4 presents the experi-

mental results, showcasing the outcomes of our research. Finally, Chapter 5 concludes

this essay by summarizing the essential findings and offering insights into potential future

directions for further exploration.

2

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

Chapter 2 Related Works

In this chapter, we present an overview of the DNN-based watermark method in

Section 2.1. Subsequently, in Section 2.2, we review the concept of rooting watermarks

for model-generated image attribution. Section 2.3 introduces the state-of-the-art image

generation model, known as the diffusion model. Finally, in Section 2.4, we discuss the

recent advancements and developments in rooting watermark techniques related to diffu-

sion models.

2.1 DNN-based watermarking

HiDDeN[28] presents the first DNN-based image watermarking method. It contains

an embedder, extractor, and noise layer. Given a cover image, the embedder hides the

invisible watermark inside it called watermarked image. Because the watermark is in-

visible, the watermarked image is perceptually non-differentiable from the original cover

image. The watermark extractor can extract the hidden message from the watermarked

image, achieving IPR protection and other usages. This method allows the user to train an

end-to-end model without adding noises in a specific hand-craft embedding space. This

approach can be replaced by adding anticipated distortion into the noise layer during train-

ing. DA[11] improves the robustness making the noise layer trainable. With the adversar-

3

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

ial training of the noise layer, the model can enhance the robustness even more on unseen

noise. SSL watermarking[4] uses a pre-trained self-supervise feature extractor to convert

images from the image to the latent spaces. Furthermore, aligning the latent representa-

tion with an anchor in a latent space as a watermark is also an adversarial attack base on

a self-supervised feature extractor for watermark embedding.

2.2 Rooting watermark

Deepfakes, which refer to artificially manipulated images and videos using AI tech-

niques, have gained significant attention in recent years. Initially, these manipulations

predominantly relied on GAN methods[2, 5, 8]. However, as the issues related to Deep-

fakes became more prominent, a solution [24] emerged that enables tracing the source of

Deepfake images by proactively embedding watermarks into the images. This approach

allows attributing GAN models if the embedded watermark can be detected. [24] lever-

ages the DNN-based watermark method to embed user-specific watermarks into the train-

ing data for the deployed GAN model. Consequently, the watermark becomes transferred

to the model parameters, enabling the detection of the user-specific watermark in every

image generated by this GAN model.

Despite its effectiveness, this method encounters scalability challenges when dealing

with many watermarks. This inefficiency is due to the need to pre-process the training

data and re-train a generator for each watermark. In contrast, [25] offers fundamental

advantages by directly and efficiently watermarking generative models. By training a

single generic watermarkmodel, themodel distributor can instantiate numerous generators

with different user-specific watermarks throughwatermark encoding and filter modulation

4

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

within the generative model. This approach provides a more scalable and flexible solution

for watermarking generative models.

2.3 Diffusion Models

The diffusion model has recently emerged as the leading image generation model,

building upon the early concept proposed in [19]. Subsequent advancements in this ar-

chitecture have been made through essential training and sampling methods such as De-

noising Diffusion Probabilistic Model (DDPM)[7], Denoising Diffusion Implicit Model

(DDIM)[20], and score-based diffusion[21]. These techniques have greatly improved the

model’s ability to generate high-quality images. Furthermore, additional conditions, such

as text, have been integrated with models like [14]. Leveraging powerful CLIP[13] em-

beddings, [14] can produce diverse and photorealistic outputs based on given inputs, rep-

resenting a desirable property of image generation. Another notable text-to-image engine

is Imagen[18], diffusing image pixels using a pyramid structure. Palette[17] is a versa-

tile diffusion model capable of multitasking, including super-resolution, image inpainting,

and JPEG reconstruction. On the other hand, [16] is another multitasking model that sup-

ports multi-modality conditions, such as text, semantic maps, and depth maps, providing

enhanced capabilities. In addition to multi-modality, [16] performs the diffusion process

in the latent space by converting the image into a latent representation using a well-pre-

trained VAE encoder. Following the diffusion process, the latent representation is trans-

formed into a photo using the VAE decoder. This approach significantly reduces training

and inference time while benefiting from the VAE’s ability to transform input images into

a more learnable distribution.

5

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

2.4 Diffusion Models-related rooting watermark

[27] introduces the rooting watermark technique specifically designed for the diffu-

sion model. The model architecture closely resembles [24], with the key distinction being

the shift from a GAN-based model to a diffusion model. Still, it has to watermark all

training datasets pre-user which is non-scalable because it is challenging to integrate the

watermark extractor into the end-to-end training process when dealing with generated im-

ages. The inferencing phase of the diffusion model involves sampling an image through

multiple diffusion steps, resulting in difficulties and instability in backpropagation during

training. Stable Signature[3] presents an efficient approach for rooting models, primarily

focusing on the latent diffusion model. The methodology involves deploying a diffusion

U-Net and a VAE decoder to generate images. The notable advantage of Stable Signature

lies in its requirement for minimal fine-tuning of the VAE decoder for each user, using a

small amount of training data (≤ 500) and requiring only a few minutes of training time.

Additionally, this work incorporates a whitening layer to decorrelate the extracted wa-

termark from the vanilla image (i.e., non-watermarked image), which will be discussed

further in Section 3.5.

6

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

Chapter 3 Proposed Method

3.1 Overview

The primary focus of our research is to strengthen the robustness of the Stable Sig-

nature methodology by introducing a supplementary noise layer during the fine-tuning

stage. However, we encountered challenges during the noise and whitening layers imple-

mentation as they did not synergize effectively. Specifically, we observed a substantial

increase in output variance following the addition of the whitening layer. We normalized

the whitening layer to address this issue and ensure a more stable fine-tuning stage. We

adopt a two-step approach as Stable Signature. The overview of our method is shown in

Figure 3.1. First, we engage in pre-training a watermark embedder and extractor to ef-

fectively extract the watermark message from a watermarked image. In the second stage,

we fine-tune the VAE[9, 22] decoder of LDM with a fixed user watermark. This fine-

tuning process ensures that all latent representations transformed to image space by the

decoder serve to conceal the watermark information, which the watermark extractor can

subsequently extract. To achieve the attribution of rooting watermark.

7

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

Figure 3.1: Block Diagram and Information Flow of our proposed two stages of training.
Stage 1 involves pre-training a watermark extractor, while Stage 2 focuses on fine-tuning
a VAE decoder to embed a user-specific watermark.(IRL refers to Image Reconstruction
Loss, which measures the fidelity of reconstructed images. MRL stands for Message Re-
construction Loss, which quantifies the accuracy of reconstructed watermark messages).

3.2 Pre-training the watermark embedder/extractor

We adopt[28] as our watermark backbone, a well-established and widely used net-

work in deep watermarking literature. [28] operates by jointly optimizing the parameters

of the watermark embedder and extractor networks to robustly embed k-bit messages into

images, accounting for various transformations in the noise layer during the training pro-

cess. After pre-training, only the watermark extractor will be used during the fine-tuning

phase. The embedder will no longer need and will be discarded.

Figure 3.2: The detailed information flow in the Pre-training phase.

For ease of explanation, we redraw the Pre-training phase of Figure 3.1 in Figure 3.2,

8

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

as above. The watermark embedderWemb receives a cover image Ic ∈ RC×H×W and a k-

bit watermark messageMin ∈ {0, 1}k, outputs a residual watermark image δ ∈ RC×H×W ,

and produces a watermarked image Iw = Ic + αδ, where α is a scaling factor. After

conducting the transformation in the noise layer, we get Ino from Iw. The watermark

extractorWext extracts a soft messageMout ∈ [0, 1]k from Ino.

To maintain the imperceptibility of watermarked images, they should be visually

close to the original cover images. We use Image Reconstruction Loss(IRL) , theMSE

loss between Ic and Iw: LI(Ic, Iw) = ‖Ic − Iw‖22 /(CHW), to measure the objective

quality difference between the original and the watermarked images. Moreover, the de-

coded watermark message should be the same as the input one. We impose a Message

Reconstruction Loss(MRL) also based on theMSE loss obtained during the pre-training

between theMin andMout: LMp(Min,Mout) = ‖Min −Mout‖22 /k. We optimize our wa-

termark model according to the loss defined over the distributions of watermark messages

and input images, that is

EIc,Min [λILI(Ic, Iw) + LMp(Min,Mout)]

The way we pass the watermark message to the watermark embedder is to replicate

the watermark message across spatial dimensions, creating a watermark message tensor.

Then we concatenate this watermark message tensor with the feature map obtained from

the output of conv4 (cf. Figure 3.3). By combining these elements, we enable the in-

tegration of the watermark message within the feature map, thereby imbuing it with the

watermark information. We draw its network architecture and information flow in Figure

3.3 to better understand how our watermark embedder works.

9

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

Figure 3.3: Watermark embedder architecture. The Grey tensor represents the feature map
of convolution. The Blue tensor represents the watermark message-related tensor.

In Figure 3.3, the watermark extractor gets the watermark message tensor after the

convolutional layer, which is then fed into the average pooling layer. This approach proves

advantageous as it removes concerns about different image sizes since the spatial dimen-

sions are compressed into one dimension through the average pooling process, so we can

train at size 256 and input 512 size images during testing. We expect randomness in the

output watermark bits extracted from the vanilla image (non-watermarked image). That

is why after pre-training, we will append a linear layer called the whitening layer after the

watermark extractor (cf. the green-colored sub-block of Figure 3.1) to remove the output

bit correlation of the vanilla image. After pre-training, the watermark embedder will be

discarded, and only the watermark extractor will participate in the subsequent fine-tuning

phase. We draw our watermark extractor’s network architecture and information flow for

completeness and better comprehension in Figure 3.4.

Figure 3.4: Watermark extractor architecture. The Grey tensor represents the feature map
of convolution. The Blue tensor represents the watermark message-related tensor.

10

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

3.3 Fine-tuning the VAE decoder

A critical aspect of the LDM (Latent DiffusionModels) framework involves utilizing

a well-pre-trained VAE (Variational Autoencoder) encoder-decoder pair. This pre-trained

VAE serves as a fixed component. The diffusion process exclusively occurs in the latent

space encoded by the VAE encoder, denoted as E, generating a latent representation z0

and converting z0 by the VAE decoder, D, which maps z0 to its corresponding image

representation, denoted as x0.

As shown in Figure 3.5, we fine-tune D to incorporate a predetermined message,

denoted asm, into the generated image. This fine-tuning process ensures that the resulting

image contains the desiredmessage, which can be extracted using the dedicatedwatermark

extractor, Wext, as shown in Figure 3.5. An essential advantage of this approach is its

compatibility with various tasks achieved by different latent diffusion models using the

same VAE encoder/decoder. This compatibility stems from the fact that modifications

made exclusively to D do not impact the diffusion process.

Figure 3.5: Fine-tuning phase. The only trainable module is the VAE decoder.

First, we define a fixed user-specific watermark messagem ∈ {0, 1}k, then feed the

input image Iinput intoE to get the latent representation z. Reconstruct the image Ioutput by

11

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

D. By transforming Ioutput from the noise layer, we will have the noised image Ino. We are

then passing Ino through Wext to extract m′ ∈ [0, 1]k. Considering the generative nature

of the diffusion model, the absence of ground truth during the inferencing phase. In this

regard, we utilize Watson-VGG as the perceptual loss, which ensures the preservation of

the perceptual quality. The MSE loss is used for Message Reconstruction Loss(MRL)

during the fine-tuning phase. We optimize the VAE decoder according to the loss over

distributions of input images, that is

EIinput [λPLP (Iinput, Ioutput) + LMf (m,m′)]

3.4 Noise layer

To ensure the robustness of images against diverse image transformations, the model

incorporates the capability of handling such variations effectively. To achieve this, we

introduce a noise layer incorporating four distinct types of transformations (cf. Figure 3.6

for details) as [3], each randomly chosen from the available set with equal probabilities

for every batch processed. The Identity layer lets the image remain the same as Iw. The

Crop layer randomly squares crops encoded images with size S × S. We can control the

size of the cropped image using the parameter p ∈ [0, 1], which is the ratio compared to

the original image (S×S)/(H ×H). The Resize layer resizes the encoded image to size

H ′×W ′ controlled by p ∈ [0, 1], now the ratio of (H ′×W ′)/(H ×H). The JPEG layer

provides a differentiable approximation representation of the JPEG because the original

JPEG distortion is non-differentiable. The JPEG compression technique partitions the

image into 8×8 regions and applies a discrete cosine transformation (DCT) within each

region. The frequency-domain coefficients obtained are quantized to varying degrees of

12

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

coarseness, preserving only the perceptually important information. It is important to note

that the quantization step in JPEG compression is non-differentiable, making it unsuitable

for optimization based on gradient-based methods in training. To simulate the effects of

JPEG compression, we employed a masking technique that restricted the representation

of higher frequency information within the DCT coefficients. Specifically, we retained 25

low-frequency DCT coefficients in the Y channel and 9 in both the U and V channels, per

the JPEG compression standard, which prioritizes preserving more information in the Y

channel. The remaining DCT coefficients were effectively eliminated by setting them to

zero.

Figure 3.6: Illustration of all transformations used in the noise layer.

3.5 Whitening module

To address safety considerations, the extracted message obtained from vanilla images

(i.e., non-watermarked images) must adhere to the Bernoulli distribution, representing a

random bitstream distribution. This inherent randomness is paramount as it directly im-

pacts the False Positive Rate (FPR) associated with vanilla images, explicitly referring

to the probability of collision between the user-specific watermark message and the mes-

sage extract from vanilla images. As an illustration, consider an 8-bit message where

the desired collision probability is ideally 1/28. However, assuming a scenario where

13

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

the first 4 bits exhibit a strong correlation, such as the extreme case of the correlation

coefficient 1, the consequence is that the first 4 bits extracted from vanilla images will

invariably be identical. Consequently, any user whose watermark commences with the bit

sequence (0,0,0,0) or (1,1,1,1) will face a substantially heightened probability of collision

with vanilla images, specifically amounting to 1/25.

To address this issue, a solution proposed by [3] involves implementing a PCAwhiten-

ing transformation, which ensures that the extractedwatermarkmessage follows aBernoulli

distribution. After the pre-training stage, a set of vanilla images is required, from which

the extracted messages are denoted asmv. By calculating the mean, µ, and the covariance

matrix Σ of mv, we do an eigendecomposition of the covariance matrix Σ = U ∧ UT .

We construct a linear layer, named as the whitening layer is constructed, with bias (b)

= − ∧−1/2 UTµ and weight (w) = ∧−1/2UT . Because the whiten message’s mean=0 and

variance=1, we need to modify the bias and weight with b = b/2 + 0.5 and w = w/2

so that the new mean=0.5 and variance=0.25, which follows the Bernoulli distribution of

random bit stream. This whitening layer is appended to the watermark extractor, and the

parameters within the whitening layer are frozen during the fine-tuning stage. The com-

bined watermark extractor and whitening layer can be viewed as a whitened watermark

extractor, effectively mitigating the issue and aligning the extracted watermark messages

with the desired Bernoulli distribution.

Nevertheless, it is observed that the original soft output generated by the watermark

extractor from vanilla images exhibits a notably slight variance. In contrast, the soft out-

put produced by the whitened watermark extractor displays a significantly more signifi-

cant variance. This difference in variances disrupts training stability when a noise layer is

introduced during the fine-tuning stage. To address this challenge, we propose the imple-

14

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

mentation of a normalizing that squeezes the output distribution by leveraging a whitening

scaling factor. This whitening scaling factor is derived from f = tr(Σo)/tr(Σw), where

tr(Σo) is the trace of the covariance matrix observed from the soft output of the original

watermark extractor, and Σw is the covariance matrix observed from the soft output of

whitened watermark extractor. We seamlessly integrate the whitening scaling factor into

the existing whitening layer, where b = f × (b − 0.5) + 0.5 and w = f × w. By incor-

porating this whitening scaling factor, we effectively mitigate the issue and ensure a more

balanced and stable fine-tuning process.

3.6 Training procedure

Algorithm 1 Pre-Training Watermark Embedder/Extractor
Input: Cover image Ic
Watermark embedded: Wemb

Watermark extractor: Wext

Noise layer: N
Watermark length: k
Initialize: Initialize parameters ofWemb andWext

1: for steps← 1 to total_steps do
2: sampleWatermark messageMinput ∼ {0, 1}k
3: Iw ← Wemb(Ic,Minput)
4: LI ←MSE(Ic, Iw) $ Image Reconstruction Loss
5: Ino ← N(Iw)
6: Moutput ← Wext(Ino)
7: LMp ←MSE(Minput,Moutput) $Message Reconstruction Loss
8: Lpre_training ← LMp + λILI

9: update parameters ofWemb andWext with Lpre_training
10: end for
11: return

Our methodology can be divided into four stages to achieve the desired outcomes.

Firstly, we initiate the process by pre-training the watermark embedder/extractor (Algo-

rithm 1), yielding the watermark extractor used in stages 2, 3, and 4. Secondly, we con-

struct the whitening layer (Algorithm 2), which plays a crucial role in stages 3 and 4 by

15

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

whitening the output derived from the watermark extractor.

Algorithm 2 Construct Whitening Layer
Input: Vanilla image Iv
Input: Pre-trained Watermark ExtractorWext

Watermark length: k
Whitening Layer: Wl

Whitening Layer bias: b
Whitening Layer weight: w
1: M ← Wext(Iv) $M ∈ RN×k, Iv ∈ RN×H×W×C

2: µ←Mean(M)
3: Σ← Covariance_Matrix(M) $ Σ ∈ Rk×k

4: U ∧ UT ← Σ $ eigendecomposition
5: b← − ∧−1/2 UTµ/2 + 0.5 $ b ∈ Rk

6: w ←∧−1/2 UT/2 $ w ∈ Rk×k

7: Mw ← Wl(M) $Mw ∈ RN×k

8: Σw ← Covariance_Matrix(Mw)
9: f ← (tr(Σ)/tr(Σw))1/2 $ scaling factor
10: b← f × (b− 0.5) + 0.5 $ re-weighting bias
11: w ← f × w $ re-weighting weight
12: return

Moving on to the third stage, we fine-tune a VAE decoder for each user with a user-

specific watermark (Algorithm 3). This stage ensures the effective integration of the user-

specific watermark into the decoder. Thus, the image decoded from the decoder can be

extracted from the user watermark by the extractor.

Finally, in the fourth stage (Algorithm 4), we carry out the watermark detection pro-

cess, which determination of the user who generated the image or discerns whether the

image is a vanilla image without any embedded watermark. This critical stage enables the

accurate detection and attribution of watermarked images to their respective users, thereby

ensuring the integrity and security of the watermarking system.

16

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

Algorithm 3 Fine-tuning VAE decoder
Input: Input image Iinput
Input: Pre-trained Watermark ExtractorWext

Input: Constructed Whitening LayerWl

Input: Pre-trained VAE Encoder E
Input: Pre-trained VAE Decoder D
Noise layer: N
User-specific watermark message: Mu

(Only D will be fine-tuned. Other modules will be frozen.)
1: for steps← 1 to total_steps do
2: z ← E(Iinput) $ Encoding image
3: Ioutput ← D(z) $ Decoding latent representation
4: LP ← Watson_V GG(Iinput, Ioutput) $ Perceptual Loss
5: Ino ← N(Ioutput)
6: Moutput ← Wext(Ino)
7: Mwhiten ← Wl(Moutput)
8: LMf ←MSE(Minput,Mwhiten) $Message Reconstruction Loss
9: Lfine_tuning ← LMf + λPLP

10: update parameters of D with Lfine_tuning
11: end for
12: return

Algorithm 4Watermark detection
Input: Detected image I
Input: Pre-trained Watermark ExtractorWext

Input: Constructed Whitening LayerWl

Matching threshold: τ
User watermark message database: DB

1: Moutput ← Wext(I)
2: Mwhiten ← Wl(Moutput)
3: Mr ← Round(Mwhiten) $ Rounding message bit with threshold 0.5
4: for Mi in DB do
5: if Matching(Mr,Mi) > τ then
6: user_id← i
7: Image is generated by useri
8: return
9: end if
10: end for
11: Image is vanilla image
12: return

17

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

Chapter 4 Experiments

4.1 Setting

This section details the training dataset and hyperparameters employed in each ex-

periment stage. The watermark message length is set to 48. We choose [3] as the baseline.

4.2 Watermark embedder/extractor

Following the HiDDeN[28] framework, we establish the watermark embedder and

extractor using 64 hidden channels. The model is trained on the MS-COCO 2017[10]

training dataset, employing random cropping to the images with size 256×256. The train-

ing process spans 150 epochs with a batch size of 32. Within the watermark embedder, a

scaling factor of α = 0.3 is utilized. The Image Reconstruction Loss parameter λI is set to

0.7. We employ the Adam optimizer for optimization, with the learning rate following a

cosine annealing schedule. This schedule includes 2.5 epochs of linear warmup, gradually

increasing the learning rate to 10−2 and decreasing it to 10−6 at the end of training. The

model’s training is conducted on a single GTX3090 GPU, which requires approximately

three days to complete.

18

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

4.2.1 Noise layer

During the training process, we incorporated different noise levels to enhance the

model’s robustness. These included Identity, Crop_p=0.3, Crop_p=0.7, Resize_p=0.3,

Resize_p=0.7, and JPEG_mask. A noise type was randomly selected from this set of

available noises with equal probabilities for each batch processed.

4.2.2 Whitening layer

We leverage a subset of 10,000 vanilla images randomly sampled from the MS-

COCO 2017 training set to construct the whitening layer. We are employing the PyTorch

library for the eigendecomposition calculations.

4.2.3 Fine-tuning VAE decoder

For our experimentation, we utilized the Stable Diffusion v1.5 VAE encoder/decoder

architecture provided by HuggingFace[23]. To fine-tune the decoder, we randomly se-

lected 400 images from the MS-COCO 2017 training dataset and applied random crop-

ping with a size of 256×256. The training procedure encompassed five epochs, with a

batch size of 4. Additionally, a Perceptual Loss parameter λP value of 0.2 was employed

to enhance the perceptual quality of the generated images. We employed the Adam opti-

mizer to optimize the model with a cosine annealing schedule for the learning rate. This

schedule encompassed one epoch of linear warmup, gradually increasing the learning rate

to 10−4, and subsequently decreasing it to 10−6 towards the end of training. The model

was trained on a single GTX3090 GPU, with an approximate training duration of three

minutes.

19

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

4.2.4 Testing

During the testing phase, we employed Stable Diffusion v1.5, obtained from Hug-

gingFace, and replaced the VAE decoder with the fine-tuned VAE decoder. Following

the established protocol in [14–16, 18], we generated 5000 images based on the captions

provided in the MS-COCO 2017 validation set. We used DDPM sampler with a guidance

scale of 3.0 and 50 diffusion steps. The generated image size is 512×512. The validation

set consisted of 5000 images, each accompanied by five captions. We utilized the first

caption for each image to generate the testing images, resulting in a total of 5000 testing

images. Subsequently, we computed the Fréchet Inception Distance (FID)[6] score by

comparing these generated images to the MS-COCO 2017 validation set, which was re-

sized to 512×512. During the testing phase, four distortions, namely brightness, contrast,

saturation, and sharpness, were applied to the images. These distortions provided by the

PIL and Torchvision[12] libraries were not included in the training or fine-tuning phases

but were employed to evaluate the robustness of the model. We adjust the default factor

utilized for applying these distortions.

4.3 Metric

Researchers usually employ three key metrics when evaluating digital watermarking

performance: imperceptibility, robustness, and capacity (cf. Figure 4.1). These metrics

serve as the primary factors for analyzing the effectiveness of watermarking schemes. Ca-

pacity refers to the ability to embed important watermark information within the cover

image. Imperceptibility ensures that the embedded watermark remains undetectable

to human observers. Robustness measures the resistance of the cover image against

20

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

various attacks or distortions encountered during normal usage. Recognizing that these

three characteristics are interconnected is essential, giving rise to an inherent trade-off.

Capacity-Imperceptibility trade-off: When the payload capacity is high, the detectability

of the watermark message increases, leading to a decrease in the level of imperceptibility.

Robustness-Capacity trade-off: The watermarked image incorporates additional redun-

dancy to enhance its resilience against distortions, thus harming the capacity. Imperceptibility-

Robustness trade-off: The redundancy to maintain robustness have a negative impact on

imperceptibility. Conversely, a lack of redundancy makes detecting the watermark mes-

sage harder. Our primary focus in this work is on the aspect of robustness.

Figure 4.1: The watermark metric trade-off triangle.

Capacity: We fixed the watermark bit length in our entire experiment, which is set

to 48 as the setting in [3]. Imperceptibility: Due to the inherent sampling nature of the

inferencing phase in the diffusion model, ground truth for comparison is unavailable. As

a result, we employ the Fréchet Inception Distance (FID) score as a metric to evaluate im-

perceptibility, which is commonly used for assessing the performance of generated images

from the diffusion model. By utilizing FID, we can ensure that the original model’s ca-

pabilities remain intact even after incorporating watermark embedding functionality. The

lower the FID score, the better. Robustness: We utilize bitwise accuracy as a quantitative

21

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

measure to assess the performance of our method under various levels of image distortion.

The higher the bitwise accuracy, the better.

4.4 Adding noise layer during fine-tuning

In this section, we present the experimental results concerning our main contribution,

which focuses on enhancing robustness by introducing a noise layer during the fine-tuning

phase.

Figure 4.2: Bitwise accuracy between baseline and our method. (Top two charts depict
the results associated with non-naturally robust distortions.)

4.4.1 Robustness

In the fine-tuning stage, our approach incorporates a noise layer between the VAE

decoder and the watermark extractor. Figure 4.2 shows the results of our robustness com-

22

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

Prompt Model Watermark method FID
MS-COCO 2017
Validation dataset
caption

Stable Diffusion V1.5
None 19.00
Baseline 19.81
Ours 19.70

Table 4.1: Imperceptibility performance in terms of FID scores

parison, highlighting the performance of our model relative to the baseline method. The

results demonstrate that our model outperforms the baseline method when exposed to non-

naturally robust distortions, such as Resize and JPEG. Conversely, our method performs

on par with the baseline method when considering naturally robust distortions, such as

Crop, Brightness, Contrast, Saturation, and Sharpness. These findings indicate that in-

cluding non-naturally robust distortions during the fine-tuning process can enhance ro-

bustness compared to the baseline method.

4.4.2 Imperceptibility

In evaluating the effectiveness of our method, it is crucial to consider not only the

bitwise accuracy of the embedded watermark message but also the impact on the func-

tionality of the VAE decoder; especially, on the perceptual quality. Thus, we conducted

a comparative analysis using the FID score, as presented in Table 4.1. Moreover, Figure

4.3 shows a Qualitative comparison between our method and the baseline approach.

The results obtained from the evaluation demonstrate that our method successfully

maintains a balance between robustness and perceptual quality. Specifically, our approach

did not compromise the perceptual quality of the generated images while enhancing their

robustness against various image distortions. This outcome signifies a favorable outcome,

as it affirms that our method achieves improved robustness without sacrificing the percep-

tual quality of the generated images.

23

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

Figure 4.3: Qualitative comparison between our method and the baseline approach, asso-
ciated with the same Prompt and resolution (set to 512 for all cases). Difference map is
pixel-wise difference ×10

24

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

4.5 Whitening layer

Figure 4.4 depicts the covariance matrix of the bit stream output obtained from the

original watermark extractor using 10k vanilla images. The left part of the figure reveals

that the diagonal elements of the covariance matrix are characterized by small values,

indicating a limited variance in the soft outputs (i.e., non-rounded outputs). The right part

of the figure clearly illustrates that the covariance matrix of the rounded outputs deviates

noticeably from the expected Bernoulli distribution, thereby highlighting the necessity of

the whitening process.

Figure 4.4: The vanilla images’ Covariance matrices were extracted from the original
watermark extractor. (Left) the non-rounded outputs and (right) the rounded outputs.

Following the whitening process in [3], the resulting covariance matrix is depicted

in Figure 4.5. Notably, an observation can be made that the diagonal elements of the non-

rounded covariance matrix closely align with those of the rounded one, both exhibiting

conformity to the desired Bernoulli distribution. This alignment signifies a significant

improvement, indicating that the issue of imbalanced collision probabilities among vanilla

images has been effectively addressed. The achievement of this alignment is of utmost

importance as it ensures a more equitable distribution of collision probabilities among

vanilla images. This outcome enhances the fairness and reliability of the watermarking

25

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

process, ensuring that the extracted bit stream adheres more consistently to the desired

Bernoulli distribution and mitigating previously existing imbalances.

Figure 4.5: The vanilla images’ Covariance matrices were extracted from the whitened
watermark extractor. (Left) the non-rounded outputs and (right) the rounded outputs.

4.5.1 Re-weighting

However, it is worth noting that the whitening, as mentioned above, may introduce

a potential issue. This challenge can be observed by comparing the soft output distribu-

tions before and after whitening, as depicted in Figure 4.4 and the left part of Figure 4.5,

respectively. Particularly, when examining a single dimension of the bit stream, the dis-

tributions can be plotted, as shown in Figure 4.6. Following the whitening process, the

new distribution exhibits a significantly wider spread than the original distribution.

This disparity in distribution width can notably impact the fine-tuning process, as it

can lead to divergent convergence losses. We introduce a noise layer to exacerbate this

issue further, creating undesirable and unmanageable turbulence during fine-tuning. Con-

sequently, this poses a challenge in achieving a stable and effective fine-tuning of the

model when incorporating the noise layer. We propose a re-weighting method to address

this issue, as discussed in Section 3.5. Figure 4.7 shows that the re-weighting process

26

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

Figure 4.6: Distribution of non-rounded outputs (soft values) at single-bit dimension.

maintains compatibility between the diagonal elements in the covariance matrices of the

non-rounded outputs with and without whitening while ensuring that the rounded output

after the whitening layer follows the desired Bernoulli distribution. This enables us to

achieve a stable fine-tuning stage even after introducing a noise layer, ultimately enhanc-

ing the robustness.

Figure 4.7: The Comparison of Covariance Matrices. (The bottom two images are the
covariance matrices of the outputs extracted from the vanilla images by re-weighting the
whitened watermark extractor.)

We explore another method to re-weight the whitening layer by applying bitwise

27

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

normalization, which involves independently normalizing each output dimension’s distri-

bution. The results are illustrated in Figure 4.8. Interestingly, the robustness of the bitwise

normalization method is lower when it comes to non-naturally robust distortions. This fact

could be attributed to the whitening layer overfitting the characteristics of the 10k vanilla

images as we manipulate the distribution on a per-bit basis.

Figure 4.8: Bitwise accuracy between the trace-wise normalization method and the bit-
wise normalization method. (Top two charts depict the results associated with non-
naturally robust distortions.)

4.5.2 Bit accuracy imbalance

We have observed an additional effect introduced by the whitening layer. This effect

manifests as an accuracy imbalance among different bits, as Figure 4.9 illustrates. Espe-

cially the last few bits exhibit significantly lower accuracy, indicating they are less reliable

as part of the watermark. Furthermore, we observed that this phenomenon becomes more

pronounced when incorporating a noise layer during fine-tuning.

28

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

Figure 4.9: Bitwise accuracy in the validation phase of the fine-tuning stage.

We attribute this phenomenon to the disparity in eigenvalues. Some eigenvalues

may be too small to contribute significantly to the overall data variance, resulting in

higher noise-like characteristics. During eigendecomposition, the PyTorch library sorts

the eigenvalues, causing the last few bits of the whitened bit stream to be associated with

these noise-like eigenvalues. Consequently, noise-like eigenvalues can amplify, mainly

when a noise layer is introduced during the fine-tuning stage.

29

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

Chapter 5 Conclusions

In conclusion, our research significantly enhances the robustness of watermarking

schemes by introducing a noise layer during the fine-tuning stage. Notably, we observe

a significant improvement in the robustness of non-naturally robust distortions without

adversely impacting the performance of naturally robust distortions. This improvement

demonstrates our ability to enhance robustness without incurring any penalties. However,

introducing the noise layer disrupts the stability of the fine-tuning process initially. We

successfully addressed the issue by normalizing the whitening layer using a scaling fac-

tor derived from the trace from the covariance matrix of the whitened and non-whiten

watermark messages.

Furthermore, our investigation uncovered a potential problem from the whitening

layer: the accuracy imbalance among the extracted watermark bits. This issue poses a

concern for the reliability and trustworthiness of the watermark bit stream. Overall, our

work contributes to the diffusion model-related rooting watermarking field, particularly

in improving robustness and addressing associated challenges.

For future research, one direction is to integrate a trainable attack network proposed

in [11] as the noise layer. Eliminates the need for explicit modeling of image distortions

during training. Additionally, further enhancing robustness can be achieved by explor-

30

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

ing channel coding techniques for the watermark message. However, it is crucial to en-

sure mathematical proof regarding the safety enhancement and performance impact of the

whitening layer, which remains a topic for future investigation.

31

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

References

[1] T. Brooks, A. Holynski, and A. A. Efros. Instructpix2pix: Learning to follow im-

age editing instructions. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 18392–18402, 2023.

[2] Y. Choi, M. Choi, M. Kim, J. Ha, S. Kim, and J. Choo. Stargan: Unified generative

adversarial networks for multi-domain image-to-image translation. In 2018 IEEE

Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake

City, UT, USA, June 18-22, 2018, pages 8789–8797. Computer Vision Foundation /

IEEE Computer Society, 2018.

[3] P. Fernandez, G. Couairon, H. Jégou, M. Douze, and T. Furon. The stable signature:

Rooting watermarks in latent diffusion models. CoRR, abs/2303.15435, 2023.

[4] P. Fernandez, A. Sablayrolles, T. Furon, H. Jégou, and M. Douze. Watermarking im-

ages in self-supervised latent spaces. In IEEE International Conference onAcoustics,

Speech and Signal Processing, ICASSP 2022, Virtual and Singapore, 23-27 May

2022, pages 3054–3058. IEEE, 2022.

[5] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. C. Courville, and Y. Bengio. Generative adversarial nets. In Z. Ghahra-

mani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors,

32

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

Advances in Neural Information Processing Systems 27: Annual Conference on

Neural Information Processing Systems 2014, December 8-13 2014, Montreal,

Quebec, Canada, pages 2672–2680, 2014.

[6] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained

by a two time-scale update rule converge to a local nash equilibrium. In I. Guyon,

U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and

R. Garnett, editors, Advances in Neural Information Processing Systems 30: Annual

Conference on Neural Information Processing Systems 2017, December 4-9, 2017,

Long Beach, CA, USA, pages 6626–6637, 2017.

[7] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In

H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances

in Neural Information Processing Systems 33: Annual Conference on Neural

Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,

2020.

[8] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila. Analyzing

and improving the image quality of stylegan. In 2020 IEEE/CVF Conference on

Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June

13-19, 2020, pages 8107–8116. Computer Vision Foundation / IEEE, 2020.

[9] D. P. Kingma and M. Welling. Auto-encoding variational bayes. In Y. Bengio and

Y. LeCun, editors, 2nd International Conference on Learning Representations, ICLR

2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014.

[10] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and

C. L. Zitnick. Microsoft COCO: common objects in context. In D. J. Fleet, T. Pa-

33

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

jdla, B. Schiele, and T. Tuytelaars, editors, Computer Vision - ECCV 2014 - 13th

European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,

Part V, volume 8693 of Lecture Notes in Computer Science, pages 740–755.

Springer, 2014.

[11] X. Luo, R. Zhan, H. Chang, F. Yang, and P. Milanfar. Distortion agnostic deep

watermarking. In 2020 IEEE/CVF Conference on Computer Vision and Pattern

Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 13545–

13554. Computer Vision Foundation / IEEE, 2020.

[12] S. Marcel and Y. Rodriguez. Torchvision the machine-vision package of torch. In

A. D. Bimbo, S. Chang, and A. W. M. Smeulders, editors, Proceedings of the 18th

International Conference on Multimedia 2010, Firenze, Italy, October 25-29, 2010,

pages 1485–1488. ACM, 2010.

[13] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,

A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning transferable

visual models from natural language supervision. In M. Meila and T. Zhang, editors,

Proceedings of the 38th International Conference onMachine Learning, ICML 2021,

18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning

Research, pages 8748–8763. PMLR, 2021.

[14] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen. Hierarchical text-

conditional image generation with CLIP latents. CoRR, abs/2204.06125, 2022.

[15] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and

I. Sutskever. Zero-shot text-to-image generation. In M. Meila and T. Zhang, editors,

Proceedings of the 38th International Conference onMachine Learning, ICML 2021,

34

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning

Research, pages 8821–8831. PMLR, 2021.

[16] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution

image synthesis with latent diffusionmodels. In IEEE/CVFConference onComputer

Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24,

2022, pages 10674–10685. IEEE, 2022.

[17] C. Saharia, W. Chan, H. Chang, C. A. Lee, J. Ho, T. Salimans, D. J. Fleet, and

M. Norouzi. Palette: Image-to-image diffusionmodels. InM. Nandigjav, N. J.Mitra,

and A. Hertzmann, editors, SIGGRAPH ’22: Special Interest Group on Computer

Graphics and Interactive Techniques Conference, Vancouver, BC, Canada, August 7

- 11, 2022, pages 15:1–15:10. ACM, 2022.

[18] C. Saharia, W. Chan, S. Saxena, L. Li, J.Whang, E. L. Denton, S. K. S. Ghasemipour,

R. G. Lopes, B. K. Ayan, T. Salimans, J. Ho, D. J. Fleet, and M. Norouzi. Photoreal-

istic text-to-image diffusion models with deep language understanding. In NeurIPS,

2022.

[19] J. Sohl-Dickstein, E. A.Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsuper-

vised learning using nonequilibrium thermodynamics. In F. R. Bach and D. M. Blei,

editors, Proceedings of the 32nd International Conference on Machine Learning,

ICML 2015, Lille, France, 6-11 July 2015, volume 37 of JMLR Workshop and

Conference Proceedings, pages 2256–2265. JMLR.org, 2015.

[20] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. In 9th

International Conference on Learning Representations, ICLR 2021, Virtual Event,

Austria, May 3-7, 2021. OpenReview.net, 2021.

35

http://dx.doi.org/10.6342/NTU202302023

doi:10.6342/NTU202302023

[21] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole.

Score-based generative modeling through stochastic differential equations. In 9th

International Conference on Learning Representations, ICLR 2021, Virtual Event,

Austria, May 3-7, 2021. OpenReview.net, 2021.

[22] A. van den Oord, O. Vinyals, and K. Kavukcuoglu. Neural discrete representation

learning. In I. Guyon, U. von Luxburg, S. Bengio, H. M.Wallach, R. Fergus, S. V. N.

Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing

Systems 30: Annual Conference on Neural Information Processing Systems 2017,

December 4-9, 2017, Long Beach, CA, USA, pages 6306–6315, 2017.

[23] P. von Platen, S. Patil, A. Lozhkov, P. Cuenca, N. Lambert, K. Rasul, M. Davaadorj,

and T. Wolf. Diffusers: State-of-the-art diffusion models. https://github.com/

huggingface/diffusers, 2022.

[24] N. Yu, V. Skripniuk, S. Abdelnabi, and M. Fritz. Artificial fingerprinting for gen-

erative models: Rooting deepfake attribution in training data. In 2021 IEEE/CVF

International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada,

October 10-17, 2021, pages 14428–14437. IEEE, 2021.

[25] N. Yu, V. Skripniuk, D. Chen, L. S. Davis, and M. Fritz. Responsible disclo-

sure of generative models using scalable fingerprinting. In The Tenth International

Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29,

2022. OpenReview.net, 2022.

[26] L. Zhang and M. Agrawala. Adding conditional control to text-to-image diffusion

models. CoRR, abs/2302.05543, 2023.

36

http://dx.doi.org/10.6342/NTU202302023
https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers

doi:10.6342/NTU202302023

[27] Y. Zhao, T. Pang, C. Du, X. Yang, N. Cheung, andM. Lin. A recipe for watermarking

diffusion models. CoRR, abs/2303.10137, 2023.

[28] J. Zhu, R. Kaplan, J. Johnson, and L. Fei-Fei. Hidden: Hiding data with deep net-

works. In V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, editors, Computer

Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September

8-14, 2018, Proceedings, Part XV, volume 11219 of Lecture Notes in Computer

Science, pages 682–697. Springer, 2018.

37

http://dx.doi.org/10.6342/NTU202302023

	口委審定書(劉)
	論文(劉)
	Verification Letter from the Oral Examination Committee
	Acknowledgements
	摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Related Works
	DNN-based watermarking
	Rooting watermark
	Diffusion Models
	Diffusion Models-related rooting watermark

	Proposed Method
	Overview
	Pre-training the watermark embedder/extractor
	Fine-tuning the VAE decoder
	Noise layer
	Whitening module
	Training procedure

	Experiments
	Setting
	Watermark embedder/extractor
	Noise layer
	Whitening layer
	Fine-tuning VAE decoder
	Testing

	Metric
	Adding noise layer during fine-tuning
	Robustness
	Imperceptibility

	Whitening layer
	Re-weighting
	Bit accuracy imbalance

	Conclusions
	References

