
doi:10.6342/NTU202301028

國立臺灣大學電機資訊學院資訊工程學系

碩士論文

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

CRAB:使用者可反駁的匿名廣播

CRAB: Client-Rebuttable Anonymous Broadcast

許育銘

Yu-Ming Hsu

指導教授: 蕭旭君博士

Advisor: Hsu-Chun Hsiao, Ph.D.

中華民國 112年 6月

June, 2023

doi:10.6342/NTU202301028ii

doi:10.6342/NTU202301028

誌謝

首先，我要向我的指導教授蕭旭君獻上最誠摯的感謝。我在大學四年級加入

實驗室，教授每個禮拜都花很多時間跟各組、各專案開會，把大部分的時間都奉

獻給學生了。我在寫論文的期間，有時候會臨時想找教授討論，都沒有發生找不

到教授的情況。除此之外，教授也提供給我很多機會，像是跟國外的學者合作，

還有去 ETHZ移地研究，讓我學習到非常多。我會好好珍惜這些經驗，希望未來

能跟教授一樣貢獻給其他人。

再來，我要感謝實驗室的同學們。首先要感謝王靖傑同學，他是我們 crypto

組的組長，也是我的好戰友，不僅給我很多研究上的建議，也給我很多現實面的

幫助，比如說口試期間我在 ETHZ，都是他負責聯絡口試委員以及幫我跟系辦傳

遞資料。總而言之，在各方面都幫助我很多。再來我要感謝李洵同學，我在實驗

室第一個加入的就是他的專案，讓我學習到了整個做研究的流程、甚至是之後的

申請專利、推廣等等，也讓我有幸得到人生第一篇 paper並且去 NDSS大開眼界。

即便他在離開實驗室之後還有來我口試的彩排給我建議，真的非常感謝。還有很

多很值得感謝的同學，這裡就不一一列舉了。

最後，我要感謝李彥寰教授，他算是我做研究的啟蒙老師。我大學時最先找

他做專題研究，當時我完全不懂做研究，是他手把手的教我怎麼找 paper、怎麼好

好紀錄研究結果，以及展示給別人看。雖然我後來覺得蕭教授的實驗室研究比較

iii

doi:10.6342/NTU202301028

有趣而離開了李教授的實驗室，但是我從他身上學到的研究方法至今仍讓我受益

無窮。也許他不知道，但他是我在臺大最感謝的教授之一。

iv

doi:10.6342/NTU202301028

Acknowledgements

First of all, I would like to express my sincere thanks to my advisor, Prof. Hsu-Chun

Hsiao. I joined NSLAB since I was a senior undergraduate student. Prof. Hsiao spends

a lot of time every week meeting with each group and project. She dedicates most of her

time to the students. When I was writing my thesis, sometimes I wanted to discuss with

the professor on the fly, and I can always find her. In addition, Prof. Hsiao also provides

many opportunities for me, such as collaboration with foreign researchers and research

exchange to ETH Zurich, which makes me learn a lot. I will treasure these experiences,

and hope that I can contribute to others in the future like my professor.

Next, I would like to thank my labmates. First, I would like to thank Jay. He is

the leader of our crypto group, and also my research fellow. He not only gave me useful

suggestions for my research, but also gave me a lot of practical help. For example, I was

in ETH Zurich during our thesis defense, so he took charge of contacting the committees

and helped me to pass on information to the department office. In short, he helped me a lot

in many aspects. I would also like to thank Leexun. The first project I joined in NSLAB

is Leexun’s project, which allowed me to learn the whole process of doing research, and

even the subsequent patent application, promotion, etc. I was also fortunate to get my first

paper in life and had an eye-opening experience in NDSS. Even after he left the lab, he

still came to the rehearsal of my defense and gave me valuable advice. I can’t thank him

v

doi:10.6342/NTU202301028

enough. There are many other labmates who deserve my thanks, so I won’t list them all

here.

Last but not least, I would like to thank Prof. Yen-Huan Li, my first teacher in doing

research. He is my first advisor of special research in bachelor. I was a complete beginner

in research, so he taught me all the things like how to find papers, how to document the

research results properly, and how to show them to others, etc. Although I later left his

lab because I found the research at NSLAB more interesting, I still benefit from the re-

search methods I learned from him. He may not know, but he is one of my most grateful

professors at NTU.

vi

doi:10.6342/NTU202301028

摘要

匿名廣播有很多應用，如吹哨者和電子投票。一些研究是基於混合網路，它

們往往需要高成本的混合證明。一些研究是基於多方運算，混合成本較低，但使

用者無法驗證其訊息的完整性。在這篇論文中，我們提出了 CRAB，一個基於多

方混合協定的匿名廣播系統，為使用者提供驗證機制。該系統是「使用者可反駁」

的，意味著使用者可以證明伺服器的錯誤行為。我們證明了 CRAB滿足安全性的

需求。我們也顯示了 CRAB可以應用於電子投票系統。最後，我們實作並評估了

我們的系統。我們的系統可以比使用混合證明的系統快 23～33倍，並且有良好的

可擴展性。因此，我們的系統適用於大規模的電子投票。

關鍵字땻匿名廣播、多方運算、匿名性、可驗證性

vii

doi:10.6342/NTU202301028viii

doi:10.6342/NTU202301028

Abstract

There are many applications of anonymous broadcast, such as whistleblowing and

electronic voting. Some works are based on mixnet, and they often require high cost

on proof of shuffle. Some works are based on multiparty computation (MPC), where

the shuffle cost is lower but the clients cannot verify the integrity of their messages. In

this thesis, we propose CRAB, an anonymous broadcast system based on a multiparty

shuffling protocol that provides a verification mechanism for the clients. The system is

”client-rebuttable”, which means that a client can prove the misbehavior of the servers.

We prove that CRAB satisfies the security requirements. We also show that CRAB can

be applied to electronic voting systems. Finally, we implement and evaluate our system.

Our system can be 23∼33 times faster than those using proof of shuffle, and our system

has good scalability. Thus, our system is suitable for large-scale electronic voting.

Keywords: Anonymous broadcast, MPC, anonymity, verifiability

ix

doi:10.6342/NTU202301028x

doi:10.6342/NTU202301028

Contents

Page

口試委員審定書 i

誌謝 iii

Acknowledgements v

摘要 vii

Abstract ix

Chapter 1 Introduction 1

Chapter 2 Design Goal 5

2.1 Threat Model and Assumptions . 5

2.2 Security Goals . 6

Chapter 3 Background 9

3.1 Notation . 9

3.2 Multiparty Computation . 9

3.3 Multiparty Shuffling Protocol . 12

Chapter 4 The CRAB System 15

4.1 Generate Backdoor . 15

4.2 Validation Check . 17

4.3 The Entire System . 22

xi

doi:10.6342/NTU202301028

4.3.1 Generate backdoor . 22

4.3.2 Send request . 22

4.3.3 Validation check . 22

4.3.4 Process . 23

4.3.5 Verify . 23

4.4 Remove the Trusted Party . 23

Chapter 5 Security Proof 25

5.1 Correctness . 26

5.2 Anonymity . 26

5.3 Client-rebuttability . 28

5.3.1 ”If” direction . 29

5.3.2 ”Only if” direction . 32

Chapter 6 Application: Electronic Voting 35

6.1 The E-voting System . 36

6.2 Security Analysis . 37

Chapter 7 Implementation and Evaluation 39

7.1 Implementation on Group Elements 39

7.2 Complexity analysis . 41

7.3 Experiment Result . 41

7.3.1 Client performance . 41

7.3.2 Validation check . 41

7.3.3 Process . 42

7.3.4 Rebuttal check . 44

xii

doi:10.6342/NTU202301028

Chapter 8 Related Work 47

Chapter 9 Conclusion 51

References 53

xiii

doi:10.6342/NTU202301028xiv

doi:10.6342/NTU202301028

Chapter 1 Introduction

There are many scenarios where people want to broadcast their messages anony-

mously, such as whistleblowing and electronic voting. In these scenarios, clients send

their messages to the servers, and the servers are supposed to output these messages in a

random order to break the link between amessage and its sender. In addition to anonymity,

integrity of the messages is also important. The censored servers may modify or discard

some of themessages, and the faulty servers may ignore errors to avoid trouble. Therefore,

we need a mechanism to let the clients point out the error if the output is incorrect. Finally,

the system should be efficient. Both the generation of the output and the mechanism for

the clients should have low costs.

Many anonymous broadcast systems make use of mixnet [13] to mix the messages.

In these systems, each client sends the full (encrypted) message to the servers, and the

servers in turn shuffle the messages. To prevent any server from altering the messages,

the servers are required to provide a zero-knowledge proof for each shuffle [5, 28]. If the

output is incorrect, it is difficult for the server to generate a valid proof, so the error can be

easily detected by checking the proof. The main problem with mixnet-based approaches

is efficiency, because generating the proof of shuffle is costly. Several recent systems

[31, 32, 34, 45] divide the shuffle into smaller shuffles to improve performance, but the

overall cost is still high.

1

doi:10.6342/NTU202301028

Another type of system is based on DC-net [12]. In these systems, the clients dis-

tribute their messages among several servers, and each server outputs its shares of the

shuffled messages. However, the high communication cost makes it impractical. Sev-

eral recent works [1, 16, 38, 46] improve the performance with distributed point functions

(DPF) [25], where the order of output messages is randomised with ”position” informa-

tion chosen by the clients. One problem with DPF-based approaches is the collision of the

positions, which leads to the problem that some messages may not be published correctly.

Recently, Clarion [23] proposed a protocol in which the clients also distribute their

messages among multiple servers, and the servers shuffle the messages together using

a multiparty shuffling protocol. Compared to DPF-based approaches, this system has

no correctness problem and has lower communication costs. However, a disadvantage

of Clarion (and DPF-based approaches) is that they require at least one honest server to

ensure the correctness of the multiparty computation. If a client finds that his message is

not included in the output, there is no mechanism for him to show that the computation is

incorrect.

Therefore, this work presents CRAB, an anonymous broadcast system, to deal with

the above problem. In this system, each client secret-shared his message with additional

information, called a backdoor, to the servers. The servers then run a multiparty shuffling

protocol and output the shuffled messages. If a client finds that the output does not contain

his message, he can rebut it by revealing the backdoor to show that the output is wrong,

while keeping his message undisclosed. We define that the systems with such mechanism

are client-rebuttable.

However, there is an anonymity problem if the client reveals his backdoor directly.

2

doi:10.6342/NTU202301028

We offer two solutions to this problem. The first solution is to include an honest-but-

curious rebuttal authority that is responsible for approving or disapproving the anony-

mous broadcast. The rebuttal authority is not involved in the computation, so any pub-

licly trusted party, such as a national regulatory authority, can take on this role with little

overhead. This scheme is provably secure (see Chapter 5) and can be extended to an elec-

tronic voting system (see Chapter 6). The other solution is to allow the clients send ”trap”

messages. This scheme is less secure, but the client does not have to trust any other party.

In conclusion, this thesis makes the following contributions:

• We define the security property of client-rebuttability for an anonymous broadcast

system.

• We propose a system that achieves correctness, anonymity and client-rebuttability.

We also show its application to electronic voting.

• We provide a rigorous proof of the security of our system.

• We implement our system and show that it is efficient and practical to use.

3

doi:10.6342/NTU2023010284

doi:10.6342/NTU202301028

Chapter 2 Design Goal

In the CRAB system, there are k servers and a rebuttal authority to provide the anony-

mous broadcast service to many clients. The clients can send requests with their messages

to the servers, and the servers should help them publish these messages anonymously. Af-

ter receiving n messages, the servers publish the messages in random order. If a client’s

message is not published correctly, he can prove the misbehavior of the servers without

sacrificing the anonymity of his message.

2.1 Threat Model and Assumptions

We assume that the the clients and the servers can communicate over a secure channel

with encryption such as TLS. However, the clients and the servers do not need to trust each

other. An adversary can observe the network traffic and control up to all but one server.

The adversary can try to find the source of the messages or modify some of the messages.

A malicious client can try to prove that the servers are wrong, even if the servers are not.

We also assume that there is a rebuttal authority that is honest-but-curious. The re-

buttal authority performs every functionality correctly and does not collude with the ad-

versary, but it can try to find the source of the messages. Communication between the

rebuttal authority and the clients is also secure and encrypted. We assume that each party

5

doi:10.6342/NTU202301028

is polynomial bounded.

Finally, we assume that there is a public bulletin board on which the servers and the

rebuttal authority can post data to. The data on the bulletin board cannot be modified or

removed. Such a bulletin board can be implemented by a public database or a blockchain.

CRAB does not guarantee availability. Our system cannot defend against denial-of-

service attacks or if the servers refuse to accept any message.

2.2 Security Goals

First, we define the security properties of correctness and anonymity:

• Correctness: The servers should output a shuffle of all the messages if everyone

behaves properly.

• Anonymity: No one can learn the source of others’ messages.

An anonymous broadcast system should ensure the correctness and anonymity of the

messages to some extent. Anonymity can never be satisfied if all the servers collude, so it

is common to assume that the adversary can only control some of the servers. We follow

Clarion that our system achieves anonymity if at least one server is not controlled by the

adversary.

Correctness is ensured if the servers and the clients follow the protocol. However, the

malicious or flawed servers may violate the protocol, leading to incorrect output or abor-

tion of the system. Prior works [1] have studied on robustness or censorship-resistance,

which mitigates the misbehavior of the servers at additional cost. In contrast, we address

6

doi:10.6342/NTU202301028

this problem from the client side. A client can rebut the output when he finds that his

message is not included. We called this property client-rebuttability:

• Client-rebuttability: A client can prove the misbehavior of the servers without

revealing the ownership of his message.

We mentioned here that the client does not have to reveal his message, so anonymity

would not be broken here. We also need to make sure that a malicious client cannot make

such a proof if the servers behave properly.

7

doi:10.6342/NTU2023010288

doi:10.6342/NTU202301028

Chapter 3 Background

3.1 Notation

A summary of the notations is presented in Table 3.1. Denote the k servers as

S1, . . . , Sk. Given a set S, denote s
r←− S as uniformly selecting s from S. Let λ be the se-

curity parameter. Let p = 2q+1 be a λ-bit safe prime, i.e., q is also a prime. LetG be the

subgroup of Z∗
p of order q. We assume that the Diffie-Hellman problems on G are hard,

and g1, g2, g3 are public generators of G where the discrete logarithm problem between

them is also hard. Given x ∈ Zp, let [x] be a linear secret sharing of x over Zp. Given a

vector x = (x1, . . . , xn) ∈ Zn
p , denote by [x] = ([x1], . . . , [xn]). Specifically, let [x]i be

the share for server Si. Let _2+ be the reconstruction of the shares, i.e. x = _2+([x]). Our

system adopts Clarion, which uses additive secret sharing where _2+([x]) =
∑k

i=1[x]i.

However, it is worth noting that our system is compatible with the multiparty shuffling

protocol using other linear secret sharing schemes such as Shamir’s secret sharing.

3.2 Multiparty Computation

In many privacy-preserving systems, the clients secret-shared their data to multiple

servers. The servers can perform some computation on the data, while none of the servers

9

doi:10.6342/NTU202301028

Table 3.1: Notations.

Notation Description
n The number of messages
k The number of servers
Si The ith server, i = 1, . . . , k

λ Security parameter
p A λ-bit prime
q (p− 1)/2, also a prime
G The subgroup of Z∗

p of order q
g1, g2, g3 Public generators of G
[x], x ∈ Zp A share of x
[x], x ∈ Zn

p ([x1], . . . , [xn])

[x]i The share for server Si

_2+([x]) The reconstruction of [x]
s

r←− S Uniformly select s from the set S

learn the data during the computation. If less than a threshold number of servers collude,

the privacy of the data is guaranteed.

Here we consider additive secret sharing and Shamir’s secret sharing. A computation

can be represented as an arithmetic circuit with a series of addition and multiplication

gates. The servers evaluate one gate at a time, from the input gate to the output gate. For

each gate, the value of the input and output wires should be secret-shared between the

servers. For example, if a gate has input x, y and should output z, then each server should

input [x], [y] and output [z]. Finally, the servers collect the shares of the output gate, and

reconstruct the output value.

This is easy to do for an addition gate: upon receiving the inputs [x], [y], each server

simply outputs [x] + [y] because _2+([x] + [y]) = _2+([x]) + _2+([y]) = x + y. For a

multiplication gate, however, it is not so simple. We can use the technique proposed by

Beaver [6]. Each server holds a Beaver triple, which is a group of shares [a], [b], [c] such

10

doi:10.6342/NTU202301028

that a · b = c. Note that a, b, c should remain unknown to the servers, and a triple should

not be used twice. We can generate the Beaver triples by random double sharing [21] or

somewhat homomorphic encryption [22] in advance. Then we can compute x · y with

a Beaver triple. There is a small difference between the computation in additive secret

sharing and Shamir’s secret sharing:

1. Each server computes [x− a] = [x]− [a], [y − b] = [y]− [b], and sends the values

to other servers.

2. The servers reconstruct d = x− a, e = y − b.

3. Each server outputs [z] = [c] + d[y] + e[x] − de
k for additive secret sharing and

[z] = [c] + d[y] + e[x]− de for Shamir’s secret sharing.

Then we have [z] be a secret-share of xy. Indeed, In the case of additive secret sharing,

we have:

_2+([z]) = _2+([c]) + _2+(d[y]) + _2+(e[x])− _2+(de
k
)

= c+ dy + ex− de

= ab+ (x− a)y + (y − b)x− (x− a)(y − b)

= xy

In the case of Shamir’s secret sharing, we have _2+(de) = de, so similarly we can show

that _2+(z) = xy.

Several techniques are then proposed for different operations, such as exponentiation

[3, 19, 39] and non-interactive proof [8, 15, 48]. We will describe some of them in Chapter

4.2.

11

doi:10.6342/NTU202301028

3.3 Multiparty Shuffling Protocol

The multiparty shuffling protocol is based on multiparty computation. Each server

owns a share of the list of n messages, and the servers would eventually output a shuffle

of the messages without learning the source of each output message. We can use Clarion

[23] as a secure multiparty shuffling protocol.

In Clarion, the servers require more complicated setup, which is called share trans-

lation protocol [11]. Let G = Z!
p for some constant integer ". Each server Si holds a

permutation πi, and it runs share translation protocols with all the other servers Sj . After

the translation protocol, the server Sj receives two random vectors ai,j, bi,j ∈ Gn, and

server Si receives a vector δi,j = πi(ai,j) − bi,j . The translation protocol can be done by

oblivious transfer. The servers then generate the k-party shuffle correlation using multi-

party computation, the details of which are omitted here for simplicity. The k-party shuffle

correlation is defined as follows:

• Each server gets random vectors ai, bi, a′i ∈ Gn and a permutation πi.

• Sk gets an additional vector:

∆ = πk(. . .π2(π1(
∑k

i=2 ai) + a′1) . . .+ a′k−1)−
∑k−1

i=1 bi.

• The servers know nothing about each other’s value.

Now the servers can shuffle the messages. Let x ∈ Gn be the input messages. Each

server collects the share of themessages [x], then they run the following shuffling protocol:

1. Server Si (except i = 1) computes zi = [x]i − ai and sends it to S1.

12

doi:10.6342/NTU202301028

2. S1 computes z′1 = π1(
∑k

i=2 zi + [x]1) − a′1 and sends it to S2. Then he sets his

output [s]1 = b1.

3. For i = 2, . . . , k − 1, Si computes z′i = πi(z′i−1)− a′i, sends it to Si+1, and sets his

output [s]i = bi.

4. Sk sets his output [s]k = πk(z′k−1) +∆.

Then the output s = πk(. . .π2(π1(x)) . . .)would be a permutation of x, where none of the

servers know the permutation. The protocol does not contain any public-key cryptography,

so the computation is very fast.

Clarion requires at least one honest server to ensure the correctness of the protocol.

The servers perform several blind MAC verifications to check the integrity of the mes-

sages. Since CRAB does not use this mechanism, only a simplified introduction is given

here. In Clarion, each submitted message is secret-shared with a Carter-Wegman one-time

MAC [47] and the corresponding key. The MAC is linearly computed, so the servers can

verify the MAC blindly using multiparty computation. The servers perform a blind MAC

verification before accepting a message. Then the MAC is shuffled with the message.

After the shuffle, the servers perform another blind MAC verification on the entire output

to ensure the correctness of the shuffle.

13

doi:10.6342/NTU20230102814

doi:10.6342/NTU202301028

Chapter 4 The CRAB System

In this section, we introduce the CRAB system. Figure 4.1 shows the overall work-

flow of CRAB. First, a client generates the backdoor and the proof. The backdoor is

reserved for rebuttal later, and the details of the backdoor will be presented in Section

4.1. The proof is used for validation check. Then the client sends a request to the servers,

and the servers perform a validation check for each request. The details of the request

and validation check will be discussed in Section 4.2. After checking all the inputs, the

servers process the accepted messages using the multiparty shuffling protocol and output

a shuffle of the messages. Finally, the clients verify if their messages are included and

report it to the rebuttal authority. The rebuttal authority would then approve or disapprove

the anonymous broadcast.

4.1 Generate Backdoor

Recall that G is the subgroup of Z∗
p of prime order q = p−1

2 . To broadcast a message

m ∈ G anonymously, a client randomly chooses his backdoor secrets s1, s2
r←− Zq, com-

putes the backdoor M = ms1gs23 , and secret-share (m,M) to the servers. More specif-

ically, the clients chooses [m]1, . . . , [m]k, [M]1, . . . , [M]k ∈ Zp such that _2+([m]) =

m,_2+([M]) = M , and sends ([m]i, [M]i) to server Si.

15

doi:10.6342/NTU202301028

Figure 4.1: The flowchart of CRAB.

The servers execute the multiparty shuffling protocol and output the shuffled mes-

sages (m1,M1), (m2,M2), . . . , (mn,Mn). If the client’s message (m,M = ms1gs23) does

not exist in the output, then with overwhelming probabilityMi %= mi
s1gs23 , ∀i = 1, . . . , n.

Thus, the client can publish his backdoor secrets, and the others can verify that his message

is not included.

However, if the clients publish their secrets directly, the adversary can learn the own-

ership of their messages. A malicious server can modify some of the output shares and

covertly recover the original messages from the output. For example, the server can mod-

ify the first j entries of his output shares from (a1, A1), . . . , (aj, Aj) to (a1 + b1, A1 +

B1), . . . , (aj + bj, Aj + Bj). After seeing the output messages (m1,M1), . . . , (mn,Mn),

the adversary can recover the first j messages (m1−b1,M1−B1), . . . , (mj−bj,Mj−Bj),

and the clients with these messages may rebut. When a client publishes his secrets, the

adversary searches through (m1 − b1,M1 −B1), . . . , (mj − bj,Mj −Bj) to find the one

that matches the client’s secrets. In this way, the malicious server knows what the client

intends to publish.

16

doi:10.6342/NTU202301028

Therefore, we need a rebuttal authority to manage the rebuttals. After the output is

published, the rebuttal authority asks all the clients if they found their messages. If a client

found his message, he responds with a confirmation. Otherwise, he sends his secrets to

the rebuttal authority. The rebuttal authority checks the clients’ rebuttals and disapprove

the anonymous broadcast if any of them are valid. Note that the clients do not reveal the

ownership of their messages to the rebuttal authority.

4.2 Validation Check

In the previous section, we showed that a client can use his secrets to prove that the

output is incorrect. However, a malicious client can use false secrets s′1, s′2 to claim the

incorrectness. Therefore, we need a mechanism for the servers to check the validity of a

client’s request before accepting it.

When a client submits his message, he should also provide his identifier id = gs11 gs22

and a zero-knowledge proof of the consistency of his identifier and message. Specifically,

the client proves that he knows the backdoor secrets s1, s2 such that id = gs11 gs22 ∧M =

ms1gs23 . Note that id and M follow the form of Pedersen commitment [41], and a zero-

knowledge protocol for id is proposed by Okamoto [40]:

• Okamoto’s protocol

1. The prover (client) randomly chooses r1, r2
r←− Zq and sends a = gr11 gr22 to the

verifier (server).

2. The verifier chooses ch r←− Zq and sends it to the prover.

3. The prover computes z1 = ch · s1 + r1, z2 = ch · s2 + r2 and sends them to

17

doi:10.6342/NTU202301028

Client (input messagem):

1. Choose s1, s2,
r←− Zq.

2. ComputeM = ms1gs23 and generate shares [m]1, . . . , [m]k, [M]1, . . . [M]k.

3. Compute id = gs11 gs22 .

4. Choose r1, r2,
r←− Zq, compute a = gr11 gr22 , b = mr1gr23 and generate shares

[b]1, . . . , [b]k.

5. Compute comi = H(id, [m]i, [M]i, a, [b]i), ∀i = 1, . . . , k, ch =
H ′(com1, . . . , comk), and z1 = ch · s1 + r1, z2 = ch · s2 + r2.

6. Send id, [m]i, [M]i, a, [b]i, z1, z2 to server Si.

Server Si (output accept or reject):

1. Check if they receive the same id, a, z1, z2.

2. Compute com′
i = H(id, [m]i, [M]i, a, [b]i) and send it to all other servers.

3. Compute ch′ = H ′(com′
1, . . . , com

′
k) and check that g

z1
1 gz22 = idch

′
a. If not,

output reject.

4. Compute [mz1]i and [M ch′
]i using multiparty exponentiation.

5. Compute [d]i = [mz1]i · gz23 − [M ch′ · b]i and send it to all other servers.

6. Reconstruct d. If d = 0, output accept. Otherwise, output reject.

Figure 4.2: The protocol of validation check.

the verifier.

4. The verifier checks that gz11 gz22 = idcha.

We start fromOkamoto’s protocol and finally reach our non-interactive multi-verifier

zero-knowledge (NIMVZK) protocol version 4. Protocol version 1 includes the message

(m,M) to the proof, while protocol version 2 makes it non-interactive. Protocol version 3

is a straight-forward multi-verfier transform from protocol version 2, and protocol version

4 fixes some bugs in protocol version 3. A clearer description of the final protocol (version

4) can be found on Figure 4.2.

18

doi:10.6342/NTU202301028

First, to prove that id and M are generated from the same secrets s1, s2, we modify

Okamoto’s protocol to protocol version 1:

• Protocol version 1

1. The prover randomly chooses r1, r2
r←− Zq and sends a = gr11 gr22 , b = mr1gr23

to the verifier.

2. The verifier chooses ch r←− Zq and sends it to the prover.

3. The prover computes z1 = ch · s1 + r1, z2 = ch · s2 + r2 and sends them to

the verifier.

4. The verifier checks that gz11 gz22 = idcha ∧mz1gz23 = M chb.

Note that the discrete logarithm problem between g3 and m might be easy for the

prover. However, we show in Theorem 5.4 that the prover cannot use M %= ms1gs23 to

convince the verifier with non-negligible probability.

Next, we want to make the protocol non-interactive. Applying the random oracle as-

sumption to a cryptographically secure hash functionH , we can use Fiat-Shamir heuristic

to construct protocol version 2:

• Protocol version 2

1. The prover randomly chooses r1, r2
r←− Zq and computes a = gr11 gr22 , b =

mr1gr23 , ch = H(id,m,M, a, b). Then he sends (a, b, z1 = ch · s1 + r1, z2 =

ch · s2 + r2) to the verifier.

2. The verifier computes ch′ = H(id,m,M, a, b) and checks that gz11 gz22 =

idch
′
a ∧mz1gz23 = M ch′

b.

19

doi:10.6342/NTU202301028

In our case, however, the message is distributed among the servers. Server Si only

knows [m]i, [M]i, g1, g2, g3, id. To make the distributed proof, first we apply the dis-

tributed Fiat-Shamir proposed by Yang and Wang [48]. Let H ′ be another cryptographi-

cally secure hash function. Si can compute comi = H(id, [m]i, [M]i, a, b) and broadcast

to all other servers. Then we can set the challenge as ch = H ′(com1, . . . , comk), as we

show in protocol version 3.

• Protocol version 3

1. The client randomly chooses r1, r2
r←− Zq. Then he computes a = gr11 gr22 , b =

mr1gr23 , {comi = H(id, [m]i, [M]i, a, b)}ki=1, ch = H ′(com1, . . . , comk) and

sends (a, b, z1 = ch · s1 + r1, z2 = ch · s2 + r2) to each server.

2. Each server computes com′
i = H(id, [m]i, [M]i, a, b) and sends to other servers.

Then they compute ch′ = H ′(com′
1, . . . , com

′
k) and check that g

z1
1 gz22 = idch

′
a.

3. All the servers jointly check thatmz1gz23 = M ch′
b.

However, there is a drawback in protocol version 3. A server can store b, z1, z2, ch′

for an id. When the list of shuffled messages (m1,M1), . . . , (mn,Mn) is published, the

server can compute di = mz1
i gz23 −M ch′

i b for each i = 1, . . . , n. If di = 0, then the server

can match id and (mi,Mi). To fix this problem, we make version 4, where the client also

secret-shares b to the servers. Specifically, the client chooses [b]1, . . . , [b]k ∈ Zp such that

_2+([b]) = b, and computes comi = H(id, [m]i, [M]i, a, [b]i).

• Protocol version 4 (final)

1. The client randomly chooses r1, r2
r←− Zq. Then he computes a = gr11 gr22 , b =

mr1gr23 and generates shares [b]1, . . . , [b]k. Finally, he computes {comi =

20

doi:10.6342/NTU202301028

H(id, [m]i, [M]i, a, [b]i)}ki=1, ch = H ′(com1, . . . , comk) and sends (a, [b]i, z1 =

ch · s1 + r1, z2 = ch · s2 + r2) to server Si.

2. Each server computes com′
i = H(id, [m]i, [M]i, a, [b]i) and sends to other

servers. Then they compute ch′ = H ′(com′
1, . . . , com

′
k) and check that g

z1
1 gz22 =

idch
′
a.

3. All the servers jointly check thatmz1gz23 = M ch′
b.

We remain to show the final step, where the servers perform multiparty computation

while none of the servers learnm orM . First, we need to compute the exponentiation with

the public exponent and the secret-shared base (mz1 andM ch′). We can compute the expo-

nential by square-and-multiply, which requiresO(λ)multiplications, but the computation

can be faster. Here we present a technique proposed by Ning and Xu [39]. The servers

execute the following protocol to computemz1 , where z1 is public andm is secret-shared:

1. Each server randomly chooses ri
r←− Zp and sends the shares [ri], [r−z1

i] to other

servers.

2. Each server has the share [r1], . . . , [rk] and [r−z1
1], . . . , [r−z1

k]. Let r =
∏k

i=1 ri, they

can use multiparty multiplication to compute [r] and [r−z1].

3. The servers use multiparty multiplication to compute [mr] and reconstructmr.

4. Each server outputs (mr)z1 [r−z1].

The protocol requires 2k − 1 multiparty multiplications, which has much lower cost than

square-and-multiply when k (λ. Correctness of the protocol can be easily verified:

_2+((mr)z1 [r−z1]) = (mr)z1_2+(r−z1) = (mr)z1r−z1 = mz1

21

doi:10.6342/NTU202301028

Similarly, the servers can obtain [M ch′
] and compute [M ch′ · b] using multiparty mul-

tiplication. Finally, each server computes [d] = [mz1] · gz23 − [M ch′ · b], and they jointly

reconstruct d = _2+([d]). If d = 0, then the servers accept the proof and the message

(m,M).

4.3 The Entire System

Here we introduce the entire CRAB system, which uses Clarion as the underlying

multiparty shuffling protocol.

4.3.1 Generate backdoor

To broadcast a messagem, the client generates backdoor secrets s1, s2 and computes

the backdoor M = ms1gs23 and the identifier id = gs11 gs22 . Then he shares his message

([m], [M]) and generate the NIMVZK proof (a, [b], z1, z2), where b is shared.

4.3.2 Send request

The client sends the identifier, the shares of his message, and the proof to the servers.

More specifically, the client sends (id, [m]i, [M]i, a, [b]i, z1, z2) to serverSi for i = 1, . . . , k.

4.3.3 Validation check

When the servers receive a request from a client, they first check if they receive the

same identifier and proof (except [b]), then they verify the NIMVZK proof as described

in Section 4.2. If all checks pass, then the servers accept the message (m,M) and publish

22

doi:10.6342/NTU202301028

the identifier to the bulletin board.

4.3.4 Process

The servers run the secret-shared shuffling protocol described in Section 3.3. Finally,

they publish a shuffle of the accepted messages (m1,M1), (m2,M2), . . . , (mn,Mn).

4.3.5 Verify

After the the list of shuffled messages is published, the rebuttal authority asks each

client if his message is on the list. A client responses with a confirmation if his message

is included, otherwise he sends his secrets to the rebuttal authority. For each received

secrets s1, s2, the rebuttal authority checks that (1) id = gs11 gs22 is on the bulletin board (2)

Mi %= ms1
i gs23 , ∀i = 1, . . . , n. If any of the secrets passes the check, the rebuttal authority

disapprove the anonymous broadcast.

4.4 Remove the Trusted Party

The CRAB system introduced above requires an honest-but-curious rebuttal author-

ity. Clients must trust that the rebuttal authority will help them disapprove the anonymous

broadcast. However, this trust requirement may be difficult to achieve in some scenarios.

Here we present another scheme for these scenarios. Similar to the idea in previous

work [31], a client can send several ”trap” messages with different secrets. These trap

messages should be designed in such a way that the adversary cannot distinguish between

the trap messages and the real messages. If any of his trap messages is not in the output,

23

doi:10.6342/NTU202301028

he can rebut with the corresponding secrets. Everyone can check that the message is not

included, so the misbehavior of the servers is proven. The adversary can learn the source

of the trap messages, but the real messages remain anonymous.

The adversary may be lucky to have only modified the real messages but not any of

the client’s trap messages. In this case, the client may have to sacrifice the anonymity

of his message in order to rebut. So there is a trade-off between security and trust-less

requirement.

24

doi:10.6342/NTU202301028

Chapter 5 Security Proof

In this section, we prove that CRAB satisfies the security requirements described in

Chapter 2.2.

First we analyze the information held by each party. Each server knows (a = gr11 gr22 , ch′, z1 =

ch′ ·s1+r1, z2 = ch′ ·s2+r2) for each identifier id. The adversary can output the modified

messages while knowing the original messages. The rebuttal authority knows the output

messages, some of which may bemodified. The rebuttal authority also receives the secrets

from the rebuttal, where the secrets do not match any of the output messages.

Before we prove the security of CRAB, we introduce the assumption we need for the

proof:

Assumption 5.1. Let g3 = gt32 for some t3 ∈ Zq and s2, s3
r←− Zq. There is no probabilistic

polynomial time (PPT) adversary that can distinguish between (g2, g
s2
2 , g3 = gt32 , g

s2
3 =

gs2·t32) and (g2, g
s2
2 , g3, g

s3
2) with non-negligible probability.

This assumption is similar to the decisional Diffie-Hellman assumption, while we fix

t3 ∈ Zq that is unknown to the adversary instead of randomly choosing t3
r←− Zq. So this

assumption is reasonable if the generation of g3 is uniformly random.

25

doi:10.6342/NTU202301028

5.1 Correctness

If the clients and servers behave properly, the system should accept and output a

shuffle of all messages. The correctness of CRAB is achieved when the validation check

and the processing are correct. For the validation check, it is easy to see that if a client

generates the backdoor and the proof correctly, then the servers should accept his mes-

sage. The correctness of processing is guaranteed by the underlying multiparty shuffling

protocol, such as Clarion [23] in our case.

5.2 Anonymity

Anonymity requires that the source of each message cannot be learned by others. In

CRAB, we want to prevent the adversary and the rebuttal authority from linking a mes-

sage to an identifier. We assume that the adversary does not learn the messages during

processing, and the order of the output messages is independent of the order of the iden-

tifiers. Then we can show that both the adversary and the rebuttal authority cannot guess

the message of each identifier with non-negligible advantage over random guessing. First,

we prove that under Assumption 5.1, no one can decide if an identifier matches a message

without knowing the underlying secrets:

Theorem 5.2. Let id = gs11 gs22 where s1, s2
r←− Zq. For any m ∈ G, let M = ms1gs23 and

M ′ r←− G, there is no PPT adversary that can distinguish (id, (m,M)) and (id, (m,M ′))

with non-negligible probability.

Proof. Suppose that such adversary exists, i.e., there is a PPT adversary �/p and non-

negligible function ε(·) s.t. | Pr[�/p(id, (m,M)) = 1] − Pr[�/p(id, (m,M ′)) = 1]| ≥

26

doi:10.6342/NTU202301028

ε(λ). Then there is another adversary �/p′ that can break Assumption 5.1 as follows:

1. The challenger chooses b r←− {0, 1} and sends

(h1, h2, h3, h4) =






(g2, g
s2
2 , g3, g

s2
3) b = 0

(g2, g
s2
2 , g3, g

s3
2) b = 1

to �/p′.

2. �/p′ chooses s1 r←− Zq,m ∈ G, and sets id = gs11 h2,M = ms1h4. Then �/p′ sends

id, (m,M) to �/p.

3. �/p outputs b′ ∈ {0, 1}.

4. �/p′ outputs b′.

It is trivial that Pr[b′ = 1|b = 0] = Pr[b′ = 1|h4 = gs23] = Pr[�/p(id, (m,M)) = 1|M =

ms1gs23]. Also we know that for random s3
r←− Zq, gs32 is uniformly distributed over G,

and so is M = ms1gs32 . So Pr[b′ = 1|b = 1] = Pr[b′ = 1|h4
r←− G] = Pr[�/p(id, (m,

M)) = 1|M r←− G]. Overall, we have

Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]

= Pr[�/p(id, (m,M)) = 1|M = ms1gs23]− Pr[�/p(id, (m,M)) = 1|M r←− G]

≥ε(λ)

, which is non-negligible. So we construct a PPT adversary�/p′ that distinguishes b = 0, 1

with non-negligible probability, which contradicts Assumption 5.1. So such adversary�/p

does not exist.

Next, we consider the ability of the adversary. By Theorem 5.2, we show that the

27

doi:10.6342/NTU202301028

adversary cannot find the source of a message (m,M) with only id. Also, according

to the security of Okamoto’s identifier scheme [40], (id, a, ch′, z1, z2) does not leak the

information about s1, s2. Now the only thing that the adversary can make use of is the

fact thatmz1gz23 = M ch′
b, where the distribution of b overG is uniform in the adversary’s

perspective. However, given any (id, ch′, z1, z2) and (m,M), there always exists b =

mz1gz23 M−ch′ , so the adversary still cannot decide if id matches (m,M). In summary,

the adversary cannot learn if an identifier matches a message, so the adversary can only

randomly guess the message of each identifier from the set of the original messages.

Finally, we consider the ability of rebuttal authority. For the identifiers that the re-

buttal authority knows the secrets of, the rebuttal authority does not know the original

messages of these identifiers. Thus, it cannot find the messages of these identifiers with

non-negligible probability. For the other identifiers, the rebuttal authority does not know

their secrets, and by Theorem 5.2 it cannot decide if an identifier matches a message. Also,

it cannot distinguish whether a message has been modified or not. So the rebuttal author-

ity can only guess the messages of these identifiers randomly from the set of the output

messages. Overall, we can also conclude that the rebuttal authority does not have a better

strategy than random guessing.

5.3 Client-rebuttability

In CRAB, a client should be able to rebut if and only if the servers modify his mes-

sage. Wewill show that both directions cannot be violated with non-negligible probability.

28

doi:10.6342/NTU202301028

5.3.1 ”If” direction

A client can successfully rebut if none of the output messages match his secrets.

There are two ways in which the client cannot successfully rebut:

1. The adversary modifies the client’s message, but the message still matches the

client’s secrets.

2. The other messages inadvertently match the client’s secret.

In the first case, the adversary knows id = gs11 gs22 and a message (m,M = ms1gs23)

without knowing s1, s2. Now we show that the adversary cannot generate (m′,M ′) %=

(m,M) such thatM ′ = m′s1gs23 with non-negligible probability under Assumption 5.1.

Theorem 5.3. Let id = gs11 gs22 ,M = ms1gs23 where s1, s2
r←− Zq and m ∈ G. There

is no PPT adversary that can generate (m′,M ′) %= (m,M) where M ′ = m′s1gs23 with

non-negligible probability.

Proof. Suppose that such adversary exists, i.e., there is a PPT adversary �/p and non-

negligible function ε(·) s.t. Pr[(m′,M ′)← �/p(id, (m,M)),M ′ = m′s1gs23 ∧ (m′,M ′) %=

(m,M)] ≥ ε(λ). Then there is another adversary �/p′ that can break Assumption 5.1 as

follows:

1. The challenger chooses b r←− {0, 1} and sends

(h1, h2, h3, h4) =






(g2, g
s2
2 , g3, g

s2
3) b = 0

(g2, g
s2
2 , g3, g

s3
2) b = 1

to �/p′.

29

doi:10.6342/NTU202301028

2. �/p′ chooses s1 r←− Zq,m ∈ G, and sets id = gs11 h2,M = ms1h4. Then �/p′ sends

id, (m,M) to �/p.

3. �/p outputsm′,M ′.

4. �/p′ checks if (m′m−1)s1 = M ′M−1 ∧ (m′,M ′) %= (m,M). If true, �/p′ outputs

b′ = 1. Otherwise, �/p′ chooses b′ r←− {0, 1} and output b′.

First we consider the case that b = 0, i.e., M = ms1gs23 . It is trivial that (m′m−1)s1 =

M ′M−1 if and only ifM ′ = m′s1gs23 . So the probability that �/p′ outputs 1 is

Pr[b′ = 1|b = 0]

= Pr[b′ = 1|true, b = 0] · Pr[true|b = 0] + Pr[b′ = 1|false, b = 0] · Pr[false|b = 0]

= 1 · Pr[M ′ = m′s1gs23 ∧ (m′,M ′) %= (m,M)|b = 0]

+
1

2
· (1− Pr[M ′ = m′s1gs23 ∧ (m′,M ′) %= (m,M)|b = 0])

=
1

2
+

1

2
Pr[M ′ = m′s1gs23 ∧ (m′,M ′) %= (m,M)|b = 0]

≥ 1

2
+

ε(λ)

2

Then we consider the case that b = 1, i.e.,M = ms1gs32 . The probability that �/p′ outputs

1 is

Pr[b′ = 1|b = 1]

= Pr[b′ = 1|true, b = 1] · Pr[true|b = 1] + Pr[b′ = 1|false, b = 1] · Pr[false|b = 1]

≤ Pr[true|b = 1] + Pr[b′ = 1|false, b = 1]

= Pr[true|b = 1] +
1

2

Nowwe analyze Pr[true|b = 1], i.e., Pr[(m′m−1)s1 = M ′M−1∧(m′,M ′) %= (m,M)|id =

30

doi:10.6342/NTU202301028

gs11 gs22 ,M = ms1gs32]. Let m = gt2 for some t ∈ Zq. In the view of �/p, there are q

possible solutions (si1 = s1 + i, si2 = s2 − t1 · i, si3 = s3 − t · i), ∀i ∈ Zq such that

id = g
si1
1 g

si2
2 ∧M = msi1g

si3
2 . So s1 is uniformly distributed over Zq, which means that �/p

does not learn anything about s1.

It is trivial that when m′ = m,M ′ %= M , Pr[(m′m−1)s1 = M ′M−1] = 0. When

m′ %= m, we have m′m−1 ∈ G and m′m−1 %= 1, i.e., m′m−1 has order q. So in the view

of �/p where s1 is uniformly distributed over Zq, (m′m−1)s1 is uniformly distributed over

G, and Pr[(m′m−1)s1 = M ′M−1] = 1
q . Overall, we have

Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1] ≥ 1

2
+

ε(λ)

2
− (

1

q
+

1

2
) =

ε(λ)

2
− 1

q

, which is non-negligible. So we construct a PPT adversary �/p′ that distinguish b = 0, 1

with non-negligible probability, which contradicts Assumption 5.1. So such adversary

�/p does not exist.

In fact, the adversary also knows a, ch′, z1, z2. However, according to the security

of Okamoto’s identifier scheme, (a, ch′, z1, z2) do not provide any additional information

about s1, s2 and cannot help the adversary to output (m′,M ′). In summary, the first case

occurs with negligible probability.

In the second case, each message matches the secrets with probability 1
q , so the prob-

ability that at least one of them matches the secrets is

1− (1− 1

q
)n−1 < 1− (1− n− 1

q
) =

n− 1

q

, which is negligible. In conclusion, both cases occur with negligible probability, so the

probability that the client cannot successfully rebut is also negligible.

31

doi:10.6342/NTU202301028

5.3.2 ”Only if” direction

If the servers do not modify a client’s message (m,M), then the client should not

be able to provide s1, s2 such that id = gs11 gs22 ∧M %= ms1gs23 . More specifically, such

(id, (m,M)) cannot pass the validation check with non-negligible probability. First we

review Okamoto’s protocol and protocol version 1:

• Okamoto’s protocol

1. The client randomly chooses r1, r2
r←− Zq and sends a = gr11 gr22 to the servers.

2. The servers choose ch r←− Zq and sends it to the client.

3. The client computes z1 = ch · s1 + r1, z2 = ch · s2 + r2 and sends them to the

servers.

4. The servers check that gz11 gz22 = idcha.

• Protocol version 1

1. The client randomly chooses r1, r2
r←− Zq and sends a = gr11 gr22 , b = mr1gr23

to the servers.

2. The servers choose ch r←− Zq and sends it to the client.

3. The client computes z1 = ch · s1 + r1, z2 = ch · s2 + r2 and sends them to the

servers.

4. The servers checks that gz11 gz22 = idcha ∧mz1gz23 = M chb.

Okamoto defined that a ”good” client (prover) is a client that follows Okamoto’s

protocol. Let T be the condition of a ”good” client: id = gs11 gs22 ∧ a = gr11 gr22 ∧ z1 =

32

doi:10.6342/NTU202301028

ch · s1 + r1 ∧ z2 = ch · s2 + r2. Okamoto proved that if a client is not ”good”, he cannot

pass the check is with non-negligible probability, i.e., Pr[gz11 gz22 = idcha|¬T] is negligible.

Nowwe prove that in protocol version 1, a client cannot pass the checkwith non-negligible

probability ifM %= ms1gs23 .

Theorem 5.4. Suppose that the servers behave properly and the challenge ch is uniformly

chosen from Zq. There is no PPT adversary that can generate M %= ms1gs23 and pass the

check with non-negligible probability.

Proof. Suppose that such adversary exists, i.e., there is a PPT adversary �/p and non-

negligible function ε(·) s.t. Pr[gz11 gz22 = idcha ∧ mz1gz23 = M chb|M %= ms1gs23] ≥ ε(λ).

Then there is another adversary �/p′ that is not ”good” but pass the check in Okamoto’s

protocol as follows:

1. �/p′ receives id,m,M, a, b from �/p and sends id, a to the challenger.

2. The challenger chooses ch r←− Zq and sends to �/p′.

3. �/p′ sends ch to �/p.

4. �/p′ receives z1, z2 from �/p and sends z1, z2 to the challenger.

Now we analyze the success probability for �/p. We have

ε(λ) ≤ Pr[gz11 gz22 = idcha ∧mz1gz23 = M chb|M %= ms1gs23]

= Pr[gz11 gz22 = idcha ∧mz1gz23 = M chb|M %= ms1gs23 ∧ T] · Pr[M %= ms1gs23 ∧ T]

+ Pr[gz11 gz22 = idcha ∧mz1gz23 = M chb|M %= ms1gs23 ∧ ¬T] · Pr[M %= ms1gs23 ∧ ¬T]

≤ Pr[mz1gz23 = M chb|M %= ms1gs23 ∧ T] + Pr[gz11 gz22 = idcha|M %= ms1gs23 ∧ ¬T]

= Pr[mz1gz23 = M chb|M %= ms1gs23 ∧ T] + Pr[gz11 gz22 = idcha|¬T]

33

doi:10.6342/NTU202301028

First we consider Pr[mz1gz23 = M chb|M %= ms1gs23 ∧ T].

Pr[mz1gz23 = M chb|M %= ms1gs23 ∧ T]

= Pr[mch·s1+r1gch·s2+r2
3 = M chb|M %= ms1gs23]

= Pr[(ms1gs23 M−1)ch = m−r1g−r2
3 b|M %= ms1gs23]

Since ms1gs23 M−1 ∈ G and ms1gs23 M−1 %= 1, ms1gs23 M−1 has order q. Since b, r1, r2 are

chosen before ch, we have Pr[(ms1gs23 M−1)ch = m−r1g−r2
3 b] = 1

q . Then we can get

Pr[gz11 gz22 = idcha|¬T] ≥ ε(λ)− 1

q

is non-negligible, which contradicts Okamoto’s result. So such adversary �/p does not

exist.

The actual validation check is protocol version 4, which includes distributed Fiat-

Shamir and secure multiparty computation to protocol version 1. However, a malicious

client should not be able to gain non-negligible advantage from these transformations.

Thus, the probability that the client can rebut is negligible.

34

doi:10.6342/NTU202301028

Chapter 6 Application: Electronic

Voting

An application of CRAB is to build up a robust and efficient electronic voting system.

In electronic voting, or e-voting, the voters submit their ballots to the servers, and the

servers count the anonymous ballots after the voting period is over. To prevent malicious

servers, the ballots must be protected, e.g., encrypted or secret-shared (or a mixture of

both), and recovered (decrypted or reconstructed) later.

Many e-voting systems aggregate the protected ballots and recover the tally later

[7, 18, 20, 27, 30, 35, 43]. This is usually achieved with homomophism, where the voters

send the ballots as numbers, and the servers count the ballots in the protected manner with

homomorphic operations. The servers then recover only the tally but not each individual

ballot, so the privacy of each vote is preserved. The main problem with these systems

is that the servers must check that the ballots are valid numbers. If a malformed ballot is

accepted (accidentally or intentionally), the election result would be significantly affected.

Many other systems output a mix of the recovered ballots and tally them later. Any-

one can verify the tally by counting the ballots on his own. This scenario is analogous

to anonymous broadcast. Many e-voting systems [2, 14, 26, 29, 36, 44] also use mixnet,

and they have the same problem that it is expensive to generate a zero-knowledge proof

35

doi:10.6342/NTU202301028

of shuffle. Therefore, we can use CRAB to build up an e-voting system with better per-

formance.

6.1 The E-voting System

E-voting systems require eligibility and fairness: only eligible voters can vote, and

each voter can vote only once. We assume that there is a registrar that can check the

eligibility of each person. Before the voting period, the voters generate their secrets and

identifiers, and send their identifiers to the registrar. The registrar would publish the iden-

tifiers of the eligible voters on a bulletin board.

During the voting period, each voter uses his vote and his secrets to generate the

backdoor. His ballot (message) is the pair of the vote and the backdoor. Then he sends

the identifier, the ballot and a zero-knowledge proof to the servers as described in Chapter

4.3.2. The servers them perform the validation check. Before they check the proof, they

check if the identifier is on the bulletin board and if the identifier has not already been

accepted. If all checks pass, the servers accept the vote and mark that the identifier is

accepted.

After the voting period, the servers process the ballots using multiparty shuffle and

publish a list of the shuffled ballots. Then the servers can count the ballots and publish

the result. Voters can verify that their votes are included and that the result matches the

published ballots.

36

doi:10.6342/NTU202301028

6.2 Security Analysis

It is clear that the e-voting system based on CRAB also achieve correctness and

anonymity. Eligibility and fairness are also satisfied since that each identifier must be

eligible and would be accept only once.

In addition to the above security requirements, verifiability is also an important secu-

rity requirement. Verifiability allows the voters to verify that their votes have been counted

correctly. It can be divided into individual and universal verifiability:

• Individual verifiability: Each voter can verify that his vote is included in the tally.

• Universal verifiability: Anyone can verify that all the votes are counted correctly

and not modified.

CRAB is client-rebuttable, which allows a voter to verify that his vote is included

or otherwise disprove it. Thus, CRAB also achieves individual verifiability. However,

CRAB does not provide the integrity guarantee of others’ messages, so the universal ver-

ifiability is not achieved. We leave the construction of a universally verifiable e-voting

system without mixnet for future work.

37

doi:10.6342/NTU20230102838

doi:10.6342/NTU202301028

Chapter 7 Implementation and

Evaluation

We implement the CRAB system using Clarion as the multiparty shuffling protocol.

Clarion is open source on [42], and our implementation is based on it. We also use goff

[9] for fast field operation, and we choose p = 21017 + 422487 for 127-bit messages

(we will explain the choice of p in Chapter 7.1). We implement the parts with group

operations, including the validation check and rebuttal check. However, we do not make

much modification on the process part. We evaluate the performance of CRAB on the

CSIE workstation. We do not compare our work with Clarion because the processing is

quite similar.

7.1 Implementation on Group Elements

In Chapter 5, we prove the security of the CRAB system under Assumption 5.1.

To make our assumptions consistent with the decisional Diffie-Hellman assumption, the

public generators g1, g2, g3 ∈ G should be randomly chosen from G. A naive way to

generate the random group elements is that we choose a generator g and random exponents

r1, r2, r3
r←− Z∗

q , and output gi = gri , i = 1, 2, 3. However, the party who knows r1, r2, r3

39

doi:10.6342/NTU202301028

also knows the discrete logarithm relation between them, which violates our requirement

in Chapter 3.1.

We propose a secure way to generate the group generator. First, we choose random

elements in {2, . . . , p−2}. For any g ∈ Z∗
p, the following three statements are equivalent:

1. gq = 1

2. g ∈ G

3. p− g /∈ G

We can randomly choose g′1, g′2, g′3 ∈ {2, . . . , p− 2} and determine if they belong to

the group G by checking (g′i)
q ≡ 1 (mod p). If g′i ∈ G, we have gi = g′i. Otherwise, we

have gi = p− g′i.

We also require that the message m and the backdoor M belong to G. However, it

is unrealistic to restrict the client to send only the message that belongs to G. Here is our

workaround:

• We accept messages up to λ− 2 bits. Recall that p is a λ-bit prime number, which

means that p > 2λ−1.

• To broadcast a message, first we map the message to a number m(< 2λ−2). If

mq %= 1, the client setsm← p−m(> 2λ−2) and sends the message shares and the

proof according tom.

• During the validation, the servers should also check ifmq = 1 ∧M q = 1.

• Finally, we convert each output (mi,Mi) back into a message. Ifmi < 2!, we map

the numbermi to a message. Otherwise, we map the number (p−mi).

40

doi:10.6342/NTU202301028

7.2 Complexity analysis

The communication cost between a client and a server is O(1). For each server, the

validation check of a message requires O(k) multiparty computation, and the processing

cost is O(kn) for computation and communication. The total cost for a server is O(kn).

Finally, it takes the rebuttal authority O(n) to verify a rebuttal.

7.3 Experiment Result

7.3.1 Client performance

The computation time for a client is about 50ms. This includes the time to gener-

ate the id, the backdoor, and the proof. In environments with lower computation power,

such as mobile devices and browsers, the computation time may be longer. However, we

believe it is within acceptable limits.

The total number of bytes that a client sends to a server is about 7 times than the

length of the message. In our case, a client sends 864 bytes to each server to broadcast a

127-byte message.

7.3.2 Validation check

In CRAB and most DPF-based systems, the servers have to check the validity of each

request. It is called ”format-verification” in Blinder [1] and ”audit” in Spectrum [38] and

Sabre [46]. The validation check on the servers should be fairly fast. Otherwise, the clients

may have to wait a long time to know if their messages are accepted. Moreover, if it takes

41

doi:10.6342/NTU202301028

Figure 7.1: The time of validation for 2∼5 servers.

a lot of effort for the servers to validate each request, the adversary can launch a denial-

of-service attack by continuing to send requests to the servers. Most of the DPF-based

systems suffer from a long validation time that grows with the number of messages.

Figure 7.1 shows the validation check time for different numbers of servers. The

validation check time increases slowly with the number of servers, and the time is less

than 100 ms for 5 servers. Compared to DPF-based systems, Blinder [1] takes a few

seconds while Spectrum [38] and Sabre [46] take a few hundred milliseconds for a total

of 105 messages. Also, the time grows with the total number of messages in DPF-based

systems, while the time is not affected in CRAB. Thus, CRAB has better scalability in the

validation aspect.

7.3.3 Process

We compare the processing time of CRAB with the zero-knowledge proof of shuffle.

The zero-knowledge proof of shuffle is required in most mixnet-based systems. The state-

42

doi:10.6342/NTU202301028

Figure 7.2: The time of processing for 102 ∼ 105 messages with single thread.

of-the-art zero-knowledge proof is proposed by Bayer and Groth [5], which has relatively

lower proof time among the proofs with sublinear proof size. Some recent mixnet-based

anonymous broadcast systems such as Stadium [45] and Atom [31] use this proof. The

proof we compare to is Curdleproofs [4], which is inspired by Bayer and Groth’s proof.

Curdleproofs is recently proposed and implemented by the Ethereum research team, so

it should be a reasonable comparison. The evaluated time of Curdleproofs includes the

shuffle and the proof.

Figure 7.2 shows the performance of CRAB for different numbers of servers and Cur-

dleproofs. For CRABwith 2 servers, the processing is 23 ∼ 33× faster than Curdleproofs.

For CRAB with 5 servers, the processing is still 6.6 ∼ 9.6× faster than Curdleproofs.

We also show that the computation time of CRAB can be significantly reduced by

parallel computing. We evaluate the performance of CRABwith 16 threads. In Figure 7.3,

we can see that the estimated time for 5 servers and about 105 messages can be reduced to

1/4. The time for 106 messages is only several tens of seconds.

43

doi:10.6342/NTU202301028

Figure 7.3: The time of processing for 102 ∼ 106 messages with 16 threads.

7.3.4 Rebuttal check

To check a rebuttal, the rebuttal authority has two steps. The first step is to check

that the given identity is on the bulletin board and matches the given secrets. The second

step is to iterate through all the messages and check that the given secrets do not match the

messages. The first step is fast while the second step is a bit time-consuming. Fortunately,

the rebuttal authority usually only need to run the second step once to disapprove the

anonymous broadcast. Moreover, the second step can easily be parallelized.

Figure 7.4 shows the time of the second step of the rebuttal check with 16 threads.

The rebuttal check time for 106 messages is about 440 seconds. Considering an election

for a million people, it often takes several hours and a lot of money to verify the result. So

the rebuttal check of CRAB is relatively practical.

44

doi:10.6342/NTU202301028

Figure 7.4: The time of rebuttal check for 102 ∼ 106 messages with 16 threads.

45

doi:10.6342/NTU20230102846

doi:10.6342/NTU202301028

Chapter 8 Related Work

Many anonymous broadcast systems are based onmixnet and require a zero-knowledge

proof of the shuffle. Many proofs have been proposed to for the correctness of a shuffle

[5, 24, 28, 37]. Early works such as Furukawa and Sako [24] and Neff [37] proposed the

proof with O(n) proof time and space, where n is the number of the messages. However,

the proof is too large to be useful. Bayer and Groth [5] improve the proof size to O(
√
n),

so that the proof is much smaller than the data itself. Several works [4, 26, 31, 36, 45] use

Bayer and Groth’s proof in their systems. Bulletproofs [10] and Hoffman et al. [28] even

improve the proof size to O(logn). However, the time required to generate the proof is

still high, resulting in a high latency to output the result.

To reduce the latency, some mixnet-based anonymous broadcast systems [31, 32, 34,

45] perform parallel mix, where each server shuffles a portion of the messages in parallel.

However, it requires several layers of parallel mix to achieve near-random permutation.

Atom [31] suggests O(log2 k) layers for their butterfly network [17]. Stadium [45] and

Karaoke [34] use fewer layers of parallel mix, but they need to add noise messages and

they only achieve a weaker version of anonymity. XRD [32] reduces the number of layers

at the expense of client communication cost. Trellis [33] is a recent research that avoids

the proof of shuffle by using a new technique called boomerang encryption. All of the

above works do not need to trust any servers to ensure the correctness, but they require at

47

doi:10.6342/NTU202301028

least one honest server for anonymity.

Many other anonymous broadcast systems are based on DC-net and enhanced with

DPF [1, 16, 38, 46]. In DC-net, for a client to broadcast, all the clients has to output

a request. For every client to broadcast a message, each client has to output request of

length O(n), so the validation check for each request takes at least O(n). Riposte [16]

reduces the request length to O(
√
n) by using DPF [25], but it requires more trust in the

servers to achieveO(
√
n) validation check time. Blinder [1] is a more robust system with

O(
√
n) request size and check time. Spectrum [38] uses aMAC on the request to solve the

collision problem and only requires that there is at least one honest server. Sabre [46] uses

the more complicated DPF to reduce the request size to O(logn), and constructs a secret-

shared audit protocol to make the validation time also O(logn). Overall, the request size

and validation time grow with n, thus the scalability is bad. Also, the clients need to trust

some honest servers to ensure the integrity of the messages.

Finally, Clarion [23] uses a special MPC protocol to perform the shuffle. As stated in

Clarion’s paper, Clarion sits between mixnet approaches and DC-net approaches. Mixnet

approaches do not require any additional information or validation check for a request,

but they impose high cost on the generation of the zero-knowledge proof. DC-net and re-

lated approaches, on the other hand, require additional information and validation check

for each request, but the output can be generated at low cost. Clarion strikes a balance be-

tween the two. It requires less information and more efficient validation check compared

to DC-net, and runs a lighter shuffling protocol compared to mixnet. However, Clarion

requires at least one honest server to ensure the correctness. Our work, CRAB, reduces

this requirement with little additional information and validation check. Table 8.1 presents

a comparison of the recent anonymous broadcast systems.

48

doi:10.6342/NTU202301028

Table 8.1: Comparison of related work of anonymous broadcast

Verifiability Scalability Latency Shuffle mechanism(no trust on
servers)

Request
size

Validation
check

Atom [31] ! O(1) N/A high Mixnet
Stadium [45] ! O(1) N/A high Mixnet
Karaoke [34] ! O(1) N/A high Mixnet
XRD [32] ! O(

√
k) N/A high Mixnet

Trellis [33] ! O(logn) N/A low Mixnet
Riposte [16] " O(k

√
n) O(

√
n) low DPF

Blinder [1] " O(k
√
n) O(

√
n) low DPF

Spectrum [38] " O(k
√
n) O(

√
n) low DPF

Sabre [46] " O(k logn) O(logn) low DPF
Clarion [23] " O(k) O(1) low Multiparty shuffle

CRAB ! O(k) O(1) low Multiparty shuffle

49

doi:10.6342/NTU20230102850

doi:10.6342/NTU202301028

Chapter 9 Conclusion

This thesis presents CRAB, an anonymous broadcast system that achieves provable

anonymity and client-rebuttability. We use Clarion as the underlying multiparty shuffle

protocol, and we improve verifiability for clients and reduce trust on servers. We also

show that CRAB has low latency and good scalability, and it is suitable for large-scale

electronic voting. The limitation of CRAB is that it requires heavy preprocess for multi-

party computation, so it may not be suitable for the applications that are frequently used.

51

doi:10.6342/NTU20230102852

doi:10.6342/NTU202301028

References

[1] I. Abraham, B. Pinkas, and A. Yanai. Blinder–scalable, robust anonymous commit-

ted broadcast. In Proceedings of the 2020 ACM SIGSAC Conference on Computer

and Communications Security, pages 1233–1252, 2020.

[2] B. Adida. Helios: Web-based open-audit voting. In USENIX security symposium,

volume 17, pages 335–348, 2008.

[3] A. Aly, A. Abidin, and S. Nikova. Practically efficient secure distributed exponentia-

tion without bit-decomposition. In Financial Cryptography and Data Security: 22nd

International Conference, FC 2018, Nieuwpoort, Curaçao, February 26–March 2,

2018, Revised Selected Papers 22, pages 291–309. Springer, 2018.

[4] asn d6. Curdleproofs, 2022.

[5] S. Bayer and J. Groth. Efficient zero-knowledge argument for correctness of a

shuffle. In Annual International Conference on the Theory and Applications of

Cryptographic Techniques, pages 263–280. Springer, 2012.

[6] D. Beaver. Efficient multiparty protocols using circuit randomization. In Advances

in Cryptology—CRYPTO＇91: Proceedings 11, pages 420–432. Springer, 1992.

[7] J. Benaloh and D. Tuinstra. Receipt-free secret-ballot elections. In Proceedings of

53

doi:10.6342/NTU202301028

the twenty-sixth annual ACM symposium on Theory of computing, pages 544–553,

1994.

[8] D. Boneh, E. Boyle, H. Corrigan-Gibbs, N. Gilboa, and Y. Ishai. Zero-

knowledge proofs on secret-shared data via fully linear pcps. In Advances in

Cryptology–CRYPTO 2019: 39th Annual International Cryptology Conference,

Santa Barbara, CA, USA, August 18–22, 2019, Proceedings, Part III, pages 67–97.

Springer, 2019.

[9] G. Botrel, T. Piellard, Y. E. Housni, A. Tabaie, G. Gutoski, and I. Kubjas. Consensys/

gnark-crypto: v0.9.0, Jan. 2023.

[10] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs:

Short proofs for confidential transactions and more. In 2018 IEEE symposium on

security and privacy (SP), pages 315–334. IEEE, 2018.

[11] M. Chase, E. Ghosh, and O. Poburinnaya. Secret-shared shuffle. In Advances

in Cryptology–ASIACRYPT 2020: 26th International Conference on the Theory

and Application of Cryptology and Information Security, Daejeon, South Korea,

December 7–11, 2020, Proceedings, Part III 26, pages 342–372. Springer, 2020.

[12] D. Chaum. The dining cryptographers problem. J. cryptology, 1:65–75, 1988.

[13] D. L. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.

Communications of the ACM, 24(2):84–90, 1981.

[14] M. R. Clarkson, S. Chong, and A. C.Myers. Civitas: Toward a secure voting system.

In 2008 IEEE Symposium on Security and Privacy (sp 2008), pages 354–368. IEEE,

2008.

54

doi:10.6342/NTU202301028

[15] H. Corrigan-Gibbs and D. Boneh. Prio: Private, robust, and scalable computation of

aggregate statistics. In NSDI, pages 259–282, 2017.

[16] H. Corrigan-Gibbs, D. Boneh, and D. Mazières. Riposte: An anonymous messag-

ing system handling millions of users. In 2015 IEEE Symposium on Security and

Privacy, pages 321–338. IEEE, 2015.

[17] A. Czumaj and B. Vöcking. Thorp shuffling, butterflies, and non-markovian cou-

plings. In Automata, Languages, and Programming: 41st International Colloquium,

ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I 41, pages

344–355. Springer, 2014.

[18] G. G. Dagher, P. B. Marella, M. Milojkovic, and J. Mohler. Broncovote: Secure

voting system using ethereum＇s blockchain. 2018.

[19] I. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft. Unconditionally secure

constant-rounds multi-party computation for equality, comparison, bits and expo-

nentiation. In Theory of Cryptography: Third Theory of Cryptography Conference,

TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pages 285–304.

Springer, 2006.

[20] I. Damgård and M. Jurik. A generalisation, a simplification and some applica-

tions of paillier’s probabilistic public-key system. In Public Key Cryptography: 4th

International Workshop on Practice and Theory in Public Key Cryptosystems, PKC

2001 Cheju Island, Korea, February 13–15, 2001 Proceedings 4, pages 119–136.

Springer, 2001.

[21] I. Damgård and J. B. Nielsen. Scalable and unconditionally secure multiparty com-

putation. In Advances in Cryptology-CRYPTO 2007: 27th Annual International

55

doi:10.6342/NTU202301028

Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2007. Proceedings

27, pages 572–590. Springer, 2007.

[22] I. Damgård, V. Pastro, N. Smart, and S. Zakarias. Multiparty computation from

somewhat homomorphic encryption. In Advances in Cryptology–CRYPTO 2012:

32ndAnnual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012.

Proceedings, pages 643–662. Springer, 2012.

[23] S. Eskandarian and D. Boneh. Clarion: Anonymous communication frommultiparty

shuffling protocols. Cryptology ePrint Archive, 2021.

[24] J. Furukawa and K. Sako. An efficient scheme for proving a shuffle. In Advances

in Cryptology—CRYPTO 2001: 21st Annual International Cryptology Conference,

Santa Barbara, California, USA, August 19–23, 2001 Proceedings 21, pages 368–

387. Springer, 2001.

[25] N. Gilboa and Y. Ishai. Distributed point functions and their applications.

In Advances in Cryptology–EUROCRYPT 2014: 33rd Annual International

Conference on the Theory and Applications of Cryptographic Techniques,

Copenhagen, Denmark, May 11-15, 2014. Proceedings 33, pages 640–658. Springer,

2014.

[26] P. Grontas, A. Pagourtzis, A. Zacharakis, and B. Zhang. Towards everlasting pri-

vacy and efficient coercion resistance in remote electronic voting. In Financial

Cryptography and Data Security: FC 2018 International Workshops, BITCOIN,

VOTING, and WTSC, Nieuwpoort, Curaçao, March 2, 2018, Revised Selected

Papers 22, pages 210–231. Springer, 2019.

[27] M.Hirt andK. Sako. Efficient receipt-free voting based on homomorphic encryption.

56

doi:10.6342/NTU202301028

In Advances in Cryptology—EUROCRYPT 2000: International Conference on the

Theory and Application of Cryptographic Techniques Bruges, Belgium, May 14–18,

2000 Proceedings, pages 539–556. Springer, 2000.

[28] M. Hoffmann, M. Klooß, and A. Rupp. Efficient zero-knowledge arguments in the

discrete log setting, revisited. In Proceedings of the 2019 ACMSIGSACConference

on Computer and Communications Security, pages 2093–2110, 2019.

[29] A. Juels, D. Catalano, and M. Jakobsson. Coercion-resistant electronic elections. In

Proceedings of the 2005 ACMWorkshop on Privacy in the Electronic Society, pages

61–70, 2005.

[30] R. Küsters, J. Liedtke, J. Müller, D. Rausch, and A. Vogt. Ordinos: a verifiable

tally-hiding e-voting system. In 2020 IEEE European Symposium on Security and

Privacy (EuroS&P), pages 216–235. IEEE, 2020.

[31] A. Kwon, H. Corrigan-Gibbs, S. Devadas, and B. Ford. Atom: Horizontally scaling

strong anonymity. In Proceedings of the 26th Symposium on Operating Systems

Principles, pages 406–422, 2017.

[32] A. Kwon, D. Lu, and S. Devadas. Xrd: Scalable messaging system with crypto-

graphic privacy. arXiv preprint arXiv:1901.04368, 2019.

[33] S. Langowski, S. Servan-Schreiber, and S. Devadas. Trellis: Robust and scalable

metadata-private anonymous broadcast. Cryptology ePrint Archive, 2022.

[34] D. Lazar, Y. Gilad, and N. Zeldovich. Karaoke: Distributed private messaging

immune to passive traffic analysis. In 13th {USENIX} Symposium on Operating

Systems Design and Implementation ({OSDI} 18), pages 711–725, 2018.

57

doi:10.6342/NTU202301028

[35] Y. Liu and Q. Zhao. E-voting scheme using secret sharing and k-anonymity. World

Wide Web, 22:1657–1667, 2019.

[36] W. Lueks, I. Querejeta-Azurmendi, and C. Troncoso. Voteagain: A scalable

coercion-resistant voting system. arXiv preprint arXiv:2005.11189, 2020.

[37] C. A. Neff. A verifiable secret shuffle and its application to e-voting. In Proceedings

of the 8th ACM conference on Computer and Communications Security, pages 116–

125, 2001.

[38] Z. Newman, S. Servan-Schreiber, and S. Devadas. Spectrum: High-bandwidth

anonymous broadcast. In 19th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 22), pages 229–248, 2022.

[39] C. Ning and Q. Xu. Constant-rounds, linear multi-party computation for ex-

ponentiation and modulo reduction with perfect security. In Advances in

Cryptology–ASIACRYPT 2011: 17th International Conference on the Theory and

Application of Cryptology and Information Security, Seoul, South Korea, December

4-8, 2011. Proceedings 17, pages 572–589. Springer, 2011.

[40] T. Okamoto. Provably secure and practical identification schemes and corresponding

signature schemes. In Crypto, volume 92, pages 31–53. Springer, 1992.

[41] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret

sharing. In Advances in Cryptology—CRYPTO＇91: Proceedings, pages 129–140.

Springer, 2001.

[42] SabaEskandarian. Clarion, 2021.

[43] B. Schoenmakers. A simple publicly verifiable secret sharing scheme and its

58

doi:10.6342/NTU202301028

application to electronic voting. In Advances in Cryptology—CRYPTO＇99:

19th Annual International Cryptology Conference Santa Barbara, California, USA,

August 15–19, 1999 Proceedings, pages 148–164. Springer, 1999.

[44] O. Spycher, R. Koenig, R. Haenni, and M. Schläpfer. A new approach towards

coercion-resistant remote e-voting in linear time. In Financial Cryptography and

Data Security: 15th International Conference, FC 2011, Gros Islet, St. Lucia,

February 28-March 4, 2011, Revised Selected Papers 15, pages 182–189. Springer,

2012.

[45] N. Tyagi, Y. Gilad, D. Leung, M. Zaharia, and N. Zeldovich. Stadium: A dis-

tributed metadata-private messaging system. In Proceedings of the 26th Symposium

on Operating Systems Principles, pages 423–440, 2017.

[46] A. Vadapalli, K. Storrier, and R. Henry. Sabre: Sender-anonymous messaging with

fast audits. In 2022 IEEE Symposium on Security and Privacy (SP), pages 1953–

1970. IEEE, 2022.

[47] M. N. Wegman and J. L. Carter. New hash functions and their use in authentication

and set equality. Journal of computer and system sciences, 22(3):265–279, 1981.

[48] K. Yang and X. Wang. Non-interactive zero-knowledge proofs to multiple verifiers.

In Advances in Cryptology–ASIACRYPT 2022: 28th International Conference on

the Theory and Application of Cryptology and Information Security, Taipei, Taiwan,

December 5–9, 2022, Proceedings, Part III, pages 517–546. Springer, 2023.

59

	口試委員審定書
	誌謝
	Acknowledgements
	摘要
	Abstract
	Introduction
	Design Goal
	Threat Model and Assumptions
	Security Goals

	Background
	Notation
	Multiparty Computation
	Multiparty Shuffling Protocol

	The CRAB System
	Generate Backdoor
	Validation Check
	The Entire System
	Generate backdoor
	Send request
	Validation check
	Process
	Verify

	Remove the Trusted Party

	Security Proof
	Correctness
	Anonymity
	Client-rebuttability
	"If" direction
	"Only if" direction

	Application: Electronic Voting
	The E-voting System
	Security Analysis

	Implementation and Evaluation
	Implementation on Group Elements
	Complexity analysis
	Experiment Result
	Client performance
	Validation check
	Process
	Rebuttal check

	Related Work
	Conclusion
	References

