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中文摘要 

背景: 侵入性機械通氣仍然是作為拯救重症患者生命的主要治療方法。然而，過

久的侵入性機械通氣可能會增加呼吸器相關肺炎的風險，與增加醫院費用和死亡

率。為評估是否適合脫離機械通氣，必須進行多因素評估，包括生理狀態、鎮靜

劑使用、通氣機設置、插管的主要原因是否緩解，以及是否擁有通過自發性呼吸

試驗的能力。不論是延長侵入性機械通氣的時間或因為拔管失敗都會產生相對應

的風險，也因此，確定拔管的時機非常重要。到目前為止，還沒有關於拔管的統

一評估準則。 

目標: 本研究的主要目的是調查：（1）在自主呼吸訓練期間的電阻式呼吸訊號與

心律變異度所提取的特徵，是否能夠用於訓練機器學習模型來預測拔管失敗；以

及（2）綜合結構化數據和上述信號特徵的模型是否能夠優於僅使用結構化數據的

模型。 

方法: 本研究乃利用已公開的美國大型資料庫，分別被稱為多參數智能監測重症

監 護  (Multi-parameter Intelligent Monitoring in Intensive Care 

(MIMIC-III)) 和 MIMIC-III匹配的波形數據庫。其中包含各種資訊，包括結構化

和波形數據（電阻式呼吸訊號和心電圖）。納入已進行自主呼吸試驗並具有可用波

形信號的患者。利用波形分析來提取電阻式呼吸訊號的特徵，和心律變異度分析

來萃取心電圖的資訊。使用五種常見的機器學習模型進行拔管失敗的預測。此外，

我們使用不同的數據類型組合來訓練模型，以評估它們對性能的影響。使用 DeLong 

test 的檢驗比較不同模型之間的 AUROC，並且用 Shapley value 來解釋特徵對於

模型預測的影響程度。 
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結果: 最終我們納入了 411 位滿足所有標準的拔管患者，有 46 位患者（11.2%）

拔管失敗。我們發現，當使用所有的數據，包括電阻式呼吸訊號、心律變異度和

結構化數據進行訓練時，XGBoost分類器優於其他分類器，並且比使用單獨的數據

類型（僅結構化數據、僅電阻式呼吸訊號、僅心律變異度或綜合電阻式呼吸訊號

和心律變異度）進行訓練的 XGBoost 分類器具有顯著更高的成效。特徵重要性分

析顯示，電阻式呼吸訊號和心律變異度的特徵佔了 XGBoost 分類器前二十個重要

特徵的一半以上。  

結論：這些發現表明，將從電阻式呼吸訊號和心律變異度獲取的特徵納入機器學

習模型，可以提高預測機械通氣下重症患者拔管失敗的成效。然而，需要進一步

研究以驗證這些結果在不同臨床背景下的有效性。 

關鍵詞：人工智慧；機器學習；預測拔管失敗；加護病房；電阻式呼吸波形；心

律變異度； MIMIC-III 資料庫 
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ABSTRACT 

 

Background: A multifaceted evaluation is necessary for weaning patients off 

mechanical ventilation (MV), and identifying the optimal time for extubation is crucial. 

The objective of this study was to explore whether impedance pneumography (IP) and 

heart rate variability (HRV) features could be utilized to train or improve a machine 

learning (ML) model for predicting post-extubation failure (PF) in mechanically 

ventilated patients in the intensive care unit. 

Methods: The MIMIC-III and MIMIC-III Waveform Database Matched Subset were 

the sources of data for this study, which consisted of clinical and waveform data, 

including IP signals and electrocardiogram (ECG) readings. Patients who underwent 

spontaneous breathing trials and had available waveform signals before extubation were 

eligible for inclusion. After a sequential assessment of waveform quality, the IP signal 

features were extracted, and HRV analysis was used to present the ECG features. Five 

common machine learning models were trained to predict PF. Moreover, the impact of 

different combinations of data types on the model's performance was evaluated. 

DeLong's test was utilized to compare the AUROC among individual models, and the 

SHapley Additive exPlanations method was applied to evaluate the models' 

expandability. 

Results: The final cohort included 411 extubated patients who met all the criteria, of 

whom 46 patients (11.2%) failed extubation. Our findings indicated that XGBoost 

classifier performed better than other classifiers when trained with the entire dataset 

(including IP signal, HRV, and clinical data) and produced a significantly higher 

AUROC than when it was trained using only one type of data (clinical data alone, IP 
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signal alone, HRV alone, or both IP signal and HRV). Feature importance analysis 

revealed that IP waveform and HRV features constituted over half of the top 20 

important features of the XGBoost classifier. 

Conclusion: The results indicate that integrating IP signal and HRV features can 

enhance the performance of ML models in predicting PF among critically ill patients on 

MV. Nevertheless, additional research is required to verify these outcomes in diverse 

clinical scenarios. 

Keywords: Artificial intelligence, Machine learning, Extubation failure prediction, 

Intensive care unit, Impedance pneumography, Heart rate variability, MIMIC-III 

database. 
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Chapter 1 Introduction 

1.1 Background 

 In critically ill patients, invasive mechanical ventilation (MV) continues to be the 

primary life-saving intervention. Nonetheless, extended utilization of MV can lead to an 

elevated likelihood of ventilator-associated pneumonia, which in turn escalates hospital 

expenses and mortality rates. [1, 2]. To determine the readiness for discontinuing 

invasive MV, it is crucial to conduct a comprehensive assessment that considers various 

factors. These factors include the patient's physiological condition, sedative usage, 

ventilator settings, resolution of the underlying cause for MV, and the ability to 

successfully complete a spontaneous breathing trial (SBT). Typically, SBTs involve 

either intermittent T piece or low-level pressure support ventilation (PSV) for a 

minimum duration of 30 minutes [3]. Additionally, several parameters have been 

identified as indicators of a higher risk of post-extubation failure (PF). These parameters 

include lower inspiratory pressure, higher rapid shallow breathing index (RSBI) [4], 

weakened cough strength [5-7], and extended duration of MV [7-9]. 

The identification of the optimal timing for extubation is crucial in mitigating the 

risks associated with both prolonged MV and PF. Currently, there is no universal 

standard protocol for the weaning process. However, a meta-analysis has demonstrated 

that adherence to standardized weaning protocols can lead to a reduction in the duration 

of MV, the weaning period, and the length of stay in the intensive care unit (ICU) [10]. 

Despite the implementation of standardized weaning protocols, it is important to 

acknowledge that PF can still occur in approximately 10-23% of patients. PF is closely 

associated with prolonged MV, extended ICU stay, and elevated risks of morbidity and 

mortality [4, 6, 7, 11]. 
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Electrocardiogram (ECG) and impedance pneumography (IP) are fundamental 

components of bedside monitoring for patients undergoing MV. These monitoring 

techniques are commonly employed for nearly every patient with MV (Figure 1). Heart 

rate variability (HRV) obtained from the inter-beat intervals derived from the ECG 

provides a non-invasive assessment of the autonomic function of the cardiovascular 

system. HRV analysis includes time-domain, frequency-domain, and non-linear domain 

analyses. This widely utilized approach is commonly employed in clinical research 

studies [12-14]. The IP signal is obtained by measuring the thoracic electrical 

impedance through ECG electrodes, which are placed in standardized positions (as 

depicted in Figure 2). The main mechanism underlying the elevated electrical resistance 

observed in IP is attributed to two factors. Firstly, an increase in gas volume within the 

chest reduces conductivity, leading to higher resistance. Secondly, during inspiration, 

the expansion of lung cavities increases the length of conductance, further contributing 

to the overall impedance changes [15]. IP offers several advantages, including its 

sustainability, non-invasiveness, and ease of accessibility. It has also demonstrated a 

high level of agreement with tidal volume measurements derived from a 

pneumotachograph [16, 17]. Several studies have examined the association between 

HRV, respiratory rate variability (RRV), tidal volume, and their relationship with 

extubation outcomes [18-20]. Seely et al. indicated that the predictive model utilizing 

RRV during the last SBT demonstrated optimal prediction accuracy for all patients, 

which further improved when combined with clinical impression or RSBI [21]. 

Additionally, some studies have found a significant correlation between respiratory 

signals and PF, primarily by extracting and analyzing parameters such as interbreath 

interval, tidal volume, and peak inspiratory flow [22-25]. However, to the best of our 

knowledge, there is currently no research specifically focusing on analyzing the 
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waveform of the IP signal itself in relation to extubation outcomes. 

 

Figure 1 Bedside patient monitor 

A. Electrocardiogram waveform and, B. impedance pneumography waveform 

 

 

Figure 2 3-Lead positions of electrodes 

RA placement: below the clavicle and near 

the right shoulder 

LA placement: below the clavicle and near 

the left shoulder 

LL placement: on the left lower abdomen 

RA right arm; LA left arm; LL left lower 

abdomen 
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1.2 Motivation 

Recent advancements in technology have led to the emergence of artificial 

intelligence (AI) models, including both machine learning (ML) and deep learning 

approaches. Several articles have indicated the superior predictive ability of AI models 

compared to conventional scoring systems alone in the context of PF. These AI models 

leverage the power of data analysis and pattern recognition to enhance prediction 

accuracy and provide valuable insights for clinical decision-making [26, 27]. In the 

development of AI models for predicting PF, clinical data such as vital signs, laboratory 

values, ventilator settings, and medication usage have commonly been utilized as 

parameters for training [28, 29]. However, the potential of incorporating features 

derived from the signals of heartbeat and breath to enhance the performance of AI 

models remains unknown. Currently, it is uncertain whether the inclusion of these 

signal-derived features could strengthen the predictive capabilities of AI models in the 

context of PF. Further research is needed to investigate the potential benefits and assess 

the impact of incorporating heartbeat and breath-related features in AI models. 

 

1.3 Objectives 

The goal of this study is to examine two key aspects. First, the investigation aims to 

determine whether features derived from the IP signal or HRV during SBT can be 

utilized for training the machine learning models to predict PF. Second, the study aims 

to evaluate whether the ML models trained using both clinical data and the signal 

features surpasses the performance of models trained solely on clinical data. By 

exploring these aspects, the study aims to assess the potential benefits of incorporating 

IP signal and HRV features in ML models and their impact on predicting PF. 
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Chapter 2 Method 

2.1 Data Source 

 The data used in this study is sourced from the Multi-parameter Intelligent 

Monitoring in Intensive Care (MIMIC-III) database, along with its subset called the 

MIMIC-III Waveform Database Matched Subset. MIMIC-III is an open database that 

provides access to de-identified electronic health records, including clinical 

measurements, laboratory results, and other relevant data from patients in ICUs. The 

MIMIC-III Waveform Database Matched Subset contains additional waveform data, 

such as ECG and IP signals, which can be used for more in-depth analysis and feature 

extraction in the study [30]. The Laboratory for Computational Physiology at 

Massachusetts Institute of Technology (MIT) developed the database, which is now 

accessible to the public through the PhysioNet platform. PhysioNet serves as a 

repository for sharing physiological signal and clinical data, providing researchers with 

open access to the database's resources [31]. The Beth Israel Deaconess Medical 

Center's ICU database contains extensive information regarding patients' admissions. 

This includes vital signs, medication details, laboratory measurements, care providers' 

notes, procedure records, length of stay, and image reports. Additionally, the MIMIC-III 

Matched Subset's Waveform database includes simultaneous recordings of various 

waveform signals such as IP signals, continuous arterial blood pressure, and ECG. 

These signals are digitized at a sampling rate of 125Hz, enabling detailed analysis and 

investigation. 

 

2.2 Selection of Participation and Definition 

 Initially, we included all adult patients aged 20 or above who had experienced an 
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extubation event. Subsequently, we excluded patients who met any of the following 

criteria: (1) no waveform data available within 24 hours prior to extubation, (2) no 

definitive intubation record before extubation, (3) no ventilator mode information, (4) 

no SBT conducted using pressure support ventilation (PSV) mode prior to extubation, 

(5) no recorded peak inspiratory pressure (PIP) during SBT, (6) insufficient or 

conflicting information to determine the exact time of extubation (e.g., a time gap of 

over 1 hour between the timestamp of discontinuing MV and the extubation order), (7) 

use of noninvasive positive pressure ventilation (NIPPV) or high-flow nasal cannula 

(HFNC) within one hour after extubation due to hard to distinguish between curative 

use or prophylactic use and (8) waveform data not overlapping with the SBT interval. 

PF was defined by any of the following criteria: (1) reintubation, (2) use of NIPPV or 

HFNC, or (3) death within 48 hours following extubation [32]. 

In the records of MV, we considered the start time as the time of intubation. If the 

start time was not available, we used the time of the intubation order as a proxy for the 

time of intubation. When extubation time and the end time of MV duration were not 

consistent, to determine the time of extubation, we selected the earlier timestamp 

between the end of MV and the extubation order as the time of extubation. Because it 

was unclear whether the clinician prescribed the extubation order before or after the 

actual extubation, and this approach was adopted to avoid any potential errors in 

analyzing the post-extubation period. 

 

2.3 Preprocessing 

2.3.1 Clinical data 

The parameters included in the analysis comprised: 
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1. Demographic information: Age, gender, and body weight. 

2. Comorbidities: Diabetes mellitus, hypertension, chronic obstructive 

pulmonary disease, congestive heart failure, old myocardial infarction, 

moderate to severe renal disease, liver cirrhosis, old cerebrovascular disease, 

and organ recipients. 

3. Vital signs: Heart rate, respiratory rate (RR), body temperature, oxygen 

saturation, mean arterial pressure, and consciousness status. 

4. Laboratory data: FiO2 (inspired fraction of oxygen), partial pressure of 

oxygen (PaO2), PaO2/FiO2 ratio, pH value, partial pressure of carbon dioxide 

(PaCO2), base excess (BE), anion gap, hemoglobin, white blood cell count, 

platelet count, blood urea nitrogen, and creatinine. 

5. Ventilator parameters: Pressure support level, tidal volume, RSBI, positive 

end-expiratory pressure (PEEP) level, mean airway pressure, duration of 

intubation, and SBT. 

6. Main diagnosis for ICU admission. 

7. Indication of intubation. 

We only extracted the above features once, aiming to capture them at the time point 

closest to the timestamp of respiratory waveform analysis. However, if the nearest value 

occurs too early in relation to the respiratory waveform, that specific feature is regarded 

as a missing value. The time interval restrictions vary according to the type of parameter 

(Table 1). In addition, inconsistent values were also treated as missing values, such as 

MAP > 250 mmHg or < 20mmHg, pulse rate > 300/min or < 20/min, respiratory rate > 

60/min, body temperature > 45 °C or < 30 °C, SpO2 > 100 % or <0%, and body weight > 

300 kilometers or < 5 kilometers. Variables with a missing rate exceeding 20% were 

excluded from the analysis. These variables included body height, lactic acid, bilirubin, 
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sputum consistency/color/amount, cough effort/value/type, and central venous pressure. 

For the remaining parameters, missing values were imputed using the median values 

derived from other patients. This approach was chosen due to the abnormal distribution 

of the data. 

Table 1 Sampled criteria, missing rate, and exclusion of variables 

Variables Sampled criteria 
Missing 
value,  
n (%) 

Inclusion 

Body weight During admission 32 (7.8) O 

Body height During admission 156 (38.0) X 

Vital signs 

RR 1 hours within analysis 0 O 

MAP 1 hours within analysis 11 (2.7) O 

HR 1 hours within analysis 0 O 

BT 6 hours within analysis 79 (19.2) O 

SpO2 1 hours within analysis 0 O 

 

GCS-motor 6 hours within analysis 11 (2.7) O 

GCS-eye Consciousness, median (IQR) 28 (6.8) O 

Laboratory data 

FiO2 Closest to analysis 15 (3.6) O 

PaO2 12 hours within analysis 58 (14.1) O 

PH 12 hours within analysis 55 (13.4) O 

PaCO2 12 hours within analysis 69 (16.8) O 

BE 12 hours within analysis 69 (16.8) O 

Anion gap 12 hours within analysis 40 (9.7) O 

Hb 12 hours within analysis 37 (9.0) O 
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WBC 12 hours within analysis 40 (9.7) O 

Platelet 12 hours within analysis 40 (9.7) O 

BUN 12 hours within analysis 32 (7.8) O 

Creatinine 12 hours within analysis 32 (7.8) O 

Lactic acid 12 hours within analysis 124 (30.2) X 

Bilirubin 12 hours within analysis 334 (81.3) X 

Ventilator data 

Mean PAW Closest to analysis 7 (1.7) O 

Tidal Volume 6 hours within analysis 62 (14.9) O 

PEEP level Closest to analysis 0 O 

PSV level Closest to analysis 0 O 

Clinical data 

Main diagnosis According to the note 
recorded by doctors 

3 (<0.1) O 

Indication for intubation 5 (0.1) O 

Sputum Consistency 6 hours within analysis 268 (65.2) X 

Sputum color 6 hours within analysis 264 (64.2) X 

Sputum amount 6 hours within analysis 221 (53.8) X 

Cough effort 6 hours within analysis 136 (39.7) X 

Cough value 6 hours within analysis 402 (97.8) X 

Cough type 6 hours within analysis 240 (58.4) X 

CVP level 6 hours within analysis 162 (39.4) X 

RR respiratory rate; MAP mean arterial pressure; HR heart rate; BT body 

temperature; SpO2 oxygen saturation from pulse oximeter; GCS Glasgow Coma 

Scale; FiO2 inspired fraction of oxygen; PaO2 partial pressure of oxygen in arterial 

blood; PaCO2 partial pressure of carbon dioxide in arterial blood; BE base excess; Hb 

hemoglobin; WBC white blood cell; BUN blood urea nitrogen; PAW airway pressure; 
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PEEP positive end-expiratory pressure; PSV Pressure support ventilation; CVP 

central venous pressure 

 

2.3.2 IP signal 

The entire IP signal underwent a bandpass filter that eliminated frequency content 

outside the range of 0.05 Hz to 1.0 Hz. This filtering procedure aimed to exclude any 

irrelevant frequency components from the signal. Additionally, respiratory rates 

exceeding sixty breaths per minute or falling below three breaths per minute were 

considered artifacts and were therefore excluded from the analysis. These exclusion 

criteria were implemented to ensure that the filtered IP signal focused on the desired 

respiratory frequency range and to remove any abnormal respiratory rates that could 

potentially distort the analysis. 

We analyzed only a 10-minute segment of the respiratory waveform at a time and 

extracted its corresponding feature values. The segment extraction started from the time 

closest to extubation, excluding the first five minutes before extubation to minimize the 

influence of interfering events such as sputum suction or extubation. After extracting the 

segment, an analytical approach was applied to ensure the quality of the IP signal that it 

could provide a high-quality representation of the respiratory activity for subsequent 

analysis. 

The first stage of the analysis involved detecting individual breaths within the 

extracted segment of the IP signal. Before proceeding with the identification of 

individual breaths, the segment of the IP signal was detrended and normalized. 

Detrending involves removing any long-term trends or baseline variations from the 

signal, allowing for a focus on the respiratory variations. Besides, the signal was 

normalized to lead it with a mean of 0 and a standard deviation of 1. This normalization 
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process ensures that the signal's amplitude and distribution are consistent and 

comparable across different segments and patients. Subsequently, individual breaths 

were detected using a modified version of the Count-orig method. The detailed steps for 

detecting individual breaths are elaborated as follows [33, 34]: 

1. Identifying peaks and troughs: A local extrema analysis approach was 

employed to identify peaks and troughs in the respiratory signal. Peaks were 

defined as points with amplitudes greater than the two neighboring points, and 

troughs were defined as points with amplitudes lower than the two neighboring 

points (Figure 3B). 

2. Determining relevant peaks and troughs: Peaks with amplitudes above 0.2 

times the 75th percentile of all peaks are considered relevant, while troughs 

with amplitudes below 0.2 times the 25th percentile of all troughs are classified 

as relevant (Figure 3C). 

3. Selecting the highest amplitude peak and lowest amplitude trough: In cases 

where multiple relevant peaks were present between each pair of consecutive 

relevant troughs, only the peak with the highest amplitude was selected and 

retained for analysis. Similarly, among the adjacent relevant peaks, the relevant 

trough with the lowest amplitude is retained (Figure 3D). 

4. Validating breath intervals: The interval between consecutive relevant peaks 

was defined as a valid breath, and the duration of each breath was measured by 

calculating the time between the start and end peaks. 
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Figure 3 Flow chart for identification of relative peaks and troughs among impedance 

pneumography (IP) segment 

A. Original IP segment; B. Find all peaks and troughs; C. Yield relevant peaks and 

troughs by excluding peaks lower than 0.2 times the 75th of all peaks and troughs 
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higher than 0.2 times the 25th of all troughs; D. Retain one highest peak within each 

pair of consecutive relevant troughs, and similarly, retain the lowest trough within 

among the adjacent relevant peaks. 

 

In the second stage, a set of thresholds and the method proposed by Charlton et al. 

were applied to assess the quality of the IP segment. The analysis was conducted in the 

following sequence [34]: 

1. Mean RR and waveform occupancy: The mean RR within the IP segment should 

fall between 6 and 60 breaths per minute. Additionally, the analyzable waveform 

should occupy over 80% of the segment to ensure an adequate number of breaths 

for analysis (as depicted in Figure 4B). 

2. Amplitude difference threshold: The difference between the maximum and 

minimum amplitudes of peaks or troughs should not exceed twenty times. This 

threshold is employed to exclude segments with interfering spikes (as illustrated in 

Figure 4C). 

3. Normalized standard deviation of breath durations: The normalized standard 

deviation of breath durations should not exceed 0.25. This criterion is used to allow 

only a lower variation in breath duration (as shown in Figure 4D). 

4. Outlier breath durations: Outlying breath durations are defined as those that are 

more than 1.5 times or less than 0.5 times the median breath duration. To avoid 

erroneous interpretation caused by outlying breaths, the proportion of outlying 

breaths should be less than 15% of all breaths, and the duration of outlier breaths 

should occupy less than 40% of the analyzed breathing duration. 

5. Assessment of breath morphology similarity: The similarity of breath 

morphologies is evaluated by calculating the mean correlation coefficient between 
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the average breath waveform and each individual breath waveform. A value greater 

than 0.75 is considered indicative of high-quality breaths (as depicted in Figure 

4E). To yield the average breath wave in the IP segment, firstly, Calculating the 

mean breath interval by averaging the time between relevant peaks. Secondly, 

extracting individual breaths by segmenting the signal based on the mean breath 

interval. Each segment is centered on a relevant peak, representing the start of a 

breath. Normalizing the individual breath segments by applying their Euclidean 

norm. Last, Computing the average waveform template by taking the mean of all 

individual breaths, and aligned each individual breath with its corresponding 

waveform template. The similarity of breath morphologies was assessed by 

quantifying the mean correlation coefficient between individual breaths and the 

average breath template. 
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Figure 4 Examples of different quality of impedance pneumography (IP) segments 

A. High-quality IP segment; B. Low-quality IP segment with less than 80% segment 
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occupied with breaths; C. Low-quality IP segment with interfering spikes; 

D. Low-quality IP segment with high standard deviation of breath duration (0.53); E. 

High-quality IP segment with mean correlation coefficient value of 0.89 on the left 

side, and low-quality IP segment with value of 0.66 on the right side 
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Figure 5 Sequential assessment of IP waveform quality 

IP impedance pneumography; bpm breaths per minute; RR respiratory rate 
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As shown in Figure 5, if an IP segment fails to meet any of the criteria, it is classified 

as low quality and excluded from further analysis. In such cases, a subsequent 

10-minute IP segment is generated, starting 30 seconds earlier than the discarded 

segment. This new segment then undergoes stages one and two of the analysis processes 

once again. This iterative process continues until an IP segment satisfies all the criteria 

in the second stage. Only IP segments meeting all the quality criteria proceed to the 

final stage of the analysis, ensuring that the selected segments are of sufficient quality 

and meet the established criteria for reliable and accurate assessment of the respiratory 

waveform. 

In the final stage of the analysis, various features were extracted from the IP segment. 

These included the mean RR, standard deviation of RR, ratio of inspiration and total 

breath, waveform slopes of inspiration and expiration, inspiration amplitude variation, 

frequency-domain analysis, and sample entropy. 

Additionally, we localized three quartiles (0.25, 0.50, and 0.75 percentile) in both 

inspiration and expiration in each breath along the time axis (Figure 6). Following the 

identification of quartiles within the inspiration and expiration periods, the waveform 

slope of each quartile was calculated using the two adjacent points. For instance, the 

slope of the first quartile in inspiration was determined by the coordinates of the nearest 

relevant trough and the second quartile within the same inhalation. To calculate the 

slope of the entire inspiration or expiration, the adjacent relevant trough and peak were 

utilized. The coefficient of variation (CoV) of slope among inspiration and expiration 

was obtained by dividing the mean slope by the standard deviation of slopes. 

Furthermore, the slope ratio of each quartile was computed by dividing the slope of the 

quartile by the slope of the entire corresponding period. For example, the slope ratio of 

the second quartile during expiration was obtained by dividing the slope of the second 
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quartile by the slope of the entire expiration. 

 

Figure 6 Example of extracting waveform features 

Circles and diamonds are the relevant peaks and troughs, respectively. Squares are 

the three quantiles during inspiration, and triangular are the three quantiles during 

expiration. Q quartile; Rel relevant; EXP expiration; INSP inspiration 

 

Frequency-domain analysis was conducted using the Fast Fourier Transform (FFT) 

algorithm to analyze the IP segment. The Fourier Transform is a mathematical technique 

used to transform a function of time, a temporal signal, into a function of frequency. The 

FFT is an algorithm that efficiently computes the Discrete Fourier Transform. It is 

termed 'fast' because it significantly reduces the computation time and complexity from 

O (n2) in DFT to O (n log n). This efficiency is gained by exploiting the symmetry in the 

computation of the DFT. This analysis provided insights into the distribution of power 

across different frequency components within the signal. Parameters such as total power 

(TP), very low frequency (VLF), low frequency (LF), high frequency (HF), peak of HF, 
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peak of LF, and LF/HF ratio were derived from this analysis. The detailed content about 

the frequency domain will be introduced in the following HRV (Heart Rate Variability) 

section. 

2.3.3 HRV signal 

A ten-minute EKG segment was obtained at the timestamp of analysis for IP segment. 

R peak detection was performed using an optimized Pan–Thompkins algorithm, 

enabling the calculation of R-peak to R-peak intervals (RRi) [35, 36]. To ensure the 

inclusion of reliable signals, a threshold was applied to exclude segments with a heart 

rate below 40 beats per minute. To address the potential bias introduced by ectopic beats, 

which can distort HRV analysis, the ECG segment underwent additional processing. A 

modified threshold-based detection algorithm was employed to identify ectopic beats. 

Any heartbeat with an RRi that increased or decreased by more than 15% compared to 

the median value of the previous five RRi was considered an ectopic beat and 

subsequently discarded. This approach aimed to alleviate the influence of ectopic beats 

on the subsequent HRV analysis, as supported by previous research, and as showed in 

Equation (1) [37-40]. 

        (1) 

An acceptable range of ectopic beats was defined as two percent. If an ECG segment 

did not meet these criteria, it was excluded from further analysis. As a result, a 

subsequent 10-minute ECG segment was generated, starting 30 seconds earlier than the 

excluded segment. This new segment then underwent R peak detection again. 

Conversely, if a segment satisfied both the heart rate threshold and the ectopic ratio 

criteria, it underwent interpolation using the cubic spline method. This interpolation 

method was applied to replace the discarded beats and ensure a continuous and 
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uninterrupted ECG waveform [41]. 

The HRV analysis was conducted using three types of methods: time-domain 

analyses, frequency-domain analyses, and non-linear analyses. 

1. Time-domain analyses: These methods involve analyzing HRV based on 

time-related measures. The following parameters were calculated: 

(a) Difference between the highest and lowest heart rate (HR Maximal - HR 

Minimal): Measures the range of heart rate fluctuations. 

(b) Standard deviation of individual normal-to-normal intervals (SDNN): 

Reflects the overall variability of the normal heartbeats. 

(c) Root mean square of successive differences between normal heartbeats 

(RMSSD): Provides a measure of short-term variability. 

(d) Proportion of NN50 divided by the total number of normal-to-normal 

intervals (pNN50): Evaluates the proportion of adjacent normal-to-normal 

intervals that differ by more than 50 milliseconds. 

(e) HRV triangular index: Represents the integral of the density distribution of 

normal-to-normal intervals. 

2. Frequency-domain analyses: These methods involve analyzing HRV based on 

frequency components obtained through spectral analysis. The following 

parameters were derived: 

(a) TP: Represents the total power of the HRV signal across all frequency 

ranges. 

(b) LF: Reflects the power within the low-frequency range (typically 0.04 to 

0.15 Hz). 

(c) HF: Represents the power within the high-frequency range (typically 0.15 

to 0.4 Hz). 
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(d) VLF: Represents the power within the very low-frequency range (typically 

below 0.04 Hz). 

(e) LF/HF ratio: Provides an indicator of the balance between sympathetic and 

parasympathetic influences on HRV. 

3. Non-linear analyses: These methods evaluate HRV from a non-linear perspective, 

assessing the complexity and patterns in the RRi time series. The following 

parameters were calculated: 

(a) SD1 and SD2 derived from the Poincaré plot: Measures of short-term and 

long-term HRV, respectively. 

(b) Sample entropy: A measure of the complexity and irregularity of the RRi 

time series. 

By employing these different analysis methods, a comprehensive evaluation of HRV 

was performed, capturing various aspects of HRV and providing insights into the 

autonomic modulation of the cardiovascular system. 

To simulate real-life scenarios, clinical data were collected at the timestamp of 

analysis for waveform. Categorical variables were converted into one-hot encoding to 

ensure compatibility with the machine learning algorithms. Continuous features, 

including clinical data, IP signal, and HRV, were standardized through standardization 

scaling, resulting in variables with a mean of 0 and a standard deviation of 1. 

 

2.4 Feature Selection 

For feature selection, several steps were taken. Initially, correlation analysis was 

performed to identify highly correlated features, with a cutoff threshold of 0.85. Highly 

correlated features were removed to avoid redundancy and potential overfitting. Next, a 
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filter method using mutual information was applied to further refine the feature set [42].  

This method helped filter out irrelevant features, reducing the complexity and 

redundancy of the dataset. The aim was to identify a subset of features that were most 

relevant to the classification task. After applying these feature selection techniques, the 

importance rank of each feature was assessed. From this ranking, the thirty most 

relevant features were selected to train the models. This approach ensured that the 

models were trained on the most informative and discriminative features, optimizing 

their performance for the classification task at hand. 

 

2.5 Training Pipeline 

 The training process was visually represented in Figure 7. The dataset was divided 

into an 80% training set and a 20% testing set. To ensure robustness and reliable 

performance assessment, 5-fold cross-validation was employed during the 

hyperparameter optimization, training, and evaluation stages. 

Considering the imbalance in the distribution of classes (successful and failed 

extubation), the Synthetic Minority Oversampling Technique (SMOTE) was applied to 

resample the dataset. SMOTE is a technique that over-samples the minority class by 

generating synthetic samples, thereby balancing the number of patients between the two 

classes [43]. This adjustment was made to prevent AI algorithms from being biased 

towards the majority class in an imbalanced dataset. This facilitated more accurate 

training and classification by ensuring that the model was exposed to a balanced 

representation of both successful and failed extubation cases. 

The combination of dataset splitting, cross-validation, and SMOTE resampling 

ensured a robust and fair evaluation of the AI models, accounting for the class 
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imbalance and minimizing the risk of bias in the analysis. We constructed binary 

classifiers using five well-known machine learning models: Extreme Gradient Boosting 

(XGBoost), LightGBM, CATegorical Boosting (CATBoost), Random Forest (RF), and 

Logistic Regression (LR) [44-48]. These models are widely used and have demonstrated 

strong performance in various classification tasks. By utilizing a diverse set of models, 

we aimed to capture different aspects of the data and leverage the unique advantages of 

each model to achieve accurate and robust predictions. 

 

Figure 7 Training process of machine learning. 

SMOTE Synthetic Minority Oversampling Technique; AI artificial intelligence 

 

In this study, hyperparameter optimization was performed using the grid search 

method. This technique systematically explored all possible combinations of specified 

hyperparameters and selected the optimal values based on pre-defined performance 

metrics. The models were trained and assessed using 5-fold cross-validation, which 

ensured reliable performance estimation. These optimal hyperparameter values were 

then utilized to fine-tune the models and enhance their predictive capabilities. 
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2.6 Performance Evaluation 

During the cross-validation, the mean performance of the models was assessed using 

various evaluation metrics. These metrics included the area under the receiver operating 

characteristic curve (AUROC), the area under the precision-recall curve (AUPRC), 

accuracy, precision (positive predictive value), recall (sensitivity), F1 score, negative 

predictive value, and specificity. These metrics provided a comprehensive evaluation of 

the models' performance in predicting extubation outcomes. 

 To further analyze the impact of different types of data on model performance, the 

models were trained using different combinations of data types. To compare the 

AUROC values between individual models, DeLong's test was applied to assist in 

determining if there is a significant difference in the performance of the models [49, 

50]. 

To interpret and explain the output of the models, the SHapley Additive exPlanations 

(SHAP) method was applied. The SHAP method, implemented using the SHAP Python 

package (version 0.41.0), provides insights into the importance and contributions of 

different features in the models' predictions. The results of the SHAP analysis were 

visualized using bee swarm plots, where each dot represents an individual data point in 

the model, helping to understand the impact of various features on the model's 

predictions [51]. 

By employing these evaluation metrics, statistical tests, and interpretability 

techniques, a comprehensive assessment of the models' performance and their 

underlying explanations was conducted, enabling a better understanding of the 

predictive capabilities and feature importance in predicting extubation outcomes. 
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2.7 Experiment Environment 

The preprocessing of clinical data and signal in this study was performed using 

MATLAB (version R2021a). MATLAB provided the necessary tools and functions for 

data manipulation, feature extraction, and signal processing. For constructing and 

training the AI models, Python (version 3.8.10) was utilized on the Google Colab 

platform. Python, with its rich ecosystem of ML libraries such as scikit-learn, offered a 

flexible and powerful environment for building and training the AI models. Google 

Colab, being a cloud-based platform, provided computational resources and easy access 

to libraries and packages required for machine learning tasks [52]. 
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Chapter 3 Result 

3.1 Participant Characteristics 

In the final cohort derived from the MIMIC-III and MIMIC-III Waveform Database 

Matched Subset (Figure 8), a total of 411 extubated patients met all the inclusion 

criteria. For model training, 328 patients (80% of the dataset) were used, while the 

remaining 83 patients (20%) were reserved for model testing. Among the total 

population, the median age of the patients was 67.0 years, and 134 patients (32.7%) 

were female. The median duration of MV was 13.7 hours, and the median duration of 

SBT with PSV mode was 3.5 hours (Table 2). In Table 3, it is reported that out of the 

411 patients, 46 patients (11.2%) experienced PF. Among these patients, one patient 

died, thirteen patients required re-intubation, thirteen patients required noninvasive 

positive pressure ventilation (NIPPV), and twenty patients required high flow nasal 

cannula (HFNC) within 48 hours after extubation. The median time to PF was 13.3 

hours. 
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Table 2 Demographic characteristics of enrolled patients (Total patients = 411) 

Variables Value MV (%) 

Age, median (IQR) 67.0 (58.9-75.3)  0 

Sex-female, No. (%) 134 (32.7) 0 

BW, median (IQR) 83.0 (71.8-95.9) 32 (7.8) 

Vital signs, median (IQR)   

 

Figure 8 Flow chart of patient recruitment. 

MIMIC medical Information Mart for Intensive Care; SBT spontaneous breathing 

trial; PSV pressure support ventilation; IP impedance pneumography; ECG 

electrocardiography; NIPPV noninvasive positive pressure ventilators; HFNC high 

flow nasal cannula 
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RR (per min) 18.0 (14.6-21.1) 0 

MAP (mmHg) 78 (70-88) 11 (2.7) 

HR (bpm), 84 (73-95) 0 

BT (Celsius) 37.1 (36.7-37.4) 79 (19.2) 

SpO2 (%) 99 (97-100) 0 

Consciousness, median (IQR) 

GCS-motor median 6 (5-6) 11 (2.7) 

GCS-eye 3 (3-4) 28 (6.8) 

Lab, median (IQR)   

PaO2/FiO2 ratio 262 (222.5-329.6) NA 

FiO2 40 (40-50) 15 (3.6) 

PaO2 (mmHg) 122 (97-152) 58 (14.1) 

PH 7.39 (7.35-7.42) 55 (13.4) 

PaCO2 (mmHg) 40 (36-44) 69 (16.8) 

BE (mmol/L) 0 ((-2)-1) 69 (16.8) 

Anion gap 11 (10-13) 40 (9.7) 

Hb (g/dL) 10.7 (9.8-11.8) 37 (9.0) 

WBC (103/μL) 11.5 (8.5-14.7) 40 (9.7) 

Platelet (103/μL) 166 (124.3-224.8) 40 (9.7) 

BUN (mg/dL) 17 (12-22) 32 (7.8) 

Cre (mg/dL) 0.9 (0.7-1.1) 32 (7.8) 

Underlying disease, No. (%) 

DM 129 (31.4) NA 

COPD 38 (9.2) NA 
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Hypertension 255 (62.0) NA 

CHF 93 (22.6) NA 

Severe CKD 28 (6.8) NA 

Old MI 35 (8.5) NA 

Cirrhosis 39 (9.5) NA 

Stroke 21 (5.1) NA 

Organ transplant 9 (2.2) NA 

Ventilator data, median (IQR) 

Mean PAW (mmHg) 7 (6-8) 7 (1.7) 

RSBI 40.7 (30.9-52.1) NA 

Tidal Volume (ml) 466.0 (388.3-570.3) 62 (14.9) 

PEEP level 5 (5-5) 0 

PSV level 5 (5-5) 0 

TVEN (hours) 13.7 (5.6-20.5) 0 

TPSV (hours) 3.5 (1.3-8.8) 0 

Main diagnosis 

Cardiovascular 225 (54.7) 

3 (<0.1) 

Central nerve system 73 (17.8) 

Gastrointestinal-related 56 (13.6) 

Oncology-related 16 (3.9) 

Pulmonary-related 14 (3.4) 

Vertebral 10 (2.4) 

Others 17 (4.1) 

Indication of intubation 

Surgery 300 (73.0) 5 (0.1) 
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Airway protection 66 (16.1) 

Respiratory distress 32 (7.8) 

Others 13 (3.2) 

IQR interquartile range; NA not access; MV missing value; No. numbers; BW body 

weight; RR respiratory rate; MAP mean arterial pressure; HR heart rate; BT body 

temperature; SpO2 oxygen saturation from pulse oximeter; GCS Glasgow Coma 

Scale; FiO2 inspired fraction of oxygen; PaO2 partial pressure of oxygen in arterial 

blood; PaCO2 partial pressure of carbon dioxide in arterial blood; BE base excess; 

Hb hemoglobin; WBC white blood cell; BUN blood urea nitrogen; Cre Creatinine; 

COPD chronic obstructive pulmonary disease; CHF congestive heart failure; MI 

myocardial infarction; CKD chronic kidney disease; PAW airway pressure; RSBI 

rapid shallow breathing index; TVEN duration of invasive ventilation; TPSV duration of 

PSV mode 

 

Table 3 Outcome analysis 

Item Value 

IP signal analysis time from extubation, minutes (median, IQR) 44.9 (8.0-40.5) 

HRV analysis time from extubation, minutes (median, IQR) 48.7 (8.5-51.3) 

Failure extubation (n, %) 47 (11.4) 

 Re-intubation 13 

 NIPPV 13 

 HFNC 20 

 Death  1 

Mean failure time, hours (median, IQR) 13.3 (5.3-28.8) 
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3.2 Performance 

Figure 9 depicts the ROC curves and PRC curves on the test set, illustrating the 

prediction ability of different models for PF. Compared to the LR-RSBI model, other 

models had higher performance, The AUROC values for each model were as follows: 

XGBoost- 0.877, LightGBM - 0.871, CATBoost- 0.868, RF- 0.841, LR- 0.774, and 

LR-RSBI- 0.540. Table 4 presents the performance metrics of the XGBoost classifier, 

which outperformed the other classifiers in terms of AUPRC (0.479), F1-score (0.398), 

sensitivity (0.333), specificity (0.962), positive predictive value (0.537), and negative 

predictive value (0.922). The hyperparameters of each machine learning model used in 

the study are presented in Table 5. 

A 

 

B 

 

Figure 9 Prediction ability of different models for post-extubation failure 

A. Receiver operating characteristic curves and, B. precision-recall curves XGB 

extreme gradient boosting; RF random forest; LGB light gradient boosting; CAT 

categorical boosting; LR logistic regression; RSBI rapid shallow breathing index 

IP impedance pneumography; HRV heart rate variability; IQR interquartile range; 

NIPPV non-invasive positive pressure ventilation; HFNC high flow nasal cannula 
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Table 4 Performance of different machine learning models 

Models Threshold AUROC AUPRC F1-score Sensitivity Specificity  PPV NPV  

XGBoost 0.5 0.877 (0.032) 0.479 (0.055) 0.398 (0.087) 0.333 (0.111) 0.962 (0.020) 0.537 (0.111) 0.922 (0.011) 

LGBM 0.3 0.871 (0.029) 0.486 (0.080) 0.297 (0.154) 0.267 (0.186) 0.951 (0.023) 0.393 (0.118) 0.915 (0.019) 

CatBoost 0.5 0.868 (0.008) 0.458 (0.054) 0.366 (0.057) 0.333 (0.111) 0.946 (0.027) 0.446 (0.051) 0.921 (0.010) 

RF 0.45 0.841 (0.049) 0.368 (0.052) 0.242 (0.0443) 0.222 (0.079) 0.930 (0.046) 0.300 (0.052) 0.908 (0.005) 

LR 0.7 0.774 (0.025) 0.224 (0.024) 0.171 (0.070) 0.111 (0.111) 0.881 (0.032) 0.096 (0.103) 0.891 (0.013) 

LR-RSBI 0.55 0.540 (0.022) 0.137 (0.016) 0.128 (0.009) 0.067 (0.061) 0.954 (0.043) 0.153 (0.024) 0.894 (0.002) 

XGBoost extreme gradient boost; LGB light gradient boosting; RF random forest classifier; LR logistic regression; RSBI rapid shallow 

breathing index; PPV positive predictive value; NPV negative predictive value; AUROC area under receiver-operator curve; AUPRC area under 

precision-recall curve 
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Table 5 Hyperparameters for individual model 

Model Hyperparameter Value Model Hyperparameter Value 

XGBoost 

learning_rate 0.2 

LightGBM 

learning_rate 0.3 

max_depth 5 max_depth 10 

n_estimators 30 colsample_bytree 0.3 

colsample_bytree 0.5 n_estimators 60 

CATBoost 

Depth 7 

Logistic 
Regression 

C 0.1 

learning_rate 0.05 penalty L1 

Iterations 300 solver saga 

bagging_temperature 1    

Random 
Forest 

bootstrap False    

min_sample_leaf 4    

min_samples_split 4    

n_estimators 100    

XGBoost extreme gradient boost; CATBoost CATegorical Boosting; LGB light gradient 

boosting 
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3.3 Feature Importance 

Figure 10A illustrates the analysis of feature importance using the filter method of 

mutual information. The five most important features are the 

Mean_slope_insp_Q1_ratio (mean slope ratio of the first quartile during inspiration), 

HR_Max-HR_min, CoV of the first quartile during inspiration, MV duration, mean 

slope if the third quartile during inspiration. Notably, features derived from the IP 

waveform and HRV make up over half of the top ten important features. These results 

highlight the significant contribution of IP waveform and HRV features in predicting PF. 

Figure 10B presents the SHAP values for the XGBoost classifier trained with the 

selected features mentioned above. The top twenty features are displayed, with each row 

representing a feature. The SHAP value is plotted on the horizontal axis, and each data 

sample is represented by a single point. Features with higher values are shown in red, 

indicating an elevated risk of PF, while features with lower values are displayed in blue, 

indicating a reduced risk. The length of the feature bar reflects the magnitude and 

direction of the feature's effect on the model's output. A longer bar suggests a greater 

impact on the model's predictions, while a shorter bar indicates a smaller impact. A 

positive SHAP value indicates an increased risk of PF, while a negative value suggests a 

decreased risk. By examining the top five SHAP values of the XGBoost classifier, we 

can observe that the duration of MV, mean slope during inspiration (mean_slope_insp), 

and mean slope ratio on the first quartile during inspiration (Mean_slope_insp_Q1_ratio) 

positively correlate with the risk of PF. Conversely, lower values of PaO2 

(PAO20_value) and motor part of Glasgow Coma scale (GCS_motor_full) are 

associated with a higher risk of PF. 
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3.4 XGBoost Classifier with Different Input 

In our study, we explored different combinations of input features for training the 

XGBoost classifier. These features included clinical data, HRV, and waveform features 

of the IP signal. The results of the different input configurations are presented in Table 

6. The model trained with all three types of features (IP signal, HRV, and clinical data) 

achieved the highest AUROC, and it showed a significant difference compared to the 

models based solely on HRV or IP signals (p < 0.05). Furthermore, although it exhibited 

a higher AUROC trend compared to the combinations of clinical data with HRV and IP 

 

Figure 10 Feature importance  

(A) Top twenty most important features selected through mutual information. (B) the SHAP 

values of XGBoost classifier, and top 20 features are arranged based on the SHAP values across 

all samples. 
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signals, the difference was not statistically significant. The model trained with clinical 

data shows a tendency towards a higher AUROC of 0.813 (95% CI 0.773-0.853) 

compared to the models trained with either the HRV, IP signal alone or a combination of 

the IP signal and HRV features. However, this difference was not statistically significant, 

as indicated in Table 7.
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Table 6 Performance of XGBoost classifier with different input 

Input type AUROC P valueb AUPRC F1-score Sensitivity Specificity PPV NPV 

Whole dataa 0.877 (0.837-0.917) reference  0.479 (0.410-0.547)  0.398 (0.290-0.506)  0.333 (0.195-0.471)  0.962 (0.937-0.987)  0.537 (0.399-0.674)  0.922 (0.909-0.936 

Clinical 0.813 (0.773-0.853) 0.185  0.495 (0.421-0.570)  0.298 (0.146-0.449)  0.222 (0.084-0.360)  0.973 (0.946-1.000)  0.582 (0.230-0.934)  0.912 (0.898-0.925) 

IP & HRV 0.772 (0.683-0.861) 0.173  0.375 (0.222-0.528)  0.387 (0.265-0.509)  0.489 (0.332-0.646)  0.873 (0.829-0.917)  0.324 (0.214-0.434)  0.934 (0.914-0.953) 

IP signal 0.712 (0.622-0.802) 0.011  0.243 (0.149-0.336)  0.224 (0.078-0.370)  0.289 (0.080-0.498)  0.849 (0.835-0.863)  0.183 (0.071-0.296)  0.908 (0.882-0.934) 

HRV 0.678 (0.583-0.773) 0.016  0.240 (0.132-0.347)  0.279 (0.196-0.362)  0.467 (0.316-0.618)  0.773 (0.748-0.798)  0.200 (0.142-0.257)  0.923 (0.902-0.944) 

IP impedance pneumography; HRV heart rate variability; PPV positive predictive value; NPV negative predictive value; AUC area under receiver-operator curve 

a Whole data were composed of clinical data, IP signal and HRV 

b The P value is obtained by comparing the AUROC of individual model with the reference model through the Delong test. 
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Table 7 DeLong test to compare AUROC of different input in XGBoost 

Input type 
(AUROC) 

Whole  
(0.877) 

Clinical  
(0.813) 

IP & HRV  
(0.772) 

IP  
(0.712) 

HRV  
(0.678) 

Whole 
     

Clinical 0.185 
    

IP & HRV 0.173 0.915 
   

IP 0.011 0.383 0.337 
  

HRV 0.016 0.301 0.116 0.677 
 

AUROC area under receiver-operator curve; IP impedance pneumography; HRV 

heart rate variability 
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Chapter 4 Discussion 

The results of our study indicated the potential of ML models in predicting PF among 

critically ill patients receiving MV in the ICU. Importantly, this study is the first to 

extract features from the IP signal and incorporate them alongside clinical data and 

HRV for model construction. Our findings show that the XGBoost classifier performed 

the best in terms of AUROC, AUPRC, and F1-score. This indicates its superior ability 

to accurately predict PF compared to other models tested in this study. Furthermore, the 

inclusion of IP signal and HRV features in addition to clinical data significantly 

improved the predictive performance of the model. This highlights the importance of 

considering respiratory signals and autonomic status when developing predictive 

models for extubation outcomes. 

While previous studies have explored the correlation between respiratory signals and 

extubation outcomes, they have primarily focused on parameters such as interbreath 

interval, tidal volume, and peak inspiratory flow [22-24]. However, none of these 

studies have specifically investigated the IP signal waveform itself. The IP signal has 

been shown to have a strong correlation with tidal volumes measured by 

pneumotachometry, which is considered the gold standard method [17, 53]. In our study, 

we hypothesized that the IP signal could provide valuable insights into a patient's 

breathing pattern, especially during the SBT when the patient relies partially on their 

own respiratory effort. To extract features from the IP signal, we identified three 

quartiles within the waveform for both exhalation and inhalation. We then examined 

several parameters related to the slope of each quartile, including the mean value, 

coefficient of variation (CoV), and slope ratio. By analyzing these IP signal features, we 

aimed to capture the characteristics of a patient's breathing and identify potential 
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indicators of PF. This approach appeared to add a novel dimension to prediction models 

of PF. 

Previous studies have utilized AI models to predict PF within different time frames. 

Otaguro et al. and Hsieh et al. developed models to predict PF within 72 hours after 

extubation [26, 54]. In our study, we defined PF as either resuming MV or death within 

48 hours, following the criteria set by the International Consensus Conference [32]. 

Comparing our results to a study conducted by Chen et al. in the MIMIC-III database, 

there are some notable differences in the AUROC values achieved by the XGBoost 

classifier. Chen et al. reported AUROC values ranging from 0.81 to 0.82 using clinical 

data alone for predicting PF within 48 hours [28]. There were several differences, 

including (1) our study had specific requirements regarding waveform quality, which 

led to the selection of a limited and different cohort compared to Chen et al.; (2) to align 

with the timing of waveform analysis, clinical data in our study were collected at an 

earlier time point before extubation, which may not accurately represent the actual 

extubation conditions; (3) our study employed a more stringent threshold for missing 

data, excluding features with a missing rate exceeding 20%. In contrast, Chen et al. 

removed features with a missing rate above 40%. Despite the differences, our study 

obtained a similar AUROC value of 0.813 (95% CI: 0.773-0.853) when using the 

XGBoost classifier with clinical data. 

Combining clinical data, IP signal, and HRV significantly improved the model's 

performance (Table 6). Models trained with only IP signal or HRV alone had the lowest 

AUROC values of 0.712 and 0.678, respectively, but the difference was not significant 

(Table 7). The model trained with clinical data alone achieved a slightly higher AUROC 

value of 0.813, but the improvement was not statistically significant compared to the 

other models. By analyzing the feature importance using SHAP values (Figure 10B) 
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revealed that a longer duration of MV was positively correlated with PF, consistent with 

findings from previous studies [28, 29, 54]. Additionally, eight out of the top twenty 

important features of the XGBoost classifier were related to IP signal, with most of 

them being slope parameters during inspiration (Figure 10A). This suggests that the 

features of IP signal might provide crucial information for predicting PF. 

 

4.1 Clinical Application 

If external validation is further conducted to confirm the model's generalizability, the 

model could be integrated into ICU or other critical care settings for real-time prediction 

the risk of PF. However, we may encounter several challenges. First, extracting 

waveform data from the device itself can be difficult. Current clinical monitoring 

information, though collected at a central monitoring station, cannot be exported, and 

data older than 24 hours is abandoned. To store or export data, we need further 

cooperation with the device manufacturers or purchasing a larger scale information 

platform. Second, in clinical situations, there may be instances where patients are 

unable to cooperate with the measurement of vital signs. For example, continuous 

shivering, severe dyspnea causing excessive body movement, or a confused state of 

consciousness leading to constant posture changes. These situations can cause a lot of 

interference in the waveform, making analysis impossible. Lastly, integrating clinical 

and waveform data into an AI model requires a cross-team effort. 

Despite the challenges, due to the widely use of IP signals and ECG as part of 

monitor for vital signs in critical care units (such as ICU and ED) and even pre-hospital 

settings, it can be considered to expand its application to other areas, including 

identifying specific respiratory patterns of diseases such as chronic obstructive 
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pulmonary disease, metabolic acidosis, and acute respiratory failure. 

 

4.2 Limitation 

Our study has several limitations that need to be acknowledged. Firstly, while 

previous research has shown that the inspiration and expiration phases of the IP signal 

demonstrate good consistency with the actual airway flow, it is important to note that 

the amplitude of the IP signal can be influenced by factors such as the location and 

distance of the electrodes [55]. As a retrospective study, we were unable to control or 

predefine the placement of the electrodes used to capture the IP signal. To address this 

limitation, we standardized the IP signal to minimize the potential impact of electrode 

positioning on the signal amplitude. However, through this process, the information 

about the amplitude of the waveform itself may be attenuated. Secondly, our study only 

included patients undergoing SBT with PSV mode and excluded those with CPAP mode 

or T-piece trials. This decision limits the generalizability of our findings to patients in 

specific ventilatory modes. Including these additional modes in future studies would be 

valuable to assess their impact on prediction models. Thirdly, the selection criteria used 

to obtain high-quality IP segment in our study may have resulted in the exclusion of 

some meaningful IP features, potentially limiting the comprehensiveness of our analysis. 

However, if we did not utilize these filtering criteria, it would lead to the inclusion of 

many waveforms with interference, thereby masking the true respiratory characteristics. 

This also emphasizes the need for future studies to compare the impact of different 

filtering conditions on the extraction of feature values. Finally, our study solely relied 

on data from the MIMIC-III database. External validation using independent datasets is 

crucial to evaluate the generalizability of our model across different settings and 
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populations. Such validation studies would provide a more robust assessment of the 

performance and clinical utility. 
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Chapter 5 Conclusion 

This study utilized the MIMIC-III and MIMIC-III Waveform Database Matched 

Subset to develop ML models for predicting PF within 48 hours in MV patients. By 

incorporating IP signal and HRV along with clinical data, the predictive performance of 

the model was significantly improved, indicating the potential value of these additional 

features. However, it is important to validate these findings in different clinical contexts 

through further research. 
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Appendix 

List of abbreviations 

MV Mechanical ventilation 

IP Impedance pneumography 

HRV Heart rate variability 

AI Artificial intelligence 

ML Machine learning 

MIMIC-III Medical Information Mart for Intensive Care III 

ECG Electrocardiogram 

PF Post-extubation failure 

AUROC Area under the receiver operating characteristic curve 

ICU Intensive care unit 

SBT Spontaneous breathing trial 

RRV Respiratory rate variability 

NIPPV Noninvasive positive pressure ventilation 

HFNC High flow nasal cannula 

PIP Peak inspiratory pressure 

PSV Pressure support ventilation 

RSBI Rapid shallow breathing index 

PaO2 Partial pressure of oxygen 

FiO2 Inspired fraction of oxygen 

PaCO2 Partial pressure of carbon dioxide 

BE Base excess 



doi:10.6342/NTU202301628

 53 

PEEP Positive end-expiratory pressure 

RR Respiratory rate 

CoV Coefficient of variation 

TP Total power 

VLF Very low frequency 

LF Low frequency 

HF High frequency 

RRi R-peak to R-peak interval 

SDNN Standard deviation of individual normal-to-normal intervals 

RMSSD 

Root mean square of successive differences between normal 

heartbeats 

pNN50 Proportion of NN50 divided by total number of NNs 

SD1 Standard deviation of the first Poincaré plot axis 

SD2 Standard deviation of the second Poincaré plot axis 

SMOTE Synthetic Minority Oversampling Technique 

AUPRC Area under the precision recall curve 

XGBoost Extreme Gradient Boosting 

LightGBM Light Gradient Boosting Machine 

CATBoost CATegorical Boosting 

RF Random Forest 

LR Logistic Regression 

SHAP SHapley Additive exPlanations 
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