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中文摘要 

深度學習的進步得益於大規模且精細蒐集的數據資料集。然而，這些數據集

通常基於一個假設，即訓練和測試資料是共享相同的分佈。但在實際的應用場景，

特別是在計算機視覺領域中，這樣的假設往往很難成立，在圖像領域分佈或是語義

類別通常有所差異。由於這些資料分佈的不同，對特定分佈進行訓練的深度神經網

絡在不同的資料分佈數據上往往表現不佳。在本論文中，我們的目標是透過遷移學

習，以實現在不同的圖像領域分佈或語義類別之間進行知識的遷移。 

在本論文中，我們首先解決圖像風格的知識轉移問題。我們提出了一個特徵

解耦框架，實現跨多個圖像領域和多樣化的風格轉移。接著，我們研究語義類別的

知識轉移，透過利用類別內觀察到的差異來完成零樣本圖像識別這一具有挑戰性

的任務。為了讓訓練模型能更好地處理落在源域分佈之外的數據，我們提出了一種

用於領域泛化的對抗性教師-學生表示學習框架。最後，我們轉向分佈式學習的場

景，用以達成在特定應用場景，例如醫療上的隱私保護要求。為了解決這個問題，

我們設計了一種針對特定數據領域的提示生成框架，來允許高效並且個性化的聯

邦學習。通過實驗的分析與結果，本論文中提出的方法的有效性得以驗證。 

關鍵字：深度學習、電腦視覺、遷移學習、風格轉換、零樣本學習、領域泛化、聯

邦學習 
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Abstract

Recent progress in deep learning owes a lot to large-scale, curated datasets. How-

ever, these datasets typically operate on the assumption that training and test data

share the same distribution. This is not always the case in real-world scenarios,

particularly in the field of computer vision, where discrepancies in data domains

or semantic categories are common. Due to these distribution gaps, deep neural

networks trained on a specific distribution can struggle to perform in a different

domain. In this thesis, we aim at advancing transfer learning to enable the transfer

of knowledge across distinct data domains or semantic classes. Specifically, we first

address knowledge transfer for image styles. We propose a feature disentanglement

framework that facilitates multi-domain and multi-modal style transfer. Next, we

examine knowledge transfer for semantic categories, focusing on the challenging

task of zero-shot image recognition by leveraging intra-class variations. With the

goal of enabling the trained model to handle data that falls outside the source

distribution, we propose an Adversarial Teacher-Student Representation Learning

framework for domain generalization. Finally, we transition to a decentralized

learning paradigm, accommodating the privacy-preserving requirements of certain

applications, such as healthcare. To tackle this, we devise a client-specific prompt

generation framework to allow efficient, personalized federated learning. Through

the comprehensive analysis and results, the effectiveness of the methods presented

in this thesis could be successfully confirmed.

Keywords: deep learning, computer vision, transfer learning, style transfer,

zero-shot learning, domain generalization, federated learning.
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with either randomly sampled noise vector z ∼ N (0, I) or that

with intra-class visual diversity transferred from the randomly sam-

pled seen classes (i.e., {xj,1, xj,2}). With these visual features

observed, a KNN classifier is trained accordingly for (generalized)

zero-shot learning. . . . . . . . . . . . . . . . . . . . . . . . . . 45



doi:10.6342/NTU202301924

x LIST OF FIGURES

2.4 t-SNE visualization of hallucinated data for CUB and AWA. For

ZSL, samples of 6 unseen classes are selected (150 samples for

each class). For GZSL, we sample 3 seen classes and 3 unseen

classes for visualization, and compare the results produced by the

baseline approach [2]. For both ZSL and GZSL, we see that our

model produces data with improved diversity while not overfitting

those of seen classes. Note that real data of unseen classes are

additionally shown in this figure for visualization and comparison

purposes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5 Example class-specific diversity transfer from a seen class j to

unseen class i (i.e., ∆zj to ∆zj→i). . . . . . . . . . . . . . . . . 52

2.6 Example failure case of class-specific diversity transfer from a

seen class j to unseen class i. . . . . . . . . . . . . . . . . . . . . 53

2.7 Convergence of the top-1 accuracy in terms of the number of

epochs for the generated training samples from the seen classes for

CUB, AWA, SUN, and FLO. . . . . . . . . . . . . . . . . . . . . 54

2.8 The impact of different numbers of synthetic visual samples per

category. Note that x and y axes indicate the number of generated

features and harmonic mean (H) respectively. . . . . . . . . . . . 54

2.9 Sensitivity analysis for hyperparameters λ1 and λ2. Note that x and

y axes indicate the value of λ and harmonic mean (H) respectively. 56

3.1 Overview of our Adversarial Teacher-Student Representation Learn-

ing scheme, which includes the teacher network FT , the student

network FS , classifier C, and novel-domain augmenter G. Note

that we alternate between the stages of domain generalized repre-

sentation learning and novel-domain augmentation in a mutually

beneficial manner, resulting in discriminative yet domain general-

ized representations. . . . . . . . . . . . . . . . . . . . . . . . . 65



doi:10.6342/NTU202301924

LIST OF FIGURES xi

3.2 t-SNE visualization on PACS with Photo as the unseen target

domain. (a) Representations extracted by the baseline approach of

DeepAll. (b) Representations derived by our approach. . . . . . . 76

3.3 Visual comparisons of augmented novel-domain images produced

by DDAIG [3] and ours on PACS dataset. . . . . . . . . . . . . . 77

4.1 Comparison between (a) FedAvg and (b) our approach. Instead of

updating and transporting entire models θ, our FL method learns to

generate personalized prompts P by implicitly observing local opti-

mization directions ∆P = P̃−P for efficient model personalization

on top of frozen foundation models. . . . . . . . . . . . . . . . . 83

4.2 Overview of our client-specific Prompt Generation (pFedPG) frame-

work. pFedPG learns a prompt generator G together with client-

agnostic prompt basis Pbase and a bank of client descriptors D =

{dn}N
n=1 at the server. With local classifcation loss observed, both

client-specific prompts Pn and local classification head Hn are

updated at each client n. We alternate between the stages of (a)

personalized prompt adaptation and (b) personalized prompt gen-

eration to enable efficient personalization of foundation models

like ViT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



doi:10.6342/NTU202301924

xii LIST OF FIGURES



doi:10.6342/NTU202301924

List of Tables

1.1 Comparisons with recent works on image translation and manipu-

lation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Quantitative comparisons for visual realism and diversity with MU-

NIT, DRIT, UFDN, and our M2RD on summer-to-winter translation. 16

1.3 Ablation studies on summer to winter translation. . . . . . . . . . 22

1.4 A classification accuracy (%) for target domain images. For exam-

ple, USPS→ MNIST denotes USPS and MNIST as source and

target domain images, respectively. . . . . . . . . . . . . . . . . . 25

2.1 Comparisons with recent approaches on zero-shot learning. . . . . 30

2.2 Performance comparisons on conventional ZSL in terms of top-1

accuracy (%). The top part is embedding-based methods and the

bottom part is generation-based methods. . . . . . . . . . . . . . 48

2.3 Performance comparisons on GZSL in terms of top-1 accuracy

(%). Note that U and S denote the accuracy of unseen and seen

classes, respectively. The harmonic mean H is calculated by H =

(2× S × U)/(S + U). The top part is embedding-based methods

and the bottom part is generation-based methods. . . . . . . . . . 49

xiii



doi:10.6342/NTU202301924

xiv LIST OF TABLES

2.4 Ablation studies on the design of the proposed CMC-GAN on

three benchmark datasets. Note that z denotes the input randomly

sampled from N (0, I), ∆zj is the extracted visual diversity from

class j, and ∆zj→i represents that translated from class j to i via

semantic-conditioned transformer T . The bold numbers indicate

the best results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Comparisons to non-data-generation based methods on PACS us-

ing ResNet-18 in leave-one-domain-out settings. Bold denotes the

best result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 Comparisons to non-data-generation based methods on Office-

Home using ResNet-18 in leave-one-domain-out settings. Bold

denotes the best result. . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 Comparisons to data-generation based methods on PACS using

ResNet in leave-one-domain-out settings. Bold denotes the best

result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4 Comparisons to data-generation based methods on Office-Home

using ResNet in leave-one-domain-out settings. Bold denotes the

best result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5 Ablation studies on PACS using ResNet-50 as the backbone. . . . 76

3.6 Impact of momentum coefficient τ on Office-Home using ResNet-

50 as the backbone. . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.7 Single-source domain generalization on PACS and DomainNet

using ResNet-50 as the backbone. Note that Photo of PACS and

Real of DomainNet are selected as the single source domain for

training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.1 Quantitative comparisons on Office-Caltech10 and DomainNet

datasets. Bold denotes the best result. . . . . . . . . . . . . . . . 94



doi:10.6342/NTU202301924

LIST OF TABLES xv

4.2 Quantitative comparisons on CIFAR-10/100 datasets. Bold de-

notes the best result . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Quantitative comparisons on Dermoscopic-FL dataset. Bold de-

notes the best result. . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Analysis of our personalized prompt generation and the architec-

ture of prompt generator G on benchmark datasets. . . . . . . . . 98

4.5 Impact of the number of prompts K on benchmark datasets, where

CIFAR-10/100 are drawn from Dir(0.1). . . . . . . . . . . . . . 101



doi:10.6342/NTU202301924

xvi LIST OF TABLES



doi:10.6342/NTU202301924

Chapter 1

Knowledge Transfer for Image Styles

Learning interpretable data representation has been an active research topic in deep

learning and computer vision. While representation disentanglement is an effective

technique for addressing this task, existing works cannot easily handle the problems

in which manipulating and recognizing data across multiple domains are desirable.

In this thesis, we present a unified network architecture of Multi-domain and Multi-

modal Representation Disentangler, with the goal of learning domain-invariant

content representation with the associated domain-specific representation observed.

By advancing adversarial learning and disentanglement techniques, the proposed

model is able to perform continuous image manipulation across data domains

with multiple modalities. More importantly, the resulting domain-invariant feature

representation can be applied for unsupervised domain adaptation. Finally, our

quantitative and qualitative results would confirm the effectiveness and robustness

of the proposed model over state-of-the-art methods on the above tasks.

1.1 Introduction

Recent advances in deep learning have shown promising progresses in the areas of

computer vision and machine learning. In particular, visual analysis and synthesis

across data domains attract the attention from researchers in these fields. For

1
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Figure 1.1: Illustration of multi-domain and multi-modal representation dis-

entanglement. Given an input (in red bounding box) and images in multiple

domains (e.g., styles), we derive representations for describing domain-invariant

and domain-specific information, while images can be manipulated and recovered

in different domains with sufficient diversity. Note that Dsketch and Dpaint denote

domain-specific spaces for sketch and paint images, respectively.

example, style transfer [4, 5, 6, 7, 8], image-to-image translation [9, 10, 11, 12, 13],

and cross-domain visual classification (or domain adaptation) [14, 15, 16, 17, 18]

can all be viewed as the associated applications.

To address the above tasks, previous works typically either learn a deterministic

(i.e., unimodal) mapping from one data domain to another, or to embed desirable

information into the resulting latent space to derive the data representation. The

technique of representation disentanglement [19, 20, 21] particularly observes and

manipulates specific feature attributes of interest, which has also been applied in the

above tasks. Thus, one can view the attributes of interest as the meaningful factors

inherent in image data, and further synthesize preferable outputs accordingly. For

instance, one can manipulate the style attributes of the disentangled latent feature to

achieve style transfer and image-to-image translation (e.g., photo↔ sketch [22]).

In practice, adaptation or translation between data domains needs to exhibit

multi-modal diversity. That is, a single input instance may correspond to di-
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verse possible outputs, associated with the same attribute of interest (e.g., image

style). Even with the promising models based on generative adversarial networks

(GANs) [23], one might encounter mode collapse problems and fail to produce

multi-modal outputs. Recently, MUNIT [24] and DRIT [25] utilize the disen-

tangled representation for multi-modal translation, achieved by decomposing the

latent feature into disjoint features to describe content and style information. While

these models manipulate the style feature to synthesize diverse outputs, they cannot

be easily extended to handle the image manipulation among multiple (i.e., more

than two) domains due to their network architecture designs.

Table 1.1: Comparisons with recent works on image translation and manipulation.
Unpaired Bidirectional Shared Feature Unified Multiple Multi-modal Unsupervised

data translation representation disentanglement structure domains translation domain adaptation

Pix2Pix [9] - - - - - - - -

CycleGAN [11]
√ √

- - - - - -

StarGAN [26]
√ √

- - - - - -

DTN [10]
√

-
√

- - - -
√

CyCADA [18]
√ √

- - - - -
√

UNIT [13]
√ √ √

- - - -
√

E-CDRD [22]
√ √ √ √

-
√

-
√

BicycleGAN [27] -
√ √ √

- -
√

-

CDDN [28] -
√ √ √

- -
√

-

MUNIT [24]
√ √ √ √

- -
√

-

DRIT [25]
√ √ √ √

- -
√ √

UFDN [1]
√ √ √ √ √ √

-
√

M2RD (Ours)
√ √ √ √ √ √ √ √

In this thesis, we propose a unified framework of Multi-domain and Multi-

modal Representation Disentangler (M2RD) for cross-domain image synthesis

and classification, with the ability to manipulate image data with the particular

attribute of interest while exhibiting sufficient diversity, as illustrated in Fig. 1.1.

Without collecting pairwise image data across domains, our model encodes image

data into a domain-invariant and specific latent feature spaces. While the former

observes content information from the input data, the latter exhibits multi-modal

diversity during cross-domain image translation. In the experiments, we not only

show that our model is able to perform image manipulation, but we further verify

that derived domain-invariant content features can be applied to the task of unsuper-
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vised domain adaptation. With both qualitative and quantitative results provided,

the effectiveness and robustness of our model can be successfully confirmed.

We now highlight the contributions as follows:

• Our proposed deep learning model is able to factorize latent image repre-

sentations into disjoint features describing domain-invariant and specific

information.

• Our network uniquely integrates adversarial learning, representation disen-

tanglement, and generative modules in a unified architecture.

• Our derived domain-invariant feature representation allows unsupervised

domain adaptation, while the domain-specific feature enables multi-modal

image manipulation across multiple data domains.

1.2 Related Works

Representation Disentanglement. Aims at learning interpretable data represen-

tations ([19, 20, 21, 29, 30, 31, 32, 33]), Chen et al. [19] proposed InfoGAN to

maximize the mutual information between the latent features and generated images,

which realizes representation disentanglement in an unsupervised way. Similarly,

Higgins et al. [20] introduced β-VAE which derives such representations by adding

an adjustable hyperparameter to a variational auto-encoder (VAE) [34], balancing

the latent channel capacity and the independence constraints. Tulyakov et al. [29]

presented MoCoGAN to learn motion and content decomposition for video genera-

tion. Although the above methods realize representation disentanglement without

label supervision, one cannot manipulate the latent factors directly since the se-

mantic meanings behind the disentangled factors cannot be explicitly obtained.

Thus, Odena et al. [21] augmented GANs with an auxiliary classifier, allowing

image outputs to be conditioned on the desirable latent factors. Furthermore, Peng

et al. [32] applied reconstruction-based disentanglement and self-supervision to
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guarantee completely decoupling of latent factors, which benefits pose-invariant

face recognition. Tran et al. [30], and Liu et al. [31] proposed DR-GAN, and

MTAN, which derived pose-invariant feature via disentanglement technique and

adversarial learning to facilitate the face recognition. Tian et al. [33] employed

GAN and cycle-consistency for disentangling latent features in multi-view image

manipulation. Despite significant progresses, most existing works only focus on

producing such representations from a single data domain.

Image-to-Image Translation. To convert images from one style to another,

Isola et al. [9] chose to observe pairs of images for learning GAN-based models.

Taigman et al. [10] presented Domain Transfer Network (DTN) to performed such

tasks by employing feature consistency across domains. Without observing cross-

domain image pairs, Zhu et al. [11] learned the bidirectional domain mappings in

pixel space with a cycle consistency loss; similar ideas were also applied by [35]

and [36]. Coupled GAN (CoGAN) [12] binds high-level information between

two data domains for learning the joint distribution. UNIT [13] is extended from

CoGAN, which integrates VAE and GAN to achieve image translation by mapping

the data between two domains to the same latent space. While the above methods

produce promising results, they cannot provide diverse outputs due to their model

designs or issues like model collapse.

For multi-modal translation, Zhu et al. [27] observed pairs of images for deriv-

ing bijection mapping between the latent and output spaces. Gonzalez-Garcia et

al. [28] decomposed the paired inputs into disjoint shared and exclusive parts

to perform diverse image-to-image translation between two domains. Recently,

Huang et al. [24] and Lee et al. [25] concurrently proposed MUNIT and DRIT

respectively. MUNIT and DRIT both factorize the latent representation into a

domain-invariant content feature and a domain-specific style feature from unpaired

data. However, their model designs limit the use of data across multiple domains.

Cross-Domain Image Manipulation. In addition to image-to-image transla-

tion, several recent works [22, 37, 38, 1] further address image synthesis tasks
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with the ability of manipulating the attributes of interest. For example, Liu et

al. [22] considered cross-domain disentangled representation with supervision

from single-domain data which aims to manipulate the desirable attributes across

different domains. However, they can only deal with a pair of data domains us-

ing the proposed model. To handle such tasks across multiple domains, Choi

et al. [37], He et al. [38], and Liu et al. [1] proposed StarGAN, AttGAN, and

UFDN respectively, which all perform multi-domain image-to-image translation

by manipulating the domain label directly. Although StarGAN allows training of

multiple domains simultaneously by the unified model structure, it does not exhibit

ability in disentangling desirable latent representation. Nevertheless, while the

above models are able to manipulate face images, our model further allows one

to perform image-to-image translation on a variety of images including images of

faces and natrual sccenes. Most importantly, all of them cannot allow multi-modal

outputs, which might not be desirable for practical uses.

Unsupervised Domain Adaptation (UDA). Domain adaptation [39, 40, 14, 15,

16, 18] addresses the same learning tasks across domains, with the goal of elimi-

nating the domain shift (i.e., dataset bias). And, unsupervised domain adaptation

(UDA) specifically deals with the scenario in which no label supervision is avail-

able during training in the target domain. For instance, GAKT [39] applied an

adaptive graph to transfer discriminative information from a labeled source to an

unlabeled target domain. Also, Ding et al. [40] integrated low-rank coding with

deep neural network for preserving global structures across source and target, to

achieve more effective knowledge transfer. Recently, several GAN-based methods

have been proposed for UDA. For example, Ganin et al. [14] introduced a Domain

Adversarial Neural Network (DANN) framework which contains a domain classi-

fier with its gradient reversal layer serving as a domain-invariant feature extractor.

Tzeng et al. [15] adapted feature extractors and classifier of source and target

domains by domain adversarial learning strategies to tackle UDA. Bousmalis et

al. [16] utilized the decomposed representations to produce domain-invariant fea-
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Figure 1.2: The network architecture of our Multi-domain and Multi-modal Repre-

sentation Disentangler (M2RD), which consists of two modules: 1) Representation

disentangler, composed of a content encoder Ec, a domain encoder Ed, and a con-

tent discriminator Dc, and 2) Multi-domain and Multi-modal GAN consisting of a

generator G, and a domain discriminator Ddom with an auxiliary domain classifier.

Note that zc, zd denote the domain-invariant and specific features extracted from

different domains respectively. Together with a domain code l, the final feature

representation z = [zc, zd, l] can be utilized for cross-domain and multi-modal

image manipulation.

tures to facilitate cross-domain classification. Hoffman et al. [18] further extended

CycleGAN [11] and applied adversarial learning and cycle-consistency for both

feature and pixel-level adaptation.

Nevertheless, the above models typically do not exhibit abilities in disentan-

gling particular image attributes, nor to manipulate image outputs across domains

with multi-modal diversity. In Table 1.1, we compare our proposed model with

recent deep learning methods in the aforementioned topics.
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1.3 Multi-domain and Multi-modal Representation

Disentangler

1.3.1 Notation and Model Overview

Given an image set {Xi}N
i=1 across N distinct domains, our M2RD jointly learns a

domain-invariant content feature {zc
i }N

i=1 and domain-specific feature {zd
i }N

i=1 from

the input image xi ∈ Xi, and then utilize discrete domain code {li}N
i=1 to further

exploit the domain information in the latent space. We note that the domain code li

can be implemented by a one-hot vector, a real-value vector, or even concatenation

of multiple one-hot vectors, which describes the domain of interest.

As illustrated in Fig. 1.2, our framework consists of two network modules. First,

we have a representation disentangler with a content discriminator. This module

contains a content encoder Ec and a domain encoder Ed, which are shared by

input data across different domains. By advancing adversarial learning strategies,

this disentangler module allows us to derive domain-invariant and specific features.

The former provides the content information of the input data disregarding of its

domain of origin, while the latter describes the domain of interest, which allows

multi-modal manipulation as described later.

On the other hand, we have a Multi-domain and Multi-modal Generative

Adversarial Networks as the second network module in Fig. 1.2, which includes a

generator G and a domain discriminator Ddom, while the same content encoder Ec

is deployed to observe content consistency. With the observed domain-invariant

content feature zc, this module performs both multi-domain and multi-modal image

translation by manipulating the derived domain-specific feature zd and the domain

code l. The details of our proposed network will be discussed in the following

subsections.



doi:10.6342/NTU202301924

1.3. Multi-domain and Multi-modal Representation Disentangler 9

1.3.2 Representation Disentangler

As illustrated in Fig. 1.2, our proposed network encodes cross-domain image inputs

using shared content encoder Ec and domain encoder Ed. To enable the encoded

content features to be domain-invariant, we apply a content discriminator Dc to

eliminate the domain differences between the resulting features inspired by [14].

In other words, we have Dc aim to correctly produce domain code prediction l̂

from the encoded content features zc
i . Thus, the objective function of this content

discriminator LDc
adv is derived as follows:

LDc
adv = E[log(P (l̂ = li|Ec(xi)))], (1.1)

where P is the probability distribution over domains l̂, which is calculated by the

content discriminator Dc.

With the above design, our content encoder Ec would be able to extract the

domain-invariant content features from input data, which are observed across

multiple domains. As a result, the objective function of the encoder Ec is to

maximize the cross-entropy of the content discriminator:

LEc
adv = −LDc

adv = −E[log(P (l̂ = li|Ec(xi)))]. (1.2)

Finally, in order to learn a joint and continuous representation for cross-domain

data, and further perform stochastic sampling in the testing phase, we enforce

the Kullback-Leibler divergence for our generative network model. This encourages

the domain-specific feature zd to fit a prior Gaussian distribution N(0, I). Thus,

the objective LKL is calculated as:

LKL = E[KL(Ed(xi)||N(0, I))] (1.3)

We note that, derivation of the above domain-invariant content representation

is the reason why we can apply such features for unsupervised domain adaptation

(UDA), which desires a common feature representation shared by different domains

for adaptation purposes. With the above network design, we enforce the derived
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content features zc does not contain any domain information, and thus the domain

shift can be properly suppressed. As a result, we can simply deploy an extra

classifier based on zc if the UDA is of interest. To be more precise, the objective

Lcla for this added UDA classifier can be expressed as follow:

Lcla = −
Nsrc∑
k=1

ysrc
k · log ỹsrc

k . (1.4)

where ỹsrc
k is the predicted output from the k-th labeled source input, and ysrc

k is

the ground truth label.

1.3.3 Multi-domain and Multi-modal GAN

Once the domain-invariant feature zc and the domain-specific ones zd are observed,

the second module in our proposed architecture performs multi-domain and multi-

modal image translation (i.e., cross-domain image manipulation with multi-modal

diversity). We now discuss how these two tasks are jointly performed.

Similar to most existing image translation works, we perform image synthesis

by combining the derived content feature zc with the domain feature zd. Extended

from AC-GAN [21], we additionally assign the domain code l into the above feature

representation to form the final feature representation z = [zc, zd, l], followed by

the decoding process.

Recall that, the representation zd is learned to describe domain-only informa-

tion, while such representation is shared by cross-domain data inputs. Thus, with

the sampling strategies noted in Section 1.3.2, we will be able to reconstruct the

image output and exhibit multi-modal diversity. In other words, within-domain

variants of the recovered output associated with the same content feature zc can be

produced via sampling zd. And, the above domain code l is added to ensure that the

output image is recovered at or translated into the domain of interest. This is how

our proposed model differs from existing image translation or disentanglement

works.

With the above explanations, we now define the object functions applied in
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Figure 1.3: In addition to the architecture described in Fig. 1.2, we further apply

the objective function Lsty to enforce the reconstruction on the domain-specific

feature. More details can be found in Section 1.3.3

this network module. First, for image recovery guarantees, we calculate the

reconstruction loss Lrec for the reconstructed image x̂i:

Lrec = ||xi − x̂i||1, (1.5)

Note that xi is the (ground truth) input, and x̂i = G([zc
i , zd

i , li]).

Inspired by DTN [10], we further preserve the content consistency between

translated images x̃i and input image xi. Thus, an objective function Lcon based

on the same content encoder Ec is introduced in the feature level, which can be

formulated as:

Lcon = ||Ec(xi)− Ec(x̃i)||2, (1.6)

where x̃i = G([zc
i , zd

j , lj]), i ̸= j.

Also, similar to DRIT [25], we utilize style regression loss to enforce the

reconstruction on the domain-specific feature, as illustrated in Fig. 1.3, with the

objective Lsty expressed as:

Lsty = ||Ed(G([zc
i , z̄d, lj])))− z̄d||2, (1.7)

where z̄d is sampled from a prior Gaussian distribution N(0, I).
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However, when manipulating images across domains using the above network

module, there is no guarantee that the output image x̃i would properly satisfy the

domain information based on the domain code l inserted. Thus, as a part of the

AC-GAN extension, we deploy a domain discriminator Ddom in Fig. 1.2 which

performs multi-task learning for combining adversarial learning with an auxiliary

domain classification task.

To be more precise, this discriminator not only determines the authenticity of

the output images, it also classifies its domain label output to enforce the ability

of the introduced domain code for domain disentanglement. Thus, the objective

functions of this domain discriminator Ddom and generator G are calculated as

follows:

LDdom
adv = E[log(Ddom(x̃i))] + E[log(1−Ddom(xi))], (1.8)

LDdom
aux = E[log(P (l̄ = lj|x̃i))] + E[log(P (l̄ = li|xi))], (1.9)

LG
adv = −E[log(Ddom(x̃i))], (1.10)

where l̄ denotes the prediction output of Ddom. We note that the objective LDdom
aux

aims at maximizing the mutual information between the domain code and the

translated image [19].

1.3.4 Full Objectives

In summary, the full objective function L of our model can be summarized below:

L = λ1LDc
adv + λ1LEc

adv

+ λ2(LDdom
adv + LDdom

aux ) + λ2LG
adv

+ λrecLrec + λconLcon

+ λKLLKL + λstyLsty + λclaLcla,

(1.11)

where the hyperparameters λ regularize each loss term. Nevertheless, we fix the

values of λ for each dataset, and do not fine-tune them for each input instance.
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Figure 1.4: Example results of our multi-modal image translations and the compar-

ison with the existing image-to-image translation methods. We observe that our

model is able to generate high-quality images with meaningful diversity.

To train our model, we alternatively update content encoder Ec, domain encoder

Ed, generator G, content discriminator Dc, and domain discriminator Ddom via the

following gradients:

θEc

+←− −∆θEc
(Lrec + LEc

adv + Lcon + Lsty)

θEd

+←− −∆θEd
(Lrec + LKL)

θG
+←− −∆θG

(Lrec + Lcon + LKL + LG
adv + LDdom

aux + Lsty)

θDc

+←− −∆θDc
(LDc

adv)

θDdom

+←− −∆θDcom
(LDdom

adv + LDdom
aux ).

(1.12)

We note that, if UDA is of interest, an additional classifier (as discussed in Sec-

tion 1.3.2) will be added with the loss Lcla. Thus, the gradient of θEc is derived as

follows:

θEc

+←− −∆θEc
(Lrec + LEc

adv + Lcon + Lsty + Lcla). (1.13)

Once the training is complete, our model can be applied to image translation in

the following ways:

1) For an input image, we utilize the content encoder Ec to extract its content
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feature. By conditioning on a randomly sampled domain-specific feature with a

selected domain code li, generator G would manipulate and output the image in

the domain of interest.

2) Given two images of interest, we extract the content feature zc
i from one image,

and the domain-specific feature zd
j from another (together with its domain code lj).

This can be viewed as example-guided image translation.

It is worth noting that, our disentangled representations are achieved by jointly

minimizing domain confusion loss (LDc
adv, LEc

adv), reconstruction loss Lrec, content

consistency loss Lcon, and style regression loss Lsty. Specifically, we explicitly

derive the domain-invariant content feature from input images via domain con-

fusion loss (LDc
adv, LEc

adv) in an adversarial manner, allowing our content encoder

Ec to extract domain-invariant features. Moreover, we have the content and style

consistency losses (Lcon and Lsty) deployed in our architecture; the former en-

sures that the input and the translated images preserve the same content feature

representation, while the latter enforces the transformed output to be of the style

of interest. Finally, the reconstruction loss Lrec is applied to jointly observe the

aforementioned disentangled representation with data recovery guarantees. In

Table 1.3, we have ablation studies to support the design of our proposed network

in performing representation disentanglement.

Also, as shown in Fig. 1.4, 1.6, 1.9, we show that our proposed model is able

to derive disentangled representations from input images of the seen domains and

producing diverse outputs in the seen domain of interest during inference time.

We note that, existing state-of-the-art image translation models via representa-

tion disentanglement (e.g., UNIT [13], E-CDRD [22], MUNIT [24], DRIT [25],

UFDN [1]) cannot generalize to images in unseen domains. This also verifies that

our model exhibits excellent abilities in decoupling content and style-dependent

features for image translation.
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Figure 1.5: Example results of the comparison with UFDN [1] in summer-to-winter

translation. Note that since UFDN [1] does not observe and exhibit intra-domain

image variety, its output might be irrational in terms of appearance or lighting (e.g.,

mix of daytime and nighttime appearance), while ours are more realistic and have

a higher visual quality.

1.3.5 Comparisons to Recent Models

It is correct that, while our model is related to a recent multi-domain image

translation method of UFDN [1], and a number of network modules are shared by

this work and ours, multi-modality is the major highlight of our work, plus the

introduced feature-level consistency to improve the output image quality. As we

noted in Table 1.1, our M2RD further exhibits multi-modal property during the

translation/synthesis process, which cannot be achieved by UFDN [1]. However,

such extension is not trivial. First, our M2RD needs to derive disjoint domain-

specific features (zd) from the domain-invariant features zc at the output of the

domain encoder (Ed). With detailed model and loss designed are described in

our work, we then fit such disentangled domain-specific features to Gaussian

distribution priors, allowing the learning of multi-modality in image translation.
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As discussed, the domain code (l) in our model serves as supervision, which

guides our unified generator to synthesize the output image in the domain of

interest. In contrast, UFDN [1] can only perform one-to-one image translation

without diversity. In Fig. 1.4 and Table 1.2, we present qualitative and quantitative

comparisons respectively to confirm the capability of our M2RD to translate images

across multiple domains with sufficient diversity.

Table 1.2: Quantitative comparisons for visual realism and diversity with MUNIT,

DRIT, UFDN, and our M2RD on summer-to-winter translation.

MUNIT DRIT UFDN M2RD (Ours)

Realism

User Study (↑) 21.17% 18.17% 19.33% 41.33%

FID (↓) 85.09± 0.77 68.44± 0.75 87.69± 0.70 57.76± 0.23

LPIPS (I2O) (↓) 0.417± 0.003 0.385± 0.002 0.758± 0.002 0.339± 0.003

Diversity LPIPS (O2O) (↑) 0.225± 0.002 0.173± 0.002 0.040± 0.001 0.196± 0.003

Second, we consider to exploit both inter-domain and intra-domain variation

during image translation, while UFDN [1] only observes inter-domain variation.

As shown and compared in Table 1.2, the lack of the ability in modeling intra-

domain diversity would lead to a discernible drop in visual quality. Take Fig. 1.5

for examples, the domain change in seasons would be viewed as inter-domain

variations, while the day/night lighting, etc. condition changes are modeled as

intra-domain variations. Without our derivation of domain-specific features zd,

one cannot produce translated image outputs with satisfactory quality, generating

winter scenes with irrational or unrealistic lighting conditions (and thus poor user

study results, as shown and compared in Table 1.2).

Third, we employ cycle-consistency loss in our model for feature consistency

guarantees, while UFDN [1] does not include such constraints and thus suffers from

drops in visual quality in performing image translation. To be more precise, we

utilize content consistency to preserve content information during the generation

process, instead of directly applying pixel-level consistency as used in DRIT [25].

Throughout our experiments, we observe that adding data recovery constraints
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over pixel levels would be overly restrictive and limit the diversity of the image

outputs. With the above observations and as summarized in Table 1.2, we show

that our model achieved higher LPIPS (O2O) score than DRIT [25] did, which

supports the effectiveness of our model in preserving content consistency during

image translation. With the above remarks, we believe the technical contributions

of this work would be sufficiently unique, which makes our work very different

from UFDN [1].

1.4 Experiments

1.4.1 Implementation Details

We utilize PyTorch [41] to implement our model and choose ADAM [42] as the

optimizer to train our network, with the learning rate, β1, and β2 set as 10−4, 0.5,

and 0.999, respectively. In our all experiments, we set the hyperparameters as

follows: λ1 = 1, λ2 = 1, λrec = 10, λcon = 1, λKL = 10−3, λsty = 10, and

λcla = 1.

More details about the network architecture for Summer↔Winter and Photo

↔ Art datasets are described in the following.

For content encoder Ec, we apply convolutional architecture composed of three

convolution layers and four residual blocks. For domain encoder Ed, we implement

it by utilizing four convolution layers followed by a fully-connected layer. Also, we

use four residual blocks, followed by three deconvolution layers to realize generator

G. For content discriminator Dc, it consists of five fully-connected layers. For

domain discriminator Ddom, we utilize the architecture of PatchGANs [9] that

contains six convolution layers, and add two convolution layers for outputting

real/fake and domain code prediction respectively.
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1.4.2 Datasets

We consider four different categories of image datasets, i.e., digit, face, seasons,

and art paint, for performance evaluation:

Digits. The image datasets of MNIST, USPS, and Street View House Number

(SVHN) are hand-written digit image datasets, which are viewed as images observed

in different domains. MNIST contains 60,000/10,000 images for training/testing,

and USPS consists of 7,291/2,007 images for training/testing. SVHN is composed

of colored digits images with complex backgrounds and contains 73,257 training

images, 26,032 testing images, and 531,131 extra images. All images are converted

to RGB images with the size of 32 × 32 × 3 pixels for our experiments.

Faces. We consider facial photo, sketch, and paint images as data in different

domains. For facial photo images, we consider the CelebFaces Attributes dataset

(CelebA) [43], which is a large-scale face image dataset including more than

200K celebrity photos annotated with 40 facial attributes. Following the settings

of [9, 22, 1], we randomly transfer half of the photos to sketch, then convert the

remaining photos into paint images.

Summer ↔ Winter. The Summer ↔ Winter dataset [11] contains natural

scene images categorized into summer or winter. The size of all images is 256

× 256 × 3 pixels, and the numbers of images are 1273 and 854 for summer and

winter, respectively.

Photo↔Art. We choose the photo from Yosemite [11] and the Art dataset [44]

which collected from Wikiart containing 14 different artists. We conduct our

experiments on Monet, Van Gogh, and Ukiyo-e, and also resize all images into 256

× 256 × 3 pixels.

It is worth noting that, while image data across multiple domains are presented

during the training stage, we do not observe any cross-domain image pairs when

learning our proposed model. This is different from recent translation models

like [9, 27] with such requirements.
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Figure 1.6: Example results of multi-modal image translation for face images

across multiple domains.
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Figure 1.7: Example results of image translation across multiple domains among

photo/sketch/paint.

Figure 1.8: Example results of our multi-domain image translations and manipula-

tions. (a) Selected images from three different domains. (b) The horizontal axis

shows the cross-domain style interpolation for facial photo/sketch/paint, while the

vertical axis verifies that the domain-invariant content feature space is continuous.

1.4.3 Multi-domain and Multi-modal Image Translation and

Manipulation

Multi-modal image manipulation

In order to provide diversity in the produced image outputs, we first manipulate the

latent feature space by sampling the domain-specific feature from a prior Gaussian

distribution, concatenated by a desired one-hot domain code. Example results
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Figure 1.9: Example results of our multi-domain and multi-modal image transla-

tions. We translate the input photos into another Paint style by manipulating the

domain code. Further, by randomly sampling distinct noise vectors, we are able to

synthesize output images in the domain of interest with multi-modality.

are shown in Fig. 1.4 on summer↔ winter dataset and Fig. 1.6 on face dataset,

in which multiple outputs in each domain can be produced based on the same

input image. Specifically, in Fig. 1.4, we compare our M2RD with the state-of-

the-art image-to-image translation methods, showing that our M2RD is capable

of synthesizing high-quality output images with diversity. We observe that only

injecting noise vectors to the generator of CycleGAN [11], which originally focuses

on one-to-one image translation, cannot produce diverse outputs. While UFDN [1]

translates images across multiple domains, the generated images mainly belong to

one mode and fail to synthesize multi-modal images. Comparing with DRIT [25]

and MUNIT [24], DRIT also generates plausible results, and MUNIT produces

images with unrealistic style. We also demonstrate that our model without content

discriminator (Dc) cannot preserve domain-invariant information well, causing

unrealistic and ill-quality results. From the above experiments, the use of our

proposed M2RD for multi-modal image translation can be successfully verified.

In addition to qualitative results and comparisons, we further provide additional
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Figure 1.10: Example results of linear interpolation between two sampled random

vectors both on Simmer↔ Winter and Photo↔ Art dataset.

Table 1.3: Ablation studies on summer to winter translation.
w/o Dc w/o Ddom w/o Lcon w/o Lsty w/o LKL M2RD (Ours)

Realism
FID (↓) 60.35± 0.56 444.48± 3.71 73.76± 0.97 68.65± 0.82 99.24± 1.37 57.76± 0.23

LPIPS (I2O) (↓) 0.354± 0.002 0.976± 0.003 0.364± 0.002 0.347± 0.002 0.397± 0.003 0.339± 0.003

Diversity LPIPS (O2O) (↑) 0.136± 0.002 0.067± 0.004 0.187± 0.002 0.107± 0.001 0.158± 0.002 0.196± 0.003

quantitative comparisons with MUNIT [24], DRIT [25], and UFDN [1], which are

known as the state-of-the-art models on image translation.

To assess the visual quality and realism of the synthesized images, we adopt

Frechet Inception Distance (FID) [45] and Learned Perceptual Image Patch Simi-

larity (LPIPS) [46] as the metrics for quantitative evaluation. We compute FID to

measure the distance between the generated distribution and the real image input,

and we also calculate average Input-to-Output LPIPS, denoted as LPIPS (I2O), to

measure the distance between the input image and its corresponding translated out-

puts (note that lower scores indicate outputs with better visual quality). In addition,

we conduct studies by asking 30 users with diverse backgrounds and knowledge
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with 20 questions, each contains a given input image and four translated images

generated by the above models (including ours), and the user is asked to select

the one which he/she feels to be most appropriate/realistic. In Table 1.2, we show

that our M2RD outperformed the aforementioned state-of-the-art multi-modal or

multi-domain image translation models in all categories. With this experiment, we

confirm that our model is capable of producing output images with satisfactory

visual quality.

In addition to visual realism, we provide quantitative comparisons for visual

diversity by calculating average Output-to-Output LPIPS, denoted as LPIPS (O2O),

to measure the distance between the outputs translated from the same input image

(note that larger distance values represent output images with more diversity). As

shown in Table 1.2, we see that despite UFDN [1] is capable of translating images

across multiple domains, it cannot achieve multi-modal image translation (with

the lowest LPIPS score). More importantly, our model was shown to perform

favorably against DRIT [25] and MUNIT [24], which support the ability of our

model in synthesizing plausible outputs with sufficient multi-modal diversity. With

the above quantitative comparisons, the robustness and superiority of our model

can be successfully verified.

Multi-domain image manipulation

We demonstrate the ability of our model to realize image translation across multiple

domains using face dataset. Given images from an arbitrary domain (i.e., top

row in Fig. 1.7), we extract their domain-invariant and domain-specific features,

respectively. For translation purposes, we assign and concatenate the above features

with different domain codes of interest (e.g., [1, 0, 0] for photo, [0, 1, 0] for sketch,

and [0, 0, 1] for paint) for image reconstruction. The translated results were shown

in each corresponding column in the bottom row of Fig. 1.7.

Then, given images from different domains (i.e., photo, sketch, and paint

in Fig. 1.8a), we extract their domain-invariant (content) features and domain-
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specific (style) features. Then, we perform feature interpolation within the same

feature type. Using the resulting content/style features with an interpolated domain

code, we are able to produce cross-domain image translation outputs. As shown

in Fig. 1.8b, outputs in vertical and horizontal axes represent image variants in

(domain-invariant) content and (domain-specific) style with the associated domain

code, respectively. Observing the diagonal entries of Fig. 1.8b, which shows the

extreme translation case, and fully exhibits the effectiveness and robustness in the

derived feature representations for multi-domain image manipulation.

In addition to faces, we also demonstrate the use of our model for manipu-

lating hand-written digit images. As shown in Fig. 1.11a and b, by manipulat-

ing the domain-specific feature with the desirable domain code (e.g., [1, 0] for

USPS/SVHN, and [0, 1] for MNIST), our model is able to convert the USPS

and SVHN images into MNIST ones. The above experiments of the use of our

proposed M2RD for multi-domain image manipulation are supportive.

Multi-modal translation across multiple domains

As shown in Fig. 1.9, we conduct the experiment of multi-modal image translation

across multiple domains on Photo↔ Art dataset. By manipulating the domain

code (e.g., [0, 0, 0, 1] for Photo, [0, 0, 1, 0] for Monet, [0 , 1, 0, 0] for Van Gogh,

and [1, 0, 0, 0] for Ukiyo-e), our M2RD is capable of translating given images to

the domain of interest. We show that our model successfully captures different

Painting style and presents clearly distinct results. Furthermore, by randomly

sampling different noise vectors from the prior Gaussian distribution, we are able

to model the intra-domain variation and perform multi-modal diversity.

For further evaluate the domain-specific (style) latent space derived by M2RD,

we perform linear interpolation between two sampled style features as shown in

Fig. 1.10. The corresponding results both on Summer↔ Winter and Photo↔ Art

dataset change smoothly and continuously along with the variations of style latent

feature.
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Table 1.4: A classification accuracy (%) for target domain images. For example,

USPS→MNIST denotes USPS and MNIST as source and target domain images,

respectively.

MNIST→ USPS USPS→MNIST SVHN→MNIST

DANN [14] - - 73.85

Associative DA [17] - - 93.71

DSN [16] - - 82.70

DTN [10] - - 84.88

PixelDA [47] - 95.9 -

DRCN [48] 91.80 73.70 82.00

CoGAN [12] 95.65 93.15 -

ADDA [49] 89.40 90.10 76.00

UNIT [13] 95.97 93.58 90.53

CyCADA [18] - - 90.08

ADGAN [50] 92.80 90.80 92.40

CDRD [22] 95.05 94.35 -

SBADA-GAN [51] 97.6 95.0 76.1

UFDN [1] 97.13 93.77 95.01

M2RD (Ours) 98.54 98.49 94.03
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Figure 1.11: Cross-domain continuous image manipulation for (a) USPS →

MNIST and (b) SVHN→MNIST.

Quantitative Ablation Study

In addition to the qualitative ablation study (i.e., Fig. 1.4) which partially performs

such ablation studies (i.e., our model with and without Dc), we now present addi-

tional quantitative ablation studies in Table 1.3 to verify the technical contributions

of our work.

As shown in Table 1.3, our model surpassed others in terms of all metrics of

FID and LPIPS scores, which confirms the visual quality and diversity achieved

by the full model of our M2RD. We observe that, without content discriminator

Dc, all scores became inferior since the derived features from content encoder Ec

will not be domain-invariant and would carry the domain-specific information,

even with the presence of domain-specific feature zd and domain code l. This

supports our network/loss designs for representation disentanglement. Moreover,

without domain discriminator Ddom, all scores were degenerated significantly

due to image details of the outputs across different domains cannot be properly

preserved. Next, when the content consistency loss Lcon was disabled, the content
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information would not be preserved well, resulting in poor visual quality and

inferior FID/LPIPS scores. If the style regression loss Lsty was removed, we were

not able to ensure the style information could be contained well in domain-specific

features zd, and thus lead to lower LPIPS (O2O) scores (i.e., images with poor

diversity). Without LKL, we were not able to enforce the encoded domain-specific

features to fit the prior Gaussian distribution, and thus failed to exhibit the multi-

modal ability in cross-domain image translation. As a result, all the scores based

on image realism and diversity dropped drastically. With the above quantitative

ablation studies, we confirm the effectiveness and robustness of our M2RD in

performing multi-modal image translation across multiple domains.

1.4.4 Unsupervised Domain Adaptation

Finally, we apply our model for cross-domain classification. More specifically, we

consider the challenging task of unsupervised domain adaptation (UDA), which

aims at classifying images in the target domain while the labels are only available

in the source domain during training. We conduct the UDA experiments using

the handwritten digit datasets. For instance, MNIST→ USPS indicates the use of

MNIST as source-domain labeled data, while USPS is in the target domain without

any categorical information. As mentioned in Section 1.3.2, UDA can be achieved

by our model by adding an extra classifier to recognize the disentangled content

features. This classifier is jointly trained with our M2RD.

Table 1.4 compares the results of our model with recent translation-based

UDA approaches. For MNIST → USPS, we achieved improved performances

over the state-of-the-art methods, and our model performed favorably against

others in USPS→MNIST. As for SVHN→MNIST, which is considered to be a

more difficult scenario due to significant differences in background, stroke, and

illumination, very promising results were reported by our proposed model as well.

In addition to quantitative evaluation, we further provide visualization results

to further assess the UDA ability using our derived features. As shown in Fig. 1.12,
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Figure 1.12: t-SNE visualization of the handwritten digit data for USPS→MNIST.

Note that different colors indicate data of (a) different digits classes 0-9 and (b)

different domains (source/target).

we visualize domain-invariant representations of USPS→MNIST using t-SNE.

To be more precise, Fig. 1.12a illustrates the image data of 10 categories which

were properly separated, while Fig. 1.12b shows the same data associated with

different domains (which are close to each other with reduced domain differences).

1.5 Conclusions

In this thesis, we proposed a unified deep learning model of Multi-domain and

Multi-modal Representation Disentangler (M2RD). This unique network archi-

tecture addresses image manipulation and recognition across multiple domains

by properly disentangling feature representation of interest. As a unique char-

acteristic, multi-modal diversity is introduced into our proposed model, which

realizes multi-modal image translation during the image manipulation process.

In our experiments, we successfully verified that our model produced promising

multi-domain and multi-modal image manipulation results using face, seasons,

paints, and handwritten digit data, and can be applied to solve unsupervised domain

adaptation with satisfactory accuracy.
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Chapter 2

Knowledge Transfer for Semantic

Categories

Zero-shot learning (ZSL) requires one to associate visual and semantic information

observed from data of seen classes, so that test data of unseen classes can be

recognized based on the described semantic representation. Aiming at synthesizing

visual data from the given semantic inputs, hallucination-based ZSL approaches

might suffer from mode collapse and biased problems due to the lack of ability

in modeling the desirable visual features for unseen categories. In this thesis,

we present a generative model of Cross-Modal Consistency GAN (CMC-GAN),

which performs semantics-guided intra-category knowledge transfer across image

categories, so that data hallucination for unseen classes can be achieved with proper

semantics and sufficient visual diversity. In our experiments, we perform standard

and generalized ZSL on four benchmark datasets, confirming the effectiveness of

our approach over that of state-of-the-art ZSL methods.

2.1 Introduction

Deep learning approaches have shown promising performances in several computer

vision tasks like object classification [57, 58], detection [59, 60], and segmenta-

29
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Semantics-Guided
Intra-Category Knowledge Transfer
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Sampled diversity (Class 1) Transformed diversity (Class 2)
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Figure 2.1: Illustration of transferring semantics-guided intra-category knowledge

for hallucinating visual features of unseen class with proper semantics and visual

appearance. Note that visual diversities across seen and unseen classes are learned

and preserved.

Table 2.1: Comparisons with recent approaches on zero-shot learning.
Cross-Modal Embedding based ZSL Data Generation based ZSL

SJE [52] DEM [53] CADA-VAE [54] f-CLSWGAN [2] f-VAEGAN [55] LsrGAN [56] Ours

Cross-modal association ✓ ✓ ✓ ✓ ✓ ✓ ✓

Hubness alleviation - ✓ ✓ ✓ ✓ ✓ ✓

Pseudo visual data synthesis - - - ✓ ✓ ✓ ✓

Mode-collapse alleviation - - - - ✓ - ✓

Modeling intra-class diversity - - - - - - ✓

tion [61, 62]. Deep neural networks utilized in such applications are typically

trained in a fully supervised fashion, which requires a large amount of labeled data

for each category of interest. However, real-world data often follow the long-tailed

distribution, and thus collecting a sufficient amount of annotated training samples

would not be applicable to every class. When it comes to applications like the

recognition of rare species or medical image analysis, only a few or even no visual

samples are at hand, which leads to a severe overfitting problem. Hence, the
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scalability and applicability of existing supervised deep learning models would be

limited.

To generalize the model learned from seen classes to handle unseen class data,

a learning paradigm called zero-shot learning (ZSL) [63, 64] is proposed to transfer

the knowledge across such categories. More precisely, ZSL aims at recognizing

instances of unseen classes without observing any visual cues during training. With

the aid of side information (e.g., image attributes or texture descriptions), ZSL

approaches focus on relating visual and semantic domains, so that data presented

in unseen categories can be processed and classified accordingly. For a more

challenging yet practical scenario, generalized zero-shot learning (GZSL) [65,

66] requires one to not only recognize data of previously unseen classes during

inference, but also exhibit the ability to classify images of seen categories as well.

One group of methods formulate ZSL as a visual-semantic matching task

in a deterministic manner, and seeks to embed both visual representations and

the corresponding class attributes into a shared feature space for classification

purposes. With such feature representations derived, matching query images of

unseen categories and their semantic representation can be performed. For example,

methods like [52, 67, 68] choose to project visual data of seen classes into a space

spanned by all class attributes. However, there is no guarantee to preserve both

inter-class divergence and intra-class variation after embedding high-dimensional

visual data into a less informative low-dimensional class attribute space. This might

lead to the hubness problem [69, 53, 70], making the projected data easily clustered

as hubs and thus hamper the recognition performance. In order to alleviate this

problem, [69, 53, 70, 71] learn the mapping from attribute space to visual space

instead. However, directly mapping semantic attributes to visual space might lead

to ambiguity during ZSL classification, since the separation between objects with

overlapping attributes might not be easily achieved.

In contrast to cross-modal matching, another group of approaches utilizes

generative models to facilitate the learning of embedding spaces for ZSL. Inspired
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by generative adversarial networks (GANs) [23], methods like [2, 72, 55, 73] learn

a feature generator that hallucinates visual data from class-level attributes, so that

classifiers can be trained accordingly. While promising results were reported,

the generation process of existing GAN-based methods is generally based on a

randomly sampled noise vector conditioned on the class/attribute information. In

other words, intra-class diversity simply relies on seen-class data sampled during

GAN training. This might suffer from mode collapse [74] and biased problems [65],

resulting in synthesized data visually similar to each other or fitting particular seen

categories, respectively.

In this thesis, we aim at exploiting and transferring inherent intra-class visual

variation across image categories, so that hallucinating unseen class data can be

realized, as illustrated in Fig. 2.1. In particular, we propose a novel Cross-Modal

Consistency GAN (CMC-GAN) for ZSL hallucination, as depicted in Fig. 2.2.

Different from existing GAN-based models for data hallucination, CMC-GAN

jointly observes semantic and visual data as inputs, with characteristics described

as follows: (1) Unpaired visual and semantic training data: When learning

to synthesize visual data, CMC-GAN jointly takes class-specific attributes and a

pair of visual data as the inputs, which are not required to be sampled from the

same category during training. This allows us to generate visual data across image

categories. (2) Diversity preserving across categories: Without requiring visual

and semantic correspondences during training, we introduce a unique module of

semantics-guided intra-category knowledge transfer, which translates the observed

intra-class variation from one class to another with the guidance of the semantic

attributes of that class as illustrate in Fig. 2.1. This allows us to transfer and

synthesize visual data for unseen classes. (3) Data generation with semantics

and visual diversity preservation: Our CMC-GAN is able to either synthesize

visual data given only semantic information, or to produce such data with additional

visual diversity observed from other seen classes. By observing semantic and visual

diversity consistency at different modules/outputs, our CMC-GAN is capable
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of hallucinating desirable outputs across (seen or unseen) image categories. In

Table 2.1 (and as discussed in Sec. 2.2), we compare several ZSL methods, and

highlight the differences between ours and such models.

The contributions of this thesis are summarized below:

• We present a Cross-Modal Consistency GAN (CMC-GAN) model for ZSL,

allowing hallucination of visual data while preserving and manipulating

desirable semantic and visual diversity information.

• Instead of proposing novel network designs or loss functions, our framework

focuses on translating visual diversity into categories of interest, so that

hallucination of unseen class data can be achieved.

• We uniquely observe semantic and visual diversity consistency at attribute

and feature levels, so that mode collapse or biased problems can be alleviated.

• Our CMC-GAN tackles both ZSL and GZSL tasks using benchmark datasets,

and performs favorably against state-of-the-art embedding and hallucination-

based approaches.

2.2 Related Works

2.2.1 Cross-Modal Embedding

Due to the lack of visual data of unseen classes during training, one cannot directly

train visual classifiers to recognize such data. Existing ZSL methods typically

adopt semantic side information for bridging the gap across seen and unseen

classes, with a feature space shared across visual and semantic modalities for

classification purposes. Several approaches have been proposed to learn visual-

semantic embedding for matching visual and semantic information from training

data of seen classes. For example, [75, 52, 76, 77, 67, 68] map the visual features

into class attribute space and predict the labels by finding the most matching
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class attribute. In contrast of the above methods, [69, 53, 70] turn to approach

ZSL by projecting class semantic attribute to visual space. While boosting the

recognition accuracy, the mapping is learned in a deterministic fashion, which

raises the ambiguity that one class attribute would correspond to several possible

images. Recently, CADA-VAE [54] modifies variational auto-encoder (VAE) [34]

for aligning the data from different modalities into a shared latent space in a

probabilistic way.

Very recently, CLIP [78] is a cross-modal pre-training approach, which allows

zeros-shot transfer to unseen datasets. They adopt contrastive learning to maximize

the similarity of the corresponding image-text pair, while repulsing all other texts

from the anchor image. Once the pre-training is complete, CLIP [78] is capable

of using the trained text encoder to transform the semantic attributes/class labels

to the class prototypes, which can be viewed as the weights of the classifier and

thus enables zero-shot learning. However, due to the inherent heterogeneity gap

across visual and semantic modalities, plus the unbalance nature between instance-

wise visual features and class-wise semantic attributes, how effectively learning a

latent space to relate such cross-modality information would still be a challenging

task. Instead of only considering the alignment across different modalities, our

CMC-GAN aims at exploiting the intra-class variation and synthesizing the visual

features based on the associated semantic attributes with such derived intra-class

diversity.

2.2.2 Data Generation

Zero-shot learning. A number of ZSL approaches [2, 72, 55, 73, 79, 80, 56]

extend Generative Adversarial Networks (GANs) [23] to generate pseudo train-

ing data from their semantic attributes due to the fact that the conditional GAN

generator is capable of synthesizing more discriminative visual features than other

types of generative models (e.g., conditional VAEs [81]). With pseudo visual data

synthesized, one can train a standard KNN classifier directly for recognizing test
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data of both seen and unseen classes (i.e., GZSL). f-CLSWGAN [2] is proposed

to apply WGAN [82] as the feature generator to synthesize visual samples, con-

ditioned on class attributes with random noise which depicts intra-class variation.

Most recently, Cycle-WGAN [72] and DASCN [80] augment the f-CLSWGAN

framework by adding the cycle consistency for the semantic attribute using L2 loss

and dual-adversarial objective respectively. This is to enforce the generated visual

features to fully represent their corresponding semantic attributes. While Cycle-

WGAN [72] and DASCN [80] apply cycle consistency to enforce the semantic

attributes to be properly exploited, they do not observe or preserve intra-category

diversity consistency for ensuring sufficient visual diversity during visual feature

hallucination. In addition, [55] incorporate VAE [34] with [2] to facilitate the

capability of capturing real visual distribution. The recent state-of-the-art Lsr-

GAN [56] leverages the semantic relationships between seen and unseen classes to

encourage the produced visual features to preserve the relationships observed from

semantic space. Though the above models introduce the capability of generating

visual features which preserve their corresponding semantic meanings, they are

generally not designed to observe or preserve proper intra-class variation during

the generation process, which would be a critical factor for approximating the data

distributions of distinct classes.

Few-shot learning. In contrast to ZSL, another learning paradigm called few-

shot learning (FSL) aims at recognizing novel classes with very few training data.

In FSL, data hallucination is also considered as a common technique. For instance,

[83] transfers the analogy relation from a pair of images from a known class

to images of a novel class. However, they require ad-hoc techniques to select

base image categories and their data pairs for performing the above transfer and

hallucination process. [84] and [85] capture intra-class deformations from different

paired images sampled from the same class for perturbing samples in the support

set. While [83], [84], and [85] share the same goal (as ours does) to derive the
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inherent intra-class variation from desirable classes, they cannot directly apply for

ZSL since their methods are not designed to handle data across different modalities.

Moreover, the ability to generalize such intra-class knowledge from known classes

to unseen classes is not guaranteed for FSL approaches. Thus, one cannot directly

apply and extend the above models for ZSL. In summary, focusing on ZSL/GZSL

tasks, our proposed model is able to exploit class-specific intra-class diversity, and

conditionally transform such information for hallucinating visual data of unseen

classes.

Visual diversity of GANs. To encourage visual diversity and prevent the mode

collapse problems common in conditional GANs, recent works MSGAN [86] and

DRIT++ [87] introduce a mode seeking regularization that maximizes the ratio

of the distance between synthesized output images with respect to the distance

between their corresponding latent vectors. With this regularization, the visual

diversity of generated images could be enforced and the mode collapse problem

of conditional GANs would be alleviated. Different from the above methods

that focus on enlarging the distance of synthesized images for producing diverse

outputs, our approach learns to encourage the derived intra-category diversity of

the seen categories to be properly preserved when hallucinating visual features of

seen and unseen classes.

2.3 Proposed Method

2.3.1 Problem Formulation and Algorithm Overview

We first define the notation to be used in this thesis. For ZSL, the training data

are the seen-class data DS = {(x, a, y)|x ∈ XS, a ∈ A, y ∈ YS}, where XS

is the set of visual features from seen classes, A and YS denote the associated

attribute and label sets, respectively. We note that the image feature x is extracted

by a pre-trained convolutional neural network (e.g., ResNet-50 [58]), with the



2.3. Proposed Method 37

Sampled from 
seen class

Guidance

Semantic space

Visual space

		

		
Beak:
Wing:
Size:
Body:

Short
Green
Small
Blue

Semantics-Guided Intra-Category Knowledge Transfer Cross-Modal Consistency w/ Adversarial Learning

Visual Diversity Consistency

Real/Fake

Category

Semantic Consistency

or

Figure 2.2: Architecture of Cross-Modal Consistency GAN (CMC-GAN). The

module of Semantics-Guided Intra-Category Knowledge Transfer contains an

attribute encoder Fa, a visual encoder Fv, a semantic-conditioned transformation

T , and a generator G. The adversarial training includes the discriminatorD with an

auxiliary classifier, an attribute regressorRa and a shared Fv, enforcing semantic

and visual consistencies at attribute/feature levels. Note that ai and zj denote

the attribute and visual features for classes i and j, respectively. ∆zj and ∆zj→i

indicate the intra-class variations derived from and translated for the corresponding

classes. Note that ⊖ and ⊕ represent difference and addition mapping functions,

respectively; both are realized by a single-layer neural network.

corresponding label y and attribute vector a. As for unseen classes for inference,

we only observe DU = {(a, y)|a ∈ A, y ∈ YU} with YU as the associated label

set. Note that YS ∩ YU = ∅.

The task of ZSL is to learn a mapping between X and A, so that the associated

Y can be determined accordingly. For conventional ZSL, one typically focuses on

learning fZSL : x→ YU for recognizing the input x as one of the unseen classes.

As for generalized ZSL (as considered in this thesis), one needs to perform a more

challenging learning task of fGZSL : x→ YS ∪ YU , where x can be drawn from

either seen or unseen classes.
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2.3.2 Cross-Modal Consistency GAN for Data Hallucination

The proposed network of our Cross-Modal Consistency GAN (CMC-GAN) com-

prises a semantics-guided intra-category knowledge transfer module, followed by

a GAN based framework for data hallucination. The former aims at extracting

and translating the intra-class diversity from one class to another, while these

two classes are not necessarily identical. As for the latter module, it is trained to

synthesize visual features given the input semantic feature (e.g., class or attribute

embedding), or to produce such data with additional visual diversity observed

from other seen classes. Thus, semantic and visual diversity are jointly served as

conditions for training our CMC-GAN, while the resulting visual and semantic

consistency need to be realized in an adversarial learning scheme. In the following

sub-sections, we will detail the designs and properties of our CMC-GAN.

Semantics-Guided Intra-Category Knowledge Transfer Across Image Classes

In order to exploit visual diversity across image categories, we deploy a module

of semantics-guided intra-category knowledge transfer, as illustrated in the left-

hand side of Fig. 2.2. The class attribute ai of class i and the visual feature pair

{xj,1, xj,2} sampled from the same or another seen class j are the inputs to this

module. While the class attribute is used to derive the semantic prototype ãi via the

attribute encoder Fa, we particularly extract the visual latent features {zj,1, zj,2}

and calculate its visual difference ∆zj through the visual encoder Fv. To be more

specific, the visual difference between the input visual pair is derived by:

∆zj = fdiff(zj,1, zj,2), (2.1)

where the difference mapping function fdiff is realized by a single-layer perceptron

(i.e., ⊖ in Fig. 2.2). Compared to the simple element-wise subtraction between two

visual features, the use of fdiff allows us to capture the visual/conceptual variation

observed from the input visual feature pair.

In order to translate the above visual diversity observed from class j into class i
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of interest, the semantic-conditioned feature transformation block T is introduced

in this module. As depicted in Fig. 2.2, this transformation block takes both the

visual difference ∆zj and the semantic prototype ãi, aiming at converting the visual

diversity across the above categories.

To ensure the produced visual output of the feature transformation block T

would match desirable semantic and visual appearance information, we advance the

techniques of recent deep style transfer network like [6, 88, 89]. In these proposed

style transfer models, one simply applies instance normalization as feature-wise

transformation, and translates the style of a content image to fit the distribution (i.e.,

mean and standard deviation) of the guided one. Inspired by such techniques, our

feature transformation block T (or Tj→i) takes the semantic prototype of the target

class i as guidance, with the mean and standard deviation of semantic prototype ãi

as the shifting and scaling parameters, respectively. We then transform the visual

diversity ∆zj from class j to align with that of class i. The above process is done

by feature normalization using the derived mean and standard deviation from ãi,

i.e., we calculate ∆zj→i by:

∆zj→i = Tj→i(∆zj) = σ(ãi) ·
∆zj − µ(∆zj)

σ(∆zj)
+ µ(ãi), (2.2)

where µ(·) and σ(·) indicate the mean and standard deviation operations, respec-

tively. It is worth repeating that, such normalization-based transformation has

shown promising abilities in image translation [6, 88, 89].

With ∆zj→i now describing the intra-class information for class i, we can

complete the generation of the visual feature x̃i. We start from a random vector

z ∼ N (0, I) sampled from a Gaussian distribution. By introducing a single-layer

perceptron fadd (i.e., ⊕ in Fig. 2.2), we take both z and the transformed offset

∆zj→i as the inputs, and produce z̃i by z̃i = fadd(∆zj→i, z).

As depicted in Fig. 2.2, our feature generator G is conditioned on the semantic

prototype ãi and takes either the random noise z or z̃i to produce the associated
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visual features x̂i or x̃i for class i, i.e.,

x̂i = G(ãi, z), where z ∼ N (0, I)

x̃i = G(ãi, z̃i), where z̃i = fadd(∆zj→i, z).
(2.3)

Note that x̂i denotes the attribute-conditional visual feature synthesized from a

random noise input, while x̃i is the one further exhibiting intra-category diversity

translated from class j. With a sufficient amount of {x̂i, x̃i} being produced for

class i, one can train classifiers to recognize test samples of class i. This is how

our CMC-GAN serves as a data hallucination model for ZSL, and the reason why

the above process is able to perform semantics-guided intra-category knowledge

transfer to produce data for unseen classes.

Cross-Modal Consistencies in Semantics and Visual Diversity

To ensure that the visual diversity of class j would be translated into that of class i,

our CMC-GAN requires additional guidance during training in addition to image

authenticity. That is, for the generated outputs x̂i and x̃i, we need to ensure

that their semantic information properly aligns with that of ai, while their visual

diversity would be preserved during the generation process.

In light of the above properties, our CMC-GAN needs to produce visual data

with semantic and visual diversity preservation. Firstly, to ensure the outputs x̂i and

x̃i sufficiently represent visual data of class i, we observe semantic consistency

at the attribute level in our network. That is, we apply an attribute regressor Ra

to map visual outputs x̂i and x̃i into the semantic attributes Ra(x̂i) and Ra(x̃i),

and we relate such regressed outputs to the attribute input ai. In other words, the

semantic consistency LA
con is thus defined as follows:

LA
con = 1

2(||ai −Ra(x̂i)||22 + ||ai −Ra(x̃i)||22), (2.4)

where ai ∼ A represents the semantic attributes of class i.

On the other hand, we need to enforce that the produced {x̂i, x̃i} preserve the

visual diversity observed from class j (i.e., ∆zj→i), while its attribute information is
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aligned with that of class i. This would alleviate possible mode collapse and biased

problems as later verified. To ensure this property, our CMC-GAN enforces visual

diversity consistency at the feature level, which calculates the corresponding loss

LV
con as follows:

LV
con = ||∆zj→i − fdiff (Fv(x̂i),Fv(x̃i))||22. (2.5)

Recall that the pair of visual features {x̂i, x̃i} are synthesized with the condition of

semantic prototype ãi, based on either random noise z or the one with added intra-

class diversity z̃i, as described in (2.3). As for the difference mapping function

fdiff , we apply the same single-layer perceptron as described in (2.1).

Therefore, to preserve both semantic and visual diversity information during

data hallucination, we have the cross-modal consistency loss Lcross calculated as

follows:

Lcross = LA
con + LV

con. (2.6)

Adversarial Learning and Full Objective

As presented above, our proposed CMC-GAN performs semantics-guided intra-

category knowledge transfer, which translates intra-class visual diversity observed

from particular image pairs from one class to another, while the produced visual

features would describe desirable semantic and visual information. To train our

CMC-GAN, we follow a number of techniques that are widely applied in GAN

and image translation works, as we now discuss.

Firstly, we train the generator G in CMC-GAN in an adversarial manner by

utilizing the discriminatorD, which is learned to determine not only the authenticity

of the observed visual features, but also their categorical information. In other

words, we require the discriminator to predict both the correct realness and the

desirable class labels. Following [2], our model is trained on seen data using the
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Algorithm 1: Cross-Modal Consistency Generative Adversarial Network

(CMC-GAN)
Input: Attribute encoder Fa, visual encoder Fv, semantic-conditioned

transformation T , generator G, discriminator D, attribute regressor

Ra, fdiff , and fadd

Data: Seen-class data DS = {(x, a, y)|x ∈ XS, a ∈ A, y ∈ YS}

Output: Fa, Fv, T , G, fdiff , and fadd

1 for Iters. of whole model do

2 Randomly sample a minibatch {(xi, ai, yi), (xj,1, xj,2)} from DS ;

3 Semantic-Guided Intra-Category Knowledge Transfer

4 ãi = Fa(ai);

5 zi = Fv(xi), zj,1 = Fv(xj,1), zj,2 = Fv(xj,2);

6 ∆zj = fdiff(zj,1, zj,2) (Eq. 1);

7 ∆zj→i = Tj→i(∆zj) = σ(ãi) · ∆zj−µ(∆zj)
σ(∆zj) + µ(ãi) (Eq. 2);

8 z ∼ N (0, I);

9 z̃i = fadd(∆zj→i, z);

10 x̂i = G(ãi, z), x̃i = G(ãi, z̃i) (Eq. 3);

11 Cross-Modal Consistency with Adversarial Learning

12 Compute LA
con (Eq.4) and LV

con (Eq. 5);

13 Compute LW GAN (Eq.7) and LCLS (Eq. 8);

14 for Iters. of updating Fv, Fa,Ra, G, fdiff , fadd do

15 θ{Fv ,Fa,Ra,G,fdiff ,fadd}
+←−

−∆{Fv ,Fa,Ra,G,fdiff ,fadd}(LA
con + LV

con − LW GAN + LCLS)
16 end

17 for Iters. of updating D do

18 θD
+←− −∆θD(LW GAN)

19 end

20 end
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objective of WGAN [82] with an auxiliary classification loss:

LW GAN = E(x,a)[D(x, a)]− E(xg ,a)[D(xg, a)]

− λE(x̄,a)[(∥∇x̄D(x̄, a)∥2 − 1)2],
(2.7)

LCLS = −E(xg ,y)[log P (y|xg)], (2.8)

where xg ∈ {x̂, x̃} represents the synthetic samples generated by G, x̄ ∼ αx +

(1 − α)xg with α ∼ U(0, 1) sampled from a uniform distribution, and λ is the

penalty coefficient. Also, P (y|x̃) denotes the predicted conditional probability that

sample xg belongs to its true class label y.

In summary, the total loss function L sums up losses defined in (2.6), (2.7),

and (2.8), learning modules of Fv, Fa, Ra, G, fdiff , fadd. The training and

implementation details are presented in Section 2.4.1. The pseudo code of the

proposed CMC-GAN is summarized in Algorithm 1.

2.3.3 (Generalized) Zero-Shot Recognition

As depicted in Fig. 2.3, once the training is complete, we utilize the CMC-GAN to

synthesize visual feature data conditioned on the semantic embedding ã of unseen

classes, together with either randomly sampled noise vector z ∼ N (0, I) or that

with intra-class visual diversity transferred from the seen classes. With a sufficient

amount of visual data produced for unseen classes (as referred in Fig. 2.8), a

standard k-nearest neighbor (KNN) classifier C is trained to recognize test data

of unseen (and seen) classes. More specifically, given a test input feature x, the

class label y∗ which has the maximum softmax score produced by this classifier is

selected as the classification result, i.e.,

y∗ = arg max
y∈Y

p(y|x; C), (2.9)

where Y = YU for ZSL, and Y = YS ∪ YU for GZSL settings, respectively.

Algorithm 2 summarizes our process of hallucinating visual features to learn

ZSL/GZSL classifier.
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Algorithm 2: Hallucinating Visual Features for (Generalized) Zero-Shot

Recognition
Input: Attribute encoder Fa, visual encoder Fv, semantic-conditioned

transformation T , generator G, and KNN Classifier C

Data: Seen-class data DS = {(x, a, y)|x ∈ XS, a ∈ A, y ∈ YS} and

Unseen-class data DU = {(a, y)|a ∈ A, y ∈ YU}

Output: Label prediction y∗

1 Randomly sample a minibatch {as, (xj,1, xj,2)} from DS and au from DU ;

2 ãu = Fa(au);

3 zj,1 = Fv(xj,1), zj,2 = Fv(xj,2);

4 ∆zj = fdiff(zj,1, zj,2);

5 ∆zj→u = Tj→u(∆zj);

6 z ∼ N (0, I);

7 z̃u = fadd(∆zj→u, z);

8 x̂u = G(ãu, z), x̃u = G(ãu, z̃u);

9 if Zero-Shot Recognition then

10 C construct KNN classifier←−−−−−−−−−−−− x̂u, x̃u;

11 y∗
u = arg maxy∈Y p(y|xu,test; C);

12 else

13 Generalized Zero-Shot Recognition

14 ãs = Fa(as);

15 z̃s = fadd(∆zj→s, z);

16 x̂s = G(ãs, z), x̃s = G(ãs, z̃s);

17 C construct KNN classifier←−−−−−−−−−−−− x̂u, x̃u, x̂s, x̃s;

18 y∗
u = arg maxy∈Y p(y|xu,test; C);

19 y∗
s = arg maxy∈Y p(y|xs,test; C);

20 end
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Figure 2.3: Hallucinating Visual features for Zero-Shot Learning. Once our CMC-

GAN is learned, visual features of unseen classes are synthesized from the semantic

embedding ã of unseen classes, together with either randomly sampled noise vector

z ∼ N (0, I) or that with intra-class visual diversity transferred from the randomly

sampled seen classes (i.e., {xj,1, xj,2}). With these visual features observed, a

KNN classifier is trained accordingly for (generalized) zero-shot learning.

2.4 Experiments

2.4.1 Implementation Details

In all of our experiments, we implement our model using PyTorch and choose

ADAM as the optimizer to train our network, with the learning rate, β1 and β2 set

as 10−4, 0.5, and 0.999, respectively. Our CMC-GAN contains a visual encoder Fv,

an attribute encoder Fa, a difference mapping function fdiff, an addition mapping

function fadd, a feature generator G, a discriminator D with an auxiliary classifier,

and an attribute regressorRa. ForFv, we utilize a single fully-connected (FC) layer

to encode the visual features to the visual latent space. The same is also applied to

our Fa for embedding class attributes to semantics features. As for fdiff and fadd,

they are both implemented with a single FC layer to realize the subtraction and

addition operations. For the feature generator G, we implement it using multiple
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fully-connected (FC) layers with 4,096 hidden units. For the discriminator D, we

use two FC layers with leaky rectified linear unit (leaky-ReLU) activation functions

to realize the two output branches, which produce the binary real/fake prediction

and the correct classification result for each visual sample, respectively. Finally,

the attribute regressor Ra consists of two FC layers activated by a leaky-ReLU.

We train our network on a single NVIDIA GeForce GTX 1080-Ti GPU with 11

GB memory.

In addition to the details of our network architecture, we further provide the

hyperparameters used for each dataset during training. As noted in Section 2.3, the

full objective function of our network is

min
Fv ,Fa,Ra,G,fdiff ,fadd

max
D
L

= LW GAN + λ1LCLS + λ2Lcross.

(2.10)

In all of our experiments, we set λ1 = 0.01 and λ2 = 1 for the four benchmark

datasets (i.e., CUB, AWA, SUN, FLO), which are determined via cross validation.

The sensitivity analysis for λ1 and λ2 are also provided in the following.

2.4.2 Datasets and Evaluation Metrics

Datasets

CUB [90] (Caltech-UCSD Birds) is a fine-grained dataset containing a total of

11,788 images from 200 different types of birds, where each bird class corresponds

to a semantic vector of 312 attributes (e.g., bill shape, wing color...). It is split into

100 training, 50 validation, and 50 testing classes.

AWA [91] (Animals with Attributes, AWA1) is a coarse-grained dataset containing

a total of 30,475 images from 50 animal categories, each corresponding to a

semantic vector of 85 attributes (e.g., black, white, stripes, etc.). It is split into 27

training, 13 validation, and 10 test classes.

SUN [92] (Scene Categorization Benchmark) is a fine-grained dataset containing a

total of 14,340 images from 717 different types of visual scenes, each associated
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with a semantic vector of 102 attributes. It is split into 580 training, 65 validation,

and 72 testing classes.

FLO [93] (Oxford-Flowers) is a fine-grained dataset containing a total of 8,189

images from 102 different types of flowers (62 for training, 20 for validation, and

20 for testing). Since the attribute information is not available in this dataset, the

sentence embedding collected from [94] is applied as the class description.

Evaluation Metrics

Our evaluation protocol calculates per-class top-1 accuracy, where the class with

the highest softmax score is selected as the predicted answer. In the ZSL setting,

the accuracy of each unseen class is obtained independently, and then averaged

over all unseen classes (denoted as U ). Apart from U , we also compute the

average per-class accuracy of seen classes in the GZSL setting, denoted as S.

The final result of GZSL is calculated as the harmonic mean of S and U , that is,

H = (2× S × U)/(S + U).

2.4.3 Evaluation and Comparisons

Zero-Shot Learning

We compare our CMC-GAN with state-of-the-art methods for conventional zero-

shot learning, and the results are reported in Table 2.2. From this table, we see that

our model presented satisfactory top-1 accuracy among state-of-the-art methods.

In summary, we achieved 61.4 % on CUB, 71.4 % on AWA, 63.7 % on SUN,

and 69.8 % on FLO, respectively. Specifically, TAFE-Net [96], and TCN [97]

were recently proposed embedding-based models, boosting the accuracy from the

previous works (e.g., [98]) via episodic training strategy or transferable contrastive

learning. Other generation-based models [99, 2, 101, 72, 55, 79, 73, 105, 56]

synthesized fake samples, and achieved improved results over embedding based

methods. While we also adopt GAN as our basic model, we take advantage of our
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Table 2.2: Performance comparisons on conventional ZSL in terms of top-1 ac-

curacy (%). The top part is embedding-based methods and the bottom part is

generation-based methods.

Method CUB AWA1 SUN FLO

DeViSE [75] 52.0 54.2 56.5 45.9

SJE [52] 53.9 65.6 53.7 53.4

ESZSL [76] 53.9 58.2 54.5 51.0

ALE [67] 54.9 59.9 58.1 48.5

Relation-Net [95] 55.6 68.2 - -

TAFE-Net [96] 56.9 70.8 60.9 -

TCN [97] 59.5 70.3 61.5 -

LATEM [98] 49.3 55.1 55.3 40.4

GAZSL [99] 55.8 68.2 61.3 60.5

f-CLSWGAN [2] 57.3 68.2 60.8 67.2

C-VAEGAN [100] 54.9 69.9 59.0 -

SE-GZSL [101] 59.6 69.2 63.4 -

Cycle-WGAN [72] 57.8 65.6 59.7 68.6

f-VAEGAN [55] 61.0 71.1 64.7 67.7

LisGAN [79] 58.8 70.6 61.7 69.6

F2F [73] 58.5 69.3 61.5 -

Our CMC-GAN 61.4 71.4 63.7 69.8
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Table 2.3: Performance comparisons on GZSL in terms of top-1 accuracy (%).

Note that U and S denote the accuracy of unseen and seen classes, respectively.

The harmonic mean H is calculated by H = (2× S × U)/(S + U). The top part

is embedding-based methods and the bottom part is generation-based methods.

Dataset CUB AWA1 SUN FLO

Method U S H U S H U S H U S H

DeViSE [75] 23.8 53.0 32.8 13.4 68.7 22.4 16.9 27.4 20.9 9.9 44.2 16.2

SJE [52] 23.5 59.2 33.6 11.3 74.6 19.6 14.7 30.5 19.8 13.9 47.6 21.5

ESZSL [76] 2.4 70.1 4.6 5.9 77.8 11.0 11.0 27.9 15.8 11.4 56.8 19.0

CMT [77] 7.2 49.8 12.6 0.9 87.6 1.8 8.1 21.8 11.8 - - -

SAE [68] 7.8 54.0 13.6 1.8 77.1 3.5 8.8 18.0 11.8 - - -

ALE [67] 4.6 73.7 8.7 14.0 81.8 23.9 21.8 33.1 26.3 13.3 61.6 21.9

LATEM [98] 15.2 57.3 24.0 7.3 71.7 13.3 14.7 28.8 19.5 6.6 47.6 11.5

CADA-VAE [54] 51.6 53.5 52.4 57.3 72.8 64.1 47.2 35.7 40.6 - - -

LFGAA [102] 36.2 80.9 50.0 27.0 93.4 41.9 18.5 40.0 25.3 - - -

Relation-Net [95] 31.4 91.3 46.7 38.1 61.1 47.0 - - - - - -

TAFE-Net [96] 41.0 61.4 49.2 50.4 84.4 63.2 27.9 40.2 33.0 - - -

TCN [97] 52.6 52.0 52.3 49.4 76.5 60.0 31.2 37.3 34.0 - - -

SYNC [103] 7.4 66.3 13.3 10.0 90.5 18.0 7.9 43.3 13.4 - - -

GAZSL [99] 23.9 60.6 34.3 19.2 86.5 31.4 21.7 34.5 26.7 28.1 77.4 41.2

f-CLSWGAN [2] 43.7 57.7 49.7 57.9 61.4 59.6 42.6 36.6 39.4 59.0 73.8 65.6

C-VAEGAN [100] 42.7 45.6 44.1 62.7 60.6 61.6 44.4 30.9 36.5 - - -

SE-GZSL [101] 41.5 53.3 46.7 58.3 68.1 62.8 40.9 30.5 34.9 - - -

Cycle-WGAN [72] 46.0 60.3 52.2 56.4 63.5 59.7 48.3 33.1 39.2 59.1 71.1 64.5

f-VAEGAN [55] 48.4 60.1 53.6 57.6 70.6 63.5 45.1 38.0 41.3 56.8 74.9 64.6

LisGAN [79] 46.5 57.9 51.6 52.6 76.3 62.3 42.9 37.8 40.2 57.7 83.8 68.3

F2F [73] 47.0 54.8 50.6 57.3 67.1 61.8 45.3 36.8 40.6 - - -

DASCN [80] 45.9 59.0 51.6 59.3 68.0 63.4 42.4 38.5 40.3 - - -

SGAL [104] 40.9 55.3 47.0 52.7 74.0 61.5 35.5 34.4 34.9 - - -

OCD-CVAE [105] 44.8 59.9 51.3 59.5 73.4 65.7 44.8 42.9 43.8 - - -

LsrGAN [56] 48.1 59.1 53.0 54.6 74.6 63.0 44.8 37.7 40.9 - - -

Our CMC-GAN 52.6 65.1 58.2 63.2 70.6 66.7 48.2 40.8 44.2 64.5 80.2 71.5
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Table 2.4: Ablation studies on the design of the proposed CMC-GAN on three

benchmark datasets. Note that z denotes the input randomly sampled fromN (0, I),

∆zj is the extracted visual diversity from class j, and ∆zj→i represents that trans-

lated from class j to i via semantic-conditioned transformer T . The bold numbers

indicate the best results.

Objectives and components CUB AWA1 SUN

LCLS z ∆zj ∆zj→i LA
con LV

con U S H U S H U S H

Baseline [2] ✓ ✓ × × × × 43.7 57.7 49.7 57.9 61.4 59.6 42.6 36.6 39.4

Ours w/o T ,LV
con,LA

con ✓ ✓ ✓ × × × 44.5 54.5 49.0 56.8 67.1 61.5 45.0 35.9 39.9

Ours w/o LV
con,LA

con ✓ ✓ ✓ ✓ × × 52.2 55.0 53.5 61.4 66.1 63.7 45.6 38.4 41.7

Ours w/o LV
con ✓ ✓ ✓ ✓ ✓ × 51.0 58.0 54.3 62.1 66.7 64.3 45.8 38.7 41.9

Ours w/o LA
con ✓ ✓ ✓ ✓ × ✓ 52.4 58.1 55.1 60.4 67.6 63.8 46.2 39.1 42.4

Ours (CMC-GAN) ✓ ✓ ✓ ✓ ✓ ✓ 52.6 65.1 58.2 63.2 70.6 66.7 48.2 40.8 44.2

designed semantics-guided intra-category knowledge transfer for augmenting class-

specific data. Note that, the SUN dataset contains complex outdoor visual scenes

with relatively limited attributes (i.e., 102 dimensions), causing the intra-class

variation to be more difficult to model. Nevertheless, our network still achieved

the second-best result on SUN, and performed best on three out of four datasets.

Thus, the effectiveness of our model for conventional zero-shot recognition can be

successfully verified.

Generalized Zero-Shot Learning

We now provide comparisons with the state-of-the-art approaches in generalized

zero-shot learning as reported in Table 2.3. The setting of GZSL is more chal-

lenging than conventional ZSL due to a model trained only on seen data would

easily lead the unseen objects to be classified into seen classes, resulting in biased

problem. For the purpose of measuring the performance on both seen and unseen

classes, we follow [64] and adopt harmonic mean, which prevents the impact of

extreme values, to evaluate the performance of GZSL. As shown in Table 2.3,

we performed favorably against state-of-the-art methods, achieving promising

performances in terms of harmonic mean (i.e., 58.2 % on CUB, 66.7 % on AWA,
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Real Synthetic Seen 1 Seen 2 Seen 3 Unseen 1 Unseen 2 Unseen 3

CUB

AWA

Ours Baseline Ours
ZSL GZSL

Figure 2.4: t-SNE visualization of hallucinated data for CUB and AWA. For ZSL,

samples of 6 unseen classes are selected (150 samples for each class). For GZSL,

we sample 3 seen classes and 3 unseen classes for visualization, and compare the

results produced by the baseline approach [2]. For both ZSL and GZSL, we see

that our model produces data with improved diversity while not overfitting those

of seen classes. Note that real data of unseen classes are additionally shown in this

figure for visualization and comparison purposes.

44.2 % on SUN, and 71.5 % on FLO). This confirms that our model is capable

of exploiting class-specific diversity for synthesizing the pseudo training samples.

In particular, as shown in the top rows in Table 2.3, embedding-based works

generally suffered from the aforementioned biased problems and reported poor

results. Thus, their model cannot be generalized to unseen classes. Though other

recent approaches [54, 96, 97] provided favorable results in conventional ZSL,

they presented degraded performances in GZSL due to the inherent heterogeneous

gap across distinct modalities, that hampers the ability of generalization across

seen and unseen classes. As shown in the bottom rows in Table 2.3, we observe

that generation-based methods [2, 72, 100, 55, 79, 80, 105, 56] reported significant

performance drops under GZSL settings. For instance, Cycle-WGAN [72] and

DASCN [80] follow f-CLSWGAN [2] and apply semantic consistency to enforce

the generated visual features with proper semantics that generates outputs simply
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Figure 2.5: Example class-specific diversity transfer from a seen class j to unseen

class i (i.e., ∆zj to ∆zj→i).

from class attributes with random noise. In addition, the recent state-of-the-art

LsrGAN [56] leverages the semantic relationships between seen and unseen classes

to guide the synthesized visual features retaining the relationships observed from

semantic space. However, such methods do not explicitly model intra-category

knowledge for visual feature hallucination, and thus cannot ensure the synthesized

visual features are sufficiently diverse.

2.4.4 Analysis of Cross-Modal Consistency GAN

Ablation Study

We now conduct the ablation study in Table 2.4 to verify our network design

(more parameter analysis is available in supplementary material). We consider

f-CLSWGAN [2] as the baseline model to start with, which generates fake visual

features simply conditioned on the class attribute with random noise. In this table,

we consider the performances of our CMC-GAN 1) without transformation layer

T and cross-modal consistency (i.e., LV
con and LA

con), 2) without LV
con and LA

con, 3)

without semantics consistency LA
con, and 4) without visual diversity consistency

LV
con. For each model, we evaluate the performance of GZSL in harmonic mean.

From the results shown in this table, our model surpassed other controlled versions

and the baseline on all three benchmark datasets. We note that, without the

presence of the transformation layer and cross-modal consistency, the harmonic
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Figure 2.6: Example failure case of class-specific diversity transfer from a seen

class j to unseen class i.

mean of top-1 accuracy may drop significantly even below or near the baseline.

This is because that, without T translating the class-specific information to the

target class, the derived visual difference ∆zj only fits the source data distribution,

resulting in overfitting on the seen classes. With T deployed, the improvement on

three datasets can be observed (comparison with the second and third row). The

above experiments confirm the effectiveness of our semantics-guided intra-category

knowledge transformer.

Moreover, we see that the performance would drop when the cross-modal

consistency is disabled. This is due to the fact that, without observing such

consistency, we cannot encourage the preservation of semantics and visual diversity.

In fact, disregarding either semantics or visual diversity consistency would not be

desirable for our model, since the semantics mismatch or mode collapse would

occur. With the above experiments provided, we can verify the effectiveness of

each module deployed in our CMC-GAN.
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Figure 2.7: Convergence of the top-1 accuracy in terms of the number of epochs

for the generated training samples from the seen classes for CUB, AWA, SUN, and

FLO.

Figure 2.8: The impact of different numbers of synthetic visual samples per

category. Note that x and y axes indicate the number of generated features and

harmonic mean (H) respectively.

Visualization

We now qualitatively assess the ability of our CMC-GAN to represent semantic and

visual information for the synthesized data. As shown in Fig. 2.4, we visualize the

visual features x̃ synthesized on CUB and AWA datasets using t-SNE. The left part

of Fig. 2.4 illustrates the generated visual data of five unseen categories produced
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by our model, which were properly separated and sufficiently diverse. When

comparing to the baseline model [2], we consider the GZSL setting and present

the results in the right-hand side of Fig. 2.4. It can be seen that, the synthesized

data of [2] suffer from severely biased problems (i.e., data of unseen categories are

visually similar to those of seen classes). On the other hand, visual data of unseen

classes produced by CMC-GAN still exhibited satisfactory inter-class separation

with sufficient intra-class diversity.

To further demonstrate our ability to translate class-specific diversity across

different categories, Fig. 2.5 shows the exampled unseen-class results synthesized

from seen classes. Specifically, we randomly select an image pair (Ij , Ĩj) from

a seen class j, and transform its intra-class diversity ∆zj to another unseen class

i. Since our proposed model only hallucinates visual features, the images (i.e.,

(Ii, Ĩi)) shown in Fig. 2.5 are selected by those whose image features are closest

to the hallucinated ones (from the same category i). From the results shown in

this figure, we observe that our model is able to model and convert intra-class

diversity into the unseen class in terms of visual concepts such as pose (right→left)

and size (small→large) variations, as shown in columns (a-1), (b-1) and (a-2),

(b-2) in Fig. 2.5, respectively. This confirms the effectiveness of our semantics-

guided intra-category knowledge transfer module, and our CMC-GAN in producing

unseen-class outputs with desirable semantic and visual information.

In Fig. 2.6, we show failure diversity transfer cases by our CMC-GAN. As

evident in this figure, to transfer the intra-class variation (e.g., pose) from “zebra”

to “dolphin”, whose appearance bears little resemblance to “zebra”, is more chal-

lenging than the transfer across fine-grained classes (e.g., different birds in CUB

dataset). One possible solution to boost the transfer ability across more coarse-

grained datasets is to apply ad-hoc techniques like [83] or meta-class information

for selecting proper classes and their variants to transfer. We leave this among

future research directions.
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Figure 2.9: Sensitivity analysis for hyperparameters λ1 and λ2. Note that x and y

axes indicate the value of λ and harmonic mean (H) respectively.

2.4.5 Parameter Analysis

In this section, we first evaluate the impact of the number of generated visual

features, and then provide the sensitivity analysis for the hyperparameters.

Efficiency of the visual feature hallucination

We measure the seen class accuracy of the classifier trained on generated features

of seen classes w.r.t. the training epochs and compare with the baseline method f-

CLSWGAN [2] in Fig. 2.7 to evaluate the efficiency of visual feature hallucination

process and also the quality of synthesized visual features. As shown in Fig. 2.7, our

CMC-GAN converges fast and achieves higher accuracy against f-CLSWGAN [2].

Impact of the number of generated visual features

We evaluate how the number of synthetic visual samples per class impacts the

performance in the GZSL setting. As illustrated in Fig. 2.8, we observe that the

harmonic mean (H) is improved when the number of synthetic features is increased,

but saturates in a certain degree in the results of CUB, AWA, and FLO. We note that

the performance in SUN grows first and then decays with the increasing number of

synthetic samples. The reason is that SUN dataset contains only around 20 images
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per class with relatively limited attributes (i.e., 102 dimensions) for describing

complex visual scenes. Hence, too many generated samples would cause severely

noisy pseudo samples, leading to degraded performance. We determined the final

number of synthetic visual samples for each dataset according to the experiment

performed in this section. (i.e., 150 on CUB, 2000 on AWA, 50 on SUN, and 1200

on FLO).

Sensitivity analysis for hyperparameters

The hyperparameters of our model are tuned via cross validation. In this section,

we conduct a detailed analysis of the sensitivity of hyperparameters λ1 and λ2. As

shown in Fig. 2.9, the performance does not exhibit drastic fluctuations despite

using different sets of λ1 and λ2, showing further that our model is stable and

robust and those hyperparameters are not the most influential factors to the result.

2.5 Conclusion

In this thesis, we proposed a data hallucination-based model of Cross-Modal

Consistency GAN (CMC-GAN) for ZSL/GZSL. In order to hallucinate visual

data of unseen categories, our model performs semantics-guided intra-category

knowledge transfer, which translates visual diversity across image categories under

the guidance of the associated semantic features. To alleviate possible mode

collapse and biased problems during hallucination, our model observes attribute

and visual consistencies at the associated levels, ensuring that the synthesized

data would sufficiently represent the category of interest. Finally, we conducted

experiments on four benchmark datasets, which quantitatively and qualitatively

support the effectiveness of our CMC-GAN over the state-of-the-art embedding

and hallucination-based methods for ZSL and GZSL.
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Chapter 3

Knowledge Transfer for Unseen

Domains

Domain generalization (DG) aims to transfer the learning task from a single or

multiple source domains to unseen target domains. To extract and leverage the

information which exhibits sufficient generalization ability, we propose a simple

yet effective approach of Adversarial Teacher-Student Representation Learning,

with the goal of deriving the domain generalizable representations via generating

and exploring out-of-source data distributions. Our proposed framework advances

Teacher-Student learning in an adversarial learning manner, which alternates be-

tween knowledge-distillation based representation learning and novel-domain data

augmentation. The former progressively updates the teacher network for deriving

domain-generalizable representations, while the latter synthesizes data out-of-

source yet plausible distributions. Extensive image classification experiments on

benchmark datasets in multiple and single source DG settings confirm that, our

model exhibits sufficient generalization ability and performs favorably against

state-of-the-art DG methods.

59
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3.1 Introduction

Deep neural networks have achieved promising performance on a wide variety of

tasks. However, these networks assume the training and testing samples fall in the

same data distribution. Such a strong assumption would limit the applicability of

the learned models in real-world scenarios (e.g., cross-city autonomous driving or

multi-cite medical imaging task), in which training and testing data are typically

observed under different conditions. In other words, the generalizability of the

model at unseen target domains might be poor due to unexpected domain shifts. To

tackle the domain discrepancy, domain generalization (DG) has been proposed and

drawn increasing attention recently.

The aim of DG is to train models using data observed from single or multiple

source domains, while expecting that the model would be generalized to unseen

target domains. Most existing DG approaches focus on deriving domain-invariant

features [106] among multiple source domains or adopting meta-learning tech-

niques [107, 108, 109, 110], which would simulate domain shifts during the meta-

training stage. However, the features derived by the above methods are generally

guaranteed to be invariant to the seen source domains, not the generalizability of the

learned representation to describe unseen domain data. To overcome the limitation,

[111, 3, 112, 113] turn to leverage data generation techniques for diversifying the

source distributions, and thus avoid overfitting on source domains yet improve the

generalization ability of models. Specifically, several works [111, 3, 112] choose

to generate novel-domain images by either perturbing the style of source data to

confuse the domain classifier [111, 3], or transporting the source data to novel

styles via optimal transport based objective [112]. [113] adopts Mixup [114] to

interpolate the feature statistics between samples from different domains. While

the above methods perform well, designing an objective for generating samples

with DG guarantees remains a challenging and open problem.

Recently, self-supervised pre-training manifests the potential to derive gener-

alizable representation, which serves as a promising start point for downstream
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tasks (e.g., image segmentation or object detection). In domain generalization,

a number of self-supervision techniques have been introduced [115, 116, 117]

to improve network transferability by discovering the intrinsic properties within

images. For instance, [115, 116, 117] adopt jigsaw puzzles as the pretext task,

which predicts the relative positions of image patches to constrain the semantic

feature learning in a multi-task training fashion. Recently, contrastive learning ap-

proaches [118, 119, 120, 121, 122] have been proposed and widely applied, which

establish the representation learning from multiple views of an image to extract the

task-relevant information and discard task-irrelevant noise. However, the concept

of such multiview learning [123, 122] is simply realized by hand-crafted image

transformations (e.g., RandomResizedCrop, Color Jittering, or Gaussian Blur).

The effectiveness of these hand-crafted image transformations for benefiting the

generalization to unseen distributions is still not guaranteed.

In this thesis, we propose a unique Adversarial Teacher-Student Representation

Learning framework for tackling domain generalized visual classification. Based

on the recent success of contrastive learning, we advance the concept of multi-

view learning into DG regime for augmenting source instances to out-of-source

styles and diversifying training distributions. To be more precise, with the goal

of learning representations which are robust to unseen domain shift, we propose

to jointly perform Domain Generalized Representation Learning and Novel Do-

main Augmentation in an adversarial learning manner. Based on Teacher-Student

learning schemes [124, 120, 125], our framework utilizes original images as inputs

to the teacher network and takes stylized augmentations as input to the student

network. To ensure both learning stages produce domain generalized represen-

tation, we adopt the Teacher-Student co-training scheme, which progressively

refines Teacher by the distilled knowledge learned from Student by observing

augmented novel-domain data, enabling Teacher to be generalizable to data with

out-of-source distributions. On the other hand, Adversarial Novel Domain Aug-

mentation aims at augmenting unseen domain data using source-domain training
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instances. The objective is to maximize the discrepancy between the input and

augmented data, derived from the teacher and student modules, respectively. In

order to have such augmented data exhibit sufficient domain differences, the above

discrepancy will be calculated using features derived from data across different

source domains. By iteratively training the above two stages in an adversarial

learning fashion, the resulting model (Teacher) would be able to derive domain

generalizable representations.

The contributions of this thesis are highlighted as below:

• Different from existing meta-learning based approaches, we propose a

teacher-student adversarial learning scheme for addressing domain gen-

eralization classification problems.

• In the stage of Domain Generalized Representation Learning, the student

network observes augmented novel-domain data and distills the information

to update the teacher network, allowing derivation of domain generalizable

representation.

• In the stage of Novel Domain Augmentation, the generator aims at producing

unseen yet plausible domain data, which maximizes the discrepancy between

augmented and existing domains while the semantic information is preserved.

• Evaluations on several benchmark datasets in multiple and single source

domain settings verify that our method performs favorably against existing

DG approaches and exhibits sufficient domain generalization capability.

3.2 Related Works

Domain Generalization (DG). Different from domain adaptation (DA), which

observes both source and target-domain training data for performing learning

tasks across domains [14, 16, 11, 126, 127], DG deals with a more realistic yet

challenging setting. More precisely, DG aims at generalizing the model trained
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only on single or multiple source domains to recognize the test instance in unseen

but similar target domain. With only source-domain data observed during training,

a number of works [108, 107, 128] apply meta-learning for learning domain-

invariant features. These methods typically partition source domains into meta-train

and meta-test splits to simulate the domain shifts during training. Feature-Critic

[128] meta-learns a critic network to evaluate the generalized degree of extracted

features for encouraging robust feature derivation. [109] introduces an episodic

training that cross-trains domain-specific feature extractors and classifiers to let

the learned model invariant to the domain shift. MLDG [107] and MASF [110]

both adopt gradient based meta-learning to simulate the domain shift, while [110]

additionally enforces local and global constraints in meta-training. In addition

to meta-learning approaches, [115] jointly solves jigsaw puzzle as an auxiliary

task with standard classification in a multi-task fashion. RSC [129] iteratively

discards the dominant features on the training data to improve generalization.

Nevertheless, these approaches employ solely limited source domains to derive

generalizable features, which still draws a concern about over-fitting on source

domains [112, 130] and restricts the generalization ability to unseen domains.

Recent research works consider data generation as an alternative technique

for domain generalization, which increase the diversity of training data distri-

bution. To achieve this goal, [111, 3] are inspired by adversarial attack [131].

CrossGrad [111] perturbs source data by adding adversarial gradients; DDAIG [3]

learns a transformation network that outputs perturbations to confuse the domain

classifier. However, such perturbed images do not necessarily exhibit sufficient

data domain diversity. In contrast of adding perturbation to images, L2A-OT [112]

learns a conditional generator that transforms images from a source distribution

to a pseudo-novel distribution by an optimal transport based objective. MixStyle

[113] produces image features with mixed feature statistics across source domains.

Very recently, PDEN [132] utilizes a progressive learning strategy for single-source

domain generalization, which iteratively expands the training data set by adding



doi:10.6342/NTU202301924

64 3. Knowledge Transfer for Unseen Domains

augmented data. Note that although they adopt contrastive and adversarial learn-

ing objectives which are similar to ours, our proposed approach is able to tackle

both multi-source and single-source DG problems, and also comes with superior

memory efficient performance and comparably stable training process.

Self-Supervised Learning (SSL). Self-supervision is a recent paradigm for

unsupervised learning. The idea is to design pretext tasks for feature learning

to facilitate the downstream task learning. Such auxiliary pretext tasks can be

predictions of the image colors [133], relative locations of patches from the same

image [115, 116], and image rotation [134]. Very recently, contrastive learn-

ing [118, 119, 120, 121, 122] has achieved promising results on network pre-

training to learn generalized image features. [123, 122] reveal that the success

of contrastive learning is typically built on the multi-view perspective, and prove

theoretically and experimentally that the compact and robust representations can

be learned by deriving the invariance among multiple views of an image. We adapt

the above concept of multi-view learning into DG regime. We focus on learning

novel-domain data augmentations across source-domain instances in an adversarial

training fashion. As detailed and verified later, our proposed learning scheme

would produce domain generalizable representation for unseen target-domain data,

and performs favorably against state-of-the-art DG approaches.

3.3 Proposed Method

3.3.1 Problem Formulation and Model Overview

For the sake of completeness, we first define the problem setting and notations

used in this thesis. We assume that training data are observed from N source

domains Dtr = {D1,D2, ...,DN}, each of which contains a set of image and

label pairs Di = {Xi, Yi}. Our goal is to learn a model which would exhibit

sufficient generalization capability, so that classification of test data in unseen
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Figure 3.1: Overview of our Adversarial Teacher-Student Representation Learning

scheme, which includes the teacher network FT , the student network FS , classifier

C, and novel-domain augmenter G. Note that we alternate between the stages of

domain generalized representation learning and novel-domain augmentation in a

mutually beneficial manner, resulting in discriminative yet domain generalized

representations.

target domains can be performed. In order to derive domain-generalized feature

representations, we present a novel Adversarial Teacher-Student Representation

Learning framework, which is a min-max deep learning framework alternating

between the following two stages: domain generalized representation learning

(Sec. 3.3.2) and novel domain augmentation (Sec. 3.3.3), as depicted in Fig. 3.1. For

domain generalized representation learning, we learn a domain-generalized teacher

network (Teacher) FT with the help from a student network (Student) FS , which

observes synthesized novel-domain augmentation and distills knowledge to Teacher.

As for novel-domain augmentation, the novel-domain augmenter G is learned

to observe the discrepancy of Teacher-Student encoders, which progressively

generates strong novel stylized augmentations to diversify training distributions.

Once the learning of the above framework is complete, the teacher network would

extract domain-generalized features for the task network (e.g., classifier), and thus

classification of unseen target-domain data can be performed accordingly. We now

detail our proposed learning schemes in the following subsections.
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3.3.2 Teacher-Student Domain Generalized Representation Learn-

ing

While techniques based on learning across multiple source domains for DG exist

(e.g., using meta-learning techniques like [108, 109, 110]), it is not clear how

the learned model and feature representations would be generalized to unseen

target domains. Instead of directly fitting models across source domains, we

propose Domain Generalized Representation Learning based on the Teacher-

Student learning scheme, with the goal of extracting domain generalizable feature

representations. To ensure our teacher encoder to gain generalizability by observing

out-of-source domain information, we deploy a Student FS for exploring novel-

domain augmentation synthesized from the novel-domain augmenter G, while

distilling the associated knowledge to update FT .

To address this representation learning task, we first train the teacher mod-

ule together with a single-layer classifier C using multiple source-domain data.

The standard cross-entropy loss Lce is utilized to initialize FT as warm-up. As

illustrated in Fig. 3.1, we then input training images x sampled from the source do-

mains into the novel-domain augmenter G (detailed in the following sub-section),

producing the style (or domain) perturbed augmentation x̃ yet preserving its se-

mantic information. While such a domain augmented x̃ would be fed into the

student module resulting in feature z̃ = FS(x̃), we also feed the original input

x into Teacher to derive z = FT (x). To ensure that z̃ would contain the same

semantic information as z does, we particularly propose an objective to minimize

the discrepancy between z̃ and z. To be more specific, we define the discrepancy

loss LF
dis to minimize the distance between the normalized features z̃ and z:

min
FS

LF
dis(z, z̃) =

∥∥∥∥∥ z

∥z∥2
− z̃

∥z̃∥2

∥∥∥∥∥
2

2
=

∥∥∥∥∥ FT (x)
∥FT (x))∥2

− FS(x̃)
∥FS(x̃)∥2

∥∥∥∥∥
2

2
. (3.1)

In addition, we calculate the cross-entropy loss on the domain-augmented

feature z̃, i.e., Lce(C(z̃), y), which further enforces the classification capability of

the student module (note that C indicates the single-layer classifier, and y denotes
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the corresponding class label). We note that, in this representation learning stage,

only the student network FS is updated by the above two objectives LF
dis(z, z̃)

and Lce(C(z̃, y), and we apply a stop-gradient strategy to forbid FT and G from

being updated by gradients. Thus, optimization of FS with learning rate γ can be

expressed as follows:

θS ← θS − γ
∂(LF

dis(z, z̃) + Lce(C(z̃), y))
∂θS

. (3.2)

As for the teacher network FT , we adopt exponential moving average (EMA) [124,

120, 125] to progressively refine the associated model parameter θT . That is, the

learned knowledge from Student’s parameter θS is distilled to update θT as follows,

θT ← τθT + (1− τ)θS, where τ ∈ [0, 1), (3.3)

Note that τ controls the updates on the teacher network. Finally, it is also worth

pointing out that, such a refinement strategy would avoid the teacher module from

directly observing unrealistic domain augmentations, which might degrade its

domain generalization capability.

3.3.3 Adversarial Novel Domain Augmentation

To motivate the student network to explore sufficient diversity of domain aug-

mentation, we present an adversarial learning scheme, which would progressively

perform novel-domain data augmentation in our proposed framework. Inspired by

both adversarial learning strategy [23] and multiview learning from SSL [123, 122],

we formulate our novel-domain augmentation stage together with representation

learning (Sec. 3.3.2) into an adversarial learning framework. As depicted in the

right-hand side of Fig. 3.1, we aim at training the novel-domain augmenter G

and freezing both FT and FS , while the discrepancy between z and z̃ serves as

the adversarial guidance. That is, when the above discrepancy is small (i.e., the

outputs of Teacher and Student are similar), it implies that such domain augmen-

tations have been seen by existing source-domain data. To encourage more the
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augmented data to be sufficiently distinct in terms of domain information, we train

our novel-domain augmenter by maximizing the discrepancy as follows,

max
G
LG

dis(z, z̃) = [
∥∥∥∥∥ z

∥z∥2
− z̃

∥z̃∥2

∥∥∥∥∥
2

2
−m]− = [

∥∥∥∥∥ FT (x)
∥FT (x))∥2

− FS(G(x))
∥FS(G(x))∥2

∥∥∥∥∥
2

2
−m]−,

(3.4)

where [·]− = min(·, 0), and the margin m can either be calculated by the means/centroids

of data from each source domain in a mini-match, followed by averaging the L2

distances between the above centroid pairs, or simply viewed as a hyperparameter.

It is worth pointing out that, this margin serves as a regularization observed from

the separation between existing source domains. Thus, it reflects the desirable

domain gap between the augmented and existing domain data.

To guarantee the produced domain augmentations preserve the original cate-

gorical content, we still observe the cross-entropy loss Lce(C(z̃), y) with regard to

C(z̃) and the corresponding label y. Thus, optimization of G can be performed as

follows,

θg ← θg − γ
∂(−LG

dis(z, z̃) + Lce(C(z̃), y))
∂θg

. (3.5)

Note that, we only pretrain the classifier using source domain data available, and

keep it fixed during the learning of our teacher-student augmentation framework. If

we allow the update of this classifier during the training process, it might observe

undesirable outputs and affect the learning of both augmenter and teacher/student

modules in the early training stage, where either the augmented data or its extracted

features are not yet qualified.

Once the learning of the proposed framework is complete (i.e., alternative

optimization between the two stages), we deploy the derived domain generalized

Teacher to extract discriminative and transferable features, so that classification of

unseen target domain can be performed accordingly. The pseudo code of our Ad-

versarial Teacher-Student Representation Learning is summarized in Algorithm 3.
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Algorithm 3: Adversarial Teacher-Student Representation Learning
Input: Number of iterations Niter, number of warm up iterations Nwarm,

learning rate γ, Teacher FT , Student FS , novel-domain augmenter

G and classifier C

Data: N source domains Dtr = {D1,D2, ...,DN}

Output: Teacher FT

1 for i in 1 : Niter do

2 Randomly sample a minibatch (x, y) from source domains ;

3 if i <Nwarm then

4 Update FT and C with Lce(C(FT (x)), y);

5 else

6 Domain Generalized Representation Learning

7 x̃ = G(x);

8 z = FT (x), z̃ = FS(x̃);

9 Compute LF
dis (Eq.1) and Lce(C(z̃), y);

10 Update FS via back propagation.

θS ← θS − γ
∂(LF

dis(z,z̃)+Lce(C(z̃),y))
∂θS

(Eq.2);

11 Update FT via EMA. θT ← τθT + (1− τ)θS, where τ ∈ [0, 1)

(Eq.3);

12 Novel Domain Augmentation

13 Compute LG
dis (Eq.4) and Lce(C(z̃), y);

14 Update G via back propagation.

θg ← θg − γ
∂(−LG

dis(z,z̃)+Lce(C(z̃),y))
∂θg

(Eq.5);

15 end

16 end
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3.4 Experiments

3.4.1 Datasets and Evaluation Protocol

Datasets. We evaluate our method on several public benchmark datasets. PACS

[135] is composed of four data domains, Photo, Art painting, Cartoon and Sketch,

with diverse image colors and styles. Each domain contains 7 categories, with 9991

images in total. Following the experimental protocol proposed by [135], images

from source domains are divided into the training split and the validation split,

at a ratio of about 9:1. Office-Home [136] is comprised of four domains, Art,

Clipart, Product and Real world, and exists larger label sets of 65 categories, with

about 15500 images in total. The dataset contains images of everyday objects with

various styles, backgrounds and camera viewpoints. Images are divided into the

training split and the validation split at a ratio of about 9:1. DomainNet [137] is a

recently proposed large-scale dataset which consists of 0.6 million images of 345

classes distributed across 6 domains, Real, Clipart, Infograph, Painting, Quickdraw

and Sketch. We follow the training and testing splits for all the 6 domains released

by [137]. Also, for the single source DG experiments, we follow [138] and partition

the training split from [137] into the training and validation splits at a ratio of

9:1. Due to page limitation, we additionally provide quantitative comparisons on

VLCS [139] and Digit-DG [3] datasets in the supplementary material.

Evaluation Protocol. For fair comparison purposes, we follow the leave-one-

domain-out protocol as considered in [3, 112, 116, 113] for our experiments. That

is, one data domain from a dataset is selected as the target unseen domain to be

recognized, and the remaining ones as the source domains for training. And, we

report the top-1 classification accuracy (%) for quantitative evaluation.
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Table 3.1: Comparisons to non-data-generation based methods on PACS using

ResNet-18 in leave-one-domain-out settings. Bold denotes the best result.

Target
DeepAll MMD- MLDG JiGen MetaReg Epi- MASF EISNet DMG Borlino DSON RSC Ours

(baseline) AAE [106] [107] [115] [108] FCR [109] [110] [116] [138] et al. [143] [144] [129]

Photo 95.6 96.0 96.1 96.0 95.5 93.9 95.0 95.9 93.4 95.0 95.9 96.0 97.3 ± 0.3

Art painting 75.1 75.2 81.3 79.4 83.7 82.1 80.3 81.9 76.9 82.7 84.7 83.4 85.8 ± 0.6

Cartoon 74.2 72.7 77.2 75.3 77.2 77.0 77.2 76.4 80.4 78.0 77.7 80.3 80.7 ± 0.5

Sketch 68.4 64.2 72.3 71.4 70.3 73.0 71.7 74.3 75.2 81.6 82.2 80.9 77.3 ± 0.5

Average 78.3 77.0 81.8 80.5 81.7 81.5 81.1 82.2 81.5 84.3 85.1 85.2 85.3

3.4.2 Implementation Details

For PACS, Office-Home, and DomainNet, input images are resized to 224 × 224

pixels, and we use ResNet-18 and ResNet-50 [58] pre-trained on ImageNet [140]

as the backbones of our teacher and student networks. FS is trained with the SGD

optimizer, with an initial learning rate of 0.0005, and a batch size of 32 for 60

epochs. The learning rate is decayed by 0.1 after 30 epochs. FT is updated via EMA

with the momentum coefficient τ of 0.999 by default. Our novel-domain augmenter

G is realized by a fully convolutional network similar to the generator’s architecture

in [3] and trained with the SGD optimizer. In the warm-up phase, we train FT

together with the classifier C using only source data with the SGD optimizer, and

then the parameters of C are fixed in the following training process. Note that

we also use the official implementation from [115, 111, 3, 141, 112, 113] for our

comparisons. In all our experiments, we implement our model using PyTorch and

Dassl.pytorch [142] toolbox, and conduct training on a single NVIDIA TESLA

V100 GPU with 32 GB memory.

3.4.3 Quantitative Evaluation

We first perform domain-generalized visual classification tasks and compare our

results with existing non-data-generation [106, 145, 107, 115, 108, 109, 110, 116,

138, 143, 144, 129] and data-generation based [111, 3, 112, 113] methods on two

commonly-used public benchmarks, PACS and Office-Home. In our experiments,
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Table 3.2: Comparisons to non-data-generation based methods on Office-Home

using ResNet-18 in leave-one-domain-out settings. Bold denotes the best result.

Target
DeepAll CCSA MMD- MLDG D-SAM JiGen Borlino DSON RSC Ours

(baseline) [145] AAE [106] [107] [146] [115] et al. [143] [144] [129]

Art 59.0 59.9 56.5 58.1 58.0 53.0 58.7 59.4 58.4 60.7 ± 0.5

Clipart 48.4 49.9 47.3 49.3 44.4 47.5 52.3 45.7 47.9 52.9 ± 0.3

Product 72.5 74.1 72.1 72.9 69.2 71.5 73.0 71.8 71.6 75.8 ± 0.1

Real world 75.5 75.7 74.8 74.7 71.5 72.8 75.0 74.7 74.5 77.2 ± 0.2

Average 63.9 64.9 62.7 63.8 60.8 61.2 64.8 62.9 63.1 66.7

DeepAll is viewed as a baseline, in which both feature extractor and classifier are

trained on data aggregated from all source domains.

Tables 3.1 and 3.2 summarize the quantitative comparisons with existing non-

data-generation based methods [106, 145, 107, 115, 108, 109, 110, 116, 138, 143,

144, 129] on PACS and Office-Home (ResNet-18 as the backbone), respectively.

Particularly, Epi-FCR [109] and MASF [110] are meta-learning approaches which

either adopt episodic training scheme that cross-train encoders and classifiers from

different domains, or employ a gradient-based optimization strategy with global

and local losses for regularizing the model training. JiGen [115] and EISNet [116]

both consider solving jigsaw puzzles as the auxiliary task for better capturing

spatial information. Recent start-of-the-art method RSC [129] iteratively dropouts

the most contributing features to force models to explore the remaining features

that correlate with semantic information. As we can observe from Table 3.1, our

approach achieved the best performance on Photo, Art paining, and Cartoon. It is

worth noting that, a significant gap in visual appearance can be seen between Sketch

and other image domains, which makes the associated domain generalization more

difficult. Nevertheless, our approach still achieved satisfactory results over the state-

of-the-art methods on Sketch, and reported the highest average accuracy of 85.3%.

On the other hand, Table 3.2 demonstrates that our method performed favorably

on all the domains (i.e., 60.7% on Art, 52.9% on Clipart, 75.8% on Product, and

77.2% on Real world), and thus achieves the highest average accuracy 66.7%.
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Table 3.3: Comparisons to data-generation based methods on PACS using ResNet

in leave-one-domain-out settings. Bold denotes the best result.

Target

ResNet-18 ResNet-50

DeepAll CrossGrad DDAIG L2A-OT MixStyle Ours DeepAll CrossGrad DDAIG MixStyle Ours

(baseline) [111] [3] [112] [113] (baseline) [111] [3] [113]

Photo 95.6 96.0 95.3 96.2 96.1 97.3 ± 0.3 94.8 97.8 95.7 98.0 98.9 ± 0.3

Art painting 75.1 79.8 84.2 83.3 84.1 85.8 ± 0.6 81.5 87.5 85.4 87.4 90.0 ± 0.3

Cartoon 74.2 76.8 78.1 78.2 78.8 80.7 ± 0.5 78.6 80.7 78.5 83.3 83.5 ± 0.5

Sketch 68.4 70.2 74.7 73.6 75.9 77.3 ± 0.5 69.7 73.9 80.0 78.5 80.0 ± 0.6

Average 78.3 80.7 83.1 82.8 83.7 85.3 81.2 85.7 84.9 86.8 88.1

The above quantitative comparisons verify that, comparing to directly (meta-)learn

from existing source domain data, our approach for augmenting diverse, novel, yet

semantically practical source-domain training data would be preferable in domain

generalization tasks.

With the above observation, we further compare our method with the state-

of-the-art data-generation based models [111, 3, 112, 113] using ResNet-18 and

ResNet-50 as backbones. As shown in Table 3.3, our approach consistently per-

formed superiorly against the method of [113] by 1.6% and 1.3% on PACS with

ResNet-18 and ResNet-50 backbones, respectively. Table 3.4 presents the results

on Office-Home, which shows that our method would be preferable among the

DG methods considered. Also, the above results demonstrate that our proposed

framework is able to achieve general preferable performances regardless of the

backbone choice. It is worth noting that, CrossGrad [111] and DDAIG [3] add

perturbation to input images, which might not represent the domain variations,

and the data generation processes of L2A-OT [112] do not jointly take the rep-

resentation learning into consideration. Also, MixStyle [113] can only produce

image features with interpolated domain styles. Different from these methods,

our approach learns to synthesize out-of-source distribution augmentations and

derive domain generalized representations in a mutually beneficial manner, hence

exhibiting more robust generalization capability.
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Table 3.4: Comparisons to data-generation based methods on Office-Home using

ResNet in leave-one-domain-out settings. Bold denotes the best result.

Target

ResNet-18 ResNet-50

DeepAll CrossGrad DDAIG L2A-OT MixStyle Ours DeepAll CrossGrad DDAIG MixStyle Ours

(baseline) [111] [3] [112] [113] (baseline) [111] [3] [113]

Art 59.0 58.4 59.2 60.6 58.7 60.7 ± 0.5 64.7 67.7 65.2 64.9 69.3 ± 0.2

Clipart 48.4 49.4 52.3 50.1 53.4 52.9 ± 0.3 58.8 57.7 59.2 58.8 60.1 ± 0.6

Product 72.5 73.9 74.6 74.8 74.2 75.8 ± 0.1 77.9 79.1 77.7 78.3 81.5 ± 0.4

Real world 75.5 75.8 76.0 73.0 75.9 77.2 ± 0.2 79.0 80.4 76.7 78.7 82.1 ± 0.2

Average 63.9 64.4 65.5 65.6 65.5 66.7 70.1 71.2 69.7 70.2 73.3

3.4.4 Analysis of Our Method

Ablation Study

We now conduct the ablation study to verify our network design on PACS with

ResNet-50 backbone, and we list the results in Table 3.5. Also, we evaluate

the effectiveness of Jigsaw puzzle. Such spatial transformation has been applied

in several DG works [115, 116]. In the bottom part of Table 3.5, we consider

different network designs, including Siamese architecture, Student without EMA,

and Student with EMA, to be derived for performing on unseen target domains.

Effectiveness of Adversarial Augmenter. In the upper part of this table, we first

verify the effectiveness of our designed novel-domain augmenter G by replacing

G with different types of data augmentation strategies Random Augmentation and

Jigsaw puzzle. Random Augmentation denotes directly performing hand-crafted

image transformations, including RandomResizedCrop, Color Jittering, Gaussian

Blur, RandAugment, and Color Dropping. From Table 3.5, it can be observed

that our model surpassed other controlled versions and the baseline on all four

domains. We notice that replacing our learnable novel-domain augmenter with

hand-crafted random augmentations results in significant performance drops, and

the performance was just marginally better than that of the baseline (i.e., DeepAll).

This verifies that such random image transformations can merely achieve limited

improvement on generalization capability. Although the average accuracy of
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Jigsaw Puzzle was better than that of Random Augmentation by about 2.7%, it was

still worse than that of our full version by about 2.6%. This is possibly because that,

while Jigsaw Puzzle provides more visual clues about spatial information as stated

in [115, 116], there is no guarantee that such image transformation would contribute

to domain invariance. With the above experiments, our learnable novel-domain

augmenter exhibits sufficient ability to generate novel-domain augmentations for

facilitating the model robustness to unseen domains.

Effectiveness of Domain Generalized Teacher. From the results shown in the

lower half of Table 3.5, we see that the performance dropped when we replace

the Teacher-Student scheme by a Siamese Architecture, where the parameters are

shared between the teacher and student networks. This is due to the fact that

the Siamese architecture is prone to output collapsing solutions, hampering the

derivation of domain generalized representations. In addition, we examine the

performance of applying the trained student network to unseen domains instead

of applying Teacher. Student without EMA denotes that Teacher is fixed during

training, while Student with EMA denotes that Teacher is still updated with EMA

which benefits the learning of Student. We observe that adopting EMA achieved

the better results, but the performance of the above two versions (which apply

Student) were still inferior to ours (which applies Teacher). From the above

results, we confirm that Teacher updated with EMA would be less likely to be

affected by possibly unrealistic domain augmentations during training, avoiding

the degradation of its domain generalization capability. As verified by the above

experiments, all components presented in our learning scheme would contribute to

the domain generalization capability.

Visualization

We now qualitatively assess the ability of our approach in deriving domain general-

izable features. As shown in Fig. 3.2, we apply t-SNE to compare the features z
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Table 3.5: Ablation studies on PACS using ResNet-50 as the backbone.

Module Method Photo Art painting Cartoon Sketch Average

Augmentation

DeepAll 94.8 81.5 78.6 69.7 81.2

Random Aug. 96.4 83.2 75.9 75.5 82.8

Jigsaw puzzle 97.1 85.3 79.0 80.5 85.5

Representation

Siamese archi. 98.3 87.5 82.7 74.5 85.8

FS w/o EMA 98.2 86.4 80.1 74.7 84.9

FS w/ EMA 97.9 88.9 82.0 75.1 86.0

Ours (G + FT ) 98.9 90.0 83.5 80.0 88.1

(a) DeepAll (b) Our method

Figure 3.2: t-SNE visualization on PACS with Photo as the unseen target domain.

(a) Representations extracted by the baseline approach of DeepAll. (b) Representa-

tions derived by our approach.

derived by our teacher network FT with the features extracted by DeepAll network

on PACS. In this figure, while the source image features extracted by DeepAll

can be grouped according to their semantic categories, the target-domain features

still cannot be properly separated. It can be observed that both source and target-

domain features derived by our Teacher are sufficiently aligned, and the distances

between different class clusters are more evident, indicating that equipped with our

proposed adversarial teacher-student representation learning, our model is capable

of learning more discriminative yet domain generalizable features.

Moreover, in Fig. 3.3, we visually compare the synthesized images by our

method and those by the state-of-the-art data-generation method of DDAIG [3]
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Figure 3.3: Visual comparisons of augmented novel-domain images produced by

DDAIG [3] and ours on PACS dataset.

Table 3.6: Impact of momentum coefficient τ on Office-Home using ResNet-50 as

the backbone.

τ Art Clipart Product Real world Average

0.9 66.5 56.2 78.9 80.9 70.6

0.99 68.1 56.9 80.1 81.4 71.6

0.999 69.3 60.1 81.5 82.1 73.3

using PACS as the training dataset. As described in Sec. 3.2, [3] learns to perturb

the input images for confusing the domain classifier, with the goal of producing

output images to be domain-agnostic. However, from Fig. 3.3, we see that images

generated by DDAIG [3] tended to exhibit visual perturbation, which might not

correspond to domain variations. On the contrary, our approach was capable of

producing images in the data domains which are visually realistic yet distinct

from source domains. We also note that, our model is trained in a deterministic

manner, and the two augmented outputs are generated from our augmenter learned

at different time steps with distinct mini-batch data sampled. This supports that our

novel-domain augmentation mechanism is able to expand the training distributions.

Impact of the Momentum Coefficient τ

In exponential moving average (EMA), τ is a momentum coefficient to control the

update degree of our teacher network FT . As shown in Table 3.6, we conducted

ablation studies on Office-Home with ResNet-50 as the backbone and observed
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that a large momentum coefficient τ by smoothly refining θT could achieve better

performance than by rapid updating. These results indicate that a smooth refinement

of Teacher avoids the degradation of generalization capability.

3.4.5 Generalization from A Single Source Domain

We evaluate our method on a more challenging DG task, single source domain

generalization, to further verify the effectiveness of our method. In the single

source DG setting, we only observe training data from a single source domain

during training with the aim of generalizing to multiple unseen domains. To

confirm that our approach can be extended to the single source DG setting, we

conduct experiments on PACS and the large-scale benchmark dataset DomainNet

with the ResNet-50 backbone. For PACS, we select Photo as the source domain and

the remaining ones (i.e., Art painting, Cartoon, and Sketch) as the target domains.

On the other hand, Real domain in DomainNet is chosen as the source domain,

while Clipart, Infograph, Painting, Quickdraw, and Sketch domains serve as the

target domains. We note that, since only a single source domain is observed during

training, the margin m in (3.4) is viewed as a hyperparameter instead of calculating

from source domain data. Due to page limitation, additional experiments on PACS

using Art painting, Cartoon, and Sketch as the single source domains are presented

in the supplementary material.

We provide quantitative comparisons with the baseline (DeepAll), JiGen [115],

and other three data-generation based methods [111, 3, 141] to evaluate the general-

ization capability on this challenging setting. As shown in Table 3.7, our approach

performed favorably against the baseline (DeepAll) and the above DG methods on

both benchmark datasets. It is worth noting that, compared with data-generation

based methods of [111, 3, 141], our approach was able to achieve superior accuracy

on all the target domains of interest. This confirms that, while our method can

also be viewed as a data-generation based approach, we are able to better augment

novel-domain data based on the observation of single source domain data. From the
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Table 3.7: Single-source domain generalization on PACS and DomainNet using

ResNet-50 as the backbone. Note that Photo of PACS and Real of DomainNet are

selected as the single source domain for training.

Method
PACS DomainNet

Art painting Cartoon Sketch Average Clipart Infograph Painting Quickdraw Sketch Average

DeepAll 60.7 23.5 29.0 37.7 34.5 15.7 40.7 3.6 25.9 24.1

JiGen [115] 63.6 28.5 30.2 40.8 50.0 19.0 46.3 7.2 35.5 31.6

CrossGrad [111] 64.2 29.4 32.1 41.9 49.4 19.3 47.3 5.8 35.6 31.5

DDAIG [3] 64.1 32.5 29.6 42.1 41.4 16.5 40.9 3.2 26.7 25.7

M-ADA [141] 64.6 34.6 26.6 41.9 50.3 19.5 48.1 7.1 36.0 32.2

Ours 68.2 ± 0.9 36.3 ± 0.9 33.5 ± 0.3 46.0 52.2 ± 0.3 21.6 ± 0.2 50.1 ± 0.2 8.1 ± 0.3 38.3 ± 0.4 34.1

above experiments, the use of our approach for single source domain generalization

tasks can be successfully verified.

3.5 Conclusion

In this thesis, we proposed Adversarial Teacher-Student Representation Learning

for addressing domain generalization classification tasks. By alternating between

the training stages of Teacher-Student representation learning and novel-domain

augmentation in an adversarial manner, our learning scheme allows derivation

of domain generalizable representations while semantic information is properly

preserved. We conduct extensive experiments, including comparisons to state-of-

the-art meta-learning and data-generation based DG methods and ablation studies,

which quantitatively and qualitatively confirm the effectiveness and robustness

of our proposed approach in solving DG classification by training on single or

multiple source-domain data.
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Chapter 4

Knowledge Transfer for

Decentralized Domains

Federated learning (FL) emerges as a decentralized learning framework which

trains models from multiple distributed clients without sharing their data to pre-

serve privacy. Recently, large-scale pre-trained models (e.g., Vision Transformer)

have shown a strong capability of deriving robust representations. However, the

data heterogeneity among clients, the limited computation resources, and the

communication bandwidth restrict the deployment of large-scale models in FL

frameworks. To leverage robust representations from large-scale models while

enabling efficient model personalization for heterogeneous clients, we propose a

novel personalized FL framework of client-specific Prompt Generation (pFedPG),

which learns to deploy a personalized prompt generator at the server for producing

client-specific visual prompts that efficiently adapts frozen backbones to local data

distributions. Our proposed framework jointly optimizes the stages of personalized

prompt adaptation locally and personalized prompt generation globally. The former

aims to train visual prompts that adapt foundation models to each client, while the

latter observes local optimization directions to generate personalized prompts for

all clients. Through extensive experiments on benchmark datasets, we show that

our pFedPG is favorable against state-of-the-art personalized FL methods under

81
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various types of data heterogeneity, allowing computation and communication

efficient model personalization.

4.1 Introduction

With access to web-scale training data (e.g., LAION-5B [147]), deep learning has

demonstrated remarkable achievements across computer vision [120, 148, 78] and

natural language understanding [149, 150, 151]. However, in real-world scenarios,

user data is typically scattered across various domains, such as hospital sites or edge

devices. Due to increasing risks of privacy breaches and stricter privacy protection

regulations [152], centralized learning schemes are not preferable. With the aim

of collaboratively training models without exposing users’ private data, Federated

learning (FL) has emerged as a prominent distributed learning framework and has

garnered growing research interest. This privacy-preserving learning paradigm

has been widely adopted in applications like medical image diagnosis [153], face

recognition [154], and person re-identification [155].

Without the need of data sharing among clients, the mainstream FL approach

of FedAvg [156] learns a global model by averaging model parameters trained on

clients’ private data. However, data distributed in each client might be heteroge-

neous in terms of domain discrepancy [157] or imbalanced class distribution [158].

Sharing a global model across heterogeneous data clients is prone to highly deviate

from their local distribution, leading to severe performance degradation [159, 160].

Previous FL works [161, 158] propose types of constraints (e.g., L2 [161] or con-

trastive regularization [158]) to prevent the local training to be divergent from each

other. To better handle the inevitable data heterogeneity across clients, personalized

federated learning (pFL) methods [159, 160, 162, 163, 164] are instead proposed

to allow each client to train a personalized model that adapts to their own data

distribution. For example, pFedHN [159] introduces a hypernetwork at the server

to directly generate model parameters for each client, whereas pFedLA [160] learns
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Figure 4.1: Comparison between (a) FedAvg and (b) our approach. Instead of

updating and transporting entire models θ, our FL method learns to generate

personalized prompts P by implicitly observing local optimization directions

∆P = P̃ − P for efficient model personalization on top of frozen foundation

models.

a layer-wise model aggregation policy to assign different weights for personalized

model aggregation. While the above pFL approaches are desirable for handling het-

erogeneous data, they are typically restricted to small backbone architectures (e.g.,

LeNet [165]) due to the high complexity of outputting model parameters [159] or

aggregation weights [160] for large-scale models. Consequently, the capability

of derived features is limited, leading to a lack of performance improvement and

training instability.

Recently, training from large foundation models [166] for downstream tasks

has become a prominent paradigm in centralized learning. To leverage the strong

representations derived by foundation models for alleviating data heterogeneity,

ViT-FL [167] incorporates pre-trained Vision Transformer (ViT) [168] into stan-

dard FL algorithms (e.g., FedAvg [156]) and shows improved robustness and
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stability on heterogeneously distributed data. However, the use of large pre-trained

models for all clients in existing FL algorithms can cause extensive computational

and communication burdens, as these methods require transporting entire model

parameters between clients and the server. Additionally, overfitting issues might

occur when large-scale models are trained with relatively limited client data.

For efficiently tuning large-scale models, prompt learning [169, 170, 171] pro-

vides a flexible way to adapt pre-trained models to downstream tasks by solely

training the additional inserted trainable parameters (i.e., prompts). For instance,

VPT [169] treats prompts as task-specific parameters and prepends them to the

input tokens of a pre-trained ViT. In this way, prompts could be optimized to

capture task-specific information while instructing a frozen model to perform tasks

of interest. However, a straightforward way to adopt prompt learning into FL, i.e.,

simply averaging prompts learned from all clients, cannot address data hetero-

geneity among clients effectively and often leads to unsatisfactory performance

(as evident in Tables 4.1-4.3). Therefore, there is a crucial challenge to develop

new FL methods that can leverage prompt learning effectively while handling data

heterogeneity among clients.

In this thesis, we aim at achieving efficient model personalization among clients

with data heterogeneity. As depicted in Fig. 4.1, different from conventional FL

methods (e.g., FedAvg [156]) that updates and transports entire model parameters,

we propose a novel personalized FL scheme of client-specific Prompt Generation

(pFedPG) that exploits underlying client-specific characteristics to produce per-

sonalized prompts for each client, which enables efficient adaptation to local data

distribution. To be more precise, each client trains the client-specific prompts to in-

struct a model to perform recognition tasks on the target client using its private data.

As the local training is not required to update entire large models, the computation

overload could be minimized while the possible overfitting issues are mitigated

accordingly. On the other hand, we employ a personalized prompt generation

module on the server side, which is learned to obtain the underlying optimization
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directions among clients. With such client characteristics implicitly observed, we

are capable of producing personalized prompts to facilitate efficient adaptation for

each client with heterogeneous data distribution. By iteratively training the above

two stages in a mutually beneficial manner, we are capable of achieving effective

yet efficient model personalization on top of the robust representations derived

from large-scale foundation models.

We now summarize the contributions of this work below:

• We propose a personalized FL framework of client-specific Prompt Genera-

tion (pFedPG), which alternates between personalized prompt generation

and personalized prompt adaptation to enable efficient model personalization

under heterogeneous data.

• We design a client-specific prompt generator at the server, which effectively

exploits personalized optimization directions and produces client-specific

prompts for updating each client model.

• Evaluations on several benchmark datasets in domain discrepancy and imbal-

anced class distribution verify that our method performs favorably against

existing personalized FL approaches and exhibits sufficient training effi-

ciency.

4.2 Related Works

Federated Learning (FL). Federated Learning is a learning framework in ma-

chine learning with the goal of training models from distributed data sources

while protecting data privacy. The most widely recognized approach for federated

learning is FedAvg [156], which partitions the learning process into two phases:

local training and global aggregation. Each client first trains its local model using

private data and then uploads the model to a server, where the models are averaged

to form a global model. However, data distributed in real-world scenarios are
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typically non-IID, indicating the presence of domain discrepancy or imbalanced

class distribution among clients. Directly averaging models trained on heteroge-

neous data can lead to severe performance degradation and training instability.

To address this challenge, several methods [161, 172, 158, 173, 174, 175, 176]

have been proposed to regularize local training in FedAvg [156]. For instance,

FedProx [161] and SCAFFOLD [172] restrict the local update to be consistent by

L2 distance over model weights and variance reduction technique over gradients,

respectively. MOON [158] applies a contrastive objective to regularize the opti-

mization of local models, ensuring that they do not deviate significantly from the

global model. While promising, these methods focus on sharing a global model

for all heterogeneous clients, which poses a high risk of deviation from local data

distributions.

Recently, personalized Federated Learning (pFL) mechanisms [157, 177, 178,

179, 159, 160, 162, 180, 163, 164] are proposed to address data heterogeneity

among clients by learning customized models at each client. Several works [178,

180, 162] achieve model personalization by only aggregating parts of a model

(e.g., feature extractor) at the server while keeping or learning additional modules

(e.g., classifier) locally. Per-FedAvg [177] analogizes the local training and server

aggregation processes as inner and outer loops optimization in model-agnostic

meta-learning [181], encouraging local model adaptation from the global model

initialization. PartialFed [173] and FedALA [163] derive customized models by

adaptively aggregating the global and local models. Similarly, pFedLA [160] learns

a layer-wise aggregation policy to construct a personalized model by assigning

larger weights to clients with higher similarities. Instead of simply averaging

local models at the server, pFedHN [159] directly generates model parameters

for all clients in a flexible manner. However, its applicability is limited to small

and shallow models (e.g., LeNet [165]) due to the high complexity of the model

parameter space.
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Figure 4.2: Overview of our client-specific Prompt Generation (pFedPG) frame-

work. pFedPG learns a prompt generator G together with client-agnostic prompt

basis Pbase and a bank of client descriptors D = {dn}N
n=1 at the server. With local

classifcation loss observed, both client-specific prompts Pn and local classification

head Hn are updated at each client n. We alternate between the stages of (a)

personalized prompt adaptation and (b) personalized prompt generation to enable

efficient personalization of foundation models like ViT.

Foundation Models and Prompt Learning. Model training from publicly avail-

able pre-trained foundation models [166, 168, 120, 148, 78] has emerged as a

prominent scheme in centralized learning. In particular, Transformer [182, 168]

architectures have demonstrated exceptional ability in deriving robust and discrim-

inative representations. In the FL community, some works [167, 183, 184] start to

investigate the effectiveness of initialization and backbone architectures from large

foundation models. For instance, ViT-FL [167] first incorporates the pre-trained

Vision Transformer (ViT) [168] architecture into FL and shows improved model

performance and training stability. However, existing FL algorithms typically

require updating the entire model parameters, making the training and transfer of

large-scale models challenging in real-world scenarios (e.g., cell phone devices or

medical sites), which have limited computation resources or network bandwidth.

Prompt learning techniques [185, 186, 187] have been widely used in the NLP

community for adapting language models to downstream tasks effectively via only
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optimizing a small amount of continuous task-specific prompt vectors. Recently,

Visual Prompt Tuning (VPT) [169] has also been proposed as an efficient and

effective alternative to full fine-tuning the large-scale ViT model. It introduces

additional learnable prompts into the input image embedding space, which serve

as task-specific parameters for adapting the frozen backbone to perform a task of

interest. However, the integration of prompt learning techniques into heterogeneous

federated learning frameworks remains an open research challenge. In this work,

we aim to achieve efficient and effective model personalization for heterogeneous

data by proposing a personalized prompt generator at the server that implicitly

exploits cross-client characteristics to produce personalized prompts for facilitating

local adaptation.

4.3 Proposed Method

4.3.1 Problem Formulation

For the sake of completeness, we first define the problem setting in this thesis.

Following previous personalized federated learning works [177, 178, 179, 159,

160, 162, 180, 163], we assume that training data are distributed in N separated

clients with heterogeneous datasets D = {D1,D2, ...,DN}, each contains a set of

image-label pairs Dn = {(xi, yi)}|Dn|
i=1 . These datasets follow non-IID (independent

and identically distributed) data distribution in terms of either domain discrepancy

or imbalanced label space. With the interest of training efficiency and local

data privacy preserved, we aim at learning a client-specific prompt generation

mechanism that produces personalized visual prompts Pn = [p1
n, p2

n, ..., pK
n ] that

adapt a pre-trained foundation model F ∗ to perform classification tasks on each

local client. Through our learned client-specific prompts, we enable efficient

model personalization for each heterogeneous client while preserving the robust

representation from a frozen foundation model without the risks of overfitting.
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4.3.2 Efficient Model Personalization in FL via Client-Specific

Prompt Generation

As illustrated in Fig. 4.2, we propose a personalized federated learning framework

of client-specific Prompt Generation (pFedPG). To leverage underlying client

characteristics and enable efficient model personalization for all clients, pFedPG

alternates between the stages of personalized prompt adaptation and personalized

prompt generation in a mutually beneficial manner.

In the stage of personalized prompt adaptation, pFedPG advances the visual

prompt learning technique [169] in FL frameworks. A small number of trainable

parameters, denoted as prompts Pn = [p1
n, p2

n, ..., pK
n ], are inserted into a frozen

foundation model F ∗ to encode client-specific information at client n. In the stage

of personalized prompt generation, a personalized prompt generator G is learned

to produce personalized prompts for each client by exploiting the underlying

characteristics among clients. Once the learning process is complete, we are able

to efficiently adapt the frozen foundation model F ∗ by the client-specific prompts

Pn to perform recognition tasks at each client n. We now detail each learning stage,

including the training/inference processes below.

Personalized prompt adaptation at local clients

To enable efficient model adaptation on top of large-scale foundation models and

prevent possible overfitting problems caused by updating on relatively limited

private data, we advance Personalized Prompt Adaptation based on the prompt

learning [169] scheme. Note that, the prompts could be treated as client-specific

learnable parameters and directly optimized through gradients during training.

With the prompts learned, we can efficiently adapt the foundation model F ∗ to the

data distribution of interest.

As depicted in Fig. 4.2(a), this training stage aims to learn client-specific

prompts Pn = [p1
n, p2

n, ..., pK
n ] by leveraging the Transformer-based frozen founda-

tion model F ∗ with locally updated classification head Hn. To be more specific,
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we follow [168] and divide an input image x to m image patches {ai}m
i=1 and then

derive the latent embedding z by a frozen feature embedding module Embed as

follows:
x = [a1, a2, ..., am], a ∈ R3×h×w,

z = [z1, z2, ..., zm], z = Embed(a),
(4.1)

where h and w denote the height and width of an image patch, and the patch

embedding zm are projected to l-dimension. As the latent embedding z obtained,

we form the input embedding of the Transformer encoder F ∗ by concatenating

z with a learnable classification token c ∈ Rl, and the client-specific prompts

Pn =
[
p1

n, p2
n, ..., pK

n

]
as [c, Pn, z]. To encourage the client-specific prompts to

adapt upon this client’s data, we employ the standard cross-entropy loss Lcla over

|Dn| samples, and is calculated as:

Ln = 1
|Dn|

|Dn|∑
j=1
Lcla (Hn (F ∗ ([c, Pn, zj])) , yj) . (4.2)

As a result, the client-specific prompts Pn can be optimized end-to-end by gradient

decent (the same as Hn and c) with learning rate γ as P̃n ← Pn − γ · ∂(Ln)/∂Pn.

With the procedure of personalized prompt adaptation training, pFedPG is

capable of realizing parameter-efficient model adaptation without requiring updat-

ing entire model parameters yet mitigating possible overfitting concerns and huge

computation workloads.

Personalized prompt generation at the server

Conventional FL frameworks (e.g., [156]) typically involve the server averaging

model parameters from local clients to construct a single global model. However,

this aggregation method poses a significant risk of deviating from local data

distributions and introduces massive communication overheads, especially when

deploying large-scale models among heterogeneous clients. Recall that the prompts

trained locally could be treated as client-specific parameters to guide the frozen

model in performing recognition tasks for the client of interest. Instead of averaging
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model parameters or prompts from clients, we aim at learning a unique personalized

prompt generation mechanism at the server to exploit cross-client knowledge and

then produce personalized prompts that serve as a good initialization for efficient

local adaptation at each client. Since the server cannot access local private data, it

is challenging to obtain the client-specific characteristics while encouraging the

produced personalized prompts to facilitate local adaptation at the same time. In

the following, we will elaborate on how our personalized prompt generation be

learned in an FL scheme.

Design and architecture. As illustrated in Fig. 4.2(b), with the goal of generating

personalized prompts {P1, ...PN} for all N clients, our pFedPG learns to transform

a set of client-agnostic prompt basis Pbase through a conditional prompt generator

G(·; φ) parameterized by φ with the guidance of client descriptor dn selected from

D = {d1, d2, ..., dN}. To be more specific, we realize the conditional prompt

generator G based on cross-attention [182] while the client-agnostic prompts Pbase

and the client descriptor dn are expected to capture client-agnostic information

and encode the client-specific characteristics, respectively. As a result, generating

personalized prompts could be achieved by retrieving client-relevant knowledge

from Pbase through the query of the client descriptor dn, as formulated below,

Pn = G (Pbase, dn) = Pbase + Atten (Q,K,V) W O

= Pbase + Softmax(QK
T

√
lk

)VW O,
(4.3)

where Q = [dn]W Q,K = PbaseW
K,V = PbaseW

V ,

where
√

lk is a scaling factor. W Q ∈ Rl×lk , W K ∈ Rl×lk , W V ∈ Rl×lv , and

W O ∈ Rlv×l are learnable projection metrics as in [182]. As we realize G using a

single-head attention layer, the lk and lv are equal to the embedding dimension l.

Learning of personalized prompt generation. As the goal of the produced per-

sonalized prompts is to serve as a good initialization for each client that facilitates
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the local adaptation, we learn our personalized prompt generation module (i.e.,

G, Pbase and dn) through the training rewards observed from the local optimiza-

tion process. Inspired by [159, 160], the change of prompts after local training

∆Pn = P̃n − Pn indicates the direction of local optimization at client n that could

be treated as a training reward representing the initialization point is good or not.

With ∆Pn observed, we are capable of training our pFedPG end-to-end via gradient

descent.

To be more specific, the update of the conditional prompt generator G(·; φ) can

be derived by the gradients computed locally and expressed by the chain rule as

∆φ = ∇φLn = (∇φPn)T∇PnLn

∼= (∇φPn)T ∆Pn,
(4.4)

where ∇PnLn is approximated by ∆Pn that indicates the optimization direction

of local training. We apply the same optimization rule to learn the client-agnostic

prompts Pbase and client descriptor dn end-to-end with G, and summarize the

gradient update as follows,

φ← φ− α∇φPT
n ∆Pn,

Pbase ← Pbase − α∇Pbase
φT∇φPT

n ∆Pn,

dn ← dn − α∇dnφT∇φPT
n ∆Pn.

(4.5)

We note that, the client-agnostic prompt basis Pbase and conditional prompt

generator G are optimized by all clients, enforcing them to exploit cross-client

knowledge, while client descriptor dn is solely regarding client n, to encourage

the derivation of client-specific characteristics. With our proposed personalized

prompt generation module, pFedPG is able to generate personalized prompts to

facilitate local adaptation while leveraging and sharing knowledge across clients

without explicitly accessing private data.



doi:10.6342/NTU202301924

4.3. Proposed Method 93

Algorithm 4: pFedPG for Efficient and Personalized Federated Learning

1 Input: Number of communication rounds T , F ∗, G, Pbase, D, and N sets

of Pn and Hn, n ∈ [1, N ]

2 Data: N labeled datasets Dn, n ∈ [1, N ]

3 Output: F ∗, Hn, Pn

1: Let t = 0;

2: while t <T do

3: # Personalized prompt adaptation at clients

4: for n in 1 : N do

5: Keep F ∗ freeze;

6: Set Pn = G(Pbase, dn), dn ∈ D (Eq. (4.3));

7: Randomly sample a minibatch from Dn;

8: Update Hn with Ln (Eq. (4.2));

9: Update Pn by P̃n ← Pn − γ ∂(Ln)
∂Pn

;

10: ∆Pn = P̃n − Pn;

11: end for

12: # Personalized prompt generation at the server

13: Receive ∆Pn from all N clients;

14: Update G, Pbase, and D by Eq. (4.5);

15: t = t + 1;

16: end while

4.3.3 pFedPG Training and Inference

In Algorithm 4, we summarize the training details of our proposed personalized

FL framework of Prompt Generation (pFedPG). We alternate between the learning

processes of personalized prompt generation and personalized prompt adaptation

until converging.

Once the learning of the proposed framework is complete, we deploy the learned

client-specific prompts Pn to instruct the pre-trained feature extractor F ∗ to extract
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Table 4.1: Quantitative comparisons on Office-Caltech10 and DomainNet datasets.

Bold denotes the best result.

Datasets Office-Caltech10 (%) DomainNet (%) Comm.

Method A C D W Avg. C I P Q R S Avg. Cost

Baselines

SingleSet-Full 80.73 73.33 90.62 94.92 84.90 47.34 37.14 67.21 55.30 84.88 45.13 56.17 -

SingleSet-VPT [169] 83.33 74.67 96.88 96.61 87.87 57.98 41.55 74.64 59.60 89.56 60.47 63.97 -

FedAvg [167] 89.58 80.44 100.0 100.0 92.51 63.50 38.05 71.89 60.80 78.55 60.47 62.21 85.88 M

Personalized Federated Learning

Per-FedAvg [177] 91.67 90.22 100.0 100.0 95.47 69.39 48.71 82.07 35.30 90.63 72.56 66.44 85.88 M

FedRep [178] 91.15 88.44 100.0 100.0 94.90 64.26 38.20 72.86 62.10 82.66 60.11 63.37 85.88 M

FedRoD [162] 92.19 90.67 100.0 100.0 95.72 66.54 42.92 74.15 57.20 84.63 66.43 65.31 85.88 M

FedBABU [180] 89.06 85.78 100.0 100.0 93.71 63.31 43.07 74.80 43.80 87.26 67.15 63.23 85.88 M

Efficient Federated Learning

FedVPT [169] 92.71 84.44 100.0 100.0 94.29 65.59 44.14 76.58 47.30 91.04 60.29 64.16 0.008 M

FedVPT-D [169] 91.67 89.33 100.0 100.0 95.25 63.31 43.07 74.80 54.80 87.26 67.15 65.07 0.009 M

pFedPG (Ours) 94.79 92.44 100.0 100.0 96.81 73.00 50.08 84.33 60.00 94.00 68.41 71.64 0.008 M

discriminative representations together with locally updated classification head

Hn for performing the classification task at each client. Formally, the categorical

predictions y∗ over Y classes at each client n can be computed as

y∗ = arg min
k∈K

Hn(F ∗([c, Pn, x])). (4.6)

4.4 Experiments

4.4.1 Datasets and Experimental Setup

Datasets

We evaluate our method on five public benchmark datasets covering types of data

heterogeneity, including domain discrepancy and imbalanced class distribution.

For domain discrepancy, Office-Caltech10 [188, 189] is composed of four data

domains including Amazon, DSLR, Webcam, and Caltech. Each domain contains

ten classes, with 2,533 images in total. DomainNet [137] consists of 0.6 million

images of 345 classes distributed across six domains, Clipart, Infograph, Painting,
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Quickdraw, Real and Sketch. Following [157], we use the top ten most frequent

classes to form a sub-dataset for our experiments. As for medical image diagno-

sis tasks, Dermoscopic-FL [153] is comprised of four data sites collected from

HAM10K [190] and MSK [191]. Each data site contains three types of skin le-

sions, with 10,490 images in total. More detailed statistics and sampled images

are provided in the supplementary material. For imbalanced class distribution,

CIFAR-10 [192] contains 5,000 training images and 1,000 testing images per class,

totaling ten classes. CIFAR-100 [192] consists of 60,000 images of 100 categories

with 500 training images and 100 testing images per class. The experimental

settings for simulating data heterogeneity are detailed in Sec. 4.4.1.

Experimental settings

To properly evaluate our proposed approach and fairly compare it with existing

FL methods, we conduct experiments on two types of heterogeneous FL settings:

domain discrepancy and imbalanced class distribution. For conducting clients with

domain discrepancy, we assign a data domain to a client, indicating the number of

clients (N ) is set as 4, 6, and 4 for Office-Caltech10, DomainNet, and Dermoscopic-

FL datasets, respectively. As for simulating imbalanced class distribution, we

consider two non-IID settings using CIFAR-10 and CIFAR-100. Following [167],

the first non-IID setting we considered is randomly selecting disjoint c classes for

each client and denoted as disjoint label space. In our experiments, c = 2 and

c = 10 for CIFAR-10 and CIFAR-100, respectively. As for the other non-IID

setting, data in each class would be partitioned into all clients following a Dirichlet

distribution Dir(α). We follow [162] and set α to 0.1 over 10 clients.

Implementation details

We use ViT-B/16 [168] pre-trained on ImageNet21k [140] as the backbone of F ∗

and a single linear layer to realize the classification head Hn. The input images

of all datasets are resized to 224 × 224 pixels. For each client, we train Pn and
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Table 4.2: Quantitative comparisons on CIFAR-10/100 datasets. Bold denotes the

best result

Datasets CIFAR-10 (%) CIFAR-100 (%)

Method Disjoint Dir(0.1) Disjoint Dir(0.1)

Baselines

SingleSet-Full 89.51 83.85 67.74 49.64

SingleSet-VPT [169] 88.91 84.32 63.42 46.46

FedAvg [167] 88.04 79.79 63.33 51.37

Personalized Federated Learning

Per-FedAvg [177] 88.13 85.14 69.31 52.68

FedRep [178] 87.07 82.40 65.71 50.36

FedRoD [162] 87.61 80.36 63.90 51.42

FedBABU [180] 83.15 76.33 55.91 50.19

Efficient Federated Learning

FedVPT [169] 89.39 85.11 55.49 45.26

FedVPT-D [169] 89.56 85.43 66.91 50.25

pFedPG (Ours) 90.08 87.57 70.96 55.91

Hn using the SGD optimizer with a learning rate γ of 0.25 with a weight decay

rate of 0.001 and a batch size of 64 for 5 epochs. The number of communication

round T is set to 100. We set the learning rate α for updating G, Pbase, and D to

0.001. The number of prompts K of Pn and Pbase is set as 10 for datasets except

for Dermoscopic-FL with K = 3. The hyperparameters above are tuned by cross-

validation. In all our experiments, we implement our model using PyTorch [193]

and conduct training on NVIDIA TESLA V100 GPUs with 32 GB memory.

4.4.2 Quantitative Evaluation

We compare our proposed framework with existing FL methods on benchmark

datasets representing various types of data heterogeneity (i.e., domain discrep-

ancy and imbalanced class distribution). In our experiments, SingleSet-Full and
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FedAvg [156] are viewed as baselines, where the former trains a model at each

client without information sharing, while the latter aggregates client models to

construct a shared global model. In addition, SingleSet-VPT indicates each client

independently applies visual prompt tuning [169] to learn prompts at the input

embedding space.

In Tables 4.1-4.3, we summarized the results compared with the state-of-the-art

pFL works. To be more specific, Per-FedAvg [177] applies meta-learning [181] to

derive customized models for each client from a global initialization. FedRep [178]

aggregates feature extractors but keeps classifiers trained locally; FedBABU [180]

only updates and shares feature extractors during FL training. FedRoD [162] addi-

tionally learns a personalized classification head without aggregation to preserve

the recognition ability for its own client’s data. Instead of updating entire model

parameters, two efficient FL baselines, FedVPT and FedVPT-D, are conducted,

which keep the backbone frozen, and aggregate prompts globally. Following [169],

FedVPT inserts prompts to the input, and FedVPT-D prepends prompts to the input

and hidden layers. Note that, we use ViT-B/16 [168] as the backbone of the above

methods for fair comparisons.

In Table 4.1, we provide the quantitative comparisons on Office-Caltech10

and DomainNet datasets with the presence of domain shifts across clients. Our

approach achieved the highest 96.81% and 71.64% average accuracies on Office-

Caltech10 and DomainNet, respectively, as observed from Table 4.1. Moreover, our

method exhibited the best communication efficiency, accounting for only roughly

0.01% parameters, as compared to the existing pFL methods. In addition to domain

discrepancy, we conducted comparisons on the imbalanced class distribution

scenario using CIFAR-10 and CIFAR-100 datasets, as shown in Table 4.2. As

mentioned in Sec. 4.4.1, two types of imbalanced data are simulated, including dis-

joint label space and imbalanced label distribution drawn from Dir(0.1). Table 4.2

demonstrates that our method performed favorably against existing FL works over

the two datasets on both types of label imbalance. To further exhibit the ability
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Table 4.3: Quantitative comparisons on Dermoscopic-FL dataset. Bold denotes the

best result.

Method A B C D Avg.

Baselines

SingleSet-Full 76.09 97.29 71.65 73.57 79.65

SingleSet-VPT [169] 70.90 96.25 70.12 68.33 76.40

FedAvg [167] 62.54 96.12 51.52 68.08 69.57

Personalized Federated Learning

Per-FedAvg [177] 76.09 91.99 70.12 74.56 78.19

FedRep [178] 69.06 96.12 60.37 68.58 73.53

FedRoD [162] 63.55 96.67 58.84 69.33 72.10

FedBABU [180] 58.19 97.16 49.09 68.58 68.26

Efficient Federated Learning

FedVPT [169] 74.92 96.77 67.07 75.06 78.46

FedVPT-D [169] 73.91 96.12 74.09 77.81 80.48

pFedPG (Ours) 79.26 97.29 76.22 78.80 82.89

Table 4.4: Analysis of our personalized prompt generation and the architecture of

prompt generator G on benchmark datasets.

Module Method Office-Caltech10 DomainNet CIFAR-10 CIFAR-100

Prompt generation
FedVPT 94.29 64.16 89.39 55.49

Pbase 93.16 64.87 88.23 66.89

Architecture of G
MLP [159] 94.96 63.33 87.47 66.73

AdaIN [6] 95.72 70.08 89.77 69.44

pFedPG 96.81 71.64 90.08 70.96

of our method to more practical and challenging tasks, we provide a comparison

with state-of-the-art works for the cross-site medical image diagnosis task using

Dermoscopic-FL. As shown in Table 4.3, our pFedPG consistently performed

superiorly against other FL methods on all hospital sites.

We observed that, with the presence of significant data heterogeneity (e.g.,
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large style difference in DomainNet) across clients, existing FL works which

obtain a shared feature encoder [178, 162, 180] by aggregation might still deviate

from local data domains, while Per-FedAvg [177] focuses on deriving a global

initialization would not be preferable under severe discrepancy across clients. As

shown in Tables 4.1- 4.3, FedVPT and FedVPT-D achieve comparable or even

superior performance over existing FL works, exhibiting the ability of efficient

FL methods to mitigate possible overfitting issues. However, sharing a set of

global prompts is still not desirable for heterogeneous clients. To explicitly enable

efficient model personalization to tackle heterogeneous data, our approach learns

to generate personalized prompts to facilitate local adaptation for each client. With

the above results, we successfully confirm the effectiveness and robustness of our

proposed pFedPG to address data heterogeneity with training efficiency.

4.4.3 Analysis of Our pFedPG

In this section, we first conduct experiments to confirm the effectiveness of our

proposed personalized prompt generation and the design of our prompt generator G.

Second, we provide a detailed analysis of the impact of different number prompts.

Due to the page limitations, we provide the analysis of model backbones and the

size of client data in the supplementary material.

Effectiveness of personalized prompt generation. In the upper part of Table 4.4,

we intend to verify the effectiveness of our personalized prompt generation for

facilitating adaptation at each client on benchmark datasets, where CIFAR-10/100

are under the setting of disjoint label space. In Table 4.4, we first ablate Pn with

the global prompts obtained by global averaging (as in FedVPT). As reported in

Table 4.4, the globally averaged prompts cannot achieve satisfactory performance

since sharing a single set of prompts would not be favorable to heterogeneous

clients. In addition, we examine the performance of applying the trained client-

agnostic prompt basis Pbase to clients instead of applying personalized prompts Pn.
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We observed that the performance of Pbase is still inferior to ours (which applies

Pn). As evident from the above experiments, the effectiveness of our proposed

personalized prompt generation for allowing personalized FL under various types

of data heterogeneity would be successfully verified.

Effectiveness of our designed prompt generator G. From the results shown

in the lower half of Table 4.4, we see that the performance dropped when we

replaced our cross-attention-based prompt generator G and Pbase with an MLP-

based network as [159], which acts on client descriptors and then output prompts

for each client. The inferior performance of the MLP-based prompt generator is

due to its high training complexity and instability, resulting from the requirement of

deploying a fully-connected layer for each prompt embedding. Another alternative

prompt generator is to compute adaptive instance normalization (AdaIN) [6] for

Pbase and the client descriptor dn. This method allows for the transfer of client-

agnostic prompts Pbase to personalized prompts Pn by replacing the mean and

variance calculated from the client descriptor dn, similar to the style transfer

approach [6]. However, as seen in Table 4.4, directly computing AdaIN did not

explicitly model the prompt generation process, resulting in inferior performance

compared to ours. The results summarized in Table 4.4 confirm the effectiveness

of our designed architecture of prompt generator G.

Impact of the number of prompts K. We also analyze the impact of the number

of prompts K on benchmark datasets, and show the results in Table 4.5. We found

that when the number of prompts is set too low (e.g., K = 1), the model’s accuracy

drops slightly due to insufficient capacity. In contrast, if the number of prompts is

set too high, such as 100 or 200, the model’s performance significantly degrades.

This is because a large number of prompt embeddings may encode noisy and

task-irrelevant information, which can adversely affect the quality of the features

derived from foundation models. With the above observation, we thus set K as 10

which achieves the best trade-off between communication cost and model accuracy.
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Table 4.5: Impact of the number of prompts K on benchmark datasets, where

CIFAR-10/100 are drawn from Dir(0.1).

K Office-Caltech10 DomainNet CIFAR-10 CIFAR-100

1 96.09 70.27 86.14 55.77

5 96.77 70.53 87.41 55.79

10 96.81 71.64 87.57 55.91

50 95.10 69.55 85.63 54.52

100 94.53 68.79 85.02 53.61

200 94.46 66.83 83.53 52.34

4.5 Conclusion

In this thesis, we proposed a novel client-specific Prompt Generation framework

(pFedPG) for enabling efficient model personalization among heterogeneous clients.

By alternative optimization of the proposed personalized prompt generation and

client-specific prompt adaptation, our pFedPG is capable of producing personalized

prompts for each client by observing underlying directions of local training among

clients, while clients optimize such client-specific prompts to adapt a pre-trained

model to local data distribution. We conducted extensive quantitative experiments,

verifying that our framework performed favorably against SOTA pFL approaches at

heterogeneous data clients while achieving training and communication efficiency.
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Chapter 5

Conclusion

In this thesis, we focused on visual understanding for knowledge transfer, address-

ing the challenges of distribution difference in the aspect of distinct data domains or

semantic classes. We systematically examine knowledge transfer for image styles,

semantic categories, unseen domains, and decentralized domains. Through our

analysis and experimental results, the effectiveness of these approaches is verified.
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