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摘要

在多標籤分類任務中，標籤出現次數間的不平衡是個常見的問題。

對於出現次數稀少的標籤來說，用來產生二元預測值的預設閥值往往

不是最佳的。然而，在過去的文獻中已觀察到直接透過最佳化 F值來

選取新閥值容易造成過擬合。在此篇論文中，我們解釋了為什麼藉由

調整閥值來最佳化 F值以及類似的評價指標時特別容易過擬合。接下

來，我們分析了 FBR啟發法——一個既有的對於此過擬合的解法。我

們為其成功之處提供了解釋，但也點出 FBR的潛在問題。針對所發現

的問題，我們提出了一個新技巧，在閥值最佳化時對 F值做平滑化處

理。我們以理論證明，如果選取了恰當的參數，平滑化可為調整後的

閥值帶來良好的性質。延續平滑化的概念，我們更進一步提出同時最

佳化微觀平均 F與巨觀平均 F的方法。其享有平滑化所帶來的好處，

但是更為輕量化，不需要調整額外的超參數。我們在文字與節點分類

的資料集上驗證了新的方法的有效性，其一致的超越了 FBR啟發法。

關鍵字： 多標籤分類，F值，稀有標籤，文本分類，節點分類，支持

向量機，閾值調整
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Abstract

In multi­label classification, the imbalance between labels is often a con­

cern. For a label that seldom occurs, the default threshold used to generate

binarized predictions of that label is usually sub­optimal. However, directly

tuning the threshold to optimize for F­measure has been observed to over­

fit easily. In this work, we explain why tuning the thresholds for rare labels

to optimize F­measure (and similar metrics) is particularly prone to overfit­

ting. Then, we analyze the FBR heuristic, a previous technique proposed to

address the overfitting issue. We explain its success but also point out its

potential problems. Then, we propose a new technique based on smooth­

ing the F­measure when tuning the threshold. We theoretically prove that,

with proper parameters, smoothing results in desirable properties of the tuned

threshold. Based on the idea of smoothing, we then propose jointly optimiz­

ing micro­F and macro­F as a lightweight alternative free from extra hyper­

parameters. Our methods are empirically evaluated on text and node classi­

fication datasets. The results show that our methods consistently outperform

the FBR heuristic.

Keywords: multi­label classification, F­measure, rare labels, text classifica­

tion, node classification, support vector machines, threshold adjustion
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Chapter 1

Introduction

In multi­label classification, the goal is to predict a set of relevant labels given an input

instance. Applications of this setting, to name a few, include text classification [21], prod­

uct search or recommendation [2], medical code prediction [15], and node classification

[17, 5, 24].

Among many of these applications of multi­label classification, the number of labels

involved ranges from tens to millions or more. Depending on the number of labels and

the specific application, different ways of prediction are applied, which are then evalu­

ated with different metrics. Some applications like recommender systems deal with hun­

dreds of thousands of labels while focusing on predicting a few labels correctly. In such

situations, metrics like Precision@k or nDCG@k are common choices [28, 30]. How­

ever, there are still many important applications with a smaller number of labels (e.g.,

≤ 10, 000), such as node classification [17, 5, 24] or medical code prediction [15]. In

these cases, we aim to predict all the relevant labels for an instance instead of only the top

ones. In this case, metrics such as micro­F and macro­F are the most common. In this

work, we consider applications that require predicting all relevant labels and investigate

the techniques for optimizing micro­F and macro­F.

An important issue inmulti­label classification is the imbalance between labels. As the

number of labels exceeds hundreds or more, there may be labels that occur in only a few

samples. Learning a robust predictor for these labels thus poses a significant challenge.

For the convenience of our discussion, we roughly separate the labels into rare (less than

1
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10 positive samples), medium (between 10 and 100 samples) and frequent labels (more

than 100 samples). We use infrequent labels to refer to rare and medium labels, our main

focus in this work. Among the two metrics mentioned above, macro­F is known to take

infrequent labels into account more effectively [13, 20]. Therefore, we use macro­F as the

main metric to judge a classifier’s performance on infrequent labels.

In addition to the choice of metrics, standard machine learning algorithms must be

adapted to handle imbalanced datasets. Common techniques include over/under­sampling

[8, 6], cost­sensitive methods [8, 6], and threshold adjustion [10, 23]. Currently, one of the

most effective ways to optimize macro­F is by tuning a separate threshold for each label.

The tuned thresholds are then applied to the decision values of labels to give predictions.

A pioneer in this direction is SCut [27]. However, applying SCut to infrequent labels has

been observed to overfit easily, a situation that leads to a challenging research problem

[27, 9]. As far as we know, not much work has provided a good understanding of why the

SCut method overfits so badly, and so far the FBR heuristic [27] is the only technique to

battle this issue. Despite FBR’s success in the past [11, 4], it is a heuristic. The reason

why it performed well is not well­understood. Therefore, in this work, we aim to analyze

the difficulties of tuning thresholds for infrequent labels and provide a more principled

solution to the problems discovered.

In previous works on thresholding, the classifier for each label is usually a linear clas­

sifier [11, 4]. We follow them to consider linear support vector machines (SVM). How­

ever, our method should also apply to other models (e.g., neural networks) as long as the

prediction is generated by thresholding on the scores of each label.

Our contribution can be summarized as follows:

• We point out that when optimizing F­measures (and similar metrics) of infrequent

labels by tuning the threshold, overfitting occur due to how these metrics are for­

mulated.

• The FBR heuristic [27], a previous technique proposed to solve the overfitting prob­

lem, is thoroughly analyzed. We are likely the first to explain why this heuristic is

effective. Further, we novelly point out some problems with the FBR heuristic.

2
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• To solve the problems discovered, we propose using a smoothed F­measure as a

surrogate when tuning thresholds. In contrast to the FBR heuristic, our methods are

more principled and have many theoretical justifications.

• Both FBR and our methods using smoothed F­measure require a two­level cross­

validation procedure, which may be time­consuming for large problems. We pro­

pose a lightweight version of our method by jointly optimizing micro­F and macro­

F. The resulting method is much more efficient, requiring only one level of cross­

validation.

• Evaluations on text and node classification show that our methods effectively im­

prove upon the FBR heuristic.

The remaining work is organized as follows: In Chapter 2, we formally define the

problem and review some previous works. In Chapter 3, we dive deeper into the FBR

heuristic to explain why it was successful. We further point out that FBR makes pes­

simistic decisions in some situations. In Chapter 4, we introduce the smoothed F­measure

for regularizing the tuning of thresholds and propose several algorithms based on this idea.

Finally, we present experimental results in Chapter 5 and conclude this study in Chapter 6.

3
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Chapter 2

Preliminaries

In this chapter, we first introduce the setting of multi­label classification. Then, the eval­

uation metrics micro­F and macro­F are introduced. Finally, we give a review of previous

methods.

2.1 Problem Setting

In multi­label classification, we are given a set of target labels Y = {1, 2, . . . , L} and a

set of training samples {(xi, yi)}, where xi is from a feature domain X and yi is a vector

in {−1,+1}L. A value of +1 in the jth position of yi indicates that label j is relevant

to xi, while −1 indicates an irrelevant label. Our goal is to train a model Φ(x) : X →

{−1,+1}L using the training samples, such that it correctly predicts the set of relevant

labels given a new x unseen in the training set.

The model Φ can be decomposed into L components:

Φj : X → {−1,+1} for j = 1, 2, . . . , L

Each component Φj is then trained to solve the subproblem of whether a sample is associ­

ated with label j, which is a binary classification problem. The components Φj are often

implemented by a scoring function ϕj : X → R outputting a decision value for each label

4
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j. Then, a threshold T is applied to ϕj(x) to generate binarized predictions:

Φj(x) =


+1 ϕj(x) > T

−1 ϕj(x) ≤ T

(2.1)

WhenΦj andϕj are solved independently for each j as a binary classification problem, this

approach is called the binary relevance method. In contrast, methods like neural networks

typically train the components for all j together. This work mainly focuses on the binary

relevance method applied to linear support vector machines (SVM). That is, the scoring

function is in the form

ϕj(x) = wT
j x+ bj,

where wj and bj are learned parameters of the SVM. The default threshold for SVMs is

usually set at T = 0. Nevertheless, the proposed method should apply to other models, as

long as a score is assigned to each label and thresholded as in (2.1). This includes applying

binary relevance to other base classifiers or neural networks that output a probability for

each label, which is usually thresholded at T = 0.5.

2.2 Evaluation Metrics

Asmentioned in the introduction, we focus our discussion on micro­F and macro­F, which

are common extensions of F­measure for multi­label problems. In the setting of binary

classification, the F­measure of a binary prediction is defined as

F =
2tp

2tp+ fp+ fn
, (2.2)

where tp, fp and fn stand for the number of true positives, false positives, and false nega­

tives, respectively.

When there are multiple labels, F­measure is extended in mainly twoways. Macro­F is

the average F­measure over all labels, while micro­F calculates a single F­measure using

counts of tp, fp and fn summed over all labels. Let tpj, fpj and fnj denote the respective

5
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Algorithm 2.1 SCut (one label)
Input: A set of samples D = {(xi, yi) | yi ∈ {−1,+1} for i = 1, 2, . . . , N}, a metric

f(T ), number of folds V
Output: A trained scoring function ϕ, a threshold T
1: Randomly partition D to V subsets D1, D2, . . . , DV

2: for k = 1, 2, . . . , V do
3: Train a model ϕ(k) on D \Dk

4: On the validation set Dk, calculate the decision values Z = {ϕ(k)(x) | x ∈ Dk}.
5: Find the threshold T (k) that maximizes f(T (k)) on Z.
6: end for
7: T = 1

V

∑V
k=1 T

(k)

8: Train a ϕ on D
9: Return (ϕ, T )

counts calculated only using label j. Macro­F and micro­F can be expressed as:

Fmicro =
∑L

j=1 2tpj∑L
j=1(2tpj + fpj + fnj)

Fmacro =
1

L

L∑
j=1

Fj, where Fj =
2tpj

2tpj + fpj + fnj

In the next section, we review some approaches proposed to optimize F­measure.

2.3 Previous Works

Standard machine learning algorithms usually assume the positive and negative classes to

be balanced, and they optimize measures like accuracy that treat each class equally. In this

case, using default thresholds described in Section 2.1 works reasonably well. However,

for an infrequent label, the corresponding binary problem is imbalanced, with only a few

positives. When the dataset is imbalanced, and a different evaluation metric is adopted,

not tuning the threshold can be a “critical mistake” [19]. Several works have demonstrated

the importance of threshold tuning for traditional machine learning models [27, 4, 1, 23]

and neural networks [10].

SCut – Instead of using the default threshold T in (2.1), SCut [27] has a separate

threshold Tj for each label. The thresholds are usually tuned to maximize a chosen metric

on a validation set that was not used to train the scoring function. A single validation set

6
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or a V ­fold cross­validation (CV) can be used. When a CV is used, the average of the

V thresholds is used as the final threshold. After that, a final model is re­trained with

all training data, for the extra data (especially positive samples) from the validation set

often improves the model further. Since the methods proposed in this work are all based

on SCut, we give the procedure for tuning the threshold of one label in Algorithm 2.1.

We define the algorithm in a general form such that any evaluation function f(T ) can be

used to select the threshold. We provide the details about finding the optimal threshold

in step 5 of Algorithm 2.1. For simplicity, we assume the decision values ϕ(xi) are all

distinct. First, we sort the decision values in Z, so that we have ϕ(k)(xi) < ϕ(k)(xi+1) for

i = 1, . . . , N − 1. Then the optimization of the measure f is done by searching through

these thresholds:

(T0,T1, . . . , TN) where

Ti =


ϕ(k)(x1)− ϵ i = 0

1
2

(
ϕ(k)(xi) + ϕ(k)(xi+1)

)
0 < i < N

ϕ(k)(xN) + ϵ i = N

for some small constant ϵ > 0

When our goal is to optimize macro­F, it suffices to apply Algorithm 2.1 with F­

measure to each label since macro­F is the average of F­measures for each label. This

process is the SCut method from [27]. In contrast, different labels are not separable when

optimizing micro­F. Therefore, a cyclic optimization over the labels is needed to achieve

an optimal solution [4, 18] (but a single pass over the labels may be enough to produce a

good model). In each iteration of the cyclic optimization, the tp, fp and fn for other labels

are treated as constants, and the resulting micro­F as a function of Tj is used to select the

threshold for label j.

The form of SCut given in Algorithm 2.1 assumes that the score functions ϕj can be

independently trained as in the binary relevance method. To apply the idea to neural net­

works where the output unit for each label is trained together, we canmodifyAlgorithm 2.1

7
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so that all output units are trained together on the training set in step 3. However, their

threshold is tuned and averaged separately on the validation set in step 5 and step 7, re­

spectively.

Cost­based – Cost­sensitive learning is a general technique for handling imbalanced

data based on modifying the costs of false positives and false negatives. Moreover, a pre­

vious study theoretically showed that cost­sensitive methods can also optimize F­measure

[16]. In the case of SVMs, for each binary subproblem, the weight C+ for the loss of

positive samples is selected via CV [1, 11, 12]. However, several studies showed that, for

the particular case of applying SVM to text classification, adjusting the threshold is more

effective than tuning the costs [23, 11, 1].

FBR heuristic –While SCut is a reasonable approach, it has been discovered to over­

fit easily on rare labels [27, 9]. Surprisingly, with rare labels being a common problem

in multi­label classifications, we have found little work dedicated to deal with this over­

fitting problem. An exception is the FBR heuristic [27]. If the maximal F­measure on

the validation set does not exceed a prespecified value fbr at step 5 of Algorithm 2.1, the

FBR heuristic sets the threshold T (k) to max(Z), the highest decision value in the valida­

tion set. This method, referred to as SCutFBR.1 in [27], was shown effective [11, 4]. In

addition, the author proposed a less­used variant of the method, called SCutFBR.0 [27],

that sets the threshold to infinity instead of max(Z). Judging from this clue, the authors

likely intended to increase the threshold so that the number of false positives in the testing

phase is decreased.

Although FBR is currently the best method of mitigating the overfitting of SCut, it is

a heuristic without good explanations. In the next section, we dive deeper into the FBR

heuristic to explain why it is successful but also point out its potential problems.

8
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Chapter 3

Why FBRWorks and Its Issues

To understand how FBR benefits the prediction of rare labels, we first examine an inter­

esting behavior of the heuristic in Section 3.1. It shows that FBR actually improves the

predictions of rare labels by lowering the threshold instead of increasing it as the authors

likely intended. Then, in Section 3.2, we explain why lowering the threshold is the correct

strategy. Finally, we point out some issues of FBR in Section 3.3, which we believe were

not found before. We provide the solutions to these problems in Chapter 4.

3.1 An Interesting Behavior of FBR

A previous study pointed out that the FBR heuristic shows an interesting behavior of low­

ering the threshold for rare labels, which is associated with improving macro­F [4]. This

behavior occurs when the validation set consists of only negative samples, a common

situation for rare labels. Since there are no positive samples and thus no true positive pre­

dictions, the F­measure on the validation set is always 0. In this case, the FBR heuristic

sets the threshold to the highest decision value of the negative distribution, which is often

lower than the original threshold at 0.

In addition to this situation pointed out by [4], we further discovered that lowering

thresholds can still happen even if there are positive instances in the validation set. When

the number of positive training samples is too few to represent the full positive distribution,

the positive samples in the validation set are usually predicted as negative [1]. We give

9
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Figure 3.1: The distribution of the decision values from one of the validation sets of a
binary subproblem from Wiki10­31K. In this case, the optimal value of the F­measure is
clearly a bad threshold. The threshold is so low that it generates many false positives.
Also, notice that the gain in F­measure is almost zero (1.4× 10−3 in this case).

an illustration in Figure 3.1. In this case, blindly optimizing the F­measure on decision

values of validation data leads to a too­low threshold that gives many false positives. This

behavior can be understood from the definition of F­measure in Equation (2.2). When tp =

0, the F­measure is always zero, regardless of the value of fp. Therefore, any threshold that

gives tp ̸= 0, no matter how large fp is, would give a non­zero F­measure and be deemed

better than a reasonable threshold with tp = 0. In Section 5.4, we perform experiments to

show that situations like Figure 3.1 frequently occur in practice.

The example above explains why SCut, which optimizes the F­measure on each la­

bel, easily overfits on rare labels. In this example, the FBR heuristic would detect the

low F­measure attained and set the threshold to the negative distribution’s highest value,

avoiding many false positives. Notice that the resulting threshold is still much lower than

the original threshold 0.

Nevertheless, SCut overfits in the first place because F­measure does not penalize false

positives when tp = 0. We conclude that although F­measure is widely used to evaluate

10
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Figure 3.2: The distribution of the decision values from one of the validation sets of a
binary subproblem from Wiki10­31K. The plotted F­measure is calculated by setting the
threshold to the mid­point between adjacent decision values and counting the correspond­
ing tp, fp and fn.

a model’s performance on rare labels, directly optimizing it with threshold selection is

inappropriate. In Chapter 4, we propose effective methods to fix this issue.

We note that the same overfitting issue occurs in other metrics that stay at 0 when

tp = 0. They include recall, precision, Fβ and G­mean. The threshold optimization for

these metrics should be proceeded with care when the positive samples are rare.

3.2 The Benifit of Lowering the Threshold

We have seen that FBR has an interesting behavior of lowering the threshold for rare

categories, which was likely unaware by the original author [27]. In this section, we

explain why this is the desired behavior when the positive samples are rare.

In imbalanced scenarios, it has been known that the decision boundaries learned by

common algorithms are usually skewed toward theminority, which results in under­predicting

the minority class. This behavior occurs because the positive samples are too few to spec­
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ify the positive distribution boundary fully. A synthetic example for SVMs demonstrating

this behavior was given in [26]. Furthermore, [1, 23] tested SVMs on real­world text data

and discovered that SVM’s default threshold is too high, misclassifying many positive

samples as negative in the testing phase. In recent years, similar problems have also been

discovered on neural networks, showing that the default threshold 0.5 is far from optimal

[10].

The question, then, is how much to lower the threshold. From the discussion in Sec­

tion 3.1, we know the decision should not rely on optimizing F­measure. In [1], they

propose to estimate a probabilistic model p(y = +1 | wTx+ b) from the training set and

threshold the probability at some small value (e.g., 0.02). This approach usually lowers

the threshold and is shown to be effective for infrequent labels. However, it results in poor

performance for frequent labels [1].

Our idea is similar to that of [1]. We argue that when the positive samples are infre­

quent, the threshold should be placed on the upper bound of the negative distribution esti­

mated on a validation set. In other words, the algorithm turns into an outlier­detection­like

classifier. Since the upper bound of the negative distribution is estimated on the valida­

tion set, this boundary should not give too many false positives in the testing phase while

being able to detect some of the positive samples. These successfully­detected positive

samples then improve the F­measure. As for how to lower the threshold automatically

for infrequent labels while not affecting the performance of frequent labels, we provide a

solution in Chapter 4.

Note that FBR sets the threshold to the highest decision value in the validation set

instead of the highest decision value in the negative samples. These two settings coincide

when there are no positive samples, or all positive samples are mixed with the negatives

(like Figure 3.1), which are commonwhen performingCVon rare labels. This coincidence

is probably why FBR successfully improves the F­measure on rare labels. However, in

the next section we argue that FBR is an inferior strategy since it can be too pessimistic

sometimes.

12
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3.3 Issues of FBR Heuristic

We have explained why FBR works in practice. In this section, we point out some issues

of this heuristic. Then, we give our solutions to these issues in Chapter 4.

1. It is unclear how to choose the fbr value, and no obvious default values exist. To

deal with this, the original authors added an extra level of CV to select the parameter

fbr [11]. However, two levels of CV lengthen the training time.

2. In Section 3.2, we mentioned that FBR sets the threshold to the highest decision

value of all validation samples, instead of only the negative samples. We now show

that FBR can be too pessimistic for medium labels (which are slightly more frequent

than rare labels, as defined in Chapter 1). We give an illustration in Figure 3.2. In

this case, we can see that there are three positive samples on the right, and the F­

measure is never higher than 0.2 for any threshold. We call these positive samples

not below any negative samples the “easy positives”. If fbr = 0.2, the FBR algo­

rithmwould set the threshold higher than the easy positives, losing performance that

can be easily grasped. Instead, setting the threshold slightly higher than the highest

negative sample seems better because it gives no false positives on the validation

set while not giving up the easy positives. Assuming the testing distribution is not

far from the validation distribution, we can reasonably expect the latter strategy not

to give many false positives while successfully detecting some true positives in the

testing phase. We argue that a reasonable threshold should not give up the easy

positives.

Situations like Figure 3.2 tend to happen formedium labels because there are enough

positive samples for easy positives to appear but not enough to fully specify the

positive distribution, which leads to a lower F­measure in the validation set. In

Section 5.4, we experimentally show that situations like Figure 3.2 indeed occur in

practice.

13
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3.4 A new variant of SCutFBR

In Section 3.2, we argued that the reason why FBR works well is that it coincidently sets

the threshold to the upper bound of the negative distribution when dealing with rare labels,

which we argued to be a reasonable strategy. Furthermore, in Section 3.3, we pointed out

that setting the threshold to the highest decision value can be too pessimistic when the

highest decision values are positive. To verify our claim that setting the threshold to the

upper bound of the negative distribution is better, we propose and experiment with a new

variant of the FBR heuristic:

SCutFBR.n: After optimizing F­measure with threshold selection, if the attained F­

measure is less than the parameter fbr, the threshold is set to the highest decision value

among the negative samples. A two­level cross­validation is used, where the outer level

selects the parameter fbr and the inner­level selects the threshold.

Although setting the threshold to the highest decision value of the negative distribution

is reasonable when the positive samples are very few, it can still be rather naive when a

label have more positive samples, which allows better threshold to be found. The method

we propose in the next section will allow these better threshold to be found when more

positive samples are present, while falling back to the highest decision of the negative

distribution when the positive samples are very few.

14
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Chapter 4

Smoothed F­measure

In Section 3.1, we explained that optimizing F­measures results in a too­low threshold

since F­measure does not penalize false positives when tp = 0. We propose the following

solution that smooths the F­measure by introducing some constants a and b where a > 0

and b ≥ 0:

F(tp, fp, fn; a, b) =
a+ 2tp

b+ 2tp+ fp+ fn
(4.1)

The parameter a forces the numerator to be larger than zero, so any increase in fp (while

other counts stay the same) is penalized by a decrease in the smoothed F­measure. The

parameter b is included for generality and can be used to prevent dividing by zero when

tp = fp = fn = 0. Given a set of decision values, the counts tp, fp and fn are functions of

the threshold T . Therefore, we will also use the notation tp(T ) for the number of true pos­

itives (similarly for fp and fn) and F (T ; a, b) for the smoothed F­measure. To demonstrate

how smoothing regularizes threshold tuning, we prove a property of smoothed F­measure

in Theorem 1. For simplicity, we conduct our theoretical discussions under the following

setting:

Assumption 1. Let a set of decision values alongwith their binary labelsD = {(ϕ(xi), yi) |

yi ∈ {−1,+1} for i = 1, 2, . . . , N} be given. We assume ϕ(xi) ̸= ϕ(xj) for all i ̸= j.

Furthermore, let a and b be given such that a > 0 and b + p > 0, where p is the number

of positive samples in D.
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Theorem 1. Under Assumption 1, the threshold T ∗ maximizing the smoothed F­measure

F (T ; a, b) satisfies

fp∗ ≤ tp∗(
2(b+ p)

a
− 1)

where fp∗ and tp∗ are the corresponding counts generated by thresholding at T ∗.

The proof is in Appendix A.1. Theorem 1 shows that when optimizing the smoothed F­

measure, the resulting threshold never gives too many false positives unless a proportional

number of true positives is also obtained. In contrast, no such bound holds for the original

F­measure. We can consider a dataset with only one positive sample. Because F­measure

is always 0 when tp = 0, optimizing F­measure will always lower the threshold to include

that one positive sample, no matter how many false positives it gives.

By running Algorithm 2.1 with the smoothed F­measure, threshold tuning can be reg­

ularized given proper values of a and b.

4.1 Selecting a and b

To choose the proper a and b, one basic approach is to have a list of candidate values

(a1, b1), (a2, b2), . . . , (am, bm).

Then, we can perform CV to select the value with the best result. Notice that we do not

use a list of values for a and b separately and search over all combinations because the

proper range of a depends on b, as we will see in this section, where we derive range of

reasonable values of a to search over.

For the upper bound of a, we use the following corollary of Theorem 1.

Corollary 2. Under the same assumptions in Theorem 1, if a > 2(b+p), then the threshold

T ∗ maximizing the smoothed F­measure is always higher than all decision values.

The proof is in Appendix A.2. Clearly, unconditionally placing the threshold higher

than all decision values is too pessimistic, giving up the easy positives, which we argued
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to be problematic in Section 3.3. Therefore, 2(b + p) can be an upper bound for a since

any value larger gives an undesirable behavior.

Next, we derive an lower bound for a with the following theorem:

Theorem 3. Under Assumption 1, if a and b also satisfy

a <
2(b+ p)

N
,

then the threshold T ∗ maximizing the smoothed F­measure is always less than or equal to

the largest decision value among the positive samples.

The proof is in Appendix A.3. Recall that the original motivation of smoothing is to

prevent lowering the threshold to always include at least one positive. Theorem 3 shows

that if a is too small, the behavior of including at least one positive sample would always

occur. Therefore, 2(b+ p)/N serves as a lower bound for a.

We do not derive a bound for b. Intuitively, it should not be too large. Otherwise, the

smoothed F­measure would be too distorted to act as a surrogate for the F­measure. Also,

the parameter b should not grow with the number of positive samples since smoothing is

for stabilizing the threshold optimization of infrequent labels, and the threshold optimiza­

tion of frequent labels is already stable without smoothing. In practice, we can go through

a prespecified geometric sequence for b. Then, for each b, we search through a geomet­

ric sequence for the value of a within the range derived in Corollary 2 and Theorem 3.

Empirically, we found that searching b up to 100 is adequate.

Knowing the proper search range for the parameters, we devise the following methods

for selecting a and b and optimizing macro­F:

1. smooth­each: For each label j, perform a two­level cross­validation. The outer

level selects a pair of (a, b). The inner level selects the threshold usingAlgorithm 2.1

with F (T ; a, b) as the metric. Using the best (a∗, b∗), a final model for label j is

produced by running Algorithm 2.1 with all training data. In short, a and b are

selected independently for each label.
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2. smooth­all: Perform a two­level cross­validation. The first level selects a pair (a, b)

for all labels. The second level uses the same given (a, b) to select a threshold for

each label using Algorithm 2.1. Then, using the best (a∗, b∗) and the entire training

set, run Algorithm 2.1 again for each label.

3. smooth­group: Intuitively, the best (a, b) may vary between labels of different

frequencies. Therefore, this approach separates labels into groups with a similar

number of positive samples and applies the smooth­all approach to each group.

The above procedures all involve a CV process for searching a, b. Under each train­

ing/validation split in the first level of CV, and some given (a, b), a call to Algorithm 2.1

requires an inner­level CV, which trains V + 1 models in steps 3 and 8. Suppose we

search m pairs of (a, b) by calling Algorithm 2.1 for each pair searched, then m(V + 1)

models in total have to be trained, which can be prohibitively expensive. We adopt the

implementation strategy from [4] to lower the computational costs of this process. Note

that parameters like fbr (in SCutFBR.1), a and b (in our smoothing­based methods) only

affect the calculation of the threshold (i.e., step 5 of Algorithm 2.1) after the scoring func­

tion had been trained. In [4], they reuse the same CV split for each value of fbr. We apply

the same strategy to select a and b. This way, the V +1 models are reused for each (a, b).

Only the threshold optimization is done for each parameter. Since most of the running

time is spent on training the linear models instead of threshold tuning, reusing the trained

models saves considerable time (roughlym times faster). This implementation strategy is

recommended, and we apply it to all the methods above for our experiments.

4.2 Comparing SmoothedF­measurewith the FBRHeuris­

tic

In this section, we discuss the similarities and differences between smoothed F­measure

and the FBR heuristic. To gain more insight into smoothed F­measure, we can rewrite it
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as

F(tp, fp, fn; a, b) =
a+ 2tp

b+ 2tp+ fp+ fn

=
a

b+ 2tp+ fp+ fn
+

2tp
b+ 2tp+ fp+ fn

=
a

b+ p+ tp+ fp
+

2tp
b+ 2tp+ fp+ fn

. (4.2)

The third equality is due to the fact that p = tp + fn. Because tp + fp is the number

of samples predicted as positive (i.e., the number of samples above the threshold), the

denominator

b+ p+ tp+ fp

is nondecreasing as the threshold moves down. Therefore, a higher threshold leads to a

larger value of
a

b+ p+ tp+ fp
.

Also, the second term in (4.2) resembles the original F­measure (when b = 0, it becomes F­

measure). From these observations, we can interpret smoothed F­measure as regularizing

the threshold towards higher values. With this in mind, we formally prove that optimizing

smoothed F­measure can exhibit a similar behavior to FBR.

Theorem 4. Given fbr ∈ (0, 1] and a set of distinct decision values along with their

binary labels {(ϕ(xi), yi) | yi ∈ {−1,+1} for i = 1, 2, . . . , N}. There exist parameters

a and b such that the results of optimizing the corresponding smoothed F­measure have

the following property: If the original F­measure does not reach the value fbr, then the

threshold is set higher than the highest decision value.

The proof is in Appendix A.4. Theorem 4 roughly shows that our method generalizes

FBR. Therefore, when a and b are thoroughly searched, our method should not perform

worse than using FBR.

In Section 3.2, we argued that setting the threshold to an estimated upper bound of

the negative distribution is desired when the label is rare, and FBR turned out to have this

behavior. We now explain how smoothing naturally achieves this. When Algorithm 2.1
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performs cross­validations on rare labels, two cases often occur:

1. There are no positive samples in the validation set.

2. There are positive samples in the validation set. However, due to the lack of positive

samples in the training set. The positive samples in the validations set are mixed in

the negative distribution like Figure 3.1.

In the case of no positive samples in the validation set, tp = fn = 0 and lowering the

threshold only gives more false positives. If we have a, b > 0, the smoothed F­measure

reaches the maximum when the threshold is higher than all decision values. Therefore,

optimizing smoothed F­measure sets the threshold to the upper bound of negatives. Note

that we also require b > 0 here to prevent dividing by zero when the threshold is higher

than all decision values. In the second case, where the positive samples are all predicted

as negative in the validation set, the achieved F­measures are usually low, like Figure 3.1.

Given proper a and b, the threshold would be set to the highest decision value, as indicated

by Theorem 4.

In Section 3.3, we argue that FBR can be too pessimistic when dealing withmedium la­

bels. It might give up the easy positives simply because the F­measure is not high enough.

We now show that smoothed F­measure does not give up the easy positives.

Theorem 5. Under Assumption 1, we further assume that the decision values are sorted

in ascending order and a < 2(b+ p). If there exists i′ such that

yi = +1 for all i ≥ i′, (4.3)

then the threshold T ∗ maximizing F (T ; a, b) satisfies T ∗ < ϕ(xi′).

The proof is in Appendix A.5. Theorem 5 shows that if a is lower than the upper

bound derived in Corollary 2, then the threshold optimizing the smoothed F­measure will

be lower than every easy positive sample ϕ(xi′).

Summarizing this section, we showed that smoothing possesses the desirable proper­

ties of FBR but does not make pessimistic decisions like FBR.
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4.3 Micro­F as Smoothed F­measure

Note that the methods proposed in Section 4.1 all require two levels of CV for select­

ing a and b. Even though in Section 4.1 we described a technique to speed up the inner

level of cross­validation, two levels of V ­folds CV would still require training (V + 1)2

models in total for each label1, which is time­consuming. In this section, we propose an­

other heuristic that takes advantage of smoothed F­measure while being free from extra

hyperparameters. This way, only one level of CV is required for each label.

We can notice that when optimizing the threshold on the current binary subproblem

for label j, the micro­F calculated from label 1 to j acts as a smoothed F­measure:

Fmicro1,j =

a︷ ︸︸ ︷
j−1∑
i=1

2tpi +2tpj

j−1∑
i=1

(2 tpi + fpi + fni)︸ ︷︷ ︸
b

+(2 tpj + fpj + fnj)

(4.4)

However, if we sequentially optimize (4.4) for each label, a and b would grow with the

number of trained labels. When j is large, (4.4) does not serve as a nice surrogate for F­

measure anymore. To benefit from the smoothing effect of micro­F while still optimizing

for macro­F, we can consider optimizing the sum of micro­F and macro­F. In other words,

micro­F can act as a regularizer that smooths the optimization of macro­F. Therefore, this

setting should be less prone to overfitting than only optimizing macro­F. In detail, when

tuning the threshold of the jth model, we optimize the following measure by treating the
1Because we re­train with all data after cross­validation in both levels, the total models trained is (V +1)2

instead of V 2.
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results of all previous labels as constants:

Fmicro1,j (T ) + Fmacro1,j (T ) (4.5)

=

∑j−1
i=1 2tpi + 2tpj(T )∑j−1

i=1 (2 tpi + fpi + fni) + (2 tpj(T ) + fpj(T ) + fnj(T ))

+
1

j

(
j−1∑
i=1

2tpi
2tpi + fpi + fni

+
2tpj(T )

2tpj(T ) + fpj(T ) + fnj(T )

)

While we motivated the use of (4.5) from the viewpoint of smoothing the optimization

of macro­F, an additional advantage is that reasonable micro­F may be obtained simulta­

neously. Since a single measure (macro­F) may not capture all aspects of a classifier and

over­optimizing macro­F can lower the performance of micro­F, it can be beneficial to

balance the optimization of two measures.

Based on the aforementioned idea, we propose the method:

micromacro – For each label j, apply Algorithm 2.1 using (4.5) as the measure.

Because the function (4.5) involves quantities associated with the thresholds of labels

1 to j − 1, a naive calculation would have a complexity of O(L), which is higher than the

O(1) cost of evaluating the smoothed F­measure (4.1). In Appendix B, we provide some

implementation details for evaluating (4.5) efficiently.

With this new method, the disadvantages mentioned in Chapter 3 disappeared. The

outer level of CV for selecting hyperparameters is not required, making training faster.

The thresholds that are too low are avoided by the micro­F term instead of FBR heuristic

since micro­F serves as a smoothed F­measure.

22



doi:10.6342/NTU202301612

Chapter 5

Experiments and Analyses

5.1 Experimental Settings

Datasets. We compare the algorithms on six datasets. RCV1­topics [11], EUR­Lex [14]

andWiki10­31K [31] are text classifications tasks, each with different (in orders of mag­

nitude) number of labels and different distribution of label frequency. We choose node

classification for the remaining three datasets to see how our methods generalize to a dif­

ferent domain. They are PPI [7], Flickr [25] and BlogCatalog [25]. A major distinction

between these two domains is that text data consists of high­dimensional, sparse tf­idf

features, while node classification data consists of low­dimensional, dense, learned repre­

sentations. The details about source of data and preprocessing are in Appendix C. We list

the statistics for each dataset in Table 5.1, which includes the proportion of rare, medium

and frequent labels in each dataset.

Methods. The comparison will include SCutFBR.n from Section 3.4, the three

smoothing­based method from Section 4.1, and the micromacro method from Section 4.3.

Besides, we also test the following algorithms:

• Binary relevance (BR) without threshold tuning.

• SCut [27]: Apply Algorithm 2.1 to every label with F­measure.

• SCutFBR (SCutFBR.1 in [11, 4]): For each label, perform a two­level CV. The

outer level selects a fbr value with the best F­measure. The inner level applies
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Table 5.1: Data statistics. For the column “distribution”, we report the proportion of rare,
medium and frequent labels in the mentioned order

Dataset #train #test #feature #label distribution

PPI 43,966 10,992 128 121 0/0/100
Flickr 64,410 16,103 128 195 0/12.3/87.7

BlogCatalog 8,249 2,063 128 39 2.56/25.6/71.8
RCV1­topics 23,149 781,265 47,236 101 4.95/27.7/67.3
EUR­Lex 15,449 3,865 186,104 3,956 63.5/31.5/4.95

Wiki10­31K 14,146 6,616 104,374 30,938 88.6/10.3/1.06

Algorithm 2.1 with F­measure and FBR heuristic to select a threshold.

• Cost­sensitive [11, 12]: For each label, a one­level CV is performed to select C+,

the multiplier of the loss value for positive samples, with the best F­measure. Since

this method optimizes the F­measure of each label, it is equivalent to optimizing

macro­F.

• Cost­sensitive­micro [12]: A CV is performed to select a cost C+ that is used for

training all labels. The cost is selected to achieve the best micro­F. This method is

included to see how well the micromacro method performs on micro­F.

The details of all the parameters searched in each algorithm are listed in Appendix C. Our

code for experiments will be made publicly available after the review process.

5.2 Main Results

We run each algorithm on each dataset with five different random seeds and report the av­

eraged micro­F and macro­F. The results are listed in Table 5.2. First, we can see that bi­

nary relevance without threshold tuning performs poorly on all datasets. SCut effectively

improves micro­F and macro­F when there are not many rare labels. The improvements

can be observed on three node classification data and RCV1­topics. However, on datasets

dominated by rare labels (i.e., Wiki10­31K and EUR­Lex), SCut overfits and greatly low­

ers micro­F, which is due to many false positives generated by a too­low threshold, as

analyzed in Section 3.1 and Figure 3.1. On these two datasets, FBR and our methods
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Table 5.2: Results on the test set, averaged over five random seeds. We report the micro­F
and macro­F for each dataset. For readability, we multiply the value by 100. In Ap­
pendix C, we provide the standard variations of the experiments.

PPI Flickr BlogCatalog RCV1­topics EUR­Lex Wiki10­31K
method micro macro micro macro micro macro micro macro micro macro micro macro

BR 44.58 16.86 23.26 13.21 29.00 13.28 80.39 49.57 52.63 17.40 26.22 2.06
SCut 53.58 48.35 37.91 30.16 32.50 26.10 81.26 62.45 21.83 27.14 1.88 8.27

SCutFBR 53.54 48.35 38.27 29.13 38.67 24.85 81.27 61.66 56.38 27.45 32.59 12.30
cost­sensitive 52.91 48.15 37.43 29.33 33.46 25.18 80.97 56.00 57.64 22.33 32.19 2.96

cost­sensitive­micro 56.14 40.26 39.21 23.86 39.97 23.36 80.99 54.64 58.28 25.56 33.16 6.46
SCutFBR.n 53.52 48.29 38.33 29.27 38.50 25.22 81.28 62.00 56.58 28.02 32.69 12.50
smooth­each 53.58 48.34 35.09 30.45 27.02 25.97 81.17 61.90 38.55 28.13 4.24 11.97
smooth­all 53.56 48.35 37.77 30.56 32.15 26.31 81.31 62.38 56.87 28.67 31.24 12.69

smooth­group 53.57 48.35 37.51 30.59 32.20 26.18 81.27 62.41 56.69 28.59 30.80 12.69
micromacro 54.43 48.21 39.37 29.59 40.06 25.72 81.39 62.71 56.65 28.73 32.55 12.62

successfully mitigate the overfitting by thresholding at the upper bound of the negative

distribution. Therefore, the micro­F improves drastically, and macro­F also increases.

However, FBR comes with a cost. A decrease in macro­F compared to SCut can

be observed on Flickr, BlogCatalog and RCV1­topics, which have fewer rare labels and

more medium­to­frequent labels. This decrease means that FBR cannot handle medium­

to­frequent labels well. Compared to SCutFBR, SCutFBR.n achieved better macro­F on

5 out of 6 datasets and better micro­F on 4 out of 6 datasets. This improvement supports

our claim that the highest decision value of all validation samples can be too pessimistic

and the highest decision value of the negative samples is a better choice.

Although SCutFBR.n improved upon SCutFBR, it still obtained lower macro­F than

SCut on some datasets. In contrast, the macro­F of smooth­all and smooth­group is always

better or competitive as that of SCut and SCutFBR across all datasets. Therefore, these

two methods can find thresholds even better than the upper bound of negative distribution

and thus are better at optimizing macro­F.

Interestingly, smooth­each seems overfitting on EUR­Lex and Wiki10­31K since a

drastic drop in micro­F occurred. We explain why that happens. When we run Algo­

rithm 2.1 with different values of (a, b), it gives a threshold Ta,b for each pair of (a, b).

Then, selecting (a, b) in the outer level of cross­validation is equivalent to optimizing the
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F­measures on the validation set using the set of thresholds {Ta,b}. When the thresholds

in {Ta,b} contain low thresholds, we risk overfitting F­measures again. We conclude that

the parameters a and b should be selected over several labels, as in smooth­all or smooth­

group.

Only comparing macro­F can be unfair to SCutFBR since it was proposed to “mini­

mize the impact on micro­average F1 at the expense of slightly lowering macro­average

F1” [27]. On the datasets Flickr and BlogCatalog, where macro­F is lowered by SCutFBR,

micro­F is indeed improved in exchange. However, if we compare SCutFBR (or SCutFBR.n)

with micromacro, which also aims for a balance in both measures, we can see that micro­

macro is better on almost all datasets and measures.

Now we focus on the cost­sensitive method, which also optimizes macro­F. Although

not the best, it performs decently on the node classification datasets. In contrast, it per­

forms poorly on text data. This result agrees with previous studies that discovered tuning

C+ for SVM is not effective on text data [1]. Compared to the cost­sensitive method,

thresholding seems more general, as it can handle data from different domains.

5.3 Trade­off between micro­F and macro­F

In practice, there is often a trade­off between micro­F and macro­F, which can be observed

in Table 5.2. The smooth­all and smooth­group methods are good at optimizing macro­F

but sometimes give lower micro­F, as the results on Flickr and BlogCatalog show. On

the other hand, cost­sensitive­micro is pretty good at optimizing micro­F but sometimes

gives significantly lower macro­F, as the results on PPI and Flickr show. Among the

methods tested, micromacro found a sweet spot between these two extremes, achieving

decent performance on both measures. Sometimes the micro­F achieved is even better

than that of cost­sensitive­micro, which specializes in micro­F. Moreover, there are also

cases when its macro­F is higher than methods targeting macro­F. Another advantage of

micromacro is that no hyperparameters have to be tuned, so only a single­level CV is

required. Therefore, the micromacro method is a lightweight and stable alternative for

threshold selection.
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Figure 5.1: Improvement in F­measure (multiplied by 100) compared to SCutFBR. The y­
axis shows the improvement in F­measure. The x­axis is the number of positive samples
p for a label. Each dot represents a group of labels having similar numbers of positive
samples. In each group, the improvement in F­measure for those labels is averaged and
reported.

Table 5.3: Frequency of Figure 3.1 occurrences during cross­validation.

Dataset Validation Sets Like Figure 3.1 (%) Affected Labels (%)

EUR­Lex 23.21 53.73
Wiki10­31K 36.70 69.54

5.4 Occurences of Figure 3.1 and Figure 3.2

In Section 3.1, we mentioned that when performing CV on rare labels, positive validation

samples are often mixed with the negative examples (Figure 3.1). This behavior is why

directly optimizing F­measure overfits badly. To show that this situation indeed occurs in

practice, we perform additional experiments on EUR­Lex and Wiki10­31K, which have a

large proportion of rare labels. For each data, we perform a 3­fold CV over the rare labels

and count the situations like Figure 3.1. The results in Table 5.3 show that the situation

indeed occurs on rare labels a lot. This result is consistent with the fact that SCut performs
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Table 5.4: Frequency of Figure 3.2 occurrences during cross­validation.

Dataset Validation Sets Like Figure 3.2 (%) Affected Labels (%)

Flickr 37.31 59.09
BlogCatalog 32.43 48.65

RCV1 1.75 2.63
EUR­Lex 4.45 10.82

Wiki10­31K 10.82 22.45

disastrously on these two datasets in Table 5.2.

In Section 3.3, we mentioned that FBR can be too pessimistic in handling medium

labels, giving up easy positives when they can be better handled (Figure 3.2). We per­

formed a 3­fold CV over the medium­to­frequent labels (10 ≤ number of positive samples

p≤ 1000) of each dataset to check if this occurs in practice with fbr = 0.4 (middle value

of the search range used in [11]). We exclude PPI from this result because it only has

highly­frequent labels. The results in Table 5.4 show that situations like Figure 3.2 indeed

occurs in practice, with node classification datasets being influenced more heavily. In the

next section, we present more results demonstrating that this pessimistic behavior affects

FBR’s performance on medium­to­frequent labels.

Details of these two experiments are given in Appendix D.

5.5 Improvements for labels of different rarity

Because macro­F is the average F­measure over the labels, we can understand how labels

of different rarity contribute to the improvement in macro­F by viewing their respective

improvement in F­measure. In Figure 5.1, we present the relation between p and the

improvement in F­measure of our methods (smooth­all,smooth­group, and SCutFBR.n)

relative to SCutFBR. On five of the six datasets, we can observe a peak of improvement for

p around 101 to 102 (medium labels). On the other hand, our methods perform similarly to

SCutFBR for extremely­rare labels (#positve ≤ 5) and highly­frequent labels (#positives

≥ 103). The peak improvement can be big (over 10) on some datasets. This improvement

in medium labels confirms our previous claim (in Figure 3.2) that FBR heuristic can make

pessimistic decisions for medium labels, and smoothing solves the problem. Moreover,
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we can observe that SCutFBR.n’s improvement is smaller than that of smoothing­based

methods. This result confirms our previous claim in Section 3.4 that setting the threshold

to the highest decision value of the negative distribution, although better than the original

FBR, is still a strategy that can be further improved.

Since our improvement is primarily in medium labels compared to FBR, whether there

is a significant improvement in macro­F depends on the distribution of label frequency.

For datasets like PPI containing no medium labels, our methods’ improvement would

be invisible. On the other hand, we can see larger improvements on datasets with more

medium labels.

5.6 Discussion on selecting a and b

In this section, we evaluate the sesitivily of our methods with respect to the smoothing

parameters and discuss the proper range for searching the parameter b. We also discusses

whether labels of different number of positive samples need to select a and b separately.

In Figure 5.2, we plot the contour plot of macro­F obtained through cross­validation

with respect to different combinations of a and b. The figure is drawn usign the results

from the smooth­all algorithm. As the figure shows, the validation performance is usually

good for small values of b (≤ 102), and the best values of b are usually between 10−1 and

101. As the value of b increases, the region of high macro­F narrows.

To examine the effect of smoothing for different labels, we group labels according

to their number of positive samples and plot the contour of macro­F calculated on each

group of labels in Figure 5.3. We use only the dataset Wiki10­31K since its variation

in number of positive samples between labels is the largest. Other datasets also exhibit

similar behavior. For rare labels (100 ∼ 101), it seems that both large or small values of

parameters work well. Interestingly, the best a and b follows a relation b = a · c + d for

some c, d > 0, which is of the same shape of the upper and lower bound of a in log scale.

For more frequent labels, small values of b works better and the region of high macro­F

narrows as b increases. This narrowing happens when b becomes comparable with the

number of positive samples.
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(a) rcv1 (b) Wiki10­31K

(c) EUR­Lex (d) PPI

(e) BlogCatalog (f) flickr

Figure 5.2: Contour plot of macro­F obtained through cross­validation with respect to
parameters a and b. The parameters searched is marked in gray dots. The parameter that
reached the highest value of macro­F is marked with a red cross.
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(a) 100 ∼ 101 (b) 101 ∼ 102

(c) 102 ∼ 103 (d) 103 ∼ 104

(e) 104 ∼ 105

Figure 5.3: Contour plot of macro­Fwith respect to parameters a and b, calculated for label
groups of different frequency. The parameters searched is marked in gray dots, while the
upper and lower bound of parameter a is marked with a black line
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Table 5.5: Comparison of performance with and without the bias term.

RCV1­topics EUR­Lex Wiki10­31K
micro macro micro macro micro macro

BR (no bias) 79.87 49.46 52.09 17.22 26.81 2.38
BR (with bias) 80.39 49.57 52.63 17.40 26.22 2.06

SCutFBR (no bias) 81.12 55.87 53.56 18.28 21.95 2.09
SCutFBR (with bias) 81.27 61.62 56.39 27.48 32.59 12.30
micromacro (no bias) 81.22 56.57 54.25 19.24 21.39 2.14
micromacro (with bias) 81.39 62.72 56.67 28.74 32.52 12.62

Although in Figure 5.3 the contour for labels of different frequencies are different, the

regions of high macro­F overlap. Therefore, selecting parameters a and b for all labels

together or separately for each group should have similar performances. This conclusion

is consistent with the results in Table 5.2 and Figure 5.1, where it is shown that smooth­all

and smooth­group generally have similar performances.

Judging from both Figure 5.2 and Figure 5.3, it seems that, instead of the range 104

adoped in Section C, searching up to 102 for the parameter b should be adequate in practice.

5.7 Effect of the bias term of SVM

In Appendix C, we mentioned that we include the bias term for all experiments using

the option “­B 1” of LIBLINEAR. This choice is because we discovered that removing

the bias term greatly affects the performance, especially for text datasets. We present a

simple comparison in Table 5.5. The performance difference is present in both SCutFBR

and our methods. This result differs from previous studies on text data that observed no

difference using the bias term [22, 29]. There are several factors possibly contributing to

this difference:

• The datasets considered were more balanced, and the number of positive samples

is high compared to the rare labels considered in this study.

• In [29], they used accuracy as the performance measure, while we used micro­F and

macro­F, which are more sensitive to rare labels.
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• Threshold adjustion was not used in these studies. So the benefit brought by the

bias term (i.e., a better orientation of the learned hyperplane) is not fully utilized.

We can observe the results of BR in Table 5.5. The performance difference between

no bias and with bias is small if the threshold is not adjusted.
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Chapter 6

Conclusion

In this work, we focused on tuning the threshold for infrequent labels, which has been ob­

served to overfit easily and forms a challenging problem. We explained through examples

that this overfitting is largely due to how F­measure (and similar metrics) is formulated.

Then, we explained why a previously proposed technique, the FBR technique, works well

on rare labels. However, we also discovered that FBR heuristic could be too pessimistic

in handling medium labels. To solve this issue, we proposed using smoothed F­measure

as a surrogate when tuning the threshold. We derived a reasonable search range for the

parameters in smoothed F­measure and theoretically proved that smoothing the F­measure

can bring nice properties to the resulting threshold. Based on this idea, we also proposed

jointly optimizing micro­F and macro­F as a lightweight alternative free from extra hy­

perparameters.

Our methods based on smoothed F­measures are empirically evaluated on text and

node classification datasets. The results show that our methods consistently outperform

previous approaches in two application domains.
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Appendix A

Proofs

A.1 Proof of Theorem 1

Proof. We define F ∗(tp∗, fp∗, fn∗; a, b) to be the optimal value of smoothed F­measure

attained by some threshold T ∗, where tp∗, fp∗ and fn∗ are the corresponding counts gener­

ated by T ∗ on the set of samples. Similarly, we define F̂ (t̂p, f̂p, f̂n; a, b) to be the smoothed

F­measure attained by setting the threshold, say T̂ , higher than all scores, where t̂p, f̂p and

f̂n denotes the counts corresponding to T̂ . Note that

t̂p = 0, f̂p = 0 and f̂n = p

because all samples are predicted as negative using the threshold T̂ .

Since the optimal value F ∗ must be larger or equal to F̂ , we can further derive the

following relation between tp∗ and fp∗:

F̂ (t̂p, f̂p, f̂n; a, b) ≤ F ∗(tp∗, fp∗, fn∗; a, b)

=⇒ a+ 0

b+ 2 · 0 + 0 + p
≤ a+ 2tp∗

b+ 2tp∗ + fp∗ + (p− tp∗)

=⇒ a(b+ p) + a(tp∗ + fp∗) ≤ a(b+ p) + 2tp∗(b+ p)

=⇒ fp∗ ≤ tp∗(
2(b+ p)

a
− 1) (A.1)
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A.2 Proof of Corollary 2

Proof. If a > 2(b+ p), then we have

2(b+ p)
a

− 1 < 0.

If tp∗ > 0, then fp∗ must be negative according to Theorem 1, which is a contradiction

since fp∗ can only be non­negative. Therefore, tp∗ = 0 and so fp∗ = 0. That is, all samples

are predicted as negative, so the threshold must be higher than all samples.

A.3 Proof of Theorem 3

Proof. Let

z = max
i,yi=+1

ϕ(xi)

be the largest decision value of the positive samples. The statement of the theorem can be

restated as

a <
2(b+ p)

N
=⇒ T ∗ ≤ z. (A.2)

For any threshold T ≤ z, the corresponding smoothed F­measure F (T ; a, b) satisfies

F (T ; a, b) =
a+ 2tp(T )

b+ p+ tp(T ) + fp(T )
≥ a+ 2

b+ p+N
(A.3)

because tp(T ) ≥ 1 and tp(T ) + fp(T ) ≤ N . For any T > z, the corresponding smoothed

F­measure satisfies

F (T ; a, b) =
a+ 2tp(T )

b+ p+ tp(T ) + fp(T )
≤ a

b+ p
(A.4)
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since tp(T ) = 0 and fp(T ) ≥ 0. From (A.3) and (A.4), if we have

a+ 2

b+ p+N
>

a

b+ p
, (A.5)

then T ∗ ≤ z, our target in (A.2), must be true. Inequality (A.5) is equivalent to

a <
2(b+ p)

N
.

A.4 Proof of Theorem 4

Proof. Without loss of generality, we assume

ϕ(x1), ϕ(x2), . . . , ϕ(xN)

are sorted. That is, we have ϕ(xi) < ϕ(xi+1) for i = 1, . . . , N − 1. Then the optimization

of smoothed F­measure is done by searching through these values of thresholds (as in

Algorithm 2.1):

(T0,T1, . . . , TN) where

Ti =


ϕ(x1)− ϵ i = 0

1
2
(ϕ(xi) + ϕ(xi+1)) 0 < i < N

ϕ(xN) + ϵ i = N

for some small constant ϵ > 0

We use F (Ti) and F (Ti; a, b) to denote the original F­measure and smoothed F­measure

given by the threshold Ti, respectively. Suppose a and b satisfy

a

b+ p
≥ fbr +

a

b+ p+ 1
, (A.6)
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we show that the smoothed F­measure reaches optimum at TN if

∀Ti F (Ti) < fbr. (A.7)

From the assumptions, we have

F (TN ; a, b) =
a

b+ p

≥fbr +
a

b+ p+ 1
(by (A.6))

> max
i=0,...,N−1

F (Ti) +
a

b+ p+ 1
(by (A.7))

≥ max
i=0,...,N−1

2tp(Ti)

p+ tp(Ti) + fp(Ti)

+ max
i=0,...,N−1

a

b+ p+ tp(Ti) + fp(Ti)

≥ max
i=0,...,N−1

2tp(Ti)

b+ p+ tp(Ti) + fp(Ti)

+ max
i=0,...,N−1

a

b+ p+ tp(Ti) + fp(Ti)

≥ max
i=0,...,N−1

a+ 2tp(Ti)

b+ p+ tp(Ti) + fp(Ti)

= max
i=0,...,N−1

F (Ti; a, b).

That is, optimizing smoothed F­measure would set the threshold to TN , which is higher

than all decision values. The condition (A.6) is equivalent to

a ≥ fbr · (b+ p)(b+ p+ 1), (A.8)

which can certainly be satisfied by some a and b.

Note that in the extreme case of large a, the algorithm always sets the threshold higher

than all decision values, as derived in Corollary 2. Therefore, by picking a large a, the

theorem statement is actually trivially true. However, the bound derived in (A.8) is not

trivial. For small values of fbr, a can be small enough not to degenerate into that extreme

behavior.
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A.5 Proof of Theorem 5

Proof. Let i′ be the index satisfying assumption (4.3). Then, let T ′ be a threshold imme­

diately below ϕ(xi′) so that for all i < i′ we have ϕ(xi) < T ′. For any threshold T ≥ T ′,

we have fp(T ) = 0 by the assumption in (4.3). Therefore, for these T , the smoothed

F­measure is

F (T ; a, b) =
a+ 2tp(T )

b+ p+ tp(T ) + fp(T )
=

a+ 2tp(T )
b+ p+ tp(T )

.

Taking the derivative of F with respect to tp, we have

dF

dtp
=

2(b+ p)− a

(b+ p+ tp)2
> 0

because of the assumption that a < 2(b + p). This implies that as we increase T and tp

decreases, the smoothed F­measure also decreases. Therefore, the optimal threshold T ∗

must be less than ϕ(xi′).
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Appendix B

Implementation details of micromacro

In this supplementary section, we describe how to evaluate (4.5) efficiently in O(1) time

so that the overall complexity of micromacro is O(L). When we are tuning the threshold

Tj of the jth label, the optimization problem to be solved is

T ∗
j = argmax

Tj

Fmacro1,j + Fmicro1,j .

Macro­F is the mean of F­measure of all currently trained binary problems:

Fmacro1,j =
1

j
(F1,j−1︸ ︷︷ ︸
constant

+Fj) (B.1)

When training problem j, the F­measure F1,j−1 of problem 1 to j − 1 is an additive con­

stant. Therefore, removing it would still give the same result. This allows macro­F to

be evaluated efficiently on the current binary problem, disregarding j. For micro­F, the

measure can be rewritten as follows:

Fmicro1,j =
2 tp1,j

2 tp1,j + fp1,j + fn1,j

=
2tp1,j−1 + 2tpj

(2 tp1,j−1 + fp1,j−1 + fn1,j−1) + (2 tpj + fpj + fnj)
(B.2)

We denote the sum of true positives for binary problems k to j as tpk,j and the number

of true positives solely for problem j as tpj . The same goes for false positives and false
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negatives. When optimizing Fmicro1,j by tuning the threshold Tj , the accumulated counts

tp1,j−1, fp1,j−1 and fn1,j−1 can be pre­calculated and fixed. This allows micro­F also to be

evaluated efficiently without looping over the labels. After finishing the threshold tuning

of the jth label, the accumulated counts can be updated by

tp1,j = tp1,j−1 + tp∗j

where tp∗j is the count generated by the optimal threshold T ∗
j . The update for fp1,j and fn1,j

is similar. After the update, the objective for the j + 1th problem can then be evaluated

efficiently.
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Appendix C

Details of main experiments

Datasets. For all six datasets, we use the preprocessed version available on the LIBSVM

Data1 repository. For the text classification data the tf­idf features provided on the website

are used. The result on the standard testing subset is reported. For the node classification

data, different features generated from different representation learning technique is avail­

able. We adopt the representations learned with DeepWalk [17], Node2vec [5] and LINE

[24], respectively for PPI, Flickr, and BlogCatalog. Since no standard testing subset is

available for these datasets, so we randomly split them into training (80%) and testing set

(20%). The model is then trained on the training set and the result on the testing set is

reported.

Parameters. For all linear SVM, L2 regularization and L2 loss are used. The models

are trained using the solver from LIBLINEAR [3]. In the main result, we use the option

“­B 1” to include the bias term for all algorithms. Furthermore, the cost in cost­sensitive

methods is passed as the “­w1” argument.

For all algorithms’ cross­validation (outer or inner level), we use V = 3 as the number

of folds, and the split is stratified.

For the search range of fbr in SCutFBR and SCutFBR.n, we follow the settings in

[11]. That is, fbr is searched over

0.1, 0.2, . . . , 0.8.

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html
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Table C.1: Table of main results for node classification datasets, augmented with the stan­
dard variations. The result is calculated from 5 random seeds.

PPI Flickr BlogCatalog
method micro macro micro macro micro macro

binary 44.58±0.00 16.86±0.00 23.26±0.00 13.21±0.00 29.00±0.00 13.28±0.00
SCut 53.58±0.04 48.35±0.01 37.91±0.13 30.16±0.07 32.50±1.88 26.10±0.49

SCutFBR 53.54±0.02 48.35±0.01 38.27±0.08 29.13±0.21 38.67±0.53 24.85±0.49
cost­sensitive 52.91±0.04 48.15±0.00 37.43±0.10 29.33±0.09 33.46±0.44 25.18±0.31

cost­sensitive­micro 56.14±0.00 40.26±0.00 39.21±0.00 23.86±0.00 39.97±0.00 23.36±0.00

SCutFBR.n 53.52±0.04 48.29±0.11 38.33±0.11 29.27±0.10 38.50±0.54 25.22±0.35
smooth­all 53.56±0.10 48.35±0.01 37.77±0.25 30.56±0.11 32.15±1.47 26.31±0.38

smooth­group 53.57±0.06 48.35±0.01 37.51±0.12 30.59±0.14 32.20±1.70 26.18±0.39
micromacro 54.43±0.01 48.21±0.01 39.37±0.11 29.59±0.17 40.06±0.23 25.72±0.41

Table C.2: Table of main results for text classification datasets, augmented with the stan­
dard variations. The result is calculated from 5 random seeds.

RCV1­topics EUR­Lex Wiki10­31K
method micro macro micro macro micro macro

binary 80.39±0.00 49.57±0.00 52.63±0.00 17.40±0.00 26.22±0.00 2.06±0.00
SCut 81.26±0.04 62.45±0.33 21.83±0.48 27.14±0.16 1.88±0.01 8.27±0.02

SCutFBR 81.27±0.02 61.66±0.36 56.38±0.21 27.45±0.17 32.59±0.06 12.30±0.03
cost­sensitive 80.97±0.02 56.00±0.27 57.64±0.08 22.33±0.09 32.19±0.01 2.96±0.01

cost­sensitive­micro 80.99±0.02 54.64±0.42 58.28±0.00 25.56±0.00 33.16±0.00 6.46±0.00

SCutFBR.n 81.28±0.03 62.00±0.06 56.58±0.11 28.02±0.11 32.69±0.05 12.50±0.03
smooth­all 81.31±0.07 62.38±0.21 56.87±0.25 28.67±0.19 31.24±0.52 12.69±0.07

smooth­group 81.27±0.10 62.41±0.37 56.69±0.17 28.59±0.25 30.80±0.45 12.69±0.04
micromacro 81.39±0.08 62.71±0.28 56.65±0.11 28.73±0.18 32.55±0.05 12.62±0.04
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For the search grid of C+ in cost­sensitive methods, we follow the settings in [12], so

C+ is searched over
2− t

t
for t =

1

7
,
2

7
, . . . , 1.

Next, we provide the details of a and b searched in smooth­based methods. Using the

implementation technique mentioned at the end of Section 4.1, it allows us to search many

pairs of a and b with little impact on training time. For all smoothing­based method that

needs to select a and b, we search over these values of b:

0, 10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103, 104

For each b in the list, we then select 30 values of a between the lower bound and the upper

bound in the geometric series

2(b+ p)
N

,
2(b+ p)

N
·∆,

2(b+ p)
N

·∆2, . . . , 2(b+ p)

where ∆ = 29
√
N and N is the size of training set. Notice that the bound for a depends

on p, the number of positive samples for a label. When a and b are selected for a group

of labels with different p (in smooth­all and smooth­group), we use the smallest p in the

group to determine the bound since smoothing is mainly for rare labels. In smooth­group,

we assign a label with p positive examples to the group with index

⌈(log10(1 + p))⌉,

so labels with similar p (in log scale) are grouped together. Except for the mentioned

parameters, other parameters (e.g., C for SVM) are not tuned and left as default.

Results with standard deviations. The results are in Table C.1 and Table C.2.
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Appendix D

Details of Auxiliary Experiments

In this section, we explain how we tested for the occurences of Figure 3.2 and Figure 3.1

in Section 5.4.

D.1 Occurences of Figure 3.2

We performed a 3­fold CV for medium to frequent labels (10 ≤ p ≤ 1000). For each

validation set, we check the following conditions:

1. There are easy positives (positive samples that are not below any negative samples)

in the validation set.

2. The FBR heuristic sets the threshold higher than the easy positives.

D.2 Occurences of Figure 3.1

we perform a 3­fold CV for all rare labels (p < 10). For each validation set, we check the

following conditions:

1. The largest decision value of positive samples, say z, is less than −0.5.

2. The number of negative samples with decision values higher than z is larger than

100.
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