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Abstract

Neural networks have achieved state-of-the-art performance in many machine learn-
ing tasks. However, researchers have found that adding small perturbations to input data,
known as adversarial perturbations, can cause neural networks to make incorrect predic-
tions. This phenomenon signifies that when applying neural networks to real-world ap-
plications such as autonomous driving or speaker verification, their safety and reliability
still face threats due to adversarial perturbations. However, nowadays, there is still a lack
of practical algorithms that can effectively defend against adversarial attacks. One of the
reasons for this is that researchers are still unclear about the underlying mechanisms of

adversarial perturbations.

This paper proposes that adversarial perturbations contain human-recognizable in-
formation. Our experiments show that this information is an essential factor leading to
prediction errors in neural networks. This finding opposes the widely held belief that

adversarial perturbations are unrecognizable to humans.
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This paper also discovers two effects present in adversarial perturbations: the mask-

ing effect and the generation effect. Both effects are human-recognizable and may cause

neural networks to make mistakes. More importantly, these effects exist among different

attack algorithms and datasets.

Our findings may help researchers gain a deeper understanding of the nature of ad-

versarial perturbations, including their working mechanism, transferability, and how ad-

versarial training enhances the interpretability of models, etc., leading to a deeper under-

standing of neural networks and the development of more effective defensive algorithms.

Keywords: Machine Learning, Neural Network, Information Security, Adversarial

Perturbations, Pattern Recognition
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o enp! U A% > Blde: 3RS (Pre-training) ~ 4 8 > W E EArE 0 2 4
HIugd o PR ol b ¢ L R BN SRR OEREE [27] 21

PR EFHILE R G R A e b A AnE S FR MG 0 B

ke

DA S RAE R
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sy

PRy e R FT A FlER -

4.4 FEATT A F W

BE

‘.\.\

X3 B

Woe APRZEEI WEH? T ETRAFTRLL TR BBET KPR

AehE A P e AR e R AAPPRRITE P EFTBUF
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