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Abstract

Numerous advancements have been made in the field of breast reconstruction
following lumpectomy. While these technologies have shown promising results in clinical
settings, there are still several challenges that researchers must address. Tissue
engineering has emerged as a potential solution for breast reconstruction after
lumpectomy, offering hope to patients. In this study, a new approach utilizing laminin-
modified alginate (abbreviated as ADSC-G-LAMS) was developed using a low
concentration of sodium periodate. This modified alginate was mixed with ADSCs and
Rgl in a medium and then transformed into microspheres (ADSC-G-LAMS) using a bio-
electrospray technique with a power syringe. The ADSC-G-LAMS microspheres were
collected and combined with adipocytes to stimulate the production of necessary growth
factors, guiding the ADSCs towards the adipogenic pathway. The resulting combination
of ADSC-G-LAMS microspheres and adipocytes was prepared in an injectable form for
breast reconstruction. The synthesized laminin-modified alginate microspheres loaded
with Rgl (G-LAMS) were characterized using various techniques such as Fourier
transform infrared spectrophotometry (FTIR), optical microscopy, and scanning electron
microscopy (SEM) to identify functional groups, measure sphere size, and examine
microstructure, respectively. The release profile of Rgl from the G-LAMS microspheres
was evaluated using high-performance liquid chromatography (HPLC). The ability of the
developed G-LAMS microspheres to support vascularization was assessed through the
HUVEC tube formation assay using Matrigel™. Safety evaluations, including cell
viability, cytotoxicity, and genotoxicity, were conducted using WST-1, live/dead staining,
and chromosome aberration tests, respectively. The angiogenic potential of the G-LAMS
microspheres was assessed by analyzing gene expression levels of PI3K, Akt, and eNOs
using real-time quantitative PCR (Q-PCR). An in vivo study using SD rats involved

v
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combining the adipocytes and microspheres in an injectable form. The efficacy of the
treatment was evaluated through hematoxylin & eosin (H&E) and immunofluorescence
staining. Additionally, blood element analysis and serological analysis were conducted to
assess the safety of the combined treatment of adipocytes and ADSC-G-LAMS
microspheres. The results demonstrated that ADSC-G-LAMS microspheres successfully
integrated with the host adipose tissue, promoting angiogenesis through the sustained

release of Rgl for breast reconstruction.

Key words: laminin-alginate microspheres, adipose-derived stem cells, ginsenoside Rgl,

breast reconstruction, stem cell therapy.
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Chapter 1 INTRODUCTION

11 Incidence of breast cancer

Cancer is one of the causes of death worldwide. Fig.1.1 illustrates the trends in
incidence rates for selected cancers by gender in the USA from 1975 to 2015 [1]. Among
females, the most common cancer is breast cancer. In 2019, breast cancer accounts for
30% of all new cancer diagnoses in the United States [1]. The probability of a woman in
the United States suffering from breast cancer during their lifetime is about 13%, which
means that one in eight women will suffer from breast cancer sometime in her life [2].
Even in Taiwan, the incidence of breast cancer is still rising. 1 in 120 women in Taiwan
has breast cancer [3]. Although the mortality rate of breast cancer is stable, it is also very

important to choose a suitable treatment.
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Fig.1.1 Trends in incidence rates for selected cancers by sex in the USA from 1975 to

2015 [1].
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1.2 Treatment of breast cancer

In clinical, patients suffering from breast cancer can choose chemotherapy, radiation
therapy, and hormone therapy. In most cases, they still need to be combined with breast
cancer surgery, such as mastectomy or lumpectomy [4]. Lumpectomy, which can be also
called breast-conserving surgery. The goal is to retain as much healthy breast tissue as
possible. In this case, cancer did not develop to the whole breast, and only part of the
tissue needs to be removed. In contrast, mastectomy has to remove the total breast from
the patients when cancer has expanded rapidly. Since women often worry about aesthetics,
the demand for breast reconstruction is one of the critical issues after surgery. In clinical,
several methods have been developed for breast reconstruction.
1.3 Breast reconstruction methods
1.3.1 Implants

The silicone-based implants are the earliest and most common methods for breast
reconstruction, such as saline implants and silicone implants filled with silicone gel. In
1961, Dr. Cronin and Gerow developed the first silicone breast implant [5]. They created
the different viscosities of the materials to mimic different situations. In 1964,
Laboratoires Arion, a French company, manufactured and launched the first saline-filled
implants to enlarge the breast size [6]. After entering the US market in 1964, surgeons
began to widely use breast implants, and breast augmentation surgery soon became one
of the most popular cosmetic surgery in the United States. However, the implants are
foreign bodies; that might induce serious foreign body reactions such as thick fibrous
encapsulation to generate stress between implants and surrounding tissue. The stress may
cause capsular contraction, implant rupture & leakage, poor tactile quality, and even

unnatural shape [4, 7, §].
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1.3.2 Tissue flaps

In the late 1970s, tissue flap and free flap were to use as autologous tissue for breast
reconstruction. These tissue flaps could be harvested from the abdomen, upper backs,
thighs, and buttocks [9]. Compared to breast implants, tissue flaps generally look more
natural and behave more likely to the natural tissue. Besides, there is no risk of implant
rupture. However, the limitation of the flaps is that there are not so many donor sites for
this procedure and the complications are about 30% after transplantation [4, 10, 11].
1.3.3 Lipofilling

Lipofilling technology is to collect a patient’s fat as a fat graft by liposuction and
then transplants into a lumpectomy site as autologous implants. Nevertheless, lipofilling
is not very popular due to the unpredictable resorption rate and calcified tissue generation
about 4-6 months post-surgery. In addition, the delayed or few neo-vascularization causes
the inner part of the fat to undergo cell necrosis, fibrosis, and eventually volume loss;
those scenarios limit the technology to be applied in breast reconstruction [12].
14 Soft tissue regeneration

Similar to breast reconstruction, nowadays FDA had approved some medical
products for cosmetic surgery. Soft tissue fillers (or often called dermal fillers) are
introduced in this method. Fillers can be permanent or temporary in the body and are
classified into three categories: natural polymers and synthetic polymers. Table 1.1 list all
FDA-approved dermal fillers. Most soft tissue fillers temporarily stay in the body, then
followed by absorbed by the body over time. Only one filler made from the non-
degradable materials, polymethylmethacrylate had been approved by FDA. Some soft

tissue fillers also contain lidocaine to relieve the pain during the injection of the materials.
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Although there are not any soft tissue fillers are used in breast augmentation after breast
surgery, due to the failure of regulators of implantable medical devices to conform with
FDA standards [13]. It still gives us the concept of using biomaterials could be a potential

way for breast reconstruction.
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Table 1.1 FDA-approved dermal fillers [14].

Fillers type Materials Trade name Applicant Approval date Indication for
Natural o RESTYLANE . L ] o
polymers Hyaluronic Acid INJECTABLE GEL Q-med Ab 12/12/2003 Mid to deep dermis for correction of moderate to severe facial wrinkles and folds.
Modified hyaluronic
acid derived from a HYLAFORM (HYLAN B GEL) Genzyme Biosurgery 4/22/2004 Mid to deep dermis for correction of moderate to severe facial wrinkles and folds.
bird (avian) source
Hyaluronic Acid CAPTIQUE INJECTABLE GEL Genzyme Biosurgery 11/12/2004 Mid to deep dermis for correction of moderate to severe facial wrinkles and folds.
. . RESTYLANE INJECTABLE Medicis Aesthetics . . . ] o . _—
Hyaluronic Acid GELExternal Link Disclaimer Holdings, Tnc 3/25/2005 Mid to deep dermis for correction of moderate to severe facial wrinkles and folds.
JUVEDERM 24HV,
Hyaluronic Acid Allergan JUVEDERM 30, and 6/2/2006 Mid to deep dermis for correction of moderate to severe facial wrinkles and folds.
JUVEDERM 30HV
EEEHM%MM% with Anika Therapeutics ELEVESS 12/20/2006 Mid to deep dermis for correction of moderate to severe facial wrinkles and folds.
EEEHMM‘M%_M% with Genzyme Biosurgery PREVELLE SILK 2/26/2008 Mid to deep dermis for correction of moderate to severe facial wrinkles and folds (such as nasolabial folds).
Hyaluronic Acid wi JUVEDERM ULTRA
¥ Lidocaine Allergan XC, JUVEDERM 1/7/2010 he addition of 0.3% Lidocaine into Juvederm Ultra and Juvederm Ultra Plus.
ULTRA PLUS XC
. . .. . . RESTYLANE . Lo
Hyaluronic Acid Medicis Aesthetics Holdings, Inc INJECTABLE GEL 10/11/2011 Lip augmentation in those over the age of 21 years.
Hyaluronic Acid Merz Pharmaceuticals BELOTERO BALANCE 11/14/2011 Facial tissue to smooth wrinkles and folds, especially around the nose and mouth.
Hyaluronic Acid with .. . . RESTYLANE-L Mid to deep dermis for correction of moderate to severe facial wrinkles/folds and for lip augmentation in those
Lidocaine Medicis Aesthetics Holdings, Inc. INJECTABLE GEL 8/30/2012 over the age of21 years.
Hyaluronic Acid with Allerean JUVEDERM 10/22/2013 Deep (subcutaneous and/or supraperiosteal) injection for cheek augmentation to correct age-related volume
Lidocaine & VOLUMA XC deficit in the mid-face in adults over the age of 21.
Hyaluronic Acid with Valeant Pharmaceuticals North . . . . U P, . .
Lidocaine America 11LC/Medicis RESTYLANE SILK 6/13/2014 Lip augmentation and dermal implantation for correction of perioral rhytids in patients over the age of 21.
Hylauronic acid with B RESTYLANE LYFT . . o . . o ; ! ) !
lidocaine Galderma Laboratories WITH LIDOCAINE 7/1/2015 Severe facial folds and wrinkles or in patients over the age of 21 who have age-related volume loss.
Hyaluronic Acid with Allergan JUVEDERM 5/31/2016 Lip augmentation and for correction of perioral rhytids in adults over the age of 21.

Lidocaine

VOLBELLA XC
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Synthetic
polymers

Sodium Hyaluronate

Hyaluronic Acid

Hyaluronic Acid,
Lidocaine

Hyaluronic Acid,
Lidocaine

Hyaluronic Acid

Hyaluronic Acid,
Lidocaine

Collagen
Collagen
Collagen
Collagen

Collagen

Poly-L-Lactic Acid
(PLLA)

Poly-L-Lactic Acid
(PLLA)

Hydroxylapatite

Hydroxylapatite

Polymethylmethacrylate
Beads, Collagen and
Lidocaine.

Q-Med AB

Allergan

Teoxane S.A.

Prollenium Medical
Technologies Inc.

Prollenium Medical
Technologies Ine.

Q-Med AB
Allergan
Collagen Corp.
Serono Laboratories
Inamed Corporation
Colbar Lifescience 1
Sanofi Aventis U.S.

Sanofi Aventis U.S.

Bioform Medical, Inc

Bioform Medical, Inc.

Suneva Medical, Inc.

Restylane, Refyne,
Restylane Defyne

JUVEDERM VOLLURE
XC

RHA 2, RHA 3,RH 4
Revanesse Versa +
Revanesse Versa

Restylane Lyft with
Lidocaine

ZYDERM COLLAGEN
IMPLANT

ZYPLAST(R)

FIBREL

COSMODERM 1
HUMAN-BASED C

EVOLENCE COLLAGEN
FILLER

SCULPTRA

SCULPTRA AESTHETIC

RADIESSE 1.3CC AND
0.3CC

RADIESSE

ARTEFILL

12/9/2016

3/17/2017

10/19/2017

8/2/2018

8/4/2018

5/18/2018

9/18/1981

6/24/1985

2/26/1988

3/11/2003

6/27/2008

8/3/2004

7/28/2009

12/22/2006

6/4/2015

10/27/2006

Restylane Refyne is indicated mid-to-deep dermis for the correction of moderate to severe facial wrinkles and
folds in patients over the age of 21. Restylane Defyne is indicated for mid-to-deep dermis for the correction of
moderate to severe deep facial wrinkles and folds in patients over the age of 21.

Mid to deep dermis for correction of moderate to severe facial wrinkles and folds in adults over the age of21.

Mid-to-deep dermis for the correction of moderate to severe dynamic facial wrinkles and folds, such as
nasolabial folds, in adults aged 22 years or older

Mid to deep dermis for correction of moderate to severe facial wrinkles and folds. such as nasolabial folds, in
adults 22 years of age or more

Mid to deep dermis for correction of moderate to severe facial wrinkles and folds, such as nasolabial folds, in
adults 22 years of age or more
Deep dermis to superficial subcutis for the correction of moderate to severe facial folds and wrinkles, and
correction of age-related midface contour deficiencies in patients over the age of 21, and for injection into the
subcutaneous plane in the dorsal hand to correct volume deficit in patients over the age of 21.

Dermis for correction of contour deficiencies of this soft tissue.
Mid to deep dermal tissues for correction of contour deficiencies.
The correction of depressed cutaneous scars which are distendable by manual stretching of the scar borders.
Superficial papillary dermis for correction of soft tissue contour deficiencies, such as wrinkles and acne scars.

The correction of moderate to deep facial wrinkles and folds.

Restoration and/or correction of the signs of facial fat loss (facial lipoatrophy) in people with Human
Immunodeficiency Virus (HIV).

Use in shallow to deep nasolabial fold contour deficiencies and other facial wrinkles.

Restoration and/or correction of the signs of facial fat loss (lipoatrophy) in people with HIV.
Subdermal implantation for correction of moderate to severe facial wrinkles and folds.

Subdermal implantation for hand augmentation to correct volume loss in the dorsum of the hands.

Use in facial tissue around the mouth.
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1.5 Adipose tissue engineering

From the previous description, many technologies were developed for breast
reconstruction after mastectomy or lumpectomy. Although the technologies achieved
promising success in clinical, there are still many shortages hanging over and trouble the
researchers. In 1998, tissue engineering technology was introduced to plastic surgery that
gave light to mastectomy patients to overcome the previous shortages by adipose tissue
engineering for breast reconstruction [15].

151 Cells

Some preadipocytes cell lines, like 3T3-L1 and Ob17 cell lines, could differentiate
to adipocytes under specific inductions [16, 17]. These cell lines could harvest and
proliferate rapidly in the laboratory culturing methods. These types of cells may be a good
method for preliminary testing of the efficacy of other materials, but that could be
impossible that use these cell lines for humans’ breast reconstruction methods.

On the other hand, mesenchymal stem cells isolated from the patients’ bodies in
autologous form have been widely studied. Human bone marrow-derived mesenchymal
stem cells (hBMSCs) and human adipose-derived mesenchymal stem cells (hADSCs) are
two common cell sources in adipose tissue engineering [18]. Both kinds of cells are
multipotent cells and can undergo self-renew and differentiate into specialized cell types
[4, 19]. One disadvantage of using the hBMSCs is that the patients may be very painful
when obtaining the bone marrow extraction. In contrast, hADSCs could be isolated easily
by collecting the patients’ fat and centrifuge processes. Therefore, in the past few years,
hADSCs have become the main cell source for adipose tissue engineering. [18].

1.5.2 Scaffold
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From the perspective of tissue engineering, the scaffold acts as a temporary home,
providing cells with attachment, proliferation, and differentiation to specialized cell types
within the scaffold [4]. By different applications form scaffolds can be divided into the
bulk scaffold and injectable materials. Bulk scaffolds were usually made from porous 3D
materials. Their advantage relies on they could have good geometric control via
predefined shapes. However, because it is still bulk material, it still needs surgery for
implantation, which may leave scars. The other is in situ injectable materials, which
include injectable microspheres or hydrogel. The main advantage is that it can adapt to
complex voids. At the same time, it can be implanted by injection and belongs to a
minimum invasive approach [20].

The scaffolds could also be divided into synthetic polymers and natural polymers
upon different sources of materials. For the synthetic polymers, biodegradable polyesters,
such as polyglycolide, polylactide, and their copolymers were the most commonly used
in adipose tissue regeneration [21-25]. Other biodegradable materials, including
polycaprolactones, polyanhydrides, poly(amino acid)s, and poly(ortho ester)s were also
studied and fabricated for adipose tissue reconstruction [26]. However, these polymers
lack areas for cell identification, limiting cell growth and attachment of cells [27, 28]. To
overcome these shortages, naturally derived polymers such as collagen [29], hyaluronic
acid [30], gelatin [31], alginate [32] have been studied for adipose tissue regeneration.
Natural polymers are usually found as part of the native ECM or their derived materials.
The benefit of using natural materials relies on good biocompatibility, biological
properties, and low immunogenicity in vivo [18].

1.5.3 Signals
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Mesenchymal stem cells and preadipocyte cells could differentiate into adipocytes
through many kinds of signal induction. Insulin, thyroid hormone, and dexamethasone,
which is used to stimulate the glucocorticoid receptor pathway [33-35];
Isobutylmethylxanthine (IBMX), a phosphodiesterase inhibitor that has a protective
effect on cAMP, has been used widely for the adipogenic agent [36]. In short summary,
the signals that affect the adipogenic differentiation could be concluded with some
properties in common, such as steroid-like structure, glucocorticoid, hormones, affect
cAMP activity, and so on [37].

1.6 Purpose of the study

The three major elements of tissue engineering are cells, scaffold, and signals.
Although many tissue engineering technologies have been proposed for breast
reconstruction, those technologies might match some of the goals but be still far away
from the clinical requirements and patient’s expectations. The purpose of this study is to
develop the injectable engineered fat as a good environment for the cells toward the
desired pathway. The injectable materials belong to a minimum invasive approach for
breast reconstruction. Encapsulation of cells and bioactive molecules into the materials
can enhance angiogenesis and cell survival rate in vivo for breast reconstruction after

lumpectomy. The strategy of this study schemes in Fig.1.2.
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Fig.1.2 The strategy of this study.
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Chapter 2 THEORETICAL BASIS
2.1 Alginate
Alginate is a biodegradable polymer that cells can be encapsulated to form an
injectable hydrogel, beads, and the preformed scaffolds [4, 38, 39]. The chemical
structure of alginate and the mechanism of alginate gel formation in the presence of
divalent cations are shown in Fig.2.1. Although lack domains for cell recognition, alginate

could graft some of the molecules to improve the cell adhesion, proliferation, and toward

desired differentiation [39].

OH
OH o) OH
0 O 0 Q
HO%\ HO nO
0~ “OH]

(G) guluronate (M) mannuronate
@ca’*

% 0 HO
>

e i

0 HO ~

LY # o s

OH 0= o
7 0 ]\ =
)OO
OH O OH 0—

Fig.2.1 Chemical structure of alginate and the mechanism of alginate gel formation in the
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presence of divalent cations [40].

The potential capacity of oxidized alginate hydrogels for adipose tissue engineering

has been evaluated. Cell-loaded alginate hydrogels and cell suspensions were tested in a

11
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nude mouse model injected subcutaneously. The results showed that the degradable
alginate gel allowed capillaries to form in the newly generated adipose tissue by 10 weeks.
Compared with the free cell control group, the volume loss is also smaller. As a result, it
was confirmed that the injectable alginate hydrogel provides a suitable delivery vehicle
for human adipose-derived stem cells. [32].

2.2 Laminin

Laminin, one of the major extracellular matrix glycoproteins, was first found
intracellularly in the morula stage [41]. It has been shown to play an important role in
early embryonic cell polarization and influence cell differentiation, migration, and
adhesion [42, 43]. A laminin-modified biomaterial could influence cell adhesion and
proliferation in the scaffold for several days [44-46] The structure of laminin is shown in
Fig.2.2.

Sodium periodate (NalO4) is widely used in chemical reactions due to its ability to
act as an oxidant. Sodium periodate can oxidize two adjacent secondary hydroxyl groups,
breaking the carbon-carbon bond and forming two aldehyde groups. These reactive
aldehyde groups can be coupled to amine- or hydrazide-containing molecules via Schiff
base reactions [47]. These reactions are commonly used to oxidize carbohydrates to
generate reactive sites for subsequent incorporation of amine-containing molecules for
polymer modification and bioconjugation [48-50].

In the study, we used a relatively low concentration of sodium periodate (NalOs) by
long reaction time to synthesize laminin-modified alginate to prepare a scaffold to mimic
the embryonic environment. The chemical reaction to synthesis of laminin-modified

alginate is shown in Fig.2.3.
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2.3 Ginsenoside Rgl

The limited vascularization and low cell survival rate in tissue engineering can often
lead to surgery failure or unsatisfactory results. To address this issue, various growth
factors, such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor
(bFGF), and platelet-derived growth factor (PDGF), have been used to promote
vascularization [52, 53]. However, protein-based growth factors may have a limited
duration of biological activity. For example, the half-life of bFGF in the physiological
environment is approximately 50 minutes [54].

Ginsenoside Rgl is a major component found in Panax ginseng. Its chemical

structure allows it to exhibit estrogen-like properties, interacting with the glucocorticoid
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receptor and activating heat shock protein 90, ultimately enhancing the activity of nitric
oxide synthase (NOS) [55-57]. The structure of ginsenoside Rgl and the mechanism by
which it induces angiogenesis are illustrated in Fig.2.4 and Fig.2.5, respectively. Nitric
oxide plays a crucial role in mediating angiogenesis and the proliferation of endothelial
cells [55, 58]. Rgl has been reported as a non-peptide bioactive molecule capable of
inducing mild angiogenesis with long-lasting stability in the physiological environment.
Unlike protein-based growth factors, the bioactivity of Rgl is not significantly affected
by temperature, pH, or solvents [59, 60]. These properties make Rgl a promising
candidate for promoting angiogenesis in tissue engineering, as it offers a longer

biostability compared to protein-based growth factors.

Fig.2.4 Structure of the ginsenoside Rgl
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Fig.2.5 Rgl-mediated angiogenic mechanism in HUVEC [57].
24 Cells

In the study, the adipose-derived stem cells (ADSCs) would be used as cell sources
for the research, because ADSCs could differentiate into adipocytes, chondrocytes,
myocytes, endothelial cells, osteoblasts under specific signals induction [4, 19].

The second cell source used in this study was adipocytes. The adipocytes could be
isolated from the inguinal white adipose tissue [61]. The adipose tissue was considered
to release a wide range of signals, inclusive of endocrine, autocrine, or paracrine [62, 63].
These secreted factors have been thought to trigger the differentiation of stem cells to
adipocytes [64, 65].

2.5 Bio-electrospray method
The use of micron-sized beads as cell carriers has been shown to have benefits in

terms of enhancing cell proliferation and survival rates due to the reduced diffusion rate
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of nutrients, oxygen, and waste [28, 66]. Traditionally, microcarriers were created through
emulsification caused by mechanical or shear forces, but this method often resulted in a
non-uniform size distribution. In contrast, some researchers have successfully formed
microcarriers by applying a consistent force, such as an electric field or hydrodynamic
focusing, to disrupt the discontinuous phase [28, 67, 68]. The uniform size of the
microspheres offers advantages in terms of promoting cell proliferation, survival, and
optimizing the surface-to-volume ratio through homogeneous distribution [69-71].
Electrospray is a method of atomizing liquid with electricity. In the electrospray
systems, upon different voltages, flow rate, fluid viscosity, and needle size would cause
the different electrospray modes, inclusive of the dripping mode, cone-jet mode,
oscillating mode, spindle mode, multijet mode, and so on (Fig.2.6) [72]. The liquid
aerosol can be formed by electrostatic charging and may be used in different fields, such
as the food and pharmaceutical industry [72]. The most stable mode of the electrospray
system would be cone-jet mode, where the Taylor cone would form from the tip of the

needle. The concept of the Taylor cone is shown in Fig.2.7.

S5 1N

(&)
Dripping mode Microdripping mode Spindle mode Multispindle mode
. oS S °
Cone-jet mode Oscillating-jet mode Precession mode Multijet mode

Fig.2.6 Various modes of electrospray [72].
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The bio-electro spray method is one technology that sprays a suspension of living
cells to the collecting device. Upon defined condition, there the cells could be formed to
the micro-droplet without damaging the cells [74]. In this study, we design a simple bio-
electrospray system, shown in Fig.2.8. Spraying the cells and materials to the collecting

device, forming the microspheres could be used in adipose tissue engineering.

Laminin-alginate + cell
H i —
) ] High Voltage

Syringe pump

0.1 M CaCl, solution

Fig.2.8 Bio-electrospray system in the study.
2.6 Materials design of the study
In the work, the laminin-modified alginate, along with ADSCs and Rgl, would be

mixed in a medium. This mixture would then be sprayed into a calcium chloride (CaCl)
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solution using a power syringe and bio-electrospray technique to create microspheres,
referred to as ADSC-G-LAMS. These ADSC-G-LAMS microspheres would be collected
and combined with adipocytes to facilitate the production of necessary growth factors,
directing the ADSCs towards the adipogenic pathway. The ADSC-G-LAMS
microspheres and adipocytes would be combined and prepared in an injectable form for
breast reconstruction. The overall design scheme is depicted in Fig.2.9.

The developed Rgl loaded laminin-modified alginate microspheres (G-LAMS)
would be characterized by Fourier transform infrared spectrophotometer (FTIR), optical
microscope, scanning electron microscope (SEM) for functional groups identification,
sphere size measurement, and microstructure examination, respectively. The high-
performance liquid chromatography (HPLC) was used to evaluate the release profile of
Rgl from the G-LAMS microspheres. The HUVEC tube formation assay by Matrigel™
was used to evaluate the ability of vascularization of the developed G-LAMS
microspheres. The cell viability, cytotoxicity, and genotoxicity were evaluated by WST-
1, live/dead staining, and chromosome aberration, respectively, to confirm the safety of
the designed G-LAMS. Gene expression of PI3K, Akt, and eNOs was determined by real-
time quantitative PCR (Q-PCR) analysis to check the angiogenic ability of G-LAMS
microspheres. The adipocytes and microspheres were combined as the injectable form for
in vivo study by SD rats. The efficacy was investigated by hematoxylin & eosin (H&E)
and immunofluorescence staining. The blood element analysis and serological analysis
were used to evaluate the safety of the developed combination of adipocytes and ADSC-

G-LAMS microspheres.
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Chapter 3 MATERIALS AND METHODS

3.1 Experimental instruments

The instruments and manufacturers used in this research are listed in Table 3.1

Table 3.1 Experimental instrument, manufacturers, and model

Experimental Instruments Manufacturers Model
Confocal microscope Leica, Wetzlar, Germany TCS SP8
Real-time PCR Roche, Basel, Switzerland LightCycler ® 96
Incubator Thermo Scientific, Waltham, MA, USA FV300
SEM Hitachi, Tokyo, Japan S-4800
FTIR Jasco, Tokyo, Japan FT/IR-4200
NMR Bruker, Rheinstetten, Germany AVIII-500
Centrifuge Eppendorf, Hamburg, Germany 5804 R
pH meter Microcomputer, San Diego, CA, USA 6171
Syringe pump KD Scientific, New Hope, PA, USA KDS 250
Voltage generator Cosmi, New Taipei City, Taiwan C-PME25
Freeze dryer EYELA, Tokyo, Japan FDU-1200
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3.2 Experimental chemicals
The chemicals used in this research are shown in Table 3.2.

Table 3.2 Experimental chemicals.

Chemicals Product number | Company
Alginic acid sodium salt A2158 Sigma
Calcium Chloride, Anhydrous 1311-01 J.T. Baker
HEPES Free Acid 4018-04 J.T. Baker
Ginsenoside Rgl ASB-00007221 | ChromaDex
Natural mouse laminin 354232 Corning
Matrigel 356231 Corning
Dulbecco's modified Eagle's medium -High glucose D5648 Sigma
Medium 199 31100-035 gibco
Nutrient Mixture F-12 Ham N3520 Sigma
Endothelial cell growth supplement from bovine neural tissue E2759 Sigma
Fetal bovine serum Characterized Hyclone
Primocin™ ant-pm-2 Invivogen
Trypsin-EDTA 15400054 Gibco
Phosphate buffered saline P4417 Sigma
LIVE/DEAD Cell Viability Assay L3224 Thermo
TRIzol reagent 15596026 Thermo
Direct-zol RNA kit R2052 Zymo
SuperScript III reverse transcription kit 18080-051 Thermo
SYBR Green Master Mix K0252 Thermo
WST-1 Cell proliferation assay MK400 Takara
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Zinc diethyldithiocarbamate 329703 Sigma
Aluminum oxide 11028 Sigma
Sodium bicarbonate S5761 Sigma
Dimethyl Sulfoxide D2650 Sigma
Deuterium oxide 151882 Sigma
Wright-Giemsa Stain, Modified WG16 Sigma
Methyl alcohol 32213 Sigma
Ethanol 32221 Sigma
Acetic acid 32209 Sigma
Paraformaldehyde 43368 Thermo
Acetonitrile, HPLC 915280 J.T. Baker
Demecolcine D7385 Sigma

3.3 Flow chart of the study

Materials In vitro In vivo
‘ Characterization of G-LAMS ‘ ‘ Cytotoxicity ‘ ‘ H&E staining
‘ =10 ‘ ‘ UL ‘ ‘ IF staining

Optical microscope ‘ ‘ -
‘ P P ‘ Blood element analysis

|
|
Live/Dead staining ‘ ‘
|

‘ SEM ‘ ‘ Tube formation ability of the released Rgl ‘
‘ Releasing profiles of Rgl from G-LAMS ‘ ‘ HUVEC Tube formation assay ‘ ‘ SEUE L crEl e
| HPLC | Effect of the G-LAMS on
HUVEC gene expression
| qPCR |
‘ Genotoxicity ‘

‘Ch romosome aberration assay‘

Fig.3.1 Flow chart of the study.
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3.4 The synthesis of laminin-modified alginate

To prepare the laminin alginate solution, the following steps were followed. Initially,
0.5 mL of a 100 mM NalO4 solution was added to 100 mL of a 1.5% (w/v) alginate
solution. The mixture was stirred at room temperature in the dark for 5 hours.
Subsequently, 0.5 mL of ethylene glycol was added to stop the reaction. The resulting
solution was then dialyzed against deionized water using a dialysis membrane (Cellu Sep,
8015-40, USA, MWCO: 6000-8000 Da) for a duration of 3 days, with the deionized water
being replaced every 12 hours. After dialysis, the solution was freeze-dried (lyophilized)
to obtain oxidized alginate powder. Next, 1.5 g of the obtained oxidized alginate powder
was dissolved in 100 mL of a 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
(HEPES) solution. Subsequently, 10 pg of laminin was added to the solution, completing
the synthesis of the laminin-modified alginate.
3.5 The preparation of laminin-modified alginate microsphere (LAMS)

To prepare the laminin-modified alginate microspheres, the bio-electrospray method
was utilized. The setup of the bio-electrospray system involved three components: a
syringe pump, a high voltage generator, and a collecting tank containing a 0.1 M CaCl,
solution. First, 10 mL of the laminin-modified alginate solution was loaded into the
syringe. The collecting tank was gently stirred. The syringe pump was set to a flow rate
0f0.03 mL/min, and a low working voltage of 18 kV was applied using the high voltage
generator. The distance between the syringe needle and the collecting tank was
maintained at 1.5 cm, and the inner diameter of the needle was 500 um. The laminin-
modified alginate solution was then sprayed from the syringe needle into the collecting

tank. During this process, gentle stirring of the collecting tank was continued. After the
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spray process, the resulting microspheres were washed three times using 20 mM HEPES
solution. The microspheres were then collected and prepared for subsequent experiments.
3.6 The preparation of Rgl encapsulated in LAMS microsphere (G-LAMS)

To prepare the G-LAMS microspheres, the Rgl (at a concentration of 400 pug/mL)
was encapsulated into the previously prepared LAMS microspheres (as described in
Section 3.5). Specifically, 10 mL of the Rgl solution was added to 10 mL of the LAMS
microsphere solution. The mixture was then incubated at 37°C for 24 hours, allowing the
Rgl to penetrate and become encapsulated within the microspheres.

3.7 The preparation of ADSC-G-LAMS microsphere

The ADSC-G-LAMS refers to the combination of laminin-modified alginate with
ADSCs and Rgl, which is then transformed into microspheres using the bio-electrospray
method as previously described in Section 3.5. To isolate the ADSCs, 5-week-old female
Sprague-Dawley rats obtained from BioLASCO, Taiwan [75, 76] were used.

The inguinal fat was surgically removed and fragmented with surgical scissors. The
fragmented fat tissue was washed with phosphate-buffered saline (PBS) and dissociated
using type I collagenase (Invitrogen, USA) at 37°C for 4 hours. The cell suspension was
then filtered through a 70-um strainer and centrifuged at 1000 rpm for 5 minutes. The
resulting cell pellets were collected and washed twice with PBS. The cells were cultured
in a petri dish at a density of 5000 cells/cm? in DMEM with 10% FBS and 1% antibiotic-
antimycotic and incubated overnight at 37°C in a humidified incubator. After 24 hours,
non-adherent cells were removed, and the dish was rinsed twice with PBS. The medium
was changed every 3 days until the cells reached confluence. ADSCs from passages 3-5
were used for subsequent experiments. ADSCs 2 x 107 were suspended in 10 mL laminin-

modified alginate solution, and the microspheres were prepared by the bio-electrospray
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as described above. For the in vivo study, the ADSCs were isolated from green fluorescent
protein transgenic (GFP) 7-week-old female Sprague-Dawley rats. The isolated ADSCs
with GFP were abbreviated as GFP-ADSCs.

For the preparation of ADSC-G-LAMS microspheres, 2 x 107 ADSCs were
suspended in 10 mL of the laminin-modified alginate solution. The microspheres were
then prepared using the bio-electrospray method as described earlier. For the in vivo study,
the ADSCs were isolated from green fluorescent protein transgenic (GFP) 7-week-old
female Sprague-Dawley rats. These isolated ADSCs, which expressed GFP, were referred
to as GFP-ADSCs.

3.8 The analysis of Fourier transform infrared spectrophotometer (FTIR)

An FTIR spectrophotometer (Jasco, FT/IR-4200, Japan) was used to identify the
functional groups of laminin-modified alginate. Freeze-dried samples were mixed with
KBr by the weight ratio of 1:9 and then placed in an aluminum ring to press into a disc
by gentle pressure. The FTIR pattern was obtained by transmission mode with 16 scans
from 4000 cm ™! to 600 cm ™.

3.9 The analysis of nuclear magnetic resonance (NMR)

"H NMR spectra were recorded on a Bruker Avance I1I 500 Spectrometer operating
at a 500MHz superconducting magnet for a magnetic field of 11.75 Tesla at ambient
temperature. 8 mg of each sample was dissolved in 0.8 ml of D>O. After filtering the
resultant solution with a 0.22 filter, the sample was added to the NMR tube for detection.
3.10 The size measurement and morphology observation of the developed ADSC-

G-LAMS microspheres
The ADSC-G-LAMS microspheres were cultured in DMEM supplemented with

10% FBS and 0.1% Primocin antibiotic (Invivogen, San Diego, CA). The culture medium
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provided the necessary nutrients and support for the growth and maintenance of the
microspheres. To observe the morphology of the developed ADSC-G-LAMS
microspheres, an optical microscope equipped with a high-intensity LED light source was
used. This enhanced brightness allowed for better visualization of the microsphere
structures. The size of the ADSC-G-LAMS microspheres was measured using Imagel
software. At least 50 microspheres were imaged and counted under the optical microscope.
3.11 The SEM examination of the ADSC-G-LAMS microspheres

On day 5 of culturing the ADSC-G-LAMS in the petri dish. The ADSC-G-LAMS
microspheres were washed with HEPES buffer twice and then collected. The collected
microspheres were immersed step-by-step in the series dehydration and followed by a
critical point dryer (CPD). The CPD dried microspheres were mounted on an Al-stage
and then coated with a platinum film by sputtering PVD. The ADSC-G-LAMS
microspheres were examined under the scanning electron microscope (S-4800, Hitachi,
Japan) for microstructure examination.
3.12  Cytotoxicity of the G-LAMS microsphere

The cell viability of the G-LAMS was evaluated using a WST-1 assay. G-LAMS was
soaked into the medium for 24 hours, and the extracts were cultured with 3T3-L1
fibroblast for cell viability test; that would be in terms of cytotoxicity of the developed
G-LAMS microsphere-based on the ISO-10993 guideline. Each group was 4 repeats.
3.13  ADSC:s viability in the ADSC-G-LAMS microspheres

To assess the viability of ADSCs within the G-LAMS microspheres, a live/dead
staining assay was performed. On both day 1 and day 5 after ADSCs were encapsulated
in G-LAMS (ADSC-G-LAMS), the microspheres were gently washed twice.

Subsequently, the microspheres were stained with specific dyes in the dark at 37°C for 1
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hour. In the live/dead staining assay, living cells were stained with calcein AM, which
produces a green fluorescence upon intracellular esterase activity. On the other hand, dead
cells were stained with ethidium homodimer-1, which penetrates the compromised cell
membranes of dead cells and emits red fluorescence when bound to nucleic acids. After
staining, the microspheres with the encapsulated ADSCs were mounted on a glass slide
and observed under a fluorescent microscope.

3.14  Releasing profiles of Rgl from G-LAMS

The releasing profiles of Rgl from G-LAMS were recorded by high-performance
liquid chromatography (HPLC). G-LAMS were placed into the deionized water at 37°C
(n = 3) for a period and then taken out for centrifugation. The supernatant was collected
before injection into the HPLC system.

All the samples were filtered with a 0.22 um filter before injection. The C18 HPLC
column (XBridge BEH C18 Method Validation Kit, 130A, 5 pm, 4.6 mm X 250 mm,
186003776) was run at a flow rate of 1 mL/min under UV detector at 203 nm. The mobile
phase consisted of 30% acetonitrile and 70% ddH2O. The injection volume was 10 pL.
3.15 The tube formation ability of the released Rgl

To evaluate the tube formation ability of the released Rgl, human umbilical vein
endothelial cells (HUVECs) were used as a model for angiogenesis. A 96-well plate was
coated with 50 pL of Matrigel. HUVECs were seeded at a density of 1 x 10* cells per
well in 150 pL of medium 199 (M199) supplemented with 2% FBS and the released Rg1.
The medium with 2% FBS alone served as the blank control, while the medium with 2%
FBS and endothelial cell growth supplement (30 pg/mL ECGS) was used as the positive
control. After incubation for 6 hours, images of the formed tubes were captured using an

optical microscope. These images were then converted into grayscale and analyzed using
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the angiogenesis analyzer plugin in ImagelJ software. The tube length, which represents
the extent of tube formation, was quantified using this software (n = 5).
3.16  Effect of G-LAMS on HUVEC gene expression

Table 3.3.

In the experiment, HUVECs were seeded into each well of a 6-well plate at a density
of 1.67 x 10° cells per well and allowed to fully adhere for 24 hours. After that, the cells
were starved by replacing the medium with M199 serum-free medium and incubated for
an additional 4 hours. Subsequently, the medium was changed to 1.775 mL of M199
containing 2% FBS, and the experimental groups received the addition of LAMS or G-
LAMS, while the control group received blank medium without any treatment. After an
hour of treatment, the HUVECs were collected and washed twice with PBS. The cells
were then lysed using TRIzol reagent (Thermo Fisher), and the supernatants were
collected. Total RN A was extracted from the collected supernatants using the Direct-zol™
RNA MiniPrep Kits (Zymo Research, Irvine, CA, USA). The extracted RNA was
subjected to reverse transcription using SuperScript™ III Reverse Transcriptase (Thermo
Fisher) to obtain cDNA for real-time quantitative PCR (Q-PCR) analysis. The synthesized
cDNA was mixed with SYBR Green Master Mix (Thermo Fisher), and the primers listed
in Table 3.3. were used for the analysis. The intensity of the amplified products was
detected and recorded using the LightCycler® 480 Instrument (Roche Diagnostics

Nederland BV, Almere, Netherlands) (n = 3).

Table 3.3 Primers for Real-time PCR.

Primer Sequence (5' — 3")
GAPDH forward ACCACAGTCCATGCCATCAC
29
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GAPDH reverse

TCCACCACCCTGTTGCTGTA

PIK3CA forward

AACACTCAAAGAGTACCTTGTTCCAA

PIK3CA reverse

TAGCACCCTTTCGGCCTTTA

PIK3R1 forward

GCGAGATGGCACTTTTCTTGT

PIK3RI1 reverse

TACTTCGCCGTCCACCACTAC

AKT3 forward

CCTTCCAGACAAAAGACCGTTT

AKT 3 reverse

ATGTAGATAGTCCAAGGCAGAGACAA

AKT1 forward

CTTTGCCGGTATCGTGTGGC

AKT reverse

CTCGCTGTCCACACACTCCA

eNOs forward

GTGATGGCGAAGCGAGTGAAG

eNOs reverse

CCGAGCCCGAACACACAGAAC

3.17  To evaluate the genotoxicity of G-LAMS by chromosome aberration assay

2 x 10° Chinese hamster ovary cells (CHO cells) were plated in a 10 cm petri dish

for 20 hours. Later, 10 mL of G-LAMS extract was added as the experimental group and
culture medium only was as the control group. At 18 hours after treatment, 200 pL of
colchicine 10 pg/mL was added. At 20 hours, cells were trypsinized and collected in a
centrifugation tube. 5 mL 0f 0.075 M KCl was added to the centrifugation tube and gently
shaken. Leave the tubes at 37°C for 15 min to allow cells to be swelled and then fixed by
5 mL of fixation solution (methanol: acetic acid = 3:1) at 4°C for 20 min. The suspension
was droplet to a glass slide by a force to break down the cells; the breakdown cells were
then stained with 10% Giemsa for 15 min. Filtered the Giemsa stain with the filter paper
(Advantec, Qualitative Filter Paper, NO.1, Japan) before use. A total of 70 breakdown

metaphase cells were counted under the optical microscope. The sister chromosome
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aberration was recorded. The P-value of the aberration frequency was analyzed by one-
sided Fisher’s exact test.
3.18  In vivo study

The study involved a total of 12 Sprague-Dawley rats obtained from BioLASCO,
Taiwan, with an average age of 6 weeks. The study protocol was approved by the
Institutional Animal Care and Use Committee (IACUC) of Far Eastern Memorial
Hospital under the approval number 2018-FEMH-11.

The rats were divided into three groups for the study. The first group involved the
combination of GFP-ADSCs with shredded adipose tissue (abbreviated as ADSC-
Adipocyte). The second group consisted of GFP-ADSCs encapsulated in 1 mL of
laminin-alginate microspheres combined with shredded adipose tissue (abbreviated as
ADSC-LAMS-Adipocyte). The third group included GFP-ADSCs and Rgl encapsulated
in 1 mL of laminin-alginate microspheres combined with shredded adipose tissue
(abbreviated as ADSC-G-LAMS-Adipocyte). These groups were injected subcutaneously
into the dorsum of the rats. After 4 weeks, the grafted tissues were harvested, fixed,
embedded, and sectioned into 5 pum thick slices, which were then placed on glass slides.
The sections were stained with hematoxylin and eosin (H&E) to visualize tissue
morphology and immunofluorescence staining for CD31 to assess blood vessel formation.
The images of the sections were observed under an optical microscope and a confocal
microscope to analyze the results. Furthermore, blood element analysis and serological
analysis were conducted, including measurements of red blood cells (RBC), hemoglobin
(HGB), hematocrit (HCT), mean corpuscular volume (MCV), mean corpuscular
hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), white blood

cells (WBC), neutrophils (NEUT), lymphocytes (LYMPH), monocytes (MONO),
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eosinophils (EO), and basophils (BASO). Additionally, alanine aminotransferase (ALT),
aspartate aminotransferase (AST), blood urea nitrogen (BUN), and creatinine (CRE) were
analyzed in the serological analysis.
3.19  Statistics

Results are presented as the mean and standard deviation of at least three
independent measurements. One-way ANOVA with Tukey's multiple comparisons test
was used for all statistical evaluations except for one-sided Fisher’s exact test for
chromosome aberration assay. Differences were considered significant at a p-value of less

than 0.05. (p <0.05, *; p < 0.01, **; p < 0.001, ***),
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Chapter 4 RESULTS

4.1 FTIR functional groups analysis

The functional groups of the synthesized laminin-modified alginate were analyzed
by Fourier transform infrared spectrophotometer (FTIR). The infrared spectra were
recorded in the wavelength from 600 cm—1 to 4000 cm—1 (supplemental Fig.S1). The
FTIR pattern of laminin-modified alginate prepared by relatively low concentration of
sodium periodate and extended long reaction time was similar to the pattern synthesized
by the previous method. The appearance of the absorption band at 1735 cm™! in laminin-
alginate confirmed that forming of the aldehyde group (C=0), which indicated that
oxidation had occurred. The absorption bands at 1600 cm—1 and 1414 cm—1 were
corresponding to asymmetric and symmetric stretching vibrations of the carboxyl group,
respectively, both shown in alginate and laminin-modified alginate. The absorption band
at 1470 cm—1 in the spectrum of laminin-modified alginate was attributed to the amide
bond (N-H). The bands at 2850 cm—1 and 2920 cm—1 were assigned to asymmetric and
symmetric C-H vibrations, respectively. The Schiff bases between 1631.5 cm—1 and
1640.9 cm—1 attributed to the C=N stretch characteristic of the imino group were not very

clear due to strong absorption of the carboxyl group and low concentration of laminin.
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Fig.4.1 The FTIR spectrum of alginate and laminin-modified alginate. The absorption
band at 1735 cm ! confirmed that forming of aldehyde group (C=0). A new absorption
band at 1470 cm ™' in laminin-modified alginate indicates the amide bond formation.
Furthermore, the band at 2850cm™' and 2920cm™' corresponded to asymmetric and
symmetric C-H vibrations were also strengthened after modification.
4.2 '"H NMR spectrophotometry analysis

Furthermore, the 'H NMR spectra of alginate and laminin-modified alginate were
applied to check the structure change, as shown in Fig.4.2. The peaks ranging from 3.66
to 4.99 ppm belonged to the protons of G and M units of the alginate peaks. The peaks
ranged from 0 to 3 ppm which corresponded to the laminin signal [77]. Moreover, peaks
that appeared at 5.08 ppm and 5.13 ppm corresponded to a hemiacetalic proton formed
from aldehyde and hydroxy group but were not obvious in the laminin-modified alginate,
owing to the low concentration of the sodium periodate and the complete reaction of the

laminin modification [78].
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Fig.4.2 '"H NMR spectrum of alginate and laminin-modified alginate. The peaks ranging
from 3.66 to 4.99 ppm belonged to the protons of G and M units of the alginate peaks.
Additional peaks appeared at 5.08 ppm and 5.13 ppm corresponded to a hemiacetalic
proton formed from aldehyde and hydroxy group in the laminin-modified alginate.
4.3 The size measurement of the LAMS

The bio-electrospray device was constructed as shown in Fig.4.3 In the electrospray
system, voltage and flow rate could be controlled to obtain different electrospray modes

as shown in Fig.4.4. In this study, different parameters were firstly tested and found the
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parameters which were the most stable and could form the microsphere with about 220

um in diameter (Fig.4.4(c)).

Fig.4.3 Construction of the device of the bio-electrospray system.

Voltage & 8kV & 0.008 mL/min 15 kV & 0.020 mL/min 15 kV & 0.030 mL/min
fluid flow rate
size 958.75 + 80.91 um

Fig.4.4 Different sizes of the LAMS formed by different electrospray modes. (a)
Microdripping mode, (b), (c) Cone-jet mode.
4.4 The size measurement and SEM examination of the developed ADSC-G-
LAMS microspheres

The ADSC-G-LAMS microspheres were prepared by the bio-electrospray with a
power syringe as shown in Fig.4.5. The microspheres were very uniform in diameter with
174.68 + 26.93 um on average at day 0 as shown in Fig.4.5(a). The size of the spheres
would be expanded to a mean value of 232.42 + 42.37 um at day 2, day 5, and day 9, as

shown in Fig.4.5(b), Fig.4.5(c), and Fig.4.5(d), respectively, due to swelling. The ADSCs

36
doi:10.6342/NTU202301268



were small white spots indicated as an arrow in the pictures, that was encapsulated in the
microsphere homogeneously. The microspheres were further examined under SEM;
where the ADSCs were fully embedded in the G-LAMS microspheres as shown in

Fig.4.5(e) and Fig.4.5(%).

54800 5.0kV 7.9mm x600 6/26/2019 13:14

Fig.4.5 Morphology and microstructure of laminin-alginate microspheres were observed
by optical microscope and SEM. The image was taken by optical microscope at (a) Day
0, (b) Day 2, (c) Day 5, (d) Day 9 after ADSC-G-LAMS preparation. The arrows indicated
the ADSCs encapsulated in G-LAMS. Scale bar = 200 um. SEM images were taken on
Day 5 at (e) 600X magnification and (f) 2000X magnification.

4.5 The cytotoxicity of G-LAMS
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The cytotoxicity of G-LAMS was evaluated by WST-1 assay; with which the cell
viability would be in terms of cytotoxicity based on the guidance of ISO-10993 by 3T3-
L1 as target cells. The results showed that the synthesized G-LAMS was not toxic to the
target cells, as shown in Fig.4.6.

The survival rate of ADSCs enclosed in G-LAMS was checked by live/dead staining
assay (Fig.4.7). The living cells were stained with calcein AM and dead cells were stained
with ethidium homodimer-1; which would turn into green and red, respectively, observed
under the fluorescence microscope. As shown in Fig.4, more than 99% of ADSCs were
alive in microspheres on day 1 and day 5. The cell number on day 5 (Fig.4.7(b)) was
much high than that on day 1 (Fig.4.7(a)). We could tell that the developed G-LAMS was
not toxic to the encapsulated ADSCs and created a good micro-environment for ADSCs

proliferation.

120-
100-
80 -
60 -

40

Cell viability (%)

201

Fig.4.6 The cell viability of G-LAMS was evaluated by 3T3-L1 viability based on the

guidance of ISO-10993; the results would be in terms of cytotoxicity (n = 4).
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(a)

(b)

Fig.4.7 ADSCs in ADSC-G-LAMS were evaluated by live/dead staining assay. ADSCs
were encapsulated in G-LAMS and analyzed at (a) Day 1, and (b) Day 5. The living cells
color in green were stained with calcein AM and dead cells color in red were stained with
ethidium homodimer-1. Scale bar = 100 um.
4.6 Releasing profiles of Rgl from G-LAMS

The cumulative Rgl released from laminin-alginate microspheres is shown in
Fig.4.8. The Rgl release profile could be seen in two steps. The release rate at the first
stage was 270 pg/day which was due to physical desorption of Rgl on the surface of the
microsphere, as so-called initial burst. On the first day was about 67.4% released. The
second stage was the relatively slow release of the Rgl with the rate of 12 pg/day, based

on the diffusion process. Supposedly, the Rgl would be fully released within 5 days.
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Fig.4.8 Releasing profiles of Rgl from G-LAMS. The cumulative Rgl released curve
was evaluated by HPLC analysis over time (n = 3).
4.7 The ability of the tube formation for the synthesized G-LAMS
The ability of the tube formation of the developed G-LAMS was determined by

Matrigel™

and HUVEC. The experiment was divided into three groups: (1) control group:
medium with 2% FBS (Fig.4.9(a)); (2) positive control: medium with 2% FBS and
endothelial cell growth supplement (ECGS) (Fig.4.9(b)); (3) G-LAMS group: medium
with 2% FBS and released Rgl from G-LAMS without endothelial cell growth
supplement (Fig.4.9(c)). The results were summarized in Fig.4.9(d); where the total tube
lengths of the positive control and G-LAMS groups increased by 16.1% and 35.9%,
respectively, compared to the control group. We believe that the Rgl released from G-
LAMS could keep biological activity to induce HUVEC cells vascularization by the

ITM

Matrigel’ ™ model.
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Fig.4.9 The ability of the tube formation of the released Rgl was tested by HUVEC tube
formation assay with Matrigel™ (a) Control: medium with 2% FBS (b) Positive control:
medium with 2% FBS and endothelial cell growth supplement (ECGS) (c) G-LAMS:
medium with 2% FBS and released Rg1 from G-LAMS without ECGS. (d) Quantification
by Imagel software. (p <0.05, *; p <0.001, ***, compared to control group by one-way
ANOVA with Tukey's multiple comparisons test.)
4.8 Effect of G-LAMS on HUVEC gene expression

To explore the role of the G-LAMS on HUVEC angiogenesis property, several genes
such as PIK3CA(phosphatidylinositol 3°-kinase (PI3K) catalytic subunit p110a), PIK3R1
(PI3K regulatory subunit p85a), AKT3 (serine/threonine-protein kinase), eNOs
(endothelial nitric oxide synthase) were measured by Q-PCR analysis. The results showed
that the coculture of G-LAMS with HUVECs could affect the upstream genes, PIK3CA,
PIK3R1, AKT3, as shown in Fig.4.10(a), Fig.4.10(b), and Fig.4.10(c), respectively. The
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gene expression levels were up-regulated by 1.35 to 1.44-fold compared with the 2% FBS
control group. Meanwhile, there was no significant difference on gene expression
between the LAMS group and the 2% FBS control group. Nevertheless, the Enos
expression (Fig.4.10(d)) in the LAMS group was slightly higher than that of the control
group. The eNOs expression of the G-LAMS group was 1.75-fold higher than that of the
control group. The results indicated that the vascularization of G-LAMS to HUVECs was

to go through the pathway of PI3K, Akt, and eNOS from upstream to downstream gene

expression.
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Fig.4.10 Gene expression of HUVEC:s after starvation for 4 hours and then treated with
materials for 1 hour. Relative (a) PIK3CA (b) PIK3R1 (c) AKT3 (d) eNOs gene
expression was measured by Q-PCR and normalized by GAPDH gene expression. (n = 3)

(»<0.05, *; p<0.01, **; p<0.001, *** compared to control group; p <0.05, #; p <0.01,
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##; p <0.001, ### compared to LAMS group by one-way ANOVA with Tukey's multiple
comparisons test.)
4.9 Evaluation of G-LAMS on genotoxicity chromosome aberration assay

CHO cells were used to evaluate G-LAMS on genotoxicity; where the control group
was in blank medium and the experimental group was the extract of G-LAMS (Fig.4.11).
A total of 70 well spread chromosomes could be examined under the DIC microscope by
Giemsa stain. Fisher’s exact test was used to analyze the statistical data. There was no
significant difference in the chromosome aberration between the control group and
experimental group, which was summarized in Table 4.1.
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Fig.4.11 The evaluation of the genotoxicity assay was determined by CHO cells
chromosome aberration assay. CHO cells were treated by (a) negative control observed
under 40X magnification and (b) negative control examined under 100X magnification;
the aberrations would be compared with (c) experimental group added with G-LAMS

extract observed under 40X magnification and (d) experimental group added with G-
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LAMS extract observed under 100X magnification.
Table 4.1 The chromosome aberration data of the negative control group and the G-

LAMS treated CHO cells *.

Aberrant Total Aberration

Treatment P-value
metaphases metaphases frequency

Control 5 70 0.071

G-LAMS 2 70 0.029 NS

* A summary data of the genotoxicity results from the negative control group and G-

LAMS treated CHO cells. P-value derived from Fisher’s exact test. NS = Not significant.

410 Histological and Immunofluorescence Analysis

Fig.4.12, (Fig.4.13(a)) (Fig.4.13(b)). (Fig.4.13). Fig.4.13(a)) Fig.4.14 and Fig.4.15.

The adipogenic differentiation of isolated ADSCs was assessed using Oil Red O

staining, which indicated successful differentiation into adipocytes upon signal induction.

The corresponding figures, labeled as Fig.4.12. display the results of the staining.

To evaluate the adipogenesis of ADSC-G-LAMS encapsulated with adipocytes
(ADSC-G-LAMS-adipocyte), CD31 immuno-staining and H&E staining were performed
at the 4th week after subcutaneous injection. Confocal microscopy images (Fig.4.13(a)).
displayed the nuclei stained with DAPI, ADSCs labeled in blue and green due to GFP
expression, and CD31, a major marker of endothelial cells, depicted in red. The
angiogenesis quantification was determined by calculating the relative cell number in the
CD31 fluorescence image using ImageJ software (Fig.4.13(b)). The ADSC-LAMS-

adipocyte group and ADSC-G-LAMS-adipocyte group exhibited significantly higher
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numbers of endothelial cells compared to the ADSC-adipocyte group. Notably, the
microspheres containing Rgl (ADSC-G-LAMS-adipocyte) displayed the highest number
of endothelial cells in adipose tissue, surpassing the microspheres without Rgl (ADSC-
LAMS-adipocyte) (Fig.4.13). The H&E staining corroborated these findings, showing an
increased number of neo-blood vessels (indicated by an arrow in (a)) in the ADSC-G-
LAMS-adipocyte group compared to the other two groups. Additionally, the injected
microspheres (indicated by an asterisk) were fully integrated with the host tissue.
Furthermore, the graft volume of the materials was evaluated and quantified after

sacrificing the animals, as illustrated in Fig.4.14 and Fig.4.15.

Fig.4.12 Oil Red O staining image of the adipogenic differentiation induced ADSCs.

Scale bar = 20 pm.
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Fig.4.13 In vivo analysis of grafts after 4 weeks (a) Immunofluorescence staining of CD31

on adipose tissue sections from the implant site. CD31 was used as an endothelial cell

marker. Nuclei were stained with DAPI, and GFP-positive cells were observed by

confocal microscopy. In H&E staining, arrows indicate blood vessels, and asterisks

indicate the implanted microspheres. Scale bar = 100 pm, (b) Quantification of

angiogenesis was determined by calculating relative cell number in CD31 fluorescence

image by Imagel. (Data in (b) were measured by four independent experiments, and at

least five fields were taken per section.) (p < 0.05, *; p < 0.01, **; p < 0.001, ***,

compared to the ADSC—adipocyte group; p < 0.05, #; p < 0.01, ##; p < 0.001, ###

compared to the ADSC-LAMS-adipocyte group by one-way ANOVA with Tukey's

multiple comparisons test.).
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Fig.4.14 The pictures of implanted materials after 4 weeks of transplantation. (a)

Represented picture of the rats (ADSC—G-LAMS—adipocyte group) in vivo study. The

black arrow indicated the implanted materials. (b) ADSC—adipocyte group. (c) ADSC—

LAMS-adipocyte group. (d) ADSC-G-LAMS-adipocyte group. Scale bar = 1 cm.
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Fig.4.15 The graft volume of implanted materials after 4 weeks of transplantation. (p <
0.05, *; p <0.01, **, compared to the ADSC—adipocyte group; p < 0.05, #, compared to

ADSC-LAMS—-adipocyte group.)

4.11 Blood element analysis and serological analysis

The whole blood was collected from rats, before being sacrificed, for blood element
and serological analysis. Compared with the reference value (Charles River Laboratories,
CD® IGS Rat Model Information Sheet), the data in blood element analysis (Table 4.2)
and serological analysis (Table 4.3) were all in the normal range. The results could tell

that the laminin-alginate microspheres no matter with or without Rgl all showed no

systemic toxicity.

48
doi:10.6342/NTU202301268



Table 4.2 Summary of blood element analysis.

ADSC-LAMS- ADSC-G-LAMS-
ADSC-Adipocyte Reference*

Adipocyte Adipocyte
RBC (M/uL)  8.27+0.41 7.67 +£0.36 8.03 +£0.42 7.37 +£1.09
HGB (g/dL) 16.90 = 0.62 15.20 +£0.89 15.57 £1.03 16.52 £2.72
HCT (%) 52.57+3.33 44.12 £4.20 47.17+£2.84 48.45+7.14
MCV (fL) 63.57 £ 1.60 60.16 + 1.23 58.77 £ 0.83 65.49 £ 6.46
MCH (pg) 20.47 £ 0.80 19.80 £ 0.35 19.37 £0.34 22.40 £1.35
MCHC (g/dL) 32.20 £1.04 32.94 £0.26 33.00 £0.22 34.10+2.34
PLT(K/uL) 1274.67 £339.01 1109.80 £ 170.04 1182.67 £21.14  1583.22 +378.23
WBC (K/uL) 9.09 +0.62 9.10 +2.59 9.03+1.90 10.17 £ 3.72
NEUT (K/uL) 2.72+£0.85 243 +1.75 3.25+2.03 2.62+1.24
LYMPH (K/uL) 5.49 +1.10 6.24 £2.35 5.18+0.23 6.73 £ 2.64
MONO (K/uL) 0.72 +0.43 0.25 +£0.07 0.41+0.10 0.62+0.28
EO (K/uL) 0.14 £0.05 0.16 =0.04 0.16 = 0.05 0.15+0.16
BASO (K/uL)  0.02 £ 0.01 0.02 +0.02 0.04 £0.01 0.04 £ 0.05

* Charles River Laboratories, CD® IGS Rat Model Information Sheet. RBC: red blood cell;

HGB: hemoglobin; HCT: hematocrit; MCV: mean corpuscular volume: MCH: mean corpuscular

hemoglobin; MCHC: mean corpuscular hemoglobin concentration; PLT: platelet; WBC: white

blood cell; NEUT: neutrophil; LYMPTH: lymphocyte; MONO: monocyte; EO: eosinophil;

BASO: basophil.

49

doi:10.6342/NTU202301268



Table 4.3 Summary of serological analysis.

ADSC-LAMS- ADSC-G-LAMS-

ADSC-Adipocyte Reference*
Adipocyte Adipocyte
ALT (U/L) 46.25 +£5.54 40.80 +£2.56 48.25+13.37 56.72 +32.40
AST (U/L) 82.40 £ 6.06 82.12 + 6.64 114.45 +54.42 111.88 £ 65.11
BUN (mg/dL) 17.92 £2.84 16.25+1.71 16.73 £1.93 13.45+4.19
Crea (mg/dL)  0.45+0.11 0.50 £ 0.15 0.43 +£0.04 0.47£0.10

* Charles River Laboratories, CD® IGS Rat Model Information Sheet. ALT: alanine

aminotransferase; AST: aspartate aminotransferase; BUN: blood urea nitrogen; Crea: creatinine.
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Chapter 5 DISCUSSION

Alginate is a biodegradable polymer that cells can be encapsulated to form an
injectable hydrogel, beads, and the preformed scaffolds [4, 38, 39]. However, alginate
lacks domains for cell recognition. Laminin, one of the major extracellular matrix
glycoproteins, was reported to play an important role to influence cell differentiation,
migration, and adhesion in the early embryonic stage [41-43].

In the study, laminin was modified to alginate by a relatively low concentration of
sodium periodate (NalO4) with a long reaction time to synthesize laminin-modified
alginate for better cell viability and lower cytotoxicity as shown in Fig.4.6 and Fig.4.7
The developed laminin-modified alginate was mixed with ADSCs and Rg1 in the medium;
thereafter, sprayed into a calcium chloride (CaCly) solution to prepare microsphere
(abbreviated as ADSC-G-LAMS) by bio-electrospray with a power syringe. The prepared
ADSC-G-LAMS microspheres were collected and combined with adipocytes to produce
necessary growth factors to make ADSCs toward the adipogenic pathway.

It has been reported that the diameter of the microsphere should be smaller than 350
um to minimize fibrosis reaction [79]. The fibrosis reaction will cause fibrous capsule
contraction and result in the implanted breast having a poor tactile quality [80]. In addition
to this, one of the most challenging issues for 3D scaffolds in tissue engineering is the
need for adequate and rapid vascularization, as the diffusion of nutrients and oxygen can
only occur over 200-300 microns [81]. Therefore, the size control of biomaterial scaffold
is very important. The average diameter of the microspheres prepared by using the bio-
electrospray methods was 232.42 + 42.37 um (Fig.4.5); that was more convenient for

injection. In addition, the smaller diameter could shorten the diffusion distance of the
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nutrition and oxygen to make an encapsulated cell in high proliferation and survival rate
(Fig.4.5, Fig.4.6 and Fig.4.7).

Ginsenoside, Rgl has estrogen-like properties that can interact with the
glucocorticoid receptor and activation of the nitric oxide synthase [55, 56]. Nitric oxide
is well known to be an important factor in the mediation of angiogenesis and proliferation
of endothelial cells [55, 58]. It was noted that the bioactivity of Rgl is not affected by
temperature, pH, and solvents compared to protein-based growth factors [60]. Rgl also
could affect MSCs proliferation, differentiation, apoptosis [82]. One of the studies
showed that Rg1 could promote human BMSCs toward endothelial differentiation in vitro
[83]. Other results also showed that Rgl could attract BMSCs to migrate to local
myocardial tissues and differentiate into vascular endothelial cells for capillary
regeneration of infarcted myocardium tissue in vivo [84]. Besides, it was reported that
Rg1 had been mixed with the collagen and increased the micro-vessel density in the nude
mice model for soft tissue regeneration [85]. In this study, Rgl was selected as a bioactive
molecule, enclosed in the laminin-modified alginate microspheres, and proved tube
formation by Matrigel™ model (Fig.4.8 and Fig.4.9). In the study of the Rgl releasing
profile, an initial burst happened on the first day. We believe that was needed to give
enough signals to attract the MSCs for tissue reconstruction (Fig.4.8). The sustained
release of the Rgl was to induce encapsulated ADSCs or homing MSCs toward neo-
vascularization to keep injected ADSCs or adipocytes survive to join the tissue growth
and repair.

In the study, several genes were selected to confirm that the PI3K/AKT was the
major pathway to induce HUVEC vascularization under Rgl stimulation (Fig.4.10(a),

Fig.4.10(b) and Fig.4.10(c)). The genes related to PI3K/AKT pathway were all up-
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regulated in HUVECs cultured with the G-LAMS. In addition, the gene expression of
eNOs was up-regulated as well (Fig.4.10(d)).

We noticed that eNOs gene expression in LAMS was much higher than that of the
control group, however, there was no significant difference in the gene expression related
to the PI3K/AKT pathway. It had shown that laminin could influence endothelial shear
sensing and mechano-transduction through the focal adhesion kinase (FAK). The shear-
induced eNOs synthesis may happen in endothelial cells [86-88]. We believe that the
difference of eNOs expression between the LAMS group and control group might be
partially attributed to laminin rather than Rgl. The detailed mechanism of laminin action
is not much discussed in this research, but it still provides us with promising results, that
the combination of Rgl with laminin modified alginate carrier can have significant
impacts on angiogenic properties. The results of chromosome aberration by CHO cells
and Giemsa stain showed that the synthesized G-LAMS was no concern to genotoxicity
as shown in Fig.4.11 and summarized in Table 4.1.

In adipose tissue engineering, new blood vessel formation is important for
transplanted cell survival and reduces grafting volume shrinkage [89]. In animal studies,
the materials were co-cultured with autologous adipose tissue, becoming an injectable
engineered fat. The adipocyte was reported to release various signals to regulate local
MSCs or ADSCs toward adipogenic differentiation [62-65]. The results of the animal
study showed that the group of ADSC-G-LAMS-adipocyte exhibited the highest number
ofneo-blood vessel and endothelial cells with obvious adipogenesis as shown in Fig.4.13.
The results of the blood element analysis and serological analysis were to further confirm

the safety of the prepared cell-laden adipose graft (Table 4.2 and Table 4.3).
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In this study, the efficacy of the developed ADSC-G-LAMS was determined by
comparing it with ADSC-LAMS and ADSC. The Rgl released out from the ADSC-G-
LAMS was to enhance angiogenesis. ADSCs and adipocytes played important role in
adipogenesis. Those were proved both in vitro and in vivo. In the future, the microspheres
prepared in this study might be developed to deliver other bioactive molecules, growth

factors, and drugs for other applications in stem cell therapy and tissue engineering.
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Chapter 6 CONCLUSION

In the study, we successfully synthesized the laminin-modified alginate by low
concentration sodium periodate to mimic the embryonic environment. ADSC-G-LAMS
were prepared by bio-electrospray methods. The average diameter of the microspheres
prepared by using the bio-electrospray methods was 232.42 + 42.37 um; that was more
convenient for injection. The developed ADSC-G-LAMS microspheres could provide a
good environment to allow ADSCs to survive, proliferate, and toward desired
differentiation pathway without cytotoxicity, genotoxicity, and systemic toxicity. The
released Rgl can induce HUVEC cells vascularization property to enhance 35.9% of'total
tube lengths to that of the control group. The mechanism of the vascularization of G-
LAMS to HUVECs was to go through the pathway of PI3K, Akt, and eNOS from
upstream to downstream gene expression. There were two stages of Rgl release from the
microspheres with an initial burst release of 67%; that was believed to give enough signals
to attract the MSCs for tissue reconstruction. After that, the sustained release of the Rgl
could induce encapsulated ADSCs or homing MSCs toward neo-vascularization to
enhance ADSCs or adipocytes survival rate to join the tissue growth and repair with
adipogenesis for breast reconstruction after lumpectomy. The results of the animal study
showed that ADSC—G-LAMS microspheres could integrate well into the host adipose
tissue with an adequate rate of angiogenesis by constantly releasing Rgl for breast
reconstruction. The group of ADSC-G-LAMS-adipocyte group exhibited the 1.52-fold
graft volume to the ADSC-adipocyte group and had the highest number of neo-blood
vessel and endothelial cells with obvious adipogenesis. These findings fully support that
the ADSC-G-LAMS could be the potential scaffolds for stem cell and angiogenic factor

carriers for adipose tissue engineering.
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