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Abstract

The purpose of this thesis is to generalize a collection of results in [ , ] con-
cerning change of invariants of moduli space of rank-2 stable sheaves over an algebraic

surface under blowup, which is a set of formulas predicted by Vafa and Witten in the

context of the S-duality conjecture.

In these two papers, the invariants the authors considered are the virtual Hodge polyno-
mials, and our goal is to refine these invariants to the settings of Grothendieck’s motivic
ring of varieties.

In this paper, we verified that some of the proofs given in [ , ] can be gener-

alized to the motivic setting, and by working in the motivic ring of varieties, we are able

to answer a conjectural combinatorial formula posed in [ ], by using a formulae con-
cerning motivic generating series of Quot schemes given in [ ]. We also simplified
some of the calculations in [ ].
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Chapter 1 Introduction

1.1 Overview

The purpose of this thesis is to generalize a collection of results in [ , ] con-
cerning change of invariants of moduli space of rank-2 stable sheaves over an algebraic
surface under blowup, which is a set of formulas predicted by Vafa and Witten in the

context of the S-duality conjecture.

In these two papers, the invariants the authors considered are the virtual Hodge polyno-
mials, and our goal is to refine these invariants to the settings of Grothendieck’s motivic

ring of varieties.

In this paper, we verified that some of the proofs given in [ , ] can be gener-

alized to the motivic setting, and by working in the motivic ring of varieties, we are able

to answer a conjectural combinatorial formula posed in [ ], by using a formulae con-
cerning motivic generating series of Quot schemes given in [ ]. We also simplified
some of the calculations in [ ].
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1.2 Organization of Contents

As mentioned in the previous section, our main goal is to prove things in the motivic
context. This will be done in Chapter 4. Chapter 2 and 3 are essential background materials

on these results.

* For Chapter 2, we give a brief overview on the construction of Grothendieck’s mo-
tivic ring of varieties. We will review the concept of power structures, and mention

a few results concerning generating series of Quot schemes given in [ ].

* For Chapter 3, we give a summary on some essential results and notions on the

theory of moduli spaces of stable rank 2 sheaves over an algebraic surface.

— In3.1., we revisit the definition of stability, and recall some results concerning

the existence of moduli spaces in 3.2..

— In 3.3., we concern the change of moduli space under change of polarizations.
Firstly, we revisit Zhen-Bo Qin’s definition of chamber and wall structures,
and mention Gottsche’s result on a motivic decomposition of moduli spaces

utilizing this chamber and wall structure in the case of ruled surfaces.

— In 3.4., we look at preliminary results concerning how moduli spaces changes

under blowing up, which justifies the technical definition of the space M}, (1., c2).

— In 3.5., we discuss how the Gieseker moduli spaces, Uhlenbeck compactifi-
cations, and Mumford-Takemoto spaces are related to each other under mild

conditions.

* For Chapter 4, we generalize the main results given in [ , ] in the motivic
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setting. We show that a motivic universal function exists in 4.1.. In'4.2., 4.3., we

compute explicit motivic formulas corresponding to the ones given in [ 1

* In the appendix, we will give a review on the relevant results given in some of the

related works concerning change of moduli space under blowup.

1.3 Frameworks and Notations

For the rest of this paper, we will mainly work within the category Sch/C of C-schemes
of finite type. Product of schemes in this category will also be interpreted as product over

Spec C. The only exception is 3.18.

For the rest of this chapter, we take an algebraic surface X over C and an ample divisor

H on it. We also take some ¢; € H*(X,C) fori = 1,2.

Notation 1.1. We will use the following short hand notation for what properties X, ci, H
might posses:

(A1) We say that X has property (A1) if X is smooth, projective, and simply-connected.
(A2) We say that X, cy, H has property (A2) if the intersection product H.c, is odd.

(A3) We say that X has property (A3) if the anticanonical divisor — K x is effective.

For what follows, we will often always assume condition (A1l). We list a few of the

direct consequences of this assumption:

Remark. When we assume (A1) on X (complex smooth projective simply-connected sur-

face), we have the following simplications of some of the basic invariants of X :
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* Betti Numbers and Euler Characteristic. Since

HY(X,7)= HYX,Z) ~ 7, H'(X,Z) = H*(X,Z) =0

and that H*(X,7) ~ 7 is free abelian, we have by Universal coefficient theorem

that

H*(X,Z) ~ Hom(Hy(X,7Z), Z)®Ext' (H\(X,7Z),7) = torsion-free part of Hy(X,7Z)

In terms of Betti numbers b := dim H'(X,C), we have b°* = b* = 1,b' = b* = 0.

In this case, the Euler characteristic is e = 2 + b>.

* Hodge numbers. For '/ = dim H’(X, Q") withi,j € {0,1,2}, asb* =37, . h"/

and h' = h?>=4277 (Serre duality), the numbers are specified by

ho0 1
R0 hO! 0 0
2.0 R8I W2 = b — 2p, Py
h2! h1? 0 0
h??2 1

with p, being the geometric genus.

» The geometric genus, arithmetic genus, irregularity, holomorphic Euler charac-

teristic py, pa, q, X. They can all be described by h°*:

pg=h"% q=h""=0,p.=p;,—q=h" x=p,—q+1=h"?+1

* The Picard group, the Neron-Severi group and the group of numerical equiva-

4 doi:10.6342/NTU202301040
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lence classes
Pic(X),NS(X),Num(X). We have an exact sequence (arising from the exponen-

tial sequence):

HY(X,Z) — H'(X,Ox) — Pic(X) = HX(X,Z) — H*(X,Ox)

As H'(X, Ox) is the complex conjugate to H°(X, Q% ), Pic(X) can be identified
with its image NS(X) in H*(X,Z), and as H*(X,Z) is torsion-free, Num(X) -
being NS(X') modulo torsion - is isomorphic to NS(X). To summarize, we may

think of this as an identification

Pic(X) C NS(X) ~ Num(X)

In this sense, when we talk about moduli spaces of sheaves parametrized by chern
classes cy, co later, there is not ambiguity in specifying whether

c1 € Pic(X), H*(X,Z),NS(X),Num(X) (as some authors will use Num(X) as
the space of stability conditions when dealing with chamber structures, while some

will work with Pic(X), H*(X, Z) when discussing general stability conditions).

Notation 1.2. Throughout this paper, by blowing up, we will only be considering blowing

up along a single point, and by a sheaf, we will only be considering a coherent sheaf.

Notation 1.3. Suppose X satisfies (Al).

* We denote the symmetric products X" /S, of X as X™.
* We denote the Hilbert schemes of zero-dimensional subschemes of length n as X ™.

* We denote Quotgig /X" the Quot scheme of quotients of O%* parametrized by the

5 doi:10.6342/NTU202301040
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constant polynomial n (over the base scheme Spec C) as X 1"},

» We define the following generating series:

S(X:q) =Y [XM]g", H(X:q) = Y [X"]¢", Q(X;q) =) [X™]g"

n n n

1.4 Summary of Main Results

Settings 1.4. Consider an algebraic surface X satisfying (A1). Take a point x € X,

consider its blowup as a pullback square:

SN

ahrwtal

* — ™

|

In this diagram, E is the exceptional divisor, ¢ is the blowup map, and X is the blown-up

surface. If X has property (1), X will also have property (41).

Fix c; € HX(X;Z) and ¢y € HY(X;Z) ~ 7. Take an ample divisor H on X. We may

consider the following moduli spaces:

* The moduli space of Gieseker-semistable rank 2 torsion sheaves (or the Gieseker

space) on X with chern classes cy, co, denoted as ﬁﬁg(cl, c2).

» The moduli space of Mumford-Takemoto rank 2 bundles (or the Mumford-Takemoto

space) on X with chern classes ¢y, ca, denoted as MY, (cy, c2).

 The Uhlenbeck compactification (or the Uhlenbeck space) of MY, (c1, ca) with

chern classes cq, c9, denoted as Smg,(cl, 2).

6 doi:10.6342/NTU202301040
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Corresponding to these spaces, we can define generating series:

M*(X, H,ci3q) = Y[ (c1, ca)]g> o2/

Cc2

MG(X7 H7 C1; q) = Z[mg(Cl, 02)]qA(01,02)/4

Cc2

MU<X7 H7 Cl; Q) = Z[W%QH, CQ)]QA(Cl’CQ)/4

Cc2

where we define A(cy, ca) = 4y — 3, and the square bracket indicates taking the motive
of that space. The authors in [ : ] referred to A(cy,cy)/4 as the instanton

numbers.

Now suppose X, H, ¢, satisfies (A2). On the surface X, corresponding to ¢ € {0,1},
we define:

Cle = ¢ci —eb

then there exists ro € N such that for r > rq, the moduli spaces Dﬁ‘;{r(él@, ca) (resp.
MG (e, 2), MY (€1, C2)) can be identified with each other; and that all H, := r¢* H —
E are ample divisors (these facts will be visited in section 3.4). By choosing r with the cor-
rect parity, we may even find r > ro with H,.c, . odd (hence X, H,, C1 - satisfies condition

(A2)). For such r, we simply define:
M, (61, c2) = MY (61, ¢2), MG (61, ¢2) = MG (1, ¢2), MY (G1,¢2) = MY (1, ¢2)

and similarly, we may define generating series M for these spaces.

The main theorems of this paper are as follows:

Theorem 1.5 (Main Theorem). (Every power series considered below are to be regarded

7 doi:10.6342/NTU202301040
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as elements living in the ring K (Var/C)[q].)

* (Existence of Universal Functions) There are universal functions:

7!(q), Z(q), 2 (q)

in the variables q, € such that:

— For any X satisfying (A1), (A2) and any fixed c;, €, one has:
M*(X, Heo, é15q) = ¢"/" - ZE(q) - M*(X, H, 15 q)

MG(Xa Hoo> 61,8; Q) = q1/12 : Z?(Q) : MG(X7 H7 C1; q)

— For any X satisfying (A1), (A2), (A3) with X also satisfying (A3) and any
fixed ¢y, €, one has:

MY(X, Ho,6159) = ¢/ - 20 (q) - MY(X, H, ¢15q)

* (Relations between Universal Functions) These universal functions are related to
each other by:

MA(X, H,c15q)S(X;q) = MY(X, H, c1;q)
M (X, H,c1;9)Q(X;q) = ME(X, H, c1;q)

Paired with the the formulas in chapter 2, we have:

7/(q) Exp (Lq) = ZY(q)

Z}(q) Exp (%) =Z%(q)

8 doi:10.6342/NTU202301040


http://dx.doi.org/10.6342/NTU202301040

* (Explicit Forms of Universal Functions) The universal function Z'(q) takes two

equivalent forms:

2s+¢ i ;
B (25+6)2+(2s+e)  (2s+¢)2 1 — L2
Z2(q) = a7 (ZL e g

s>0 j=1

2s4+e—1 9
(254e)2+(254+e)—2  (25+¢)2 1—1L% 2(]]
T ( > L : | 1= Lig )

s>1—e j=1

The other given by:

2L2q L(l—l—L)q . (2n+e)2—(2n+e)  (2n+e)?
22(0) = bwp (2~ L) (oL

nez

L2q - Lq (2n+s)2—(2n+5) (2n+e)2
—E — 4 1 —-1/12 L 5 1
o (S o (32 :

neL

originating form the formula (along with 2.4):

2L2q _ (2n+5)27(2n+€) (2n+£)2
Z?(Q):Exp(l_LQ(])qlm(ZL ponse g )

nez
Remark. I/t was conjectured in Remark 3.15 of [. '] that the following holds:

(2n+€)2 —(2n+e) (2n+5)2

S peploy) EEF IR (gt

¢/ (1 = zyq) o L (zy)e?
1 (2s+¢)2 +(2s+s) (25+€) Q;y 23 2q1
= g oy [ 2.(%Y)
¢/ (1 — wyq) ; 11 (zy) B
254e—1 . .
(2s+s)2+(2s+£)72 (2s+5)2 1— (xy)Z.] 2q.7
+ ) (zy) 2 q 4 —
5;5 E 11— (xy)zjqj

It turns out that this follows from the explicit descriptions of Z!*(q) theorem by taking the

virtual Hodge polynomials of motives.

Remark. Under our present notations, the following are proved in [ , ] (see

9 doi:10.6342/NTU202301040
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Theorem A,B of [ /| and Theorem 1.2, 1.3 of [ ]):

* Under assumption (A1), (A2), we have:

D oM (Gre, c2); 2, y)g > oD = ¢ 28 (g5, )Y e(MG (e, 2); w, y) g

for some universal function ZE(q; x,y).

» Under assumption (A1), (A2), (43), we have:

D ey (Grz, 2); w,y)g @D = g2 20 (g, )Y e(MG(er, c); w, y)g e/

for some universal function ZY (q; z,y).
* The universal functions Z° (q; x,y), ZY (q; x,y) are of the form:

S ealoy) T e

[TT,o0 (1 — (2y)2ng™)]”

¢ 28 (g2, y) =

2] 2.7

(2s42)2+(25+¢) (2a+s) azy q

(1= 2yq)g" 2 (g 2,y) =) (zy) H 1= ()5

>0 =1 ?/ q
2 +€ 1 . .
(28+6)2+(28+E)72 (25+a)2 1 - (ajy)zj 2q'7

2 4
+ > (zy) q H 1~ (ay)2gs
s>1—¢ 7j=1

where e(X; z,y) is the virtual Hodge polynomial of X.

Remark. It is also remarked in Remark 3.22. of [. | that the above formula (which
is a special case of Theorem 3.21. in that paper) holds true with xy replaced by L in the
Grothendieck group of varieties using their method of proof. The present paper verifies
that [ , | generalizes to the motivic setting, and the universal functions can be

rewritten as simple motivic exponential functions.

10 doi:10.6342/NTU202301040
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1.5 Outline of Proof

The outline of the overall proof of 1.5 can be schematically summarized as the following

diagram:
Uhlenbeck Spaces on X Uhlenbeck Spaces on X
12 2)7
(4)Mumford-Takemoto Spaces on X & (4)Mumford-Takemoto Spaces on X
12 2)7
(3)Gieseker Spaces on X (3)Gieseker Spaces on X

Where respectively in (1)-(3) we verify the following:

(1) We show that the moduli space of a suitable surface and the moduli space of its
blowup can be related by a universal function; this is done in section 4.1. of this

paper.

(2) We show that the relation between Gieseker, Uhlenbeck, Mumford-Takemoto (with
same base space) can be described by the motivic Macdonald’s formula and Moz-

govoy’s formula; this is done in 3.17 and 3.16; see 4.5.

(3) We calculate the universal function for Gieseker spaces explicitly in the case where
X = T, using Gottsche’s result, this would then give explicit formulas of all the

universal functions; this is done in 4.10.

(4) Finally, we calculate in a recursive way the explicit description of a universal func-

tion on Mumford-Takemoto spaces; this is done in 4.13.

11 doi:10.6342/NTU202301040
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Chapter 2 The Motivic Ring of

Varieties

In this chapter, we review the definition of Grothendieck’s ring of varieties, the power
structure, the motivic exponential function, along with some explicit power series that we
shall use. We will only work with base field C, although some of the definitions holds in

more general contexts.

2.1 Definition and Generalities

Let Sch /C be the category of schemes of finite type over C.

Definition 2.1 (K-group of varieties). Let K (Sch/C) be the free abelian group generated

by isomorphism classes of objects in Sch/C) modulo the scissor relation:
Given Z C X an inclusion of closed subscheme, we require [Z] + [ X — Z] = [X].

Furthermore, we can promote K (Sch/C) to a commutative ring by letting [ X][Y] = [X x
Y], in this case, [Spec(C)| is the multiplicative unit. Given X € Sch/C, we call [ X| the

motive of X.

Remark. /tis shown in [. | that as a consequence of the scissor relations, the follow-

13 doi:10.6342/NTU202301040
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ing holds:

* Given a bijective morphism X — 'Y, then [X] = [Y].

* Given X1, X5, we have [ X1 [[ Xao] = [X1] + [Xa).

Also, one can define K(Var/C) starting from varieties; the resulting K(Var/C) —
K (Sch/C) arising from inclusion of categories is a ring isomorphism, see also [. ]

We also define the Lefschetz motive, denoted as L, by L = [A}].

Remark. The product relation [X x Y] = [X][Y] can be generalized: given a Zariski
fibration Z — X with general fiber Y, we have [Z] = [X|[Y], the proofis given by first
stratify the base space so that Z is trivial over each stratum, then paste everything back

together again.

Many common spaces admits descriptions as polynomials in L. For this paper, we will

only need the following:

P"]=1+...+L"=(L"" —1)(L-1)"

Motives may specialize to other invariants. For example, there is an E-polynomial

homormophism:

E : K(Var /C) — Zlz,y]
[(X] — e(X;x,y) : ny Z )* dim H™ (H*(X))
that specifies a variety to its virtual Hodge; they are given by I +— xy. One can also

specify further to the Poincare polynomial of compactly supported Euler-characteristics

14 doi:10.6342/NTU202301040
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by L — 1.

2.2 Power Structures and Motivic Exponentials

In this section, we will review the definition of a power structure on K (Var/C), and the
definition of the motivic exponential function, following [ ]; we regard these
functions as maps on the ring of power series with coefficients in /& (Var/C). Power
structures in fact also exists for polynomial rings over Z, and the E-polynomial homo-

morphism defined in the previous section is compatible with it; one may see the details in

[ 1.

Definition 2.2 (A Power Structure on K (Var/C)). Given X € Var/C and
At) =1+ Y [At" € 1+ tK(Var/C)[(]
n>1

define:

AN =1+)" > [((HX’“)—A) < [TA/ TS| |t

n>1 \(ng):>7, ing=n

where A is the diagonal consisting of >, k;-tuple of points with at least two coordinate
being the same, and with Sy, being the symmetric group acting on X*1 x Af by simulta-

neously permuting factors.

From this, we have:

(X]
(1—t) = <Z t") = XM = 8(X;1)

n>0 n>0

15 doi:10.6342/NTU202301040


http://dx.doi.org/10.6342/NTU202301040

This formula is sometimes referred to as the motivic Macdonald’s formula, which
is the motivic version of the Macdonald’s formula concerning generating series of betti

numbers X () [ 1.

The power structure satisfies the usual rules that one might expect, such as A(¢)* =

(A()")”.

The motivic exponential is defined as follows.

Definition 2.3 (Motivic Exp for K (Var/C)). Given

A(t) =) [At" € tK(Var/C)[t]

n>1

define:

Exp(A(1) = [[(1 - )

k>1

In particular, we have motivic Macdonald’s formula:

S(X’;q) = Exp([X]q)

Remark. Under the E polynomial homomorphism, one has E(Exp(Li¢?)) = (1—(zy)'q’) L.

The generating series of Quot schemes of locally free sheaves with finite quotients are

useful:

Theorem 2.4 (Mozgovoy, Ricolfi). Given a smooth complex projective surface X and a

16 doi:10.6342/NTU202301040
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rank r-bundle E on X, we have the following formula:

> "[Quoty,]¢" = Exp (W)

_ T
= 1—ILrq
where EXp is defined via the power structure given above.

Remark (On the independence of the choice of bundle). Note that this proposition implies

that only the rank of E is relevant when considering generating series of motives of Quot

schemes.
e In/ )], it was shown that this phenomenon holds for higher dimensional X.
» We will see another result (Lemma 5.2. of [ ]) in the relative setting showing

that this is in fact even true when we replace C by a general Noetherian scheme.

Also, itis in [ ] that by quiver techniques, an explicit description of this generating

series is shown.

Remark. The explicit forms of 2.4 that we will use are the following two:

H(X;q) = Exp <&)

1—Lg
[X](1 +L)g 2n—2
X;q)=E ————— ) =E X L *(14+L)¢"
Qi) = B (T ) = (20 S+ L
where the case &Y = Ox is Gottsche s formula for Hilbert schemes (in the motivic setting
given at [ )]); compare 1.5s statment on the relations between universal functions,
and 3.16, 3.17.
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Chapter 3 Moduli Spaces of Sheaves

over Algebraic Surfaces

Throughout this chapter, X is a complex projective algebraic surface.

For a rank-2 sheaf F' over X, we denote its Chern classes as ¢;(F), co(F); when the
context is clear, we would simply denote it by ¢y, c5. Following [ ], we denote its

discriminant by

A(F) = Aler, 00) =4ey — ¢} € HY(XZ) ~ Z

3.1 Stability and Polarization

Stability is a crucial concept in the theory of moduli space of sheaves, and a key player
in the theory of geometric invariant theory. The notion of stability also depends on the

type of stability and the polarization we are concerned with:

* For the choice of a polarization, we fix an ample line bundle /7 on X for now.

* For the choice of definition of stability conditions, we will review both Gieseker
stability (also known as Marumuya stability or just stability) and slope stability
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(also known as p-stability or Mumford-Takemoto stability) in this section.

Definition 3.1 (Degree of a Coherent Sheaf). The degree of a coherent sheaf F' over X is
given by

deg(F) := 1 (F).H
via intersection theory on smooth projective algebraic surfaces.

Definition 3.2 (Slope of a sheaf). The slope of a sheaf F' over X is given by

wE) = riii((];))

In this sense, the function p is then used to define the appropriate notion of stability as

follows:

Definition 3.3 (Slope (semi)stability). 4 vector bundle V is said to be slope stable (resp.
semistable) if for any subsheaf F' C V with rank(F') < rank(V'), we have p(F) < (V)
(resp. p(F) < p(V)).

Definition 3.4 (Gieseker (semi)stability). A torsion-free sheaf G is said to be Gieseker

stable (vesp. semistable) if for any proper subsheaf F', we have

P(F,n) P(G,n) ( P(F,n) < P(G,n)

rank(F")  rank(G) P rank(F') — rank(G)) Jorn >0

Here, P(F,n) = x(F(nH)) is the Hilbert polynomial of F' (with variable n) defined with

respect to H.

Remark. A4 few remarks on the definitions:

» The notion of degree, slope, stability are all dependent on the choice of the line

bundle H.
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* The notion of degree and slope-stability can be defined also solely in terms of Hilbert
polynomials as in 1.2.2. of [. )|. However the intersection-theoretic definition

is sufficient for our purposes.

Proposition 3.5 (Comparing Stability). We have the implications:

slope stable = Gieseker stable = Gieseker semistable = slope semistable

Nevertheless, the following will be useful for what follows:

Proposition 3.6. Suppose X, H, ¢, satisfies (Al), (A2), then slope semistability implies

slope stability.

For a short proof, see Lemma 1.2.14 of [ ].

3.2 The Moduli Functor and the Moduli Space

The moduli spaces we will mainly be considering are the following three:

* The moduli space of Mumford-Takemoto-stable rank-2 bundles, written as 0t (¢, ¢2).

* The moduli space of Gieseker-semistable rank-2 torsion-free sheaves, written as

fmg(cl, CQ).
« The Uhlenbeck compactification of 9%, (¢, cp), written as MY, (cy, ca).
Remark. Remarks on terminologies and notations:
o We will sometimes also refer to My (c1, c2), MG (c1, ca), MY, (cy, c2) simply as the

Mumford-Takemoto, Gieseker, Uhlenbeck moduli spaces.
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* We may assemble the parameters cy, co as well as the rank (which we fix to be'2)
as a 3-tuple (2, ¢y, c2); in the literature, this is often referred to as-a Mukai vector.
The space MY (cy, c2) is then in fact the special case of a moduli space with Mukai

vector (2, ¢y, ¢3).

We will first define the spaces I, (c1, ¢2), MG (c1, o) in terms of moduli functors in

this section, and later look at 9%, (cy, ¢») in section 2.4..

Definition 3.7 (The Moduli Functors MY, (cy, o), M%(c1, c2)). We define a functor
M%(Cl, CQ) : (SCh/C)Op — Set

as follows:

* At the level of objects, given Y € Obj(Sch/C), we define M';(c1,¢2)(S) to be the
set of equivalence classes of u-stable family of rank 2 bundles with Chern classes

c1,co on X indexed by S.

— More explicitly, an S-family of p-stable rank 2 bundles with Chern classes
1, Co is a sheaf’V on S x X such that the restriction to each X := {s} x X ~

X is a 2-bundle.

— Two S-families V, V' are regarded to be in the same equivalence class if V =~
V'® (7@?5) L for some line bundle L on X, here 73" is one of the standard

coordinate projection map given below:

X,S X,
Tx Ts
X+—— Xx5—=2— S5

* At the level of morphisms, given f : S — T in Sch/C, it sends an appropriate T-
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family of bundles to an S-family of bundles by pulling back along 1 X'f + X x .S~

X xT.

The definition of the functor moduli functor for M$;(c1, c;) is similar, where the functor
associates to each object the equivalence classes of families indexed by that object of

Gieseker-semistable rank 2 torsion-free sheaves.

By the works of Maruyama and Gieseker [ s , , ], it is known

that such moduli functors admits coarse moduli spaces.

Theorem/Definition 3.8 (Gieseker, Maruyama). The functors MY, (cy, ca), M%(cy1, )
admits coarse moduli spaces MY, (c1, ca), MG (c1, ca) with MG (c1, ¢z) being projective,

containing MY, (c1, ca) as an open subscheme.

Here we briefly review what it means to be a coarse or a fine moduli space and spell out
the universal property satisfied by such spaces. Suppose we are given a moduli functor,
which associates to each C-scheme a set of isomorphism classes of particular families of

sheaves indexed by that scheme (here the definition of a class varies by context):

M : (Sch/C)® — Set

then we say that a C-scheme 901 is a fine moduli space for M if it represents the functor.
In this case, the universal element yields a universal family 1/ - which is a sheaf (or more
precisely, the isomorphism class of this sheaf) - on )t x X. In this case, given any other
S € Sch/C and an isomorphism class of an S-indexed family of sheaf W € M(.S) (which
is a sheaf on S x X)), there exists a unique morphism f : S — 91 such that the pullback of
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Valong fx1:5xX — 9 x X is W. Conversely, by Yoneda lemma, this'property also

characterizes representability, and can be served as the definition of a fine moduli space.

On the other hand, when it is too much to expect that a fine moduli space to exist
(mostly due to fact that we are considering classes of families of sheaves), the weaker
notion of a coarse moduli space is also useful. Here we say that a C-scheme 90 is a
coarse moduli space if, as above, a class of S-family of sheaf is given, then there exists
a unique morphism S — 91 corresponding to it, and such 9 is universal among those

having this property.

In short, the main differences are as follows:

* Fine moduli spaces admits a universal family, while coarse moduli spaces do not.

* Fine moduli spaces represents the moduli functor, while coarse moduli spaces are
the ones that best approximates the moduli functor at the level of objects when no

fine moduli space exists.

However in the cases that we are interested, we do have fine moduli spaces, in which
case a universal family exists (see Corollary 4.6.7. of [ 1), and we will repeatedly

make use of this fact for what follows:

Theorem 3.9. Suppose X, c1, H satisfies (A1), (A2), then there is a universal family on
X x MG ey, ¢5); here ME* (¢4, ¢3) is the open subspace of M (cy, o) of H-Gieseker-
stable torsion-free sheaves. In particular, there is a universal family on X x I (cy, )

and X x IMS* (e, ¢3).

Remark. Note that in view of 3.6, M*(¢1, ¢3) = MG (c1, 2).
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These facts will be crucial in our constructions of maps between moduli spaces in later
chapters - namely, we will construct these maps by juggling around universal families of

sheaves.

3.3 Change of Polarization - Chambers and Walls

Throughout this section, we assume that X, H, ¢; satisfies condition (A1), (A2).

The set of ample divisors can be thought as lying in the cone Cx defined inside the
vector space Pic(X ) ® R spanned by the classes defined by ample divisors; in the literature,
this 1s sometimes referred to as the ample cone. Regarding the choices of different ample
divisors as choices of different stability conditions, this ample cone can be thought of as

the space of stability conditions.

In [ ] and in [ ], a wall and chamber structure is given on Cy. We briefly
sketch the geometric meaning of this wall and chamber structure as follows (for 0, (c1, ¢2),

see Theorem 2 of | I; for MG (c1, c2), see Theorem 2.9 of | D:

Heuristic 3.10. The wall and chambers structure and the structure of the moduli spaces

are roughly as follows:

» Suppose Hy, H, lie in the same chamber, then the Mumford-Takemoto (resp. Gieseker)

moduli spaces can be identified with each other.

* Suppose H, lies in a chamber and H, lies on another chamber sharing a common
wall, then passing from Hy to Hy will result in throwing away some constructible

subsets and gaining back some constructible subsets on the moduli spaces.
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* In this sense, one can relate between moduli spaces of different polarizations by a

series of wall-crossings.

Here we give the definitions of polarizations, walls and chambers.

Definition 3.11 (Qin). For each & € Pic(X), let

W¢ = Cx N {r € Pic(X) @ R|z.£ =0}

then W¢ is called the wall of type (c1,c,) determined by € if € + ¢ € 2Pic(X) and
—A(c1,03) < € < 0. On the other hand, a chamber of type (c\,cs) is a connected
component in the subset of Cx defined by removing all such walls. A polarization is a

choice of an ample divisor.

Remark. By looking at parity, condition (A2) would imply that H lies in a chamber.

Remark. For each two chambers, they can at most have a common wall. However, there

might be multiple £ defining the same wall.

Remark. Originally, these definitions are defined over Num(X ), but as noted in the re-

mark after 1.1, we can also work entirely in Pic(X) when assuming (A1).

We briefly sketch how the walls and chamber structures arises in the case of rank 2
p-stable bundles on algebraic surfaces. The crucial idea is that given any rank 2 bundle V'
with first chern classes ¢; on X, if p-stable (with respect to some polarization), then it is

indecomposable. In this case, one can express this bundle as a nontrivial extension:

0= 0x(F)—=V =1Iz(c;—F)—=0
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for some zero-dimensional subscheme Z; for a proof, see the discussion before chapter 2,
proposition 4, of [ ]. Nevertheless, for decomposable bundles, they will correspond

to trivial extensions with Z being empty.

Now with walls and chambers as defined, note that each £ defines a set E¢(c1, ¢2) of non-
trivial extensions of the form above, with 2F' = £+ ¢, and [(Z) = %. A thorough
analysis as in [ ] shows that heuristic 3.10 holds, and the wall-crossing behaviour
are completed characterized by these E¢(cy, c2); more explicitly, in the situation above,

suppose H;, H, are different polarizations in chambers sharing a common nonempty wall.

We have:

My, (c1, ¢2) = (9375512(01;02) - HE5(01702)) 11 (H E5(01702)>
¢

3

where ¢ runs over numerical classes where €. H; = 0 that defines this wall.

The case of rank 2 locally free sheaves can also be analyzed. As the inclusion from
a locally free sheaf of rank 2 to its reflexive hull is an isomorphism away from a zero-
dimensional subscheme, we can - by first expressing its reflexive hull (which is a rank
2-bundle) as an extension - express any torsion-free rank 2 sheaves W on X with first

chern class ¢; as an extension:
0= I7(F)—>W —=1Iz(c—F)—=0

where 7, Z, are zero-dimensional subschemes. Using the same wall and chamber struc-
tures, Gottsche introduced in [ ] the following analogues of the E¢(ci,cs) given
above. He considered spaces of the form £/", V™", with:
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* The space Eg”” being the space of extensions of the form 0 — I (F) — W —

Iz,(ci — F) = Owith2F =& + ¢y, and [(Z,) + 1(Z,) = A(cl,iz)+£2_

* and V™" C E"" consisting of extension classes that does not lie in

ker (Ext'(Iz,(c1 — F), Iz,(F)) = Ext(Iz,(c1 — F), Ox(F)))

In this case, there is an analogous formula the change from ‘Jﬁfl’f (c1,¢2) t0 img’;(cl, C2)
when H,, H, share a common wall, where smgf(cl, c7) is the subspace of H;-Gieseker-
stable rank 2 torsion-free sheaves. More explicitly, they are given as follows:

i)ﬁg»f(cl, CQ) = (mg;s(cl, 02) — H Vf}{n> H ( H V;]m,n)

§m,n

where in the disjoint union above, £ is over numerical classes that defines the nonempty

A(cr,e2)—¢€2

wall between H,, Ho, with m, n satisfying the relation m +n = 1

What about the Gieseker-stable sheaves? Under the assumption (A1), (A2), E)ﬁg’s (c1,c9)

and MG (cy, co) can be identified; see 3.6.

At the level of motives, £"" can be explicitly described, and that the difference V" —
V" can be described in terms of E"", E™". From this, we have the following formula

(originally stated as a result involving Hodge polynomials, but holds equally in the motivic

setting as the proof is essentially motivic):

Proposition 3.12 (Gottsche). Suppose X has property (A1), (A2), (A3), and let H,, Hs be
different polarizations not lying on any wall (in particular, if both Hy.ci, Hy.cy are odd
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this would hold), then we have the following decomposition of motives:

G, (e, e2)] = MG (cr, el = D0 (BT [B*C7)) (D XXM

n:H1—Ho m4n=lI(n)

where the summation zn: 1,11, Means summing over 1 that defines a nonempty wall

between Hy, Hy withn.H, < 0, and that

We also define lo(n), wo(n) to be [(n) — ca, w(n) — ca.

This proposition will serve as a basis for the explicit description of the universal function

Z£(q) later; we will revisit this proposition later in section 4.2.

3.4 Blowing-up and Stability

For this section, we assume that X has property (A1). Recall that its blowup X still has

property (Al).

On the other hand, Pic(X) ~ ZF & Pic(X) given by pulling back along ¢. In terms
of the intersection pairing on Pic(X), £ and Pic(X) are orthogonal, with £ = —1, and
this pairing restricts to the original pairing on Pic(X) when restricted to Pic(X). The

canonical divisor is given by K¢ = ¢*Kx + E.

For an ample divisor H, we consider divisors of the form H, := r¢*H — E forr € N.
For large r, these H, will be ample by Nakai-Moishezon. For now, let us also define
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Cim = Q"1 +mE € Pic(f(). We follow the proof given in [ ].
Lemma 3.13. Fixm € 7Z. For sufficiently large r and fixed ¢, the moduli spaces Iy (1 4; C2)

are well-defined and can be identified with each other.

Proof. We use the chambers and walls structure of the space of stability conditions. Take
some ry > 0 with [, ample. Take some £ € C 3 such that £ defines a wall; we can express

in the form £ = s¢*H' + tFE for some s,t € R. Define:

CX,§,0 = {G € Cyx: Gé = 0}, CX,&_;_ = {G €Cx: Gf > 0}, CX,&_ = {G e Cyx: G§ < O}

so in this sense Cx ¢ is the wall defined by £, and Cx ¢ + are “open half spaces” defined

in the ample cone. The Lemma is proved if we can show the following claim:

Claim. There is a universal lower bound r; > ry (uniform in the choice of &) such that

for any ¢ that defines a wall, one of the following holds:

{HT}T>T1 C CX,E,0> {HT}T>7”1 C CX,§,+7 {Hr}r>r1 C CX,f,f

To simplify the discussion, we can consider this statement with r € [rg, +o0) C R. In

this case, we only need:

Claim’. There is a universal lower bound ; > 7 (uniform in the choice of £) such that
for any ¢ that defines a wall, the ray {H, },~,, either lies entirely in the wall Cx ¢ or is
disjoint from the wall Cx ¢ .
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We prove this claim as follows. Suppose H, lies on some wall defined by some £ € Cx.

Expressing ¢ as s¢*H' + tE for some s,t € R with H' € Num(X). As §.H, =0, we get

rsHH =t

« If H.H' =0, £.H, = 0 for any other r, so we may assume H.H' # 0.

* In this case, we have by the definition of a wall that

—A(Cym, C2) < & <0

and hence —m? — A(cy, o) < s?(H')* — t? < 0. Plugging in the equality above,
we have:

0 <r’s*(H.H)? —s*(H')? <m? + Ay, ¢2)

so r is bounded above by a number only dependent on H, £, ¢1, co, m. Therefore, for
large enough 7, H, no longer lie on this wall. However, we want to have a uniform

bound. By Hodge index theorem, we have:

r?s?H?(H')? < r*s*(H.H')? <m? + Acr, ) + s*(H')?

No matter (H')? > 0 or < 0, we have the estimate:

r < \/m2 + Aer,e0) + 1

which concludes the proof.

]

Remark (Case of Gieseker Moduli Spaces). The same statement holds for ,‘Jﬁ% (C1.m, C2)
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with the same proof for the chamber structure introduced in [ ]. If we assume (A2)

and carefully choose r with the correct parity, we can also use 3.6.

Remark. Note also that the bound r given above only depends on ¢y, co, m.

This lemma motivates the following definition:

Definition 3.14 (Moduli of Blown-up). Given ¢ € {0, 1}, define My; (¢1.,c2) (resp.
fmﬁw(él,a,@), MY (C1e,2)) as MYy (Cre, c2) (resp. 932%(6175,02), MY, (Cre, c2)) for

r > 0, this is well-defined.

Here we mention another useful technical result characterizing stability condition along
a blowup given in [ ]. The characterization is based on pushing sheaves forward

along ¢ and taking double duals.

Lemma 3.15 (Stability and Blowup). Given a 2-bundle V on X, an ample divisor H, and

pick r so that H, is ample. Then'V is H,-stable iff (¢, V)** is H-stable.

Note that as (¢, V)™ is a reflexive sheaf on a smooth surface, it is locally free.

3.5 Compactification and Comparison

In this section, we assume that X has property (Al).

Recall that we have defined 9% (¢, c2), MG (c1, o) with MM, (1, c2) being an open
subscheme of the smooth projective scheme 9% (c;, o). By [ ], when we assume
the conditions (A2), (A3) from 1.1, 9% (¢, ¢3) is indeed dense in MG (cy, cz)
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With origins from gauge theory and Donaldson’s theory, one can construct an alternative
compactification of 9, (cy, ¢3), called the Uhlenbeck compactification 9N, (cy, ¢5). We
will not explicitly say what this is, but rather mention the following decompesition proved

in see Lemma 4.23. of [ ]:

Proposition 3.16 (Comparison of Compactifications (I)). Under conditions (A1), (42),

(A3), we have a decomposition of motives:

RUACHENE P RACTD) D Gl

)

On the other hand, the Mumford Takemoto space can also be compared with Gieseker

compactifications.

Proposition 3.17 (Comparison of Compactifications (I1)). Under conditions (A1), (42),

we have a decomposition of motives:
95 (1, e2)] = [y (en, )] (X2
Proof. There is a stratification of 9% (¢, c2) by considering reflixive hulls. Explicitly,

given W € MY (cy, cz), we form the exact sequence
0—-W—->W"—=Q—0

then we have W** € MY, (c1, co — h°(X, Q)) (stability follows from 3.6). The number
h°(X, Q) is a finite number; call this 7. If we define 9% (cy, cy,1) to be the subscheme
consisting of locally free sheaves W with h°( X, W** /W) = i, we obtain a decomposition:

(MG (er,e0)] = Y [MG (1, 2,1)]

)
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We will be done if we can show the decomposition of motives:
(MG (1, €2, c0 — )] = [ (cp,4)] [ X 127

We do this by juggling with universal sheaves. Let V be the universal sheaf on X x
M, (c1,1). Corresponding to each point in 9%, (cy, 7), we want to consider all of its equiv-
alence classes of quotients, and hence we would get the kernels - which would correspond

to points in imfl(cl, 9, co — 1). Therefore, we consider the Quot scheme:

L co—1
Quot := QUOt, v ons (¢, 4/ (c1.)

along with coordinate projections:
X x Quot = X x My (c1,4) Xoue (e, 1) Quot P X x M (cy,4)
which gives a universal quotient:
PV —Q—0

Now let K be the kernel of this morphism, then K - a sheaf on X x Quot - will define a
morphism to 9% (cy, ¢, — i) if its restriction to each fiber (which is X parametrized by
some point in Quot) meets the stability requirements with the correct chern classes. So let

us take restriction along a point ¢ € Quot, which gives us an exact sequence:

0= K |xxigg= V |xxir@3— @ lxxigp— 0

where 7 : Quot — 9, (cy,7) is the canonical map used in the definition of Quot (in fact,

p1 = 1 x m). It is easy to see from this sequence that C |Xx{q}6 img (c1,co,1) as follows.
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To simplify notations, rewrite this sequence as 0 - K — V — @ — 0.

By the definition of Quot, Q is a torsion free sheaf with 2°(X, Q) = ¢y — 7.

By the definition of V, V' lies in M, (c1, 7).

By Whitney’s product formula, K has the appropriate chern classes.

 As asubsheaf with the same first chern class as V/, K is p-stable and hence Gieseker-

semistable.

Therefore, we get a morphism Quot — 9%, (¢1,4). From the above discussion, it is also

easy to see that this morphism is bijective. At the level of motives, we have:
[QuOt] = [mg(ch C2, Z)]

so the next thing is to see how to describe [Quot]. It turns out that we have:

Quot] = [QUOS g 1 s e )

= [Quot®2;; ‘ .
Q Oiimg{(q,i)/xxm%(Clﬂ)/W‘f{(Clﬂ)]

= [0 (e, ) x X1270]

where in the above, the last equality follows from the universal properties of Quot-schemes,
while the second equality is shown in the next lemma 3.18. This gives [Quot] = [IN% (cy, 7)][X 121,

]

Lemma 3.18. Suppose X is a projective scheme over a Noetherian base scheme S, then

for any rank r bundle V' on X and any constant n, we have:

[Quotyy x /5] = [Quotg??« /x/8]
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For the proof of this proposition, all the products are to be interpreted in the category

of S-schemes.

Proof. Stratify X as [ )", X;, and find for each X; an open neighborhood U; such that V
is trivial on U;. Let Quoty, /. v, be the constructible subset consisting of quotients of V

with support in X;. We claim that there is a bijective morphism:

11 (H Quoty’, /S;XZ_) — Quot} /g

the idea being that we can write each quotient of I as a direct sum of quotients supported
at different X;; in fact, after constructing this morphism, bijectivity follows essentially

from this observation. This morphism is constructed as follows:

* By universal property of disjoint unions, it suffices to construct for a fixed partition

> =n.
 Take coordinate projections:
m m
1 i q 0
X & X x [JQuoty,y s, ™ ] Quoty s,
=1 =1

m
H Quoty/ v s.x, = QUOty v .,
=1

Let pi,,.V — Qn, — 0 be the universal quotient on X' x Quot;/ /x5 Where pyy, -

X X Quot — X is coordinate projection. Define @), ; to be (),,. restricted
V/X/S p10j i ;

along the map:
X x Quoty/, v g6 — X X Quoty x /g
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By pulling back along
X x z1:_1Quot"‘;’/X/S;Xi Y X« Quoty, y /g.x,
we get another exact sequence on X X HZZI Quot"}i /XS X"
GV = (1 x7%)'Qpi =0
and hence, finally an exact sequence:
GV — @(1 X %) Qn,i — 0

where the morphism is canonically defined through universal property of §,, while
surjectivity can be seen by looking at supports. By the definition of Quot schemes,

we get a morphism:

m
[TQuoty /.y, — Quoty x5
=1

This finishes the construction. Therefore, this proposition is proved if we can find a
bijection:

[Quoty  /s.x,] = [QUOtO??/X/S;X@'

Let p1 ., Qn,» Qn,,i be as above and let py . ; be py ,, restricted to X x Quot;; X/8:X;° We

want to construct a morphism:

e g
QuOtV/X/SSXi — QuOto?gr/X/s
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The strategy is again to juggle with universal families. We have the exact sequence:
PiniV = Qni — 0
We construct a corresponding quotient of p’{’m’i(’)ﬁ? from this sequence
pT,ni,iO??T — @Qn,i — 0

which would then induce the desired map by properties of Quot schemes. This map is

constructed by the following isomorphisms:

Hom(pini,i‘/v an,l) = HO(X X QuOtr‘?/X/S;Xiv (py{,nl,zv)* & an,l)

~ I{O(UvZ X Quot:‘}/x/s;xi, ((pinwv)* ® in,z) UixQuot:/Li/X/S;X)

= HO(Ui X QuOt?}i/X/S§Xi7 ((pyf,ni,ioir)* ® Q”M) Uz‘XQuOt;L/i/X/S;Xi)

~ H(X x Quoty! v /s.x,» (D} 10 i O © Quy)

~ Hom(p”{7ni7i(9§'2’”, Qn,.i)

Uz

Now the fact that the induced morphism Quot,; IX/8x Quot 0% /x5 18 injective with

Uz

0% /X /S:X, can also be seen from these isomorphisms. This concludes the

image Quot

proof. ]
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Chapter 4 Existence and Computation

of Universal Functions

Our goal in this chapter is to show that universal functions exists and compute the exact

formula of these functions.

4.1 Existence of Universal Functions

We have an explicit relation between Mumford-Takemoto, Gieseker, Uhlenbeck spaces.
In this section, we show that a universal function exists in the case of Mumford-Takemoto
spaces, which implies the existence of universal functions in the cases of Gieseker, Uhlen-

beck spaces.

Suppose we are given V' € MY, (1,0,¢2). As all bundles on P' are classified by

Grothendieck’s theorem, and that ¢, (V') = ¢, o = ¢*c1, we have:

V |g= Og(d) & Op(—d), d >0
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In this sense, we have the following preliminary stratification of 9ty (i, ¢2):

937“ C10702 Him Cloyczyd)

d>0

with 901}, (€10, ¢2, d) consisting of bundles that restricts to O (d) ®Op(—d) on E. Notice

that we have a similar stratification for 9}, (11, ¢c2):

mu C11702 Him C117627d)

d>0

with 9 (€11, c2, d) consisting of bundles that restricts to Og(d + 1) & Op(—d) on E.

Here we mention an observation. We know that every rank 2-bundle on X with chern
class ¢y, co pulls back to a 2-bundle with chern classes ¢; o, c2. It turns out that this con-
struction is compatible with stability, and that all the stable 2-bundles that restricts to O%>

is a pullback of a stable bundle.

Lemma 4.1 (Identification of Moduli Space as a stratum under Blowup). For (¢,d) =

(0,0), we have a bijective morphism:

im’;[(cl, 02) — 9)?‘;{00 (61’07 Co, O)

This is shown in Proposition 2.3., Lemma 3.1. of [ ]. In fact, it was shown there
that the map defines an open immersion into 9%, (€10, c2) and that under certain circum-
stances the image is dense, but we won’t need it here. This is the first step towards relating
the motive of a moduli space to the motive of the moduli space of the blowup. Now see
consider how to manage the motives of MY, (1., 2, d) for (¢, d) # (0,0).
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Following [ ], the idea is to use Maruyama’s elementary modifications (or some-
times called elementary transformations); for details, one may consult 5.2 of [ ] or

chapter 2 of [ ].

Suppose we take V' € MY, (¢4, ¢z, d) with d > 0. We have

Homy (V, Og(—d)) ~ Homg(V |g, Op(—d)) ~ C

so in this sense we obtained an exact sequence (unique up to C*):

0=V -V —=0g(-d) =0

The theory of elementary modifications implies that V"’ is a 2-bundle. It is still H

stable by 3.15, and that its chern classes can be explicitly described via Whitney’s formula

- namely, we have:

a(V)=a(V)=E, ea(V) +c1(V).E — 1,c1(0Op(—=d)) = co(V)

where ¢ : E — X is the inclusion. These simplifies to:

Also by dualizing, one can recover V' by considering the exact sequence given by taking

duals:

0=V (V)Y - 0g(d-1) =0

Therefore, we get the following:
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Lemma 4.2 (Elementary Modification of Stable Bundles). There are set-theoretic maps:
m/ﬁm(@,s; co,d) — fmlﬁw(él,ks, ey —d)
given by elementary modification.

Proof. Only the case € = 1 needs explanation. Its definition is given by first taking duals,

then do elementary modifications. U

We can stratify Oy, (¢10, c2, d) further as:

mlffloo (61,07 C2, d) = H mi]m (61,07 Ca, d7 l)

>0

where MY, (G0, c2, d, 1) is the subset of V with V' € 9ty (€11, c2—d, 1). Itturns out that

we can relate My, (¢1,0, 2, d, 1) and MY, (€11, c2 — d, 1) by the following proposition.

Proposition 4.3. We have a decomposition of motives:
[y (Cr0,c0,d, )] = [U(d =1 —=1,d+ 1)][IMy;_(¢1,1, 0 —d,1)]
where U (p, q) is the space parametrizing exact sequences of the form (up to C*):
Op(—p) ® Op(—q) = O — 0

for any two nonnegative integers p, q.

Remark. One can explicitly describe U(p, q). Firstly, by dualizing, we have the corre-

spondence of exact sequences.

[Op(=p) ® Op(—q) = Op — 0] +— [0 = Op — Ox(p) ® Ox(q)]
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and hence corresponds to a subset of global sections of O — Og(p) ® Og(q) modding
out C*. In this sense, we see that U (p, q) is the set of homogeneous polynomials (f, g) each
of degree p, q such that f, g are coprime (and we require two pairs to be the same if they
differ by a constant in C*); the latter description of U (p, q) will be crucial to understand
the motivic structure of this set. Here we adopt the convention that the O polynomial can

take any degree.

Proof. Firstly, we know that we can construct each bundle V' in 90, (¢10,c¢2,d, 1) as an

extension of Og(—d) with a bundle V" in My, (¢11,c2 — d,1). In this sense, V/ lies in:

Extl (Op(—d), V')

To define a morphism between moduli spaces, we have to use universal families. There is

a universal family V' on X x O (C11,c2 —d,1). Let py, py be coordinate projections:

X EX x MY (ér1,00—d, 1) B MY (611,00 — d, 1)

In this sense, we take the relative extension sheaf:

&£ = &at), (pi0p(—d), V)

This sheaf is good for doing universal constructions we shall see later by taking P(E*);
other details can be found in [ ]. From a computational viewpoint, we can give
an easier description of £. There is a spectral sequence (see [ ]) converging to

H™ M (A) = Ext]! " (p;Op(—d), V") with

EJ"" = R™poEat" (piOp(—d), V')
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From this, one has the five term exact sequence:

0— E,° — HY(A) = Ey° — E3Y — H%*(A)

for which the first four terms expands to

0 = R'po.(Hom(piOp(—d), V') = € = pau(Eat' (piOp(—d), V') = R*pa.(Hom(piOp(—d), V"))

Since p;Og(—d) is torsion while V' isn’t, we get:

5 = p2*<537t1 (pTOE<_d)7 V/)) = Pox (pTOE(d - 1) ® V/)

We verify that this is locally free using semicontinuity theorem, applied to p,. Say given
V' e ‘J)?’;Ioo (¢1.1, ca—d, 1), we calculate the zeroth-cohomology over the fiber at this point,

which gives:

HYX,0p(d-1)@ V)~ H'(X,05d—-1-1)® Op(d+1))

so h? is consistent among the fibers. Now we form the following space 7" with the canon-
ical map ~v:

T = P(S*) l> ml;{m (5171, Cy — d, l)

We take the open subset of T C T’ consisting of locally free extensions; what this means

is that since the fiber of -y over a single V' is of the form

P(Ext'(Op(—d), V"))

we may fiberwise take the ones that corresponds to extensions classes of bundles, which
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would give us the space 7. The proof will be complete if we can verify:

* The bundle projection v |7, is a Zariski locally-trivial fibration with fibers of the

formU(d—1—1,d+1).

* There is a bijective morphism Ty — MMy (¢1,0, 2, d, ).

We verify them separately as follows:

» We first show that the fibers consisting of locally free extensions can be identified as

U(d—1—1,d+1). A way to show this is to notice the fact that given an elementary

modification

0=V -V = 0g(—d) =0

we can recover V' as the kernel (by dualizing):

0=V (VY = 0p(d-1)—=0

so we see have the following identifications (up to C*):

(i) A locally free V' as an extension of V'’ and Og(—d).

(if) A surjection (V')* — Og(d —1).
(iii) A surjection Op(—1l — 1) ® Op(l) ~ (V')* |p— Og(d —1).
(iv) A surjection Og(l —d+ 1) ® Op(—1l — d) — Og.

As 7y is readily a Zariski locally trivial fibration, the identification above exhibits

the restriction of v |7, also as a Zariski locally trivial fibration.

* Our next thing is to construct a map from 7 to smﬁ;oo (€10, ¢2,d,1). We do this by
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constructing families of bundles. Define the following coordinate projection maps

X&XXT()%TO

By the universal property of Sﬁ‘]‘{w (€10, co,d, 1), we try to construct a 7-family of
bundles on X x T so that the bundle on X corresponding to each ¢ € Ty lies in

MYy (10, ¢2,d,1). By Corollary 4.5. of [ ], we have an extension:

0= ¢Or()®@ (1 x~)V — Y G Op(—=d) =0

This defines a morphism

To — m’}f]m (61’0, Co, d, l)

which is the desired one.

Similarly, one can derive a formula when we make the change ¢ — 1 — ¢.

Corollary 4.4. We have the decomposition formula:

¥
L

[mHHOO (61,07 Co, d)] = [U(d -1 — 1, d+ l)][ml;]oo (51,17 Co — d, l)]

o~
I
o

Similarly, one has:

d

[ (G110, c2,d)] = [U(d = 1,d + D)][DRY_(¢10,¢2 — d, 1)]

Theorem 4.5 (Existence of Universal Functions). The statement concerning the existence
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of universal functions given in 1.5 is true.

Proof. For Z"(q), this follows from 4.1 and 4.4. For ZY(q), Z5(q), this follows from 3.16

and 3.17. O]

4.2 Computation of Universal Functions (I) by Specializa-

tion

The above discussion essentially says that the universal relations are essentially encoded
in U(p, q) - an open subspace of P(H°(P!, Op:(p) & Opi(q))). Conceptually speaking,
the recursion relation in 4.4 and the identification 4.1 itself would be adequate for finding
an expression of such universal function. This is given in [ ] for the computation of
universal function for Mumford-Takemoto spaces. The resulting formula is not a closed

form formula; we will revisit this later in section 4.3.

However, in this section, we will first visit the method used by the authors in [ ]

for the computation of the universal function for Gieseker spaces.

Recall that in 3.12, an explicit formula given in [ ] relating change of polarizations
and change of moduli spaces has been described. In fact, in the same paper, Gottsche
was able to make this relative description absolute in the case where X is a ruled surface
satisfying (A3). In this section, we will first describe the wall and chamber structures in
this case, present Gottsche’s result, and we will use the special case X = [y considered in
[ ] to compute the universal function - after all, since we already knew that a universal

function exists, computing a particular case would be sufficient.

47 doi:10.6342/NTU202301040


http://dx.doi.org/10.6342/NTU202301040

Conditions 4.6. 7o simplify discussion, for this section, we assume that X, H, ¢1 has prop-
erty (A1),(42),(A3), and that X is ruled over a curve of genus 0 (this condition is forced as

X is required to have property (A1)), and we introduce the following notations and setup:

* We choose S, I to be divisors corresponding to a section and a fiber of X ; we have
F?2=0,F.S =1. Weassumec, = S, S*> = —1. It is also common to consider the

2

invariant e = —S°; in our case, e = 1.

 The Picard group of X is ZS +ZF. For H = xS+ yF € ZS+ZF, H is ample iff
a > 0and ry > 1 where we define ry = y/x. Also, if H represents an irreducible

curves on X, we will always have ry > 1, see Proposition V.2.20 of [. /.

The wall and chamber structures can be described quite explicitly in this case; see
[ ]. Before going into the closer description of these structures, we first remind the

following facts that can be deduced from 3.11:

By Bogomolov’s inequality and the fact that ¢ = S* = —1, we will only consider

the case ¢co > 0.

* By the parity condition, if 1 defines a wall, we have:

n=(2a—1)S+2bF

with —(co + 1/4) = —A(ey, ) < n? < 0. Note also that 7* is an odd number,
so there will be no walls when ¢, = 0. Therefore, we will only focus on the case

co > 0.

» The divisor F' is nef, so all the chambers and walls are all contained in one of the
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half spaces in Pic(X) ® R defined by F'.

The chamber and wall structures near the ray spanned by F is in particular interesting;
let us denote this ray by [F]. The following is a direct consequence of Lemma 1.11 and

Proposition 2.3. of [ ]:

Proposition 4.7. Given fixed c; = S, and fixed co > 0, define ny = S — 2coF. Then:

* 1) defines a nonempty wall of type (c1, c2),; we denote this wall as W,

* No wall of type (c1, co) lies between [F| and Wy. The chamber lying between [F
and W is written as C' (note that this chamber is nonempty by considering S+nkF

Sforn > 0).
* For any polarization H in Cp, MG (c1,cz) = 0.

Remark. If'we consider the ample divisors S + nF' (for n > 0) - which lies in Cr for

n > 0 - then it is easy to see that F' is in the closure of Cp.

Using such description, Gottsche is able to obtain explicit decomposition results on the
Hodge polynomials of 9% (cy, cy) in [ ] using 3.12. Similar techniques was also

applied in [ ] to compute an explicit form of some universal functions.

Proposition 4.8. Given a polarization H, let W (H ) be the set:
W(H):={n€S+2Pic(X):n.H <0<n.F, n* <0}
then we get:

MG(X, H,c1;q) = q*C?/‘lH(X; ]Lq)2 Z ({Pwo(n)] _ [Pwo(fn)}) (]Lq)—lo(n)
neW (H)
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with ly(n), wo(n) defined as in 3.12.

Proof. Foreach c; > 0, define W (H, c3) to be the subset of W (H) consisting of 7) satisfy-
ing the condition —A(cy, ¢2) < n? < 0. By 4.7 and 3.12 (applied to H and a polarizations
in CF), we have:

G (e ela™ = Y (PP [ Y XXM | g

neW (H.cz) mtn=1()

— Z ([Pwo(n)]_ﬂpwo(—n)]) (Lq)cz—l(n) Z [X[m}][X["]] (]Lq)l(n)

neW (H,cz) m4n=I(n)

Since the condition for € W (H) to lie in W (H, ¢s) is the same as [(n) > 0, we get the

desired formula; note also that co — I(n) = —ly(n). O

Remark. It is also convenient to write the above formula in the following way:

2 LW'KX — 1 172 . 2
MO(X, H,ei5q) = L- IR L () <ﬁ) I A
neW (H) -

A slightly more symmetric form is given as follows:

G ]L_(l"‘hO’Q) 9 n.Kx —n> —n.Kx-—n’ —n?
M (X’H7cqu>:ﬁH(X,Lq) Z) L 2 —L 2 q n

neW(H

Now let us consider blowing up X via ¢ : X — X, with exceptional divisor E. The
Picard group now has an extra dimension given by F. All the ample divisors lives in the
half space of Pic(X' ) ® R given by those divisors H with H.E > 0. The ample divisors
closest to the plane containing Pic(.X') & 0 then lives in the — £ + Pic(.X); note that all the
H.,. arising from an ample divisor H on X are all in this set.
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The wall and chamber structure of Pic(.X) is not as well-behaved as Pic(X ). However,

an analogue statement of 4.7 still holds in this case as given below.

Proposition 4.9. Given fixed c; = S, co > 0, ¢, defineng = S — 2co ' — eE. Then there

exists a sufficiently big r(, such that for any r > ro with the correct parity, the following

holds:

(1) For any ample divisor H on X, there are no walls between H, and H in C 3 with

H, ample.

(2) The line spanned by F' in Cx still lies in the boundary of some chamber; call this

chamber C.

(3) For some largen, S+ nF € 0C.

4) We have M, (¢, ., ca) = O for any polarization H' lying in C'.
H\C1,

(5) Statement (4) holds true with p replaced by G.

Proof. Let us first pick some r as in 3.13. To show (1), note that if there is a wall between
H and H,, there will be a wall between H, and H,, for some s > 0, but this will not
happen when r > 7. For (2), we see by (1) we have Cx C dCy. For (3),say £ € ¢1. +

2 Pic(.X) that defines a wall of type (¢; , ¢2), which is an element of the form a.S+bF'+cE,

we consider how the wall W¢ defined by ¢ intersects with C x. By boundedness, we have:

0>—-a’+2ab—c*>—cy—1—¢

or equivalently:
2 2
c“>al2b—a)>c"—cn—1—¢
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Note that W¢ N Cx is determined solely by b/a (we don’t need to consider case where
a = 0, as in this case, the wall would have empty intersection with C ;). If we can bound

b/a from below we are done, but by dividing the above inequality by a?, we get:

For (4), it suffices to show for some polarization in it. We may use (3) to choose some
H = S + nF so that there are no walls between F, H. By (1), there are also no walls
between H, and H, hence no walls between H,., F', meaning H, € Cr. By the recursion
formulas 4.4 and 4.1, it suffices to see that [, (c1,4)] = 0 for i < ¢y, but this is true by
4.7 (note that the chamber C' in that proposition shrinks when ¢, increases). For (5), note

that C'r shrinks when ¢, increases, so one may use (4) along with 3.17. [

Remark. It was mentioned in [ | that a "well-known” analogous statement corre-
sponding to 4.9 holds true for general rational ruled surfaces, but the author of this thesis
wasn t able to follow the reference supplied there to obtain a proof of the desired result.
Here we give a full proof'in the basic case where X is Fy and use the universal relations

deduced before.

Assume that X also satisfies (A3) (this way 3.12 can be applied), then corresponding

to 4.8, we have the following proposition:

Proposition 4.10. Suppose X also satisfies (43), and let W (H) be defined as in 4.8, then

we have:

MG(X H 61 ; q) 2L2q (2n4e)2—(2n+e) (2n+e)?
ZG — ) ooy “l,ey — 71/12E L > 2
: (Q) q1/12MG(X7 H7 C1; Q) 4 P - ]L2q ; 1

Proof. By using the same proof as in 4.8 paired with the structures mentioned in 4.9’s, we
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see that if we choose big enough r with correct parity, and define:
W(H,) :={neS+cE+2Pic(X): n.H, <0< nF, n* <0}
then we get:

M“(X, H, 61,5; q) — q—5§,5/4H(X';]Lq)2 Z ([]P)ﬁ)o(n)] _ [Pwo(n)]) (Lq)_fo(n)

nEW(Hr)

where 1@y, [ are the functions wo, [ corresponding to X. By 4.9°s item (1), if we start with

a big enough r, we would have the identification:
W(H,) ={neS+cE+2Pic(X): n.H <0 <nF, n* <0}

Notice that if we regard W (H) as a subset in Pic(X) via the inclusion Pic(X) C Pic(X),

we have:

W (H,) = ¢E + (W(H) + 2ZE)

so let us write 7)., = n + (2n + ¢)E for n € W(H). By the remark following 4.8, we

have:

- ' ~ Ne,n- K 7]5 n —ne,n-Kg 77737”
M*(X, H,c15q) = ﬁH(X;ILq)Q Z Z ( —L 5 ) q*n?,n/4

neEW (H) n€Z

where we have used the fact that %2 does not change undre blowup. Now since:

Upen = nin —n? = —(2n + 5)2

bnyg,n = Ua,n'Kf{ —n.Kx = _(Qn + 5)
Cnemnt = (j:na,ij( - n?)n) - (:i:n.KX — 772)
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(here we used the fact that K ; = Kx + E), then under the change n — —n — ¢, we get:

an:&n = aﬂ,&*n*& b77757n = _bnvsyini‘i

Cpent = Tbpen — Qpen = Fbye n-c— Qe —n—c=Cpe—n—-cz

This gives:

Ne,n- K *”7 —ne,n-Kyg *’02
]:L g,n L 2X e,n ) q_ng,n/4

nEW(H) nGZ

nEW(H) neL

K + . Ky -2+ _
- (L" T P >q—<n2+an,s,n>/4

n.Kx—n +(‘ + —T74Kx—7’]2+13 e, —n—e,—
L °1,€,1, . L > 7,6,—N—¢ qf(n2+an,€,n)/4

nGW(H) nGZ
n.Kx—n +C + —77<K)(—172+C en,+
_ Z Z < 1,6, . ]L 5 7,6,m ) q*(n2+am€,n)/4
neEW (H) neZ
Z nKx —n’ —n.Kx —n/4 _n2 Z nenat g /4
= L 2 — L 2 q n L 2 q n,e,m
neW (H) neZ

The rest follows from 2.4, the observation that when X = [F; it satisfies all the require-

ments, and the explicit formula for a,, ., ¢y ¢ n +- [

4.3 Computation of Universal Functions (II) by Recur-

sion

In this section, we compute the universal function of Mumford-Takemoto spaces via

recursion.
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We first need to understand the space U (p, ¢). As mentioned before, U (p, ¢) parametrizes
pairs of homogeneous polynomials f(xq,x1), g(zo, x1) with degree p, ¢ up to C* that are
not simultaneously 0 (here we use the convention that the 0 polynomial can be regarded

to have any degree).

Lemma 4.11. Assume 0 < p < q. We have the following:

Lot 46, ifp=0
[U(p,q)] =

Lrtatl —Lpta=b otherwise

Proof. For a pair (f, g) representing an element in U (p, q), by looking at deg(gcd(f,g))

and whether f = 0 or not, we get:

[P(H"(P', Or(p) & Op1(q)))] — [P(H" (P!, Op:(q)))]

- (Z[P(HO ®", 0 ()] (U~ irg — )] - 66))

i=0
which expands to:

p

PP — [P + 6,0[PY] = Y _[PIU(p —i,q — )]

i=1
When p =0, 1,2, [U(p, q)] has the correct form.

For p > 2, we may first use the base case p = 0 and reduce this equation to
-1

PP+ — [PY] — [PPILY P+ = [U(p, @)] + Y [PU(p —i,q — )] (%)

1

=

i

We can rewrite the summation » | as

p

=1

._ Pl —i,q—i)] = (L+1) ((Z L) - (Z L)) (+)
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using:

P [U(p — i,q — i)] = [P](L? — 1)LPH-2-1 = (Li+! — 1)(L + 1)LPHe2-1

Now we take A, , = [U(p, ¢)] — [U(p — 2, q)]. By induction, we only need to show:

A g = LPtratl _ oy pta—1 + Lpta—3

P

By (%), (xx), we have:

]LerqH_i_Lerq_]qupH_qup+2 — Ap,q—i-(]L—i-l) (Lerqfl + [pte—2 _pa—ptl _ ]Lerqf?»)

which then simplifies to the desired equality for A, ,. [

Remark. The first equation given in the proof given above is given in [. '], but there-
after we found other shortcuts to prove 4.11; namely the fact that we can induct on the

symbol A, ,.

Remark. More succinctly, [U(p,q)] = LT+ (1 — L=2)17%0(1 + §,0L71) (assuming
0<p<q.

56 doi:10.6342/NTU202301040


http://dx.doi.org/10.6342/NTU202301040

Now we have the appropriate setup for finding a recurrence relation. We have the fol-

lowing formulas:

[ (c1, ca)] = [y (€10, C2,0)] (1)
D (@1 es )] = Y MYy (G100, )] 2)
d>0
[ (1o, c2,d)] = [U(d =1 —1,d + D[R (¢11,¢2 — d, )] (3)
=0
d
[0 (Cr1,c0,d)] = > [U(d = 1,d + D][ORY;_(Gr0, 2 — d,1)] (4)
=0
Lot 44, ifp=0
[U(p,q)] = (5)

Lrtratl T pta—1 otherwise
Using (1)-(4), we get:

[0, (Groco,d)] = > [y (Gri,ca— d DU —1—1,d+1)]

o<i<d

= > MYy (Gro,c0—d—LE)UW—1-1Ld+ DU -k 1+k)

0<k<i<d

— <Z O (c1,¢0 —d = D)[U(d —1—1,d+D][U(1 — k,l+k:)]> +

0<i<d

( > (G —d—LE)U@M—1—1,d+ DU -k 1+ k)])

0<k<l<d

where the first equality is first two equalities are by (3), (4), and the third equality is by
(1). If we focus on the component d in the above equation, we would notice that after one

such iteration the value of the component d decreased. We can apply the same iteration to

the terms [, (10,0 —d — 1, k)].
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From this, one can derive a general formula. It would be convenient to introduce the

following definition:

Definition 4.12 (Strings). Givend € N, define S. 4 to be the set of sequences (ag, a1, as, . . . , as)

with s = e(mod 2) of the form:

O:a0§a1<a2§a3<...azi,l<a2i<a2i+1...aszd

We call elements in S. 4 as strings. Associated to each string a = (a;);_,, we define the

motive:

Uy = H[U(ai — a1 — v(i), a; + a;-1)]

where we define

0 ifi=1(mod2)
v(i) =

1 otherwise

and in the degenerate case where d = 0,a = (0), we define U, = 1. Corresponding to

each a, we define:

* The length [(a) to be s
* The weight o(a) to be the sum Y _;_, a;

* The degeneracy T(a) to be the count of i with a; — a;—1 = v/(i)

Utilizing this definition, we get:

Cc2

[93?’;100(51,5,02,@]: Z Z Ua [f)ﬁ“H(cl,k)]:Z Z Ua | [ (c1, ca—k)]

k=—o00 aESad k>0 aESsﬁd
o(a)=ca—k o(a)=Fk
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and hence:

DY (Gre )] =Y | D0 Y Ua | [(er, 0 — B)]

k>0 | d>0 aS. 4
o(a)=k

SO we get:

S (Gee)le =)D Y U '(Z[mﬂ(cb@)]ﬁ)

c2 k>0 d>0 aeSe,d &)
o(a)=k

hence we have (by using the fact that A(¢y, c0) = A(cr, o) +€/4):

22 =¢"¢ D DD | (6)

n>0 | d>0 acS. 4
o(a)=n

Therefore the calculation boils down to the calculation of U,. By Formula (5), we have:

U, = (1 + 5a170L—1)L20(a)+|_l(a)/2J (1 _ L—Q)l(a)—r(a) (7)

Equation (6), (7) readily gives a rather explicit formula for Z/(q). However, a bit more

can be done. We follow [ ] to give a simplified (but also non-closed) formula for

Z:(q).

Theorem 4.13. We have:

2s5+4a 2j—2 i
11200 N _ @ste)’+(2s+e)  (25+¢)? 1 —1L¥ ¢
1 Z’E(CD_(ZL e | —Lug |
s>0 j=1
s 52 s+e)— s 52 2S+6_1 J— 2j—2 ]
ZL(2+)+2(2+)2(](2Z) H 1 L q
, 1—L2%g
s>1—¢ j=1

where empty products are interpreted as 1.
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Proof. We will just do the case ¢ = 0; the same proof will show the corresponding case

for ¢ = 1. This amounts to showing:

2s 2j—2 j 2571 12525
n __ 25245 52 1-L q 2s24s5—1 2 1 L q
22 X U=\ e [ T L
, 1 —IL%gq . 1 —L%q
n>0 d>0 a€Sy g s>0 j=1 s>1 j=1

o(a)=n

Firstly, we have:

22 2 G| =1d Y G

n>0 | d>0 ac€Sp q n>1 \ a€lg>q So,a

o(a)=n o(a)=n

Taken > 0,s > 0. Givena € Sy, with [(a) = 2s, define b; = a; —a;_; — (7). The

terms a; and invariants o(a), 7(a) can be written in terms of these b; by:
7 2s n
a;=i/2) +) b, o(a) =5+ (2s+1—i)b;, m(a) =Y _doy,
j=1 i=1 i=1

From this, instead of summing over strings, we can sum over sequences of non-negative

integers. Let Z_ be the set of all nonnegative integers b = (b, b, ..., b,). By (7), we get:

S| S 0] B L (- LB g

n21 | a€llg>0 So,4 521 bezas
o(a)=n

_ Z Z L252+qu2(1 + 60,b2SL_1) ((1 N L_z)QS_Zi (50,1,1.) (L2Q)ZZ ib;

s>1 bez2s

Given b € Z2%, we can consider its support Supp(b), given by the set of indices 7 with
+

b; # 0. For each s, write [s] = {1,2,..., s}. In this way, we can further arrange the terms
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above:

I\/M

Z Z L282+Sq82(1 + 80, L) ((1 - LJ)'J') (IL2q)2ies®
JC[2

bez3s
Supp(b)zJ
s24s s? — _ 1
T
21 JC[2s]  bezas ieJ
Supp(b)=J
s2+s 52 — 1
“X 3 e ()
s>1 JCJ2s] icJ
S F e v ()
s>1 JC[2s5—1] icd 1 - (]L’ Q)

2s

-y ] <1 +(1-L? (ﬁ - 1))

s>1 =1

+ Y LA Qﬁl (1 +(1-L"2 (% - 1)>

s>1 =1

which expands to the desired formula. U

Remark. The idea of the proof given above is the same as the one in [. ']. The differ-
ence here is that we have introduced 4.12 and systematically collected formula (1)-(7) to

simplify the presentation of the proofs and worked in the motivic context.
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Chapter S Appendix. A Survey on
Related Results

In this chapter, we will give a survey on the historical contexts of some of the results in

[ , ] and this paper.

In [ ], Vafa and Witten predicted that as a result of the S-duality conjecture, the
change of the generating series of the Euler characterisitcs moduli space of j-stable rank
2 sheaves on X should be able to be given by some modular functions (modularity of the
function) independent of the choice of surface (universality of the function). For example,

if we specialize the function ZE(q) |1 in 1.5, we would have:

Znez q(n+5/2)2
2
¢/ ]2 (1 = qm)]

=(q)
(9)

0
n
where 7)(¢q) is Dedekind’s n-function, and 6. can be interpreted as -constants (when e = 0,

it is the Jacobi #-function).

The modularity part is true in the case X = IP? according to [ ]. In the case where
X 1is ruled with smooth moduli spaces, this is also true by [ ]. Nevertheless, in both

papers, Yoshioka calculated the universal functions at the level of Hodge polynomials,
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and for the spaces MY, (cy, ca), M (c1,c2). His method involves the Weil conjectures,
which required the moduli spaces to be smooth. However, the method of using elementary
modifications and recursions to calculate the blowup formula for 9%, (¢y, ¢ ), as well as
the method of finding the Quot formula (over finite fields) and utilizing the chamber and
wall structures to calculate the blowup formula for 9% (c;, c) are both present in these

two papers.

In [ , ], they made the calculations for virtual Hodge polynomials, and sig-
nificantly loosened up the constraints that the surface X should have, and considered in
additional to %, (c1, ¢2), MG (c1, o) the spaces MY (¢, ¢2). They generalized the calcula-
tions by Yoshioka. They observed that the relation between the generating series of virtual
Hodge of 90, (c1, c2) and MG (cy, o) can be given by a universal function involving Quot

schemes, but the explicit form of it was not known.

Nakajima and Yoshioka proved the blowup formula of virtual Hodge of 9% (cy, ¢;) in
a different way similar to Yoshioka’s calculation for P2, and remarked that their proofs
works for motives in [ ]. They considered other more general moduli spaces, such

as framed ones.

Recently, categorifications of these results (at the level of derived categories) for MM% (c1, c2)

has been done by [ ] using Qing Yuan’s Quot formula as proved in [ ].

The following table gives a summary.
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References Invariants Moduli
Vafa, Witten | [ ] Euler Characteristics |
Yoshioka | [ , Hodge (special cases) |

Li, Qin | [ , Virtual Hodge w, G, U
Naka., Yos. | [ ] Motives G
Toda, Koseki | [ , Derived Categories | G
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