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摘要

長程的偶極-偶極相互作用在各種量子光學系統中起著至關重要的作用，尤其

在量子模擬和計算方面具有重要意義。本論文重點探究共振偶極-偶極相互作用在

暗態邊帶冷卻中的影響。我們首先分析了自由空間原子之間的共振偶極-偶極相互

作用。然後，我們將分辨邊帶冷卻技術擴展到暗態冷卻方案，並通過利用光子介

導的偶極-偶極相互作用在束縛原子中實現增強冷卻效果。通過將原子放置在特定

的粒子間距上，我們實現了目標原子超越單個原子所能達到的優越冷卻性能。我

們進一步探索了具有激光失諧和不同偶極極化角度的多原子設置，並識別出多個

奇特間距，預測隨著原子數量的增加，冷卻性能將有適度的提高。我們的研究揭

示了利用光子介導的遠程偶極-偶極相互作用冷卻原子的原理，為克服可擴展量子

計算和量子模擬中的冷卻限制提供機會。

關鍵字：偶極-偶極相互作用、束縛原子、暗態邊帶冷卻
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Abstract

Long-range dipole-dipole interactions, mediated by photons, play a crucial role in

various quantum optics systems and are particularly relevant for quantum simulation and

computation. This thesis focuses on exploring the impact of resonant dipole-dipole inter-

actions in the context of dark-state sideband cooling. We begin by analyzing the resonant

dipole-dipole interaction between free-space atoms. We then extend the resolved sideband

cooling technique to the dark-state cooling scheme and demonstrate enhanced cooling in

trapped atoms by leveraging photon-mediated dipole-dipole interactions. Through placing

atoms at specific interparticle distances, we achieve superior cooling performance in the

target atom beyond what is achievable by a single atom. We further explore multiatom

setups with laser detuning and different light polarization angles and identify multiple

magic spacings where moderate improvements in cooling performance are predicted with

increasing numbers of atoms. Our research sheds light on the cooling of atoms utilizing

light-induced long-range dipole-dipole interactions and provides opportunities for over-

coming cooling limitations in scalable quantum computation and quantum simulations.

Keywords: dipole-dipole interactions, trapped atoms, dark-state sideband cooling
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Chapter1

Introduction

In recent decades, advances in technology have enabled greater control over atom

arrays, allowing for the development of increasingly sophisticated techniques for confin-

ing particles [2–5] and manipulating their interactions [6, 7]. While laser cooling is one

of the most important of these techniques [8], which is used to reduce the micromotion

of trapped atoms and ions beyond the limits of Doppler cooling, bringing them closer to

their motional ground state. Such techniques have been experimentally demonstrated and

are essential for a wide range of applications in fields such as quantum simulation [9–14]

and quantum computation [15–20]. This is achieved by resolved sideband cooling [21–

25]. By balancing the speed of an atom’s red-sideband transition with its spontaneous

emission, pepole are able to achieve cooling in the microkelvin range. This technique has

been extended to multi-level systems using electromagnetic induced transparency (EIT)

[26–32], which is referred to as dark-state sideband cooling.

Inmulti-atomic systems, coolingmechanisms becomemore complex due to the emer-

gence of spin-phonon correlations through light-matter interactions. By treating photon

modes as reservoir, the remaining atoms form an open quantum system. Following by
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Markov approximation, the dynamics of this system can be described by a Lindbladmaster

equation, consisting dissipation and collective spin-exchange process [20, 33–36]. These

photon-mediated dipole-dipole interactions (DDIs) can be customized into a strong cou-

pling regime using an atom-waveguide interface with the modification on photon modes

in reservoir and thus the DDIs. The DDIs mediated by photons have been investigated in

various systems, including guided modes [37], cavity-mediated atoms [38] and two atoms

in an atom-waveguide interface [39]. DDI strongly influences the radiation properties of

ensembles of atoms, causing modifications to the decay rate and collective Lamb shift on

resonance lines [40–44]. These effects give rise to collective phenomena such as dipole-

dipole forces [45] and superradiance [46–48], which have been used to develop a quantum

heat engine that surpasses the Carnot limit [49]. It is the intrinsic loss properties that pro-

vides a valuable subject for the study of non-Hermitian physics, such as exceptional points

in atomic samples [50]. Programming DDI is also being investigated for its applications

in quantum simulations on complex coupling graphs [7].

In this study, we examine the contribution of dipole-dipole interactions to cooling of

atomic ensembles, specifically in the context of sideband cooling in a finite-sized sample

[1], which is possible to be realized by current trapping techniques like optical tweezer

[51, 52]. The cooling scheme involves a two-level structure of atoms, which can also be

constructed using three-levelΛ-type atom coupled by two laser fields. We investigate how

cooling performance changes when other atoms are nearby exchanging photons with the

cooling target. By placing extra atoms at a interparticle distances during sideband cooling,

we demonstrate that rescattering events in DDIs allows target atom to have superior cool-

ing performance under the assumption of asymmetric driving conditions. We investigate

cooling behaviors with different dipole polarization angles and laser detunings. We also

2
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find more magic spacings that enhance cooling and improve multiatom effects for specific

configurations.

The rest of this thesis is organized as follows. We first introduce light-atom interac-

tion in chapter 2, usingMarkov approximation onmaster equation in open quantum system

to derive Linbladian dipole-dipole interaction. And in chapter 3 we move to laser cooling

model, explaining more detail on resolved sideband cooling and its cooling efficiency, and

how we simulate the steady-state phonon number. Then we present our finding in chapter

4, demonstrating our result on magic spacing and how it changes with dipole polarization

as well as the effect of detuning and multiatom configuration on cooling performance.

Finally we conclude in chapter 5.

3
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Chapter2

Light-atom interaction

The interaction between light and atoms is a fundamental phenomenon in physics that

has been extensively studied for decades [53]. It plays a crucial role in a wide range of

fields, including quantum optics, atomic physics, and condensed matter physics [54]. In

this chapter we will introduce the basic principles of the interaction, including the electric

dipole approximation, the light-atom coupling and Markov approximation. And finally

we will come to the core of this thesis, the photon-mediated dipole-dipole interaction [33].

This phenomenon arises when two electric dipoles, such as two atoms or molecules, in-

teract with each other through the exchange of virtual photons. The photon-mediated

dipole-dipole interaction can lead to a variety of interesting effects, such as long-range

interactions between atoms, collective radiation behavior of dipole systems, and modifi-

cations of the spontaneous emission rate. These effects are particularly important in the

study of quantum simulation and quantum computation, where the ability to control and

manipulate the interaction between dipoles is essential. We will see these are also crucial

for enhancing dark-state sideband cooling [1].

5
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2.1 System of two level atoms and electric fields

We begin by considering a set ofN indistinguishable atoms that are initially station-

ary in free space. Each atom is represented by a two-level system consisting of a ground

state |g⟩ and an excited state |e⟩. The energy difference between these two states, which is

equal to the resonant frequency of the atom, is denoted by ℏω. Neglecting the zero-point

energy, the Hamiltonian HA that governs the dynamics of the atoms can be expressed as

follows:

HA =
N∑

µ=1

ℏω0σ
†
µσµ. (2.1)

Here, the lowering operator for the µ-th atom is denoted by σµ, and is given by σµ =

|g⟩µ⟨e|µ. Additionally, we assume that the transition dipole moment is real, and can be

defined in terms of the lowering operator as follows d̂µ = d(σµ + σ†
µ) where d represents

the magnitude and direction of the transition dipole moment.

In the meantime there is also quantized electromagnetic field modes in vacuum, de-

fined by the field Hamiltonian HF :

HF =
∑
k,s

ℏωka
†
ksaks, (2.2)

which sums over all possible wave vector k and polarization s. Here aks being annihilation

operator of ks’ mode and ℏωk = ℏc/|k| is the corresponding energy. These operators

relate to electric field operator E(r) on position r. In the Coulomb gauge, the electric field

6
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can be written as

E(r) =
∑
k,s

√
ωk

2ϵ0ℏV
êks(akse

ik·r + a†kse
−ik·r). (2.3)

The interaction between light and matter in the presence of an electromagnetic field can

be expressed as

Hint = −d · E, (2.4)

where d denotes the electric dipole moment. In the quantized version, the corresponding

operators are used to express the interaction resulting in the Jaynes-Cummings interaction

as follows:

Hint = −ℏ
∑
k,s,µ

gks(σµ + σ†
µ)(akse

ik·rµ + a†kse
−ik·rµ). (2.5)

The coupling constant gks is defined as gks =
√

ωk
2ϵ0ℏ3V (êks · d), where ωk is the frequency

of the electromagnetic mode, ϵ0 is the vacuum permittivity, V is the quantization volume,

êks is the polarization vector of the photon.

2.2 Markov approximation for Open Quantum System

The Hamiltonian governing the interaction of atoms with light fields can be formu-

lated, but solving for the exact dynamics becomes infeasible due to the infinite degrees

of freedom in electromagnetic (EM) modes. Consequently, computationally represent-

ing the complete system-environment interaction becomes challenging. To address this

challenge, one technique is to adopt the procedure in open quantum systems, whereby

additional degrees of freedom are traced out, and the Markov approximation is used to

derive an effective master equation. This equation is commonly referred to the Lindblad

7
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equation. By identifying the atom and field parts as the system HS and environment HB,

respectively, we aim to determine the dynamics of the atom part ρS(t) without the knowl-

edge of the field. This can be accomplished by partially tracing over the full system and

environment density, yielding ρS = TrB(ρS ⊗ ρB).

In this section, we will explore how the same method can be applied to a system of

a two-level atom interacting with electric fields. The goal is to derive an effective master

equation for the atomic system without requiring knowledge of the field. By using the full

Hamiltonian H = HA + HF + Hint, we obtain the operator’s equation of motion in the

Heisenberg picture [33]:

d

dt
aks =

i

ℏ
[H, aks] = −iωkaks + igks

∑
µ

sµe
−ik·rµ , (2.6)

where the operator ŝµ is defined as ŝµ = σµ + σ†
µ, and σµ is the lowering operator σµ =

|g⟩µ⟨e|µ for atom µ. The exact solution to this equation is:

aks(t) = aks(0)e
−iωkt + i

∑
µ

gkse
−ik·rµ

∫ t

0

dt′ŝµ(t
′)e−iωk(t−t′). (2.7)

Similarly, for any atomic operator Q, we have:

d

dt
Q = iω0

∑
µ

[σ†
µσµ, Q]− i

∑
k,s,µ

gks[sµ, Q]
(
akse

ik·rµ + a†kse
−ik·rµ

)
. (2.8)

Replacing akseik·rµ part with equation (2.7), its contribution in d
dt
Q becomes:

−i
∑
k,s,µ

gks[ŝµ, Q]aks(0)e
i(k·rµ−ωkt) +

∑
k,s,µ,ν

g2kse
ik·rµν [ŝµ, Q]

∫ t

0

dt′ŝν(t
′)e−iωk(t−t′), (2.9)

where rµν ≡ rµ − rν are defined as the position difference between atoms. The first term

8
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in equation (2.9) represents the contribution of initial field E0 ≡ E+
0 + h.c. where:

E+
0 (r, t) =

∑
k,s

√
ωk

2ϵ0ℏ3V
êksaks(0)e

i(k·r−ωkt). (2.10)

And thus we can use it to rewrite the first term in equation (2.9) that

−i
∑
µ

[ŝµ, Q]E+
0 · d+

∑
k,s,µ,ν

g2kse
ik·rµν [ŝµ, Q]

∫ t

0

dt′ŝν(t
′)e−iωk(t−t′). (2.11)

We can transform the infinite sum over EM modes ks into an integral by taking the con-

tinuum limit V → ∞. In this case, we obtain

lim
V→∞

1

V

∑
k,s

(êks · d)2eik·rµν = (2πc)−3

∫ ∞

0

ω2dω

∫
dΩ

∑
s

(Ω̂s · d)2eiωdΩ̂·rµν/c, (2.12)

where dΩ̂ and Ω̂s are the normal vector and tangent space basis vector on the small surface

dΩ, respectively. In Euclidean space, we can evaluate this angular integral straightfor-

wardly since Ω̂s and dΩ̂ form a complete basis. Hence, we obtain:

∑
s

(Ω̂s · d)2 = d2(1− (dΩ̂ · d̂)2). (2.13)

Using above result, equation (2.11) in the continuum limit becomes:

−i
∑
µ

[ŝµ, Q]E+
0 · d+

∑
µν

d2

16ϵ0π2ℏ3c3
[ŝµ, Q]

×
∫

dΩ(1− (dΩ̂ · d̂)2)
∫ ∞

0

dωω3eiωdΩ̂·rµν/c

∫ t

0

dt′ŝν(t
′)eiω(t

′−t). (2.14)

In order to derive a solvable master equation, it is necessary to address the depen-

dence of the integrand in equation (2.14) on the past history of the operator ŝν . To this

end, the Markov approximation can be employed. This approximation assumes that the

9
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system-environment interaction is weak, and that the environment relaxes quickly com-

pared to the dynamics of the system. Under this assumption, the correlation time of the

environment is much shorter than the typical time scale of the system’s evolution, allow-

ing for a memoryless (Markovian) approximation of the system’s time evolution. In this

approximation, the past operator can be treated as non-interacting, and is therefore simply

replaced with a current operator plus an oscillating phase. Specifically, we replace ŝν(t′)

in equation (2.14) with:

ŝν(t
′) → σν(t)e

−iω0(t′−t) + h.c. (2.15)

After this, the dependence of t still remains in equation (2.14). To achieve a time-independent

interaction by eliminating time dependence, we note that the timescale of interest is much

larger than the resonance period, ω0t ≫ 1, since for typical two-level atoms like rubidium-

87, the transition frequency between 5S1/2 and 5P1/2 is approximately 377 THz while the

experimental time scale is around MHz order. Therefore, it is valid to set t to infinity, and

this approximation still yields a finite result and is a safe one.

In summary, original integral in equation (2.14) reduces to a solvable form:

∫
dΩ(1− (dΩ̂ · d̂)2)

∫ ∞

0

dωω3eiωdΩ̂·rµν/c
∫ ∞

0

dt
[
σνe

−i(ω−ω0)t + σ†
νe

−i(ω+ω0)t
]
. (2.16)

2.3 Photon-mediated dipole-dipole interaction

In Section 2.2 of the present work, we derive the effective equation of motion for

the photon-mediated dipole-dipole interaction between two-level atoms in a Markovian

approximation. The calculation of equation (2.14) is presented in Appendix A.We employ

the rotating-wave approximation to arrive at the Lindblad equation in the density matrix

10
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representation, which takes the form:

ρ̇ = −i[H, ρ]− i
∑
µ ̸=ν

gµν [σ
†
µσν , ρ] +

∑
µν

γµνLµν [ρ]. (2.17)

The above Lindblad map is defined by Lµν [ρ] = σνρσ
†
µ − 1

2
{σ†

µσν , ρ}, while the term in-

volving different atomic operatorσ†
µσν represents thewell-known photon-mediated dipole-

dipole interaction or resonant dipole-dipole interaction (RDDI), which arises from the

photon-mediated coupling between the atomic dipoles. The collective energy shift gµν

and collective decay γµν are described by the second and third terms in the equation, re-

spectively. The parameters gµν and γµν depend on the distance between the atoms and

the polarization angle of their dipole moments, given by ξ = k|s⃗µν | ≡ k|r⃗µ − r⃗ν | and

cos θ ≡ d̂ · ŝµν , where d̂ is the unit vector of polarization. The explicit expressions for γµν

and gµν are given by:

gµν =
3Γ

4

{
− [1− cos2 θ]

cos ξ
ξ

+ [1− 3 cos2 θ]
[
sin ξ
ξ2

+
cos ξ
ξ3

]}
, (2.18)

γµν =
3Γ

2

{
[1− cos2 θ]

sin ξ
ξ

+ [1− 3 cos2 θ]
[
cos ξ
ξ2

− sin ξ
ξ3

]}
. (2.19)

The diagonal term of the collective decay, γµµ, is identified as the single atom sponta-

neous decay rate, denoted as Γ. Figure 2.1 shows the values of γµν and gµν for different

polarization angles cos θ and atomic spacings ξ.

In the field of quantum information processing, photon-mediated dipole-dipole in-

teractions have been proposed as a means of implementing quantum gates and entangling

operations in atomic ensembles [55]. Additionally, photon-mediated dipole-dipole inter-

actions have been studied in solid-state systems such as semiconductor quantum dots,

where they can be used to control and manipulate the spin states of individual excitons
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a b

Figure 2.1: Collective energy shift gµν (a) and decay rate γµν (b) under various polarization
angles cos θ and atomic spacings ξ. The collective decay rate γµν approaches single atom
decay rate Γ while energy shift gµν diverges in short distance limit ξ → 0.

[56].

In chirally coupled waveguides, the same interactions can be used for efficient cool-

ing of atomic motion to the ground state [37]. Chirally coupled waveguides involve the

asymmetric coupling of photon modes, leading to the emergence of nonreciprocal photon-

mediated dipole-dipole interactions. By adjusting the strength of the nonreciprocal cou-

pling, the interaction between the counterpropagating modes can be tuned to cool the mo-

tion of the atom more efficiently than conventional cooling methods. This cooling tech-

nique is highly efficient and can be used to prepare the atom close to its motional ground

state, which is important for various quantum computation tasks.

In summary, photon-mediated dipole-dipole interactions are a powerful tool for con-

trolling and manipulating the quantum properties of atoms and molecules, with potential

applications in quantum computations. Later, we will explore the use of these interactions

to enhance cooling efficiency and achieve lower temperatures thanwith conventional cool-

ing methods without assistance of RDDIs.
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Chapter3

Resolved sideband cooling

Resolved sideband cooling is a powerful technique used in quantum optics and quan-

tum simulation to cool individual atoms or ions down to their motional ground state [23].

It involves coupling the internal states of the atom or ion with its motional states through

laser light, such that the energy of the internal state changes with the motional state of

the particle. By exciting these internal states using laser light followed by spontaneous

emissions, the particle’s motional energy can be reduced, leading to cooling. Resolved

sideband cooling has become a cornerstone of many quantum technologies, enabling pre-

cise control of atomic and ionic motion and paving the way for advances in quantum

computing and simulation [10, 15].

On the other hand, the dark-state sideband cooling method [27, 39, 57] is a cooling

technique utilized in ultracold atoms that employs a Λ-type three-level configuration of

atoms, with two laser fields acting on two distinct hyperfine ground states sharing one

common excited state. Through quantum interference between the two ground states, an

effective dark-state picture is formed. Under proper parameter setup, this configuration

results in the formation of an asymmetric absorption profile, allowing for the cooling of
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atoms by removing one phonon via a transition in the resolved sideband. This technique is

similar to the conventional resolved sideband cooling technique that operates on two-level

ions, but with adjustable effective laser driving and decay rates. Due to the adaptability of

the effective parameters in dark-state sideband cooling, it becomes a versatile and com-

monly used cooling technique for neutral atoms [31, 58].

The objective of this section is to explore the fundamental principles underlying the

resolved sideband cooling and dark-state cooling techniques. This exploration will pro-

vide us with a comprehensive understanding of the principles essential for studying the

main topic of this thesis, namely, the influence of dipole-dipole interactions in dark-state

cooling. Furthermore, in addition to presenting our results in Chapter 4, we will also out-

line our numerical approach and describe our methodology for determining the cooling

efficiency.

3.1 Atomic motion and sideband

In the field of quantum optics, understanding and controlling the motion of individual

atoms and ions is crucial for the development of many quantum technologies. Atomic

motion is typically characterized by its frequency or energy, which can be quantized into a

set of discrete levels. In certain cases, the internal states of an atom or ion can be associated

with its motion, leading to a phenomenon known as a ”sideband”. A sideband occurs when

the energy of the internal states of the atom or ion changes as a result of its motion. For

example, if an atom or ion in a harmonic trap is carrying some motional quanta, then

the energy of its internal states can be shifted by an amount proportional to that motional

quanta frequency. This shift can be detected and controlled using laser light, allowing
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researchers to manipulate the motion of individual particles with remarkable precision.

An atom confined in a small region experiences a potential that can be approximated

by a 3-dimensional quadratic potential. Under this potential, the atom’s motional Hamil-

tonian can be expressed as:

Hmotion =
3∑

i=1

p̂2i
2m

+
mν2

i

2
r̂2i , (3.1)

such that p̂i, r̂i are momentum and position operators on ith direction respectively while

νi is the oscillation frequency on that direction. m is the mass of the atom. The dynamics

of the atom under this potential can be described using creation and annihilation operators

âµ, â
†
µ corresponding to the motional modes (phonons). Additionally, operators r̂i, p̂i are

related to the creation and annihilation operators as follows:

r̂i =
1√
2mνi

(âi + â†i ), (3.2)

p̂i = i

√
mνi
2

(âi − â†i ). (3.3)

For simplicity, we consider only one-dimensional motional mode and include the

internal energy discussed in equation (2.1) to obtain the full Hamiltonian (ℏ = 1):

H = HA +Hmotion = ω0σ
†σ + νa†a. (3.4)

The eigenstates of the Hamiltonian depend on the internal state (ground or excited)

of the atom and the number of phonons it carries, i.e., |a, n⟩, where a ∈ {e, g} and n ∈ N.

These energy levels that arise due to the coupling between the internal states of an

15

http://dx.doi.org/10.6342/NTU202300902


doi:10.6342/NTU202300902

atom or ion and its motion in a trap results in an equally spaced sideband spectrum [59].

When a laser is tuned to a frequency that corresponds to the energy difference between

two internal states (|e, n⟩ ↔ |g, n⟩), it can induce transitions between those states by

absorbing or emitting a photon. However, if the frequency of the laser is not exactly equal

to the energy difference between the two states, but instead is slightly detuned, then the

absorption or emission of the photon will not only change the internal state of the atom,

but will also excite or de-excite its motion in the trap. This results in the appearance of

sidebands in the spectrum of the absorbed or emitted light, corresponding to the different

possible motional states of the particle.

3.2 Lamb-Dicke regime

Now that we have established the energy level structure of trapped atoms, we can

delve deeper into their interaction with an external classical standing wave driving field,

−E0 sin(kx), which we have transformed into a rotating frame. The atom is placed at the

node of the driving field, and we are interested in understanding the interaction between

the light and the atom’s x-direction motional mode. This interaction can be described by

using Equation (2.4), with all classical numbers replaced by quantum operators:

Hint =
Ω

2
(σ + σ†) sin(kx̂) =

Ω

2
(σ + σ†) sin

(
k√
2mν

(â+ â†)

)
, (3.5)

where the Rabi frequency is given by Ω/2 = d · E0 and k is the wave vector of laser

pumping.

In atomic physics, the Lamb-Dicke regime is a condition where the amplitude of an

atom’s motion is significantly smaller compared to the wavelength of the laser used to
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interact with it. This can be expressed mathematically as k2⟨x̂⟩2 ≪ 1, or equivalently

[60]:

η2(2⟨n⟩+ 1) ≪ 1, (3.6)

where η = k√
2mν

is the Lamb-Dicke parameter that characterizes the strength of the inter-

action between the laser and the atomic motion, and ⟨n⟩ is the average number of phonons

in the motional mode of the atom.

When the parameter η is much smaller than 1, the condition in equation (3.5) is au-

tomatically satisfied for any state. In this case, the sine function in equation (3.4) can be

expanded to the first order, yielding the approximate interaction Hamiltonian given by:

Hint,LD ≈ ηΩ

2
(σ + σ†)(â+ â†). (3.7)

In the Lamb-Dicke regime, it is possible to selectively manipulate the internal states of

an atom or ion by tuning the coupling strength ηΩ. This regime is particularly important

for various applications in quantum computation and quantum simulation, as it enables

precise control of the atomic motion and its interaction with the laser.

Experimentalists can achieve the Lamb-Dicke regime by trapping the particle in a

trap with a high confinement strength ν, such as a radiofrequency (RF) trap or a magnetic

trap. This regime is a crucial regime of atomic motion that enables precise manipulation

of atomic internal states with laser light. This regime plays a central role in many areas

of quantum physics, and is also important to make the resolved sideband cooling work, in

which one needs to control the transition between two specific states.
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3.3 Dark-state sideband cooling

To cool individual particles to their motional ground state, one widely-used technique

is resolved sideband cooling. It is a technique that relies on this sideband interaction to

cool individual particles to their motional ground state. By exciting the internal states

of an atom or ion with laser light, the particle’s motional energy can be reduced through

spontaneous emission, ultimately leading to its cooling.

To illustrate this technique, let us consider a single atom in free space driven by a

standing wave laser [23], where we focus solely on the motion of the atom along the x-

direction, which couples with the laser. Using equations (2.17) and (3.6), we obtain the

master equation:

ρ̇ = −i[HLD, ρ] + Γ

(
σρσ† − 1

2
{σ†σ, ρ}

)
. (3.8)

Here, Γ represents the damping rate of the system due to spontaneous emission and HLD

is the Hamiltonian in the Lamb-Dicke regime:

HLD = −∆σ†σ + νâ†â+
ηΩ

2
(σ + σ†)(â+ â†). (3.9)

In the context of a two-level atom with energy levels |n⟩ of energies (n + 1/2)ν and

spontaneous decay rate Γ, a laser with Rabi frequency Ω is applied with detuning ∆ =

ω−ω0. In the Lamb-Dicke regime with LD parameter η ≪ 1, this induces a red sideband

transition |g, n⟩ ↔ |e, n − 1⟩ and a blue sideband transition |g, n⟩ ↔ |e, n + 1⟩ with

strengths ηΩ
√
n and ηΩ

√
n+ 1, respectively.

When a standing wave laser is applied, the carrier transition |g, n⟩ ↔ |e, n⟩ is im-

mediately eliminated as we observe from the interaction form in equation (3.9). An atom
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in the excited state |e, n⟩ decays to the ground state at a rate Γ due to the interaction with

the vacuum EM mode. By maximizing the red sideband transition rate, cooling can be

achieved through the process |g, n⟩ → |e, n − 1⟩ → |g, n − 1⟩, and so on, down to the

motional ground state. Two additional conditions are necessary for this process: first, the

laser must be tuned to the red sideband resonance by setting ∆ = −ν, and second, the

resolved sideband condition Γ ≪ ν must be satisfied to make the blue sideband transition

far-detuned and almost negligible compared to the red sideband transition. Using these

conditions, we can calculate that resolved sideband cooling reduces the phonon number to

approximately [57] ⟨n⟩ ≈ η2Ω2

8ν2
+ Γ2

16ν2
. The first term comes from finite driving strength

that heats the atom. The second term is due to non-vanishing blue sideband transition rate

relating to absorption width Γ, which exists even in weak driving limit ηΩ → 0.

One potential limitation of standing wave sideband cooling is that it may not be easy

to implement a standing wave laser. Additionally, the natural linewidth Γ is not a tunable

parameter, so the resolved sideband condition Γ ≪ ν may not be satisfied. To address

these limitations, the dark-state cooling scheme was developed [57].

This cooling scheme is based on the conventional EIT cooling scheme, which re-

quires a Λ-type atomic structure with two ground states |g⟩ and |r⟩ sharing the same ex-

cited state |e⟩, and is driven by two lasers with Rabi frequencies being Ωg and Ωr. The

EIT Hamiltonian can be written using equation (3.4):

HEIT = −∆σ†
gσg + νa†a+

Ωg

2
(σge

−ikg x̂ + σ†
ge

ikg x̂) +
Ωr

2
(σre

−ikrx̂ + σ†
re

ikrx̂), (3.10)

where kg and kr are correspondingwave vector to the two laser driving. InΛ-type structure

the transition between |r⟩ → |g⟩ is forbidden. Referring to the derivation in section 2, we
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can obtain a master equation that incorporates two dissipation processes: |e⟩ → |g⟩ and

|e⟩ → |r⟩:

ρ̇ = −i[HEIT , ρ] + γg

(
σgρσ

†
g −

1

2
{σ†

gσg, ρ}
)
+ γr

(
σrρσ

†
r −

1

2
{σ†

rσr, ρ}
)
, (3.11)

where σg ≡ |g⟩⟨e|, σr ≡ |r⟩⟨e|. And γg, γr are corresponding decay rate. Both lasers

are set to have a common detuning ∆. We can expand the Hamiltonian with respect to

the Lamb-Dicke parameter ηg = kg/
√
2mν and ηr = kr/

√
2mν. For zeroth-order expan-

sion of the Hamiltonian with respect to both Lamb-Dicke parameters ηg and ηr, we can

diagonalize it into [57]:

|+⟩ = sinϕ|e⟩ − cosϕ(sin θ|g⟩+ cos θ|r⟩),

|−⟩ = cosϕ|e⟩+ sinϕ(sin θ|g⟩+ cos θ|r⟩),

|d⟩ = cos θ|g⟩ − sin θ|r⟩.

(3.12)

The energy eigenvalues are ω± = 1
2

(
−∆±

√
∆2 + Ω2

r + Ω2
g

)
, ωd = 0. The angle θ and

ϕ are defined as

θ = tan−1 Ωg

Ωr

, (3.13)

ϕ = −1

2
tan−1

√
Ω2

r + Ω2
g

∆2
. (3.14)

In typical setting, large values of detuning ∆ and Rabi frequency Ωr are employed to

minimize both angles. Consequently, the dark state becomes highly similar to the ground

state |d⟩ ≈ |g⟩, allowing for the preparation of a dark state by initially placing the atom in

the ground state |g⟩.

In the first order expansion of ηg and ηr, we express the Hamiltonian in the same
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basis as before:

H(1) =

[
iη−
2

Ω+ sinϕ|d⟩⟨+|+ iη−
2

Ω+ cosϕ|d⟩⟨−|+ iη+
2

Ω+|−⟩⟨+|
]
(a+ a†) + h.c.,

(3.15)

where η± = ηg ± ηr and Ω+ = ΩgΩr√
Ω2

r+Ω2
g

sinϕ. By appropriately choosing the detuning

∆, the Rabi frequencies Ωg and Ωr, we can make ω+ = ν such that the effective red side-

band transition |d, n⟩ → |+, n − 1⟩ is resonant, while the other state |−⟩ is far-detuned

and can thus be neglected. This effectively reduces the Λ-type system to a two-level sys-

tem, allowing us to use the results we have discussed earlier. In this two-level basis, the

spontaneous decay rate becomes:

γeff =
sin2 ϕ
2

(γg cos2 θ + γr sin2 θ) (3.16)

and the effective LD parameter ηeff and Rabi frequency Ωeff are given by ηeff = η− and

Ωeff = Ω+ as shown in (3.14). In order to achieve high cooling efficiency, it is necessary

to make all of these parameters small while keeping ω+ = ν. In practice, this can be

achieved by ensuring that Ωg is much smaller than both Ωr and∆, that is, Ωg ≪ Ωr ≪ ∆.

We can see that dark-state sideband cooling presents several advantages over tradi-

tional resolved cooling techniques. Unlike the two-level structure, the tunable effective

parameters in this cooling scheme make it more flexible to apply in experiments. These

tunable parameters enable faster cooling rates, higher cooling efficiencies, and reduced

sensitivity to experimental imperfections. Consequently, it has been implemented in var-

ious experimental settings [27, 58, 61–68] to cool individual atoms and ions to their mo-

tional ground state. In this thesis, we work with the dark-state cooling scheme due to

its more flexible parameter choices, making it more convenient for us to explore various
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regions within experimental feasibility.

3.4 Simulating method

We will now extend to a system of N two-level trapped atoms that are driven by

standing wave lasers. As previously discussed, this system can be cooled using the dark-

state sideband cooling technique withΛ-type atoms driven by two laser fields. We assume

that the atoms are trapped in a one-dimensional harmonic potential, where the trapping

frequency is ν. We further assume that this trap potential is the weakest trapped direction

compared to the other motional modes. The effective two-level system for the µth atom

is denoted as |g⟩µ and |e⟩µ.

In the LD regime, the LD parameter is defined as η = keff√
2mν

, where m is the atom

mass and keff the effective wave vector. The systemHamiltonian can be written as follows:

HLD = −∆
N∑

µ=1

σ†
µσµ + ν

N∑
µ=1

a†µaµ +
η

2

N∑
µ=1

Ωµ(σ
†
µ + σµ)(a

†
µ + aµ). (3.17)

Here the lowering operator σµ = |g⟩µ⟨e| acts on the µth atom, while the annihilation oper-

ator aµ acts on the phonon mode associated with the same atom. The position-dependent

Rabi frequency is given by Ωµ, which carries an atomic label. The detuning∆ = ωL−ω0

represents the difference between the central frequency of the laser and the atomic transi-

tion frequency.

When this collection of atoms is placed in vacuum, the system dynamics can be mod-
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eled using a master equation that takes into account dipole-dipole interactions:

ρ̇ = −i[HLD, ρ]− i

N∑
µ,ν=1
µ ̸=ν

gµν [σ
†
µσν , ρ] +

N∑
µ,ν=1

γµνLµν [ρ]. (3.18)

The energy shift gµν and collective decay rate γµν , which have been defined previously, are

dependent on the atoms’ spacings, denoted by ξ = k|s⃗µν | = k|r⃗µ− r⃗ν |with k = 2π/λ and

the laser transition wavelength λ, as well as the dipole polarization angle cos θ = d̂ · ŝµν ,

where d̂ is the unit vector of polarization. These factors play a crucial role in determining

the strength of the energy shift and collective decay rate.

In general, the state space of the density matrix ρ includes a tensor product of finite

spin states and infinite-dimensional Fock states. To address this issue, we introduce a

phonon cutoff number nc = 1, such that the density matrix only contains atom states with

a phonon number no greater than nc, reducing the state space to a finite dimension. This

is valid, in particular, when the steady-state phonon number ⟨nµ⟩ = tr(a†µaµρst) ≪ 1 is

much less than one, where ρst satisfies ρ̇st = 0. This is commonly observed as the resolved

sideband condition is satisfied.

By using this truncation, one can numerically solve for the steady-state density ma-

trix via equation (3.17). For a system of N atoms, where each atom has four internal

states |g(e), 0(1)⟩, the state space has dimension 4N , and the density matrix has thus

42N elements. To perform calculations, we transform the full master equation (3.17) into

Liouville-Fock space and search for its null space. However, the computational cost in-

creases exponentially with a rate of 46N . This limits our ability to study exact properties of

large atom systems, and our discussion is limited to a few atoms (up to 5). Nevertheless, in

the next chapter, we show that even for a few atoms (even just two atoms), dipole-dipole
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interactions can still play an important role and significantly affect cooling efficiency.
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Chapter4

Enhancing sideband cooling via dipole-

dipole interaction

In this section, we present our primary findings concerning the utilization of resonant

dipole-dipole interactions for enhanced cooling performance. Firstly, we demonstrate the

existence of the magic spacing in the case of two and three atoms, which results in en-

hanced cooling performance. Subsequently, we search on other magic spacings contribut-

ing to superior cooling as a consequence of variations in light polarization orientations.

We then investigate the impact of laser detuning and multi-atom configurations. Our anal-

ysis shows that, compared to the single-atom case, a reduction in phonon occupations of

up to 13-17% can be achieved in our investigations, thereby demonstrating the potential of

RDDIs for cooling free-space atoms beyond single-atom limits. We note that decreasing

the driving strength improves performance, but the cooling rate will be sacrificed due to

weak driving.

The emergence of enhanced cooling through resonant DDIs, which causes reabsorp-

tion of light, is a unique feature compared to conventional laser cooling techniques and
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magneto-optical traps. This is due to the asymmetric driving conditions and the identi-

fication of magic atomic spacings that involve spectator atoms. These spectator atoms

act as a coolant and absorb phonons of the target atom which is driven more intensely

than the spectator atoms. But in the same time, since the RDDIs are reciprocal, they can

emit the phonons back to the target atom and heat it up through spin-exchange interac-

tion. The asymmetric driving field can suppress the latter process and removes more heat

than that returned from the RDDIs, enhancing the cooling performance in given parameter

setup. However, it should be noted that the reabsorption process does not always result in

superior cooling.

We will show that when the atoms are in close proximity, strong DDIs can result in

multiple scattering that heats up the target atom. It is important to note that in our analysis,

we assume that the system is in the LD regime, where all atoms are close to their motional

ground. This assumption holds true under the condition that all atoms have undergone

precooling using conventional dark-state sideband cooling methods. The key factor here

is that, by employing asymmetric driving conditions, the target atom can be cooled beyond

the single-atom limit, reaching the motional ground state. This highlights the crucial role

of spectator atoms in effectively transferring or extracting additional heat, surpassing the

reabsorption process caused by RDDIs, especially when interparticle distances are set

close to the optimal magic spacings.

4.1 Few atoms cases

We initially focus on two- and three-atom systems where one atom is the target while

the others act as spectators or refrigerants. As illustrated in Fig. 4.1, the spectator atoms
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Figure 4.1: A diagram illustrating the multi-atom enhanced sideband cooling mechanism
utilizing RDDIs within an equilateral triangle configuration with an interparticle spacing
denoted as s12. A laser (indicated by the red beam and arrow) is directed at the target
atom. This laser drives the red-sideband transition from state |g, n⟩ to |e, n− 1⟩, cooling
the atom towards state |g, n − 1⟩ through the process of spontaneous emission(indicated
by green arrow). The spin-exchange interactions in RDDIs (blue arrow) flip the spins
of other atoms via multiple light scatterings while conserving atomic excitation numbers.
The remaining spectator atoms can act as coolants, which extracts excess heat from the
target atom through RDDIs, providing a special cooling mechanism. The figure has been
adapted from [1]. Permission to adapt granted by the authors.

play the role of quantum emitters that enable collective spin-exchange interactions. By

considering an asymmetric driving setup, such that the laser field only stimulates target

atom (i.e., Ωµ = Ωδµ1 in equation (3.16)), we can disregard the motional degrees of free-

dom of the other atoms and solely focus on the target atom’s phononic degrees of free-

dom since the spectator’s motional state will not couple to its spin for η order interaction

in equation (3.17). As a result, the size of the spin-phonon spaces in equation (3.17) is

greatly reduced. This approach of asymmetric driving has been investigated in the case of

ion sideband cooling [37] and EIT cooling of neutral atoms in atom-waveguide interfaces

[39]. It enables the exploration of new parameter ranges that can lead to enhanced cooling

performance surpassing the limitations of cooling a single atom alone.

We start by computing the steady-state solutions of the target atom phonon num-
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Figure 4.2: Enhanced sideband cooling and the determination of magic spacing for two-
and three- atom’s configurations. (a) depicts the collective frequency shift g12 and decay
rate γ12 with polarization angle being perpendicular cos θ = 0, as a function of the atomic
separation s12, for several values within the range of λ. A vanishing g12 indicates the
presence a magic spacing sm ≈ 0.7133λ. (b) shows the ratio of the phonon number of the
target atom, ⟨n1⟩multi to the single atom’s limit, ⟨n1⟩single, in a multi-atom configuration,
for atoms arranged in a line (indicated by blue-solid line) and an equilateral triangle shape
(indicated by red-dashed line), as a function of s12 within λ. The sideband cooling param-
eters are set such that ∆ = −ν, Γ = 0.1ν, and ηΩ1 = 0.04ν. A maximal enhancement of
cooling performance occurs at s12 = sm. The figure has been adapted from [1]

ber in a multiatom system with RDDIs using equation (3.17) and setting nc = 1. This

choice of truncation number is sufficient in the LD regime and is confirmed to be con-

vergent for higher nc. The results are normalized with respect to the single atom value

⟨n1⟩single = η2Ω2

8ν2
+ Γ2

16ν2
[57] without RDDIs. The ratio ⟨n1⟩multi/⟨n1⟩single indicates the

extent of cooling enhancement, with values below one indicating enhanced cooling behav-

ior. In Figure 4.2(a), we determine the magic spacing for the two-atom scenario, which

corresponds to the maximal enhancement of sideband cooling. We locate the magic inter-

particle distance, denoted as sm ≈ 0.71λ, in the case of perpendicular polarization, where

the collective frequency shift g12 almost vanishes.

The identification of magic spacings can be understood by the interplay between a

finite decay rate and a vanishing g12. This regime allows for an additional γ12 to dissipate

heat from individual atoms via collective spin-exchange coupling. By utilizing asymmet-
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ric driving with the magic spacing condition, more heat can be transferred from the target

atom to the spectator atoms. Conversely, if |g12| increases and becomes non-zero shown

in Fig. 4.2(a), the efficiency of spin-exchange interaction for spectator atoms to absorbing

heat diminishes, leading to heating effects.

The absence of a collective frequency shift g12 observed in our study is similar to the

cooling condition observed at ξ = 0, π in the context of exp(iξ) [37, 39]. This similarity

arises due to the spatial characteristics of an long-range photon-mediated dipole-dipole

interaction within a one-dimensional atom-waveguide platform [69, 70]. At sm, when γ12

is finite and |γ12| < Γ, as indicated in Fig. 4.2(a), this condition allows for access to

cooling regimes similar to those observed in an atom-waveguide system with reciprocal

couplings to non-guided modes. These regimes can be precisely quantified as γnon =

(Γ−|γ12|) [37].

In Fig. 4.2, we note that the magic spacing will result in a local minimum γ12. When

considering various light polarizations that is not perpendicular θ ̸= π/2 and in the short

distance regime, additional magic spacings appear at a vanishing g12 but with a finite γ12

that is ’not’ at its minimum (represented by the line connecting points A, B, and C in Figure

4.3). Hence, while the association between the vanishing of g12 and the minimum value of

γ12 holds approximately true under the condition of long distances, it is not a comprehen-

sive criterion in all situations, particularly when different polarizations and short distances

are involved.

Fig. 4.2(b) illustrates a equilateral triangle configuration where the interparticle dis-

tance is set to the magic spacing sµν = sm. This configuration serves as an example for

extending the analysis to the case of two atoms. In this arrangement, all the mutual en-
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ergy shifts and decay rates exhibit equivalence to the two-atom case arranged in a linear

configuration. The coupling strength gµν vanishes simultaneously in these configurations,

resulting in optimal cooling performance. We note that a finite region exhibiting enhanced

cooling performance can also be observed for s12 around sm, where the absolute value of

g12 emerges and compromises the cooling performance.

4.2 Dipole polarization and magic spacings

We further investigate the impact of varying the polarization angles θ on the emer-

gence of magic spacings in two-atom configuration. The polarization angle impacts the

short-range characteristics of collective energy shifts, leading to an increased number of

crossing points at g12 = 0 as θ is varied. In Fig. 4.3(a), we identify these magic spacings

by locating the crossing points where g12(s12, θ) = 0, specifically focusing on s12 values

that are less than or equal to λ. As θ approaches zero, the polarization becomes parallel to

the line axis connecting the two atoms and there emerges more magic spacings, offering

potential enhancements in cooling behavior. To analyze the changes, we select six repre-

sentative points labeled as A to F, tracking their corresponding variations in the collective

decay rates, γ12, shown in Fig. 4.3(b), and cooling performance displayed in Fig. 4.3(c).

In the case of s12 > λ, the decay rate γ12 in Equation (2.17) weakens proportionally as 1/ξ

at longer distances. This transitionmoves the system towards a noninteracting regimewith

reduced significance of RDDIs. Point F, located approximately at θ ≈ π/2, correspond-

ing to the case shown in Figure 4.2, where the cooling enhancement is small, resulting in a

5% reduction compared to the single atom limit, indicated by ⟨n1⟩multi/⟨n1⟩single ≈ 0.95.

The changes in γ12 and cooling behaviors corresponding to the magic spacings shown
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Figure 4.3: Identification of magic spacings, along with the corresponding collective de-
cay rate, and cooling enhancement in a two-atom case. (a) The plot shows solid lines
denoting the (s12, θ) values for which the frequency shifts g12(s12, θ) vanish, where θ is
defined as the angle between the interatomic distance and the dipole moment direction.
The identified magic spacings, labeled as A to F, showcase varied cooling behaviors un-
der different parameters. (b) and (c) respectively show the corresponding collective decay
rates γ12 and cooling enhancement. An inset plot in (c) clearly defines θ. Several magic
spacings emerge at g12 = 0while varying θ. The remaining system parameters remain the
same as depicted in Figure 4.2. This figure has been adapted from [1]

in Figure 4.3(a) can be traced in Figures 4.3(b) and 4.3(c). The positive and negative

values of γ12 align with the set of magic spacings, specifically when interatomic distance

s12 equals to the magic spacings sm determined by the zero points of g12. When θ is

approximately less than 0.35π, multiple oscillations of g12 occur when atomic distance is

less than λ. In this range, an optimal cooling enhancement appears near point B, exhibiting

about 17% photon ratio reduction from the single atom case.

Along the trajectory from points A to C, significant values of |γ12| are found, ap-

proximately exceeding 0.5Γ when compared to the values along the D-E-F path. This

highlights the emergence of an optimal cooling condition with a finite |γ12| satisfying the

inequality 0.5Γ ≲ |γ12| ≲ 0.8Γ, representing a regime of moderate interaction where

γ12 ≈ 0.4Γ at point A, and a heating regime where γ12 approaches Γ (point C). In the

moderately interacting regime, RDDIs contribute to the cooling mechanism by removing

excess heat with the assistance of a finite Γ − |γ12| in the atom-waveguide system’s un-

guided modes. Conversely, near point C, where the magic spacing is very close to 0.05λ,

the system enters a strongly interacting regime characterized by Dicke superradiance and
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high spin-spin correlations, resulting in heating effects instead.

As we examine the sequence of points D-E-F, the system gradually transitions to-

wards the noninteracting regime where |γ12| approaches zero. In this regime, the influence

of RDDIs disappears, and the cooling performance converges towards the single atom case

without significant enhancements. This is evident at point D, where⟨n1⟩multi/⟨n1⟩single is

approximately equal to 1. When comparing points A and F, we observe that |γ12| is slightly

higher at A than at F, resulting in a slightly more pronounced cooling enhancement at A,

as illustrated in Figure 4.3(c).

4.3 Effect of laser detuning and collective frequency shift

Wenow relax the requirement of exact sideband cooling, where∆ = −ν, and explore

the influence of laser detuning on the cooling enhancement of individual systems. As

demonstrated in Figure 4.4(a), when the atomic spacing s12 deviates from sm, a non-

zero collective frequency shift Ωs = g12 emerges. This shift reduces the optimal cooling

performance. However, it can be compensated for by adjusting the detuning of the driving

field. Consequently, it is expected that employing a laser field with a detuning away from

the conventional sideband cooling condition could introduce new parameter ranges for

achieving cooling objectives.

In Fig. 4.4(b), we have performed numerical calculations to examine the cooling

performance as a function of both the laser detuning and the interparticle distance in a

two-atom system. We observe that the magic spacing identified in Fig. 4.2 emerges when

the exact sideband cooling condition of ∆ = −ν is imposed. However, when this condi-

tion is relaxed, we find another magic spacing at s12 ≈ 0.25λwhen∆+ν ≈ −0.3Γ, which
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Figure 4.4: The demonstration showing how the efficiency of cooling is influenced by
the detuning of the laser and the collective frequency shift. (a) A schematic diagram illus-
trates how the presence of non-zero collective frequency shiftΩs affects the spin-exchange
interactions (blue arrow), resulting in reduced cooling performance once the laser is set
to the regular red-sideband condition (red arrow). (b) Cooling efficiency is depicted as a
function of laser detuning and particle spacings for a two-atom system. (c) We consider an
isosceles triangle configuration with equilateral interatomic distances being magic spac-
ing sm ≈ 0.71λ, where the optimal enhancement is achieved at ϕ = π/3 for the target
atom at the apex, with negligible collective frequency shifts for all atoms. Other three-
atom configurations at different angles ϕ, such as a line shape at ϕ = π, exhibit a reduced
exchange process due to non-vanishing Ωs, resulting in reduced but still better cooling
performance compared to the single-atom case. The remaining parameters are consistent
with those described in Fig. 4.2. This figure has been adapted from [1]

corresponds to g12 ≈ 0.3Γ, as shown in Fig. 4.2(a). This suggests that the frequency shift

induced by the DDI can be compensated by the laser detuning, and the cooling perfor-

mance at this second magic spacing surpasses that of the previously identified one in Fig.

4.2(b).

Two regions of superior cooling performance are indicated in the Fig 4.4(b), but it

should be noted that both g12 and γ12 need to be taken into account simultaneously. There-

fore, it is not guaranteed that an enhanced cooling effect will occur when ∆+ g12 ≈ −ν

without a significant |γ12|. For example, the region where s12 → λ approximately sat-

isfies this condition but does not show superior cooling performance. When considering

interparticle distances s12 ≤ 0.2λ, a narrow and diminishing region of enhanced cooling

emerges due to the abrupt rise in g12. To counteract this effect before the heating mech-

anism becomes dominant as γ12 approaches Γ, a larger red detuning of the laser field is
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required. Analogous heating effects can also be observed at point C in Figures 4.3(b) and

4.3(c).

We investigates an isosceles triangle configuration in Figure 4.4(c) , where the target

atom is positioned at the top vertex of the triangle, and the side lengths are equal to sm to

ensure zero collective frequency shifts. By varying the angle ϕ, we introduce a finite and

variable collective energy shift between the spectator atoms, consequently affecting the

cooling performance of the target. The most efficient cooling is achieved when ϕ equals

π/3. This, combined with the findings from Fig. 2(b), suggests that optimal cooling per-

formance is favored by an equilateral triangle configuration in the ϕ−s12 parameter space.

This highlights the significance of frequency shifts on the spectator atoms depicted in Fig.

4.4(c), indicating that these frequency shifts have a detrimental impact on the cooling ef-

ficiency. An optimal value of ⟨n1⟩multi/⟨n1⟩single ≈ 0.87 can be attained, demonstrating

enhanced cooling across a wide range of ϕ values, except when ϕ approaches 0. In the

latter case, the frequency shift between the spectator atoms diverges, leading to a single

atom cooling performance. This phenomenon implies the suppression of collective spin-

exchange interactions due to non-resonant light-atom couplings, rendering the cooling

mechanism ineffective.

4.4 Multiatom configurations

In this final section, we extend our investigation to multiatom configurations based

on the insights gained from our previous analyses. We have established that achieving

optimal enhanced cooling performance requires avoiding collective frequency shifts on

the target atom in the context of sideband cooling. With this consideration in mind, we
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Figure 4.5: Various 4- and 5-atom configurations, positioned at the center and vertices
of a hexagon, are examined to investigate the effect on cooling enhancement. The tar-
get atom is located at the center of the hexagon, with the and the lattice spacing of this
hexagon is set to be magic spacing sm. The ratio of the normalized phonon occupation
of the target atom in the multi-atom configuration, ⟨n1⟩multi, to the single-atom case,
⟨n1⟩single,which indicates the cooling performance, is measured. The obtained ratios,
0.863, 0.864, 0.842, 0.849 and 0.890, for configurations (a-e) respectively, indicate a mod-
erate enhancement in cooling compared to the cases ofN = 2 and 3 shown in Figs. 4.2(b)
and 4.4(c). This figure has been adapted from [1]

explore a hexagonal structure where the target atom occupies the central position, and the

remaining spectator atoms are positioned at the vertices of the hexagon. We examine con-

figurations involving up to five atoms in total. By setting the side lengths of the hexagon to

be equal to the magic spacing, we ensure that the target atom experiences zero frequency

shifts resulting from RDDIs with the other atoms. This allows us to investigate the impact

of the multiatom structure on the cooling performance of the target atom.

In Fig. 4.5, we observe two possible alignments of the laser beam: it can either be

precisely directed onto the target atom within the plane of atoms, or it can have a slightly

off-plane angle, fulfilling the asymmetric driving condition. As the number of atoms in-

creases, amoderate enhancement in cooling performance is observed, with ⟨n1⟩multi/⟨n1⟩single
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approximately equal to 0.8 for N = 5, compared to 0.95 for N = 2 and 0.87 for N = 3.

However, we also note that the cooling performance reaches a saturation point, and even

exhibits slightly diminished enhancement in Fig. 4.5(e). This can be attributed to the pres-

ence of finite frequency shifts between the spectator atoms, which can not be completely

eliminated when additional atoms are added around the target atom, despite the elimina-

tion of shifts from nearest neighbors. This indicates a decrease in the impact of multiatom

enhancement on cooling. Additionally, it is crucial to recognize that a three-dimensional

atomic arrangement does not resolve this matter since it introduces new projection angles

between light polarizations and interparticle axes, resulting in non-zero energy shifts on

the target atom.
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Chapter5

Conclusion

The dark-state sideband cooling method investigated in this study is applicable to

both two-level and three-level atomic systems. The laser parameters can be tailored to

achieve resolved sideband cooling, making it a versatile technique. By utilizing reso-

nant dipole-dipole interactions in precisely arranged atomic arrays, our findings can lead

to subrecoil cooling of trapped atoms with exceptional performance [4, 71]. The use of

long-range spin-exchange interactions, facilitated by an asymmetric driving condition, en-

ables the removal of excess heat and results in improved cooling behavior. The precise

positioning of atoms can be achieved using versatile and adaptable optical tweezer arrays

[51], which have proven effective for manipulating neutral atoms, molecules, and ions.

The laser cooling technique presented in this work offers several advantages, including

the rapid preparation of the motional ground state without relying on atom-atom colli-

sions as in evaporative cooling [72, 73]. Our study shows the potential of RDDIs and

their collective behavior in generating significant spin-phonon correlations among atoms.

Moreover, it unveils new parameter regimes that facilitate distinct cooling mechanisms.

To summarize, our investigation focuses on the application of resonant dipole-dipole
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interactions in the dark-state sideband cooling of trapped atoms in free space. Our re-

sults reveal that this approach surpasses traditional resolved sideband cooling techniques

in single atoms, leading to enhanced cooling performance and driving the atom towards

its motional ground state through spontaneous emissions. We further demonstrate that

optimal cooling behavior is achieved by placing the atoms at specific magic interparticle

distances, where the collective frequency shifts on the target atom become negligible. Ad-

ditionally, we show that the cooling performance can be further improved in various mul-

tiatom configurations by adjusting laser detuning and light polarization angles. This study

sheds light on the subrecoil cooling of atoms using collective DDIs in free space, offering

promising prospects for overcoming cooling limitations in scalable quantum computation

and quantum simulations.
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AppendixA—Derivation of Photon -me-

diated Dipole-Dipole Interaction

In Section 2.3, we simplified the equation of motion to a reduced form that depends

solely on the current atomic operators. The subsequent step involves evaluating the re-

maining integral. We note that the conjugate part in equation (2.8) is included in solving

the integral given by:

∫
dΩ(1− (dΩ̂ · d̂)2)

∫ ∞

−∞
dωω3eiωdΩ̂·rµν/c

∫ ∞

0

dte−i(ω±ω0)t (A.1)

Utilizing the common spherical surface parameterization in θ and ϕ coordinates, we may

perform the angular integration. We may also choose to set rµν = rµν ẑ and d̂ = cos θẑ +

sin θx̂ on the xz plane without loss of generality owing to symmetry. The resulting angular

integral may then be expressed in terms of the function Fµν(x), given by:

∫
dΩ(1− (dΩ̂ · d̂)2)eiωdΩ̂·rµν/c = 4πFµν

(ωrµν
c

)
(A.2)

Such that

Fµν(x) = (1− cos2 θ)
sinx
x

+ (1− 3 cos2 θ)
(
cosx
x2

− sinx
x3

)
(A.3)
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where cos θ ≡ d̂ · r̂µν denotes the angle between the dipole polarization and the atom

connection line.

The Kramers-Kronig relations can be used to replace the time integral in the expres-

sion as a sum of a Dirac delta function and a Cauchy principal value:

∫ ∞

0

dte−i(ω±ω0)t = πδ(ω ± ω0)− iP
(

1

ω ± ω0

)
(A.4)

where P denotes the Cauchy principal value. So the final angular integral reads:

∫ ∞

−∞
dωω34πFµν

(ωrµν
c

)(
πδ(ω ± ω0)− iP

(
1

ω ± ω0

))
(A.5)

The Cauchy principal value is evaluated using the Sokhotski-Plemelj theorem, which in-

volves taking the mean-value of the integrals with the pole slightly displaced above and

below, resulting some integrals of the form:

lim
ϵ→0

1

2

[∫ ∞

−∞
dω sin

(ωrµν
c

) ωn

ω − ω0 + iϵ
+

∫ ∞

−∞
dω sin

(ωrµν
c

) ωn

ω − ω0 − iϵ

]

= πωn
0 cos

(ω0rµν
c

)
, (A.6)

and similarly

lim
ϵ→0

1

2

[∫ ∞

−∞
dω cos

(ωrµν
c

) ωn

ω − ω0 + iϵ
+

∫ ∞

−∞
dω cos

(ωrµν
c

) ωn

ω − ω0 − iϵ

]

= −πωn
0 sin

(ω0rµν
c

)
. (A.7)

Thus we see equation (A.5) equals to:

4π2ω3
0 (Fµν (krµν)− iGµν (krµν)) , (A.8)
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here k ≡ ω0/c and

Gµν (x) = −(1− cos2 θ)
cosx
x

+ (1− 3 cos2 θ)
(
sinx
x2

+
cosx
x3

)
. (A.9)

Put back everything in equation (2.8) gives us a whole master equation. Then the rotating-

wave approximation is performed by neglecting the fast-rotating terms such as σµσν and

σµE+
0 . The resulting master equation is given by:

iω0

∑
µ

[σ†
µσµ, Q]− i

∑
µ

[σ†
µ, Q]E+

0 · d+ i[σµ, Q]E−
0 · d

+
ω3
0d

2

4ϵ0ℏ3c3
∑
µν

(
(Fµν − iGµν)[σ

†
µ, Q]σν + (Fµν + iGµν)σ

†
ν [Q, σµ]

)
(A.10)

Rearranging the terms. The equation can be written as::

∑
µ

i(ω0 − gµµ)[σ
†
µσµ, Q]− i

∑
µ

[σ†
µ, Q]E+

0 · d+ i[σµ, Q]E−
0 · d

+i
∑
µ ̸=ν

gµν [σ
†
µσν , Q] +

∑
µν

γµν
2

(
σ†
µQσν −

1

2
{σ†

µσν , Q}
)

(A.11)

where γµν = 3Γ
2
Fµν and gµν = 3Γ

4
Gµν , while Γ ≡ ω3

0d
2

3ϵ0ℏ3c3 . The divergent Lamb shift

gµµ arises due to the integration over a high frequency region and must be corrected by

QED. However, this divergence only contributes to a small shift once renormalized by

QED and thus can be absorbed into the definition of the resonance frequency ω0. For an

initial vacuum, the above equation can be expressed in density matrix representation as:

ρ̇ = −i[H, ρ]− i
∑
µ ̸=ν

gµν [σ
†
µσν , ρ] +

∑
µν

γµν
2

(
σνρσ

†
µ −

1

2
{σ†

µσν , ρ}
)

(A.12)
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