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A Comprehensive Comparison of Temporal Formula to

Automaton Translation Algorithms

Translation of a temporal formula into an automaton is a central issue in the automata-
based approach to model checking. In the approach, model checking of a system M
against a temporal specification f proceeds in three steps: (1) generate an automatonA¬f for the negation of f , (2) construct a product automaton A that is the intersection ofM and A¬f , and (3) check the emptiness of the product automaton A. The time needed
to complete the model checking task is proportional to the size of A, which is the product
of the sizes of M and A¬f . For a given system, the size of A¬f determines the size of A.
Therefore, the smaller A¬f is, the faster the model checking task may be carried out.

In this thesis, we investigate an extensive collection of translation algorithms, in-
cluding all of the well-known ones. We compare the state and the transition sizes of
the automata generated from these algorithms. An algorithm that generates smaller
automata should be more helpful when it is applied in model checking. The reason is
that when one needs to certify that a system satisfies the desired property, the complete
product automaton must be constructed. To perform the comparison, we implement not
only the translation algorithms but also possible improvements in the GOAL tool. From
the experimental results, we observe that none of the algorithms can always generate the
smallest automaton for each of the temporal formulae considered. We therefore propose
a portfolio for choosing suitable algorithms for different kinds of temporal formulae. We
also design and implement an open repository called Büchi Store where one can look up
the Büchi automaton for a given temporal formula.

Keywords: Büchi Automata, GOAL, Model Checking, ω-Automata, Temporal Logic,
Verification.
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Chapter 1

Introduction

Software verification is a fundamental issue about the correctness of programs. A program

should always accomplish the goal the programmer proposes and should not cause any

unexpected side-effect, which is known as bugs in the program. Bugs in a program should

be eliminated otherwise software might go wrong. One common solution is to review the

code before publishing. Yet it might costs lots of time and human work. Hence some

systematical methods are proposed to clean up the bugs in program.

1.1 Background

There are some methods to seize this goal, such as testing and simulating in the early

years. In 1981, model checking is first introduced by E. M. Clarke and E. A. Emerson.

Model checking is an automatic process which can check whether the given system satisfies

the given property.

Model checking is a procedure to solve the fundamental problem whether a given

system M and a given property p, M ⊧ p. It involves three main phases, which are

modeling, specification, and verification. In modeling, the system M is usually given

as a specification of the target program. It can also be formalized by a finite state

machine, which can be represented by Kripke Structure. Kripke Structure contains nodes

to describe each state of a program and transitions for the variation of a state to another

state for statements in the program. However, a Kripke structure can be transformed into

an equivalent ω-automaton. Hence, we will only use the ω-automaton AM to describe

the system we want to verify. In specification, temporal logic is used for describing the

desired property p. Temporal logic is a logic language which wildly used to describe the
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rules and the desired property with temporal operators in terms of time. In this step, one

can translate the property described in temporal logic into an equivalent automaton Ap.

Usually, Büchi automata are chosen to represent such an automaton. Büchi automata

are first represented by J. R. Büchi in the 1960’s, which is the first relating to ω-automata

[2]. It is also proved in [2, 20] that each temporal logic formula can be translated into a

corresponding automaton. In verification, we solve the model checking problem M⊧ p by

solving this equivalent containment problem whether L(AM) ⊆ L(Ap). This containment

problem can be rewritten as an emptiness check problem, L(AM) ∩ L(A¬p) = ∅.

There is a modified method based on model checking which is called “on-the-fly model

checking”. The main idea of on-the-fly model checking is that the model checker does not

have to generate the complete product automaton for the emptiness test in verification

phase. If the language of an automaton is not empty, the path of the accepting run

may not involve all states in this automaton. With this concept, even if the complete

automaton haven’t be constructed, emptiness check of the half-built automaton is suf-

ficient enough to tell whether the language of the complete automaton is empty. Since

the production procedure is based on depth first search, whenever it creates a transition

which towards a state which is already generated, it must be either a back edge or a cross

edge in the complete graph. If this transition is a back edge and the states in this loop

contains an accepting state, the emptiness check can be terminated and the counterex-

ample is found. In this way, the cost on average is decreased even though the complexity

is still remain costly.

In automata-approach model checking, the connection between program, temporal

logic, and automata is quite essential.

1.2 Motivation and Objectives

Since we try to check the emptiness of the product of two ω-automata, the state space of

the product automaton is also important. However, the size of AM is always large because

it is highly related to the complexity of the system. Even though simulation algorithms

such as the one described in [23] can be used, downsizing the system M is still limited.

Thus, the size of the corresponding automaton for a property is important. Intuitively,
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we assume that the smaller the automaton is, the smaller the product automaton in

the model checking procedure will be. Hence, the size of the generated automaton of

a temporal formula to automaton translation algorithm is usually be think as a major

point of view when comparing between translation algorithms. However, we should also

concern about the size of the half-built product automaton when we talk about on-the-

fly model checking. Our goal in this thesis is to comprehensively compare translation

algorithms in more general way. This comparison will bring out the result about which

kinds of translation algorithms can generate better automata, which is smaller or more

suitable for on-the-fly model checking than the others.

For this goal, rather than studying the core idea these algorithms, we also need a good

assistant tool for us to obtain needed data. Therefore, GOAL, which is an interactive

graphical tool for temporal logic and various kinds of ω-automata, is introduced. We

implement all the algorithms discussed in this thesis in the GOAL tool.

1.3 Thesis Outline

The rest of this thesis is organized as follows:� In Chapter 2, we will introduce many kinds of automata which we will use in this

thesis and relevant research such as ω-automata, transition-based automata, and

alternating automata. Furthermore, the brief introduction about temporal logic

would be described.� In Chapter 3, we will introduce some translation algorithms which we had studied

and some related tools that is used for model checking or linear temporal logic

translation.� In Chapter 4, we will present some translation algorithms which are based on

transition-based generalized Büchi automata in detail. We will also present an

algorithm which is based on a different idea than the others.� In Chapter 5, we will show the experiment environment settings and the results.

These experiments will bring out the discussions and conclusions in Chapter 6.
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� In Chapter 6, we will discuss the reason why some algorithms can perform better

than the others and how should we choose a right algorithm to combine with model

checking.� In Chapter 7, we briefly summarize this thesis and conclude our contributions. We

would also describe some work we need to do in the future.

4



Chapter 2

Preliminaries

Here in this chapter, we will introduce some pre-knowledge for automaton-based model

checking. In the first section, we will describe many kinds of automata which will be used

in this thesis, and some basic operations for those automata. In the second section, the

characteristic of temporal logic will be introduced.

2.1 Automata on Infinite Words

Automata theory is considered as a good way to understand a program, which is im-

portant in formal verification. ω-automata can represent not only a given system but

also a given property which is written in temporal formula. This work can be traced

back about forty years ago in 1960’s, when J. R. Büchi introduced his work, which using

finite automata with infinite input words to obtain a decision procedure for a restricted

second-order logic, the sequential calculus [2].

Some notations in the following should be brought out here. Usually, we use Σ to

denote the set of alphabet, and Σω to denote the set of infinite words over Σ. An infinite

word then can be denoted as w = w0w1w2 . . . ,w ∈ Σω and each wi ∈ Σ.

An ω-automaton A is a 5-tuple (Σ,Q,∆,Q0,F) where� Σ is the finite set of symbols, called alphabet,� Q is the finite set of states,� ∆, is the transition relation,� Q0 ⊆ Q is the initial states, and
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� F is the acceptance component.

If ∣∆(s,α)∣ = 1 for s ∈ Q and α ∈ Σ, the automaton is deterministic, otherwise, it is

non-deterministic.

The acceptance conditions of each kinds of automata may be based on states or

transitions. An ω-automaton is called a state-based automaton if the acceptance condition

is defined over states. A run ρ of a state-based automaton A on infinite word w =
w0w1w2 . . . ∈ Σω is a sequence of states q0, q1, . . . ∈ Qω where

q0 ⊆ Q0, qi ∈ Q and qi+1 ⊆ ∆(qi,wi) for 0 ≤ i.
The set of states occurring infinitely often in ρ = q0, q1, . . . ∈ Qω is denoted as inf (ρ), more

precisely

inf (ρ) = {qi ∈ Q ∣ ∀i∃j > i, qi = qj}.
Usually, we simply say “automata” for “state-based automata”. On the other hand,

an ω-automaton is called a transition-based automaton if the acceptance condition is

defined over transition. A run ρ of a transition-based automaton AT on infinite word

w = w0w1w2 . . . ∈ Σω is a sequence of transitions (q0,w0, q1), (q1,w1, q2), . . . ∈∆ω where

q0 ⊆ Q0, qi ∈ Q and qi+1 =∆(qi,wi) for 0 ≤ i.

The set of transitions occurring infinitely often in (q0,w0, q1), (q1,w1, q2), . . . ∈ ∆ω is de-

noted as inf (ρ), more precisely

inf (ρ) = {(qi,wi, qi+1) ∣ ∀i∃j > i, (qj ,wj, qj+1) where qi = qj,wi = wj + 1, qi+1 = qj+1}.
Note that inf (ρ) is a set of transitions for a transition-based automaton, while it is a set

of states for a state-based automaton. Because an accepting run of an ω-automaton is

differ from the accepting conditions, the definition of accepting run of an automaton will

be introduced in section 2.2.

An alternating automaton A is an ω-automaton with ∆ = Q × Σ to B+(Q) where

B+(Q) is the set of positive boolean formulae over Q. A simple example of B+(Q) is

q0 ∨(q1 ∧ q2). A run ρ of A on a word w0w1 . . . ∈ Σω is a labeled DAG (V,E,λ) such that:� V is partitioned into ⋃∞i=0 Vi (infinite levels of nodes),
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� E ⊆ ⋃∞i=0 Vi × Vi+1,� λ: V →Q is the labeling function,� λ(V0) ∈ Q0, and� for all x ∈ Vi, there exists a Q satisfying ∆(λ(x),wi) such that Q = λ(E(x)), where

E(x) = {q ∣ (x, q) ∈ E}.

2.2 Variants of ω-automata

There are several kinds of ω-automata in automaton theory. In this thesis, we will use

some of them, which are Büchi automata, generalized Büchi automata, transition-based

generalized Büchi automata, and co-Büchi very weak alternating automata. We will give

the definition for each of them in the following.

2.2.1 Büchi Automata

Büchi automata are often used for automata-based model checking. An ω-automaton

A = (Σ,Q,∆,Q0,F) is called Büchi automaton if the acceptance condition is defined as

follows: F ⊆ Q and a run ρ on a infinite word w is accepted by A if

inf (ρ) ∩F ≠ ∅.
In other words, there exists at least one state q ∈ F which is visited infinitely often on ρ.

A word w ∈ Σω is accepted by A if there is a corresponding accepting run ρ.

When we talk about Büchi automaton, two basic operations, union and intersection,

for it should be mentioned.

Proposition 2.1. Let A1 and A2 be two Büchi automata. There is a Büchi automaton

A which accepts the union language, which means L(A) = L(A1) ∪L(A2). [4]

Proof. Let A1 and A2 be defined as follows:

A1 = (Σ1,Q1,∆1,Q01,F1) andA2 = (Σ2,Q2,∆2,Q02,F2). LetA is a 5-tuple (Σ,Q,∆,Q0,F),
where
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1. Σ = Σ1 ∪Σ2,

2. Q = Q1 ∪Q2,

3. Q0 = Q01 ∪Q02,

4. F = F1 ∪F2, and

5. ∆(q,w) = { ∆1(q,w) if q ∈ Q1

∆2(q,w) if q ∈ Q2

In this constructive way, it is easy to see that A accepts and only accept any accepting

word for A1 and A2.

Proposition 2.2. Let A1 and A2 be two Büchi automata. There is a Büchi automaton

A which accepts the intersected language, which means L(A) = L(A1) ∩L(A2)[4].
Proof. Let A1 and A2 be defined as follows:

A1 = (Σ1,Q1,∆1,Q01,F1) andA2 = (Σ2,Q2,∆2,Q02,F2). LetA is a 5-tuple (Σ,Q,∆,Q0,F),
where

1. Σ = Σ1 ∪Σ2,

2. Q = Q1 ×Q2 × {1,2},
3. q0 = Q01 ×Q02 × {1},
4. F = F1 ×F2 × {1}, and

5. ∆((q1, q2, i),w) = (q′1, q′2, j) where q′1 =∆1(q1,w), q′2 =∆2(q2,w) and

⎧⎪⎪⎪⎨⎪⎪⎪⎩
j = 1 if q1 ∈ F1 and i = 2
j = 2 if q2 ∈ F2 and i = 1
i = j false.

The main idea of this construction is that if a run ρ is accepted, there exists two

states in inf(ρ) which are ((qi, qj ,1)) and ((qk, ql,2)) where i, j, k, l are arbitrary number.

Hence, by the construction, both F1 and F2 is visited infinitely often.
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Proposition 2.3. Let A be a Büchi automaton. Then there exists a Büchi automaton A
such that L(A) = Σω −L(A) [2].

2.2.2 Generalized Büchi Automata

An ω-automaton A = (Σ,Q,∆,Q0,F) is called Generalized Büchi automata iff the ac-

ceptance condition is defined as follows: F ⊆ 2Q, e.g. F = {F1,F2, . . . ,Fk} and for all

1 ≤ i ≤ k, Fi ⊆ Q. A run ρ on an infinite word w is accepted by A iff

inf (ρ) ∩Fi ≠ ∅ for every Fi ∈ F .
In other words, there exists at least one state q for each Fi ∈ F is visited infinitely often

on ρ. A word w ∈ Σω is accepted by A iff there is a corresponding accepting run ρ.

Proposition 2.4. Let A1 be a generalized Büchi automaton. There is a Büchi automaton

A which accepts the same language of A1, which means L(A) = L(A1).
Proof. Let A1 = (Σ1,Q1,∆1,Q01,F1), where F1 = {F1,F2, . . . ,Fk}. Let A is a 5-tuple

(Σ,Q,∆,Q0,F), where

1. Σ = Σ1,

2. Q = Q1 × {1..k},
3. Q0 = {q0},
4. F = F1 × {1},
5. ∆(q0,w) = (q,1) if there exists a qi ∈ Q01, ∆1(qi,w) = q, and

6. ∆((q′, i),w) = (q, j) if ∆1(q,w) = q′ and { j = i + 1 (mod n) if q ∈ Fi

j = i if q ∉ Fi

In order to record which acceptance set we are eager to visit, the third flag on state

is needed. This idea is quite the same as the intersection operation of Büchi automata.

Once a run ρ visits a state flagged with j, which means there is a state in Fj of A1 is

visited. If the flag can always change from 1 to k infinitely often, every corresponding

accepting set Fi ∈ F is visited infinitely often. Hence, this run should be accepted by A.
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2.2.3 Transition-Based Generalized Büchi Automata

An ω-automaton A = (Σ,Q,∆,Q0,F) is called a transition-based generalized Büchi

automaton if the acceptance condition is defined as follows: F ⊆ 2∆, which means the

acceptance is a set of subset of transitions, e.g. F = {F1,F2, . . . ,Fn} and for all 1 ≤ i ≤ n,

Fi ⊆ ∆. A run ρ on an infinite word w is accepted by A if

inf (ρ) ∩Fi ≠ ∅ for every Fi ∈ F .
In other words, there exists at least one transition t for every Fi ∈ F appears infinitely

often on the run ρ. A word w ∈ Σω is accepted by A if there is a corresponding accepting

run ρ.

2.2.4 Co-Büchi Very Weak Alternating Automata

An alternating automaton is called very weak (abbreviate as VWAA) if the following

properties hold.� There exists a partition of Q into disjoint sets Qi, such that either the accepting

set Qi ⊆ F or F ∩Qi = ∅.� There exists a partial order ≤ on the set of Qi such that, for every q ∈ Qi, if q′ ∈ Qj

occurs in ∆(q,w), then Qj ≤ Qi.

Thus, a run DAG of a VWAA will eventually “trapped” within a partition Q′.

A VWAA with co-Büchi acceptance condition if the accepting set F is a subset of Q.

A run DAG ρ of co-Büchi VWAA is accepting if any infinite branch in ρ has only finite

number of nodes labeled in F .

2.3 Propositional Linear Temporal Logic (PTL)

Temporal logic is a description logic which is used to represent and reason about the spec-

ification of a system which is qualified in terms of time. Any logic which views time as a

sequence of states is a temporal logic. It was first introduced by A. Prior in the 1960’s, and
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developed further by A. Pnueli for computer usage. A. Pnueli pointed out that temporal

logic is useful when people trying to verify and specify the software programs especially

for concurrent, reactive, and non-terminating programs such as operating system [21].

Temporal logic is used to formalize the describing sequences of transitions between

states in a reactive system, which can be represented as a Kripke structure [5]. A Kripke

structure M can be defined as 4-tuple (Q,Q0,R,L) where Q is the set of state, Q0 is

the set of initial state, R is the total transition relation between two states, and L is the

labeling function which labels each state with a set of propositions if the propositions

is true in the state. A path π of M from a state q is an infinite sequence of states

π = q0, q1, . . . such that q0 = q and (qi, qi+1) ∈ R for all i ≥ 0. Temporal formulae are

then used to describe the properties about a state or a path, which would be called state

formulae and path formulae. A state formula describes what property should be true at

the current state while a path formula describes what property should be true along the

specific path.

A formula written in temporal logic can specify the property of a program by the

temporal operators. For example, we can use always operator to describe that some

properties, sometimes called specifications, would always be true, which is usually con-

sidered as a safety property of a distributed system. Notice that temporal operators can

also be combined with one another.

Propositional linear temporal logic is a restricted linear temporal logic which only

allowing boolean variables.

State formulae, boolean operators, and temporal operators are contained in linear

temporal logic [18]. The temporal operator can be separated into two parts, which are

future operators and past operators. Here we would only focus on the future operators.

Let πi denotes the suffix of π staring at qi in the sequence of path. The definition are as

follows:

State Formulae� For a state formula p,

M,π ⊧ p⇔ s is the first state of π and M,s ⊧ p.
11



Boolean Operators

The following are the semantics of some boolean operations.� Negation: ¬p,
M, π ⊧ ¬ p⇔M, π ⊭ p.� Disjunction: p ∨ q,

M, π ⊧ p ∨ q⇔M, π ⊧ p or M, π ⊧ q.� Conjunction: p ∧ q,
M, π ⊧ p ∧ q⇔M, π ⊧ p and M, π ⊧ q.

There are some other operations which are not introduced here such as implication (→)

and equivalence (↔) can be defined by negation, disjunction, and conjunction for sim-

plicity.

Future Operators

Here we are going to introduce the semantics of the future operators.� Next: ◯p, or sometimes be written as X p,

M,π ⊧ ◯p⇔M,π1 ⊧ p.� Eventually: ◇p, or sometimes be written as F p,

M,π ⊧◇p⇔ for some k ≥ 0,M,πk ⊧ p.� Always: ◻p, or sometimes be written as G p,

M,π ⊧ ◻p⇔ for all i ≥ 0,M,πi ⊧ p.� Until: p U q,
M,π ⊧ p U q⇔ for some k ≥ 0,M,πk ⊧ q, and for all 0 ≤ i ≤ k,M,πi ⊧ p.

12



� Release: p R q,
M,π ⊧ p U q⇔ for all k ≥ 0, if for every i < k,M,πi ⊭ p, then M,πk ⊧ q.� Waits for: p W q,

M,π ⊧ p W q⇔M,π ⊧ p U q or M,π ⊧ ◻p.

13



Chapter 3

Related Work

One of the members in our group, W.-C. Chan, had given a comparison study of some

algorithms in 2007 [3]. He compared five algorithms which were Tableau [18], Incremental

Tableau [13], Temporal Tester [14], GPVW [9], and LTL2AUT [7].

He concluded that GPVW and LTL2AUT perform better than the others in terms of

the state size. Both these algorithms have been improved as GPVW+ and LTL2AUT+.

We will follow this conclusion and take more algorithms to have a more comprehensive

comparison.

3.1 Translation Algorithms

Here we will briefly describe the algorithms we are going to focus on in this thesis. The

section is ordered by the acceptance condition of the result automaton and the proposed

year of each algorithm.

3.1.1 Couvreur’s Algorithm

This work is presented in [6]. This algorithm presents a way to translate an LTL formula

to a transition-based generalized Büchi automaton (TGBA). The first step in this algo-

rithm is to expand the given formula to an expression which can obtain the information

about the property which the current and the next states should satisfy and what kind

of property had been satisfied in each step. With this expression, the automaton is con-

structed by translating each expression element into the corresponding transitions and

states. Second, for every U -formula ψ, it build a corresponding accepting set which con-

tains every transition which makes ψ be satisfied. Then, the construction is completed.
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The space complexity of this algorithm depends on the number of temporal operators in

the given formula f .

3.1.2 LTL2BA

This algorithm translates an LTL formula into a Büchi automaton with three stages: (1)

translating from LTL formulae to very week alternating co-Büchi automata (VWAA),

(2) translating VWAA with co-Büchi condition into TGBA, and (3) translating TGBA

into Büchi automata [8]. In the first stage, the states of the automaton is actually

corresponding to the subformulae of the given formula. For each successor formula of the

corresponding formula of the current state, if it is a conjunction formula, the algorithm

will generate an and-branch transition and states, generate single state and transition

otherwise. The accepting set will be a set of states which the corresponding formulae are

until-formulae. The second stage translates the previous result into TGBA. For each until

subformula f of the given formula, the construction will generate an accepting set which

contains all the transitions whose successor state does not refer to any state in VWAA

corresponding to f . The third stage translates the previous result TGBA into BA. It

constructs the result Büchi automaton with an additional integer to keep track of which

accepting condition is looking forward to. Each intermediate automaton is simplified

on-the-fly, in order to save memory and time.

3.1.3 LTL2BUCHI

This is also a translation algorithm for a linear temporal formula to a Büchi automaton

using transition-based generalized Büchi automata as intermediate automata. The main

feature of this algorithm is that it records the information on transition rather on state,

which allows it to merge states [10]. The core method of this algorithm is the same as

LTL2AUT [7], but the ways collecting accepting set and merging two states are different.

Merging states in this algorithm is more rigid since the information about previous state

and accepting condition in a state may differ. This information should not be lost because

the relation between states in transition-based automata is essential. Every state in this

construction contains two list about accepting set, one records the U -subformula in the

given formula while the other contains those which are satisfied at the transition. These
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two lists are useful when computing the accepting set by building set of transitions for

each U -formula which is satisfied at this transition.

The paper also gives an algorithm for TGBA to Büchi automaton translation. It

provides a construction of an automaton A′ with Büchi acceptance condition. By com-

puting an automaton A which is the intersection automaton of A′ and the target TGBA

AT GBA, the corresponding automaton A is constructed, which means the language of A
and AT GBA are equivalent.

3.1.4 GPVW+

GPVW is a simple on-the-fly algorithm proposed in [9]. It keeps the information of ele-

mentary formulae, U -formulae, and the right-hand side formulae of U -formulae in each

state. The U -formulae are kept for the accepting condition for generalized Büchi au-

tomaton. Once the right-hand side formula of an U -formula f holds in the current state,

the U -formula is satisfied, which implies the accepting set corresponding to f should

contains the current state. They also proposed a new way to detect the contradiction

and redundancies for states.

3.1.5 LTL2AUT+

LTL2AUT+ improved GPVW by syntactically implication [7]. They deduce the infor-

mation for a state by keeping the information of elementary formulae. The improvement

helps merging states and detecting contradiction and redundancies.

3.1.6 MoDeLLa

The main idea of this method is that generated automata should be more deterministic

rather than smaller because the final product in model checking may be smaller with the

help of deterministic automata [22]. However, some LTL formulae cannot be translated

into an equivalent deterministic Büchi automata, and even deciding whether the trans-

lation is possible belongs to EXPSpace and is PSpace-Hard [15]. In this way, this

algorithm translates the given formula into a generalized Büchi automaton “as determin-

istic as possible” when computing the cover of the formula eventhough it may generate

more states than other algorithms. First, the rewriting rule which would cause nondeter-
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Figure 3.1: The structure of Spin simulation and verification

minism should be omitted, which would make the cover “less nondeterministic”. Second,

Shannon’s expansion should be applied to the top level boolean propositions of the cover,

which would make the cover “more deterministic”. The last step is to merge the X-part

of the cover. This merging action is not always safely applicable since the corresponding

states would not be in the same accepting set. Therefore, this action can only be applied

when it is guaranteed not to cause incorrectness. However, this work is only based on “as

deterministic as possible”. The result may be good enough for model checking usage.

3.2 Tools

There are some tools which are related to automata-based model checking. We will give

a brief instruction for each of them in this section.

3.2.1 SPIN

Spin [11, 12] is a well-know model checker, can be used for the formal verification of

asynchronous process systems. The tool was developed at Bell Labs, written by Gerard
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J. Holzmann and others, starting in 1980. The basic structure is illustrated in Fig. 3.1.

XSpin is a graphical front-end for Spin. To verify a design, Spin accepts design speci-

fications written in a high level language, called Promela (a PROcess MEta LAnguage),

and it accepts correctness requirements expressed as Linear Temporal Logic (LTL) for-

mulae. Promela parser can also fix syntax errors, and perform interactive simulation to

roughly ensure that the design behaves as intended. Then, Spin generates an optimized

on-the-fly verification program, which will be compiled and executed. Counterexamples

to the correctness claims can be fed back into the interactive simulator, if detected.

The fundamental technique of Spin is logic model checking. M.Y. Vardi and P. Wolper

extended model checking with an automata theoretic model [16]. The description of a

concurrent system in Promela consists of one or more user-defined process templates,

and Spin translates each into a finite automaton. The global system behavior can be

obtained by computing an asynchronous interleaving product, resulting again represented

by an automaton. Then, Spin takes the correctness claim in LTL formula and converts

it into a Büchi automaton base on a simple on-the-fly construction [9]. The synchronous

product of this claim and the automaton representing the global state space is again a

Büchi automaton. The result of the validity of the claim is equivalent to the emptiness of

this automaton. The correctness claims in Spin represents behaviors that are undesirable.

3.2.2 GOAL

GOAL (http://goal.im.ntue.du.tw) [24, 25] is a graphical interactive tool for user to

define, manipulate and test temporal logics and ω-automata. The acronym GOAL is

derived from “Graphical Tool for Omega-Automata and Logics”. This tool is developed

on JAVA and T.-K. Tsay is the leader of GOAL team at National Taiwan University.

The graphical user interface of GOAL is extended from JFLAP.

The GOAL tool is used to be an educational assistant in the first place, helping users

learning ω-automata theory and temporal logic. Recently, The GOAL tool had been

proposed as a research tool because of the expanded collection of translation, simplifica-

tion, and completementation algorithms. User can also write a program to access GOAL

functions with command-line mode. The utility functions for some common tasks such

as random formulae generation, and statistics collection are also provided.
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GOAL is now provided the following functions:� Editing, Running, Testing, and Simplifying Büchi Automata:

One can easily point-and-click and drag-and-drop to build up a Büchi automaton.

Once the automaton is created, he/she can easily run it by given input to see what

kind of input language the automaton would accept or testing for emptiness. Not

only that, any Büchi automaton can be simplified with the help of simplification

algorithms which had been implemented. With simplification, user can get a smaller

automaton which is equivalent to the original one, which would be much easier to

understand.� Translating QPTL (and LTL) Formulae into Büchi Automata:

Numbers of translation algorithms have been implemented in GOAL. User can

write a QPTL or LTL formula and translate it to a Büchi automaton via these

algorithms. GOAL imposes a restriction that a quantifier must not fall in the scope

of a temporal operator. This function would help user to get more understanding

about the algorithm which he/she is interested in.� Boolean Operations on Büchi Automata:

The three standard boolean operations – union, intersection, and complementation

are supported in GOAL.� Tests on QPTL Formulae:

Satisfiability and validity tests are supported. Even though the equivalent test

between two QPTL formulae is not supported, one can use the mutual implication

operator (↔) to accomplish the same feature.� Exporting Büchi Automata as Promela Code:

User can export the automaton in the Promela syntax on the screen or as a file.

This feature makes it possible to use GOAL as a graphical specification definition

frontend to an automata-theoretic model checker like Spin.� The Automata Repository:

The repository in GOAL contains a collection of frequently used QPTL formulae
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Figure 3.2: The editing environment of GOAL

and their corresponding equivalent automata. This is a very convenient way for

learning the relation between Büchi automata and QPTL for beginners.
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Chapter 4

Translation Algorithms

In this chapter, we will describe the translation algorithms in detail. Three of them use

transition-based generalized Büchi automata (TGBA) as intermediate automata. The

accepting sets of TGBA are transition sets rather than state sets, which helps reducing

the state size of the automaton. Moreover, optimization for automaton can be introduced

during each step. Hence, the translation algorithm with intermediate automaton can

generates smaller automaton than others at most of the time.

The last one, MoDeLLa, proposes a different point of view. The algorithm doesn’t

put their strength on generating smaller automaton. Conversely, they propose that if the

translation algorithm generates the automaton as determined as possible, which would

generates more states, will helps reduce the size of the product automaton in model-

checking procedure.

4.1 Couvreur’s Algorithm

This algorithm translates the input temporal formula into a TGBA. The automaton

construction is very similar to the one proposed in [9]. This algorithm is based on symbolic

computation over a set of boolean variables. A boolean variable rf of a temporal formula

f will be expanded into three part, which are the alphabets should be true in current

state, the U -formulae have to be true from the next state on, and the formulae have to

be true from the next state on. For an infinite word σ = x0ẋ1ẋ2 . . . over the alphabet 2AP ,

rf corresponds to f ⊧ σ and af U g corresponding to (σ ⊧ f U g) ∧ ¬(σ ⊧ g). There are

several fundamental rules used for formula expansion, which are listed in Table 4.1 where

p is a literal. With these fundamental rules, the variable rf of the given LTL formula f
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rp p

r¬p ¬p
rf∧g rf ∧ rg

rf∨g rf ∨ rg

rf U g rg ∨ rf ∧ r◯(f U g) ∧ af U g

rf Rg rf ∧ rg ∨ rg ∧ r◯(f Rg)

Table 4.1: Formula expansion rules

can be expressed in an expression form which only uses the variables of these form: p,

¬p, ag, and r◯(g), where the variables p are atomic proposition and g are subformulae of

f . Proposition 1 is the application of this property to a set of temporal formula F .

Proposition 4.1. Let F be a set of formulae. ∆(F ) = ∏f∈F rf can be expanded to the

form:

∏
f∈F

rf = ∑
(X,NAcc,Next)∈LF

(X ∧ ∏
g∈NAcc

ag ∧ ∏
h∈Next

r◯(h))
with

LF ⊆ 22AP × {g U h ∈ Sub(f)}
×{{g U h ∈ Sub (f)} ∪ {{g Rh ∈ Sub (f)} ∪ {g ∈ Sub(f) ∶ ◯g ∈ Sub(f)}}.

and Sub(f) is the subformula set of f .

The automaton construction then starts by the expression form of input formula f .

X will be considered as alphabet which should be true immediately in the current state,

NAcc is the U -formulae which should hold from the next state on, and Next is the

formulae which should hold from the next state on. Each implication of this expansion

will define a transition (f,X,AccSet , g), where AccSet = Acc∖NAcc, Acc is the U -formula

set of Sub(f), and (X,NAcc ,Next) ∈ Lf and g ∈ Next . The third tuple of a transition

Acc ∖ NAcc is used to record which U -formulae are not concerned in the future. For

each formula g ∈ Acc, the construction will create a transition set which collects all the

transitions with the third tuple contains g. Hence, if a transition (f,X,AccSet , g) in a

run of the result TGBA, AccSet gives the information of which U -formulae are satisfied

in the prefix of the path or are not concerned in the suffix. The U -formulae which are

not in AccSet should be focused on in the suffix. The construction will then continue to
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expand all the formulae g ∈ Next until all the reachable states are created. Theorem 4.2

formalizes the resulting automaton.

Theorem 4.2. Let f be an LTL formula. Let Af = (Σ,Q,→, q0,Acc) be the transition

generalized Büchi automaton where� Σ is the set of atomic proposition of f ,� Q = {F ⊆ {g U h ∈ Sub(f)} ∪ {g Rh ∈ Sub(f)} ∪ {g ∈ Sub(f) ∶ ◯g ∈ Sub(f)} ∪ {f}},� →∶ (f,X,AccSet , g), where AccSet = Acc ∖ NAcc, and (X,NAcc,Next) ∈ Lf and

g ∈ Next,� q0 = {f}, and� Acc = {g U h ∈ Sub(f)}.

An accepting run of the result TGBA will infinitely often go through the transitions

for each accepting set in Acc which means each U -subformulae is satisfied at some point

of transition sequence. Hence the corresponding word for the run satisfies the input

temporal formula. In another direction, a word which satisfies the temporal formula f

will satisfies each U -subformula at some point of a alphabet sequence, say it satisfies

one U -subformula g U h after reading the first ith alphabet a1, a2, . . . , ai. One of the

corresponding runs will go through a transition (g U h, ai,{g U h}, h). In the suffix of the

run, formula g U h will always be recorded on transitions because it is satisfied in the

prefix of the path.

Here is an example of the construction for formula f = ◻(p U q)
Example 4.3. Construct an automaton for formula f = ◻(p U q). Let g = (p U q). We

deduce that Acc = {g}. The expansion of formula f will be:

rf = rg ∨ r◯(f) = ((rq) ∨ (rp ∧ ag ∧ r◯(g))) ∧ r◯(f)

= (rq ∧ r◯(f)) ∨ (rp ∧ ag ∧ r◯(g∧f))
This expression will produce two transitions:

({f}, q,{g},{f})({f}, p,∅,{g, f})
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Figure 4.1: TGBAf generated by Couvreur’s algorithm

The algorithm then produces the successors of state {g, f}:
rg∧f = rg ∧ rf = (rq ∨ (rp ∧ ag ∧ rg)) ∧ ((rq ∧ r◯(f)) ∨ (rp ∧ ag ∧ r◯(g∧f)))

= (rq ∧ r◯(f)) ∨ (rp ∧ rq ∧ ag ∧ r◯(g∧f)) ∨ (rp ∧ ag ∧ r◯(g∧f))
Three more transitions will be produced:

({g, f},{q},{g},{f})({g, f},{p, q},∅,{g, f})({g, f},{p},∅,{g, f})
Since there are no more states created, the construction is completed and Fig. 4.1 gives

the resulting automaton. Note that the red-labeled transitions are accepting transitions.

4.2 LTL2BA

This algorithm translate an LTL formula into a Büchi automaton with three stages: (1)

translating from LTL formula to very week alternating co-Büchi automaton (VWAA),

(2) translating VWAA with co-Büchi condition into TGBA, and (3) translating TGBA

into Büchi automaton [8].

4.2.1 LTL to VWAA

The first stage generates the very weak co-Büchi alternating automaton from the LTL

formula. Each state in VWAA will actually corresponding to a subformula of the input

formula f . In order to reach this goal, two operators are defined as follows.

Definition 4.4.

For T1, T2 ∈ 22Σ×Q we define

T1 ⊗ T2 = {(α1 ∩α2, e1 ∧ e2) ∣ (α1, e1) ∈ T1 and (α2, e2) ∈ T2}
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For an LTL formula f we define f by: f = {f} if f is a temporal formula,

f1 ∧ f2 = {e1 ∧ e2 ∣ e1 ∈ f1 and e2 ∈ f2} and f1 ∨ f2 = f1 ∪ f2.

The operator ⊗ computes the products of the alphabet and formula pair and f gives

roughly the DNF of f . Here is the construction translating LTL formula into VWAA.

Theorem 4.5. Let f be an LTL formula, and Prop is the proposition set for f . Let

VWAAf = (Σ,Q, δ, q0,Acc) be the result VWAA where� Σ = 2Prop,� Q is the set of temporal subformulae of f ,� q0 = f ,� Acc is the set of U -subformulae of f , and� δ is defined as follows (∆ is used to extend δ to all subformulae of f):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ(True) = {(Σ, T rue)}
δ(p) = {(Σp, T rue)}
δ(¬p) = {(Σ¬p, T rue)}
δ(◯f) = {(Σ, e)∣e ∈ f}

δ(f1 U f2) =∆(f2) ∪ (∆(f1)⊗ {(Σ, f1 U f2)})
δ(f1 Rf2) =∆(f2)⊗ (∆(f1) ∪ {(Σ, f1 Rf2)})

∆(f) = δ(f)if f is a temporal formula
∆(f1 ∨ f2) =∆(f1) ∪∆(f2)
∆(f1 ∧ f2) =∆(f1)⊗∆(f2)

Σp is the alphabet set contains proposition p. Note that if we treat “subformula of” as

partial order of formulae, it is easy to see that VWAAf is very weak. The accepting set

collects the states corresponding to U -subformulae. A run tree which will be accepted by

VWAAf will eventually reach a SCC which will not contains any U -subformulae, which

means all the U -subformulae are satisfied.

Example 4.6. Fig. 4.2 gives the result of the construction where f = ◻(p U q).

25



Figure 4.2: VWAAf generated by LTL2BA

4.2.2 VWAA to TGBA

An usual method to transform an alternating automaton is the algorithm proposed by

Miyano and Hayashi[19]. Yet sometimes the algorithm generates a Büchi automaton

which is too big in terms of state size. Thus, the algorithm generates a transition-based

generalized Büchi automaton (TGBA) as intermediate automaton and translates the

TGBA into a Büchi automaton in the third stage.

Here is the construction for building a TGBA from a co-Büchi VWAA.

Theorem 4.7. Let VWAAf = (Σ,Q, δ, q0,Acc) be a co-Büchi VWAA. We define the

TGBA = (Σ,Q′, δ′, q′0,T ) where� Q′ = 2Q is identified with conjunction of states,� q′0 = {q0},� T = {Ta ∣ a ∈ Acc} where

Ta = {(s,α1, s1) ∣ a ∉ s1 or ∃(α2, s2) ∈ δ(a), α1 ⊆ α2, s2 ⊆ s1, and a ∉ s2}, and� δ′′(q1 ∧ . . . ∧ qn) = ⊗n
i=1δ(qi),� δ′ is the set of ≤-minimal transitions of δ′′ where a partial order relation ≤ of tran-

sitions t1 = (s,α1, s1), t2 = (s,α2, s2) is defined by t1 ≤ t2 if α1 ⊆ α2, s2 ⊆ s1, and

∀T ∈ T , t2 ∈ T ⇒ t1 ∈ T .

Since VWAAf is very weak, a state can only reach some states whose ordering is

lower than or equals to it. This property gives an explanation of how the accepting set

T is chosen. For each accepting set Ta ∈ T , the transitions are collected either they
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Figure 4.3: TGBAf generated by LTL2BA

don’t transit to a state related to the formula a, which is an accepting state of VWAAf

or they transit to a state corresponding to a state set s1 contains a, but exists another

transition to a state s2 which doesn’t contains a. It is very obvious if the transitions are

collected because of the first condition. The transition leads the run tree to a state set

without a, and because of the “very weak” property, the suffix of the run tree will never

reach a again. For some special cases of VWAAf and a word ω, the state a is visited

infinitely often in the run tree but finitely many times in each branch which is accepted

by VWAAf . The second condition above then is used to collect the transitions which

will reach a infinitely often in these situations. Hence, the result TGBA will also accept

the word ω. Fig. 4.3 shows the result TGBA of the example automaton after translating

from VWAAf . Notice that the accepting set only contains one accepting transition set

and the red-labeled transitions are the accepting transitions.

4.2.3 TGBA to BA

The last stage is to transform the TGBA into a Büchi automaton. This algorithm is quite

similar to the translation algorithm for generalized Büchi automaton to Büchi automaton,

which we described in proposition 2.4.

Theorem 4.8. Let TGBA = (Σ,Q, δ, q0,T ) be the TGBA from previous stage. Let BA =

(Σ,Q × {0,1, . . . , r}, δ′, q0 × {0},Q × {r}) where� δ′((q, j)) = {(α, (q′, j′)) ∣ (α, q′) ∈ δ(q) and j′ = next(j, (q,α, q′))}
with next(j, t) = { max{j ≤ i ≤ r ∣ ∀j ≤ k ≤ i, t ∈ Tk} if j ≠ r

max{0 ≤ i ≤ r ∣ ∀0 ≤ k ≤ i, t ∈ Tk} if j = r
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Figure 4.4: BAf generated by LTL2BA

Usually, we check one accepting set at a time to keep track of at least one state/transition

has been visited in every accepting set in GBA/TGBA. Here, the algorithm will seek as

large index of the accepting set as it can to avoid creating unnecessary states for the

result BA. Hence, the result BA will be small in terms of size.

Fig. 4.4 shows the result of the example automaton after translating from TGBA to

BA.

4.3 LTL2BUCHI

This is also a translation algorithm for linear temporal formula to Büchi automata using

transition-based generalized Büchi automata as intermediate automata[10]. It is actually

an extended work of [9] and share a common framework with LTL2AUT [7]. Different

from LTL2AUT, the information is recorded on the transition rather than state, which

allows this algorithm to merge states while others cannot. The notes are labeled with sets

of formulae, separated into several parts. The most important two parts are the formulae

needed to be true immediately and the formulae have to be true from the next state on.

We will first describe the data structure and present the algorithm afterwards.

4.3.1 Data Structure

The data structure of a node of this algorithm will have the following fields:� NodeId: A unique node id. Id 0 is reserved for the initial state.� Incoming: A set of node ID which records the incoming nodes of the current node.
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� ToBeDone: A set of formulae that must hold at the current node and haven’t

been processed yet.� Old: A set of already processed literals which must hold at the current node.� Next: A set of formulae that should hold from the next state on.� Eventualities: The set of promised and fulfilled eventuality obligations by the

node. A promised obligation is an U -formula that has been processed in the

current node, and a fulfilled obligation is a formula processed in the current node

that is the right-hand side argument of some U -formulae processed in the current

node.� Accepting: The accepting sets to which the node belongs.� EquivClass: The id of the equivalence class to which the node belongs.

The field ToBeDone of the node s will be denoted as “s.ToBeDone”, and similarly

for all the fields.

4.3.2 Algorithm

The algorithm for translating a formula f starts by creating an initial node INIT with

NodeId = EquivClass = 0, Next = {f}, and with all other fields empty. A set of nodes

will be collected when the algorithm is completed. Fig. 4.5 shows the main expansion

algorithm.

Algorithm from LTL to TGBA For different type of formulae, the split function

returns the split node with different formulae set to hold. The splitting function and

rules is illustrated in Table 4.2 and Fig. 4.6.

The result TGBA = (Σ,Q, δ, q0, T ), where� Σ = 2literals,� Q is node set ,
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input : Set of nodes node set
output: Set of nodes node set

if this .ToBeDone is empty then // node has been fully computed1

compute acc(this);2

if This equals to any other node ∈ nodes set then3

merge them;4

else // processed node to be added to node set5

create new node with ToBeDone ∶= this .Next ;6

expand(nodes set);7

end8

else // still some formulae should be true, keep processing9

choose a formula next formulae from this .ToBeDone to process;10

update fulfilled obligations(this ,next formula);11

if !(next formulae contradicts this node or it is redundant) then12

if next formula is a ‘ U ’,‘ R ’ or ‘∨’ formula then13

Node2 = this .split(next formula);14

if next formula is a ‘ U ’ formula then15

update promised obligations(this ,next formula);16

end17

return Node2.expand(this.expand(nodes set));18

else if next formula is a ‘g ∧ h’ then19

ToBoDone = ToBoDone ∪ ({g, h} ∖Old);20

return this .expand(nodes set);21

else if next formula is a ‘◯g’ then22

Next = Next ∪ {ϕ};23

return this .expand(nodes set);24

else // next formula is a literal25

Old = Old ∪ {next formula};26

return this .expand(nodes set);27

end28

end29

Figure 4.5: The expansion algorithm for the node set

form New1(form) Next1(form) New2(form)
g U h {g} {g U h} {h}
g Rh {h} {g Rh} {g,h}
g ∨ h {g} ∅ {h}
g ∧ h ∅ ∅ {g,h}

Table 4.2: Definitions of New and Next functions for non-literals

input : formula form
output: A new split node

create Node2 with new ID.;1

Node2 .ToBeDone ∶= this .ToBeDone ∪ (New2(form) ∖Old);2

this .ToBeDone ∶= this .ToBeDone ∪ (New1(form) ∖Old);3

this .Next ∶= Next ∪Next1(form);4

return Node2 ;5

Figure 4.6: The splitting function
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Figure 4.7: TGBAf generated by LTL2BUCHI� δ = {(ndi, labeli, ndj) ∣ ndi ∈ ndj .Incoming ∧ labeli = ndj .Old},� q0 = INIT ∈ Q, and� T = {Ti ∣ Ti ⊆ δ}, which are defined by ndj .Acceping .

For each U -subformula g of a input formula f , if the transition promised g holds and it

actually fulfilled the promise, add g to the succ node.Accepting . Fig. 4.7 illustrates the

result TGBA generated by LTL2BUCHI for formula ◻(p U q).

Degeneralization The translation algorithms are well known in the literature. Here

they present a different method for degeneralize the TGBA from the previous step. First,

A degeneralizer Büchi automaton will be created. The number of states depends on the

number of accepting sets T in TGBA. A BA will be obtained by a TGBA by computing

its synchronous product with the appropriate degeneralizer. A joint transition (t1, t2)
of a degeneralizer with a TGBA is enabled if t2 belongs to the accepting set that the

predicate on t1 requires. The accepting states of the products are the ones where the

degeneralizer is in an accepting state. Fig. 4.8 illustrates the example of degeneralizers

for the TGBA with the size of accepting set is one (left) or two (right). There is a priority

relation between the successor transitions for each state in a degeneralizer. The priority

of the transition set is based on how many accepting sets can the transition from TGBA

fulfilled. The transition in a degeneralizer which can transit to most accepting sets has

the highest priority and so on. If the transition didn’t fulfill any of the accepting sets,

the “else” transition will be chosen. The implicit meaning of the method is to focus on
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Figure 4.8: The examples of degeneralizers

how many accepting sets are fulfilled by the current transition. Once an accepting set is

fulfilled, the construction will focus on the fulfillment status for the following accepting

sets. If all the accepting sets are fulfilled infinite often, the result BA will contains

a corresponding run which visits some states in the accepting set infinite often. The

algorithm for generating the degeneralizer is described in Fig. 4.9. The result BA by this

degeneralization algorithm for the TGBA in Fig. 4.7 is illustrated in Fig. 4.10.

4.4 MoDeLLa

For a system M , the standard technique for LTL model checking consists on translating

temporal formula f into BA Af and then checking the emptiness of the product M ×Af .

The size of the product M ×Af is the product of the size of M and Af in the worst case,

which brings up the idea of minimizing the size of Af will help reducing the size of the

final product. Fig. 4.11 shows the product of a system M with a non-deterministic and

a deterministic automaton.

Yet in this algorithm, they come up with a new idea. Instead of reducing the size

of Af , trying to create a BA A′
f which makes the product automaton M × A′

f smaller

without concentrating on the size of A′
f itself. Note the fact that if a state s in M ×Af

is given by the combination of the state s′ ∈ M and s′′ ∈ Af , and if the successors of

s′′ is deterministic, then each successor state of s′ can be combined consistently with

exactly one successor of s′′, they propose an algorithm to reducing the presence of non-

deterministic decision states in Af as much as possible.
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input : the size of accepting sets size
output: A degeneralizer BA

nnodes ∶= size + 1;1

last ∶= size;2

for i = 0 KwTo nnodes do3

create automaton state si;4

end5

for i = 0 KwTo last do6

for j = last KwTo i do7

create transition trans from si to sj ;8

for k = i KwTo j do9

add label k to trans ;10

end11

end12

create looping transition for si labeled with else;13

end14

create looping transition trans for slast ;15

for i = 0 KwTo last do16

add label i to trans ;17

end18

for i = last − 1 KwTo 0 do19

if i == 0 then20

create transition from slast to si labeled else;21

else22

create transition trans from Slast to si;23

for j = 0 KwTo i do24

add label j to trans ;25

end26

end27

end28

Figure 4.9: The degeneralizer generating algorithm

Figure 4.10: BAf generated by the degeneralization algorithm
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Figure 4.11: The difference of the product of system M with a deterministic or a non-
deterministic automaton
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4.4.1 Determining the covers

Proposition 4.9. Let {fk}k be a set of LTL formulae in negation normal form and

f = ∧kfk. Let C = {{Θij}j}i which can be written as {αi ∪Xi}i, where

αi = {Θij ∈ {Θij}j ∣ Θij is a proposition literal} and
Xi = {Θij ∈ {Θij}j ∣ Θij is a ◯-formula}

are the set of propositional literals and ◯-formulae in {Θij}j respectively. Hence, f can

be written in this form

f ↔⋁(αi ∧Xi)
A cover C = {αi ∪ Xi}i is a deterministic cover if and only if all αi’s are pairwise

mutually inconsistent, non-deterministic otherwise. Each element (αi ∧Xi) in a cover

will represent a state in the result GBA, where αi is the label of the state, and Xi is the

next part of the state.

There are two steps for computing deterministic covers, which are semantic branching,

and branching postponement. We will describe each in detail in the following.

Semantic Branching

Usually, the latter step (called syntactic branching) of DNF is achieved by applying

recursively to the top level formulae the rewriting rule

f ′ ∧ (f1 ∨ f2) ⇒ (f ′ ∧ f1) ∨ (f ′ ∧ f2)
However, a major weakness of syntactic branching is that it generates subbranches which

are not mutually inconsistent. In order to avoid this fact, they apply the Shannon ex-

pansion to the top level boolean propositions.

f ⇒ (p ∧ (f[{p}])) ∨ (¬p ∧ (f[{¬p}]))
A formula f will be split into two parts where a proposition p holds in the first part and

¬p holds in the second. This step is called semantic branching because it “semantically”

splits on the truth values of top level propositions. Then we can obtain an expression in

the form

⋁
i

(αi ∧ f[αi])
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After applying the technique semantic branching, all αi’s are pairwise mutually inconsis-

tent and f[αi] is a boolean combination of ◯-formulae. If all f[αi] are conjunctions of

◯-formulae, then we have obtained a deterministic cover. Otherwise, the only possible

sources of non-determinism (if any) are due to the next-part components f[αi]. Each

non-deterministic disjunct represent a set of states Si which have the same label of αi but

different next-part. For two states in different state set Si’s are mutually inconsistent.

Branching Postponement

If the correctness of the encoding will not be affected, each formula f[αi] can be rewritten

into single ◯-formula by applying branching postponement :

◯f1 ∧◯f2 ⇒ ◯(f1 ∧ f2),
◯f1 ∨◯f2 ⇒ ◯(f1 ∨ f2).

This step is called branching postponement because it allows for postponing the or-

branching to the expansion of the next part. With branching postponement, the result

expansion becomes deterministic.

However, branching postponement may cause some incorrectness. For example, for

two states s1 = (α, f1), s2 = (α, f2), it may be the case that s1 is in a fair set F1 but s2

is not, and the state corresponding to (α, f1 ∨ f2) is not in F1. The fairness set F1 may

be loosed, which cause the language may also be changed. The rewritten rule should

be applied only to the formula for which is guaranteed that the rule does not cause

incorrectness.

4.4.2 Algorithm

The standard schema of temporal formula to BA algorithm in MoDeLLa is described in

Fig. 4.12. It differs from the others in two steps, which are the computation of covers fair

sets and the computation of acceptance condition.

Computation of covers The function of computing covers of each formula is in the

following steps:

1. Apply the tableau rules.

2. Apply the semantic branching step.
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input : temporal formula f

output: BA

Σ ∶= {p ∣ p ∈ f};1

D ∶= 2Σ;2

C(f) ∶= expand(f);3

Q0 ∶= C(f);4

Q ∶= C(f); // compute Q5

Queue.put(C(f));6

while Queue is not empty do7

(α ∧X) ∶= Queue.get() C(next(X)) ∶= expand(next(X));8

Q ∶= Q ∪C(next(X));9

end10

T ∶= ∅; // compute T11

foreach (α,X) ∈ Q do12

foreach (α′,X ′) ∈ C(next(X)) do13

T ∶= T ∪ ((α,X), (α′,X ′));14

end15

end16

foreach (α,X) ∈ Q do17

L(α,X) ∶= {p ∈ D ∣ p ∧ α ⊭⊥} ; // compute L18

end19

F ∶= computef airset(f,Q); // compute F20

return (Q,Q0, T,L,D,F );21

Figure 4.12: The regular schema of temporal logic to BA algorithm

3. Rewrite the formula into DNF form.

4. If postponement is safe, apply branching postponement.

The functions here tries to make the cover “more deterministic” as possible. During the

computation of covers, the set of sub states of each state s = (α,X), Sub(s), is a set of

states where Sub(s) = {(α′,X ′) ∣ α = α′} is also collected. The set will be used in the

computation of fair sets.

Computation of fair sets Let Uf be the set of U -subformulae of f , the usual set of

accepting condition is:

F ∗ ∶= {F ∗
g U h ∣ g U h ∈ Uf},

F ∗
g U h ∶= {s ∈ Q ∣ s ⊭ g U h or s ⊧ h}.

The definition is extended here for MoDeLLa construction as follows:

F ∶= {FH ∣H ∈ 2Uf},
FH ∶= {s ∈ Q ∣ there exists g U h ∈H s.t.

for each s∗ ∈ Subs(s), s∗ ⊭ g U h or
for each s∗ ∈ Subs(s), s∗ ⊧ h}
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Figure 4.13: GBAf generated by MoDeLLa

Note that the branching postponement is not safe for a state s if there exists FH ∈ F such

that s ∉ FH and there exist g U h ∈ H , s∗ ∈ Subs(s) such that s∗ ∈ Fg U h. Fig. 4.12 shows

the result of the construction of temporal formula f = p U q. The gray-colored states are

the accepting states.
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Chapter 5

Experimental Results

5.1 Settings of the Experiments

All of the algorithms described in Chapter 4 have been implemented in GOAL. We use

the third stage of LTL2BA, which is an algorithm transform TGBA into BA, to translate

the TGBA generated by Couvreur’s algorithm since Couvreur’s algorithm only generates

TGBA as the result. We also notice the translation from TGBA to BA proposed by

LTL2BA is different from the one proposed by LTL2BUCHI. From a simple comparison,

we discover that the translation algorithm proposed by LTL2BA performs better. One of

the reasons is that LTL2BA applies the on-the-fly simplification during the generation.

Hence, we apply this construction to LTL2BUCHI and labeled as LTL2BUCHI+. More-

over, we imply the standard algorithms for label-on-state GBA to label-on-state GBA or

BA for MoDeLLa. Optimization described in those works are also implemented.

5.2 Results

We are going to present three sets of experimental results. The first one is the performance

on state size for random generated formulae. The smaller size of automaton for input

property always helps the performance of model checking procedure. Fig 5.1 shows the

result of the experiment.

The second one is focus on the performance on state size and transition size for

frequently used LTL formulae. There are two different kinds of categories for these for-

mulae, one is proposed by Manna and Pnueli [17], another one is Spec Patterns [1].

We collect some frequently used formulae for both categories and design the following
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(a) The state size of the result GBA/TGBA (b) The state size of the result BA

Figure 5.1: The state size of different algorithms translating from 500 formulae. Note
that l is the length of the formula and n is the number of propositions in the formula.

experiment. We compare the performance of the algorithms to see which of the algorithm

can give a better result for specific categories. The comparison for the formulae catego-

rized in Manna and Pnueli’s temporal hierarchy is showed in Table 5.1 to Table 5.4. The

comparison for the formulae categorized in Spec Patterns is showed in Table 5.5 to

Table 5.10.

40



No Formulae GPVW+ DGV+ MoDeLLa
st. tran. st. tran. st. tran.

Safety
1 ◻p 2 2 2 2 2 2
2 p→ ◻q 4 14 4 14 8 24
3 ◻(p→ q) 3 12 3 12 4 12
4 ◻p ∧ ◻q 2 2 2 2 3 3
5 ◻p ∨ ◻q 3 8 3 8 9 20
6 ¬p W q 4 16 4 16 6 24
7 ◻(p→ q) ∧ ◻(q → r) 4 24 4 24 5 20
8 ◻(p→ ◻q) ∧ ◻(r → ◻s) 10 116 5 52 65 480
Guarantee
9 p→◇q 5 26 5 26 15 79
10 ◇(p→ r) 5 28 5 28 9 51
11 ◇p ∨◇q 6 36 6 36 25 139
12 ◇(p ∨ q) 5 28 5 28 9 51
13 ◇p ∧◇q 10 58 10 58 23 141
14 ◻p→◇q 6 36 6 36 25 139
15 ◇(p→ q) ∧◇(q → r) 16 220 16 220 78 1136
16 p→◇(q → r) 6 68 6 68 31 351
Obligation
17 ◻p ∨◇q 5 24 5 24 18 84
18 ◇p→◇q 5 24 5 24 18 84
19 (◻p ∨◇q) ∨ (◻r ∨◇s) 8 176 8 176 126 2316
20 (◻p ∨◇q) ∧ (◻r ∨◇s) 17 320 17 320 194 3824
21 ◇r → (p U r) 5 20 5 20 14 50
22 ◻p ∧◇q 4 10 4 10 9 23
23 p U q 4 16 4 16 6 24
24 (p→ ◻q) ∨ (p →◇r) 6 60 6 60 36 330
Recurence (Responce)
25 ◻◇p 4 14 3 9 7 21
26 ◻(p→◇q) 6 50 4 30 20 128
27 ◻◇p ∨ ◻◇q 7 56 5 36 37 228
28 ◻◇(p ∨ q) 4 32 4 32 15 105
29 ◻◇p ∧ ◻◇q 10 130 5 45 37 333
30 ◻(q → ◻(p→◇s)) 12 292 5 84 45 602
31 ◻◇(p ∧ q → r) 11 292 5 100 31 465
32 ◇(p→ ◻◇q) 9 68 6 44 26 180
Persistence
33 ◇◻p 4 8 3 7 5 11
34 ◻(p→◇◻q) 9 61 4 24 25 144
35 ◇◻p ∧◇◻q 10 34 5 25 26 122
36 ◇◻(p ∧ q) 4 12 3 11 7 27
37 ◇◻p ∨◇◻q 7 32 5 28 29 132
38 ¬◻◇p 4 8 3 7 5 11
39 ◇(p W q) 7 36 5 28 14 76
40 ◇(p→ ◻q) 6 28 5 26 12 60
Reactivity
41 ◻◇p ∨◇◻q 7 44 5 32 33 180
42 ◻◇p→ ◻◇q 7 44 5 32 33 180
43 (◻◇p ∨◇◻q) ∧ (◻◇r ∨◇◻s) 31 848 17 544 581 16064
44 ◻(p→◇q) ∨ ◻(p →◇◻r) 14 222 7 108 117 1462
45 ◇◻p→◇◻q 6 34 5 32 33 180
46 (◇◻p→◇◻q) ∧ ◻(p→ ◇◻r) 38 567 12 180 295 4674
47 (◻◇p→ ◻◇q) ∧ ◻(r →◇s) 31 1440 13 536 345 11596
48 ◻(r → ◇s) ∧ (◻◇r ∨◇◻s) 23 227 11 107 89 759

Table 5.1: A comparison of the generated GBA of GPVW+, LTL2AUT+, and MoDeLLa
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No Formulae Couvreur LTL2BA LTL2Buchi
st. tran. st. tran. st. tran.

Safety
1 ◻p 1 1 1 1 2 2
2 p→ ◻q 3 10 3 10 4 14
3 ◻(p → q) 1 3 1 3 3 12
4 ◻p ∧ ◻q 2 2 1 1 2 2
5 ◻p ∨ ◻q 3 8 3 8 3 8
6 ¬p W q 2 8 2 8 4 16
7 ◻(p → q) ∧ ◻(q → r) 2 8 1 4 4 24
8 ◻(p → ◻q) ∧ ◻(r → ◻s) 5 52 4 36 10 116
Guarantee
9 p→ ◇q 3 17 3 17 5 26
10 ◇(p → r) 2 11 2 11 5 28
11 ◇p ∨◇q 4 27 4 27 6 36
12 ◇(p ∨ q) 2 11 2 11 5 28
13 ◇p ∧◇q 5 34 7 46 10 58
14 ◻p→ ◇q 4 27 4 27 6 36
15 ◇(p → q) ∧◇(q → r) 5 84 7 112 16 220
16 p→ ◇(q → r) 3 37 3 37 6 68
Obligation
17 ◻p ∨◇q 4 20 4 20 5 24
18 ◇p→◇q 4 20 4 20 5 24
19 (◻p ∨◇q) ∨ (◻r ∨◇s) 6 140 6 140 8 176
20 (◻p ∨◇q) ∧ (◻r ∨◇s) 10 208 14 272 17 320
21 ◇r → (p U r) 4 16 4 16 5 20
22 ◻p ∧◇q 3 8 4 10 4 10
23 p U q 2 8 2 8 4 16
24 (p → ◻q) ∨ (p→ ◇r) 4 42 4 42 6 60
Recurence (Responce)
25 ◻◇p 1 2 3 8 4 14
26 ◻(p →◇q) 2 13 4 28 7 63
27 ◻◇p ∨ ◻◇q 3 16 7 44 7 56
28 ◻◇(p ∨ q) 1 4 3 18 6 60
29 ◻◇p ∧ ◻◇q 2 8 5 36 10 130
30 ◻(q → ◻(p →◇s)) 3 44 5 74 15 489
31 ◻◇(p ∧ q → r) 1 8 3 38 11 292
32 ◇(p → ◻◇q) 3 18 5 32 7 54
Persistence
33 ◇◻p 2 4 2 4 3 7
34 ◻(p →◇◻q) 4 24 3 16 8 60
35 ◇◻p ∧◇◻q 5 25 4 16 5 25
36 ◇◻(p ∧ q) 2 6 2 6 3 11
37 ◇◻p ∨◇◻q 5 28 5 28 5 28
38 ¬◻◇p 2 4 2 4 3 7
39 ◇(p W q) 3 16 3 16 5 28
40 ◇(p → ◻q) 3 14 3 14 5 26
Reactivity
41 ◻◇p ∨◇◻q 4 22 6 36 6 42
42 ◻◇p→ ◻◇q 4 22 6 36 6 42
43 (◻◇p ∨◇◻q) ∧ (◻◇r ∨◇◻s) 10 244 22 608 26 1044
44 ◻(p →◇q) ∨ ◻(p→◇◻r) 7 104 8 118 14 246
45 ◇◻p→◇◻q 4 11 6 36 6 42
46 (◇◻p→◇◻q) ∧ ◻(p→◇◻r) 13 184 16 236 26 504
47 (◻◇p→ ◻◇q) ∧ ◻(r → ◇s) 7 226 15 520 31 1806
48 ◻(r →◇s) ∧ (◻◇r ∨◇◻s) 9 76 14 121 23 328

Table 5.2: A comparison of the generated TGBA of Couvreur, LTL2BA, LTL2BUCHI

42



No Formulae GPVW+ DGV+ MoDeLLa Couvreur LTL2BA LTL2Buchi LTL2Buchi+ Spin

st. tran. st. tran. st. tran. st. tran. st. tran. st. tran. st. tran. st. tran.
Safety
1 ◻p 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1
2 p→ ◻q 4 14 4 14 8 24 3 10 3 10 4 14 3 10 3 10
3 ◻(p→ q) 3 12 3 12 4 12 2 6 2 6 3 12 2 6 1 3
4 ◻p ∧ ◻q 2 2 2 2 3 3 2 2 2 2 2 2 2 2 1 1
5 ◻p ∨ ◻q 3 8 3 8 9 20 3 8 3 8 3 8 3 8 3 8
6 ¬p W q 4 16 4 16 6 24 3 12 3 12 4 16 3 12 4 16
Guarantee
7 ◻(p→ q) ∧ ◻(q → r) 4 24 4 24 5 20 2 8 2 8 4 24 2 8 1 4
8 ◻(p→ ◻q) ∧ ◻(r → ◻s) 10 116 5 52 65 480 5 52 5 52 10 116 5 52 4 72
9 p→◇q 5 26 5 26 15 79 3 17 3 17 5 26 3 17 3 17
10 ◇(p→ r) 5 28 5 28 9 51 2 11 2 11 5 28 2 11 2 11
11 ◇p ∨◇q 9 50 9 50 33 179 4 27 4 27 6 36 4 27 2 11
12 ◇(p ∨ q) 5 28 5 28 9 51 2 11 2 11 5 28 2 11 2 11
13 ◇p ∧◇q 11 62 11 62 31 181 4 25 9 58 10 58 4 25 4 25
14 ◻p→◇q 9 50 9 50 33 179 4 27 4 27 6 36 4 27 2 11
15 ◇(p→ q) ∧◇(q → r) 20 260 17 228 94 1312 4 60 9 140 16 220 4 60 4 60
16 p→◇(q → r) 6 68 6 68 31 351 3 37 3 37 6 68 3 37 3 37
Obligation
17 ◻p ∨◇q 5 24 5 24 18 84 4 20 4 20 5 24 4 20 4 20
18 ◇p→◇q 5 24 5 24 18 84 4 20 4 20 5 24 4 20 4 20
19 (◻p ∨◇q) ∨ (◻r ∨◇s) 13 248 13 248 184 3116 6 140 6 140 8 176 6 140 6 140
20 (◻p ∨◇q) ∧ (◻r ∨◇s) 23 376 23 376 272 4784 10 208 16 320 17 320 10 208 10 208
21 ◇r → (p U r) 5 20 5 20 14 50 4 16 4 16 5 20 4 16 4 32
22 ◻p ∧◇q 4 10 4 10 9 23 2 5 4 10 4 10 2 5 2 5
23 p U q 4 16 4 16 6 24 2 8 2 8 4 16 2 8 2 8
24 (p→ ◻q) ∨ (p→◇r) 6 60 6 60 36 330 4 42 4 42 6 60 4 42 4 42

Table 5.3: A comparison of the result BA of all six algorithms and Spin (part a)
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No Formulae GPVW+ DGV+ MoDeLLa Couvreur LTL2BA LTL2Buchi LTL2Buchi+ Spin

st. tran. st. tran. st. tran. st. tran. st. tran. st. tran. st. tran. st. tran.
Recurence (Responce)
25 ◻◇p 4 14 3 9 7 21 2 4 5 13 4 14 4 14 2 5
26 ◻(p→ ◇q) 6 50 4 30 20 128 3 20 6 41 7 63 4 30 4 28
27 ◻◇p ∨ ◻◇q 13 100 9 60 73 444 5 24 9 52 7 56 7 56 5 32
28 ◻◇(p ∨ q) 4 32 4 32 15 105 2 8 5 29 6 60 4 34 2 11
29 ◻◇p ∧ ◻◇q 19 251 9 81 91 819 3 12 9 60 13 174 8 82 3 17
30 ◻(q → ◻(p→ ◇s)) 12 292 5 84 45 602 4 62 7 104 15 489 5 86 6 100
31 ◻◇(p ∧ q → r) 11 292 5 100 31 465 2 16 5 61 11 292 4 74 2 23
32 ◇(p→ ◻◇q) 17 124 11 76 46 296 4 22 8 54 7 54 5 38 4 26
Persistence
33 ◇◻p 4 8 3 7 5 11 2 4 2 4 3 7 2 4 2 4
34 ◻(p→ ◇◻q) 9 61 4 24 25 144 5 32 4 24 8 60 4 24 4 24
35 ◇◻p ∧◇◻q 11 35 7 29 28 124 4 16 4 16 5 25 4 16 4 16
36 ◇◻(p ∧ q) 4 12 3 11 7 27 2 6 2 6 3 11 2 6 2 6
37 ◇◻p ∨◇◻q 11 44 8 38 43 176 5 28 5 28 5 28 5 28 3 12
38 ¬◻◇p 4 8 3 7 5 11 2 4 2 4 3 7 2 4 2 4
39 ◇(p W q) 7 36 5 28 14 76 3 16 3 16 5 28 3 16 4 20
40 ◇(p→ ◻q) 6 28 5 26 12 60 3 14 3 14 5 26 3 14 3 14
Reactivity
41 ◻◇p ∨◇◻q 13 76 9 52 61 324 5 26 7 40 6 42 6 42 5 30
42 ◻◇p→ ◻◇q 13 76 9 52 55 296 5 26 7 40 6 42 6 42 5 30
43 (◻◇p ∨◇◻q) ∧ (◻◇r ∨◇◻s) 77 2064 50 1300 4225 117776 14 292 29 732 31 1284 22 732 15 388
44 ◻(p→ ◇q) ∨ ◻(p→◇◻r) 24 360 13 184 229 2806 7 104 9 130 14 246 7 108 9 134
45 ◇◻p→◇◻q 9 48 8 46 61 324 3 7 7 40 6 42 6 42 5 30
46 (◇◻p→◇◻q) ∧ ◻(p →◇◻r) 88 1288 31 400 1373 21186 16 208 20 276 29 568 12 174 16 218
47 (◻◇p→ ◻◇q) ∧ ◻(r →◇s) 75 3622 34 1284 1275 43568 9 278 22 708 36 2198 13 526 19 630
48 ◻(r →◇s) ∧ (◻◇r ∨◇◻s) 47 441 23 213 396 3310 11 95 18 149 29 434 13 146 13 112

Table 5.4: A comparison of the result BA of all six algorithms and Spin (part b)
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No Formulae GPVW+ DGV+ MoDeLLa
st. tran. st. tran. st. tran.

Existence (P becomes true)
1 ◇(P ) 4 10 4 10 5 13
2 ¬R W (P ∧ ¬R) 4 14 4 14 5 17
3 ◻(¬Q) ∨◇(Q ∧◇P )) 8 42 8 42 26 141
4 ◻(Q ∧ ¬R → (¬R W (P ∧ ¬R))) 8 103 5 62 18 158
5 ◻(Q ∧ ¬R → (¬R U (P ∧ ¬R))) 7 88 5 62 18 158
Bounded Existence (P becomes true twice)
6 (¬P W (P W (¬P W (P W◻¬P )))) 6 20 6 20 454 4840
7 ◇R → ((¬P ∧ ¬R) U (R ∨ ((P ∧ ¬R) U

(R ∨ ((¬P ∧ ¬R) U (R ∨ ((P ∧ ¬R) U (R ∨ (¬P U R))))))))) 33 204 9 50 44 204
8 ◇Q→ (¬Q U (Q ∧ (¬P W (P W (¬P W (P W◻¬P )))))) 13 78 13 78 977 21223
9 ◻((Q ∧◇R) → ((¬P ∧ ¬R) U (R ∨ ((P ∧ ¬R) U

(R ∨ ((¬P ∧ ¬R) U (R ∨ ((P ∧ ¬R) U (R ∨ (¬P U R)))))))))) 157 5361 9 136 421 6318
10 ◻(Q → ((¬P ∧ ¬R) U (R ∨ ((P ∧ ¬R) U (R ∨ ((¬P ∧ ¬R) U

(R ∨ ((P ∧ ¬R) U (R ∨ (¬P WR) ∨ ◻P ))))))))) 115 4203 9 152 351 6308
Universality (P is always true)
11 ◻(P ) 2 2 2 2 2 2
12 ◇R → (P U R) 5 20 5 20 14 50
13 ◻(Q → ◻(P )) 4 14 3 10 7 20
14 ◻((Q ∧ ¬R ∧◇R)→ (P U R)) 12 170 5 60 33 294
15 ◻(Q ∧ ¬R → (P W R)) 7 90 4 44 23 252
Precedence (S precedes P)
16 ¬P W S 4 16 4 16 7 32
17 ◇R → (¬P U (S ∨R)) 6 56 6 56 30 230
18 ◻¬Q ∨◇(Q ∧ (¬P W S)) 8 72 8 72 46 449
19 ◻((Q ∧ ¬R ∧◇R)→ (¬P U (S ∨R))) 17 644 6 192 79 1642
20 ◻(Q ∧ ¬R → (¬P W (S ∨R))) 11 416 5 152 55 1484
Response (S responds to P)
21 ◻(P →◇S) 6 50 4 30 14 90
22 ◇R → (P → (¬R U (S ∧ ¬R))) U R 9 98 7 72 42 349
23 ◻(Q → ◻(P →◇S)) 12 292 5 84 45 602
24 ◻((Q ∧ ¬R ∧◇R)→ (P → (¬R U (S ∧ ¬R))) U R) 28 1182 7 208 151 3530
25 ◻(Q ∧ ¬R → ((P → (¬R U (S ∧ ¬R))) W R)) 15 574 6 176 77 1962

Table 5.5: A comparison of the generated GBA of GPVW+, LTL2AUT+, and MoDeLLa
(part a)
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No Formulae GPVW+ DGV+ MoDeLLa
st. tran. st. tran. st. tran.

Precedence Chain (S, T precedes P)
26 ◇P → (¬P U (S ∧ ¬P ∧X(¬P U T ))) 7 52 7 52 30 194
27 ◇R → (¬P U (R ∨ (S ∧ ¬P ∧X(¬P U T )))) 8 136 8 136 74 1132
28 (◻¬Q) ∨ (¬Q U (Q ∧◇P → (¬P U (S ∧ ¬P ∧X(¬P U T ))))) 13 224 10 188 126 1948
29 ◻((Q ∧◇R) → (¬P U (R ∨ (S ∧ ¬P ∧X(¬P U T ))))) 40 2346 15 876 383 16276
30 ◻(Q → (◇P → (¬P U (R ∨ (S ∧ ¬P ∧X(¬P U T )))))) 46 3576 15 916 471 26052
Precedence Chain (P precedes S, T)
31 (◇(S ∧X◇T ))→ ((¬S) U P ) 8 74 7 64 46 332
32 ◇R → ((¬(S ∧ (¬R) ∧X(¬R U (T ∧ ¬R)))) U (R ∨ P )) 27 1104 17 652 156 4224
33 (◻¬Q) ∨ ((¬Q) U (Q ∧ ((◇(S ∧X◇T ))→ ((¬S) U P )))) 14 248 13 224 122 1844
34 ◻((Q ∧◇R) →

((¬(S ∧ (¬R) ∧X(¬R U (T ∧ ¬R)))) U (R ∨ P ))) 62 9384 20 2312 731 51848
35 ◻(Q → (¬(S ∧ (¬R) ∧X(¬R U (T ∧ ¬R))) U (R ∨ P ) ∨ ◻(¬(S ∧X◇T )))) - - 28 3120 - -
Response Chain (P responds S, T)
36 ◻(S ∧X◇T →X(◇(T ∧◇P ))) 40 779 28 516 143 2384
37 ◇R → (S ∧X(¬R U T )→X(¬R U (T ∧◇P ))) U R 61 1804 67 2357 435 14020
38 ◻(Q → ◻(S ∧X◇T →X(¬T U (T ∧◇P )))) 80 3870 29 1030 451 14984
39 ◻((Q ∧ S◇R)→

(S ∧X(¬R U T )→X(¬R U (T ∧◇P ))) U R) - - 75 6998 - -
40 ◻(Q → (S ∧X(¬R U T )→X(¬R U (T ∧◇P ))) U

(R ∨ ◻(S ∧X(¬R U T )→X(¬R U (T ∧◇P ))))) - - 117 15234 - -
Response Chain (S, T responds P)
41 ◻(P →◇(S ∧X◇T )) 16 342 9 162 69 1176
42 ◇R → (P → (¬R U (S ∧ ¬R ∧X(¬R U T )))) U R 20 484 13 280 132 2464
43 ◻(Q → ◻(P → (S ∧X◇T ))) 14 432 7 152 57 984
44 ◻((Q ∧◇R) → (P → (¬R U (S ∧ ¬R ∧X(¬R U T )))) U R) 68 6252 13 744 589 31392
45 ◻(Q → (P → (¬R U (S ∧ ¬R ∧X(¬R U T )))) U

(R ∨ ◻(P → (S ∧X◇T )))) - - 35 1962 - -
Constrained Chain Patterns (S, T without Z responds to P)
46 ◻(P →◇(S ∧ ¬Z ∧X((¬Z) U T ))) 16 480 9 236 99 2384
47 ◇R →

(P → (¬R U (S ∧ ¬R ∧ ¬Z ∧X((¬R ∧ ¬Z) U T )))) U R 20 764 13 472 220 6744
48 ◻(Q → ◻(P → (S ∧ ¬Z ∧X((¬Z) U T )))) 14 560 7 212 105 2632
49 ◻((Q ∧◇R) →

(P → (¬R U (S ∧ ¬R ∧ ¬Z ∧X((¬R ∧ ¬Z) U T )))) U R) 68 9240 13 1288 - -
50 ◻(Q → (P → (¬R U (S ∧ ¬R ∧ ¬Z ∧X((¬R ∧ ¬Z) U T )))) U

(R ∨ ◻(P → (S ∧ ¬Z ∧X((¬Z) U T ))))) - - 35 2734 - -

Table 5.6: A comparison of the generated GBA of GPVW+, LTL2AUT+, and MoDeLLa
(part b)
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No Formulae Couvreur LTL2BA LTL2BUCHI
st. tran. st. tran. st. tran.

Existence (P becomes true)
1 ◇(P ) 2 5 2 5 4 10
2 ¬R W (P ∧ ¬R) 2 7 2 7 4 14
3 ◻(¬Q) ∨◇(Q ∧◇P )) 5 28 5 28 8 42
4 ◻(Q ∧ ¬R → (¬R W (P ∧ ¬R))) 2 17 4 36 8 103
5 ◻(Q ∧ ¬R → (¬R U (P ∧ ¬R))) 2 17 4 36 8 103
Bounded Existence (P becomes true twice)
6 (¬P W (P W (¬P W (P W◻¬P )))) 5 15 5 15 6 20
7 ◇R → ((¬P ∧ ¬R) U (R ∨ ((P ∧ ¬R) U

(R ∨ ((¬P ∧ ¬R) U (R ∨ ((P ∧ ¬R) U (R ∨ (¬P U R))))))))) 8 46 8 46 9 50
8 ◇Q→ (¬Q U (Q ∧ (¬P W (P W (¬P W (P W◻¬P )))))) 8 48 8 48 13 78
9 ◻((Q ∧◇R) → ((¬P ∧ ¬R) U (R ∨ ((P ∧ ¬R) U

(R ∨ ((¬P ∧ ¬R) U (R ∨ ((P ∧ ¬R) U (R ∨ (¬P U R)))))))))) 22 716 24 322 62 1616
10 ◻(Q → ((¬P ∧ ¬R) U (R ∨ ((P ∧ ¬R) U (R ∨ ((¬P ∧ ¬R) U

(R ∨ ((P ∧ ¬R) U (R ∨ (¬P W R) ∨ ◻P ))))))))) 22 456 15 244 - -
Universality (P is always true)
11 ◻(P ) 1 1 1 1 2 2
12 ◇R → (P U R) 4 16 4 16 5 20
13 ◻(Q → ◻(P )) 2 6 2 6 4 14
14 ◻((Q ∧ ¬R ∧◇R)→ (P U R)) 4 46 8 66 10 112
15 ◻(Q ∧ ¬R → (P W R)) 2 18 4 38 6 72
Precedence (S precedes P)
16 ¬P W S 2 8 2 8 4 16
17 ◇R → (¬P U (S ∨R)) 4 36 4 36 6 56
18 ◻¬Q ∨◇(Q ∧ (¬P W S)) 5 48 5 48 8 72
19 ◻((Q ∧ ¬R ∧◇R)→ (¬P U (S ∨R))) 4 104 8 164 19 702
20 ◻(Q ∧ ¬R → (¬P W (S ∨R))) 2 42 4 90 11 416
Response (S responds to P)
21 ◻(P →◇S) 2 13 4 28 6 54
22 ◇R → (P → (¬R U (S ∧ ¬R))) U R 5 48 7 69 10 113
23 ◻(Q → ◻(P →◇S)) 3 44 5 74 14 448
24 ◻((Q ∧ ¬R ∧◇R)→ (P → (¬R U (S ∧ ¬R))) U R) 9 282 12 316 33 1584
25 ◻(Q ∧ ¬R → ((P → (¬R U (S ∧ ¬R))) W R)) 6 148 6 144 18 781

Table 5.7: A comparison of the generated TGBA of Couvreur, LTL2BA, and LTL2BUCHI
(part a)
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No Formulae Couvreur LTL2BA LTL2BUCHI
st. tran. st. tran. st. tran.

Precedence Chain (S, T precedes P)
26 ◇P → (¬P U (S ∧ ¬P ∧X(¬P U T ))) 5 36 5 36 7 52
27 ◇R → (¬P U (R ∨ (S ∧ ¬P ∧X(¬P U T )))) 5 88 5 88 8 136
28 (◻¬Q) ∨ (¬Q U (Q ∧◇P → (¬P U (S ∧ ¬P ∧X(¬P U T ))))) 7 140 7 140 10 188
29 ◻((Q ∧◇R)→ (¬P U (R ∨ (S ∧ ¬P ∧X(¬P U T ))))) 11 522 16 716 52 3553
30 ◻(Q→ (◇P → (¬P U (R ∨ (S ∧ ¬P ∧X(¬P U T )))))) 8 470 16 1010 64 5776
Precedence Chain (P precedes S, T)
31 (◇(S ∧X◇T ))→ ((¬S) U P ) 5 52 5 52 7 64
32 ◇R → ((¬(S ∧ (¬R) ∧X(¬R U (T ∧ ¬R)))) U (R ∨ P )) 6 170 8 256 22 844
33 (◻¬Q) ∨ ((¬Q) U (Q ∧ ((◇(S ∧X◇T ))→ ((¬S) U P )))) 7 136 7 136 13 224
34 ◻((Q ∧◇R)→

((¬(S ∧ (¬R) ∧X(¬R U (T ∧ ¬R)))) U (R ∨ P ))) 12 1158 14 950 76 15736
35 ◻(Q→ (◇P → (¬P U (R ∨ (S ∧ ¬P ∧X(¬P U T )))))) 12 1334 21 2582 185 49210
Response Chain (P responds S, T)
36 (◇(S ∧X◇T ))→ ((¬S) U P ) 8 142 16 291 31 529
37 ◇R → ((¬(S ∧ (¬R) ∧X(¬R U (T ∧ ¬R)))) U (R ∨ P )) 14 539 22 772 59 2037
38 ◻(Q→ ◻(S ∧X◇T →X(¬T U (T ∧◇P )))) 9 372 17 710 80 4705
39 ◻((Q ∧ S◇R)→

(S ∧X(¬R U T )→ X(¬R U (T ∧◇P ))) U R) 44 5292 42 3762 244 36832
40 ◻(Q→ (S ∧X(¬R U T )→X(¬R U (T ∧◇P ))) U

(R ∨ ◻(S ∧X(¬R U T )→ X(¬R U (T ∧◇P ))))) 56 11222 41 6492 - -
Response Chain (S, T responds P)
41 ◻(P → ◇(S ∧X◇T )) 4 68 8 142 19 469
42 ◇R → (P → (¬R U (S ∧ ¬R ∧X(¬R U T )))) U R 9 186 11 238 23 611
43 ◻(Q→ ◻(P → (S ∧X◇T ))) 3 56 5 92 17 622
44 ◻((Q ∧◇R)→ (P → (¬R U (S ∧ ¬R ∧X(¬R U T )))) U R) 17 1232 20 1228 88 10672
45 ◻(Q→ (P → (¬R U (S ∧ ¬R ∧X(¬R U T )))) U

(R ∨ ◻(P → (S ∧X◇T )))) 29 2968 31 2614 347 90607
Constrained Chain Patterns (S, T without Z responds to P)
46 ◻(P → ◇(S ∧ ¬Z ∧X((¬Z) U t))) 4 98 8 202 19 625
47 ◇R →

(P → (¬R U (S ∧ ¬R ∧ ¬Z ∧X((¬R ∧ ¬Z) U T )))) U R 8 298 11 390 23 909
48 ◻(Q→ ◻(P → (S ∧ ¬Z ∧X((¬Z) U T )))) 3 84 5 132 17 768
49 ◻((Q ∧◇R)→

(P → (¬R U (S ∧ ¬R ∧ ¬Z ∧X((¬R ∧ ¬Z) U T )))) U R) 20 2688 20 1892 86 14036
50 ◻(Q→ (P → (¬R U (S ∧ ¬R ∧ ¬Z ∧X((¬R ∧ ¬Z) U T )))) U

(R ∨ ◻(P → (S ∧ ¬Z ∧X((¬Z) U T ))))) 33 3700 31 3506 347 103079

Table 5.8: A comparison of the generated TGBA of Couvreur, LTL2BA, and LTL2BUCHI
(part b)
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No Formulae GPVW+ DGV+ MoDeLLa Couvreur LTL2BA LTL2Buchi LTL2Buchi+ Spin

st. tran. st. tran. st. tran. st. tran. st. tran. st. tran. st. tran. st. tran.

Existence (P becomes true)
1 ◇(P ) 4 10 4 10 5 13 2 5 2 5 4 10 2 5 2 4

2 ¬R W (P ∧ ¬R) 4 14 4 14 5 17 3 10 3 10 4 14 3 10 4 14

3 ◻(¬Q) ∨◇(Q ∧◇P )) 13 65 13 65 32 157 6 34 5 28 8 42 5 28 5 28

4 ◻(Q ∧ ¬R → (¬R W (P ∧ ¬R))) 8 103 5 62 18 158 3 28 5 47 8 103 3 28 8 86

5 ◻(Q ∧ ¬R → (¬R U (P ∧ ¬R))) 7 88 5 62 18 158 3 28 6 53 8 103 4 38 4 36

Bounded Existence (P becomes true twice)
6 (¬P W(P W (¬P W(P W◻¬P )))) 6 20 6 20 16 40 6 20 6 20 6 20 6 20 6 34

7 ◇R → ((¬P ∧ ¬R) U (R ∨ ((P ∧ ¬R) U
(R ∨ ((¬P ∧ ¬R) U
(R ∨ ((P ∧ ¬R) U (R ∨ (¬P U R))))))))) 79 425 34 158 786 3376 9 51 11 62 9 50 8 46 8 46

8 ◇Q → (¬Q U (Q ∧ (¬P W (P W (¬P W (P W◻¬P )))))) 13 78 13 78 49 245 8 48 8 48 13 78 8 48 9 54

9 ◻((Q ∧◇R) →
((¬P ∧ ¬R) U (R ∨ ((P ∧ ¬R) U
(R ∨ ((¬P ∧ ¬R) U (R ∨ ((P ∧ ¬R) U
(R ∨ (¬P U R)))))))))) 670 22810 41 584 12145 182950 28 820 19 244 42 1097 11 158 - -

10 ◻(Q → ((¬P ∧ ¬R) U (R ∨ ((P ∧ ¬R) U
(R ∨ ((¬P ∧ ¬R) U (R ∨ ((P ∧ ¬R) U
(R ∨ (¬P W R) ∨ ◻P ))))))))) 350 12685 33 536 4055 66654 35 820 18 300 - - - - - -

Universality (P is always true)
11 ◻(P ) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1

12 ◇R → (P U R) 5 20 5 20 14 50 4 16 4 16 5 20 4 16 4 16

13 ◻(Q → ◻(P )) 4 14 3 10 7 20 3 10 3 10 4 14 3 10 3 10

14 ◻((Q ∧ ¬R ∧◇R) → (P U R)) 12 170 5 60 33 294 5 60 8 76 8 96 5 52 7 66

15 ◻(Q ∧ ¬R → (P W R)) 7 90 4 44 19 174 3 28 5 48 6 72 3 28 8 86

Precedence (S precedes P)
16 ¬P W S 4 16 4 16 6 24 3 12 3 12 4 16 3 12 4 16

17 ◇R → (¬P U (S ∨R)) 6 56 6 56 30 230 4 36 4 36 6 56 4 36 4 38

18 ◻¬Q ∨◇(Q ∧ (¬P W S)) 8 72 8 72 42 376 5 48 5 48 8 72 5 48 6 56

19 ◻((Q ∧ ¬R ∧◇R) → (¬P U (S ∨R))) 17 644 6 192 79 1642 5 134 11 230 19 702 7 160 8 164

20 ◻(Q ∧ ¬R → (¬P W (S ∨R))) 11 416 5 152 43 914 3 64 5 112 11 416 3 64 8 196

Response (S responds to P)
21 ◻(P →◇S) 6 50 4 30 14 90 3 20 6 41 6 54 4 30 4 28

22 ◇R → (P → (¬R U (S ∧ ¬R))) U R 17 178 13 126 52 397 6 54 8 82 10 113 5 48 5 48

23 ◻(Q → ◻(P →◇S)) 12 292 5 84 45 602 4 62 7 104 14 448 5 86 6 100

24 ◻((Q ∧ ¬R ∧◇R) → (P → (¬R U (S ∧ ¬R))) U R) 54 2288 13 372 397 9258 13 420 10 240 20 837 6 156 9 254

25 ◻(Q ∧ ¬R → ((P → (¬R U (S ∧ ¬R))) W R)) 15 574 6 176 69 1542 7 178 8 186 18 781 5 122 15 398

Table 5.9: A comparison of the result BA of all six algorithms and Spin (part a)
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No Formulae GPVW+ DGV+ MoDeLLa Couvreur LTL2BA LTL2Buchi LTL2Buchi+ Spin

st. tran. st. tran. st. tran. st. tran. st. tran. st. tran. st. tran. st. tran.

Precedence Chain (S, T precedes P)
26 ◇P → (¬P U (S ∧ ¬P ∧X(¬P U T))) 13 94 11 78 48 306 6 44 5 36 7 52 6 44 4 66

27 ◇R → (¬P U (R ∨ (S ∧ ¬P ∧X(¬P U T)))) 15 244 13 212 108 1548 6 104 5 88 8 136 6 104 4 104

28 (◻¬Q) ∨ (¬Q U (Q ∧◇P →
(¬P U (S ∧ ¬P ∧X(¬P U T))))) 30 468 26 444 476 6812 8 156 8 152 10 188 8 156 9 192

29 ◻((Q ∧◇R) →
(¬P U (R ∨ (S ∧ ¬P ∧X(¬P U T))))) 74 4332 29 1680 949 40304 17 828 25 1102 60 4099 17 834 20 918

30 ◻(Q → (◇P →
(¬P U (R ∨ (S ∧ ¬P ∧X(¬P U T)))))) 85 6636 29 1760 1169 64528 13 780 29 1856 72 6652 17 1196 25 1690

Precedence Chain (P precedes S, T)
31 (◇(S ∧X◇T)) → ((¬S) U P ) 8 74 7 64 46 332 5 52 5 52 7 64 5 52 6 64

32 ◇R → ((¬(S ∧ (¬R)∧
X(¬R U (T ∧ ¬R)))) U (R ∨P )) 27 1104 17 652 156 4224 6 170 10 334 22 844 6 170 8 260

33 (◻¬Q) ∨ ((¬Q) U (Q ∧ ((◇(S ∧X◇T)) →
((¬S) U P )))) 22 364 18 288 220 3028 7 136 8 152 13 224 7 136 8 160

34 ◻((Q ∧◇R) →
((¬(S ∧ (¬R) ∧X(¬R U (T ∧ ¬R)))) U (R ∨P ))) 62 9384 20 2312 731 51848 13 1258 19 1294 76 15736 13 1022 17 1172

35 ◻(Q → (¬(S ∧ (¬R) ∧X

(¬R U (T ∧ ¬R))) U (R ∨P ) ∨ ◻(¬(S ∧X◇T)))) 192 39688 28 3120 1335 122224 13 1466 28 3430 185 49210 19 2670 24 2872

Response Chain (P responds S, T)
36 ◻(S ∧X◇T → X(◇(T ∧◇P ))) 57 1113 40 758 352 5792 8 143 21 392 27 512 12 252 14 250

37 ◇R →
(S ∧X(¬R U T) → X(¬R U (T ∧◇P ))) U R 97 2816 157 5569 2207 69940 16 581 31 1204 72 2811 22 859 22 762

38 ◻(Q → ◻(S ∧X◇T → X(¬T U (T ∧◇P )))) 115 5592 43 1522 1177 39104 12 448 19 700 66 3747 13 520 16 530

39 ◻((Q ∧◇R) →
(S ∧X(¬R U T) → X(¬R U (T ∧◇P ))) U R) 435 45932 213 19798 13995 1135336 61 8102 38 3222 193 32408 25 2550 80 8614

40 ◻(Q → (S ∧X(¬R U T) → X(¬R U (T ∧◇P ))) U
(R ∨ ◻(S ∧X(¬R U T) → X(¬R U (T ∧◇P ))))) 1236 304813 343 43988 13727 1115872 82 16778 57 8256 - - - - - -

Response Chain (S, T responds P)
41 ◻(P →◇(S ∧X◇T)) 29 626 17 308 169 2880 9 152 13 226 23 579 9 176 10 188

42 ◇R → (P → (¬R U (S ∧ ¬R ∧X(¬R U T)))) U R 28 624 27 548 288 4940 10 202 18 388 23 611 7 146 7 134

43 ◻(Q → ◻(P → (S ∧X◇T))) 14 432 7 152 57 984 5 96 7 132 17 622 5 104 6 120

44 ◻((Q ∧◇R) → (P →
(¬R U (S ∧ ¬R ∧X(¬R U T)))) U R) 149 13576 31 1732 3525 188992 19 1344 14 720 49 4909 8 440 43 2807

45 ◻(Q → (P → (¬R U (S ∧ ¬R ∧X(¬R U T)))) U
(R ∨ ◻(P → (S ∧X◇T)))) - - 126 6844 - - 71 8204 60 4630 621 171092 - - - -

Constrained Chain Patterns (S, T without Z responds to P)
46 ◻(P →◇(S ∧ ¬Z ∧X((¬Z) U T))) 29 872 17 444 245 5908 7 172 13 320 23 771 9 240 10 258

47 ◇R → (P →
(¬R U (S ∧ ¬R ∧ ¬Z ∧X((¬R ∧ ¬Z) U T)))) U R 24 860 17 568 366 9592 8 298 12 442 23 909 7 250 7 250

48 ◻(Q → ◻(P → (S ∧ ¬Z ∧X((¬Z) U T)))) 14 560 7 212 105 2632 5 144 7 192 17 768 5 152 6 172

49 ◻((Q ∧◇R) → (P →
(¬R U (S ∧ ¬R ∧ ¬Z ∧X((¬R ∧ ¬Z) U T)))) U R) 149 20184 31 3004 5497 471608 46 6716 14 1216 47 6559 8 764 13 1348

50 ◻(Q → (P → (¬R U
(S ∧ ¬R ∧ ¬Z ∧X((¬R ∧ ¬Z) U T)))) U
(R ∨ ◻(P → (S ∧ ¬Z ∧X((¬Z) U T))))) - - 128 9506 5569 482168 75 8536 52 5190 621 190572 - - - -

Table 5.10: A comparison of the result BA of all six algorithms and Spin (part b)
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A¬f M∩A¬f Memory
Desired property st. tran. st. tran. usage (MB) A¬f generated by

1. ◻(p →◇q) 2 7 75681 464848 5.626 Couvreur, LTL2BUCHI+, Spin

4 14 83653 501986 5.919 GPVW+, LTL2AUT+, LTL2BA, LTL2BUCHI
8 31 107558 648778 6.993 MoDeLLa

2. ◻(c → 4 32 108504 829956 6.993 Couvreur, LTL2BA, LTL2BUCHI+
((c U d) U e)) 5 39 135113 1040443 8.165 Spin

10 78 143893 1096969 8.458 GPVW+, LTL2AUT+, LTL2BUCHI
26 215 141741 1043380 8.360 MoDeLLa

3. ◻(((((a U b) 7 480 257282 3901908 13.243 Couvreur, LTL2BA, LTL2BUCHI+
U c) U d) 11 721 449778 6466946 21.348 Spin

U e) U f) 23 1469 530772 6707414 24.766 LTL2AUT+, LTL2BUCHI
29 1822 719969 9259967 32.676 GPVW+

418 28863 N/A N/A N/A MoDeLLa

Table 5.11: The experiment result for token ring with size 6. There are 76665 states and
460929 transitions inM.

The third experiment is focus on the performance when the generated automaton is

used in model checking procedure. We implement a token ring protocol with Promela

code, which is showed in Fig. 5.2. Three desired properties will be used to verify the

protocol:� if some node is waiting to enter the critical section, eventually it will enter the

critical section.� if the token is held by a node pi, it will be passed to pi+1 and then pi+2 respectively

(partial proceeding).� the token is held first by p0, then p1, p2, and so on (total proceeding).

We rewrite these properties into temporal formulae, and translate the negation of them

with the six algorithms we had described and also Spin. With the generated property

automata, we can verify the protocol with automaton-based model checking.

The experiment result for token ring protocol with size equals to 6 is showed in

Table 5.11. The result for size equals to 7 is showed in Table 5.12.
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#define size 7

#define p (wait[_pid] == 1)

#define q (critusr == _pid)

#fefine a (token == 0)

#fefine b (token == 1)

#fefine c (token == 2)

#fefine d (token == 3)

#fefine e (token == 4)

#fefine f (token == 5)

#fefine g (token == 6)

byte token;

byte wait[size];

byte ncrit;

byte critusr;

active [size] proctype user() {

again:

if :: skip;

:: wait[_pid] = 1;

fi;

if :: token == _pid ->

if

:: wait[_pid] == 1 ->

wait[_pid] = 0;

ncrit++;

critusr = _pid;

assert(ncrit == 1); /* critical section */

ncrit--;

critusr = 0;

assert(ncrit == 0); /* critical section */

if :: token = (token+1) % size;

fi;

token = (token+1) % size

:: token = (token+1) % size

fi;

fi;

goto again

}

Figure 5.2: The Promela code of token ring protocol
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A¬f M∩A¬f Memory
Desired property st. tran. st. tran. usage (MB) A¬f generated by

1. ◻(p →◇q) 2 7 344700 2472567 18.223 Couvreur, LTL2BUCHI+, Spin

4 14 396667 2790912 20.567 GPVW+, LTL2AUT+, LTL2BA, LTL2BUCHI
8 31 453728 3174346 23.204 MoDeLLa

2. ◻(c → 4 32 449743 3409257 23.008 Couvreur, LTL2BA, LTL2BUCHI+
((c U d) U e)) 5 39 545968 4742975 27.403 Spin

10 78 624381 5228076 31.016 GPVW+, LTL2AUT+, LTL2BUCHI
26 215 657326 5903425 32.579 MoDeLLa

3. ◻((((((a U b) 8 1088 1291721 25622379 61.583 Couvreur, LTL2BA, LTL2BUCHI+
U c) U d) U e) 13 1697 2331436 43684255 116.751 Spin

U f) U g) 30 3773 3174908 49864012 155.325 LTL2AUT+, LTL2BUCHI
37 4606 4214817 67849050 202.981 GPVW+

962 131455 N/A N/A N/A MoDeLLa

Table 5.12: The experiment result for token ring with size 7. There are 330476 states
and 2278785 transitions inM.
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Chapter 6

Discussion and Implication

In most of the cases, algorithms with TGBA as intermediate automaton perform better

than others. One of the advantages comes from the transition-based acceptance condition.

A state of GBA will be labeled a set of formulae/propositions which hold on this state and

also a set of formulae which should hold from the next state on. Two states labeled with

same next-part formulae but differ from propositions is true at present will be considered

as different states, which cannot be merged. Furthermore, it may be the case that the

accepting set contains one of them instead both of them. Remind that an accepting set of

TGBA is a set of transitions. A state of a TGBA will be labeled a set of formulae which

holds on this state only. One state can have two different transitions consuming different

alphabet and are contained in different accepting sets but reach the same successor state.

This situation always happens when the formula of the state is a ◻◇-formula. States

then can be merged without considering the accepting set. For example, for a formula

◻◇(p R q), the result GBA from LTL2AUT and TGBA from Couvreur’s algorithm is

illustrated in Fig. 6.1. The label of the GBA are the proposition have to be true on the

current state and the formulae set which should be true from the next state on denoted

as “()f.” The label of the TGBA are the next-part of the current state denoted as “f.”

s1 and s2 in GBA can be simulated by the state s0 in TGBA even though s2 is in the

accepting set while s1 is not.

Another advantage is we can use on-the-fly simulation during each stage of the trans-

lation. For example, LTL2BA simplifies the automata in each step using the rules as

follows:� If a transition t1 implies a transition t2, then t2 can be removed,
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(a) GBA generated by LTL2AUT (b) TGBA generated by Couvreur’s algorithm

Figure 6.1: The comparison of LTL2AUT and Couvreur’s algorithm� If two sates s1 and s2 are equivalent, then they can be merged.

The simplification rules help the algorithm generate smaller automaton in each step.

In the comparison of these algorithms with TGBA as intermediate automaton, we

also notice some interesting phenomena. In most cases, Couvreur’s algorithm gives the

smallest automaton than the other two. Moreover, Couvreur’s algorithm performs better

than others dealing with recurrence formulae in Manna and Pnueli’s hierarchy. It is

not surprising because they optimize the expansion function for ◻◇-formulae. However,

Couvreur’s algorithm encounters some dilemmas. A big difference between Couvreur’s

algorithm and LTL2BUCHI+ is that Couvreur’s algorithm shrink the result automaton by

merging the states with the same next-part and the literals which should hold on current

state will be record on the in-transitions. There might be the case that two transitions

with different alphabet point to the same state in the result automaton of Couvreur’s

algorithm. The accepting condition is also be handled this way. Hence, a accepting

set corresponding to an U -formula will also be minimized. But in LTL2BUCHI, states

stores the information of both the literals and the next-part of the current state. In-

transition of a state in the result automaton will always label with same alphabet, so does

the acceptance condition. Couvreur’s algorithm thus, without doubt, generate a smaller

TGBA than LTL2BUCHI. Yet in the transforming step of TGBA to BA, the construction

simplify the result BA on-the-fly. The information of satisfaction of an U -formula in the

result of Couvreur’s algorithm is not as complete as LTL2BUCHI. A trace may need to

generate more states to reach the lasso of the accepting run in the result TGBA generated
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by Couvreur’s algorithm. Moreover, LTL2BA can not beat LTL2BUCHI for this kinds

of formulae with similar reason. The first stage and second stage of LTL2BA reduce the

state size and the accepting sets, which cause the lost of information. Unfortunately, the

relation between this situation and the input formula is not vivid.

From these comparison results, we notice that Spin may not be able to generate

the smallest automaton for each formula in most of the cases. If one uses the smallest

automaton generated by other algorithms rather than Spin, time and space can be saved.

We also noticed that MoDeLLa performs better that GPVW in a particular case when

the size of the token ring is 6. Thus, it is possible to produce smaller product automaton

if the property automaton is “more deterministic” than the others. However, it doesn’t

help in most of the cases.

6.1 Portfolio

From the experimental results in Chapter 5, none of the algorithms is dominant. Hence,

we propose a portfolio for choosing better-performance algorithm when combining with

model checking procedure.

Some model checking procedures use GBA/TGBA as the property automata instead

of BA. For these procedures, LTL2AUT+ and Couvreur’s algorithm gives the smallest

GBA/TGBA in most of the time. For smallest BA, the situation is much trickier. If one

needs the smallest automaton, always choose an algorithm with TGBA as intermediate

automaton. If the formula can be classified in recurrence of Manna and Pnueli’s hierarchy,

Couvreur’s algorithm can always give the smallest automaton. Otherwise, We cannot tell

which of the three will generate the smallest automaton. However, by our experimental

experiences, LTL2BUCHI always takes longer time and spend more space than the rest

of the two. Hence, for one who has time and space considerations, use Couvreur and

LTL2BA might be a better choice. On the other hand, for one who can always pre-produce

the automaton for the property with large-memory environment can use LTL2BUCHI+

more often since it might beat both of the two on some conditions and often make tight

on the other cases.

A screen shot of Büchi Store is illustrated in Fig. 6.2.
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Figure 6.2: The screen shot of Büchi Store

6.2 Büchi Store

From section 6.1, we conclude that there is no algorithm which can always generate the

smallest BA for different kinds of formulae. When people need the smallest BA for a

formula, the only thing they can do is to translate the formula by each algorithms and

pick up the best one. This solution is not that practical because it wastes a lot of time

and space generating some automata which are useless.

The conclusion inspires us a new idea for “pre-translating” the temporal formula to

BA, which is “table look-up.” The number of the formulae which are frequently used

is limited. If we can have a repository for each of them to the corresponding smallest

automaton, people can reach the corresponding BA for their need very quickly without

applying translation algorithms.

Thus, we build up a web-based open repository “Büchi Store.” It stores numerous of

temporal formulae and their corresponding Büchi automata. People can contribute the

best BA in their understanding and get the smallest BA for each formula collected in

Büchi Store. With people’s contributions, Büchi Store will become more and more helpful

for research, industry, and education. Büchi Store not only collects Büchi automata,

but also classifies the temporal formulae in different manners. People can get the BA in

different classes depends on which property they are trying to verify to the target system.
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Chapter 7

Conclusion

In this thesis, we attempted to find out which translation algorithms generates a smaller

automaton from the given specification formula as the size of the specification automaton

determines the efficiency of model checking. We gave a comprehensive review of a sub-

stantial number of translation algorithms. We compared six of these algorithms as well as

the one implemented in Spin. Algorithms that translate the formula with intermediate

TGBA tend to generate smaller automaton. However, none of the algorithms can always

generate the smallest automata for various of temporal formulae. From the experimental

results, we also fund that the idea of making the result automaton “more deterministic”

does not seem to help. When the size of the specification automaton becomes much

bigger than others, the automaton may not be able to improve the performance of model

checking. We proposed a portfolio for choosing these translation algorithms to generate

specification automata. For an even more convenient approach, we built an open Büchi

automata repository, the Büchi Store where one can look up the Büchi automaton for a

given temporal formula.

7.1 Contributions

Our contributions can be summarized as follows:� Comparison of translation algorithms

We compared six of the translation algorithms and designed three experiments

for the comparison. From these comparison results, we noticed that some of the

algorithms may perform better than others most of the time. Via the comparison
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of the translation algorithms, we got more understanding about the algorithms. We

also proposed the portfolio for translation algorithms with the help of comparison

results.� Expansion of translation algorithms in GOAL

Originally, GOAL had nine translation algorithms. The collection has been ex-

tended to twelve now. Couvreur’s algorithm, LTL2BUCHI, and MoDeLLa had

been implemented. LTL2BA had been remodeled for presenting each stage of the

translation. Couvreur’s algorithm and LTL2BUCHI are also improved. We apply

the third stage of LTL2BA to Couvreur’s algorithm in order to translate the re-

sult TGBA of Couvreur’s algorithm into a Büchi Automaton. LTL2BUCHI is also

improved by applying the same algorithms for better performance.� Extension of the user interface in GOAL

In the past, GOAL has the ability to present state-based regular automata. Since we

wanted to present each step in Couvreur’s algorithm, LTL2BA, and LTL2BUCHI,

the user interface of transition-based automata and alternating automaton are de-

veloped. One can create and edit an automaton with transition-based acceptance

conditions and alternating automaton with different acceptance conditions. One

can also generate the TGBA or co-Büchi VWAA in GOAL via the translation al-

gorithms .� Building an open repository – the Büchi Store

With better understanding of the translation algorithms, we noticed the fact that

none of the algorithm is dominant. Sometimes we have to translate the input

formula with each algorithms in order to choose the best result, yet it is impractical.

Hence, we built an open repository for BA, called Büchi Store. The user can

contribute the best BA in his/her understanding and get the smallest BA for each

formula collected in Büchi Store. With users’ contributions, the Büchi Store will

become more and more helpful for research, practice, and education.
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7.2 Future Work

The following works are very interesting and worth to be focused on.� Extending the portfolio for different classifications of formulae

One of the extension work is to develop a sequence of steps of procedure to clas-

sify the formulae into the classes in [17] and the Spec Patterns. With more

understanding of the specification formula, the portfolio will be more complete.� Improving the translation algorithms

All of the algorithms we described in this thesis put their strength on the temporal

formula with only future operators. The algorithms will be more powerful if it is

improved for past operators. The structural simulation and fairness set pruning

technique for TGBA haven’t been mentioned before. If the translation algorithms

can be improved in these directions, a smaller automaton can be generated.� Extending the Büchi Store

Currently, the functionality of Büchi Store is not completed yet. The classification

algorithm is needed for classifying the temporal formulae. Some user interface

abilities, like on-line automaton redraw, on-line automaton translation and verifying

are not capable in the current version. The correctness check for large automaton

is limited by the computing power. These work are absolutely useful for the next

generation of Büchi Store.
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