A Comprehensive Comparison of Temporal
Formula to Automaton Translation
Algorithms

Chang; Jinn=Shu
Adviser: Tsay, Yih-Kuen
Graduate Institute of Information Management
National Taiwan-University

November-20. 2009

THESIS ABSTRACT
Graduate Institute of Information Management
National Taiwan University

Student: Chang, Jinn-Shu Month/Year: November, 2009
Advisor: Tsay, Yih-Kuen

A Comprehensive Comparison of Temporal Formula to
Automaton Translation Algorithms

Translation of a temporal formula into an automaton is a central issue in the automata-
based approach to model checking. In the approach, model checking of a system M
against a temporal specification f proceeds in three steps: (1) generate an automaton
Ay for the negation of f, (2) construct a product automaton A that is the intersection of
M and A_y, and (3) check the emptiness of the product automaton A. The time needed
to complete the model checking task is proportional to the size of A, which is the product
of the sizes of M and A_;. For a given systemythe size of A_; determines the size of A.
Therefore, the smaller A_; is, the faster the model checking task may be carried out.

In this thesis, we investigate an extensive -eollection of translation algorithms, in-
cluding all of the well-known ones| We' compareithe state and the transition sizes of
the automata generated from-these algorithms. An‘algorithm that generates smaller
automata should be more helpfill’ when 1t4is apphed in model checking. The reason is
that when one needs to certify that a systerdaa-satls{fues the desired property, the complete
product automaton must be constructed, TQTWI‘fO¥ﬁ1 the coniparison, we implement not
only the translation algorithms but als&) }possrtdjle 1n}ﬂ$rovements in the GOAL tool. From
the experimental results, we observe that noneof thq algorithms can always generate the
smallest automaton for each of the. te poral formulae considered. We therefore propose
a portfolio for choosing suitable algorlthms for dlﬁerent kinds of temporal formulae. We
also design and implement an open reépository called Blichi ‘Store where one can look up
the Biichi automaton for a given temperal formula.

Keywords: Biichi Automata, GOAL, Model Checking, w-Automata, Temporal Logic,
Verification.

Contents

Introduction

1.1 Background

1.2 Motivation and Objectives

1.3 Thesis Outline e

Preliminaries

2.1 Automata on Infinite Words

2.2 Variants of w-automata
2.2.1 Biichi Automata
2.2.2 Generalized Biichi Automata . oo ..
2.2.3 Transition-Based Generalized Buch1 Autemata
2.2.4 Co-Biichi Very Weak Alternatlng Automata

2.3 Propositional Linear Temporal Logic (PTL)w.~.

Related Work e oo NI 57

3.1 Translation Algorithms |. . . | | &y | Y N
3.1.1 Couvreur’s Algorithm ' - -—.,:-."7 11 . .8 =...........
3.1.2 LTIL2BA & ... LI .. i . 11 W o B L.
313 LTL2BUCKR ! N M. == |\ WS ..
314 GPvW+ B\l .. - W 5y ...
3.1.5 LTL2AUT+ NG, L35 e = oA L
3.1.6 MoDeLLa- L A . |

3.2 Tools Sl eeces Bl . - . o e e e
3.2.1 SPIN . . .
3.2.2 GOAL e

Translation Algorithms

4.1 Couvreur’s Algorithm

4.2 LTL2BA . . .
421 LTL to VWAA
422 VWAA to TGBA
423 TGBA to BA

4.3 LTL2BUCHI
4.3.1 Data Structure
4.3.2 Algorithm

4.4 MoDeLLa e

4.4.1 Determining the covers
4.4.2 Algorithm
5 Experimental Results
5.1 Settings of the Experiments
52 Results
6 Discussion and Implication
6.1 Portfolio
6.2 Biichi Store

7 Conclusion
7.1 Contributions
7.2 Future Work

Bibliography

39
39
39

54
o6
o7

58
58
60

61

List of Figures

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

4.12
4.13

5.1

5.2

6.1
6.2

The structure of SPIN simulation and verification
The editing environment of GOAL

TGBAy generated by Couvreur’s algorithm
VWAAy generated by LTL2BA
TGBA; generated by LTL2BA
BA; generated by LTL2BA
The expansion algorithm for the nodeset
The splitting function
TGBAy generated by LTL2BUCHI
The examples of degeneralizers o
The degeneralizer generating algoﬁthm‘llr
BAj generated by the degeneraligatiomalgorithim
The difference of the produet of system M with a deterministic or a non-
deterministic autoiof@n # . . - e R TERTR L
The regular schema of temporal .log;_ tb i?A algorlthm
GBA; generated by MoDeLLa :5,__' B
The state size of different alg(Jr hmﬂjqransl?tmg from 500 formulae. Note
that 1 is the length of the formula and n is !the number of propositions in
the formula. s

1 :
...... A
The PROMELA code of token rlng protocol @ B

The comparison of LTL2AUT and Couvreur s algorithm
The screen shot of Biichi Store . . =000 oo oo

List of Tables

4.1
4.2

5.1
5.2
5.3
5.4
9.5

5.6
5.7
5.8
5.9
5.10
5.11

5.12

Formula expansion rules. 22
Definitions of New and Next functions for non-literals 30

A comparison of the generated GBA of GPVW+, LTL2AUT+, and MoDeLLa 41
A comparison of the generated TGBA of Couvreur, LTL2BA, LTL2BUCHI 42

A comparison of the result BA of all six algorithms and SPIN (part a) . . . 43
A comparison of the result BA of all six algorithms and SPIN (part b) . . . 44
A comparison of the generated GBA of GPVW+, LTL2AUT+, and MoDeLLa
(Part &) . . . 45
A comparison of the generated GBA of GPVW+, LTL2AUT+, and MoDeLLa
(partb) Sl . - - - - - - - 46
A comparison of the generated TGBA of. Q,ouvreur LTL2BA, and LTL2BUCHI
(part a) 48 X_ g e | pGTER LLLLLLL 47
A comparison of the generated TGBA of Couvreur LTL2BA and LTL2BUCHI
(part b) B S . e i, RN - VT 48
A comparison of the result BA Q£ all suk(algorlthms and SPIN (part a) . . . 49

A comparison of the result BA of % algorithms and SPIN (part b) . . . 50
The experiment result for tokF ring WltH size 6. There are 76665 States

and 460929 transitions-in M. | | . .L.r_,. : .' E W T 51
The experiment result for tok}e ring with | srlze .. There are 330476 states

and 2278785 transitions'in /\/l'. |. A 53

Chapter 1

Introduction

Software verification is a fundamental issue about the correctness of programs. A program
should always accomplish the goal the programmer proposes and should not cause any
unexpected side-effect, which is known as bugs in the program. Bugs in a program should
be eliminated otherwise software might go wrong. One common solution is to review the
code before publishing. Yet it might costs lots.of time and human work. Hence some

systematical methods are proposed.to clean-up the bugs:in program.

1.1 Background “'/

=zt

There are some methods to seize this igj al’ sgc’ff zisrL testing and simulating in the early
years. In 1981, model checking is'first iwftroqlit;c:ed lp‘y E. Mi“€larke and E. A. Emerson.
Model checking is an automatic pfécesshx‘ghich gan ch'ieuck wlhether the given system satisfies
the given property. 5 :

Model checking is a procedure to solve the fundamental problem whether a given
system M and a given property p, M = p. It involves three main phases, which are
modeling, specification, and verification. In modeling, the system M is usually given
as a specification of the target program. It can also be formalized by a finite state
machine, which can be represented by Kripke Structure. Kripke Structure contains nodes
to describe each state of a program and transitions for the variation of a state to another
state for statements in the program. However, a Kripke structure can be transformed into
an equivalent w-automaton. Hence, we will only use the w-automaton Axs to describe

the system we want to verify. In specification, temporal logic is used for describing the

desired property p. Temporal logic is a logic language which wildly used to describe the

rules and the desired property with temporal operators in terms of time. In this step, one
can translate the property described in temporal logic into an equivalent automaton A,,.
Usually, Biichi automata are chosen to represent such an automaton. Biichi automata
are first represented by J. R. Biichi in the 1960’s, which is the first relating to w-automata
[2]. It is also proved in [2, 20] that each temporal logic formula can be translated into a
corresponding automaton. In verification, we solve the model checking problem M E p by
solving this equivalent containment problem whether £(A) € L(A,). This containment
problem can be rewritten as an emptiness check problem, £(Ax) N L(A-,) = @.

There is a modified method based on model checking which is called “on-the-fly model
checking”. The main idea of on-the-fly model checking is that the model checker does not
have to generate the complete product automaton for the emptiness test in verification
phase. If the language of an automaton is not empty, the path of the accepting run
may not involve all states in this automaton. With this concept, even if the complete
automaton haven’t be constructed, emptiness c]?eck of the half-built automaton is suf-
ficient enough to tell whether: the la,ngudge of thle complete automaton is empty. Since
the production procedure is based on depth first search Whenever it creates a transition
which towards a state which is already generated it must be elther a back edge or a cross
edge in the complete graph. If this tran 1t1ﬁ‘fr'§'a ,back edge ‘and the states in this loop
contains an accepting state, the emptiness cﬂﬁ‘ck chn be terminated and the counterex-
ample is found. In this way, the.cost Ol Fverage is cllepreased even though the complexity
is still remain costly. : B

In automata-approach model checkiné, the corlnection between program, temporal

logic, and automata is quite essential.

1.2 Motivation and Objectives

Since we try to check the emptiness of the product of two w-automata, the state space of
the product automaton is also important. However, the size of A4 is always large because
it is highly related to the complexity of the system. Even though simulation algorithms
such as the one described in [23] can be used, downsizing the system M is still limited.

Thus, the size of the corresponding automaton for a property is important. Intuitively,

we assume that the smaller the automaton is, the smaller the product automaton in
the model checking procedure will be. Hence, the size of the generated automaton of
a temporal formula to automaton translation algorithm is usually be think as a major
point of view when comparing between translation algorithms. However, we should also
concern about the size of the half-built product automaton when we talk about on-the-
fly model checking. Our goal in this thesis is to comprehensively compare translation
algorithms in more general way. This comparison will bring out the result about which
kinds of translation algorithms can generate better automata, which is smaller or more
suitable for on-the-fly model checking than the others.

For this goal, rather than studying the core idea these algorithms, we also need a good
assistant tool for us to obtain needed data. Therefore, GOAL, which is an interactive
graphical tool for temporal logic and various kinds of w-automata, is introduced. We

implement all the algorithms discussed in this thesis in the GOAL tool.

1.3 Thesis Outliné . =~

The rest of this thesis is organﬁed as folewys:

\ .

M o' <
e In Chapter 2, we will introduce nyf}ﬁ&s p% automata which we will use in this
thesis and relevant resecarch Su(jj S wlﬁton’l&ta transition-based automata, and

alternating automata. Further OFe the brlefl introduction about temporal logic

would be described.

e In Chapter 3, we will introduce some translation algorithms which we had studied
and some related tools that is used for model checking or linear temporal logic

translation.

e In Chapter 4, we will present some translation algorithms which are based on
transition-based generalized Biichi automata in detail. We will also present an

algorithm which is based on a different idea than the others.

e In Chapter 5, we will show the experiment environment settings and the results.

These experiments will bring out the discussions and conclusions in Chapter 6.

e In Chapter 6, we will discuss the reason why some algorithms can perform better
than the others and how should we choose a right algorithm to combine with model

checking.

e In Chapter 7, we briefly summarize this thesis and conclude our contributions. We

would also describe some work we need to do in the future.

Chapter 2

Preliminaries

Here in this chapter, we will introduce some pre-knowledge for automaton-based model
checking. In the first section, we will describe many kinds of automata which will be used
in this thesis, and some basic operations for those automata. In the second section, the

characteristic of temporal logic will be introduced.

2.1 Automata on Infinite W‘(.)rds,

Automata theory is consideredias/a good way to understand a program, which is im-
portant in formal verification. w- automat-a,.ean rﬁapresent not only a given system but
also a given property whieh is WI'ltteIT n t’g’f)oral formula. This work can be traced
back about forty years ago in 1960’s, th b= BuChl mtroduced his work, which using
finite automata with infinite 1npu’c Wodes to obtaln a decmon procedure for a restricted
second-order logic, the sequential calculus {2].

Some notations in the following should be brought out here. Usually, we use ¥ to
denote the set of alphabet, and >“ to denote the set of infinite words over 3. An infinite

word then can be denoted as w = wowiwsy ..., w € X% and each w; € 3.

An w-automaton A is a 5-tuple (X, Q, A, Qy, F) where

3] is the finite set of symbols, called alphabet,

Q is the finite set of states,

A, is the transition relation,

Qp € Q is the initial states, and

e F is the acceptance component.

If |A(s,a)] =1 for s € Q and a € X, the automaton is deterministic, otherwise, it is
non-deterministic.

The acceptance conditions of each kinds of automata may be based on states or
transitions. An w-automaton is called a state-based automaton if the acceptance condition
is defined over states. A run p of a state-based automaton A on infinite word w =

Wowqws ... € X¥ is a sequence of states qo,q1,... € Q¥ where
qo € Qo,¢ € Q and g1 € A(gs, w;) for 0 <.

The set of states occurring infinitely often in p = qg, q1, ... € @« is denoted as inf(p), more
precisely

inf(p) ={qi e Q|Vilj>i,q =q;}.
Usually, we simply say “automata’for “state-based automata”. On the other hand,
an w-automaton is called a transition—baséd au%dma’pon if the acceptance condition is

defined over transition. A run p ofia transition—basedurau(tpmaton A7 on infinite word

w = wowwy ... € 3¢ is a sequenice,of transitions (go,wo, ¢1), €71, w1, g2), ... € A where
(o= f |

L '
J]“wi) for 0 <.

9 € Qo,¢; €L a (Jz'+1r[~7 A(‘
iy l &
e 1]
The set of transitions occurring inﬁni‘ljleiy often in meos‘(h), (q1,w1,q2),... € A% is de-
D 1 %

noted as inf(p), more precisely

inf(p) = {(qi, wi, qis1) | Yi3j > i, (qj, Wi qiga) where g; = q;,w; = w; + 1, qin1 = gjua }-

Note that inf(p) is a set of transitions for a transition-based automaton, while it is a set
of states for a state-based automaton. Because an accepting run of an w-automaton is
differ from the accepting conditions, the definition of accepting run of an automaton will
be introduced in section 2.2.

An alternating automaton A is an w-automaton with A = Q x ¥ to B*(Q) where
B*(Q) is the set of positive boolean formulae over Q. A simple example of B*(Q) is

GV (g1 Ag2). Arun p of Aon a word wows ... € X¥ is a labeled DAG (V, E, \) such that:
e V is partitioned into U;2, V; (infinite levels of nodes),

6

EcUZy Vi x Vis,

A: V = Q is the labeling function,

)\(‘/E)) € QO7 and

for all x € V;, there exists a @ satisfying A(A(x),w;) such that @ = A\(E(x)), where
E(z) ={q|(z,q) € E}.

2.2 Variants of w-automata

There are several kinds of w-automata in automaton theory. In this thesis, we will use
some of them, which are Biichi automata, generalized Biichi automata, transition-based
generalized Biichi automata, and co-Biichi very weak alternating automata. We will give

the definition for each of them in the following.

2.2.1 Biichi Automata P

Biichi automata are oftenuséd for aufgfﬁata—b‘aééd model éhecking An w-automaton
A=(2,9,A,9y,F) is called Biighi aut m@xf Jthe acceptance condition is defined as
follows: F € Q and a run pon a 1nﬁn1tL: Word[w is .accepted by A if

& mﬂp) nE + ol |
In other words, there exists at least one sfémte qe F which is visited infinitely often on p.
A word w € ¥¥ is accepted by A if there is a corresponding accepting run p.
When we talk about Biichi automaton, two basic operations, union and intersection,

for it should be mentioned.

Proposition 2.1. Let Ay and Ay be two Biichi automata. There is a Biichi automaton

A which accepts the union language, which means L(A) = L(A,) U L(A,). [4]

Proof. Let A; and A, be defined as follows:
Al = (Zla QlaAla QOl?fl) and AQ = (229 QQaAQa Q027F2)‘ Let AIS a5_tuple (Za QaAa QO)‘F)a

where

1. 2=21U22,

[N}

. Q: QIUQQJ
3. Qo= 91U Do,

4. F =F1uF,, and

_) Ai(q,w) ifgeQy
Alg.w) = { As(q,w) if g€ Qo

ot

In this constructive way, it is easy to see that A accepts and only accept any accepting

word for A; and A,. O

Proposition 2.2. Let A; and Ay be two Biichi automata. There is a Biichi automaton

A which accepts the intersected language, which means L(A) = L(A;) n L(A,)[4].

FlEHE
Proof. Let A; and A, be deﬁned\ as follows e

.__;

;

Ay = (21, 91,41, Qo1, F1) and\Ag 7{22 ‘

gQiLet,AmaS -tuple (2, Q, A, Qq, F),

where :‘ o
&
1. ¥X=%;u 22, ,;;'.

=

2. Q=0 xQyx {1,2},% -

3. qo = Qo1 x Qoo ¥ {1},
4. F=F; xFyx {1}, and

5’ A((qlanai)vw) = (qivqévj) Where qi = Al((haw);% = AQ(q27w) a’nd

j=1 if ¢ eF and i=2
j=2 ifgpeFandi=1
=7 false.

O
The main idea of this construction is that if a run p is accepted, there exists two

states in in f(p) which are ((g;,¢j,1)) and ((gx, @i, 2)) where 4, j, k, [are arbitrary number.
Hence, by the construction, both F; and F; is visited infinitely often.

8

Proposition 2.3. Let A be a Biichi automaton. Then there exists a Biichi automaton A

such that L(A) = ¥ - L(A) [2].

2.2.2 Generalized Biichi Automata

An w-automaton A = (2,9, A, Qq, F) is called Generalized Biichi automata iff the ac-
ceptance condition is defined as follows: F ¢ 22 e.g. F = {Fy,Fa,...,Fr} and for all

1<i<k, F; € Q. A run p on an infinite word w is accepted by A iff
inf(p) N F; + @ for every F; € F.

In other words, there exists at least one state ¢ for each F; € F is visited infinitely often

on p. A word w € X% is accepted by A iff there is a corresponding accepting run p.

Proposition 2.4. Let A; be a generalized Biichi automaton. There is a Biichi automaton

A which accepts the same language of Ay; whichemeans £(A) = L(A,).

Proof. Let Ay = (31,9Q1,Aq; Qol,fl), where F = {Fl(;f.g,...,fk}. Let A is a 5-tuple
(3,9,A,090,F), where —

1. =3, r—
15 |
2. Q=01 x{l.k}, i = ||
e : r
2 1
3. Qo ={q}, | l[1
4. szl X {1},

5. A(qo,w) =(gq,1) if there exists a ¢; € Qp1, A1(q;, w) = q, and

.) o _ j=i+1 (modn) ifgeF;
6' A((Q>Z)aw)_(q’]) lfAl(q’w)_q and{j:i 1fq¢fz

O

In order to record which acceptance set we are eager to visit, the third flag on state
is needed. This idea is quite the same as the intersection operation of Biichi automata.
Once a run p visits a state flagged with j, which means there is a state in F; of A; is
visited. If the flag can always change from 1 to k infinitely often, every corresponding

accepting set F; € F is visited infinitely often. Hence, this run should be accepted by A.

9

2.2.3 Transition-Based Generalized Buchi Automata

An w-automaton A = (X,9,A, Qy,F) is called a transition-based generalized Biichi
automaton if the acceptance condition is defined as follows: F ¢ 22, which means the
acceptance is a set of subset of transitions, e.g. F = {Fy,Fa,...,F,} and for all 1 <i<n,

F; € A. A run p on an infinite word w is accepted by A if
inf(p) nF; + @ for every F; € F.

In other words, there exists at least one transition t for every JF; € F appears infinitely
often on the run p. A word w € ¢ is accepted by A if there is a corresponding accepting

run p.

2.2.4 Co-Biichi Very Weak Alternating Automata

An alternating automaton is called wery weak (abbfeviate as VWAA) if the following
properties hold. j

Ma=)|
e There exists a partition*of O into{di@lsqté Q;, such that either the accepting

set Q;cFor FnQ;=a. | ; %'1;',, [|

11 ;
e There exists a partial order < on the sothof Q; such that, for every q € Q;, if ¢’ € Q;

occurs in A(g,w), then Q; < QZ

Thus, a run DAG of a VWAA will eventually “trapped” within a partition Q.
A VWAA with co-Biichi acceptance condition if the accepting set F is a subset of Q.
A run DAG p of co-Biichi VWAA is accepting if any infinite branch in p has only finite

number of nodes labeled in F.

2.3 Propositional Linear Temporal Logic (PTL)

Temporal logic is a description logic which is used to represent and reason about the spec-
ification of a system which is qualified in terms of time. Any logic which views time as a

sequence of states is a temporal logic. It was first introduced by A. Prior in the 1960’s, and

10

developed further by A. Pnueli for computer usage. A. Pnueli pointed out that temporal
logic is useful when people trying to verify and specify the software programs especially
for concurrent, reactive, and non-terminating programs such as operating system [21].

Temporal logic is used to formalize the describing sequences of transitions between
states in a reactive system, which can be represented as a Kripke structure [5]. A Kripke
structure M can be defined as 4-tuple (Q, Qg, R, L) where Q is the set of state, Qq is
the set of initial state, R is the total transition relation between two states, and L is the
labeling function which labels each state with a set of propositions if the propositions
is true in the state. A path 7w of M from a state ¢ is an infinite sequence of states
T = qQo,q1,--- such that ¢y = ¢ and (¢;,¢i+1) € R for all ¢ > 0. Temporal formulae are
then used to describe the properties about a state or a path, which would be called state
formulae and path formulae. A state formula describes what property should be true at
the current state while a path formula describes what property should be true along the
specific path. :

A formula written in temporalflogic ‘ca"n spe'c;ify t_he property of a program by the
temporal operators. For example we'can use always operator to describe that some
properties, sometimes called spemﬁcatlor;-s Wouﬂd always be true which is usually con-
sidered as a safety property of a distribu %ﬁm 'I Notige that temporal operators can
also be combined with one another. {lr_. | ‘il

Propositional linear tempora}'-iogii %s a restrictiqd liné@r temporal logic which only
allowing boolean variables. :)

State formulae, boolean operators, aﬁd tempdral operators are contained in linear
temporal logic [18]. The temporal operator can be separated into two parts, which are
future operators and past operators. Here we would only focus on the future operators.

Let 7% denotes the suffix of 7 staring at ¢; in the sequence of path. The definition are as

follows:
State Formulae

e For a state formula p,

M, E p < s is the first state of 7 and M, s E p.

11

Boolean Operators

The following are the semantics of some boolean operations.

e Negation: —p,
M, m™E -pe M, © ¥ p.

e Disjunction: pvgq,

M, mE pvge M, mE porM, T E q.

e Conjunction: p A g,

M, ™6 prge M, 7= pand M, 7 E q.

There are some other operations which are not introduced here such as implication (—)

k

. - Tl Vl:r‘.';fl;_?;'
and equivalence («>) can be deﬁnedt;’b}(d—‘i&_%&g&tl‘orﬁ_{‘d{sj&ncmon, and conjunction for sim-
plicity. o o1 :" .

e written as F p.

N, e
e Eventually: ¢p, or sometimes

M, op < for some k>0, M, 7" & p.

e Always: Op, or sometimes be written as G p,

M,menp< foralli>0, M, r°Enp.

e Until: p Uq,

M, m=epUq <= forsome k>0, M, 7% =¢q, and for all 0 <i <k, M, 7" & p.

12

e Release: p Ry,

M,mrepUq< forall k>0, if for every i < k, M, 7" # p, then M, 7" = q.

e Waits for: p Wy,

MrepWq<e M, mepUqgor M, 7 E gp.

13

Chapter 3
Related Work

One of the members in our group, W.-C. Chan, had given a comparison study of some
algorithms in 2007 [3]. He compared five algorithms which were Tableau [18], Incremental
Tableau [13], Temporal Tester [14], GPVW [9], and LTL2AUT [7].

He concluded that GPVW and LTL2AUT perform better than the others in terms of
the state size. Both these algorithms have been improved as GPVW+ and LTL2AUT+.
We will follow this conclusion and:take more alécrithms to have a more comprehensive

comparison.

3.1 Translation Algorltrh@_; i

\ i !
Here we will briefly describe the algori ’tkLms wesare ¢ gomg to'focus on in this thesis. The
section is ordered by the acceptance cdnphtlon of thc result automaton and the proposed

year of each algorithm.

3.1.1 Couvreur’s Algorithm

This work is presented in [6]. This algorithm presents a way to translate an LTL formula
to a transition-based generalized Biichi automaton (TGBA). The first step in this algo-
rithm is to expand the given formula to an expression which can obtain the information
about the property which the current and the next states should satisfy and what kind
of property had been satisfied in each step. With this expression, the automaton is con-
structed by translating each expression element into the corresponding transitions and
states. Second, for every U -formula v, it build a corresponding accepting set which con-

tains every transition which makes v be satisfied. Then, the construction is completed.

14

The space complexity of this algorithm depends on the number of temporal operators in

the given formula f.

3.1.2 LTL2BA

This algorithm translates an LTL formula into a Biichi automaton with three stages: (1)
translating from LTL formulae to very week alternating co-Biichi automata (VWAA),
(2) translating VWAA with co-Biichi condition into TGBA, and (3) translating TGBA
into Biichi automata [8]. In the first stage, the states of the automaton is actually
corresponding to the subformulae of the given formula. For each successor formula of the
corresponding formula of the current state, if it is a conjunction formula, the algorithm
will generate an and-branch transition and states, generate single state and transition
otherwise. The accepting set will be a set of states which the corresponding formulae are
until-formulae. The second stage translates the previous result into TGBA. For each until
subformula f of the given formula, the constructien will generate an accepting set which
contains all the transitions whose siccessor staté mdoes_not refer to any state in VWAA
corresponding to f. The third.stage tripslates tbe prévious result TGBA into BA. It
constructs the result Biichi aﬁﬁofnaton ﬁitﬁﬁnﬁddlftional iﬁt;eger to keep track of which
accepting condition is looking forward o:—riﬁ‘eh ﬂl%termediate automaton is simplified

. . | 1 ‘,
on-the-fly, in order to save memory anF 1mei]ju_ {1
=l ‘[

. 1
i 1
313 LTL2BUCHI .0 A

This is also a translation algorithm for arl'inear terﬁporal formula to a Biichi automaton
using transition-based generalized Biichi automata as intermediate automata. The main
feature of this algorithm is that it records the information on transition rather on state,
which allows it to merge states [10]. The core method of this algorithm is the same as
LTL2AUT [7], but the ways collecting accepting set and merging two states are different.
Merging states in this algorithm is more rigid since the information about previous state
and accepting condition in a state may differ. This information should not be lost because
the relation between states in transition-based automata is essential. Every state in this
construction contains two list about accepting set, one records the U -subformula in the

given formula while the other contains those which are satisfied at the transition. These

15

two lists are useful when computing the accepting set by building set of transitions for
each U -formula which is satisfied at this transition.

The paper also gives an algorithm for TGBA to Biichi automaton translation. It
provides a construction of an automaton A’ with Biichi acceptance condition. By com-
puting an automaton A which is the intersection automaton of A’ and the target TGBA
A7gsa, the corresponding automaton A is constructed, which means the language of A

and Argpa are equivalent.

3.14 GPVW+

GPVW is a simple on-the-fly algorithm proposed in [9]. It keeps the information of ele-
mentary formulae, U -formulae, and the right-hand side formulae of U -formulae in each
state. The U -formulae are kept for the accepting condition for generalized Biichi au-
tomaton. Once the right-hand side formula of an U -formula f holds in the current state,
the U -formula is satisfied, which impliess the acceptlng set corresponding to f should
contains the current state. They also proposed a new Way to detect the contradiction

and redundancies for states.

3.1.5 LTL2AUT+ =
F

LTL2AUT+ improved GPVW..by: synta; t1caﬁy 1mp 1cat10n [7]." They deduce the infor-
mation for a state by keeping the information of elqn‘nentary formulae. The improvement

helps merging states and detecting cotitradietion and redundancies.

3.1.6 MoDeLLa

The main idea of this method is that generated automata should be more deterministic
rather than smaller because the final product in model checking may be smaller with the
help of deterministic automata [22]. However, some LTL formulae cannot be translated
into an equivalent deterministic Biichi automata, and even deciding whether the trans-
lation is possible belongs to EXPSPACE and is PSPACE-HARD [15]. In this way, this
algorithm translates the given formula into a generalized Biichi automaton “as determin-
istic as possible” when computing the cover of the formula eventhough it may generate

more states than other algorithms. First, the rewriting rule which would cause nondeter-

16

XSPIN
Front-End
(Tel/ Tk Code)

PROMELA LTL Parser

Parser | and Translator
L. 2. 3.
Syntax Error Interactive Verifier

Reports Simulation Generator

Optimized
Moadel Checker
(ANSIC code)

Counier- Executable

PS:; ‘]; On-The-Fly

Kampies Verifier
I = ,, :.-*_..: r-.i""‘
Figure 3.1: The strpcture of SEI ‘srimulatlpn—-and verification
A i y
A '
1;' i
minism should be omltted,x.whlch would make t ess nondeterministic”. Second

of the cover. This merging E(lztiomi, lways saf piicablg since the corresponding

states would not be in the same: accépl in ef(ﬁi;e thls action can only be applied

when it is guaranteed not to cause m.eoil;regtness HoweVer thls work is only based on “as
. ey Lot
deterministic as possible”. The result may be good enough for model checking usage.

3.2 Tools

There are some tools which are related to automata-based model checking. We will give

a brief instruction for each of them in this section.

3.2.1 SPIN

SPIN [11, 12] is a well-know model checker, can be used for the formal verification of

asynchronous process systems. The tool was developed at Bell Labs, written by Gerard

17

J. Holzmann and others, starting in 1980. The basic structure is illustrated in Fig. 3.1.

XSPIN is a graphical front-end for SPIN. To verify a design, SPIN accepts design speci-
fications written in a high level language, called PROMELA (a PROcess MEta LAnguage),
and it accepts correctness requirements expressed as Linear Temporal Logic (LTL) for-
mulae. PROMELA parser can also fix syntax errors, and perform interactive simulation to
roughly ensure that the design behaves as intended. Then, SPIN generates an optimized
on-the-fly verification program, which will be compiled and executed. Counterexamples
to the correctness claims can be fed back into the interactive simulator, if detected.

The fundamental technique of SPIN is logic model checking. M.Y. Vardi and P. Wolper
extended model checking with an automata theoretic model [16]. The description of a
concurrent system in PROMELA consists of one or more user-defined process templates,
and SPIN translates each into a finite automaton. The global system behavior can be
obtained by computing an asynchronous interleaving product, resulting again represented
by an automaton. Then, SPIN takes the correctness claim in LTL formula and converts
it into a Biichi automaton base on.a simpleron—thle“-ﬂyKgo-nstruction [9]. The synchronous
product of this claim and the automaton representing fher global state space is again a
Biichi automaton. The result éf the Validjstg;;gf tll';_‘gaciaim is edilivalent to the emptiness of

- — V"V'i ‘ . .
this automaton. The correctnéss elaims|i SHmEpl;eﬂusents behaviors that are undesirable.

m 1l
3.2.2 GOAL \Y | ° |
GOAL (http://goal.im.ntue.du ‘tw) [24,°25]'1s ral graphieal interactive tool for user to
define, manipulate and test temporal log;fics and (:u—automata. The acronym GOAL is
derived from “Graphical Tool for Omega- Automata and Logics”. This tool is developed
on JAVA and T.-K. Tsay is the leader of GOAL team at National Taiwan University.
The graphical user interface of GOAL is extended from JFLAP.

The GOAL tool is used to be an educational assistant in the first place, helping users
learning w-automata theory and temporal logic. Recently, The GOAL tool had been
proposed as a research tool because of the expanded collection of translation, simplifica-
tion, and completementation algorithms. User can also write a program to access GOAL

functions with command-line mode. The utility functions for some common tasks such

as random formulae generation, and statistics collection are also provided.

18

GOAL is now provided the following functions:

e Editing, Running, Testing, and Simplifying Biichi Automata:
One can easily point-and-click and drag-and-drop to build up a Biichi automaton.
Once the automaton is created, he/she can easily run it by given input to see what
kind of input language the automaton would accept or testing for emptiness. Not
only that, any Biichi automaton can be simplified with the help of simplification
algorithms which had been implemented. With simplification, user can get a smaller
automaton which is equivalent to the original one, which would be much easier to

understand.

e Translating QPTL (and LTL) Formulae into Biichi Automata:
Numbers of translation algorithms have been implemented in GOAL. User can
write a QPTL or LTL formula and translate it to a Biichi automaton via these
algorithms. GOAL imposes arestriction that a quantifier must not fall in the scope
of a temporal operator. /This function WouICi help<user to get more understanding

about the algorithm which he/she’is interested in;

e Boolean Operations on Biichi Ai@maﬁa‘:
1% . g
| Tl ; . .
The three standard boolean oper?t ons 'f umén, intersection, and complementation
] "",, | |

|

are supported in GOAL. { = ||

T 1y | \L F; ‘
e Tests on QPTL Formulae: ;

Satisfiability and validity tests are"rsupportéd. Even though the equivalent test
between two QPTL formulae is not supported, one can use the mutual implication

operator («>) to accomplish the same feature.

e Exporting Biichi Automata as Promela Code:
User can export the automaton in the PROMELA syntax on the screen or as a file.
This feature makes it possible to use GOAL as a graphical specification definition

frontend to an automata-theoretic model checker like SPIN.

e The Automata Repository:
The repository in GOAL contains a collection of frequently used QPTL formulae

19

| £ GoAL - Automaton Biichi): Repository: [I<>p #5 ©° [[X |
File Repository Test

Operation Preference Help

&

20

Chapter 4

Translation Algorithms

In this chapter, we will describe the translation algorithms in detail. Three of them use
transition-based generalized Biichi automata (TGBA) as intermediate automata. The
accepting sets of TGBA are transition sets rather than state sets, which helps reducing
the state size of the automaton. Moreover, optimization for automaton can be introduced
during each step. Hence, the translation, algorithm with intermediate automaton can
generates smaller automaton than others at most of the time.

The last one, MoDeLLa; Proposes‘a different pomt of view. The algorithm doesn’t
put their strength on generating smaller automaton Conversely, they propose that if the

s |
translation algorithm generates the autq)maﬁ'ras determined as possible, which would

generates more states, will helps redu‘c% thélsuze of the product automaton in model-

checking procedure. l ;L 1

4.1 Couvreur’s Algerithm

This algorithm translates the input temporal formula into a TGBA. The automaton
construction is very similar to the one proposed in [9]. This algorithm is based on symbolic
computation over a set of boolean variables. A boolean variable r; of a temporal formula
f will be expanded into three part, which are the alphabets should be true in current
state, the U -formulae have to be true from the next state on, and the formulae have to
be true from the next state on. For an infinite word o = x¢Z %> ... over the alphabet 247
rs corresponds to f E o and a4 corresponding to (o & f U g) A—-(0 E g). There are
several fundamental rules used for formula expansion, which are listed in Table 4.1 where

p is a literal. With these fundamental rules, the variable r of the given LTL formula f

21

Tp P

’r’_|p -p

’l“ng T’f/\Tg

’l“fvg T’fVTg
Tfug [TgVTEATOW Ug) NOf Ug
TfRg | TfATgV Ty ANTO(f Ry)

Table 4.1: Formula expansion rules

can be expressed in an expression form which only uses the variables of these form: p,
-p, ag, and rog), where the variables p are atomic proposition and g are subformulae of

f. Proposition 1 is the application of this property to a set of temporal formula F'.

Proposition 4.1. Let F' be a set of formulae. A(F') = [1pepry can be expanded to the

form:

M- % fsadlon 1 ron)
feF (X,NAcc,Next)eLp geNAcc heNext

with
Lp <22 x{gUheSub(f)}

<{{g th e Sub(F} o {{§ Rb e}Su’M}u{g e SUD(f) 10 € Sub()}}.

. -
| ol T

i l L
.'IJ | :

- T

and Sub(f) is the subformula set of f.i

The automaton construction,then st‘Larts by the 11 xpression form of input formula f.
X will be considered as alphabet Wﬁi’éh should be ,!:rué:‘:immediately in the current state,
NAcc is the U -formulae which should Hold frorﬁ the next state on, and Next is the
formulae which should hold from the next state on. Each implication of this expansion
will define a transition (f, X, AccSet, g), where AccSet = Acex NAce, Acc is the U -formula
set of Sub(f), and (X, NAcc, Next) € Ly and g € Next. The third tuple of a transition
Acce N NAcc is used to record which U -formulae are not concerned in the future. For
each formula g € Acc, the construction will create a transition set which collects all the
transitions with the third tuple contains g. Hence, if a transition (f, X, AccSet,g) in a
run of the result TGBA, AccSet gives the information of which U -formulae are satisfied
in the prefix of the path or are not concerned in the suffix. The U -formulae which are

not in AccSet should be focused on in the suffix. The construction will then continue to

22

expand all the formulae g € Next until all the reachable states are created. Theorem 4.2

formalizes the resulting automaton.

Theorem 4.2. Let f be an LTL formula. Let Ay = (X,Q,—,qo, Acc) be the transition

generalized Biichi automaton where

Y3 is the set of atomic proposition of f,

Q={Fc{gUheSub(f)}u{g RheSub(f)}u{geSub(f):0OgeSub(f)}u{f}},

—: (f, X, AccSet,g), where AccSet = Acc ~ NAce, and (X, NAcc, Next) € Ly and
g € Next,

g0 ={f}, and

Acc={gUh e Sub(f)}.

An accepting run of the result TGBA will in‘ﬁhitelyj often go through the transitions
for each accepting set in Acg'which miéans each U —Suk;f'b;rmg_lae is satisfied at some point
of transition sequence. Hence the corfve—sif‘)gl)ndilnjg?*\‘;vord for-the run satisfies the input
temporal formula. In another directio;”l,~ ap?ﬁééwlhich satisfies the temporal formula f
will satisfies each U -subformula’ at SJ e pqﬁ[ilt ofl %‘ alphabet sequence, say it satisfies
one U-subformula g U h after rgadin he 'h;-ét zt;hgl alphabe-t ai,as,...,a;. One of the
corresponding runs will go throﬁéﬂ a transition (g U hga;, {g Uh},h). In the suffix of the
run, formula g U h will always be recorded on transitions because it is satisfied in the

prefix of the path.

Here is an example of the construction for formula f =g(p U q)

Example 4.3. Construct an automaton for formula f=g(p Uq). Let g=(p Uq). We
deduce that Acc ={g}. The expansion of formula f will be:

rf :TQVTO(f) = ((Tq)V(’/‘p/\ag/\’/‘o(g)))/\’/’o(f)
= (Tq/\TO(f))V(Tp/\ag/\r()(g/\f))

This expression will produce two transitions:

({fhagr A
{f}p.2,{9,1})

23

Figure 4.1: TGBA; generated by Couvreur’s algorithm

The algorithm then produces the successors of state {g, f}:
Tgng =TgATr=(TgV (rpAagATg)) A((rg A TO(f)) vV (1p A ag A TO(g/\f)))
= (Tq A ro(f)) \ (Tp N Tq A CLg A TO(g/\f)) \Y% (Tp A ag N TO(g/\f))

Three more transitions will be produced:

({g, f1Aa}{g} . {f})
g, frAp.at.2.19. f})
(g ¥tr} 2.9,)

Since there are no more states ereqted, the.'cons;,"r:dctzton_ 15 completed and Fig. 4.1 gives

the resulting automaton. Note that thle red-labeled tmné%'tiq_ns are accepting transitions.

o,
' B

#
Y i
\ |

Y |
| 'I"E".',!Ij. :I F

4.2 LTL2BA | 2> |
n |

This algorithm translate an LTL form la intoa Bitchi auto_‘rﬂaton with three stages: (1)
translating from LTL formula £6 'v‘e_ry‘ eck alternLtig_g co-Biichi automaton (VWAA),
(2) translating VWAA with co-Biichi condition iftto TGBA, and (3) translating TGBA

into Biichi automaton [8].

4.2.1 LTL to VWAA

The first stage generates the very weak co-Biichi alternating automaton from the LTL
formula. Each state in VIWWAA will actually corresponding to a subformula of the input

formula f. In order to reach this goal, two operators are defined as follows.

Definition 4.4.
For Ty, Ty € 22°%Q we define

Ti Ty ={(aynag,e; nes) | (ar,e1) €Tt and (o, e0) € To}

24

For an LTL formula f we define f by: f={f} if f is a temporal formula,
fl/\f2 = {61/\€2|€1 EE O/ﬂdeg EE} and f1Vf2 ZEUE.

The operator ® computes the products of the alphabet and formula pair and f gives
roughly the DNF of f. Here is the construction translating LTL formula into VIWAA.

Theorem 4.5. Let f be an LTL formula, and Prop is the proposition set for f. Let
VWAA; = (X,Q,0,q, Acc) be the result VIWAA where

= 2Prop ,

Q 1is the set of temporal subformulae of f,

.qO:f)

Acc is the set of U -subformulae of f, and

#

J is defined as follows (A s used to extend 5 to all subformulae of f):

(T rue) #=X(, True) }
3(p) = {(S)Trub)))

5(m) = {(E i)
S0y ={C &< |
6(fr Ufa) = A(f2) qu(f1)®{(Z fi U f2)})
o(fa R f2)N = f2)®(A(f1l) Ul(Z, fu R f2)})
ARy = (lf)sz is a };efmpoml formula

A(f1Vvife) EACHYOACS) T
A(fin fo)= AL @ A(R)

Y, is the alphabet set contains proposition p. Note that if we treat “subformula of” as

partial order of formulae, it is easy to see that VWAA[is very weak. The accepting set
collects the states corresponding to U -subformulae. A run tree which will be accepted by
VWAA; will eventually reach a SCC which will not contains any U -subformulae, which

means all the U -subformulae are satisfied.

Example 4.6. Fig. 4.2 gives the result of the construction where f=no(p Uq).

25

Figure 4.2: VWAAj generated by LTL2BA

4.2.2 VWAA to TGBA

An usual method to transform an alternating automaton is the algorithm proposed by
Miyano and Hayashi[19]. Yet sometimes the algorithm generates a Biichi automaton
which is too big in terms of state size. Thus, the algorithm generates a transition-based
generalized Biichi automaton (TGBA) as intermediate automaton and translates the
TGBA into a Biichi automaton in the third stage,

Here is the construction for building @ TGBA’ :f.'rom‘a,_co—Biichi VWAA.

Theorem 4.7. Let VWAA; =1(3/@Q,0, zAcc) e a co-Buchz VWAA. We define the

TGBA = (£,Q8'q3,T) where || A 0] |

Cj < |
e () =29 is identified with comjunction Qy[ftatérs*.

= |
70 = {a0} i P { | h

T ={T,|ae Acc} where

To={(s,a1,81) | a ¢ sy or Iag,sy) €6(a),; a1 € ag, 5 Cs1, and a ¢ so}, and

3G Ao A Gn) =@ 16(q:),

0" is the set of <-minimal transitions of 8" where a partial order relation < of tran-
sitions t1 = (8,1, 81),t2 = (8,a0,82) is defined by t; <ty if a3 € g, S9 € 51, and

VT eT,tyeT =t €T,

Since VWAAy is very weak, a state can only reach some states whose ordering is
lower than or equals to it. This property gives an explanation of how the accepting set

T is chosen. For each accepting set T, € T, the transitions are collected either they

26

Figure 4.3: TGBA; generated by LTL2BA

don’t transit to a state related to the formula a, which is an accepting state of VIWAAy
or they transit to a state corresponding to a state set s; contains a, but exists another
transition to a state s, which doesn’t contains a. It is very obvious if the transitions are
collected because of the first condition. The transition leads the run tree to a state set
without a, and because of the “very Weak” property, the suffix of the run tree will never
reach a again. For some special cases of VIVAA; 7 and a word w, the state a is visited
infinitely often in the run trée but fiiitely many tlmes In each branch which is accepted
by VWAA;. The second condition abbve’ Ht,hen 1s t}sed tio'éollect the transitions which

|
will reach a infinitely often in,these situatios

"‘FL".-H! |_,'.

, ‘_ﬁehd:e the result TGBA will also accept

the word w. Fig. 4.3 shows the result BAm_f theI e%xample automaton after translating
from VWAA;. Notice that the accept n{g sét only ﬁntams one accepting transition set

and the red-labeled transitions ‘are the acceptmg transmons

4.2.3 TGBA to BA

The last stage is to transform the TGBA into a Biichi automaton. This algorithm is quite
similar to the translation algorithm for generalized Biichi automaton to Biichi automaton,

which we described in proposition 2.4.

Theorem 4.8. Let TGBA = (2,0Q,0,q0,T) be the TGBA from previous stage. Let BA =
(X,Qx{0,1,...,r},0",qo x {0},Q x {r}) where

e §'((g,9)) = {(a,(¢,5") | (,q') € 6(q) and j' = next(j,(q,,q"))}

max{j<i<r|Vj<k<iteTy} ifj+r

with newt(j,t) :{ maz{0<i<r|V0O<k<iteTy} ifj=r

27

Figure 4.4: BA; generated by LTL2BA

Usually, we check one accepting set at a time to keep track of at least one state/transition
has been visited in every accepting set in GBA/TGBA. Here, the algorithm will seek as
large index of the accepting set as it can to avoid creating unnecessary states for the
result BA. Hence, the result BA will be small in terms of size.

Fig. 4.4 shows the result of the examplle automaton. after translating from TGBA to

BA.

4.3 LTL2BUCHLY/ ~
‘ nf'-"';'.f |‘I_f_jr;| F

‘ T

This is also a translation algorithm for linéar temiporal formula to Biichi automata using
transition-based generalized Biichi aut atagé_;inté? mediate automata[10]. It is actually
an extended work of [9] and sharé a l#nmon franﬂe‘lworkﬁith LTL2AUT [7]. Different
from LTL2AUT, the information is “r,écord_ed on the f%ansition rather than state, which
allows this algorithm to merge states while.others eafifiot. The notes are labeled with sets
of formulae, separated into several parts. The most important two parts are the formulae

needed to be true immediately and the formulae have to be true from the next state on.

We will first describe the data structure and present the algorithm afterwards.
4.3.1 Data Structure
The data structure of a node of this algorithm will have the following fields:

e Nodeld: A unique node id. Id 0 is reserved for the initial state.

e Incoming: A set of node ID which records the incoming nodes of the current node.

28

e ToBeDone: A set of formulae that must hold at the current node and haven’t

been processed yet.
e Old: A set of already processed literals which must hold at the current node.
e Next: A set of formulae that should hold from the next state on.

e Eventualities: The set of promised and fulfilled eventuality obligations by the
node. A promised obligation is an U -formula that has been processed in the
current node, and a fulfilled obligation is a formula processed in the current node
that is the right-hand side argument of some U -formulae processed in the current

node.
e Accepting: The accepting sets to which the node belongs.
e EquivClass: The id of the equivalence class to which the node belongs.

The field ToBeDone of the node s will be défloted—as “s,ToBeDone”, and similarly
for all the fields.

4.3.2 Algorithm | "F";") |

\‘.“

..'.'

The algorithm for translating a formui sﬂrts by creating.an initial node INIT with

qr—'

Nodeld = EquivClass = 0, Next = { f } nd with a‘[lrother ﬁelds empty. A set of nodes
will be collected when the algonthm 1S comple’cedI Fig: 4.5 shows the main expansion

algorithm.

Algorithm from LTL to TGBA For different type of formulae, the split function
returns the split node with different formulae set to hold. The splitting function and
rules is illustrated in Table 4.2 and Fig. 4.6.

The result TGBA = (%,Q,0,q0,T), where
o > = 2lite7”als7

e () is node_set,

29

input

: Set of nodes node_set

output: Set of nodes node_set

// node has been fully computed

keep processing

7 //.next formula is a literal

1 if this.ToBeDone is empty then
2 compute_acc(this);
3 if This equals to any other node € nodes_set then
4 merge them;
5 else // processed node to be added to node set
6 create new_node with ToBeDone := this. Next;
7 expand(nodes_set);
8 end
9 else // still some formulae should be true,
10 choose a formula nezt_formulae from this. ToBeDone to process;
11 update_fulfilled_obligations(this, next_formula);
12 if /(next_formulae contradicts this node or it is redundant) then
13 if next_formula is a ‘U, R’ or Vv’ formula then
14 Node2 = this.split(next_formula);
15 if next_formula is a ‘U’ formula then
16 update_promised_obligations(this, next_formula);
17 end
18 return Node2.expand(this.expand(nodes_set));
19 else if next_formula is a ‘g Ah’ then
20 ToBoDone = ToBoDone u ({g,h} \ Old);
21 return this.expand(nodes_set);
22 else if next_formula is a ‘@g*then ¥ 3
23 Next = Next u {p}; ' -
24 return this. ezpand(nodes set);
25 else
26 Old = Old u {next_formula}; *
27 return this.expand(nodes_ set) \
28 end i :
29 end | “"i"
Ll
Figure 4.5; The exp? smnl orltl'[]m for the node set
il | p | s
form Newl(form) ’ Nextl(form) New?2(form)
gUuh | {g} fguny {h}
gRh | {h} {g Rh} {g.h}
gvh | {g} @ {h}
grh | @ @ {g,h}
Table 4.2: Definitions of New and Next functions for non-literals
input : formula form

output: A new split node
1 create Node2 with new ID.;

2 Node2.ToBeDone := this. ToBeDone U (New2(form) \ Old);
3 this. ToBeDone := this. ToBeDone U (Newl (form) \ Old);
4 this.Next := Next U Next1 (form);

5 return Node2;

Figure 4.6: The splitting function

30

=0 s1
[mpUan. ol [mpUa)pUa.1]

MtpUqi, 2

Figure 4.7: TGBA; generated by LTL2BUCHI

o 0 ={(nd;,label;,nd;) | nd; € nd;.Incoming A label; = nd;.Old},
e o= INIT ¢Q, and
o T ={T;|T;cd}, which are defined by nd;.Acceping.

For each U -subformula g of a inputformnila f, if‘the tramsition promised g holds and it
| =i

actually fulfilled the promise,sadd-g-to the succ™mode.Accepting. Fig. 4.7 illustrates the

result TGBA generated by LTI2BUCHI for formula'o(p U4q).

| A Pl 1|
Fa?) = ray

Degeneralization The translation algorithm

alfé well known in the literature. Here
they present a different method._for deg eralﬁé__thq rjTGBA from the previous step. First,

A degeneralizer Biichi automato_?.will r created. lﬁve number of states depends on the
number of accepting sets 7' in TGBA:A BAwill'be obtained by a TGBA by computing
its synchronous product with the approlcj'r-iaté deéeneralizer. A joint transition (t1,t2)
of a degeneralizer with a TGBA is enabled if ¢, belongs to the accepting set that the
predicate on t; requires. The accepting states of the products are the ones where the
degeneralizer is in an accepting state. Fig. 4.8 illustrates the example of degeneralizers
for the TGBA with the size of accepting set is one (left) or two (right). There is a priority
relation between the successor transitions for each state in a degeneralizer. The priority
of the transition set is based on how many accepting sets can the transition from TGBA
fulfilled. The transition in a degeneralizer which can transit to most accepting sets has

the highest priority and so on. If the transition didn’t fulfill any of the accepting sets,

the “else” transition will be chosen. The implicit meaning of the method is to focus on

31

Figure 4.8: The examples of degeneralizers

how many accepting sets are fulfilled by the current transition. Once an accepting set is
fulfilled, the construction will focus on the fulfillment status for the following accepting
sets. If all the accepting sets are fulfilled infinite often, the result BA will contains
a corresponding run which visits some states in the accepting set infinite often. The
algorithm for generating the degeneralizer is descrfibed in Fig. 4.9. The result BA by this
degeneralization algorithm for the TGBA 1n Flg 4.7 is.illustrated in Fig. 4.10.

4.4 MoDeLLa = &/ ~ -~

Fal

F
i
["

Fal™x “
For a system M, the standard technique foaq; ql(IJdel checking consists on translating
temporal formula f into BA Ay and t ché&@ng 'F]Le emptiness of the product M x Ay.
The size of the product M x Ay 1§ -theTeruct of thk size ofM and A in the worst case,
which brings up the idea of minimiiiilg the size of: Afwﬂl help reducing the size of the
final product. Fig. 4.11 shows the produéf ofﬁa syétem M with a non-deterministic and
a deterministic automaton.

Yet in this algorithm, they come up with a new idea. Instead of reducing the size
of Ay, trying to create a BA A, which makes the product automaton M x A’; smaller
without concentrating on the size of A} itself. Note the fact that if a state s in M x Ay
is given by the combination of the state s’ € M and s” € Ay, and if the successors of
s" is deterministic, then each successor state of s’ can be combined consistently with

exactly one successor of s, they propose an algorithm to reducing the presence of non-

deterministic decision states in A; as much as possible.

32

© 0N R W N

NN NNNNNDNDN R = B oE e e e e e e
W N O TR W N HEO © OO UhAWN RO

input : the size of accepting sets size
output: A degeneralizer BA

nnodes = size + 1;
last := size;
for i = 0 KwTo nnodes do
create automaton state s;;
end
for i =0 KwTo last do
for j = last KwTo i do
create transition trans from s; to sj;
for k=i KwTo j do
add label k to trans;
end
end
create looping transition for s; labeled with else;
end
create looping transition trans for sjust;
for i =0 KwTo last do

add label i to trans;
end
for i = last — 1 KwTo 0 do
if i == 0 then .;.-:L ey -
create transition from sla‘\;cko 5; laheled elsé%
else A jf..- i
create transition trans from
for j=0 KwTo i do .7/
add label j to é&z‘b’n?f"
end =
end "-“? -
end ' 5
=
Figure f;!%‘?:fh
1‘:.-%:' ! ™
°

Figure 4.10: BA; generated by the degeneralization algorithm

33

NS

e 5
(o<

7
) G o

\ﬂ
Y
STST | | SIS | | SIS ‘ | SIST |
non-deterministic decision state Lpd-.! lpa.. | Lpg -

Product of MxA

gt ey

Figure 4.11: The difference of the product of system M with a deterministic or a non-
deterministic automaton

34

4.4.1 Determining the covers

Proposition 4.9. Let {fi}r be a set of LTL formulae in negation normal form and
f=nefr. Let C={{0©;;};}i which can be written as {a; U X;};, where

={0,;; € {0;;}, | ©i; is a proposition literal} and

={0;; € {0;;}; | ©i; is a O-formula}
are the set of propositional literals and O-formulae in {©;;}; respectively. Hence, f can

be written in this form

[V(nX;)

A cover C = {a; U X;}; is a deterministic cover if and only if all «;’s are pairwise
mutually inconsistent, non-deterministic otherwise. Each element (a; A X;) in a cover
will represent a state in the result GBA, where «; is the label of the state, and X; is the
next part of the state.

There are two steps for computing determlnlstlc covers, which are semantic branching,

and branching postponement. We will deseribe each in detall in the following.

Semantic Branching Ll £

Usually, the latter step (ecalled Syntact B @whlklg of DNF is achieved by applying
recursively to the top level formulae thIe rewﬂgmg n}le

) as | | Ak
PRGN 1) & (g)M)

However, a major weakness of syntagtic bi"anching is that it generates subbranches which
are not mutually inconsistent. In order to avoid this fact, they apply the Shannon ex-

pansion to the top level boolean propositions.

f= @A (FHpyD) v (=p A (FH{=p}])

A formula f will be split into two parts where a proposition p holds in the first part and
—p holds in the second. This step is called semantic branching because it “semantically”
splits on the truth values of top level propositions. Then we can obtain an expression in

the form

\/(Oéi A flai])

35

After applying the technique semantic branching, all a;’s are pairwise mutually inconsis-
tent and f[a;] is a boolean combination of O-formulae. If all f[a;] are conjunctions of
O-formulae, then we have obtained a deterministic cover. Otherwise, the only possible
sources of non-determinism (if any) are due to the next-part components f[a;]. Each
non-deterministic disjunct represent a set of states S; which have the same label of «; but

different next-part. For two states in different state set S;’s are mutually inconsistent.

Branching Postponement
If the correctness of the encoding will not be affected, each formula f[«;] can be rewritten

into single O-formula by applying branching postponement:

OfiAOfy = O(f1A fa),
OfivOofs =0(fiV fa).

This step is called branching postponement because it allows for postponing the or-

branching to the expansion of the next part. With‘branching postponement, the result

expansion becomes deterministic. -

However, branching postponement may cause some incorrectness. For example, for

two states s, = (a, f1), s2 = (, f3), it fhay'be tnlléj'é‘ase that ‘i“sl is in a fair set F} but s,
8—xcy

is not, and the state corresponding to (¢, 5) is not in Fy. The fairness set F; may

be loosed, which cause the language IIn y aﬂ@ be,QIhanged, ~The rewritten rule should

T

l
be applied only to the formula for | %Ch is guarifngteed‘that the rule does not cause
otk b

incorrectness.

4.4.2 Algorithm

The standard schema of temporal formula to BA algorithm in MoDeLLa is described in
Fig. 4.12. It differs from the others in two steps, which are the computation of covers fair

sets and the computation of acceptance condition.

Computation of covers The function of computing covers of each formula is in the
following steps:
1. Apply the tableau rules.

2. Apply the semantic branching step.

36

input : temporal formula f
output: BA

Yi={plpef}
D :=2%;
C(f) = expand(f);
Qo= C(f);
Q:=C(f) // compute @
Queue.put(C(f));
while Queue is not empty do

(anX):= Queue.get() C(next(X)) := expand(next(X));

Q=QuC(next(X));
end
T:=@; // compute T
foreach (o, X) € Q do

foreach (o/, X') € C(next(X)) do

T:=Tu((a,X),(a, X"));
end

© 00 N3 Utk W N

P S
G W N = O

end
foreach (o, X) € Q do

L(a,X):={peD|prakl}; // compute L
end
F := computes airset (f,Q); // compute F
return (@, Qo,T, L, D, F);

I I O O
= O © W N o

Figure 4.12: The regula}r,sche'mlér of témpora}r logic to BA algorithm

3. Rewrite the formula into DNF form._ ~
| 1 |.. “'“

| nf'-"';a 5 _f_jr; ‘
4. If postponement is safe,,apply bra ch@gs%pbnement.

The functions here tries to make the CI er “‘_gé_);re 4 terministic? as possible. During the
computation of covers, the set of,'éub ‘tbtes of eac}ﬁ Stato s = (a, X), Sub(s), is a set of
states where Sub(s) = {(a/, X") | a K-—}I'oz’}n is also c_olléétéd. The set will be used in the

computation of fair sets.

Computation of fair sets Let U; be the set of U -subformulae of f, the usual set of

accepting condition is:

F ::{F;uhMUhEUf}a
Fyyn ={seQls#gUhorskh}.

The definition is extended here for MoDeLLa construction as follows:

{Fy | He2Ur},

{se Q| there exists g U h € H s.t.
for each s* € Subs(s),s* ¥ g Uh or
for each s* € Subs(s),s* £ h}

F
Fy

37

Figure 4.13: GBA; generated by MoDeLLa

Note that the branching postponement is not safe for a state s if there exists Fy € F' such
that s ¢ Fiy and there exist g U h € H, s* € Subs(s) such that s* € F, 4. Fig. 4.12 shows
the result of the construction of temporal formula f =p U q. The gray-colored states are

the accepting states.

38

Chapter 5

Experimental Results

5.1 Settings of the Experiments

All of the algorithms described in Chapter 4 have been implemented in GOAL. We use
the third stage of LTL2BA, which is an algorithm transform TGBA into BA, to translate
the TGBA generated by Couvreur’s algorithin sinee Couvreur’s algorithm only generates
TGBA as the result. We also miotice the tranglation from TGBA to BA proposed by
LTL2BA is different from the one pfoposed by LTIRBUCHL. From a simple comparison,
we discover that the translatioty algorithme proposed by ETL2BA performs better. One of
the reasons is that LTL2BA applies the[onﬂt'he—ﬂy{ Slmphﬁcatlon during the generation.
Hence, we apply this construction to LFJ,Q %CHI and labeled as LTL2BUCHI+. More-

or label—onrstate GBA to label-on-state GBA or

over, we imply the standard algorlthm?

BA for MoDeLLa. Optimization' descrbeed in those, wgrks are also implemented.

5.2 Results

We are going to present three sets of experimental results. The first one is the performance
on state size for random generated formulae. The smaller size of automaton for input
property always helps the performance of model checking procedure. Fig 5.1 shows the
result of the experiment.

The second one is focus on the performance on state size and transition size for
frequently used LTL formulae. There are two different kinds of categories for these for-
mulae, one is proposed by Manna and Pnueli [17], another one is SPEC PATTERNS [1].

We collect some frequently used formulae for both categories and design the following

39

14000

12000

10000

8000

6000

4000

2000 -+

(a) The state size of the result GBA/TGBA

Figure 5.1: The state size of different algorithms translating from 500 formulae.

=4=GPVW+

S o

== LTL2AUT+
==fe=Couvreur

=é=[TL2BA
== LTL2BUCHI

=6, n=2

=8, n=3

=10, n=4 =12, n=5

20000
18000
16000
14000
12000
10000

8000

6000
4000
2000 -~

=6, n=2

=8, n=3

1=10, n=4 |=12, n=5

== GPVW+
== LTL2AUT+
=== Couvreur
== |TL2BA
== LTL2BUCHI
LTL2BUCHI+

(b) The state size of the result BA

Note

that 1 is the length of the formula and n is the number of propositions in the formula.

experiment. We compare the performance of the algorithms to see which of the algorithm

can give a better result for specific categories. The comparison for the formulae catego-

rized in Manna and Pnueli’s temporal hierar h is showed in Table 5.1 to Table 5.4. The

comparison for the formulae cate

Table 5.10.

":@Iﬁﬁz:m Sp

‘ -r.'. h
e - L5
ﬁ * * 0
~ =
8 s £
@i\r m"?:lmlﬁ:l
Y .

T - F L B

40

%%@NS is showed in Table 5.5 to

No Formulae GPVW-+ DGV+ MoDeLLa
st. | tran. | st. | tran. st. | tran.
Safety
1 op 2 2 2 2 2 2
2 P~ 09 4 14 4 14 8 24
3 o(p = q) 3 12 3 12 4 12
4 op A 0Oq 2 2 2 2 3 3
5 opVv.oq 3 8 3 8 9 20
6 -p Wyq 1 16 1 16 6 24
7 olp > q)Ao(g—>r) 1 24 4 24 5 20
8 a(p - og) Ao(r - os) 10 | 116 5 52 65 480
Guarantee
9 P = Oq 5 26 5 26 15 79
10 | olp—r) 5 28 5 28 9 51
11 | opVv g 6 36 6 36 25 139
12 | o(pva) 5 28 5 28 9 51
13 | OopACOg 10 58 10 58 23 141
14 | op—ogq 6 36 6 36 25 139
15 | oclp=ro(g=r) 16 | 220 | 16 | 220 | 78 | 1136
16 | p=>o(g-r) 6 68 6 68 31 351
Obligation
17 [opvog 5 24 5 24 18 34
18 | op—> g 5 24 5 24 18 34
19 | (mpvog)Vv(aryv os) 8 176 8 176 126 | 2316
20 | (mpVv oq) A(ar vV Os) 17 | 320 | 17 |. 320 | 194 | 3824
21 | or=>(pUT) 5 20 5 20 14 50
22 | opA g 4 10 1 10 9 23
23 | plyq 1 16 4 16 6 24
24 | (p—~og) vilp—> or) 6 60 6 60 36 330
Recurence (Responce)
25 | oop 4 14 3 9 W, 21
26 | olp—©q) 6_| 150 4 30 20 128
27 | oop Vv ooy = p0 5 36 37 228
28 | oo(pvg) 4 32 4 32 15 105
29 | oopAOOY 104 130 5 45 37 333
30 | o(q —» alp—os)) 1280 292 5 84 15 602
31 | oolpag=r) 292 5 100 31 465
32 | o(p—~>009) ‘ 9 68 6 44, 26 180
Persistence L
33 | ¢op 4 8 3 7 5 11
34 | o(p - ©ong) 9 61 4 24 25 144
35 | oopAong 10 34 5 25 26 122
36 | oo(prq) 4 12 3 11 7 27
37 | oopvong 7 32 5 28 29 132
38 | -oop 4 8 3 7 5 11
39 | olp Wq) 7 36 5 28 14 76
40 | o(p—~09) 6 28 5 26 12 60
Reactivity
41 | oopVv ong 7 44 5 32 33 180
42 | gop—> o09g 7 44 5 32 33 180
43 | (oopv oo A(oorvons) | 31 | 848 | 17 | 544 | 581 | 16064
44 | o(p - oq9) volp —» oor) 14 | 222 7 108 | 117 | 1462
45 | oop - ¢ong 6 34 5 32 33 180
46 | (oop—ong) ralp—coor) | 38 | 567 | 12 | 180 | 295 | 4674
47 | (oop » oog) ra(r » Os) 31 | 1440 | 13 | 536 | 345 | 11596
48 | a(r — os) A (oor Vv oos) 23 | 227 | 11 107 89 759

Table 5.1: A comparison of the generated GBA of GPVW+, LTL2AUT+, and MoDeLLa

41

No | Formulae Couvreur LTL2BA LTL2Buchi
st. | tran. | st. [tran. | st. [tran.
Safety
1 op 1 1 1 1 2 2
2 P~ 09 3 10 3 10 4 14
3 a(p - q) 1 3 1 3 3 12
4 op A Ogq 2 2 1 1 2 2
5 op VvV ogq 3 8 3 8 3 8
6 -p Wq 2 8 2 8 4 16
7 olp—-qg)rolg—>r) 2 8 1 4 4 24
8 o(p —» og) Ao(r — os) 5 52 4 36 10 116
Guarantee
9 P = Oq 3 17 3 17 5 26
0 | olp—or) 2 i1 | 2 T | 5 28
11 OPV Oq 4 27 4 27 6 36
12 S(pvq) 2 11 2 11 5 28
13 OPAOq 5 34 7 46 10 58
14 | op— &g 4 27 4 27 6 36
15 Slp—=>q)no(g—r) 5 84 7 112 16 220
16 | p>o(g—r) 3 37 3 37 6 68
Obligation
17 | apvoq 1] 20 7] 20 5 24
18 | op— o4 1 20 1 20 5 24
19 | (mpvog) Vv (aryv os) 6 140 6 140 8 176
20 (opVv ©q) A (ar Vv os) 10 208 14 272 17 320
21 or—=(pUr) 4 16 4 16 5 20
22 op A Oq 3 8 4 10 4 10
23 | pUgq 2 8 2 8 4 16
24 | (p—~oq) Vip— or) 4 42 4 42 6 60
Recurence (Responce)
25 | oop 1 2 3 g 4 14
26 o(p - &q) 24 13 4 28 74 63
27 | oopVvagyq B8 (il 7 44 7 56
28 oo (p V.q) a2 3 18 6 60
29 oop A Odq pr 8 5 36 10 130
30 o(q — alp >-¢s)) 35 44 5 4 15 489
31 oo(pAg=T) iia® g 3 38 11 292
32 O(p = 0d9) 3 18 5 32 7 54
Persistence
33 o>Op 2 4 2 4 3 7
34 | olp—-o09) 4 24 3 16 8 60
35 oop A SOq 5 25 4 16 5 25
36 | oo(®Aq) 2 6 2 6 3 11
37 | oopVvong 5 28 5 28 5 28
38 -~Oop 2 4 2 4 3 7
39 Sp W) 3 16 3 16 5 28
40 o(p ~0q) 3 14 3 14 5 26
Reactivity
41 oop VvV oOg 4 22 6 36 6 42
42 oop = 0doq 4 22 6 36 6 42
43 (mopVvoog) A(oorvonos) | 10 244 22 608 26 | 1044
4 | olp— o9 volp - oor) 7 | 104 | 8 | 118 | 14 | 246
45 <oop — oOq 4 11 6 36 6 42
46 (oap - oog) Ao(p—oor) | 13 184 16 236 26 504
47 | (oop — ooq) Ao(r — Os) 7 226 15 520 | 31 | 1806
18 | O(r — &) A (Qor v oos) 9 | 76 | 14 | 121 | 23 | 328

Table 5.2: A comparison of the generated TGBA of Couvreur, LTL2BA, LTL2BUCHI

42

ey

No | Formulae GPVW+ DGV+ MoDeLLa Couvreur LTL2BA LTL2Buchi | LTL2Buchi+ SPIN
st. | tran. st. | tran. st. | tran. st. | tran. st. | tran. st. | tran. st. | tran. st. | tran.
Safety
1 op 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1
2 p—>0q 4 14 4 14 8 24 3 10 3 10 4 14 3 10 3 10
3 olp = q) 3 12 3 12 4 12 2 6 2 6 3 12 2 6 1 3
4 op A 0gq 2 2 2 2 3 3 2 2 2 2 2 2 2 2 1 1
5 op VvV ogq 3 8 3 8 9 20 3 8 3 8 3 8 3 8 3 8
6 -p Wq 4 16 4 16 6 24) 12) 12 4 16) 12 4 16
Guarantee
7 olp—=>q)ro(g—r) 4 24 4 24 5 20 2 8 2 8 4 24 2 8 1 4
8 o(p = og) Ao(r — nos) 10 116 5 52 65 480 5 52 5 52 10 116 5 52 4 72
9 p—=Oq 5 26 5 26 15 79 3 17 3 17 5 26 3 17 3 17
10 olp—r) 5 28 5 28 9 51 2 11 2 11 5 28 2 11 2 11
11 OpV Oq 9 50 9 50 33 179 4 27 4 27 6 36 4 27 2 11
12 o(pvq) 5 28 5 28 9 51 2 11 2 11 5 28 2 11 2 11
13 OPAOq 11 62 11 62 31 181 4 25 9 58 10 58 4 25 4 25
14 op = Oq 9 50 9 50 33 179 4 27 4 27 6 36 4 27 2 11
15 Sp—=qg)ro(g—-T) 20 260 17 228 94 1312 4 60 9 140 16 220 4 60 4 60
16 p—>O(g—r) 6 68 6 68 31 351 3 37 3 37 6 68 3 37 3 37
Obligation
17 op Vv Oq 5 24 5 24 18 84 4 20 4 20 5 24 4 20 4 20
18 Op = Oq 5 24 5 24 18 84 4 20 4 20 5 24 4 20 4 20
19 (opVvoq)Vv(aryVos) 13 248 13 248 "1 184-1 3116 6 140 6 140 8 176 6 140 6 140
20 (opVv oq) A(ar Vv os) 23 376 23 376 272 | 4r84 10 208 16 320 17 320 10 208 10 208
21 or—=(pUr) 5 20 5 20 11 50 4 16 4 16 5 20 4 16 4 32
22 op A Oq 4 10 4 10 9. 23 2 5 4 10 4 10 2 5) 2 5
23 pUq 4 16 4 16 6 24 2 8 2 8 4 16 2 8 2 8
24 (p—>oq)Vv(p—>or) 6 60 6 60 36 330 4 42 4 42 6 60 4 42 4 42

Table 5.3: A comparisonof the result:BA"of all six algorithms and SPIN (part a)

a1

No | Formulae GPVW+ DGV+ MoDeLLa Couvreur LTL2BA LTL2Buchi | LTL2Buchi+ SPIN
st. | tran. | st. | tran. st. | tran. st. | tran. | st. [tran. [st. [tran. | st. [tran. st. | tran.
Recurence (Responce)
25 aop 4 14 3 9 7 21 2 4 5 13 4 14 4 14 2 5
26 o(p = ©q) 6 50 4 30 20 128 3 20 6 41 7 63 4 30 4 28
27 oop VvV Oodq 13 100 9 60 73 444 5 24 9 52 7 56 7 56 5 32
28 | oolpva) 4 32 4 32 15 105 2 8 5 29 6 60 1 34 2 11
29 oopAOOY 19 251 9 81 91 819 3 12 9 60 13 174 8 82 3 17
30 o(g —»alp - ©s)) 12 292 5 84 45 602 4 62 7 104 15 489 5 86 6 100
31 ao(pag—r) 11 292 5 100 31 465, 2 16 5 61 11 292 4 74 2 23
32 O(p = 0oq) 17 124 1T 76 46 296 4 22 8 54 7 54 5 38 4 26
Persistence
33 Sap 4 8 3 7 5 11 2 4 2 4 3 7 2 4 2 4
34 | o(p - ong) 9 61 4 24 25 144 5 32 4 24 8 60 4 24 4 24
35 oOp A OOq 1% 35 7 29 28 124 4 16 4 16 5 25 4 16 4 16
36 oo(pAq) 4 12 3 iy L2 27 2 6 2 6 3 11 2 6 2 6
37 oop Vv OOq 11 44 8 38 3 176 5 28 5) 28 5) 28 5 28 3 12
38 -~0op 4 8 3 7t 310 11 2 4 2 4 3 7 2 4 2 4
39 S(p Wq) 4 36 5 28 4 76 3 16 3 16 5 28 3 16 4 20
40 o(p—noq) 6 28 5 26 - Y 60 3 14 3 14 5 26 3 14 3 14
Reactivity !
41 oop Vv ongq 13 76 9 52 61 324 5 26 7 40 6 42 6 42 5 30
42 oop ~ 0d9g 13 76 9 52 55 296 5 26 7 40 6 42 6 42 5 30
43 (oopvoog) Alaorvons) | 77 | 2064 [“50| 1300 | 4225 .5 117776 | 14 292 29 732 31 1284 22 732 15 388
44 o(p » oq) valp —» oor) 24 360 13 184 229 2806 7 104 9 130 14 246 7 108 9 134
45 oop = O0Oq 9 48 8 46 61 324 3 7 7 40 6 42 6 42 5 30
46 (¢oop —» onq) Ao(p — oor) 88 | 1288 | 31 400 1373 21186 16 208 20 276 29 568 12 174 16 218
47 (oop = 0oq) Ao(r — &s) 75 | 3622 | 34 | 1284 | 1275 43568 9 278 22 708 36 2198 13 526 19 630
48 a(r = os) A (oor v ons) 47 441 23 213 396 3310 11 95 18 149 29 434 13 146 13 112

Table 5.4: A comparison of the result BA of all six algorithms and SPIN (part b)

No | Formulae GPVW+ DGV+ MoDeLLa
st. [tran. | st. [tran. | st. | tran.

Existence (P becomes true)
I | o) 1 10 | 4 10 5 3
2 | ~-RW(PA-R) 1 M | 14| 14 5 7
3 | 0(=Q)Vo(QAoP)) 8 2 | 8 | 42 | 26 | 141
T | 0(QAr-R—> (-RW(PA-R))) 8 | 103 | 5 | 62 | 18 | 158
5 | 0(Qr-R= (-RU(PA-R))) 7 88 | 5 | 62 | 18 | 158
Bounded Existence (P becomes true twice)
6 | P W (P W (P W (P Wao-P)))) 6 20 | 6 | 20 | 454 | 4840
7 OR—- ((-PA-R)U(RV((PA-R)U

(RVv((-PA-R)U(RV((PA-R)U(RV(-PUR)))))))) 33 204 9 50 44 204
8 | 0@ (QU@QAP WP W (P WP Wa-P))))) 3 | 78 | 13| 78 | 977 | 21223
9 | ol(Q@AOR) = ((-PA-R) U(RV((PA-R)U

(RVv((-PA-R)U(RV((PA-R)U(RV(-PUR)))))))))) | 157 | 5361 9 136 | 421 | 6318
10 | (@ - ((-PA-R)U(RV((PA-R)U(RV((-PA-R)U

(Rv ((PA=R)U(RV (=P WR)voP))))))))) 115 | 4203 | 9 | 152 | 351 | 6308
Universality (P is always true)
11 [o(P) 2 2 2 2 2 2
12 | oR> (PUR) 5 20 | 5 | 20 | 14 50
13 | o(Q - o(P)) 1 14 3 10 7 20
14 | o((Qr-RAGOR) - (PUR)) 12 | 170 | 5 | 60 | 33 | 204
15 | o(QA-R— (PWR)) 7 90 | 4 | 44 | 23 | 252
Precedence (S precedes P)
16 -PWS 4 16 4 16 7 32
17 | oR> (=P U(SVR)) 6 56 | 6 | 56 | 30 | 230
8 | 0-Qvo(QA (P WS g 72 | 8 | 72 | 46 | 449
19 | 0(QA-RAGR) > (=P U(SVR))) 17 | 644 | 6 | 192 | 79 | 1642
20 | 0(QA-R= (=P W(SVR))) 11 | 416 | 5 | 152 | 55 | 1484
Response (S responds to P)
21 | o(P > o%) 6 50 | 4 | 30 | 14 90
22 | oR> (P> (-RUSA-R))UR 9 98 | 7 | 72 | 42 | 349
23 | 0(Q > 0P = o9)) | 292 | 5 | 84 | 45 | 602
24 | 0(QA-RAOR) » (P (SR U (S AAR))) UR) 28 | 1182 | 7 | 208 | 151 | 3530
25 | 0(@Ar-R— (P> (-RUS ~=R))WR)) 15 | 574 | 6 | 176 | 77 | 1962

Table 5.5: A comparison of the generated" GB
(part a)

ad

Aof GPVW+, LTL2AUT+, and MoDeLLa

45

No | Formulae GPVW+ DGV+ MoDeLLa
st. | tran. st. | tran. st. | tran.

Precedence Chain (S, T precedes P)
26 | OP—> (-PU(SA-PAX(-PUT))) 7 52 7 52 30 194
27 | OR->(-PU(RV(SA-PAX(-PUT)))) 8 136 8 136 74 1132
28 | (0-Q)V (—QU(QAOP > (=P U(SA-PAX (=P UT))))) 13 | 224 | 10 | 188 | 126 | 1948
29 | o((QAOR) - (-PU(RV(SA-PAX(-PUT))))) 40 | 2346 15 876 383 | 16276
30 | 0(@—-> (0P > (-PU(RV(SA-PAX(-PUT)))))) 46 | 3576 15 916 471 | 26052
Precedence Chain (P precedes S, T)
31 (o(SAXOT)) - ((-S)UP) 8 74 7 64 46 332
32 | OR—> ((-(SA(-R)AX(-RU(T A=-R)))) U(RV P)) 27 | 1104 17 652 156 | 4224
33 (O-Q) Vv ((-Q)UQAN((O(SAXT)) - ((-S) UP)))) 14 248 13 224 122 1844
34 | o((QAOR) ~

((=(SA(-R)AX(-RU(T A=R)))) U(RV P))) 62 | 9384 20 2312 731 | 51848
35 | 0(Q@—->(-(SA(-R)AX(-RU(T A-R))) U(RV P)vo(-(SAXOT)))) - - 28 3120 - -
Response Chain (P responds S, T)
36 | O(SAXOT = X(O(T AOP))) 40 779 28 516 143 | 2384
37 | O R—>(SAX(-RUT) > X(-RU(LTASP))) UR 61 | 1804 67 2357 | 435 | 14020
38 | 0(Q@-o(SAXOT - X(-T U(T AGP)))) 80 | 3870 29 1030 | 451 | 14984
39 | o((QASOR) —

(SAX(-RUT) > X(-RU(TIASP))) UR) - - 75 6998 - -
40 | 0(Q—= (SAX(=RUT) - X(=R U(T AoP)) U

(Rva(SAX(-RUT) - X (=R U(DNSP))))) . - 117 | 15234 | - -
Response Chain (S, T responds P)
41 o(P - o(SAXoT)) — 16 342 9 162 69 1176
12 | OR> (P> (-RU(SA-RAXGERUDN))) UR — 7 30 | 484 | 13 | 280 | 132 | 2464
43 | o(Q@ »o(P - (SAXoT))) j 14 432 7 152 57 984
44 | g((QAOR) » (P> (-RUSA=RAX(=RUT)))) Z/[R) 68 16252 13 744 589 | 31392
45 | o(@ — (P—>(—|RL{(S/\ﬂR/\X(—|RL{T))))U

(Rvo(P - (SAXoT)))) - - 35 1962 - -
Constrained Chain Patterns (S, T without'Z|responds to P)
46 | (P> o(SA-ZAX((-Z) UT))) 16 480 9 236 99 2384
47 OR —

(P> (-RUSAN-RA-ZANX((-RAN=Z)UT)))-UR 20 764 13 472 220 | 6744
48 | o(Q—-0o(P—->(SA-ZAX((-Z)UT)))) 14 560 7 212 105 2632
49 | o((QAOR) —

(P> (-~RU(SA-RA-ZANX((-RA-Z)UT)))) UR) 68 | 9240 13 1288 - -
50 | o(Q@ > (P—>(~RU(SA-RA-ZAX((-RA-Z)UT)))) U

(Rvo(P—> (SA-ZAX((-Z)UT))))) - - 35 2734 - -

Table 5.6: A comparison of the generated GBA of GPVW+, LTL2AUT+, and MoDeLLa
(part b)

46

No | Formulae Couvreur LTL2BA LTL2BUCHI

st. | tran. | st. | tran. | st. | tran.

Existence (P becomes true)
1 | o(P) 2 5 2 5 4 10
2 | ~-RW(PA-R) 2 7 2 7 1 14
3 o(-Q) v o(Q AOP)) 5 28 5 28 8 42
4 o(@A-R—- (-RW (P A-R))) 2 17 4 36 8 103
5 o(QA-R - (-RU(P A-R))) 2 17 4 36 8 103
Bounded Existence (P becomes true twice)
6 (-P W (P W(-P W (P Wn-P)))) 5 15 5 15 6 20
7 OR—- ((-PA-R)U(RV((PA-R)U

(RVv((-PA-R)U(RV((PA-R)U(RV(-PUR)))))))) 8 46 8 46 9 50
8 OQ - (-QUQAPW (P W (-PW(P Wno-P)))))) 8 48 8 48 13 78

9 o((@QAoR) - ((-PA-R)U(RV ((PA-R)U
(RV (=P A-R) U(RV((PA=R) UBNEPUR)IID) |22 | 716 | 24 | 322 | 62 | 1616
10 | 0(Q@—= ((FPA-R)U(RV ((PA-R)YU(RV(=P r-R) U

(Rv((PA=R)U(RV(-PWR)vaP))))))))) 22 | 456 | 15 | 244 - -
Universality (P is always true)
11 | a(@) T 1 1 1 2 2
12 | oR> (PUR) Z 16 | 4 | 16 | 5 20
13 | o(Q - o(P)) 2 6 2 6 4 14
11 | o((Qr-RAGOR) > (P UR)) I 46 [8] 66 |10 112
15 | o(@QA-R— (P WR)) = 2 18 4 38 6 72
Precedence (S precedes P) =
16 -PWS 2 8 2 8 4 16
17 | oR> (=P U(SVR)) 4 36- -4 | 36 | 6 56
I8 | 0-QVo(QA(PWI)) 5 | 48 [5 | 48 | 8 72
19 | o(QAr-RAOR) » (=P U(S vV R))) 4 104 | 8 | 164 | 19 702
20 | o(Q AR — (=P W(SVR))) 2 [~42] 4 | 90 |11 116
Response (S responds to P) :
21 | (P = o%) 2 13 | 4] 28 | 6 54
22 | oR> (P> (-RUSA-R))UR 50 48 | 7 | 69 |10 113
23 | 0(Q = 0(P > o5)) 3| 4 | 5 | 74 | 14| 448
24 | 0(QA-RAOR) > (P> (=RU(SA-R))) UR) 9 | 282 |12 | 316 | 33 | 1584
25 | 0(QA-R= (P> (-RU(SA=R))) WR)) 6 | 148 | 6 | 144 | 18 | 781

Table 5.7: A comparison of the generated TGBA of Couvreur, LTL2BA, and LTL2BUCHI
(part a)

47

No | Formulae Couvreur LTL2BA LTL2BUCHI
st. | tran. st. | tran. st. | tran.

Precedence Chain (S, T precedes P)
26 | OP > (-PU(SA-PAX(-PUT))) 5 36 5 36 7 52
27 | OR->(-PU(RV(SA-PAX(-PUT)))) 5 88 5 88 8 136
28 | (-Q)V(-QU(QAOP - (-PU(SA-PAX(-PUT))))) 7 140 7 140 10 188
29 | ol(QAOR) > (-PU(RV(SA-PAX(-PUT))))) 11 522 16 716 52 3553
30 | 0 @Q@->(0P->(-PU(RV(SA-PAX(-PUT)))))) 8 470 16 | 1010 | 64 5776
Precedence Chain (P precedes S, T)
31 (O0(SAXST)) - ((-S)UP) 5 52 5 52 7 64
32 | OR->((-(SA(-R)AX(-RU(T A-R)))) U(RV P)) 6 170 8 256 22 844
33 | (0-Q)v((=Q)UQA((O(SAXOT)) - ((=S) UP)))) 7 136 7 136 13 224
34 | o((QAOR) —~

((=(SA(-R)AX(-RU(T A-R)))) U(RV P))) 12 1158 14 | 950 76 15736
35 | 0 @Q@->(0P->(-PU(RV(SA-PAX(-PUT)))))) 12 1334 | 21 | 2582 | 185 | 49210
Response Chain (P responds S, T)
36 | (o(SAXoT)) - ((=S)UP) 8 142 16 291 31 529
37 | OR—> ((-(SA(-R)AX(-RU(T.A=R)))) U(RV P)) 14 539 22 772 59 2037
38 | 0(Q@-0(SAXOT - X(-TU(T AP)))) 9 372 17 | 710 80 4705
39 | o((QASOR) -

(SAX(-=RUT) - X(~RUAT r &P)) iU R) 4d* | 52024 42 | 3762 | 244 | 36832
40 | 0(Q—= (SAX(-RUT) > X(-RU(BASP))) U

(Rva(SAX(-RUT) » X(“RUT A >B))))) 56 |, 11222 | 41 | 6492 - -
Response Chain (S, T responds P)
41 | (P - o(SAXoT)) 4 68 8 142 19 469
422 | OR-> (P> (-RU(SA=-RAX (- RZ/{T))))Z/IR = 9 186 11 238 23 611
43 | 0(Q - o(P - (SAXoT))) 3 56 5 92 17 622
44 | o((QAoR) » (P> (-RU(SA-RAX(-R Z/IT)))§ UR) 17 | 1232 |20 | 1228 | 88 10672
45 | g(@-> (P> (-RU(SA-RArX(- RL{T))))L{ I

(Rvo(P - (SAXoT)))) 29 | ,#2968 | 31 | 2614 | 347 | 90607
Constrained Chain Patterns (S, T-without Z responds to B)
46 | o(P - o(SA-ZAX((-Z) U¥))) 4 98 8 202 19 625
47 OR —

(P> (-RU(SA-RA-ZANX((-RA=2Z)UT)))) UR 8 298 11 390 23 909
48 | 0(@->o(P->(SA-ZAX({(-Z)UT)))) 3 84 5 132 17 768
49 | o((QAOR) —~

(P->(~RU(SAN-RA-ZANX((-RA-Z)UT)))) UR) 20 | 2688 | 20 | 1892 | 86 14036
50 | o(@—-> (P—>(~RU(SA-RA-ZAX((-RA-Z)UT)))) U

(Rvao(P - (SA-ZAX((-Z)UT))))) 33 | 3700 | 31 | 3506 | 347 | 103079

Table 5.8: A comparison of the generated TGBA of Couvreur, LTL2BA, and LTL2BUCHI
(part b)

48

No [Formulae | GPVW+ | DGV + | MoDeLLa [Couvreur | LTL2BA [LTL2Buchi [LTL2Buchi+] SPIN

| st. | tran. | st. | tran. | st. | tran. | st. | tran. st. | tran. | st. | tran. | st. | tran. | st. | tran.

Existence (P becomes true)
1 O(P) 4 10 4 10 5 13 2 5 2 5 4 10 2 5 2 4
2 -R W (P A=R) 4 14 4 14 5 17 3 10 3 10 4 14 3 10 4 14
3 0(-Q) Vo(QAOP)) 13 65 13 65 32 157 6 34 5 28 8 42 5 28 5 28
4 0(QA-R - (=R W (P A=-R))) 8 103 5 62 18 158 3 28 5 47 8 103 3 28 8 86
5 0(QA-R—- (=RU(PA-R))) 7 88 5 62 18 158 3 28 6 53 8 103 4 38 4 36
Bounded Existence (P becomes true twice)
6 (=P W (P W(-P W(P Wn-P)))) 6 20 6 20 16 40 6 20 6 20 6 20 6 20 6 34
7 OR—> ((-PA-R)U(RV((PA-R) U

(Rv((-PA=R)U

(RV({(PA=R)U(RV (=P UR))))))) 79 425 34 158 786 3376 9 51 11 62 9 50 8 46 8 46
8 OQ = (=Q U(QA(=P W (P W(-P W (P Wn0-P)))))) 13 78 13 78 49 245 8 48 8 48 13 78 8 48 9 54
9 | o(QArOR) ~

((-PA-R)U(RV((PA-R) U
(RV((-PA=R)U(RV((PA=R) U
(Rv (=P UR)))))) 670 |'22810 [41 584 12145 |4 182950, | 28 820 19 244 42 1097 11 158 - -

10 o(Q@— ((-PA-R)U(RV((PA-R) U
(RVv((-PA-R)U(RV((PA-R) U

6%

(RV (=P WR)VvaoP)))))))) 350 | 12685 [38, w536 4055 66654 35 820 18 300 - - - - - -
Universality (P is always true) e
11 o(P) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1
12 OR—> (PUR) 5 20 5 20 14 50 4 16 4 16 5 20 4 16 4 16
13 o(@—>o®)) 1 14 3 [0 7 20 3 10 3 10 4 14 3 10 3 10
14 0(QA-RAGR) —» (P UR)) 12 170) 5 160 33 297 5 60] 76 3 96 5 52 7 66
15 0(QA-R -~ (P WR)) 7 90 4 44 19 174 3 28 5 48 6 72 3 28 8 86
Precedence (S precedes P)
16 -P WS 4 16] 4 16 6 24 3 12 3 12 4 16 3 12 4 16
17 OR > (=P U(SVR)) 6 56 6 56 30 230 4 36 4 36 6 56 4 36 1 38
18 0-QVoO(@QA (=P WS)) 8 72 8 72 4245 376 5 48 5 48 8 72 5 48 6 56
19 o0((QA-RAOR) » (=P U(SV R))) 17 644 6 192 79 1642 5 134 11 230 19 702 7 160 8 164
20 0(QA-R - (=P W(SVR))) B 116 5 152 43 914 3 64 5 112 11 416 3 64 8 196
Response (S responds to P)
21 o(P — &S) 6 50 4 30 14 90 3 20 6 41 6 54 4 30 4 28
22 OR—> (P> (-RU(SA-R)) UR 17 178 13 126 52 397 6 54 8 82 10 113 5 48 5 48
23 0(Q@ - o(P = o5) 12 292 5 81 45 602 4 62 7 104 14 448 5 86 6 100
24 0((QA-RAOR) > (P> (-RU(SA-R))) UR) 54 2288 13 372 397 9258 13 420 10 240 20 837 6 156 9 254
25 0(Q@A-R—-> (P~ (-RU(SA-R))) WR)) 15 574 6 176 69 1542 7 178 8 186 18 781 5 122 15 398

Table 5.9: A comparison of the result BA of all six algorithms and SPIN (part a)

0¢

No [Formulae | GPVW+ | DGV + | MoDeLLa [Couvreur | LTL2BA] LTL2Buchi [LTL2Buchi+] SPIN
[st. [tran. | st. [tran. st. [tran. | st. | tran. | st. | tran. | st. [tran. | st. | tran. | st. [tran.

Precedence Chain (S, T precedes P)
26 OP > (=P U(SA-PAX(-PUT))) 13 94 11 78 48 306 6 44 5 36 7 52 6 44 4 66
27 OR—> (=P U(RV(SA-PAX(-PUT)))) 15 244 13 212 108 1548 6 104 5 88 8 136 6 104 4 104
28 (O-Q)vV(-QU(QAOP —

(-PU(SA-PAX(-PUT))))) 30 468 26 444 476 6812 8 156 8 152 10 188 8 156 9 192
29 [o((QAOR) —

(=P U(RV (SA-PAX(=PUT))))) 74 4332 29 1680 949 40304 17 828 25 | 1102 60 4099 17 834 20 918
30 0(Q - (OGP ~

(=P U(RV(SA-PAX(=PUT)))))) 85 6636 29 1760 1169 64528 13 780 29 1856 72 6652 17 1196 25 1690
Precedence Chain (P precedes S, T)
31 | (O(SAXOT)) = ((=5) UP) s 74 7 64 16 332 5 52 5 52 7 64 5 52 6 64
32 OR = ((=(SA(=R)A

X(-RU(T A-R)))) U(RV P)) 27 1104 17 652 156 4224 6 170 10 334 22 844 6 170 8 260
33 (0-Q) v ((-Q) U (QA(O(SAXOT)) —

((=5) U Py 22 364 18 288 220 3028 7 136 8 152 13 224 7 136 8 160
37 | D((QAOR) —

((=(S A(=R) A X (=R U (T A=R)))) U(RV P))) 62 9387 20 2312 731 51848 13 1258 19 | 1204 76 15736 13 1022 17 | 1172
35 | 0(Q— (=(SA(-R)AX

(=R U (T A=R))) U(RV P)va(-(SAXST)))) 192 39688 28 3120 1335 122224 13 1466 | 28 | 3430 | 185 | 49210 19 2670 24 | 2872
Response Chain (P responds S, T)
36 | 0(SAXOT = X(O(TAGP))) 57 1113 40 758 352 5792] 8 143 21 | 392 27 512 12 252 T4 | 250
37 R —

?s AX(=RUT) > X(=RU(TASP))) UR 97 2816 1577 5569 3207 69940 16 581 31 | 1204 72 2811 22 859 22 762
38 0(Q - o(SAXOT - X (=T U (T AOP)))) 115 5592 43 1522 1177 39104 12 448 19 700 66 3747 13 520 16 530
39 | o((QAOR) — —

(SAX(-RUT) > X(-RU(TAOP))) UR) 435 45932 213 19798 13995 1135336 61 8102 38 3222 193 32408 25 2550 80 8614
40 0(Q— (SAX(-RUT) > X(—RU(TAOP))Y U =

(Rvao(SAX(=RUT) > X(-=RU(T ASP))))) 1236 304813 343 43988 13727 1115872 82 16778 57 8256 - - - - - -
Response Chain (S, T responds P) ™=
41 O(P - O(SAXOT)) 29 626 L7 308 169 2880 9 152 13 226 23 579 9 176 10 188
42 OR—> (P> (-RU(SA-RAX(-RUT))) UR 28 624 g 548 288 4940, 10 202 18 388 23 611 7 146 7 134
43 0(Q = 0(P = (SAXST))) 14 132 T 152, 5§ o84 5 96 7 132 17 622 5 104 6 120
44 | o(QrAoR) = (P — .

(-RU(SA-RAX(-RUT)))) UR) 149 13576 31 1732 3525 188992 19 1344 14 720 49 4909 8 440 43 2807
45 0(Q@— (P> (-RU(SA-RAX(-RUT)))) U

(Rva(P = (SAXOT)))) - A 1265 16844 : u 71 8204 | 60 | 4630 | 621 | 171092 - - - -
Constrained Chain Patterns (S, T without Z responds to P)
6 | 0P > O(SA-ZAX(=Z) UT))) 29 s72 17 144 245 5908 7 172 3 320 23 771 9 240 10 258
47 R — (P —

EZR U(SA-RA-ZAX((=RA-Z)UT)))) UR 24 860 17 568 366 9592 8 298 12 442 23 909 7 250 7 250
I8 | 0(Qo0P = BA-ZAX((=Z)UT)H)) T4 560 7 212 105 2632 5 Tad 7 192 17 768 5 152 6 172
1 [0((QAoR) = (P =

(~RU(SN-RA-ZANX((~RA-Z) UT)))) UR) 149 20184 31 3004 5497 471608 | 46 | 6716 14 | 1216 | 47 6559 8 764 13 | 1348
50 o(@—> (P> (-RU

(SA-RA-ZAX((-RA-Z)UT)))) U

(Rvo(P > (8A-ZAX((=2Z)UT))))) - - 128 9506 5569 482168 75 8536 52 5190 621 190572 - - - -

Table 5.10: A

comparison of the result BA of all six algorithms and SPIN (part b)

Ay MnA_y Memory
Desired property st. [tran. st. | tran. | usage (MB) | A_; generated by
1. o(p = ©9) 2 7 75681 464848 5.626 Couvreur, LTL2BUCHI+, SPIN
4 14 83653 501986 5.919 GPVW+, LTL2AUT+, LTL2BA, LTL2BUCHI
8 31 | 107558 648778 6.993 MoDeLLa
2. o(e — 4 32 | 108504 829956 6.993 Couvreur, LTL2BA, LTL2BUCHI+
((cUd) Ue)) 5 39 [135113 | 1040443 8.165 SPIN
10 78 | 143893 | 1096969 8.458 GPVW+, LTL2AUT+, LTL2BUCHI
26 215 | 141741 | 1043380 8.360 MoDeLLa
3. 0(((((a UD) 7 1 430 | 257282 | 3901008 13.243 Couvreur, LTL2BA, LTL2BUCHLT
Uc)Ud) 11 721 | 449778 | 6466946 21.348 SPIN
Ue)U f) 23 1469 | 530772 | 6707414 24.766 LTL2AUT+, LTL2BUCHI
29 1822 | 719969 | 9259967 32.676 GPVW+
118 | 28363 | N/A N/A N/A MoDeLLa

Table 5.11: The experiment result for token ring with size 6. There are 76665 states and
460929 transitions in M.

The third experiment is focus on the performance when the generated automaton is
used in model checking procedure. We implement a token ring protocol with PROMELA
code, which is showed in Fig. 5.2. Three desired properties will be used to verify the

protocol:

e if some node is waiting to enter the:critical sectiony eventually it will enter the

critical section.

e if the token is held by a node p;, it w:ill_l)e passed to p,-7+1 and then p;,o respectively
(partial proceeding). i o ||

i }
We rewrite these properties into.temporal formulae, and translate the negation of them

& m |
e the token is held first by py, theﬁ [L, pé," and 56 on (totral proceeding).

with the six algorithms we had deseribed and also SPIN. With the generated property
automata, we can verify the protocol with automaton-based model checking.
The experiment result for token ring protocol with size equals to 6 is showed in

Table 5.11. The result for size equals to 7 is showed in Table 5.12.

o1

#define size 7

#define p (wait[_pid] == 1)
#define q (critusr == _pid)
#fefine a (token == 0)
#fefine b (token == 1)
#fefine ¢ (token == 2)
#fefine d (token == 3)
#fefine e (token == 4)
#fefine £ (token == 5)

#fefine g (token == 6)
byte token;

byte wait[size];

byte ncrit;

byte critusr;

active [size] proctype user() {

&) @llﬁlﬁﬁ'@!@ 7

again: g Gl
if :: skip; é\:‘.j ;“g _g ‘%-;-_"\
1 wait[_pid] = 1; i : ‘"{\%
§)\
if :: token == _pid -> ﬁ?rﬁ” fﬂﬁ_gg
if .? e 8
:: wait[_pid] == 1 -> 'a E
wait[_pid] = 0O; - . I;g
. L) e
ncrit++; = =
critusr = _pid; o] - ﬁ;
assert(ncrit == 1); /* crlﬁc\ﬁls o
ncrit--; 1-3.-_'; \?\ 'fr"-.
critusr = 0; ‘{.':- 151]

assert(ncrit == 0); /% crltlcgﬁ e.'.f
if :: token = (token+1) % size; ':3_,.},-

‘fi.'}-\. Ca ‘(_ - “E:I 2
£ e ik
; Efe i
token = (token+1l) % size . ._J,%‘-Eﬂ_
token = (token+1) % size
fi;
fi;
goto again
}

Figure 5.2: The PROMELA code of token ring protocol

52

Ay MnA_y Memory
Desired property st. [tran. st. | tran. | usage (MB) | A_s generated by
1. o(p = ©9) 2 7 344700 2472567 18.223 Couvreur, LTL2BUCHI+, SPIN
4 14 396667 2790912 20.567 GPVW+, LTL2AUT+, LTL2BA, LTL2BUCHI
8 31 453728 3174346 23.204 MoDeLLa
2. o(c— 4 32 449743 3409257 231008 Couvreur, LTL2BA, LTL2BUCHI+
((cUd) Ue)) 5 39 545968 4742975 27403 SPIN
10 78 624381 5228076 31.016 GPVW+, LTL2AUT+, LTL2BUCHI
26 215 657326 5903425 32.579 MoDel.La
3. o((((((a UD) 8 1088 | 12917217 25622379 617583 Couvreur, LTL2BA, LTL2BUCHI+
Uc)Ud) Ue) 13 1697] 2331436 | 43684255 116+751 SPIN
Uf)Ug) 30 3773 | 3174908 | 49864012 5 155.325 LTL2AUT+H, LTL2BUCHI
37 4606 | 4214817 | 67849050 | w202 981 GPVWst
962 | 131455 N/A N/A "7 N/A MoDeLLa
B n

Table 5.12: The experiment result for“ token 'Ting with size" 7. There are 330476 states
and 2278785 transitions in M.

|
|

53

Chapter 6

Discussion and Implication

In most of the cases, algorithms with TGBA as intermediate automaton perform better
than others. One of the advantages comes from the transition-based acceptance condition.
A state of GBA will be labeled a set of formulae/propositions which hold on this state and
also a set of formulae which should hold from the next state on. Two states labeled with
same next-part formulae but differ from propositionsisitrue at present will be considered
as different states, which cannot bemerged- Fu'r!’c'hermore, it may be the case that the
accepting set contains one of them instead both of them. Remind that an accepting set of
TGBA is a set of transitions. A-State of ;1 TGBA ;7-Vill be labéled a set of formulae which
holds on this state only. One state can h‘ veﬁ;m;dl‘fférent transitions consuming different
alphabet and are contained in dlfferentha cepﬂmg sat$ but reach the same successor state.
This situation always happens When Me formula q)f the state is a go-formula. States

|
then can be merged without con&dermg the aceepting set. For example, for a formula

oo(p Rq), the result GBA from LTL2AUT "and 'TGBA from Couvreur’s algorithm is
illustrated in Fig. 6.1. The label of the GBA are the proposition have to be true on the
current state and the formulae set which should be true from the next state on denoted
s “OOf.” The label of the TGBA are the next-part of the current state denoted as “f.”
s1 and s in GBA can be simulated by the state so in TGBA even though s is in the
accepting set while s, is not.
Another advantage is we can use on-the-fly simulation during each stage of the trans-
lation. For example, LTL2BA simplifies the automata in each step using the rules as

follows:

e If a transition t; implies a transition t,, then ¢, can be removed,

o4

lop<>tpRa)a.p] [o0=>(pRa) 0(BRA) d]

51

lon=>(pRa). 0=>(p R a)]

(a) GBA generated by LTL2AUT (b) TGBA generated by Couvreur’s algorithm

Figure 6.1: The comparison of LTL2AUT and Couvreur’s algorithm

e If two sates s; and sy are equivalent, then they can be merged.

The simplification rules help the algorithm generate smaller automaton in each step.

In the comparison of these algorithms with TGBA as intermediate automaton, we
also notice some interesting phenomena. In most, cases;, Couvreur’s algorithm gives the
smallest automaton than the other two. Moreover Couvreur s algorithm performs better
than others dealing with recurrence formulae in Manna and Pnueli’s hierarchy. It is
not surprising because they optimiize the f_e)tpanﬂovn ufunctlon Tor go-formulae. However,
Couvreur’s algorithm encounters some ﬁ&as A big difference between Couvreur’s
algorithm and LTL2BUCHI+is that C reurms algp%lthm Shrlnk the result automaton by

T Ty

merging the states with the same:mext Frt and the! »terals which should hold on current
state will be record on the 1n—trz;nsrt10ns There mrght be the case that two transitions
with different alphabet point to the same stdte i _the result automaton of Couvreur’s
algorithm. The accepting condition is also be handled this way. Hence, a accepting
set corresponding to an U -formula will also be minimized. But in LTL2BUCHI, states
stores the information of both the literals and the next-part of the current state. In-
transition of a state in the result automaton will always label with same alphabet, so does
the acceptance condition. Couvreur’s algorithm thus, without doubt, generate a smaller
TGBA than LTL2BUCHI. Yet in the transforming step of TGBA to BA, the construction
simplify the result BA on-the-fly. The information of satisfaction of an U -formula in the

result of Couvreur’s algorithm is not as complete as LTL2BUCHI. A trace may need to

generate more states to reach the lasso of the accepting run in the result TGBA generated

95

by Couvreur’s algorithm. Moreover, LTL2BA can not beat LTL2BUCHI for this kinds
of formulae with similar reason. The first stage and second stage of LTL2BA reduce the
state size and the accepting sets, which cause the lost of information. Unfortunately, the
relation between this situation and the input formula is not vivid.

From these comparison results, we notice that SPIN may not be able to generate
the smallest automaton for each formula in most of the cases. If one uses the smallest
automaton generated by other algorithms rather than SPIN, time and space can be saved.
We also noticed that MoDeLLa performs better that GPVW in a particular case when
the size of the token ring is 6. Thus, it is possible to produce smaller product automaton
if the property automaton is “more deterministic” than the others. However, it doesn’t

help in most of the cases.

6.1 Portfolio

From the experimental results in'Chaptet, nonérlfof the algorithms is dominant. Hence,
we propose a portfolio for choosiné better—performané"e-;.algorithm when combining with
model checking procedure. o~ P

Some model checking procedures use G’f@ /'TGjB'A as the property automata instead
of BA. For these procedures, LTL2AU| - aﬁd Co'uVreur 'S algorlthm gives the smallest
GBA/TGBA in most of the time. For F allest” BAJ 1rthe s;tuatlon is much trickier. If one
needs the smallest automaton, always Ic:imose an algfl)rlthm with TGBA as intermediate
automaton. If the formula can be cla581ﬁed in recurrence of Manna and Pnueli’s hierarchy,
Couvreur’s algorithm can always give the smallest automaton. Otherwise, We cannot tell
which of the three will generate the smallest automaton. However, by our experimental
experiences, LTL2BUCHI always takes longer time and spend more space than the rest
of the two. Hence, for one who has time and space considerations, use Couvreur and
LTL2BA might be a better choice. On the other hand, for one who can always pre-produce
the automaton for the property with large-memory environment can use LTL2BUCHI+
more often since it might beat both of the two on some conditions and often make tight

on the other cases.

A screen shot of Biichi Store is illustrated in Fig. 6.2.

56

Biichi Store

ECWEN Browse | Upload Help

~p
q P~q
A .. A
JO =0
q
Random Sample: [(p—->p U g

OFormula © Description © Author O 1D @ All

Figure 6.2: The screen shot of Biichi Store

6.2 Buchi Store

=0
From section 6.1, we conclude that there 1§ no aigorlthfm Wthh can always generate the

smallest BA for different kmcls of ;f.o_rm !

formula, the only thing they can
pick up the best one. Thl&-SOhlthIl is
and space generating some auto

The conclusion 1nsp1res-us &
BA, which is “table look—up rI;h«e

is limited. If we can have a rep,osmoi‘y th‘Gm tQ I‘the corresponding smallest

automaton, people can reach the correﬁpondlng BA for tﬁhelr need very quickly without

RULLF o [I-

applying translation algorithms.

Thus, we build up a web-based open repository “Biichi Store.” It stores numerous of
temporal formulae and their corresponding Biichi automata. People can contribute the
best BA in their understanding and get the smallest BA for each formula collected in
Biichi Store. With people’s contributions, Biichi Store will become more and more helpful
for research, industry, and education. Biichi Store not only collects Biichi automata,
but also classifies the temporal formulae in different manners. People can get the BA in

different classes depends on which property they are trying to verify to the target system.

o7

Chapter 7

Conclusion

In this thesis, we attempted to find out which translation algorithms generates a smaller
automaton from the given specification formula as the size of the specification automaton
determines the efficiency of model checking. We gave a comprehensive review of a sub-
stantial number of translation algorithms. We compared six of these algorithms as well as
the one implemented in SPIN. Algorithms, that translate the formula with intermediate
TGBA tend to generate smaller autematon. Hovx;gver,&none of the algorithms can always
generate the smallest automata, for yvarious of temporal rtfbrmula,e. From the experimental
results, we also fund that the idéa of ma,il_ng the ijééult autdﬁlaton “more deterministic”
does not seem to help. When the size | of%f_ép'eéiﬁcation automaton becomes much

u
bigger than others, the automaton ma;J ot H@J@bleltp improve the performance of model
o T | | ‘

t
checking. We proposed a portfolio. for lc]roosing thqséf tramslation algorithms to generate
> 1 ,
specification automata. For an even:moré“eonvenieént“approach, we built an open Biichi
automata repository, the Biichi Store where ohe can look up the Biichi automaton for a

given temporal formula.

7.1 Contributions

Our contributions can be summarized as follows:

e Comparison of translation algorithms
We compared six of the translation algorithms and designed three experiments
for the comparison. From these comparison results, we noticed that some of the

algorithms may perform better than others most of the time. Via the comparison

58

of the translation algorithms, we got more understanding about the algorithms. We
also proposed the portfolio for translation algorithms with the help of comparison

results.

Expansion of translation algorithms in GOAL

Originally, GOAL had nine translation algorithms. The collection has been ex-
tended to twelve now. Couvreur’s algorithm, LTL2BUCHI, and MoDeLLa had
been implemented. LTL2BA had been remodeled for presenting each stage of the
translation. Couvreur’s algorithm and LTL2BUCHI are also improved. We apply
the third stage of LTL2BA to Couvreur’s algorithm in order to translate the re-
sult TGBA of Couvreur’s algorithm into a Biichi Automaton. LTL2BUCHI is also

improved by applying the same algorithms for better performance.

Eaxtension of the user interface in GOAL

In the past, GOAL has the ability to present state-based regular automata. Since we
wanted to present each step in Couyrenr’s algorlthm LTL2BA, and LTL2BUCHI,
the user interface of tran&tmn—based automata and alternatlng automaton are de-
veloped. One can create and edlt aJ:l ﬁl&tqmat‘on with tran31t10n—based acceptance
conditions and alternating autom tox),-thh fifferent afceptance conditions. One

can also generate the TGBA or Bu&% VWAA in GOAL via the translation al-
gorithms . oY £ ! '

Building an open repository . the Biichi_Store

With better understanding of the translation algorithms, we noticed the fact that
none of the algorithm is dominant. Sometimes we have to translate the input
formula with each algorithms in order to choose the best result, yet it is impractical.
Hence, we built an open repository for BA, called Biichi Store. The user can
contribute the best BA in his/her understanding and get the smallest BA for each
formula collected in Biichi Store. With users’ contributions, the Biichi Store will

become more and more helpful for research, practice, and education.

59

7.2 Future Work

The following works are very interesting and worth to be focused on.

e FExtending the portfolio for different classifications of formulae
One of the extension work is to develop a sequence of steps of procedure to clas-
sify the formulae into the classes in [17] and the SPEC PATTERNS. With more

understanding of the specification formula, the portfolio will be more complete.

e Improving the translation algorithms
All of the algorithms we described in this thesis put their strength on the temporal
formula with only future operators. The algorithms will be more powerful if it is
improved for past operators. The structural simulation and fairness set pruning
technique for TGBA haven’t been mentioned before. If the translation algorithms
can be improved in these directions) a smalléer automaton can be generated.

#

l,—

e FExtending the Biichi Store
Currently, the functionality offBuchi Store i is Mot completed yet. The classification
algorithm is needed for classﬂymg._the temporal formulae Some user interface
abilities, like on-line autématon re aw;u}e automatén translation and verifying
are not capable in the current ver 10n.{[£he do!rrectness_'check for large automaton
is limited by the computil_]Tg-;povl e vl

Il. These W(pl) k are absolutely useful for the next

generation of Biichi Store.

60

Bibliography

1]

H. Alavi, G. Avrunin, J. Corbert, L. Dillon, M. Dwyer, and C. Pasareanu. Spec
Patterns. http://patterns.projects.cis.ksu.edu/.

J.R. Biichi. On a decision method in restricted second-order arithmetic. In Proceed-
ings of the International Congress on Logic, Methodology and Philosophy of Science,
pages 1-11. Standford University Press, 1962.

W.-C. Chan. A comparative study of algerithms for linear temporal logic to Biichi

automata translation, 2007, £ 5

Y. Choueka. Theories of automata on w- tapes A snnphﬁed approach. Journal of

Computer and System Sczence page&8 117ﬂ 141 1974.
|| =2 1M
E. M. Clarke, O. Grumberg, andl A, Pelea Model Checkmg The MIT Press,

J |
1999. l ar '|

J.-M. Couvreur. On-the-fly verlﬁcatlon of hnear temporal logic. In World Congress

on Formal Methods, LNCS 1’708, pages 953-271. Springer, 1999.

M. Daniele, F. Giunchiglia, and M. Y. Vardi. Improved automata generation for lin-

ear temporal logic. In Proceedings of the 11th International Conference on Computer-

Aided Verification (CAV 1999), LNCS 1633, pages 249260, 1999.

P. Gastin and D. Oddoux. Fast LTL to Biichi automata translations. In Proceedings
of the 13th International Conference on Computer-Aided Verification (CAV 2001),
LNCS 2102, pages 53—65. Springer, 2001.

61

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic verifi-
cation of linear temporal logic. In Protocol Specification, Testing, and Verification,

pages 3—-18. Chapman & Hall, 1995.

D. Giannakopoulou and F. Lerda. From states to transitions: Improving transla-
tion of LTL formulae to biichi automata. In Formal Techniques for Networked and

Distributed Sytems, LNCS 2529, pages 308-326. Springer-Verlag, 2002.

G. J. Holzmann. The model checker SPIN. Software Engineering, 23(5):279-295,
1997.

G.J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley, 2003.

Y. Kesten, Z. Manna, H. McGuire, and A. Pnueli. A decision algorithm for full
propositional temporal logic. In'Proceedings.of the 5th International Conference on

Computer-Aided Verification (€AV 1993), [:'J\ETC’SKGQ’/, pages 97-109. Springer, 1993.

Y. Kesten and A. Pnueli. Verlﬁcatlon-by augmented ﬁmtary abstraction. Information
\‘
and Computation, 163(1):208-243; G@Qi— | |

= |

O. Kupferman and M. Y. Vardi. F{ edonﬂ,;ﬂwea,kpess and determinism: From linear-

time to branching-time. In ProcL dzngs of tlﬁer 13th Annual IEEE Symposium on
Logic in Computer Science (L[C’S 1998) pages 81+ 92, Springer, 1998.

O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. Journal of the ACM, 47(2):312-360, 2000.

7. Manna and A. Pnueli. A hierarchy of temporal properties. Technical Report
STAN-CS-87-1186, Stanford University, Department of Computer Science, 1987.

Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer, 1995.

S. Miyano and T. Hayashi. Alternating finite automata on w-words. Theoretical

Computer Science, 32:321-330, 1984.

62

[20]

[21]

[22]

23]

[24]

[25]

D. E. Muller. Infinite sequences and finite machines. In Proceedings of the 4th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 1963), pages 3-16,
1963.

A. Pnueli. A temporal logic of concurrent programs. Theoretical Computer Science,

13:45-60, 1981.

R. Sebastiani and S. Tonetta. “more deterministic” vs. “smaller” Biichi automata for
efficient LTL model checking. In Correct Hardware Design and Verification Methods,
pages 126-140, 2003.

F. Somenzi and R. Bloem. Efficient Biichi automata from LTL formulae. In Pro-
ceedings of the 12th International Conference on Computer-Aided Verification (CAV
2000), LNCS 1855, pages 248-263. Springer, 2000.

Y.-K. Tsay, Y.-F. Chen, M.-H.Tsai, W.-C..Chansand C.-J. Luo. GOAL extended:
Towards a research tool for-omega aﬁt'omat‘zlm:éndr temporal logic. In Proceedings of
the 14th International Conferenee on Tools and Alébrithms for the Construction and

Analysis of Systems (TACAS QOOS)T—ENCS'4,963 pagéé"'346-350 Springer, 2008.
Y -K. Tsay, Y.-F. Chen, M=H. ﬂs ﬁ“w WEC. Chan C.-J. Luo, and J.-S.
Chang. Tool support for learnmg t chi- atrﬁom’a a and hnear temporal logic. Formal

Aspects of Computing, 21(3) 259 5, 2009. l|

63

