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ABSTRACT

This work develops a framework for solving optimization problems for both seeded and unseeded
batch crystallization systems. In this work, optimal control theory (OCT) is applied to solve multi-
objective optimization problems for batch crystallization processes with primary nucleation.
Optimization problems for both seeded and unseeded cases are stated and solved. The mass of the
nucleated crystals is tracked and included in the material balance. The resulting two-point boundary-
value problems (TPBVPs) are difficult to solve because the expressions for the derivatives of the states
and costates are highly non-linear. Conventional shooting methods usually fail to converge. In seeded
case, the nucleus-grown mass in the Hamiltonian equation is assumed to be negligible compared to the
seed-grown mass, which simplifies the mathematics. In unseeded case, a gradient-based algorithm is
applied to solve the TPBVP efficiently.

A case study of ampicillin crystallized from water illustrates the method developed in this work.
Optimal control input profiles (e.g. supersaturation trajectories and pH trajectories) and the complete
product CSD are determined. Furthermore, the Pareto-optimal fronts are constructed to analyze the
trade-off between the competing objectives of minimizing the number of nucleated crystals and the
nucleated mass or the weight mean size. The algorithm is found to be both fast and robust, suggesting

that it might be suitable for online model-based control. Moreover, the algorithm proposed in this work
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might be useful for solving even more complicated optimization problems for batch crystallization

systems with complex kinetics.

Keywords: Primary nucleation; Model-based control; Population balance equations; Multi-objective

optimization; Optimal control theory
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Chapter 1 Introduction

1.1  Overview of Crystallization Processes

Crystallization is a critically important separation process in many industries,
including pharmaceuticals, specialty chemicals and food. Crystallization can proceed in
either continuous or batch-wise. Continuous crystallization has the advantages of larger
production rate and lower operating and capital cost[1-4]. Batch crystallization is simpler
and more flexible, but batch-to-batch variability is a critical problem [5]. Both of them
are common in industry; batch crystallization is the focus of this work.

In crystallization, the driving force is the supersaturation, which means that a
solution contains more solute than the equilibrium solubility allows. Several methods can
be used to induce supersaturation, such as cooling, evaporation of solvents, and changing
the pH value[6]. Figure 1.1 shows three different common supersaturation trajectories [7].
Early growth trajectory represents that supersaturation is highest in the beginning, and is
decreasing during the batch. The characteristic of late growth trajectory is that
supersaturation is increasing with the batch time, and reaches the maximum in the end.
The choice between these two operating policies will be discussed in Section 3.1.1. The
third type of trajectories, constant supersaturation, is a heuristic operating policy when

optimization is not available. It has been found to be much better than the uncontrolled

doi:10.6342/NTU202300993



case, such as natural cooling. The constant supersaturation control will be discussed in

Section 1.2.

4
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Figure 1.1. Common supersaturation trajectories: early growth, late growth, and

constant supersaturation[7].

Basic crystallization mechanisms consist of nucleation[8] and crystal growth[9; 10].
Nucleation represents the birth of new nuclei, and crystal growth stands for the increment
of the crystal size. In addition, nucleation can be divided into primary and secondary
nucleation. The former occurs in the absence of crystals, and the latter is induced by
parent crystals, which act as a site for the generation of new nuclei[11].

Crystal size distribution (CSD) is often an important measure of product quality
because it can influence downstream unit operations such as filtration or drying and

product properties including bioavailability, tabletability bulk flow, rate of dissolution,
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etc[12; 13]. Large crystal mean size, narrow and unimodal CSD are usually desirable.

Moreover, because high valuable products are produced in crystallization processes, such

as food additives and pharmmaceuticals, optimization is of great importance to reach

desired product properties. This work focuses on the optimization of batch crystallization

processes.

1.2 Literature Review and Motivation

As mentioned in Section 1.1, CSD is highly related to product quality. Therefore,

several control strategies have been proposed to achieve a desired CSDJ[ 14], larger crystal

size[15; 16], or higher productivity[ 1 7]. Model-free control is simpler to design compared

to model-based control because complicated mathematical models are not required.

Direct nucleation control (DNC) is a widely used model-free feedback control approach.

Information about the number of particles is obtained from the number of counts per

seconds recorded by a focused beam reflectance measurement (FBRM)[14; 18]

instrument, and transmitted to the controller. Cycles of cooling and heating can be

conducted to achieve a desired CSD with fewer nucleated crystals. It has been shown that

DNC can effectively reduce batch-to-batch variability in batch crystallization, and can

help reject disturbances in continuous process| 19]. Constant supersaturation control (SSC)

1s another common control strategy because of its simplicity. Attenuated total reflection-
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Fourier-transform IR (ATR-FTIR)[20] or attenuated total reflection-ultraviolet/visible

(ATR-UV/vis) spectroscopy[21] can be used to measure the concentration continuously

to implement the feedback control of supersaturation. The concentration is first measured

and used to compare the supersaturation with its set point. A signal will then be sent to

the temperature controller, and the constant supersaturation can be maintained by

manipulating the temperature of the crystallizer. In model-free control, crystallization

kinetics and modeling are not required, and parameter uncertainty no longer plays a role,

especially the stochastic phenomenon of primary nucleation. Although model-free control

provides a simple and rapid process design, it might be suboptimal, and direct design of

the product CSD is not available[22].

Therefore, model-based control is also of great interest. Population balance equation

(PBE), which is a partial differential equation including population density function,

crystal growth rate and nucleation rate, is used to calculate the time evolution of CSD.

Mesbah et al.[17] obtained an optimal growth rate profile for ammonium sulphate-water

system by using a model-based controller to maximize the batch productivity subject to

the product quality requirements. Nagy[23] proposed a model-based robust control

approach for batch crystallization to determine optimal temperature and concentration

trajectories, aiming to achieve a desired CSD shape subject to the operating constraints.
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However, solving PBE for model-based design is sometimes challenging because it

is a partial differential equation and analytical solutions usually do not exist. One option

is to solve the problem numerically by discretization of the CSD. Methods that take this

approach include the method of characteristics[24; 25], finite difference methods[26], and

Monte Carlo methods[27; 28]. Using these methods, the complete CSD can be determined

but discretization methods are computationally intensive. Another well-known numerical

approach, the method of moment (MOM)[29-31], does not require discretization of the

CSD. By applying MOM, the PBE can be converted to a series of ordinary differential

equations, which simplifies the calculation. Although MOM is computationally efficient,

in general complete information about the CSD cannot be obtained.

Raisch and coworkers[32-36] proposed a time transformation that may simplify the

solution of PBEs. Hofmann and Raisch further showed that nearly analytical solutions to

certain optimization problems can be obtained by Pontryagin’s Minimum Principle (PMP)

[37; 38] if the feedback of nucleated crystal mass is neglected[39]. Using this framework,

several problems in optimization of seeded batch crystallization processes have been

solved[40-44]. The method has been found to be very accurate and computationally

efficient.

Based on the framework proposed by Raisch and coworkers [32-36], optimization

problems for seeded batch crystallization processes with negligible primary nucleation
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have been widely studied, including multivariate systems,[32; 34] systems with size-

independent[39] and size-dependent[41] growth rate kinetics, and systems considering

crystal shape[43]. Design of seed recipe[42] and trade-off between different objective

functions’[40; 44] have also been studied.

To our knowledge, all previous studies based on the transformation proposed by

Raisch and coworkers have been of systems where seeds are present, secondary

nucleation dominates over primary nucleation, and the nucleus-grown mass is small

enough that it can be neglected compared to the seed-grown mass in the overall mass

balance. These assumptions simplify the mathematics and in some cases make a nearly-

analytical solution possible.

Although seeds are often used in batch crystallization processes to control the CSD

by inhibiting nucleation, and seeding policy has also been studied[42; 45], seeding is not

without disadvantages[46-49]: It is difficult to maintain sterility when adding seeds and

impurities including bacteria may be introduced. Toxic organic solvent vapors may escape

the crystallizer when seeds are added. Seeds may aggregate and disperse poorly in the

crystallizer. Finally, seed properties such as purity, polymorph and surface properties may

vary from batch to batch resulting in variable batch quality.

Considering that seed preparation is challenging due to the requirement of high-

quality seeds, unseeded crystallization is also of great importance. However, less research
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has focused on the optimization of unseeded batch crystallization. Hemalatha et al.[50]

applied multi-objective optimization to the unseeded batch cooling crystallization of citric

acid anhydride using a non-dominated sorting genetic algorithm (NSGA-II) to determine

the optimal cooling trajectory. Ashraf and Rao[51] also applied NSGA-II to carry out

multi-objective optimization for unseeded batch cooling crystallization of aspirin, and

determined optimal temperature trajectory.

It is of interest to determine whether the transformation of Raisch, which has been

applied successfully to problems with seeds and secondary nucleation, can also be applied

in cases where primary nucleation is significant and to cases where seeds are not used.

That is the purpose of this work. Relaxing these restrictions results in a significant

complication of the problem and in the latter case requires a nearly complete

reformulation of the problem because there is no longer an algebraic relationship between

the transformed time and the solid mass in the crystallizer. Nevertheless in this work we

show that these generalized optimization problems can be formulated and solved

efficiently using a gradient-based algorithm[52-54] to solve the associated two-point

boundary-value problem.
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1.3  Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, population balance
models and crystallization kinetic models are presented. In Chapter 3, optimization
problems are formulated for both seeded and unseeded cases. A case study presented in
Chapter 4 illustrates the framework developed in this work, and the optimal operating
trajectories and other results are presented and compared for each case. Finally,

conclusions are given in Chapter 5.
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Chapter 2 Theory

In this chapter, theory of modeling of batch crystallization processes is presented in

Section 2.1, and the crystallization kinetics are introduced in Section 2.2.

2.1  Modeling of Batch Crystallization Processes

For a batch crystallization process in a well-mixed crystallizer, if crystal breakage

and aggregation are neglected, and nuclei form with zero size, then the PBE can be written:

af(t,L) of (t,L) _
o + G —=—=B®)s(L) (2.1)
f(O,L) = fini(L) (2.2)

where f is the population density function depending on process time t and crystal size
L, fini 1s the initial CSD, G is the size-independent linear growth rate, § is a Dirac
delta function, and B 1is the nucleation rate.

Eq 2.1 is a partial differential equation which can be difficult to solve. The MOM[31]

can be applied to simplify the calculations. Define the ith moment of the CSD p; as

1 =f L'f(L)dL,i =0,1,2, ... (2.3)
0

Eq 2.1 can be converted to the following set of ordinary differential equations:
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dug
70 _ 2.4
it B (2.4)

du; . .
d—t‘ =iGu_1,i=123... (2.5)
A new time variable 7 is introduced[32-36] and defined as

dt=6{t)dt;t(t=0)=0 (2.6)

where 7 has units of length. Eq 2.4 and Eq 2.5 can then be written as

dro _ B @.7)
dt G
dpg _ ..
d_‘[l =ip_4,i=123.. (2.8)
For unseeded crystallization, the initial conditions of Eq 2.7 and Eq 2.8 are
u;(0)=0,i=0,12..; t(0)=0 (2.9)

For seeded crystallization, the ith moment of the CSD p; can be divided into two
parts: u;s and p;, representing the ith moment of the seed-grown and nucleus-grown
crystals, respectively. At each point in time the ith moment of total crystals p; is the

sum of p;¢ and p; . The corresponding ODEs and initial conditions are

dbos _ (2.10)
dt
dugs . .
drlls =g 15i=1273.. (2.11)
dion _ B 2.12)
dt G '
10
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d,ui,n
dt

= ipioapi =123 (2.13)

pis(0) = pyos, i =0,1,2...; p;n(0)=0,i=0,12..; t(0)=0 (2.14)
where p;os 1s the ith moment of seed crystals, which can be calculated from Eq 2.3.

In addition, Eq 2.10 and Eq 2.11 can be directly integrated to obtain each moment

of the seed-grown crystals as a function of t:

to,s(T) = Uoos (2.15)

t1,5(T) = Hoo,sT + Haos (2.16)

H2s(T) = HoosT? + 2107 (2.17)

t3,5(T) = phoo,sT° + 3l10sT? + 3piz0,6T + Uzoss (2.18)

This transformation can also be applied to Eq 2.1.The PBE becomes:

of(wL) (L) _B

o7 oL g MW (2.19)

For unseeded crystallization, the initial condition and the analytical solution are

£(0,L) =0 (2.20)

f(T,L)=§(T—L),T—LZO (2.21)

For seeded crystallization, Eq 2.19 can be divided into two parts:

11
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of(r,l) Bfi(rL)
ar T 0 2

(L) (L) _B

ot oL ¢ IW (2:23)

where f; and f, are seed-grown and nucleus-grown population density function,

respectively. The corresponding initial conditions and analytical solutions are

fs(0,L) = fini(L) (2.24)
fu(0,L) =0 (2.25)

fi(t,L) = fii(L —7),L =720 (2.26)
f(, L) = g(r —L),t—-L=>0 (2.27)

2.2 Crystallization Kinetics

Only crystal growth, primary nucleation, and secondary nucleation are considered
in this work. The expressions for the size- and temperature-independent linear growth
rate G, primary nucleation rate By, and secondary nucleation rate B, used in this work
are:

G = ky(S—1)9 (2.28)

12
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B, = ky, exp (_—A) 2.29)
(In(5))?

By = kpo(S — 1)us (2.30)
where kg, kpq, A, kpz, g, b and d are constants. The total nucleation rate is the sum

of primary and secondary nucleation rates, i.e. B = B; + B,. G, By,and B, depend on

the supersaturation S, and B, is also dependent on u;. Supersaturation S is defined as

S = CCZ? (2.31)
C(t) = Cini — pky(u3(t) — u3(0)) (2.32)

where C(t) is the concentration of the solution, Cg,; is the saturation concentration,

Cini 1s the initial concentration, p is the density of the crystals, and ky is the volume

shape factor.

13
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Chapter 3 Optimization Problems and Solutions

In this chapter, optimization problems are formulated in Section 3.1, including
seeded and unseeded case. Pareto-optimal fronts are introduced in Section 3.2, and the
objective function of each case is defined. Solutions to optimization problems for each

case are presented in Section 3.3.

3.1 Optimization Problem Statements

For crystallization processes, optimization problems are solved to find optimal
supersaturation trajectories. Each optimization problem includes an objective function to
be minimized and relevant constraints.

3.1.1 Case 1: Seeded Crystallization

In seeded crystallization, nucleated crystals are usually undesirable because they
broaden the product CSD. In this case, in the absence of constraints a very long batch
time and a very small production rate will be preferable. Therefore constraints on the
production rate and the batch time are set to ensure a reasonable solution.

The optimization problem for seeded crystallization with primary and secondary

nucleation can be written:

14
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min ¢ (u(r)

N©)
s.t.

U3s (Tf) = U3z sc
t(‘[f) < tf,c
S(7) € (1, Sup]

(3.1)

where ¢ is the objective function, 7¢ is the final transformed time, uzg. is the

constraint on the third moment of seed-grown crystals at the end of the batch, t. is the

batch time constraint in the time domain, and S,, is the upper bound on the

supersaturation. In this case, 77 is fixed because it can be calculated from Eq 2.18 based

on the production rate constraint sz s(7¢) = pz .

Both single-objective and multi-objective problems can be considered. Table 3.1

lists the common single objective functions considered in seeded crystallization

processes[40]. The subscript f indicates the final properties of the product.

Table 3.1 Common single objective functions in seeded crystallization processes[40]

Objective Definition
minimize the number of nucleated crystals min o ¢
minimize the volume of nucleated crystals min fsp ¢

maximize the number mean size

maximize the weight mean size
minimize the number mean coefficient of variation
(number CV)

minimize the weight mean coefficient of variation
(weight mean CV)

max .U1,f/lio,f

max [y ¢/ ls ¢

- [rosiar
min [252 -1
Hif
. [Hzksg
min |25 -1
Hyr

In seeded crystallization, inhibition of nucleation is usually the goal. Ward et al.[7]

15

has summarized the choice of different objectives and the corresponding optimal
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operating policies. In their work, it has been concluded that objectives involving the
higher nucleus-grown moments would result in late growth operating policies, and that
objectives involving lower nucleus-grown moments would result in early growth
operating policies. Therefore, it is obvious that objectives involving higher nucleus-
grown moments, such as puz, and p,,, are competing with those involving lower
nucleus-grown moments, such as o, and pu; . In this work, two competing objectives
Honf = Hon(Te) (final number of nucleated crystals) and ps, ¢ = pz,(7f) (proportional
to final volume of nucleated crystals) are often selected as the objectives to be minimized.
3.1.2 Case 2: Unseeded Crystallization
The optimization problem for unseeded crystallization can be written:

min ¢ (pu(r))

S(7),t¢

st ug(Te) = ugc (3.2)
t(Tf) = Lec
5(7) € (1, Sup]

where pz. is the final constraint on the third moment of crystals. For unseeded
crystallization, the constraint on the production rate is different because all crystals are

nucleus-grown (¢; s = 0, p; = fipn).

In this case, the goal is to produce larger but fewer crystals under the production rate
constraint. Comparison of different objectives in unseeded crystallization has not been

studied. Maximizing the number mean size (1, ¢/ o ¢), maximizing the weight mean size

16
doi:10.6342/NTU202300993



e . .. ! Uo tU
(u3,¢/ 1o £), and minimizing the number mean coefficient of variation (min % —1)
1.

have been considered in the previous work[55; 56].

In unseeded crystallization, it is expected that minimizing the number of crystals
would result in early growth operating policies because those crystals produced from
nucleation in the beginning will have enough time to grow. Although it is difficult to
predict the optimization result of maximizing the mean size of the product crystals, there
might be a trade-off between the number and the mean size of the product crystals.
Therefore, in this work, two single objectives are considered: minimize the final number
of crystals (g f = o (7)) or maximize the final weight mean size (WMSy) of the crystals
(Ha,r/ 13,¢). Since the production rate constraint fixes i3 ¢, this objective is equivalent to
maximizing py¢ = Us(7¢). In order to state the problem as minimization problem, the
negative of u,(7s) is chosen as one objective function. Moreover, 77 is not fixed in
unseeded crystallization because p; depends on the supersaturation and cannot be

expressed explicitly in terms of 7. Therefore, ¢ is determined during the optimization.
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3.2  Pareto-Optimal Fronts for Multi-Objective

Optimization Problems

For a multi-objective optimization problems, a Pareto-optimal front (PF) can show
the trade-off between the objectives. A PF can be obtained using the weighted sum

method[57]:

d(tr) = af1p1(t)) + (1 — @) B2 (7¢) = aP1dre+ (1 — a)Brpys (3.3)

where a € [0,1], ¢; and ¢, are single objectives. Scaling factors S, [, are
required because the two objectives usually have very different magnitude. The PF
consists of a set of optimal solutions: each value of @ corresponds to a point on the PF
determined by solving the optimization problem. Optimal solutions with @ = 0 and
a=1 give the endpoints of the PF, which are (¢1fmax P2fmin) and
(#1.£min» P2.£max)»> respectively. The subscript min (or max) indicates the minimum (or
maximum) value of the objective on the PF. In order to find the knee point, which can be
considered to represent the best trade-off between objectives on the PF, normalized

objective functions are defined as:

17 ¢1 f— ¢1 f min
= 3.4
¢1’f ¢1,f,max - ¢1,f,min ( )
¢£,’f — ¢2,f - ¢2,f,min (35)

¢2,f,max - ¢2,f,min
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After normalization, the endpoints of the PF become (1,0) and (0,1). On the ¢/

¢3¢ plane, the distance D from the origin to a given point is

D= J(61)" + (95" (36)

The knee point is defined as the point on the PF for which D is minimized[58]. After
finding the knee pointon ¢;'¢-¢; ¢ plane, the corresponding point on the ¢, ¢-¢p, ¢ plane
can be determined. Figure 3.1 shows the Pareto-optimal fronts before and after the

normalization.

(a) (b)
b2 ba ¢

(0.1)
D= (‘lf’;’,f)z Eo (‘ibé/,r)z

Knee point: min. D
(best trade-off)

(1,0)

(¢1,f,min' ¢2,f,max)

Knee point
(best trade-off)

(¢1,f,min: ¢2,f,max)
> Dt L

144
> 1f

Figure 3.1. Pareto-optimal fronts: (a) before normalization, (b) after normalization.

By applying the weighted sum method[57], the objective function in each case can

be written.
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3.2.1 Case 1: Seeded Crystallization
In seeded crystallization, pon¢= Hon(Tr) and pzn¢= p3n(7¢) are selected as the

objectives to be minimized. Therefore, the objective function can be written as

¢ () = afiusn(te) + (1 — a)Pation(tr) = aPitizne + (1 — @)Bations (3.7)

3.2.2 Case 2: Unseeded Crystallization

In unseeded case, —WMS; = —WMS(t¢) and po¢ = po(ts) are selected as the

objectives to be minimized. Again the weighted sum method is applied [57]:

¢ (tr) = afy (—WMSy) + (1 — @) B s (3.8)

3.3  Solutions to Optimization Problems

In this work, PMP is applied to provide necessary conditions for optimality (NCO)
[37; 38], and all computations are performed in Matlab R2022a. Expressions for each of
the optimization problems are first restated in terms of the state variables x, and then be
reformulated in terms of the Hamiltonian H with necessary conditions determined using

PMP.
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3.3.1 Case 1: Seeded Crystallization
In seeded crystallization, uz, should be calculated because it is included in the
mass balance and is one of the objectives to be minimized. Therefore, state variables x

are defined as:
X1 = MUzn Xy = Uzn X3 = UynyXa = Hon,Xs =L (3.9)
Eq (3.1) can be expressed in terms of x, which is related to u and t:

miTn qb(x(rf))

u(t)
dx

st oo =Flou,0),x(0) = xipy (3.10)

e(x(xp) <0
u(7) € [ujp, )

where u is the control input, which is defined as u(7) = % with a lower bound uy,.
Xini 1s the initial condition of the state variables, and € is a vector of terminal constraints.
In this case, € includes only one element, which is the batch time constraint, and € can
be expressed as € = [x5 — tf’c].

Application of PMP permits the reformulation of Eq 3.10 in terms of the Hamiltonian

H with the corresponding necessary conditions:
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H(x,u,,t) =P F(x,u,1)

min
u(7)€[upp, )

dx
s.t. == F(x,u,7),x(0) = xp;
dp __oH (3.11)
dt ox
w0 =[G+ (Il
vie=0

where ¥ is a vector of costate variables with boundary conditions ¥ (t¢), v is a vector
of Lagrange multipliers for terminal constraints, and superscript T represents the
transpose of a vector. v is non-negative when the terminal constraint is active and zero
otherwise. In this work, terminal constraints are assumed to be active.

From Eq 2.12, Eq 2.13, and the definition of state variables (Eq 3.9), differential

equations for each state can be derived:

dx; dx, dxs
— = x2F_ = X3,_ = x4-l
d d d
' ' ' (3.12)
dxs B( N ) dxs
dT - G xl nu3,S(T)lu(T) ) dT _u(T)

where B is the nucleation rate, which is the sum of B; and B,.
With the definition of the control input u and the expression for the growth rate G

(Eq 2.28), supersaturation S can be written in terms of u

1

S=1+ku)d (3.13)
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. . B .
Nucleationrates B; and B, can also be expressed in terms of u. 7 in Eq3.12 can

then be written as

B
E(x1 + Hs,s’u) =

4 (3.14)

-b
u| kpqexp 2\’ + kbz(kgu) g (xl + .U3,s)d\‘

2+ 7))

From Eq 3.11 and Eq 3.12, the Hamiltonian H can be written as

B
Hx,u, Y, 7) = 3135 + 29503 + 34 + Yy C (x1 + pt3,s(r),u(r)) +Ysu (3.15)

To simplify the calculations, Hofmann and Raisch[39] proposed that the nucleated
third moment p3, = x; in H(x,u,3,7) can be neglected because nucleated moments
U;in should be much smaller than the seed-grown moments u;¢. This is reasonable
because the purpose of seeds is to absorb the supersaturation and suppress nucleation. It
is hoped that at the end of the batch that most of the precipitated mass has accrued to the
seeds and only a small portion to the nucleated crystals. When making this simplification,
it is important to check after optimization that the nucleated mass is indeed small
compared to the seed grown mass. This verification is performed for the case study system
in Section 4.2. Based on this assumption, x; + u3¢ in Eq 3.14 can be replaced by uss,

and Eq 3.15 can then be written as
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B
H(x,u, Y, 7) = 31x5 + 2503 + P3x4 + Yy G (u3‘s(r),u(r)) + Ysu (3.16)

The following are the differential equations for the costate variables given by C;—f =— Z—:
in Eq 3.11:
dy dy dy
— =0, = =3y, — 2 = 2y,
(3.17)
db__ dbs
drt ¥ dr
. . : T _ [(2¢ T (9€
with boundary conditions given by " (t¢) = [( ax) +v ( ax)] . The first term
depends on the objective function, and the second term is given by:
de
v (52) = 10,0.00,v] (3.18)

where vs is a non-negative constant. With an initial guess for vs, ¥ can be solved by

analytical integration.

In addition, the optimal control input u* at each instant of 7 must satisfy the

following NCO:
. . B
u* = argmin H(x,u,¥,7) = argmin ,— (,u3,s (T),u(‘[)) +Ysu (3.19)
u(v)€[up,) umefupe) O

However, it is difficult to obtain an analytical solution because of the complicated
expression for g. In this work, the function fiminbnd in Matlab is used to find u”

numerically.
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The following is the procedure for solving optimization problems when seeds are
present. First, make an initial guess of vs, solve ¥, and then find u*. Then, state
variables x can be determined by integration using the solver ode45. Furthermore, to
satisfy the batch time constraint, the value of vg is determined by iteration using the
function fzero until x5(t¢) = t¢.. After iteration, vs is determined and product
properties can be obtained (i3, (7¢) = x1(7¢), Hon(Tr) = x4(7¢)). Finally, it is critical to
check whether 3¢ is indeed much larger than u3,, because this assumption is used in
Eq 3.16. Figure 3.2 shows the flowchart of the optimization procedure for seeded

crystallization processes.
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Specify a, ¢11 ¢2' U‘B,S,CI tf,c
and seed properties.

Y

Calculate 7; (Eq 2.18).

) Update the value of vs
v by the algorithm.

Make an initial guess of vs.

. 2
Solve ¥ by analytical integration s the batch time
(Eq 3.16). constraint satisfied?

(xs5(Tp) = tec )

A 4

Solve u* (Eq 3.18).

A 4

Optimal control input
Integrate the state equation trajectory and optimal
(Eq 3.12). objective values are found.

Figure 3.2. Flowchart of solving optimization problems for seeded case.

3.3.2 Case 2: Unseeded Crystallization

In unseeded crystallization, u, should also be calculated because its value is needed
to calculate the objective WMSZ(Z—:). Thus, the definition of x is slightly different than
in the seeded case:

X1 = U4y Xy = U3, X3 = Up, X4 = Jq, X5 = Ug, Xg = L (3.20)

Eq 3.2 can then be restated as
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min ¢ (x(rf))

u(t),ts
dx

st = F(x,u,7),x(0) = xjp; (3.21)

e(x(t)) <0
u(7) € [up, )

In this case, 7¢ has to be determined, and the final constraint on the product should be

. : T
included in € . Therefore, € can be expressed as €= [xz —,ug’c,xG—tf’c]

representing the production rate constraint and the batch time constraint.

Next, Eq 3.21 can be reformulated by applying PMP:

min H(x,u, P, 1) = P F(x,u,1)
u(t)Elugy,),7¢
dx
s.t. i F(x,u,7),x(0) = xi;
ap _ oH (3.22)
dt ox
d¢ de
T — | = T —
¥ = [((’)x) v (6x>] -
vie=0

Then the differential equations for state variables can be derived:

dx; dx, dxs
ar - Pegy T 3% = 2 023
dx, dxs B .

_ ( ( )) dxe —
dt — X5 dt G X2, ULT " dt = u(®)

In this case, g (xz, u(r)) cannot be simplified by neglecting the nucleated mass because

all crystals are nucleus-grown.
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The Hamiltonian H, and the differential equations for the costate variables can be

written as

H(x,u, 9, 1) = 41x; + 3Pox3 + 2304 + PuXs + Ps g (XZrU(T)) + Yeu (3.24)

B
A _ o by /(6 (’“2'”@)) s _ s
1 0x, " dt V2

d, ds _ dllJe
W - _Zl/)3' dt l/)4.,

(3.25)

However, costate variables 1 cannot be integrated directly with the boundary conditions

given by T(tg) = [(a¢) +v! (ax)

because both x, and u(r) appear in the
Tf

. . . . €\ . . a
differential equations. In this case, v’ (i) is given by vT (i) = [0,v,,0,0,0,v¢],
where v, and v, are constants.

To obtain the optimal control input u*, the following NCO must be satisfied:

B
0l=
= (Sfj) s = (3.26)

oul,

The trajectory of u(t) consists of two parts: an unconstrained arc (u # ;) and a
constrained arc (u = uy,). The switching time denoted as 75 means the switching instant
between these arcs (see Figure 3.3). Because the trajectory of u(t) is continuous, the

NCO (Eq 3.26) should also be satisfied at the switching time if ¢ exists.
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u(t)

unconstrained arc
u &= ulb

/ \ constrained arc
\i (u = ulh)

Figure 3.3. Constrained arc, unconstrained arc, and the switching time.

v
~

In addition, for an optimization problem with a free terminal time (), an additional

condition called the transversality condition must be satisfied [38; 52; 59]:

=0 (3.27)

Tf

H(o) = (YTF(xu,1)

This case is more complicated because ¥ cannot be integrated directly. In this work,
the gradient method is applied to solve this boundary value problem numerically [52-54].
The following is the procedure for applying the gradient method.

At first, the constraint on the control input is assumed to be inactive, i.e. 75 does
not exist. Then, u(r) is discretized into N points and an initial guess for all N + 3
decision variables is made: u(t;), u(ty),..., u(ty), Vo, Ve, Tr. With N discretization
points, u(t) at any instant is obtained using the piecewise cubic interpolation function

pchip in Matlab.
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After determining u(t), x can be solved by forward integration of Eq 3.23 from
T=0 to T =1 and P can be found by integrating Eq 3.25 backward from 7t = 77 to
T = 0. Next, in order to satisfy the NCO, the terminal constraints and the transversality

condition, a vector R is constructed with N 4+ 3 elements:

2(c)

R; = 1/’5(%’)7 +Ye(r),i=1,..,N (3.28)
u(ty)
Ryy1 = x2(T¢) — U3¢ (3.29)
Ry = x6(Tg) — tgc (3.30)
— (1T
RN+3 - (II) F(xi u, T))ll' (331)
£

where R; (i =1,...,N) are the NCO, Ry,; and Ry,, are terminal constraints, and

Ry .3 1s the transversality condition. All of these conditions will be satisfied if each

element in R is equal to zero.

In this work, the 2-norm of R (||R]||,) is selected as the function to be minimized.

The nonlinear least-squares solver Isgnonlin in Matlab is used to perform the optimization:

updating the decision variables and integrating x and  at each iteration until ||R]||,

is lower than the termination tolerance.

In order to determine whether 74 exists, the lower bound on the control input is first

set lower than its constraint in Isgnonlin. Then, the optimization results are checked to

determine whether the constraint on the control input is active during the batch. If it is
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active, 7 should be included in the decision variables, and an additional NCO should be

added in the residual vector R:

()

u + Y6 (ts) (3.32)

u(ts)

Ry+a = Ps(Ts)

The optimization is performed again. Finally, the trajectory of optimal control input can
be determined, and product properties (uof and WMSy) can also be obtained. Figure 3.4
shows the procedure for applying the gradient method to solve the optimization problems

for unseeded crystallization processes.
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[ Sp@ley a, cplr ¢21 HS,CI tf,C' ]

l

Make initial guesses for all
N + 4 decision variables:
u(ty),u(ry), ..., u(ty), vy,
Ve, Tg, Ts.

Update the value of

a
«

A 4

Calculate u(7) at any
instant using piecewise
cubic interpolation

l

Solve x by forward integration
(Eq 3.22).

A 4

Solve Y by backward integration
(Eq 3.24).

v

Calculate ||R||,(Eq 3.27-3.31).

decision variables by
the algorithm.

Is ||R]|» lower than the
termination tolerance?

Optimal control input
trajectory and optimal
objective values are found.

Figure 3.4. Flowchart of solving optimization problems for unseeded case.
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Chapter 4 Case Study

In this chapter, a case study is used to illustrate the proposed framework in this work.
In Section 4.1, the system is briefly introduced, and the parameters for the system are

listed. Optimization results for each case are presented and discussed in Section 4.2.

4.1 Parameters for the System

The crystallization of ampicillin from water is considered in this work.
Crystallization kinetics are adapted from Encarnacion-Gomez et al.[60], whose
experiments were based on pH-induced supersaturation. 1 M HCl is added into the system
to gradually change the pH value (from about 7.8 to about 6.5), which affects the solubility.
Table 4.1 shows the parameters used in the case study, and the crystallization kinetics are
given in Eqs 2.28-2.32. Figure 4.1 shows primary and secondary nucleation rates as a
function of supersaturation for pz = 100 cm3. It is shown in the figure that primary
nucleation is dominant when S > 1.3. Therefore, it is expected that primary nucleation
might dominate in this case. Although this is not common in industrial processes[61], the
proposed method in this work can be applied to any other crystallization system with
deterministic expressions for crystal growth rate and primary and secondary nucleation
rates, even if secondary nucleation is dominant.
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Nucleation rate (#/min - kg)

Primary nucleation
Secondary nucleation

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

S (=)

Figure 4.1. The relation between nucleation rates and the supersaturation.

For seeded crystallization, assume the seed CSD f;(L,0) is given by
fs(L,0) = No - 86(L — Lo) (4.1)
where N, and L, are the number and size of the seeds, respectively. From Eqs 2.3 and

4.1, the ith moment of seed crystals p;os can be calculated. In addition, p3. is the

final constraint on 3¢, which is set by making pzs. — Usso €qual to 100.00 cm*/kg.
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Table 4.1. Parameters for the system[60]

Parameter Description Value Unit
kg Growth rate constant 4.50 um/min
g Growth rate exponent 232 -
kp1 Primary nucleation rate constant 9.27x10°  #/(min-kg)
A Primary nucleation constant 1.27 -
kyo Secondary nucleation rate constant 1.32x10>  #/(min-kg)/(cm*/kg)“
b Secondary nucleation rate exponent 2.97 -
d Nucleation rate exponent of s 1.00 -
U350 Initial p3 in seeded case 8.10 cm’/kg
U3 sc Final constraint on p3¢ in seeded case 108.10 cm’/kg
U3 c Final constraint on p; in unseeded case 200.00 cm’/kg
trc Final batch time constraint 200.00 min
Sub Upper bound of the supersaturation 1.64 -
N Number of the seed 2.00x107  #/kg
Lo Size of the seed 74.00 um
p Crystal density 1.50x10°  kg/ m’
ky Volume shape factor 0.03 -
PHini Initial pH value 7.60 -
Cini Initial concentration 19.95 g/kg

4.2 Results and Discussion

4.2.1 Case 1: Seeded Crystallization

In seeded case, there is a final constraint on p3, so 7¢ can be determined directly
from Eq 2.18 based on the production rate constraint pzs(tf) = tzsc. In this work,
Usnf = Uan(Te) and pone= Hon(7e) are selected as the objectives to be minimized.
Figure 4.2(a) shows the PF on u3p, ¢-tig n ¢ plane. Point A is the point minimizing i3,

point B is the knee point, and point C is the point minimizing (i, r. The values of both
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objective functions at these three points on the Pareto front for the seeded case are given
in Table 4.2. The optimization results of these three cases are also shown in other panels
of Figure 4.2. In Figure 4.2(b), a late growth operating policy is found for case A (min
Uz n f) and case B (knee point). This result is consistent with the previous work: objectives
involving higher nucleated moments would lead to late growth operating policies[7].
However, the supersaturation remains almost constant for case C (min fig ,, ¢). The reason
is that the primary nucleation rate (Figure 4.2(¢c)) is always much higher than secondary
nucleation rate (Figure 4.2(d)). In this case, an approximation of the optimal control input
for case C can be obtained by solving Eq 3.19 with i, = 1, Y5 = v5,and B, > B,. Eq

3.19 then becomes

*

u* = argmin (B; +By)u+vsu = argmin Byu + vsu (4.2)
u(t)€[ujp, ) u(t)€[ujp, ) '

Since B; depends only on u, and vs is constant, u* does not change with time,

resulting in an almost constant supersaturation.

In addition, population density functions (PDFs) f,¢(L) and volume density
functions (VDFs) L3f,,¢(L) for the nucleated product can be calculated using Eq 2.27,
and are shown in Figure 4.2(e) and Figure 4.2(f), respectively. Based on the definition of
the moments of the CSD, pon¢ and pz,¢ are the area under the PDF curve and VDF

curve, respectively. In case A, the objective is to minimize (3¢, SO the area under the
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curve in Figure 4.2(f) is the smallest. By contrast, case C has the smallest area in Figure
4.2(e). In addition, for a late growth operating policy, such as case A and case B, more
nuclei are formed at the end of the batch, so the PDF decreases with increasing crystal
size (see Figure 4.2(e)). Since these nuclei do not have enough time to grow, their size
and volume are very small (see Figure 4.2(f)). Therefore, it is reasonable that a late growth
operating policy is preferred for minimizing p3n¢. On the other hand, for a constant
supersaturation operating policy, such as case C, nuclei are formed more uniformly in
time. Although the number of nucleated crystals is smaller, the nuclei formed at the

beginning of the batch grow large and achieve a large volume.

Panels (c) and (d) show that primary nucleation dominates over secondary
nucleation throughout the batch for all three cases. This result follows inherently from the
crystallization kinetics. In practice secondary nucleation could be neglected with almost
no effect on the results. Secondary nucleation is included here in order to demonstrate
that the algorithm can optimize crystallization processes where both primary and

secondary nucleation occur.

Finally, it is necessary to verify the assumption made in the calculation. In order to
simplify the expression of the Hamiltonian in Eq 3.15, 3, is assumed to be much lower
than 3. Table 4.1 shows that the third moment of the seed-grown crystals increases

from 8.10 cm’/kg (seeding condition) to 108.10 cm?®/kg for every batch to satisfy the
37
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production rate constraint. However, in case C (min pgy¢), for which ps, ¢ is the
greatest of any point on the PF, the third moment of the nucleated product is only 4.06
cm’/kg (see Table 4.2). Therefore, the nucleated product only accounts for 3.76% of the
total product crystal volume. Therefore, it is reasonable to assume that the nucleated mass

can be neglected in the material balance.
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Figure 4.2. Results of seeded case: (a) Pareto-optimal front, (b) supersaturation

trajectories, (c) primary nucleation rate trajectories, (d) secondary nucleation rate

trajectories, (e) population density functions, (f) volume density functions.

Table 4.2. Values of objective functions for the seeded case

Point

tang (cm/kg)

Hons (#kg)

A (min pizp f)
B (knee point)

C (min fionf)

0.98
1.32
4.06
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In this case study, supersaturation is induced by lowering the pH of the solution by

adding a strong acid (pH-induced supersaturation). The optimization procedure described

in our work determines the optimal supersaturation trajectory during the batch. This can

then be converted to a pH trajectory (indicating how the pH should change with time

during the batch) using Eq 2.31, Eq 2.32, and experimental data for the solubility of

ampicillin as a function of pH (see Figure 4.3) given by Encarnaciéon-Gémez et al.[60].

Figure 4.3 shows the relationship between the solubility and the pH, but the data are only

applicable when the pH value is in the range of 5.0 and 7.6.

Figure 4.4 shows the results of optimal control input profiles, supersaturation and

pH, in the time domain. In practical case, the pH trajectory can be used to determine an

acid flow rate trajectory (indicating how the flow rate of acid should change with time

during the batch) using material balances and knowledge of acid-base chemistry.

However, in this case, it might be difficult to control the pH value accurately because the

optimal value at each instant is close to 7.

40
doi:10.6342/NTU202300993



Solubility (g/kg H20)

20

15

10

55 6 6.5 7 7.5 8
pH (-)

Figure 4.3. Solubility data for ampicillin in water [60].
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Figure 4.4. Results of optimal control input profiles in time domain in seeded case: (a)

supersaturation trajectories, (b) pH value trajectories.

In addition, the optimization method proposed in this work is not limited to pH-

induced supersaturation. It is applicable regardless of the method by which

supersaturation is induced. For example, in a cooling crystallization, the method would

again produce the optimal supersaturation trajectory. This could then be converted to the
42
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optimal temperature trajectory using a material balance and knowledge of the solubility
of the substance being crystallized as a function of temperature. Similarly, in an
evaporative crystallization process, the optimal superaturation trajectory can be converted

to a trajectory indicating the rate at which solvent should be evaporated.

4.2.2 Case 2: Unseeded Crystallization

In this case, —WMS;=—WMS(t¢) and po¢= po(re) are selected as the
objectives to be minimized. Optimization of unseeded crystallization processes is more
challenging. In order to apply a gradient method, it is necessary to determine first whether
the growth rate constraint becomes active during the batch, i.e. whether a switching time
Tg exists in the supersaturation trajectory. After determining initial guesses for all
decision variables, the nonlinear least-squares solver Isgnonlin in Matlab is used to
minimize the 2-norm of the residuals vector (||R]|,). However, the algorithm may
terminate early because either the step size tolerance or the maximum number of iterations
is reached. Therefore, it is critical to check whether the function value (||R||,) and the
trajectory of optimal control input are reasonable after solving each problem. Ten points
on the PF are solved individually, and the function pchip in Matlab is used for
interpolation (see Figure 4.5(a)). Point A is the case maximizing WMSy, point B is the
point closest to the knee point, and point C is the case minimizing pg¢. The values of
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both objective functions at these three points on the Pareto front for the unseeded case are
given in Table 4.3. The optimization results of these three cases are shown in Figure 4.5.
Figure 4.5(b) shows that a late growth operating policy is preferred for case A (max
WMSy) , and that an early growth operating policy is preferred for case B (closest to the
knee point) and case C (min pg ). In addition, results show that switching time 74 exists
in case A and case C, with values 149 um and 1.44 pum respectively. In unseeded
crystallization, ¢ is the decision variable used to satisfy the final constraint on ;. In
this work, 7¢ is largest in case A (tf = 149 um) and smallest in case C (ty = 123 um).
The primary nucleation rate depends only on the supersaturation, so the trend in Figure
4.5(c) is similar to that in Figure 4.5(b). On the other hand, the secondary nucleation rate
depends both on the supersaturation and pz, but supersaturation dominates at the
beginning of the batch because p3(0) is equal to 0. Since case C results in an early
growth operating policy, the secondary nucleation rate is the highest in the beginning (see
Figure 4.5(d)). However, the secondary nucleation rates of all three cases are very similar
at the end of the batch because the constraint on p3 is the same for every case.

PDFs and VDFs for the product are calculated using Eq 2.21 and are shown in Figure
4.5(e) and Figure 4.5(f), respectively. In Case C, the objective is to minimize pg¢ and
the resulting optimal supersaturation trajectory is early growth. Therefore more nuclei are
formed in the beginning. They have enough time to grow and account for larger share of
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the product volume. In case A (max WMSs), a late growth operating policy is preferred,
so fewer nuclei are formed in the beginning compared to case C. With the same final
constraint on p3, the areas under VDFs in each case should be the same (see Figure
4.5(f)). Therefore, 7 should be larger in case A than in case C.

It can also be seen from Panel (f) that case A has a larger WMS than cases B and C.
Since WMS; is defined as %; and ps¢ is the same in each case, WMS depends only
on fiy ¢, which is the area under the curve L*f; ¢(L). Furthermore, the areas under VDFs
(L3 fos(L) versus L)ofall three cases are the same, and ¢ is larger in case A. Therefore,
it can be expected that the area under the curve L*f;, ¢(L) is larger in case A, resulting in

a lager value of pu,¢ and a larger WMS;.
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Figure 4.5. Results of unseeded case: (a) Pareto-optimal front, (b) supersaturation

trajectories, (c) primary nucleation rate trajectories, (d) secondary nucleation rate

trajectories, (e) population density functions, (f) volume density functions.

Table 4.3. Values of objective functions for the unseeded case

Point WMSt (um) Uos (#/kg)

A (max WMSy) 118.97 2.89x10%

B (closest to knee point) 118.73 1.74x10°

C (min piof) 117.09 1.54x10%
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However, due to the complex and stochastic nature of nucleation, plant-model
mismatch is a concern. Considering that primary nucleation is dominant in this system, a
sensitivity analysis of primary nucleation rate is conducted to figure out the influence of
the uncertainties. The primary nucleation rate constant kj,; is either increased or
decreased by 10% compared to its original value, then the optimization is performed again.
Figure 4.6 shows the results of sensitivity analysis for case A (max WMSs) and case C
(min pg ¢) in unseeded processes. It is shown that the optimal supersaturation trajectories

do not change significantly.
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Figure 4.6. Results of the sensitivity analysis of primary nucleation rate in unseeded
processes: (a) comparison of supersaturation trajectories for case A (max WMSy), (b)

comparison of supersaturation trajectories for case C (min Hgg¢).

Again after the optimal supersaturation trajectories are determined, the optimal pH
value trajectories can be obtained using Eq 2.31, Eq 2.32, and the solubility data (see
Figure 4.3). The higher the pH value, the higher the solubility. Figure 4.7 shows the results

of optimal supersaturation trajectories and pH value trajectories in time domain. For case
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A(max WMS;y), a late growth operating policy is preferred, and the pH value decreases

from about 7.35 to about 6.00. However, for case B (closest to the knee point) and case

C (min pqg), the pH value first slightly increases then gradually decreases. For early

growth operating policy (case B and case C), because desired supersaturation decreases

faster than the concentration C, Cg,¢ should increase, which corresponds to an increase

in the pH value. This is the reason that the pH value in case B and case C increases at the

beginning of the batch.
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Figure 4.7. Results of optimal control input profiles in time domain in unseeded case:

(a) supersaturation trajectories, (b) pH value trajectories.
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Chapter 5 Conclusions

A framework for multi-objective optimization of seeded and unseeded batch
crystallization systems with primary nucleation is developed in this work. The
optimization problems are formulated using the method of moments and a time
transformation proposed previously[32-36]. Pontryagin’s Minimum Principle[37; 38] is
used to determine necessary conditions for optimality. Optimization problems are solved
efficiently and the complete product CSD is determined. All optimization problems are
formulated and solved numerically. For the seeded case, the feedback of nucleation on
the system is assumed to be negligible to simplify the expression for the Hamiltonian. For
the unseeded case, no such assumption is made and a gradient method[52-54] is applied
to solve the challenging TPBVP efficiently. Compared with alternative methods,
optimization algorithms based on Pontryagin’s Minimum Principle have several
advantages, including that they are fast, converge reliably and can be proven to provide
the global minimum solution.

For the case study of ampicillin crystallized from water, PFs are constructed to
analyze the trade-off between competing objectives. The pH wvalue trajectories,
supersaturation trajectories, nucleation rate trajectories, PDFs and VDFs of three optimal
solutions on the PF are obtained. With the framework for optimization proposed in this
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work, optimal operating strategies for different objective functions can also be determined.

For example, in the seeded case, a late-growth supersaturation trajectory should be

adopted to minimize the nucleus-grown volume in the product. This is reasonable because

more nuclei will be formed at the end of the batch and will not have time to grow

significantly, which can also be understood clearly from the PDF and VDF. However, a

late-growth operating policy will lead to larger number of nucleated crystals.

It is worthwhile to note several limitations of this work. Primary nucleation is

difficult to model because it is a stochastic process, and the method proposed here relies

on an accurate prediction of the primary nucleation rate. Some authors have proposed

stochastic methods for modeling primary nucleation[62-64], however the method

described here is limited to the case where there is a deterministic equation such as

Equation 2.29 that expresses the primary nucleation rate as a function of the

supersaturation. It has also recently been proposed[61] that secondary nucleation is

dominant in some situations under high supersaturation where primary nucleation was

previously thought to dominate. This possibility should be considered when kinetic

models are developed. Finally, as with any optimization algorithm, the algorithm

presented here is only as good as the kinetic models upon which it depends. If these

models cannot describe the behavior of the process over the range of operating conditions

encountered during the optimization, then the optimization results will be unreliable.
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Previous work on the application of PMP to batch crystallization has focused on

processes with crystal growth and secondary nucleation only[32-36; 39-44; 52]. In this

work, primary nucleation is also considered. Therefore, for cases where primary

nucleation cannot be neglected, the framework proposed here will be helpful. This work

demonstrates that the multi-objective optimization problem can be solved efficiently by

PMP using a gradient method to solve the TPBVP. With suitable modifications, the

algorithm proposed here might be applied to solve even more complicated and general

optimization problems for both seeded and unseeded batch crystallization systems in the

future. The moment model has been successfully applied to systems with secondary

nucleation when cycles of growth and dissolution are used to tailor the product crystal

size distribution[41]. Therefore, this model might be generalized to systems including

primary nucleation.
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