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中文摘要 

 

 本研究開發了一個框架來解決晶種和非晶種批次結晶系統最適化問題。在本研究中，應用

最佳控制理論(optimal control theory)來求解考量初級成核之多目標批次結晶製程最適化問題，

本論文陳述並求解晶種與非晶種之最適化問題，同時也追蹤成核晶體的質量，並將其包含在質

量平衡中。然而由此產生的兩點邊界值問題(two-point boundary value problem)非常複雜，狀態

(states)及協態(costates)變數的導數表達式為高度非線性的，因此傳統的打靶法(shooting method)

往往難以收斂。在含有晶種的案例中，可透過假設在哈密頓(Hamiltonian)方程式中成核的質量

相較於晶種成長的質量是可忽略不計的，來簡化數學計算。而在非晶種的案例中，可應用基於

梯度(gradient-based)的演算法來有效地求解兩點邊界值問題。 

 本論文以氨苄青黴素(ampicillin)在水中析出結晶為個案研究，展示本論文中所提出的最佳

化方法，進而求得最佳控制輸入曲線(如過飽和度軌跡、pH值軌跡)。本研究亦透過建構柏拉圖

最佳解前緣(Pareto-optimal front)來分析不同目標函數間的競爭權衡關係，如最小化成核晶體數

量、成核質量，或最大化晶體之加權平均大小。本研究所提出之演算法快速且穩健，或許可適

用於模型基底線上控制。除此之外，此演算法未來也可用於解決更複雜之批次結晶系統之最適

化問題。 

 

關鍵字：初級成核；模型基底控制；粒數平衡方程式；多目標最佳化；最佳控制理論 
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ABSTRACT 

 

 This work develops a framework for solving optimization problems for both seeded and unseeded 

batch crystallization systems. In this work, optimal control theory (OCT) is applied to solve multi-

objective optimization problems for batch crystallization processes with primary nucleation. 

Optimization problems for both seeded and unseeded cases are stated and solved. The mass of the 

nucleated crystals is tracked and included in the material balance. The resulting two-point boundary-

value problems (TPBVPs) are difficult to solve because the expressions for the derivatives of the states 

and costates are highly non-linear. Conventional shooting methods usually fail to converge. In seeded 

case, the nucleus-grown mass in the Hamiltonian equation is assumed to be negligible compared to the 

seed-grown mass, which simplifies the mathematics. In unseeded case, a gradient-based algorithm is 

applied to solve the TPBVP efficiently.  

A case study of ampicillin crystallized from water illustrates the method developed in this work. 

Optimal control input profiles (e.g. supersaturation trajectories and pH trajectories) and the complete 

product CSD are determined. Furthermore, the Pareto-optimal fronts are constructed to analyze the 

trade-off between the competing objectives of minimizing the number of nucleated crystals and the 

nucleated mass or the weight mean size. The algorithm is found to be both fast and robust, suggesting 

that it might be suitable for online model-based control. Moreover, the algorithm proposed in this work 
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might be useful for solving even more complicated optimization problems for batch crystallization 

systems with complex kinetics. 

 

Keywords: Primary nucleation; Model-based control; Population balance equations; Multi-objective 

optimization; Optimal control theory  
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Chapter 1 Introduction 

 

1.1 Overview of Crystallization Processes 

Crystallization is a critically important separation process in many industries, 

including pharmaceuticals, specialty chemicals and food. Crystallization can proceed in 

either continuous or batch-wise. Continuous crystallization has the advantages of larger 

production rate and lower operating and capital cost[1-4]. Batch crystallization is simpler 

and more flexible, but batch-to-batch variability is a critical problem [5]. Both of them 

are common in industry; batch crystallization is the focus of this work. 

In crystallization, the driving force is the supersaturation, which means that a 

solution contains more solute than the equilibrium solubility allows. Several methods can 

be used to induce supersaturation, such as cooling, evaporation of solvents, and changing 

the pH value[6]. Figure 1.1 shows three different common supersaturation trajectories [7]. 

Early growth trajectory represents that supersaturation is highest in the beginning, and is 

decreasing during the batch. The characteristic of late growth trajectory is that 

supersaturation is increasing with the batch time, and reaches the maximum in the end. 

The choice between these two operating policies will be discussed in Section 3.1.1. The 

third type of trajectories, constant supersaturation, is a heuristic operating policy when 

optimization is not available. It has been found to be much better than the uncontrolled 
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case, such as natural cooling. The constant supersaturation control will be discussed in 

Section 1.2. 

 

Figure 1.1. Common supersaturation trajectories: early growth, late growth, and 

constant supersaturation[7]. 

 

Basic crystallization mechanisms consist of nucleation[8] and crystal growth[9; 10]. 

Nucleation represents the birth of new nuclei, and crystal growth stands for the increment 

of the crystal size. In addition, nucleation can be divided into primary and secondary 

nucleation. The former occurs in the absence of crystals, and the latter is induced by 

parent crystals, which act as a site for the generation of new nuclei[11].   

Crystal size distribution (CSD) is often an important measure of product quality 

because it can influence downstream unit operations such as filtration or drying and 

product properties including bioavailability, tabletability bulk flow, rate of dissolution, 
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etc[12; 13]. Large crystal mean size, narrow and unimodal CSD are usually desirable. 

Moreover, because high valuable products are produced in crystallization processes, such 

as food additives and pharmmaceuticals, optimization is of great importance to reach 

desired product properties. This work focuses on the optimization of batch crystallization 

processes. 

 

1.2 Literature Review and Motivation 

As mentioned in Section 1.1, CSD is highly related to product quality. Therefore, 

several control strategies have been proposed to achieve a desired CSD[14], larger crystal 

size[15; 16], or higher productivity[17]. Model-free control is simpler to design compared 

to model-based control because complicated mathematical models are not required. 

Direct nucleation control (DNC) is a widely used model-free feedback control approach. 

Information about the number of particles is obtained from the number of counts per 

seconds recorded by a focused beam reflectance measurement (FBRM)[14; 18] 

instrument, and transmitted to the controller. Cycles of cooling and heating can be 

conducted to achieve a desired CSD with fewer nucleated crystals. It has been shown that 

DNC can effectively reduce batch-to-batch variability in batch crystallization, and can 

help reject disturbances in continuous process[19]. Constant supersaturation control (SSC) 

is another common control strategy because of its simplicity. Attenuated total reflection-
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Fourier-transform IR (ATR-FTIR)[20] or attenuated total reflection-ultraviolet/visible 

(ATR-UV/vis) spectroscopy[21] can be used to measure the concentration continuously 

to implement the feedback control of supersaturation. The concentration is first measured 

and used to compare the supersaturation with its set point. A signal will then be sent to 

the temperature controller, and the constant supersaturation can be maintained by 

manipulating the temperature of the crystallizer. In model-free control, crystallization 

kinetics and modeling are not required, and parameter uncertainty no longer plays a role, 

especially the stochastic phenomenon of primary nucleation. Although model-free control 

provides a simple and rapid process design, it might be suboptimal, and direct design of 

the product CSD is not available[22].    

Therefore, model-based control is also of great interest. Population balance equation 

(PBE), which is a partial differential equation including population density function, 

crystal growth rate and nucleation rate, is used to calculate the time evolution of CSD. 

Mesbah et al.[17] obtained an optimal growth rate profile for ammonium sulphate-water 

system by using a model-based controller to maximize the batch productivity subject to 

the product quality requirements. Nagy[23] proposed a model-based robust control 

approach for batch crystallization to determine optimal temperature and concentration 

trajectories, aiming to achieve a desired CSD shape subject to the operating constraints. 
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 However, solving PBE for model-based design is sometimes challenging because it 

is a partial differential equation and analytical solutions usually do not exist. One option 

is to solve the problem numerically by discretization of the CSD. Methods that take this 

approach include the method of characteristics[24; 25], finite difference methods[26], and 

Monte Carlo methods[27; 28]. Using these methods, the complete CSD can be determined 

but discretization methods are computationally intensive. Another well-known numerical 

approach, the method of moment (MOM)[29-31], does not require discretization of the 

CSD. By applying MOM, the PBE can be converted to a series of ordinary differential 

equations, which simplifies the calculation. Although MOM is computationally efficient, 

in general complete information about the CSD cannot be obtained. 

 Raisch and coworkers[32-36] proposed a time transformation that may simplify the 

solution of PBEs. Hofmann and Raisch further showed that nearly analytical solutions to 

certain optimization problems can be obtained by Pontryagin’s Minimum Principle (PMP) 

[37; 38] if the feedback of nucleated crystal mass is neglected[39]. Using this framework, 

several problems in optimization of seeded batch crystallization processes have been 

solved[40-44]. The method has been found to be very accurate and computationally 

efficient. 

 Based on the framework proposed by Raisch and coworkers [32-36], optimization 

problems for seeded batch crystallization processes with negligible primary nucleation 
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have been widely studied, including multivariate systems,[32; 34] systems with size-

independent[39] and size-dependent[41] growth rate kinetics, and systems considering 

crystal shape[43]. Design of seed recipe[42] and trade-off between different objective 

functions,[40; 44] have also been studied.      

To our knowledge, all previous studies based on the transformation proposed by 

Raisch and coworkers have been of systems where seeds are present, secondary 

nucleation dominates over primary nucleation, and the nucleus-grown mass is small 

enough that it can be neglected compared to the seed-grown mass in the overall mass 

balance. These assumptions simplify the mathematics and in some cases make a nearly-

analytical solution possible. 

Although seeds are often used in batch crystallization processes to control the CSD 

by inhibiting nucleation, and seeding policy has also been studied[42; 45], seeding is not 

without disadvantages[46-49]: It is difficult to maintain sterility when adding seeds and 

impurities including bacteria may be introduced. Toxic organic solvent vapors may escape 

the crystallizer when seeds are added. Seeds may aggregate and disperse poorly in the 

crystallizer. Finally, seed properties such as purity, polymorph and surface properties may 

vary from batch to batch resulting in variable batch quality. 

Considering that seed preparation is challenging due to the requirement of high-

quality seeds, unseeded crystallization is also of great importance. However, less research 
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has focused on the optimization of unseeded batch crystallization. Hemalatha et al.[50] 

applied multi-objective optimization to the unseeded batch cooling crystallization of citric 

acid anhydride using a non-dominated sorting genetic algorithm (NSGA-II) to determine 

the optimal cooling trajectory. Ashraf and Rao[51] also applied NSGA-II to carry out 

multi-objective optimization for unseeded batch cooling crystallization of aspirin, and 

determined optimal temperature trajectory.  

It is of interest to determine whether the transformation of Raisch, which has been 

applied successfully to problems with seeds and secondary nucleation, can also be applied 

in cases where primary nucleation is significant and to cases where seeds are not used. 

That is the purpose of this work. Relaxing these restrictions results in a significant 

complication of the problem and in the latter case requires a nearly complete 

reformulation of the problem because there is no longer an algebraic relationship between 

the transformed time and the solid mass in the crystallizer. Nevertheless in this work we 

show that these generalized optimization problems can be formulated and solved 

efficiently using a gradient-based algorithm[52-54] to solve the associated two-point 

boundary-value problem. 
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1.3 Thesis Organization 

The remainder of this thesis is organized as follows. In Chapter 2, population balance 

models and crystallization kinetic models are presented. In Chapter 3, optimization 

problems are formulated for both seeded and unseeded cases. A case study presented in 

Chapter 4 illustrates the framework developed in this work, and the optimal operating 

trajectories and other results are presented and compared for each case. Finally, 

conclusions are given in Chapter 5. 
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Chapter 2 Theory 

 

In this chapter, theory of modeling of batch crystallization processes is presented in 

Section 2.1, and the crystallization kinetics are introduced in Section 2.2. 

 

2.1 Modeling of Batch Crystallization Processes 

For a batch crystallization process in a well-mixed crystallizer, if crystal breakage 

and aggregation are neglected, and nuclei form with zero size, then the PBE can be written: 

𝜕𝑓(𝑡, 𝐿)

𝜕𝑡
+ 𝐺(𝑡)

𝜕𝑓(𝑡, 𝐿)

𝜕𝐿
= 𝐵(𝑡)𝛿(𝐿) (2.1) 

𝑓(0, 𝐿) = 𝑓ini(𝐿) (2.2) 

where 𝑓 is the population density function depending on process time 𝑡 and crystal size 

𝐿, 𝑓ini is the initial CSD, 𝐺 is the size-independent linear growth rate, 𝛿 is a Dirac 

delta function, and 𝐵 is the nucleation rate. 

Eq 2.1 is a partial differential equation which can be difficult to solve. The MOM[31] 

can be applied to simplify the calculations. Define the 𝑖th moment of the CSD 𝜇𝑖 as 

𝜇𝑖 = ∫ 𝐿𝑖𝑓(𝐿)𝑑𝐿
∞

0

, 𝑖 = 0,1,2, … (2.3) 

Eq 2.1 can be converted to the following set of ordinary differential equations:  
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𝑑𝜇0
𝑑𝑡

= 𝐵 (2.4) 

𝑑𝜇𝑖
𝑑𝑡

= 𝑖𝐺𝜇𝑖−1, 𝑖 = 1,2,3… (2.5) 

A new time variable 𝜏 is introduced[32-36] and defined as 

𝑑𝜏 = 𝐺(𝑡)𝑑𝑡; 𝜏(𝑡 = 0) = 0 (2.6) 

where 𝜏 has units of length. Eq 2.4 and Eq 2.5 can then be written as 

𝑑𝜇0
𝑑𝜏

=
𝐵

𝐺
 (2.7) 

𝑑𝜇𝑖
𝑑𝜏

= 𝑖𝜇𝑖−1, 𝑖 = 1,2,3… (2.8) 

For unseeded crystallization, the initial conditions of Eq 2.7 and Eq 2.8 are 

𝜇𝑖(0) = 0, 𝑖 = 0,1,2… ;  𝑡(0) = 0 (2.9) 

For seeded crystallization, the 𝑖th moment of the CSD 𝜇𝑖 can be divided into two 

parts: 𝜇𝑖,s and 𝜇𝑖,n representing the 𝑖th moment of the seed-grown and nucleus-grown 

crystals, respectively. At each point in time the 𝑖th moment of total crystals 𝜇𝑖 is the 

sum of 𝜇𝑖,s and 𝜇𝑖,n. The corresponding ODEs and initial conditions are 

𝑑𝜇0,s
𝑑𝜏

= 0 (2.10) 

𝑑𝜇𝑖,s
𝑑𝜏

= 𝑖𝜇𝑖−1,s, 𝑖 = 1,2,3… (2.11) 

𝑑𝜇0,n
𝑑𝜏

=
𝐵

𝐺
 (2.12) 
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𝑑𝜇𝑖,n
𝑑𝜏

= 𝑖𝜇𝑖−1,n, 𝑖 = 1,2,3… (2.13) 

𝜇𝑖,s(0) = 𝜇𝑖0,s, 𝑖 = 0,1,2… ; 𝜇𝑖,n(0) = 0, 𝑖 = 0,1,2… ;  𝑡(0) = 0 (2.14) 

where 𝜇𝑖0,s is the 𝑖th moment of seed crystals, which can be calculated from Eq 2.3.  

In addition, Eq 2.10 and Eq 2.11 can be directly integrated to obtain each moment 

of the seed-grown crystals as a function of 𝜏: 

𝜇0,s(𝜏) = 𝜇00,s (2.15) 

𝜇1,s(𝜏) = 𝜇00,s𝜏 + 𝜇10,s (2.16) 

𝜇2,s(𝜏) = 𝜇00,s𝜏
2 + 2𝜇10,s𝜏 (2.17) 

𝜇3,s(𝜏) = 𝜇00,s𝜏
3 + 3𝜇10,s𝜏

2 + 3𝜇20,s𝜏 + 𝜇30,s (2.18) 

 This transformation can also be applied to Eq 2.1.The PBE becomes: 

𝜕𝑓(𝜏, 𝐿)

𝜕𝜏
+
𝜕𝑓(𝜏, 𝐿)

𝜕𝐿
=
𝐵

𝐺
(𝜏)𝛿(𝐿) (2.19) 

 For unseeded crystallization, the initial condition and the analytical solution are  

𝑓(0, 𝐿) = 0 (2.20) 

𝑓(𝜏, 𝐿) =
𝐵

𝐺
(𝜏 − 𝐿), 𝜏 − 𝐿 ≥ 0 (2.21) 

For seeded crystallization, Eq 2.19 can be divided into two parts: 
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𝜕𝑓s(𝜏, 𝐿)

𝜕𝜏
+
𝜕𝑓s(𝜏, 𝐿)

𝜕𝐿
= 0 (2.22) 

𝜕𝑓n(𝜏, 𝐿)

𝜕𝜏
+
𝜕𝑓n(𝜏, 𝐿)

𝜕𝐿
=
𝐵

𝐺
(𝜏)𝛿(𝐿) (2.23) 

where 𝑓s  and 𝑓n  are seed-grown and nucleus-grown population density function, 

respectively. The corresponding initial conditions and analytical solutions are 

𝑓s(0, 𝐿) = 𝑓ini(𝐿) (2.24) 

𝑓n(0, 𝐿) = 0 (2.25) 

𝑓s(𝜏, 𝐿) = 𝑓ini(𝐿 − 𝜏), 𝐿 − 𝜏 ≥ 0 (2.26) 

𝑓n(𝜏, 𝐿) =
𝐵

𝐺
(𝜏 − 𝐿), 𝜏 − 𝐿 ≥ 0 (2.27) 

 

2.2 Crystallization Kinetics 

Only crystal growth, primary nucleation, and secondary nucleation are considered 

in this work. The expressions for the size- and temperature-independent linear growth 

rate 𝐺, primary nucleation rate 𝐵1, and secondary nucleation rate 𝐵2 used in this work 

are: 

𝐺 = 𝑘𝑔(𝑆 − 1)
𝑔 (2.28) 
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𝐵1 = 𝑘𝑏1 exp (
−𝐴

(ln (𝑆))2
) (2.29) 

𝐵2 = 𝑘𝑏2(𝑆 − 1)
𝑏𝜇3
𝑑 (2.30) 

where 𝑘𝑔, 𝑘𝑏1, 𝐴, 𝑘𝑏2, 𝑔, 𝑏 and 𝑑 are constants. The total nucleation rate is the sum 

of primary and secondary nucleation rates, i.e. 𝐵 = 𝐵1 + 𝐵2. 𝐺, 𝐵1, and 𝐵2 depend on 

the supersaturation 𝑆, and 𝐵2 is also dependent on 𝜇3. Supersaturation 𝑆 is defined as 

𝑆 =
𝐶(𝑡)

𝐶sat
 (2.31) 

𝐶(𝑡) = 𝐶ini − 𝜌𝑘V(𝜇3(𝑡) − 𝜇3(0)) (2.32) 

where 𝐶(𝑡)  is the concentration of the solution, 𝐶sat  is the saturation concentration, 

𝐶ini is the initial concentration, 𝜌 is the density of the crystals, and 𝑘V is the volume 

shape factor. 
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Chapter 3 Optimization Problems and Solutions                                                                            

 

In this chapter, optimization problems are formulated in Section 3.1, including 

seeded and unseeded case. Pareto-optimal fronts are introduced in Section 3.2, and the 

objective function of each case is defined. Solutions to optimization problems for each 

case are presented in Section 3.3. 

 

3.1 Optimization Problem Statements 

For crystallization processes, optimization problems are solved to find optimal 

supersaturation trajectories. Each optimization problem includes an objective function to 

be minimized and relevant constraints. 

3.1.1 Case 1: Seeded Crystallization  

In seeded crystallization, nucleated crystals are usually undesirable because they 

broaden the product CSD. In this case, in the absence of constraints a very long batch 

time and a very small production rate will be preferable. Therefore constraints on the 

production rate and the batch time are set to ensure a reasonable solution.  

The optimization problem for seeded crystallization with primary and secondary 

nucleation can be written:   
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min
𝑆(𝜏)

𝜙(𝝁(𝜏f))

s.t. 𝜇3,s(𝜏f) = 𝜇3,s,c
𝑡(𝜏f) ≤ 𝑡f,c
𝑆(𝜏) ∈ (1, 𝑆ub]

 (3.1) 

where 𝜙  is the objective function, 𝜏f  is the final transformed time, 𝜇3,s,c  is the 

constraint on the third moment of seed-grown crystals at the end of the batch, 𝑡f,c is the 

batch time constraint in the time domain, and 𝑆ub  is the upper bound on the 

supersaturation. In this case, 𝜏f is fixed because it can be calculated from Eq 2.18 based 

on the production rate constraint 𝜇3,s(𝜏f) = 𝜇3,s,c.  

Both single-objective and multi-objective problems can be considered. Table 3.1 

lists the common single objective functions considered in seeded crystallization 

processes[40]. The subscript f indicates the final properties of the product. 

Table 3.1 Common single objective functions in seeded crystallization processes[40] 

Objective Definition 

minimize the number of nucleated crystals min 𝜇0,n,f 

minimize the volume of nucleated crystals min 𝜇3,n,f 

maximize the number mean size max 𝜇1,f/𝜇0,f 

maximize the weight mean size max 𝜇4,f/𝜇3,f 

minimize the number mean coefficient of variation 

(number CV) 
min √

𝜇0,f𝜇2,f

𝜇1,f
2 − 1 

minimize the weight mean coefficient of variation 

(weight mean CV) 
min √

𝜇3,f𝜇5,f

𝜇4,f
2 − 1 

 

In seeded crystallization, inhibition of nucleation is usually the goal. Ward et al.[7] 

has summarized the choice of different objectives and the corresponding optimal 
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operating policies. In their work, it has been concluded that objectives involving the 

higher nucleus-grown moments would result in late growth operating policies, and that 

objectives involving lower nucleus-grown moments would result in early growth 

operating policies. Therefore, it is obvious that objectives involving higher nucleus-

grown moments, such as 𝜇3,n  and 𝜇4,n , are competing with those involving lower 

nucleus-grown moments, such as 𝜇0,n and 𝜇1,n. In this work, two competing objectives 

𝜇0,n,f = 𝜇0,n(𝜏f) (final number of nucleated crystals) and 𝜇3,n,f = 𝜇3,n(𝜏f) (proportional 

to final volume of nucleated crystals) are often selected as the objectives to be minimized. 

3.1.2 Case 2: Unseeded Crystallization  

The optimization problem for unseeded crystallization can be written: 

min
𝑆(𝜏),𝜏f

𝜙(𝝁(𝜏f))

s.t. 𝜇3(𝜏f) = 𝜇3,c
𝑡(𝜏f) ≤ 𝑡f,c
𝑆(𝜏) ∈ (1, 𝑆ub]

 (3.2) 

where 𝜇3,c  is the final constraint on the third moment of crystals. For unseeded 

crystallization, the constraint on the production rate is different because all crystals are 

nucleus-grown (𝜇𝑖,s = 0, 𝜇𝑖 = 𝜇𝑖,n).  

In this case, the goal is to produce larger but fewer crystals under the production rate 

constraint. Comparison of different objectives in unseeded crystallization has not been 

studied. Maximizing the number mean size (𝜇1,f/𝜇0,f), maximizing the weight mean size 
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(𝜇3,f/𝜇0,f), and minimizing the number mean coefficient of variation (min √
𝜇0,f𝜇2,f

𝜇1,f
2 − 1) 

have been considered in the previous work[55; 56].  

In unseeded crystallization, it is expected that minimizing the number of crystals 

would result in early growth operating policies because those crystals produced from 

nucleation in the beginning will have enough time to grow. Although it is difficult to 

predict the optimization result of maximizing the mean size of the product crystals, there 

might be a trade-off between the number and the mean size of the product crystals. 

Therefore, in this work, two single objectives are considered: minimize the final number 

of crystals (𝜇0,f = 𝜇0(𝜏f)) or maximize the final weight mean size (WMSf) of the crystals 

(𝜇4,𝑓 𝜇3,𝑓⁄ ). Since the production rate constraint fixes 𝜇3,𝑓, this objective is equivalent to 

maximizing 𝜇4,f = 𝜇4(𝜏f). In order to state the problem as minimization problem, the 

negative of 𝜇4(𝜏f)  is chosen as one objective function. Moreover, 𝜏f  is not fixed in 

unseeded crystallization because 𝜇3  depends on the supersaturation and cannot be 

expressed explicitly in terms of 𝜏. Therefore, 𝜏f is determined during the optimization. 
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3.2 Pareto-Optimal Fronts for Multi-Objective 

Optimization Problems 

For a multi-objective optimization problems, a Pareto-optimal front (PF) can show 

the trade-off between the objectives. A PF can be obtained using the weighted sum 

method[57]: 

𝜙(𝜏f) = 𝛼𝛽1𝜙1(𝜏f) + (1 − 𝛼)𝛽2𝜙2(𝜏f) = 𝛼𝛽1𝜙1,f + (1 − 𝛼)𝛽2𝜙2,f (3.3) 

where 𝛼 ∈ [0,1] , 𝜙1  and 𝜙2  are single objectives. Scaling factors  𝛽1 , 𝛽2  are 

required because the two objectives usually have very different magnitude. The PF 

consists of a set of optimal solutions: each value of 𝛼 corresponds to a point on the PF 

determined by solving the optimization problem. Optimal solutions with 𝛼 = 0  and 

𝛼 = 1  give the endpoints of the PF, which are (𝜙1,f,max, 𝜙2,f,min)  and 

(𝜙1,f,min, 𝜙2,f,max), respectively. The subscript min (or max) indicates the minimum (or 

maximum) value of the objective on the PF. In order to find the knee point, which can be 

considered to represent the best trade-off between objectives on the PF, normalized 

objective functions are defined as: 

𝜙1,f
′′ =

𝜙1,f − 𝜙1,f,min
𝜙1,f,max − 𝜙1,f,min

 (3.4) 

𝜙2,f
′′ =

𝜙2,f − 𝜙2,f,min
𝜙2,f,max − 𝜙2,f,min

 (3.5) 
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After normalization, the endpoints of the PF become (1,0) and (0,1). On the 𝜙1,f
′′ -

𝜙2,f
′′  plane, the distance 𝐷 from the origin to a given point is 

𝐷 = √(𝜙1,f
′′ )

2
+ (𝜙2,f

′′ )
2
 (3.6) 

The knee point is defined as the point on the PF for which 𝐷 is minimized[58]. After 

finding the knee point on 𝜙1,f
′′ -𝜙2,f

′′  plane, the corresponding point on the 𝜙1,f-𝜙2,f plane 

can be determined. Figure 3.1 shows the Pareto-optimal fronts before and after the 

normalization.  

 

Figure 3.1. Pareto-optimal fronts: (a) before normalization, (b) after normalization. 

 

By applying the weighted sum method[57], the objective function in each case can 

be written. 
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3.2.1 Case 1: Seeded Crystallization 

In seeded crystallization, 𝜇0,n,f = 𝜇0,n(𝜏f) and 𝜇3,n,f = 𝜇3,n(𝜏f) are selected as the 

objectives to be minimized. Therefore, the objective function can be written as 

𝜙(𝜏f) = 𝛼𝛽1𝜇3,n(𝜏f) + (1 − 𝛼)𝛽2𝜇0,n(𝜏f) = 𝛼𝛽1𝜇3,n,f + (1 − 𝛼)𝛽2𝜇0,n,f (3.7) 

3.2.2 Case 2: Unseeded Crystallization 

In unseeded case, −WMSf = −WMS(𝜏f)  and 𝜇0,f = 𝜇0(𝜏f)  are selected as the 

objectives to be minimized. Again the weighted sum method is applied [57]: 

𝜙(𝜏f) = 𝛼𝛽1(−WMSf) + (1 − 𝛼)𝛽2𝜇0,f (3.8) 

 

3.3 Solutions to Optimization Problems 

In this work, PMP is applied to provide necessary conditions for optimality (NCO) 

[37; 38], and all computations are performed in Matlab R2022a. Expressions for each of 

the optimization problems are first restated in terms of the state variables 𝒙, and then be 

reformulated in terms of the Hamiltonian 𝐻 with necessary conditions determined using 

PMP. 
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3.3.1 Case 1: Seeded Crystallization 

In seeded crystallization, 𝜇3,n  should be calculated because it is included in the 

mass balance and is one of the objectives to be minimized. Therefore, state variables 𝒙 

are defined as: 

𝑥1 = 𝜇3,n, 𝑥2 = 𝜇2,n, 𝑥3 = 𝜇1,n, 𝑥4 = 𝜇0,n, 𝑥5 = 𝑡 (3.9) 

  Eq (3.1) can be expressed in terms of 𝒙, which is related to 𝝁 and 𝑡: 

min
𝑢(𝜏)

𝜙(𝒙(𝜏f))

s.t.
𝑑𝒙

𝑑𝜏
= 𝑭(𝒙, 𝑢, 𝜏), 𝒙(0) = 𝒙ini

𝝐(𝒙(𝜏f)) ≤ 𝟎

𝑢(𝜏) ∈ [𝑢lb, ∞)

 (3.10) 

where 𝑢 is the control input, which is defined as 𝑢(𝜏) =
1

𝐺(𝜏)
 with a lower bound 𝑢lb. 

𝒙ini is the initial condition of the state variables, and 𝝐 is a vector of terminal constraints. 

In this case, 𝝐 includes only one element, which is the batch time constraint, and 𝝐 can 

be expressed as 𝝐 = [𝑥5 − 𝑡f,c]. 

 Application of PMP permits the reformulation of Eq 3.10 in terms of the Hamiltonian 

𝐻 with the corresponding necessary conditions:  
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min
𝒖(𝜏)∈[𝑢lb,∞)

𝐻(𝒙, 𝑢,𝝍, 𝜏) = 𝝍T𝑭(𝒙, 𝑢, 𝜏)

s. t.
𝑑𝒙

𝑑𝜏
= 𝑭(𝒙, 𝑢, 𝜏), 𝒙(0) = 𝒙ini

𝑑𝝍

𝑑𝜏
= −

𝜕𝐻

𝜕𝒙

𝝍T(𝜏f) = [(
𝜕𝜙

𝜕𝒙
) + 𝝂T (

𝜕𝝐

𝜕𝒙
)]|

𝜏f

𝝂T𝝐 = 0

 (3.11) 

where 𝝍 is a vector of costate variables with boundary conditions 𝝍(𝜏f), 𝝂 is a vector 

of Lagrange multipliers for terminal constraints, and superscript T  represents the 

transpose of a vector. 𝝂 is non-negative when the terminal constraint is active and zero 

otherwise. In this work, terminal constraints are assumed to be active. 

 From Eq 2.12, Eq 2.13, and the definition of state variables (Eq 3.9), differential 

equations for each state can be derived: 

𝑑𝑥1
𝑑𝜏

= 3𝑥2,
𝑑𝑥2
𝑑𝜏

= 2𝑥3,
𝑑𝑥3
𝑑𝜏

= 𝑥4, 

𝑑𝑥4
𝑑𝜏

=
𝐵

𝐺
(𝑥1 + 𝜇3,s(𝜏), 𝑢(𝜏)) ,

𝑑𝑥5
𝑑𝜏

= 𝑢(𝜏) 

(3.12) 

where 𝐵 is the nucleation rate, which is the sum of 𝐵1 and 𝐵2.  

With the definition of the control input 𝑢 and the expression for the growth rate 𝐺 

(Eq 2.28), supersaturation 𝑆 can be written in terms of 𝑢  

𝑆 = 1 + (𝑘𝑔𝑢)
−1
𝑔  (3.13) 
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Nucleation rates 𝐵1 and 𝐵2 can also be expressed in terms of 𝑢. 
𝐵

𝐺
 in Eq 3.12 can 

then be written as  

𝐵

𝐺
(𝑥1 + 𝜇3,s, 𝑢) = 

𝑢

(

 
 
𝑘𝑏1 exp

(

 
 −𝐴

(ln (1 + (𝑘𝑔𝑢)
−1
𝑔 ))

2

)

 
 
+ 𝑘𝑏2(𝑘𝑔𝑢)

−𝑏
𝑔 (𝑥1 + 𝜇3,s)

𝑑

)

 
 

 

(3.14) 

From Eq 3.11 and Eq 3.12, the Hamiltonian 𝐻 can be written as  

𝐻(𝒙, 𝑢,𝝍, 𝜏) = 3𝜓1𝑥2 + 2𝜓2𝑥3 + 𝜓3𝑥4 +𝜓4
𝐵

𝐺
(𝑥1 + 𝜇3,s(𝜏), 𝑢(𝜏)) + 𝜓5𝑢 (3.15) 

To simplify the calculations, Hofmann and Raisch[39] proposed that the nucleated 

third moment 𝜇3,n = 𝑥1 in 𝐻(𝒙, 𝑢,𝝍, 𝜏) can be neglected because nucleated moments 

𝜇𝑖,n  should be much smaller than the seed-grown moments 𝜇𝑖,s . This is reasonable 

because the purpose of seeds is to absorb the supersaturation and suppress nucleation. It 

is hoped that at the end of the batch that most of the precipitated mass has accrued to the 

seeds and only a small portion to the nucleated crystals. When making this simplification, 

it is important to check after optimization that the nucleated mass is indeed small 

compared to the seed grown mass. This verification is performed for the case study system 

in Section 4.2. Based on this assumption, 𝑥1 + 𝜇3,s in Eq 3.14 can be replaced by 𝜇3,s, 

and Eq 3.15 can then be written as 
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𝐻(𝒙, 𝑢,𝝍, 𝜏) = 3𝜓1𝑥2 + 2𝜓2𝑥3 + 𝜓3𝑥4 + 𝜓4
𝐵

𝐺
(𝜇3,s(𝜏), 𝑢(𝜏)) + 𝜓5𝑢 (3.16) 

The following are the differential equations for the costate variables given by 
𝑑𝝍

𝑑𝜏
= −

𝜕𝐻

𝜕𝒙
 

in Eq 3.11: 

𝑑𝜓1
𝑑𝜏

= 0,
𝑑𝜓2
𝑑𝜏

= −3𝜓1,
𝑑𝜓3
𝑑𝜏

= −2𝜓2, 

𝑑𝜓4
𝑑𝜏

= −𝜓3,
𝑑𝜓5
𝑑𝜏

= 0 

(3.17) 

with boundary conditions given by 𝝍T(𝜏f) = [(
𝜕𝜙

𝜕𝒙
) + 𝝂T (

𝜕𝝐

𝜕𝒙
)]|

𝜏f
 . The first term 

depends on the objective function, and the second term is given by: 

𝝂T (
𝜕𝝐

𝜕𝒙
) = [0,0,0,0, 𝜈5] (3.18) 

where 𝜈5 is a non-negative constant. With an initial guess for 𝜈5, 𝝍 can be solved by 

analytical integration. 

In addition, the optimal control input 𝑢∗  at each instant of 𝜏  must satisfy the 

following NCO: 

𝑢∗ = argmin
𝒖(𝜏)∈[𝑢lb,∞)

𝐻(𝒙, 𝑢,𝝍, 𝜏) = argmin
𝒖(𝜏)∈[𝑢lb,∞)

𝜓4
𝐵

𝐺
(𝜇3,s(𝜏), 𝑢(𝜏)) + 𝜓5𝑢 (3.19) 

However, it is difficult to obtain an analytical solution because of the complicated 

expression for 
𝐵

𝐺
 . In this work, the function fminbnd in Matlab is used to find 𝑢∗ 

numerically.  
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 The following is the procedure for solving optimization problems when seeds are 

present. First, make an initial guess of 𝜈5 , solve 𝝍 , and then find 𝑢∗ . Then, state 

variables 𝒙 can be determined by integration using the solver ode45. Furthermore, to 

satisfy the batch time constraint, the value of 𝜈5 is determined by iteration using the 

function fzero until 𝑥5(𝜏f) = 𝑡f,c . After iteration, 𝜈5  is determined and product 

properties can be obtained (𝜇3,n(𝜏f) = 𝑥1(𝜏f), 𝜇0,n(𝜏f) = 𝑥4(𝜏f)). Finally, it is critical to 

check whether 𝜇3,s is indeed much larger than 𝜇3,n because this assumption is used in 

Eq 3.16. Figure 3.2 shows the flowchart of the optimization procedure for seeded 

crystallization processes.   
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Figure 3.2. Flowchart of solving optimization problems for seeded case. 

 

3.3.2 Case 2: Unseeded Crystallization 

 In unseeded crystallization, 𝜇4 should also be calculated because its value is needed 

to calculate the objective WMS=(
𝜇4

𝜇3
). Thus, the definition of 𝒙 is slightly different than 

in the seeded case: 

𝑥1 = 𝜇4, 𝑥2 = 𝜇3, 𝑥3 = 𝜇2, 𝑥4 = 𝜇1, 𝑥5 = 𝜇0, 𝑥6 = 𝑡 (3.20) 

Eq 3.2 can then be restated as 
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min
𝑢(𝜏),𝜏f

𝜙(𝒙(𝜏f))

s.t.
𝑑𝒙

𝑑𝜏
= 𝑭(𝒙, 𝑢, 𝜏), 𝒙(0) = 𝒙ini

𝝐(𝒙(𝜏f)) ≤ 𝟎

𝑢(𝜏) ∈ [𝑢lb, ∞)

 (3.21) 

In this case, 𝜏f has to be determined, and the final constraint on the product should be 

included in 𝝐 . Therefore, 𝝐  can be expressed as 𝝐 = [𝑥2 − 𝜇3,c, 𝑥6 − 𝑡f,c]
T
 

representing the production rate constraint and the batch time constraint. 

 Next, Eq 3.21 can be reformulated by applying PMP:  

min
𝒖(𝜏)∈[𝑢lb,∞),𝜏f

𝐻(𝒙, 𝑢,𝝍, 𝜏) = 𝝍T𝑭(𝒙, 𝑢, 𝜏)

s. t.
𝑑𝒙

𝑑𝜏
= 𝑭(𝒙, 𝑢, 𝜏), 𝒙(0) = 𝒙ini

𝑑𝝍

𝑑𝜏
= −

𝜕𝐻

𝜕𝒙

𝝍T(𝜏f) = [(
𝜕𝜙

𝜕𝒙
) + 𝝂T (

𝜕𝝐

𝜕𝒙
)]|

𝜏f

𝝂T𝝐 = 0

 (3.22) 

 Then the differential equations for state variables can be derived: 

𝑑𝑥1
𝑑𝜏

= 4𝑥2,
𝑑𝑥2
𝑑𝜏

= 3𝑥3,
𝑑𝑥3
𝑑𝜏

= 2𝑥4, 

𝑑𝑥4
𝑑𝜏

= 𝑥5,
𝑑𝑥5
𝑑𝜏

=
𝐵

𝐺
(𝑥2, 𝑢(𝜏)),

𝑑𝑥6
𝑑𝜏

= 𝑢(𝜏) 

(3.23) 

In this case, 
𝐵

𝐺
(𝑥2, 𝑢(𝜏)) cannot be simplified by neglecting the nucleated mass because 

all crystals are nucleus-grown. 
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 The Hamiltonian 𝐻, and the differential equations for the costate variables can be 

written as 

𝐻(𝒙, 𝑢,𝝍, 𝜏) = 4𝜓1𝑥2 + 3𝜓2𝑥3 + 2𝜓3𝑥4 + 𝜓4𝑥5 + 𝜓5
𝐵

𝐺
(𝑥2, 𝑢(𝜏)) + 𝜓6𝑢 (3.24) 

𝑑𝜓1
𝑑𝜏

= 0,
𝑑𝜓2
𝑑𝜏

= −4𝜓1 −

𝜕 (
𝐵
𝐺 (𝑥2, 𝑢

(𝜏)))

𝜕𝑥2
,
𝑑𝜓3
𝑑𝜏

= −3𝜓2, 

𝑑𝜓4
𝑑𝜏

= −2𝜓3,
𝑑𝜓5
𝑑𝜏

= −𝜓4,
𝑑𝜓6
𝑑𝜏

= 0 

(3.25) 

However, costate variables 𝝍 cannot be integrated directly with the boundary conditions 

given by 𝝍T(𝜏f) = [(
𝜕𝜙

𝜕𝒙
) + 𝝂T (

𝜕𝝐

𝜕𝒙
)]|

𝜏f
  because both 𝑥2  and 𝑢(𝜏)  appear in the 

differential equations. In this case, 𝝂T (
𝜕𝝐

𝜕𝒙
)  is given by 𝝂T (

𝜕𝝐

𝜕𝒙
) = [0, 𝜈2, 0,0,0, 𝜈6] , 

where 𝜈2 and 𝜈6 are constants. 

 To obtain the optimal control input 𝑢∗, the following NCO must be satisfied: 

𝜕𝐻

𝜕𝑢
|
𝑢∗
= 𝜓5

𝜕 (
𝐵
𝐺)

𝜕𝑢
|

𝑢∗

+ 𝜓6 = 0 (3.26) 

 The trajectory of 𝑢(𝜏) consists of two parts: an unconstrained arc (𝑢 ≠ 𝑢lb) and a 

constrained arc (𝑢 = 𝑢lb). The switching time denoted as 𝜏s means the switching instant 

between these arcs (see Figure 3.3). Because the trajectory of 𝑢(𝜏) is continuous, the 

NCO (Eq 3.26) should also be satisfied at the switching time if 𝜏s exists. 



doi:10.6342/NTU202300993

29 

 

 

Figure 3.3. Constrained arc, unconstrained arc, and the switching time. 

 

In addition, for an optimization problem with a free terminal time (𝜏f), an additional 

condition called the transversality condition must be satisfied [38; 52; 59]: 

𝐻(𝜏f) = (𝝍
T𝑭(𝒙, 𝑢, 𝜏))|

𝜏f
= 0 (3.27) 

 This case is more complicated because 𝝍 cannot be integrated directly. In this work, 

the gradient method is applied to solve this boundary value problem numerically [52-54]. 

The following is the procedure for applying the gradient method. 

At first, the constraint on the control input is assumed to be inactive, i.e. 𝜏s does 

not exist. Then, 𝑢(𝜏)  is discretized into 𝑁  points and an initial guess for all 𝑁 + 3 

decision variables is made: 𝑢(𝜏1), 𝑢(𝜏2), ..., 𝑢(𝜏𝑁), 𝜈2, 𝜈6, 𝜏f. With 𝑁 discretization 

points, 𝑢(𝜏) at any instant is obtained using the piecewise cubic interpolation function 

pchip in Matlab.  
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After determining 𝑢(𝜏), 𝒙 can be solved by forward integration of Eq 3.23 from 

𝜏 = 0 to 𝜏 = 𝜏f, and 𝝍 can be found by integrating Eq 3.25 backward from 𝜏 = 𝜏f to 

𝜏 = 0. Next, in order to satisfy the NCO, the terminal constraints and the transversality 

condition, a vector 𝑹 is constructed with 𝑁 + 3 elements: 

𝑅𝑖 = 𝜓5(𝜏𝑖)
𝜕 (
𝐵
𝐺)

𝜕𝑢
|

𝑢(𝜏𝑖)

+𝜓6(𝜏𝑖), 𝑖 = 1,… ,𝑁 (3.28) 

𝑅𝑁+1 = 𝑥2(𝜏f) − 𝜇3,c (3.29) 

𝑅𝑁+2 = 𝑥6(𝜏f) − 𝑡f,c (3.30) 

𝑅𝑁+3 = (𝝍
T𝑭(𝒙, 𝑢, 𝜏))|

𝜏f
 (3.31) 

where 𝑅𝑖  (𝑖 = 1, … , 𝑁 ) are the NCO, 𝑅𝑁+1  and 𝑅𝑁+2  are terminal constraints, and 

𝑅𝑁+3  is the transversality condition. All of these conditions will be satisfied if each 

element in 𝑹 is equal to zero.  

In this work, the 2-norm of 𝑹 (‖𝑹‖2) is selected as the function to be minimized. 

The nonlinear least-squares solver lsqnonlin in Matlab is used to perform the optimization: 

updating the decision variables and integrating 𝒙 and 𝝍 at each iteration until ‖𝑹‖2 

is lower than the termination tolerance.  

In order to determine whether 𝜏s exists, the lower bound on the control input is first 

set lower than its constraint in lsqnonlin. Then, the optimization results are checked to 

determine whether the constraint on the control input is active during the batch. If it is 
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active, 𝜏s should be included in the decision variables, and an additional NCO should be 

added in the residual vector 𝑹: 

𝑅𝑁+4 = 𝜓5(𝜏s)
𝜕 (
𝐵
𝐺)

𝜕𝑢
|

𝑢(𝜏s)

+𝜓6(𝜏s) (3.32) 

The optimization is performed again. Finally, the trajectory of optimal control input can 

be determined, and product properties (𝜇0,f and WMSf) can also be obtained. Figure 3.4 

shows the procedure for applying the gradient method to solve the optimization problems 

for unseeded crystallization processes.  
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Figure 3.4. Flowchart of solving optimization problems for unseeded case.  
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Chapter 4 Case Study 

 

In this chapter, a case study is used to illustrate the proposed framework in this work. 

In Section 4.1, the system is briefly introduced, and the parameters for the system are 

listed. Optimization results for each case are presented and discussed in Section 4.2. 

  

4.1 Parameters for the System 

The crystallization of ampicillin from water is considered in this work. 

Crystallization kinetics are adapted from Encarnación-Gómez et al.[60], whose 

experiments were based on pH-induced supersaturation. 1 M HCl is added into the system 

to gradually change the pH value (from about 7.8 to about 6.5), which affects the solubility. 

Table 4.1 shows the parameters used in the case study, and the crystallization kinetics are 

given in Eqs 2.28-2.32. Figure 4.1 shows primary and secondary nucleation rates as a 

function of supersaturation for 𝜇3 = 100 cm3. It is shown in the figure that primary 

nucleation is dominant when 𝑆 > 1.3. Therefore, it is expected that primary nucleation 

might dominate in this case. Although this is not common in industrial processes[61], the 

proposed method in this work can be applied to any other crystallization system with 

deterministic expressions for crystal growth rate and primary and secondary nucleation 

rates, even if secondary nucleation is dominant.  
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Figure 4.1. The relation between nucleation rates and the supersaturation. 

 

For seeded crystallization, assume the seed CSD 𝑓s(𝐿, 0) is given by 

𝑓s(𝐿, 0) = 𝑁0 ∙ 𝛿(𝐿 − 𝐿0) (4.1) 

where 𝑁0 and 𝐿0 are the number and size of the seeds, respectively. From Eqs 2.3 and 

4.1, the 𝑖th moment of seed crystals 𝜇𝑖0,s can be calculated. In addition, 𝜇3,s,c is the 

final constraint on 𝜇3,𝑠, which is set by making 𝜇3,s,c − 𝜇3,s,0 equal to 100.00 cm3/kg.  
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Table 4.1. Parameters for the system[60] 

Parameter Description Value Unit 

𝑘𝑔 Growth rate constant 4.50 𝜇m/min 

𝑔 Growth rate exponent 2.32 - 

𝑘𝑏1 Primary nucleation rate constant 9.27×109 #/(min⋅kg) 

𝐴 Primary nucleation constant 1.27 - 

𝑘𝑏2 Secondary nucleation rate constant 1.32×102 #/(min⋅kg)/(cm3/kg)d 

𝑏 Secondary nucleation rate exponent    2.97 - 

𝑑 Nucleation rate exponent of 𝜇3 1.00 - 

𝜇3,s,0 Initial 𝜇3,𝑠 in seeded case 8.10 cm3/kg 

𝜇3,s,c Final constraint on 𝜇3,𝑠 in seeded case 108.10 cm3/kg 

𝜇3,c Final constraint on 𝜇3 in unseeded case 200.00 cm3/kg 

𝑡f,c Final batch time constraint 200.00 min 

𝑆ub Upper bound of the supersaturation 1.64 - 

𝑁0 Number of the seed 2.00×107 #/kg 

𝐿0 Size of the seed  74.00 𝜇m 

𝜌 Crystal density 1.50×103 kg/ m3 

𝑘V Volume shape factor 0.03 - 

pHini Initial pH value 7.60 - 

𝐶ini Initial concentration 19.95 g/kg 

 

4.2 Results and Discussion 

4.2.1 Case 1: Seeded Crystallization 

 In seeded case, there is a final constraint on 𝜇3,𝑠, so 𝜏f can be determined directly 

from Eq 2.18 based on the production rate constraint 𝜇3,s(𝜏f) = 𝜇3,s,c . In this work, 

𝜇3,n,f = 𝜇3,n(𝜏f)  and 𝜇0,n,f = 𝜇0,n(𝜏f)  are selected as the objectives to be minimized. 

Figure 4.2(a) shows the PF on 𝜇3,n,f-𝜇0,n,f plane. Point A is the point minimizing 𝜇3,n,f, 

point B is the knee point, and point C is the point minimizing 𝜇0,n,f. The values of both 



doi:10.6342/NTU202300993

36 

 

objective functions at these three points on the Pareto front for the seeded case are given 

in Table 4.2. The optimization results of these three cases are also shown in other panels 

of Figure 4.2. In Figure 4.2(b), a late growth operating policy is found for case A (min 

𝜇3,n,f) and case B (knee point). This result is consistent with the previous work: objectives 

involving higher nucleated moments would lead to late growth operating policies[7]. 

However, the supersaturation remains almost constant for case C (min 𝜇0,n,f). The reason 

is that the primary nucleation rate (Figure 4.2(c)) is always much higher than secondary 

nucleation rate (Figure 4.2(d)). In this case, an approximation of the optimal control input 

for case C can be obtained by solving Eq 3.19 with 𝜓4 = 1, 𝜓5 = 𝜈5, and 𝐵1 ≫ 𝐵2. Eq 

3.19 then becomes 

𝑢∗ = argmin
𝒖(𝜏)∈[𝑢lb,∞)

(𝐵1 + 𝐵2)𝑢 + 𝜈5𝑢 ≈ argmin
𝒖(𝜏)∈[𝑢lb,∞)

𝐵1𝑢 + 𝜈5𝑢 (4.2) 

Since 𝐵1  depends only on 𝑢 , and 𝜈5  is constant, 𝑢∗  does not change with time, 

resulting in an almost constant supersaturation. 

 In addition, population density functions (PDFs) 𝑓n,f(𝐿)  and volume density 

functions (VDFs) 𝐿3𝑓n,f(𝐿) for the nucleated product can be calculated using Eq 2.27, 

and are shown in Figure 4.2(e) and Figure 4.2(f), respectively. Based on the definition of 

the moments of the CSD, 𝜇0,n,f and 𝜇3,n,f are the area under the PDF curve and VDF 

curve, respectively. In case A, the objective is to minimize 𝜇3,n,f, so the area under the 
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curve in Figure 4.2(f) is the smallest. By contrast, case C has the smallest area in Figure 

4.2(e). In addition, for a late growth operating policy, such as case A and case B, more 

nuclei are formed at the end of the batch, so the PDF decreases with increasing crystal 

size (see Figure 4.2(e)). Since these nuclei do not have enough time to grow, their size 

and volume are very small (see Figure 4.2(f)). Therefore, it is reasonable that a late growth 

operating policy is preferred for minimizing 𝜇3,n,f . On the other hand, for a constant 

supersaturation operating policy, such as case C, nuclei are formed more uniformly in 

time. Although the number of nucleated crystals is smaller, the nuclei formed at the 

beginning of the batch grow large and achieve a large volume. 

Panels (c) and (d) show that primary nucleation dominates over secondary 

nucleation throughout the batch for all three cases. This result follows inherently from the 

crystallization kinetics. In practice secondary nucleation could be neglected with almost 

no effect on the results. Secondary nucleation is included here in order to demonstrate 

that the algorithm can optimize crystallization processes where both primary and 

secondary nucleation occur. 

 Finally, it is necessary to verify the assumption made in the calculation. In order to 

simplify the expression of the Hamiltonian in Eq 3.15, 𝜇3,n is assumed to be much lower 

than 𝜇3,s. Table 4.1 shows that the third moment of the seed-grown crystals increases 

from 8.10 cm3/kg (seeding condition) to 108.10 cm3/kg for every batch to satisfy the 
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production rate constraint. However, in case C (min 𝜇0,n,f ), for which 𝜇3,n,f  is the 

greatest of any point on the PF, the third moment of the nucleated product is only 4.06 

cm3/kg (see Table 4.2). Therefore, the nucleated product only accounts for 3.76% of the 

total product crystal volume. Therefore, it is reasonable to assume that the nucleated mass 

can be neglected in the material balance. 
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Figure 4.2. Results of seeded case: (a) Pareto-optimal front, (b) supersaturation 

trajectories, (c) primary nucleation rate trajectories, (d) secondary nucleation rate 

trajectories, (e) population density functions, (f) volume density functions. 

 

Table 4.2. Values of objective functions for the seeded case  

Point 𝜇3,n,f (cm3/kg) 𝜇0,n,f (#/kg) 

A (min 𝜇3,n,f) 0.98 3.20×108 

B (knee point) 1.32 4.51×107 

C (min 𝜇0,n,f) 4.06 1.56×107 
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In this case study, supersaturation is induced by lowering the pH of the solution by 

adding a strong acid (pH-induced supersaturation). The optimization procedure described 

in our work determines the optimal supersaturation trajectory during the batch. This can 

then be converted to a pH trajectory (indicating how the pH should change with time 

during the batch) using Eq 2.31, Eq 2.32, and experimental data for the solubility of 

ampicillin as a function of pH (see Figure 4.3) given by Encarnación-Gómez et al.[60]. 

Figure 4.3 shows the relationship between the solubility and the pH, but the data are only 

applicable when the pH value is in the range of 5.0 and 7.6.  

Figure 4.4 shows the results of optimal control input profiles, supersaturation and 

pH, in the time domain. In practical case, the pH trajectory can be used to determine an 

acid flow rate trajectory (indicating how the flow rate of acid should change with time 

during the batch) using material balances and knowledge of acid-base chemistry. 

However, in this case, it might be difficult to control the pH value accurately because the 

optimal value at each instant is close to 7.  
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Figure 4.3. Solubility data for ampicillin in water [60]. 
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Figure 4.4. Results of optimal control input profiles in time domain in seeded case: (a) 

supersaturation trajectories, (b) pH value trajectories. 

 

 In addition, the optimization method proposed in this work is not limited to pH-

induced supersaturation. It is applicable regardless of the method by which 

supersaturation is induced. For example, in a cooling crystallization, the method would 

again produce the optimal supersaturation trajectory. This could then be converted to the 
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optimal temperature trajectory using a material balance and knowledge of the solubility 

of the substance being crystallized as a function of temperature. Similarly, in an 

evaporative crystallization process, the optimal superaturation trajectory can be converted 

to a trajectory indicating the rate at which solvent should be evaporated. 

  

4.2.2 Case 2: Unseeded Crystallization 

 In this case, −WMSf = −WMS(𝜏f)  and 𝜇0,f = 𝜇0(𝜏f)  are selected as the 

objectives to be minimized. Optimization of unseeded crystallization processes is more 

challenging. In order to apply a gradient method, it is necessary to determine first whether 

the growth rate constraint becomes active during the batch, i.e. whether a switching time 

𝜏s  exists in the supersaturation trajectory. After determining initial guesses for all 

decision variables, the nonlinear least-squares solver lsqnonlin in Matlab is used to 

minimize the 2-norm of the residuals vector (‖𝑹‖2 ). However, the algorithm may 

terminate early because either the step size tolerance or the maximum number of iterations 

is reached. Therefore, it is critical to check whether the function value (‖𝑹‖2) and the 

trajectory of optimal control input are reasonable after solving each problem. Ten points 

on the PF are solved individually, and the function pchip in Matlab is used for 

interpolation (see Figure 4.5(a)). Point A is the case maximizing WMSf, point B is the 

point closest to the knee point, and point C is the case minimizing 𝜇0,f. The values of 
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both objective functions at these three points on the Pareto front for the unseeded case are 

given in Table 4.3. The optimization results of these three cases are shown in Figure 4.5. 

Figure 4.5(b) shows that a late growth operating policy is preferred for case A (max 

WMSf) , and that an early growth operating policy is preferred for case B (closest to the 

knee point) and case C (min 𝜇0,f). In addition, results show that switching time 𝜏s exists 

in case A and case C, with values 149 𝜇m  and 1.44 𝜇m  respectively. In unseeded 

crystallization, 𝜏f is the decision variable used to satisfy the final constraint on 𝜇3. In 

this work, 𝜏f is largest in case A (𝜏f = 149 𝜇m) and smallest in case C (𝜏f = 123 𝜇m). 

The primary nucleation rate depends only on the supersaturation, so the trend in Figure 

4.5(c) is similar to that in Figure 4.5(b). On the other hand, the secondary nucleation rate 

depends both on the supersaturation and 𝜇3 , but supersaturation dominates at the 

beginning of the batch because 𝜇3(0)  is equal to 0. Since case C results in an early 

growth operating policy, the secondary nucleation rate is the highest in the beginning (see 

Figure 4.5(d)). However, the secondary nucleation rates of all three cases are very similar 

at the end of the batch because the constraint on 𝜇3 is the same for every case. 

PDFs and VDFs for the product are calculated using Eq 2.21 and are shown in Figure 

4.5(e) and Figure 4.5(f), respectively. In Case C, the objective is to minimize 𝜇0,f and 

the resulting optimal supersaturation trajectory is early growth. Therefore more nuclei are 

formed in the beginning. They have enough time to grow and account for larger share of 



doi:10.6342/NTU202300993

45 

 

the product volume. In case A (max WMSf), a late growth operating policy is preferred, 

so fewer nuclei are formed in the beginning compared to case C. With the same final 

constraint on 𝜇3 , the areas under VDFs in each case should be the same (see Figure 

4.5(f)). Therefore, 𝜏f should be larger in case A than in case C. 

It can also be seen from Panel (f) that case A has a larger WMS than cases B and C. 

Since WMSf is defined as 
𝜇4,f

𝜇3,f
 and 𝜇3,f is the same in each case, WMS depends only 

on 𝜇4,f, which is the area under the curve 𝐿4𝑓n,f(𝐿). Furthermore, the areas under VDFs 

(𝐿3𝑓n,f(𝐿) versus 𝐿) of all three cases are the same, and 𝜏f is larger in case A. Therefore, 

it can be expected that the area under the curve 𝐿4𝑓n,f(𝐿) is larger in case A, resulting in 

a lager value of 𝜇4,f and a larger WMSf. 
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Figure 4.5. Results of unseeded case: (a) Pareto-optimal front, (b) supersaturation 

trajectories, (c) primary nucleation rate trajectories, (d) secondary nucleation rate 

trajectories, (e) population density functions, (f) volume density functions. 

 

Table 4.3. Values of objective functions for the unseeded case  

Point WMSf (𝜇m) 𝜇0,f (#/kg) 

A (max WMSf) 118.97 2.89×108 

B (closest to knee point) 118.73 1.74×108 

C (min 𝜇0,f) 117.09 1.54×108 

 



doi:10.6342/NTU202300993

47 

 

However, due to the complex and stochastic nature of nucleation, plant-model 

mismatch is a concern. Considering that primary nucleation is dominant in this system, a 

sensitivity analysis of primary nucleation rate is conducted to figure out the influence of 

the uncertainties. The primary nucleation rate constant 𝑘𝑏1  is either increased or 

decreased by 10% compared to its original value, then the optimization is performed again. 

Figure 4.6 shows the results of sensitivity analysis for case A (max WMSf) and case C 

(min 𝜇0,f) in unseeded processes. It is shown that the optimal supersaturation trajectories 

do not change significantly.  
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Figure 4.6. Results of the sensitivity analysis of primary nucleation rate in unseeded 

processes: (a) comparison of supersaturation trajectories for case A (max 𝐖𝐌𝐒𝐟), (b) 

comparison of supersaturation trajectories for case C (min 𝝁𝟎,𝐟). 

 

Again after the optimal supersaturation trajectories are determined, the optimal pH 

value trajectories can be obtained using Eq 2.31, Eq 2.32, and the solubility data (see 

Figure 4.3). The higher the pH value, the higher the solubility. Figure 4.7 shows the results 

of optimal supersaturation trajectories and pH value trajectories in time domain. For case 
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A(max WMSf), a late growth operating policy is preferred, and the pH value decreases 

from about 7.35 to about 6.00. However, for case B (closest to the knee point) and case 

C (min 𝝁𝟎,𝐟), the pH value first slightly increases then gradually decreases. For early 

growth operating policy (case B and case C), because desired supersaturation decreases 

faster than the concentration 𝐶, 𝐶sat should increase, which corresponds to an increase 

in the pH value. This is the reason that the pH value in case B and case C increases at the 

beginning of the batch. 
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Figure 4.7. Results of optimal control input profiles in time domain in unseeded case: 

(a) supersaturation trajectories, (b) pH value trajectories. 
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Chapter 5 Conclusions 

 

A framework for multi-objective optimization of seeded and unseeded batch 

crystallization systems with primary nucleation is developed in this work. The 

optimization problems are formulated using the method of moments and a time 

transformation proposed previously[32-36]. Pontryagin’s Minimum Principle[37; 38] is 

used to determine necessary conditions for optimality. Optimization problems are solved 

efficiently and the complete product CSD is determined. All optimization problems are 

formulated and solved numerically. For the seeded case, the feedback of nucleation on 

the system is assumed to be negligible to simplify the expression for the Hamiltonian. For 

the unseeded case, no such assumption is made and a gradient method[52-54] is applied 

to solve the challenging TPBVP efficiently. Compared with alternative methods, 

optimization algorithms based on Pontryagin’s Minimum Principle have several 

advantages, including that they are fast, converge reliably and can be proven to provide 

the global minimum solution.  

For the case study of ampicillin crystallized from water, PFs are constructed to 

analyze the trade-off between competing objectives. The pH value trajectories, 

supersaturation trajectories, nucleation rate trajectories, PDFs and VDFs of three optimal 

solutions on the PF are obtained. With the framework for optimization proposed in this 
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work, optimal operating strategies for different objective functions can also be determined. 

For example, in the seeded case, a late-growth supersaturation trajectory should be 

adopted to minimize the nucleus-grown volume in the product. This is reasonable because 

more nuclei will be formed at the end of the batch and will not have time to grow 

significantly, which can also be understood clearly from the PDF and VDF. However, a 

late-growth operating policy will lead to larger number of nucleated crystals.  

It is worthwhile to note several limitations of this work. Primary nucleation is 

difficult to model because it is a stochastic process, and the method proposed here relies 

on an accurate prediction of the primary nucleation rate. Some authors have proposed 

stochastic methods for modeling primary nucleation[62-64], however the method 

described here is limited to the case where there is a deterministic equation such as 

Equation 2.29 that expresses the primary nucleation rate as a function of the 

supersaturation. It has also recently been proposed[61] that secondary nucleation is 

dominant in some situations under high supersaturation where primary nucleation was 

previously thought to dominate. This possibility should be considered when kinetic 

models are developed. Finally, as with any optimization algorithm, the algorithm 

presented here is only as good as the kinetic models upon which it depends. If these 

models cannot describe the behavior of the process over the range of operating conditions 

encountered during the optimization, then the optimization results will be unreliable.  
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 Previous work on the application of PMP to batch crystallization has focused on 

processes with crystal growth and secondary nucleation only[32-36; 39-44; 52]. In this 

work, primary nucleation is also considered. Therefore, for cases where primary 

nucleation cannot be neglected, the framework proposed here will be helpful. This work 

demonstrates that the multi-objective optimization problem can be solved efficiently by 

PMP using a gradient method to solve the TPBVP. With suitable modifications, the 

algorithm proposed here might be applied to solve even more complicated and general 

optimization problems for both seeded and unseeded batch crystallization systems in the 

future. The moment model has been successfully applied to systems with secondary 

nucleation when cycles of growth and dissolution are used to tailor the product crystal 

size distribution[41]. Therefore, this model might be generalized to systems including 

primary nucleation. 
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