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中文摘要 

介電質微波加熱是多年來常見的科學研究議題，也被廣泛應用在工業領域，

又以水為最具代表性的介電質材料之一。其中，微波加熱的速率和介電質內部電場

強度有高相關性。然而，影響介電質內部電場分布的物理成因卻較少被研究。本論

文著重探討兩個主要的成因：共振與極化電荷屏蔽效應，以及在水球體和水二聚體

中，兩者如何交互作用以影響電場分布。其中，本論文主要以數學解析解分析水單

球體的電場，並以文獻回顧探討水二聚體內部及間隙電場。本論文指出，對於水單

球體而言，介電質內部電場強度及分布隨球體尺寸改變而有所不同。共振效應只在

球體尺寸與電磁波波長相近時有顯著影響，而極化電荷屏蔽效應則廣泛存在於不

同尺寸的球體中。對於水二聚體而言，間隙之電場因間隙兩側的極化電荷互相影響

而顯著增強，但共振效應仍獨立存在於兩個球體內部。本論文對介電質球體在微波

中的物理機制有基本理解，亦可呼應其他文獻的研究結果。 

 

 

 

 

 

 

 

 

 

 

關鍵詞：介電質微波加熱、極化電荷屏蔽效應、微波共振、介電質球狀共振腔、平

面波、間隙電場強化作用 
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Abstract

Microwave dielectric heating has long been a topic of scientific researches and a

technique in industrial applications, with water being one of the most representative

materials. It is also well known that the microwave heating rate has a high dependency on

the electric field strength inside the dielectric. However, the physical origins determining

the interior electric field pattern have not been studied as much. This thesis focuses on

two primary effects, resonance and polarization charge shielding effect, as well as how

they interact to form the interior electric field of a water sphere and dimer. In this thesis,

analytical analysis is used to analyze the field profiles for single water sphere, while

literature review is the main research method for water dimer. For single water sphere, it is

shown that the electric field strength and uniformity is highly dependent on the dimension

of the sample. The resonant effect is only significant when the dimension of the object

is of the same order as the wavelength, whereas the polarization charge shielding effect

can be observed in a wider size range. For water dimers, the gap field is significantly

enhanced by polarization charges from gap-sides of both spheres, whereas the resonance

in each sphere is independent from each other. This thesis gives basical understanding

to the behavior of dielectric spheres under microwaves, and is consistent with the results

from further researches.

Keywords: Microwave dielectric heating; Polarization charge shielding effect; Microwave

resonance; Dielectric spherical resonator; Plane wave; Gap electric field enhancement
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Chapter 1

Introduction

Dielectric heating by microwave has been widely used in various research fields and

industrial applications, such as insect control [3, 4], food industry [5–7], and sintering [8–

10]. Microwave region ranges from 300 MHz to 300 GHz with wavelength ranging from

1 mm to 1 m [11]. In practical cases, dielectric materials are incident by an external

electromagnetic wave, absorbing energy from electromagnetic wave fields. For a dielectric

object with complex permittivity ε expressed as

ε/ε0 = ε′ + iε′′ (ε′, ε′′ ∈ R), (1.1)

its time-averaged power absorption rate Ploss from an electromagnetic wave is given by [12]

Ploss =
1

2
ω Im(ε)♣Ein♣2 (1.2)

where ω is the frequency of the electromagnetic wave and Ein is the electric field inside

the dielectric. Eq. (1.2) suggests that the field strength inside the dielectric is the key to

higher heating rate. Hence, it is essential to understand the mechanism of generating the

internal field. Aside from the external field strength, there are two main factors affecting

the internal electric field: Polarization Charge Shielding Effect and Resonance.

When a dielectric object immerses in an electric field, the bound molecular charges

will be slightly displaced to form polarization charges, preventing the external electric

1
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field from penetrating inside the medium. Hence, polarization charge shielding effect

causes the internal field to be weaker. This is a widely known effect often introduced

Electromagnetism textbooks [13, 14]. Secondly, when a dielectric object is excited by

electromagnetic waves with specific wavelengths, the wave interference between incident

and reflected waves determines the field strength inside the object. At specific wavelengths,

with constructive interference, the field inside the object with large amplitude has the

most energy, here called resonance, and the dielectric object is then called an “resonator”.

Focusing on a dielectric sphere, a common shape used in various applications, there are

quite a few literatures developing thorough research on the internal field [15,16], while the

external field has been less focused.

These two effects has long been studied separately. However, practically they take

effect simultaneously to generate the total electric field. Hence, they should be studied

at once to observe the total effect. Moreover, in some application (e.g., sintering), large

quantities of dielectric objects are heated together. The electric field in between could play

an important role. This indicates that the external fields caused by polarization charge

shielding effect and resonances are worth studying. More deeply, directly studying the

field between closely placed dielectric spheres has a high practical value [1].

The first aim of this thesis is to present both internal and external field patterns of a

dielectric sphere resonator. Chapter 2 focuses on analytic solutions of the resonant fields

of a dielectric sphere resonator.

The second aim of this thesis is to study the composite effects caused by polarization

charge shielding and resonances through analytical analysis and literature review. It is

difficult to isolate each effect from the electric field pattern, but the physical origin of

field properties can be identified. Besides, among a variety of dielectric materials, water

is one of the most useful and studied substances in scientific research and microwave

applications [17–19]. Hence, the dielectric of interest in this thesis is chosen to be water as

well. Chapter 3 studies the field properties for water spheres of different radii. Chapter 4
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summarizes the paper of Lin et al. [1] to understand the gap field properties of a water

dimer.
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Chapter 2

Normal Modes Analysis of a Spherical

Water Resonator: Analytical Result

Before analyzing the fields of water sphere(s) with incident wave, it is crucial to

understand resonant modes of a spherical water resonator. In this chapter, Section 2.1

derives the analytic solutions to the spherical dielectric resonator problem; Section 2.3

provides field profiles of first few modes.

2.1 Theory

Consider a dielectric sphere of radius R with permeability µ0 and complex permittivity

ε, where ε/ε0 = ε′+iε′′ (ε′, ε′′ ∈ R). With the assumptionE,H ∼ e−iωt [20], fields inside

the sphere (denoted by the superscript“-”) satisfy the source-free Maxwell’s equations


















∇ ·E− = 0, ∇ ×E− = ikZH−

∇ ·H− = 0, ∇ ×H− = −ikE−/Z

, for r < R (2.1)

where the wavenumber k =
√
εµ0 ω and the wave impedance Z =

√

µ0/ε. Combining the

two curl-equations, Eq. (2.1) can be expressed as



∇2 + k2


E− = 0, ∇ ·E− = 0, withH− = − i

kZ
∇ ×E− (2.2)

4
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Field characteristic Boundary condition

TE mode Er = 0 everywhere (∂Br/∂n)♣S = 0

TM mode Br = 0 everywhere Er♣S = 0

Table 2.1: Properties of TE and TM modes.

or


∇2 + k2


H− = 0, ∇ ·H− = 0, with E− =
iZ

k
∇ ×H−. (2.3)

Hence, both E− and H− are transverse solutions to a vector Helmholtz equation, the

exact solutions can be obtained by applying boundary conditions to Eqs. (A.13b) and

(A.13c). Since the fields are finite everywhere inside the sphere, Qm
n (cos θ) and yn(kr)

should be dropped due to their singularities at cos θ = ±1 and r = 0, i.e. the solution of ψ

to Eq. (A.1) can be set as

ψ− = jn(kr)Pm
n (cos θ)eimφ. (2.4)

As for the fields outside the sphere (denoted by the superscript “+”), they as well satisfy

Eqs. (2.1) – (2.3), with k and Z replaced by k0 = ω/c and Z0 =
√

µ0/ε0, respectively. The

boundary conditions for fields outside the sphere are slightly different from those inside

the sphere. Not only should they remain finite everywhere, they should also take the form

of an outgoing wave as r → ∞, i.e.,

ψ+(r → ∞) ∼ eik0r. (2.5)

Thus, ψ+ can be set as

ψ+ = h(1)
n (k0r)P

m
n (cos θ)eimφ (2.6)

where h(1)
n (k0r) is the spherical hankel function of the first kind.

Resonant modes can be divided into two categories: Transverse Electric (TE) modes

and Transverse Magnetic (TM) modes [21], the properties of which are shown in Table 2.1.
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Starting with TE modes, since Er = 0 everywhere, function N in Eq. (A.13c) is

eliminated. Then the fields can be described by

E−
T E = AnmM

−
nm(r, k), H−

T E = − i

kZ
∇ ×E−

T E for r < R; (2.7)

E+
T E = BnmM

+
nm(r, k0), H+

T E = − i

k0Z0

∇ ×E+
T E for r > R (2.8)

where

M−
nm(r, k) = ∇ ×



krψ−


r̂

=



1

r sin θ

∂

∂ϕ
θ̂ − 1

r

∂

∂θ
φ̂

]

krjn(kr)Pm
n (cos θ)eimφ, (2.9)

M+
nm(r, k0) = ∇ ×



k0rψ
+


r̂

=



1

r sin θ

∂

∂ϕ
θ̂ − 1

r

∂

∂θ
φ̂

]

k0rh
(1)
n (k0r)P

m
n (cos θ)eimφ (2.10)

with a factor k and k0 inserted respectively for consistency, and Anm, Bnm are some

constants. Hence, the electric field components are given by

E−
T E,r = 0, (2.11a)

E−
T E,θ = iAnmmkjn(kr)

Pm
n (cos θ)

sin θ
eimφ, (2.11b)

E−
T E,φ = Anmkjn(kr) sin θPm′

n (cos θ)eimφ; (2.11c)

E+
T E,r = 0, (2.12a)

E+
T E,θ = iBnmmk0h

(1)
n (k0r)

Pm
n (cos θ)

sin θ
eimφ, (2.12b)

E+
T E,φ = Bnmk0h

(1)
n (k0r) sin θPm′

n (cos θ)eimφ. (2.12c)
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The magnetic field components are given by

H−
T E,r = −iAnmjn(kr)

Zr


− sin2 θPm′′

n (cos θ) + 2 cos θPm′

n (cos θ) +
m2

sin2 θ
Pm

n (cos θ)

]

eimφ

= −iAnmn(n+ 1)

Zr
jn(kr)Pm

n (cos θ)eimφ, (2.13a)

H−
T E,θ =

iAnm

Zr
[jn(kr) + krj′

n(kr)] sin θPm′

n (cos θ)eimφ, (2.13b)

H−
T E,φ =

Anmm

Zr
[jn(kr) + krj′

n(kr)]
Pm

n (cos θ)

sin θ
eimφ; (2.13c)

H+
T E,r = −iBnmn(n+ 1)

Z0r
h(1)

n (k0r)P
m
n (cos θ)eimφ, (2.14a)

H+
T E,θ =

iBnm

Z0r

[

h(1)
n (k0r) + k0rh

(1)′

n (k0r)
]

sin θPm′

n (cos θ)eimφ, (2.14b)

H+
T E,φ =

Bnmm

Z0r

[

h(1)
n (k0r) + k0rh

(1)′

n (k0r)
]Pm

n (cos θ)

sin θ
eimφ. (2.14c)

To determine the dispersion relation, there are two boundary conditions applied. E−
T E,∥ =

E+
T E,∥ gives

{

kAnmjn(kr) − k0Bnmh
(1)
n (k0r)

}

∣

∣

∣

∣

r=R

= 0 (2.15a)

andH−
T E,∥ = H+

T E,∥ gives







√

ε

ε0

Anm

d[krjn(kr)]

dkr
−Bnm

d
[

k0rh
(1)
n (k0r)

]

dk0r







∣

∣

∣

∣

∣

∣

r=R

= 0. (2.15b)

To obtain non-zero solutions for Anm and Bnm, Eq. (2.15) yields the dispersion relation

for TE modes






jn(kr)
d
[

k0rh
(1)
n (k0r)

]

dk0r
− h(1)

n (k0r)
d[krjn(kr)]

dkr







∣

∣

∣

∣

∣

∣

r=R

= 0 (2.16)

Similarly for TM modes, since Hr = 0 everywhere, the fields can be described by

E−
T M =

iZ

k
∇ ×H−

T M , H−
T M = CnmM

−
nm(r, k) for r < R; (2.17)

E+
T M =

iZ0

k0

∇ ×H+
T M , H+

T M = DnmM
+
nm(r, k0) for r > R (2.18)
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whereM−
nm(r, k) andM+

nm(r, k0) are again given in Eqs. (2.9) and (2.10), andCnm, Dnm

are some constants. Then the electric field components are given by

E−
T M,r =

iCnmZn(n+ 1)

r
jn(kr)Pm

n (cos θ)eimφ, (2.19a)

E−
T M,θ = −iCnmZ

r
[jn(kr) + krj′

n(kr)] sin θPm′

n (cos θ)eimφ, (2.19b)

E−
T M,φ = −CnmZm

r
[jn(kr) + krj′

n(kr)]
Pm

n (cos θ)

sin θ
eimφ; (2.19c)

E+
T M,r =

iDnmZ0n(n+ 1)

r
h(1)

n (k0r)P
m
n (cos θ)eimφ, (2.20a)

E+
T M,θ = −iDnmZ0

r

[

h(1)
n (k0r) + k0rh

(1)′

n (k0r)
]

sin θPm′

n (cos θ)eimφ, (2.20b)

E+
T M,φ = −DnmZ0m

r

[

h(1)
n (k0r) + k0rh

(1)′

n (k0r)
]Pm

n (cos θ)

sin θ
eimφ. (2.20c)

The magnetic field components are given by

H−
T M,r = 0, (2.21a)

H−
T M,θ = iCnmmkjn(kr)

Pm
n (cos θ)

sin θ
eimφ, (2.21b)

H−
T M,φ = Cnmkjn(kr) sin θPm′

n (cos θ)eimφ; (2.21c)

H+
T M,r = 0, (2.22a)

H+
T M,θ = iDnmmk0h

(1)
n (k0r)

Pm
n (cos θ)

sin θ
eimφ, (2.22b)

H+
T M,φ = Dnmk0h

(1)
n (k0r) sin θPm′

n (cos θ)eimφ. (2.22c)

Hence, applying boundary conditions yields the dispersion relation for TM modes







ε

ε0

jn(kr)
d
[

k0rh
(1)
n (k0r)

]

dk0r
− h(1)

n (k0r)
d[krjn(kr)]

dkr







∣

∣

∣

∣

∣

∣

r=R

= 0 (2.23)

Combining Eqs. (2.11) – (2.14) and (2.16) gives the analytic solution of the fields for

TE modes, while combining Eqs. (2.19) – (2.22) and (2.23) gives the analytic solution of
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the fields for TM modes. The modes are denoted by TEnmq or TMnmq, where n ∈ N is the

mode number, 0 ≤ m ≤ n is the number of azimuthal oscillations, and q ∈ N represents

the q-th root of the dispersion relation.

2.2 Methods

Python was used to solve for the radius of the dielectric sphere R in Eqs. (2.16) and

(2.23) at constant frequency 2.45 GHz, and also to generate the field profile data. The

dielectric of interest in this analysis is water, with complex permittivity ε satisfying Debye

model. The real part and the imaginary part of ε/ε0 are given by the Debye-type relaxation

function [2]

ε′(ω) = ε(∞) +
ε(0) − ε(∞)

1 + ω2τ 2
; (2.24a)

ε′′(ω) =
ωτ [ε(0) − ε(∞)]

1 + ω2τ 2
(2.24b)

where the parameters in the relations are low-frequency permittivity ε(0), extrapolated

high-frequency permittivity ε(∞), and relaxation time τ . Values of these parameters at

different temperatures are shown in Table 2.2. In this analysis, the temperature of interest

is 25 ◦C. Fig. 2.1 presents the complex dielectric constant of water at 25 ◦C as a function

of frequency. Hence, ε/ε0 = 77.19 + 9.7i is used for water in this analysis.

2.3 Results and Discussion

Generally, the field profiles of TE modes and TM modes are different since they satisfy

different boundary conditions. However, there are still some common characteristics for

each mode. The purpose of this section is to find the field characteristics of numbers in

mode notations, i.e., n,m, q, through examining the field profiles of first few modes. The

radius of the water sphere for each mode at 2.45 GHz is shown in Table 2.3. The field

amplitude of each mode is normalized for readability and convenience, where the color
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Temperature (◦C) ε(0) ± ∆ε(0) ε(∞) ± ∆ε(∞) τ ± ∆τ (ps)

10 83.92± 0.20 5.5± 0.2 12.68± 0.10

15 82.05± 0.20 6.0± 0.5 10.83± 0.20

20 80.21± 0.20 5.6± 0.2 9.36± 0.05

25 78.36± 0.05 5.2± 0.1 8.27± 0.02

30 76.56± 0.20 5.2± 0.4 7.28± 0.05

40 73.18± 0.20 3.9± 0.3 5.82± 0.05

50 69.89± 0.20 4.0± 0.3 4.75± 0.05

Table 2.2: Parameters of Eq. (2.24) at different temperatures [2].

Figure 2.1: The complex dielectric constant

of water at 25 ◦C as a function of frequency.

Figure 2.2: The normalized color scale for

field profiles in Section 2.3.
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TE modes TM modes

Mode Radius (mm) Mode Radius (mm)

TE101 6.88 TM101 9.81

TE102 13.81 TM102 16.86

TE103 20.77 TM103 24.00

TE201 9.91 TM201 12.69

TE211 9.91 TM211 12.69

TE221 9.91 TM221 12.69

TE301 12.74 TM301 15.42

Table 2.3: Water sphere radius at 2.45 GHz for each normal mode.

scale is shown in Fig. 2.2. In practice, the strength of resonance is determined by power

source and properties of resonant cavities (e.g., shape, size, material).

Starting from n, the mode number, Fig. 2.3 and 2.4 show the field profiles of TEn01

modes, while Fig. 2.5 and 2.6 show the field profiles of TMn01 modes. It is obvious that n

represents the number of poles, determining the basic profile of the fields. n = 1 modes are

dipolar modes, n = 2 modes are quadrupolar modes, n = 3 modes are octupolar modes,

and so on.

As for m, the azimuthal oscillation number, Fig. 2.7 and 2.8 show the field profiles

of TE2m1 modes, while Fig. 2.9 and 2.10 show the field profiles of TM2m1 modes. The

modes with same n but different m share the same solutions to the dispersion relations,

hence having the same pole numbers. m represents the number of azimuthal oscillations,

thus giving different ϕ-dependency. To be specific, for m = 0, the fields are azimuthally

uniform; for m = n, the azimuthal field profiles (i.e., those of xy-plane) indicate the

respective multipolar modes.

Finally, for q, the root number of the dispersion relation, Fig. 2.11 and 2.12 show the

field profiles of TE10q modes, while Fig. 2.13 and 2.14 show the field profiles of TM10q
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(a) TE101 (b) TE201 (c) TE301

Figure 2.3: Electric field profiles of TEn01 modes.

(a) TE101 (b) TE201 (c) TE301

Figure 2.4: Magnetic field profiles of TEn01 modes.
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(a) TM101 (b) TM201 (c) TM301

Figure 2.5: Electric field profiles of TMn01 modes.

(a) TM101 (b) TM201 (c) TM301

Figure 2.6: Magnetic field profiles of TMn01 modes.
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(a) TE201 (b) TE211 (c) TE221

Figure 2.7: Electric field profiles of TE2m1 modes.

(a) TE201 (b) TE211 (c) TE221

Figure 2.8: Magnetic field profiles of TE2m1 modes.
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(a) TM201 (b) TM211 (c) TM221

Figure 2.9: Electric field profiles of TM2m1 modes.

(a) TM201 (b) TM211 (c) TM221

Figure 2.10: Magnetic field profiles of TM2m1 modes.
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modes. The modes with same n but different q are derived from same dispersion relations,

having the same pole numbers but with larger R. This can be seen in the figures presented.

The field profiles with higher q modes are basically the same as those with lower q modes,

surrounded by a “shell” with same multipoles. Besides, due to the same m, these modes

basically have the same azimuthal dependency.
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(a) TE101 (b) TE102 (c) TE103

Figure 2.11: Electric field profiles of TE10q modes.

(a) TE101 (b) TE102 (c) TE103

Figure 2.12: Magnetic field profiles of TE10q modes.
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(a) TM101 (b) TM102 (c) TM103

Figure 2.13: Electric field profiles of TM10q modes.

(a) TM101 (b) TM102 (c) TM103

Figure 2.14: Magnetic field profiles of TM10q modes.
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Chapter 3

A Water Sphere Hit by a 2.45 GHz Plane

Wave: Analytical Analysis

The main purpose of this chapter is to examine the fields of a water sphere hit by a

uniform plane wave, and to compare those with the resonant fields in Chapter 2. What

causes the difference between these two? Furthermore, how does the radius of water

sphere affect the fields’ properties and power absorption rate, and why? In this chapter,

Section 3.1 derives the analytic solutions; Section 3.3 answers these questions through

analyzing field amplitude, field uniformity, and some representative field profiles.

3.1 Theory

Consider the same dielectric sphere discussed in Section 2.1 hit by a uniform plane

wave polarized at x-axis and propagating along z-axis. The total fields can be separated

into incident ones and scattered ones, and can also be expressed as the sum of TE modes

19
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and TM modes, i.e.,

E = Einc +Esc =
∞
∑

n=1

ET E
n +

∞
∑

n=1

ET M
n ; (3.1)

H = H inc +Hsc =
∞
∑

n=1

HT E
n +

∞
∑

n=1

HT M
n . (3.2)

The scattered fields are simply linear combinations of those generated by a spherical di-

electric resonator, including TE modes (Eqs. (2.11) – (2.14)) and TM modes (Eqs. (2.19) –

(2.22)). The coefficients of each modes are rearranged to an, bn, cn, dn, corresponding

to Anm, Bnm, Cnm, Dnm. For simplicity and readability, two of the Riccati-Bessel func-

tions [22] are in use later in the field expressions, which are

Sn(x) = xjn(x) and ξn(x) = xh(1)
n (x). (3.3)

As for the incident fields, following the assumption E,H ∼ e−iωt, the fields of the incident

plane wave can be expressed as

Einc = E0 e
ik0zx̂ = E0 e

ik0r cos θx̂; (3.4)

H inc =
E0

Z0

eik0zŷ = H0 e
ik0r cos θŷ. (3.5)

Harrington [23] shows that a plane wave can be expressed in terms of spherical wave

functions through

eiz = eir cos θ =
∞
∑

n=0

in(2n+ 1)jn(r)Pn(cos θ). (3.6)

Hence, the r-component of the incident fields are

Einc
r = Einc sin θ cosϕ = iE0 cosϕ

∞
∑

n=1

enn(n+ 1)
Sn(k0r)

(k0r)
2 P

1
n(cos θ); (3.7)

H inc
r = H inc sin θ sinϕ = iH0 sinϕ

∞
∑

n=1

enn(n+ 1)
Sn(k0r)

(k0r)
2 P

1
n(cos θ) (3.8)

where

en =
in(2n+ 1)

n(n+ 1)
(3.9)
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is introduced for convenience and the n = 0 terms are dropped since P 1
0 (cos θ) = 0.

Eqs. (3.7) and (3.8) can be seen as the r-component of TM modes and TE modes, respec-

tively. Then the other components can be constructed through observing the form and

comparing the coefficients in Eqs. (2.11)(2.19) and Eqs. (2.13)(2.21).

Thus, through Eqs. (3.1) and (3.2), the electric field components are

E−
r = iE0 cosϕ

∞
∑

n=1

cnn(n+ 1)
Sn(kr)

(kr)2 P
1
n(cos θ), (3.10a)

E−
θ = −E0 cosϕ

∞
∑

n=1

an

Sn(kr)

kr

P 1
n(cos θ)

sin θ

− iE0 cosϕ
∞
∑

n=1

cn

S ′
n(kr)

kr
sin θP 1′

n (cos θ), (3.10b)

E−
φ = −E0 sinϕ

∞
∑

n=1

an

Sn(kr)

kr
sin θP 1′

n (cos θ)

− iE0 sinϕ
∞
∑

n=1

cn

S ′
n(kr)

kr

P 1
n(cos θ)

sin θ
; (3.10c)

E+
r = iE0 cosϕ

∞
∑

n=1



dn

ξn(k0r)

(k0r)
2 + en

Sn(k0r)

(k0r)
2

]

n(n+ 1)P 1
n(cos θ), (3.11a)

E+
θ = −E0 cosϕ

∞
∑

n=1



bn

ξn(k0r)

k0r
+ en

Sn(k0r)

k0r

]

P 1
n(cos θ)

sin θ

− iE0 cosϕ
∞
∑

n=1



dn

ξ′
n(k0r)

k0r
+ en

S ′
n(k0r)

k0r

]

sin θP 1′

n (cos θ), (3.11b)

E+
φ = −E0 sinϕ

∞
∑

n=1



bn

ξn(k0r)

k0r
+ en

Sn(k0r)

k0r

]

sin θP 1′

n (cos θ)

− iE0 sinϕ
∞
∑

n=1



dn

ξ′
n(k0r)

k0r
+ en

S ′
n(k0r)

k0r

]

P 1
n(cos θ)

sin θ
. (3.11c)
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The magnetic field components are

H−
r = i

√

ε

ε0

H0 sinϕ
∞
∑

n=1

ann(n+ 1)
Sn(kr)

(kr)2 P
1
n(cos θ), (3.12a)

H−
θ = −

√

ε

ε0

H0 sinϕ
∞
∑

n=1

cn

Sn(kr)

kr

P 1
n(cos θ)

sin θ

− i

√

ε

ε0

H0 sinϕ
∞
∑

n=1

an

S ′
n(kr)

kr
sin θP 1′

n (cos θ), (3.12b)

H−
φ = −

√

ε

ε0

H0 cosϕ
∞
∑

n=1

cn

Sn(kr)

kr
sin θP 1′

n (cos θ)

− i

√

ε

ε0

H0 cosϕ
∞
∑

n=1

an

S ′
n(kr)

kr

P 1
n(cos θ)

sin θ
; (3.12c)

H+
r = i

√

ε

ε0

H0 sinϕ
∞
∑

n=1



bn

ξn(k0r)

(k0r)
2 + en

Sn(k0r)

(k0r)
2

]

n(n+ 1)P 1
n(cos θ), (3.13a)

H+
θ = −

√

ε

ε0

H0 sinϕ
∞
∑

n=1



dn

ξn(k0r)

k0r
+ en

Sn(k0r)

k0r

]

P 1
n(cos θ)

sin θ

− i

√

ε

ε0

H0 sinϕ
∞
∑

n=1



bn

ξ′
n(k0r)

k0r
+ en

S ′
n(k0r)

k0r

]

sin θP 1′

n (cos θ), (3.13b)

H+
φ = −

√

ε

ε0

H0 cosϕ
∞
∑

n=1



dn

ξn(k0r)

k0r
+ en

Sn(k0r)

k0r

]

sin θP 1′

n (cos θ)

− i

√

ε

ε0

H0 cosϕ
∞
∑

n=1



bn

ξ′
n(k0r)

k0r
+ en

S ′
n(k0r)

k0r

]

P 1
n(cos θ)

sin θ
. (3.13c)

Applying boundary conditions E− = E+ andH− = H+, the coeffieicents are

an =

√

ε/ε0 S
′
n(k0R)ξn(k0R) −

√

ε/ε0 Sn(k0R)ξ′
n(k0R)

√

ε/ε0 S ′
n(kR)ξn(k0R) − Sn(kR)ξ′

n(k0R)
en, (3.14a)

bn =
−
√

ε/ε0 Sn(k0R)S ′
n(kR) + S ′

n(k0R)Sn(kR)
√

ε/ε0 ξn(k0R)S ′
n(kR) − ξ′

n(k0R)Sn(kR)
en, (3.14b)

cn =

√

ε/ε0 Sn(k0R)ξ′
n(k0R) −

√

ε/ε0 S
′
n(k0R)ξn(k0R)

√

ε/ε0 Sn(kR)ξ′
n(k0R) − S ′

n(kR)ξn(k0R)
en, (3.14c)

dn =
−
√

ε/ε0 S
′
n(k0R)Sn(kR) + Sn(k0R)S ′

n(kR)
√

ε/ε0 ξ′
n(k0R)Sn(kR) − ξn(k0R)S ′

n(kR)
en (3.14d)

with en introduced in Eq. (3.9). The field expressions are equivalent as shown by Harring-

ton [23], with i replaced by −i due to the assumption E,H ∼ e−iωt.
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The time-averaged power per unit volume deposited into the medium is given by [24]

Ploss(x) =
1

2
ω Im(ε)♣E(x)♣2 =

1

2
ω Im(ε)A(x)♣E0♣2 (3.15)

where A(x) is the local power absorption rate factor defined as

A(x) =
♣E(x)♣2

♣E0♣2
. (3.16)

3.2 Methods

Field profiles were obtained through the same process as in Chapter 2. As for the power

absorption rate, given ω, ε, E0, the power absorption rate is determined by A(x) through

Eq. (3.15). Then the total absorbed power and field uniformity can be studied through

examining the mean power absorption rate factor A and its standard deviation σA, which

are defined as

A =

∫∫∫

V A(x) d3x

Volume
; (3.17)

σA =

√

√

√

√

∫∫∫

V

[

A(x) − A
]2

d3x

Volume
. (3.18)

The integrals were numerical calculated with Python in spherical coordinates using Simp-

son’s rule [25].

3.3 Results and Discussion

In this section, the comparison between resonant fields and fields with the presence

of a uniform plane wave is discussed first. Then, for all water sphere radii, which can

be generally divided into three regimes, the dependency of the field properties and the

physical reasons behind them are revealed.
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3.3.1 Field Analysis: Comparison with Normal Mode

Consider a water sphere of radius 6.8 mm hit by a 2.45 GHz uniform plane wave, where

its electric field profiles on three planes are shown in Fig. 3.1a. As a electromagnetic wave

hit a dielectric, the wave power will be partially absorbed, weakening the field strength

along the propagating axis (in this case, z-axis). Other than that, there are two primary

effects determining the field patterns, Resonance and Polarization Charge Shielding Effect.

Firstly, Table 2.3 shows that the predominant resonant mode in this case is TE101,

where its electric field profiles are shown in Fig. 3.1b. Note that the orientation has

been adjusted to correspond to Fig. 3.1a, and the field amplitude has been rescaled for

comparability. Observing Fig. 3.1a and Fig. 3.1b, the field profiles inside the sphere are

highly similar, while those outside the sphere have a great difference.

Secondly, Jackson [26] and Chu [27] give a clear explanation for the polarization

charge shielding effect. With the presence of an external electric field, the bound molecular

charges in a dielectric medium will be slightly displaced to form polarization charges,

partially cancelling the external electric field in the dielectric medium while strengthening

the electric field on the outside. In particular, consider a uniform dielectric sphere in a

uniform and static external electric field Eext = E0x̂. The surface polarization charges

σpol are given by [26]

σpol = 3 ε0



ε/ε0 − 1

ε/ε0 + 2



Eext · r̂. (3.19)

Fig. 3.1c shows the total electric field profiles, where the interior electric field Ein and

exterior electric field Eout are obtained analytically through

Ein =
3

ε/ε0 + 2
Eext, (3.20a)

Eout = Eext +
3r̂(p · r̂) − p

4πε0r3
(3.20b)

with p being the total dipole moment. Eq. (3.19) indicates that the electric field generated

from polarization charges is stronger along Eext, which agrees with Fig. 3.1a that the

exterior electric field is enhanced along x-axis. Indeed, observing Fig. 3.1a and Fig. 3.1c,
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the exterior electric field along x-axis are highly similar.

Summing up, in the case that a water sphere of radius 6.8 mm hit by a 2.45 GHz

uniform plane wave, the electric field pattern is a result of combined resonance and

polarization charge shielding effect. The interior field is mainly determined by resonance,

whereas the polarization charge effect takes a significant part when it comes to the exterior

field.

3.3.2 Field Analysis: General Dependency on Water Sphere Radius

Generally,A and σA are highly dependent on the radius of water sphere as demonstrated

in Fig. 3.2. This trend can be separated into three regimes, with the representative field

profiles shown in Fig. 3.3 and Fig. 3.4.

1. Regime I: R ≪ λwater

It is well known that the wavelength of an electromagnetic wave is shortened inside

a dielectric medium, which is given by [12]

λd =
λ0

√

ε/ε0

(3.21)

where λ0 is the wavelength in free space. Thus, in the presented case, λ0 =

122.4 mm and λwater = 13.9 mm. In this regime, the quasi-static limit is satis-

fied. In this limit, the resonant frequency is high above the frequency of the incident

wave. Hence, only polarization charge shielding effect takes presence. The fields are

then well approximated by those of the static case through Eq. (3.20), which gives

♣Ein♣ ≈ 0.038 and A ≈ 0.0014. (3.22)

Fig. 3.2, Fig. 3.3a, and Fig. 3.4a are in good agreement with Eq. (3.22), that A →

0.0014 and negligible σA as R → 0.

2. Regime II: λwater/2 < R < δ

In this regime, with the dimension of the water sphere exceeding the condition
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(a) With the presence of a 2.45 GHz uniform plane wave.

(b) Resonant field of TE101 mode (predominant mode).

(c) In a uniform and static external electric field.

Figure 3.1: Electric field profiles for a water sphere of radius 6.8 mm in three circum-

stances.
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for quasi-static limit, the water sphere behaves as a spherical resonator. Table 2.3

shows that TE101 mode is the predominant resonant mode at R = 6.8 mm, whose

field profiles are shown in Fig. 3.3b and Fig. 3.4b. The second one, TM101 mode,

is predominant at R = 9.8 mm, whose field profiles are shown in Fig. 3.3c and

Fig. 3.4c. It is clear that polarization charge shielding effect still takes a significant

part on the sphere exterior, while the resonance dominates the sphere interior. In

Fig. 3.2, A and σA vary dramatically with respect to R in regime II, which also

indicates the dominating behavior of resonances inside the sphere.

3. Regime III: R > δ

The power of the incident wave attenuates exponentially as penetrating into a

medium, and drops to 1/e as the incident wave penetrates beyond skin depth δ,

which is given by [12]

δ =
1

2 Im
√
µεω

≈ 17.2 mm for water at 2.45 GHz. (3.23)

Hence, as R increases beyond skin depth, A drops as in Fig. 3.2a. Besides, a greater

dielectric sphere allows several high-order resonant modes to exist at once. These

modes overlap to form smoother field patterns as in Fig. 3.3d and Fig. 3.4d, leading

to a drop of σA in Fig. 3.2b.

In conclusion, A and σA vary by orders of magnitude over R from 0.1 mm to 100 mm.

This is because that the field pattern is determined by polarization charge shielding effect,

resonances, and attenuated incident power, which have high dependency on the dimension

of the water sphere.
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(a) A as a function of R. (b) σA as a function of R.

Figure 3.2: A and σA as functions of R showing the behavior of both in three regimes.

(a) R = 1 mm (regime I) (b) R = 6.8 mm (regime II)

(c) R = 9.8 mm (regime II) (d) R = 50 mm (regime III)

Figure 3.3: Electric field profiles on the xy-plane for a water sphere of four radii hit by a

2.45 GHz uniform plane wave.
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(a) R = 1 mm (regime I) (b) R = 6.8 mm (regime II)

(c) R = 9.8 mm (regime II) (d) R = 50 mm (regime III)

Figure 3.4: Electric field profiles on the xz-plane for a water sphere of four radii hit by a

2.45 GHz uniform plane wave.
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Chapter 4

Gap Fields between Water Dimers Hit

by Plane Waves

In Chapter 3, the properties of the resonance and polarization charge shielding effect

for a water sphere are clear. In this chapter, the subject under study has been expanded

from single water sphere to water dimer. How do the interior and exterior fields differ from

those of single water sphere? How do resonant fields in two spheres affect each other?

How do polarization charge shielding effects from two spheres affect each other? Lin et

al. ’s study [1] for water dimers with ε/ε0 = 78.4 + 0.1i at 27 MHz and ε/ε0 = 77.5 + 10i

at 2.45 GHz can answer these questions.

Lin et al. ’s study [1] aims to give a detailed physical explanation to a interesting

phenomenon, sparks between two closely spaced grapes in a microwave oven. This

phenomenon was first scientifically discussed by Khattak [28]. Khattak states that the

sparks are caused by a electromagnetic hot spot in the gap of the water dimer, resulting

from the merging of resonant modes in two spheres. However, Lin et al. [1] give a different

explanation. There are three topics discussed, which are a dielectric sphere in a uniform

static electric field, a water dimer hit by a 27 MHz uniform plane wave, and a water dimer

hit by a 2.45 GHz uniform plane wave.

The model of interest is displayed in Fig. 4.1 with incident field amplitude Eext =

30



doi:10.6342/NTU202300933

4. Gap Fields between Water Dimers Hit by Plane Waves 31

400 V/cm. The incident wave is propagating along z-axis and polarized at x-axis. The

dimer of interest is aligned parallel to Eext.

Figure 4.1: Simulation model of a water dimer composed of two water spheres with

R = 7 mm separated by a variable gap width d, based on Lin et al. [1], Fig. 2a.

The first topic, a dielectric sphere in a uniform static electric field, has been discussed in

Section 3.3.1. Most importantly, according to Eq. (3.19), the induced polarization charges

are greater along Eext, and weaker on the sides perpendicular to Eext. When the subject

in a uniform static electric field is a dimer aligned along Eext as in Fig. 4.1, the induced

polarization charges on opposite sides of the gap are of opposite signs. Consequently,

more molecules are polarized on both sides, leading to a greater enhancement and thus

a stronger electric field in the gap. Moreover, the smaller the gap size is, the greater the

enhancment is. This is a well-recognized effect. The question of interest becomes whether

the enhancement is strong enough to drive up an air breakdown field in the gap.

In the 27 MHz case, the water dimer has a dielectric constant ε/ε0 = 78.4+0.1i, and the

wavelength of the electromagnetic wave inside the water dimer λwater ≈ 1240 mm ≫ R.

Thus the fields are quasi-static, and there are no resonances in the dimer. In Fig. 4.2a, the

simulation result (with gap width d = 0.5 mm) shows that the gap field is greatly stronger

thanEext, even in the absence of resonance. This suggests that the gap field enhancement is

caused by polarization charge shielding effect, where the induced charges are at maximum

along Eext. For comparison, Fig. 4.2b is the simulation result for the same dimer aligned

perpendicular to Eext. In this case, the induced charges on both sides of the gap are at
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minimum, causing no enhancement of the gap field.

(a) The simulation result with the wa-

ter dimer aligned along x-axis.

(b) The simulation result with the wa-

ter dimer aligned along y-axis.

Figure 4.2: Simulation results at 27 MHz polarized at x-axis under Eext = 400 V/cm for

different dimer orientations (both with d = 0.5 mm), based on Lin et al. [1], Fig. 2c and

Fig. 2g.

Moreover, Fig. 4.3a displays Eaxis profiles for four values of d, where Eaxis is the

on-axis electric field amplitude along x-axis. It is clear that for all profiles, Eaxis in the gap

region is much stronger than Eext, and smaller d gives a sharper peak of Eaxis in the gap

region. The size of the gap strongly influences the gap field strength, which can be seen

in Fig. 4.3b, where Egap = Eaxis(x = 0). In Fig. 4.3b, gap field strength reaches the air

breakdown strength (∼ 3 × 104 V/cm) at d ≈ 0.13 mm, which suggests that spraks can

be ignited with d ≲ 0.13 mm.

The explanation of polarization charge enhancement is also supported by the experi-

ment. The experiment was performed using a 27 MHz capacitor with Eext = 400 V/cm.

The thermal images of the dimer surface after a 35 s-exposure are displayed in Fig. 4.4.

Fig. 4.4a shows that the closer the spheres are, the higher the gap surface temperatures are.

Besides, Fig. 4.4b shows that the gap-sides of both spheres are not heated even with d = 0,

suggesting that there is no enhancement in the gap region.
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(a) Eaxis profiles along x-axis for several

values of d.

(b) Egap as a function of d.

Figure 4.3: Simulation results at 27 MHz polarized at x-axis under Eext = 400 V/cm for

different gap widths d, based on Lin et al. [1], Fig. 2d and Fig. 2e.

As for the 2.45 GHz case, the water dimer has a dielectric constant ε/ε0 = 77.5 + 10i.

According to Table 2.3 (though with a slightly different ε/ε0), a water sphere of R = 7 mm

works as a strong resonator at 2.45 GHz. As expected, Fig. 4.5 shows that there is a

resonant mode in each sphere. Compared with Fig. 3.1a, the interior electric field pattern in

Fig. 4.5a has no observable change. Thus, the resonance in each sphere is an independent

electromagnetic phenomenon. There is no evidence showing that the resonant modes

couple with each other, leading to an electromagnetic hot spot in the gap. Observing

the magnetic field pattern in Fig. 4.5b also supports the statement. The gap magnetic

field remains weak as gap width d narrows, showing that the effect of resonances is not

enhanced in the gap region. In contrast, as shown in Fig. 4.5a, the gap electric field rises

significantly as gap width d narrows. This is caused by the polarization charge shielding

effect, just as in previous case.

Experiment was also performed for 2.45 GHz using an antenna with Eext = 100 V/cm.

The thermal images of the dimer after a 10 s-exposure are displayed in Fig. 4.6. The results

also support the polarization charge enhancement theory, that the gap surface has a higher

temperature as gap width gets narrower in Fig. 4.6a, and there are no temperature rise
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(a) Thermal images of the surface of two R = 7 mm hydrogel spheres aligned parallel

to the electric field of the capacitor.

(b) Thermal images of the surface of two R = 7 mm hydrogel spheres aligned perpen-

dicular to the electric field of the capacitor.

Figure 4.4: Experiment results of the hydrogel dimer with three values of gap width d in a

27 MHz capacitor, where Eext = 400 V/cm and the exposure time is 35 s, based on Lin et

al. [1], Fig. 3b and Fig. 3d.

observed when the dimer is aligned perpendicular to Eext in Fig. 4.6b. Note that due to

insufficient magnetron power of the antenna, no sparks have been observed.

The enhancement in the gap region of the dimer at 27 MHz proves the electrical origin

for the sparking phenomenon. Even with the presence of resonances as in the 2.45 GHz

case, the polarization charge shielding effect still dominates over the resonant effect in

the gap region. More generally, for ε/ε0 = 77.5 + 10i, Fig. 4.7 displays the gap field

amplitudes as functions of frequency from 10 MHz to 10 GHz, whereEgap = Eaxis(x = 0)

and Hgap = Haxis(x = 0). Note that Fig. 4.7a is in log scale and Fig. 4.7b is in linear
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(a) Simulated gap electric field amplitude pattern.

(b) Simulated gap magnetic field amplitude pattern.

Figure 4.5: Simulation results of a water dimer with three gap distances d at 2.45 GHz

polarized at x-axis under Eext = 400 V/cm, based on Lin et al. [1], Fig. 6b and Fig. 6c.

scale. Over the range of interest, Fig. 4.7b demonstrates that the gap magnetic field is

barely influenced by the gap distance. Compared to Egap/Eext, Hgap/Hext shows the

smallness and fluctuating behavior of the fringe fields of the resonances. Moreover, it can

be observed in Fig. 4.7a that the gap electric field is independent of f at low frequencies

(< 3 GHz), again suggesting that the polarization charge shielding effect dominates over

resonant effect.

To be conclusive, Lin et al. [1] give a convincing explanation to the gap-sparking

phenomenon in water dimers, which is not caused by the merging of resonances in two

spheres but the polarization charge shielding effect. This is also evidenced by simulation

and experimental results.
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(a) Thermal images of the surface of two R = 7 mm hydrogel spheres aligned parallel to

Eext.

(b) Thermal images of the surface of two R = 7 mm hydrogel spheres aligned perpendicu-

lar to Eext.

Figure 4.6: Experiment results of the hydrogel dimer with three values of gap width d

placed in front of a 2.45 GHz antenna, where Eext = 100 V/cm and the exposure time is

10 s, based on Lin et al. [1], Fig. 7a and Fig. 7b.

(a) Simulated gap electric field amplitude

Egap/Eext in log scale.

(b) Simulated gap magnetic field amplitude

Hgap/Hext in linear scale.

Figure 4.7: Simulated gap field amplitudes as functions of frequency for different gap

widths d, based on Lin et al. [1], Fig. 5a and Fig. 5b.
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Chapter 5

Conclusion

This thesis consists of three parts. In Chapter 2, the analytic solutions for resonant

modes of a dielectric spherical resonator are derived. Besides, the field patterns for first

few modes are presented to visualize the field properties of different n, m, and q.

In Chapter 3, the behavior of a dielectric sphere incident by a uniform 2.45 GHz plane

wave is studied. It is shown that there are three regimes based on the dimension of the

dielectric sphere. In the first regime (R ≪ λwater), the interior field is weak and uniform.

In the second regime (λwater/2 < R < δ), the resonant effect becomes significant. The

interior field strength and distribution are thus highly dependent on the radius, while

generally stronger and more uneven than those in the first regime. In the third regime

(R > δ), the interior field strength becomes weaker as R increases due to field attenuation.

The field uniformity increases since high-order resonant modes overlap inside the sphere.

In Chapter 4, a paper about the behavior of a water dimer incident by a uniform plane

wave [1] is reviewed. It is evidenced that the sparks between two closely spaced dielectric

sphere are not caused by the resonance, but the polarization charge shielding effect. The

fact that it is not an electromagnetic phenomenon but a electrostatic one is consistent with a

further research by Liu et al. [10], in which the authors show that there is an attractive force

between dielectric spheres. Moreover, it is mentioned in Chapter 4 that the orientation of

the water dimer affects the temperature distribution in microwave heating, also due to the

37
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polarization charge shielding effect. Further researches of microwave heating for dielectric

objects with asymmetric shapes show that the orientation of the samples also plays an

important role in temperature distribution [29, 30].

In summary, this thesis investigates the interior and exterior field properties as dielectric

sphere(s) incident by a plane wave. Hopefully it gives some basical understanding to

microwave dielectric heating, and is useful for further researches.
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Appendix A

Helmholtz Equation and Its Solution

In this chapter, two kinds of helmholtz equation are discussed, scalar one and vector

one, both of which are useful in Section 2.1.

A.1 Scalar Helmholtz Equation and Its Solution

The scalar Helmholtz equation is given by the linear partial differential equation



∇2 + k2


ψ = 0 (A.1)

where ψ ≡ ψ(r, θ, ϕ) is a scalar eigenfunction. Chu [31] shows that using separation

of variables, the scalar eigenfunction ψ can be expressed as ψ = R(r)Θ(θ)Φ(ϕ), then

Eq. (A.1) becomes

r2 sin2 θ
R′′

R
+ 2r sin2 θ

R′

R
+ sin2 θ

Θ′′

Θ
+ sin θ cos θ

Θ′

Θ
+

Φ′′

Φ
+ k2r2 sin2 θ = 0 . (A.2)

Since ϕ only occurs in the Φ′′/Φ term, it can be solved first, i.e.,

Φ′′

Φ
+m2 = 0 (A.3)

where m is some constant. Thus, Φ is of the form

Φ ∼ eimφ . (A.4)

39
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Substituting Eq. (A.4) into Eq. (A.2), it becomes

r2

R



R′′ +
2R′

r
+ k2R



+
1

Θ



Θ′′ + cot θΘ′ − m2

sin2 θ
Θ



= 0 . (A.5)

Since r only occurs in the first term and θ only occurs in the second term, two terms can

be treated separately. Let the first term equals some constant n(n+ 1). Hence,

R′′ +
2R′

r
+



k2 − n(n+ 1)

r2

]

R = 0 ; (A.6)

Θ′′ + cot θΘ′ +



n(n+ 1) − m2

sin2 θ

]

Θ = 0 . (A.7)

The solutions to Eq. (A.6) are linear combinations of spherical bessel functions jn(kr) and

yn(kr), while the solutions to Eq. (A.7) are linear combinations of associated Legendre

polynomials Pm
n (cos θ) and Qm

n (cos θ). Thus,

R ∼















jn(kr)

yn(kr)















; (A.8)

Θ ∼















Pm
n (cos θ)

Qm
n (cos θ)















. (A.9)

The general solutions of ψ are given by Eqs. (A.4)(A.8) and (A.9), and specific ones can

be obtained by applying boundary conditions.

A.2 Vector Helmholtz Equation and Its Solution

The vector Helmholtz equation is given by the linear partial differential equation



∇2 + k2


ψ = 0 (A.10)

where ψ is a vector eigenfunction. Since the solution Chapter 2 deals with is a wave

function, the vector wave equation should be also satisfied, i.e.,

∇ × (∇ ×ψ) − k2ψ = 0 . (A.11)
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Collin [32] shows thatψ can be separated into transverse eigenfunction F and longitudinal

eigenfunction L, where they satisfy

∇ · F ≡ 0, ∇ × F ̸= 0 ; (A.12a)

∇ ×L ≡ 0, ∇ ·L ̸= 0 . (A.12b)

For spherical coordinate system, the solutions can be generated from the scalar function

ψ of the scalar Helmholtz equation, which is given by Eqs. (A.4)(A.8) and (A.9). The

longitudinal function can be obtained from the gradient of ψ, i.e.,

L = ∇ψ , (A.13a)

while the transverse function consists of two sets of solutions,M andN , where

M = ∇ × (rψ)r̂ ; (A.13b)

N =
1

k
∇ ×M . (A.13c)

Similarly, boundary conditions should be applied to obtain specific solutions.
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