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Abstract

Germanium-tin (GeSn) alloys have attracted much attention recently because of its
direct-bandgap characteristics for high-performance optoelectronic devices. Furthermore,
GeSn is very promising for the next-generation channel material MOSFET applications
due to its high electron and hole mobilities and compatibility with Si VLSI technology.
Despite the potential of direct-bandgap GeSn, there is few experimental results about
electrical transport reported while much optical data is available. Therefore, the band
structures and electrical properties of GeSn were investigated in this thesis.

In this thesis, electron transport properties in epitaxial GeSn films under different
strain conditions such as compressive-strain, strain-relaxation, and tensile-strain are
investigated. The epitaxial films are epitaxially grown by reduced pressure chemical
vapor deposition and the Sn fractions are 8 and 12 %. Hall bar devices are fabricated and
characterized at 4 ~ 300 K. Among all strain conditions, the electron mobility of tensile-
strained GeSn is the highest. For strain-relaxed GeSn, the electron mobility is higher as the
Sn fraction increases. Both could be attributed to a higher electron population in the I
valley, where electrons have a lower effective mass and high mobility. Applying tensile
stress on GeSn films or increasing the Sn fraction reduces the energy difference between
the I valley and the L valley. As a result, more electrons populate in the I" valley, leading
to a higher mobility due to the smaller effective mass.

To characterize the electron transport properties in n-GeSn, we perform TCAD
simulation of GeSn band structures. Effective masses and electron populations at I" and
L valleys are calculated. With Sn fractions of 0 ~ 20 %, the effective mass at the L valley
is 15 ~ 40 times larger than that at the I' valley. Among all strain conditions, tensile-
strained GeSn shows the highest electron populations in the I' valley. Moreover, for strain-
relaxed GeSn, the electron population in the I valley increases as the Sn fraction increases.
Both simulation results support the experimental data.
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PR R Y B F AR iZ (reduced pressure chemical vapor deposition, RPCVD)
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(a) Compressive  (b) Strain Relaxed (c) Strain Relaxed (d) Ten_sile
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N-Geg ggSNg 12 50 nm
50 nm

Geg ggSng 12 GBL
500 nm

Ge 300 nm Ge 300 nm
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N-Geg ;5N 08 Geg g,5Ng o3 25NM
x3

Ge 20~100 nm

SOl SOl SOl

B 2.4 (a)@ﬁﬁi‘%% ~ (b) s % 245 Geo92Snoos ~ (€)% %45 GeossSno.2 22 (d) £ &
RrBRgI HELEHET LH -

fﬁ‘{ﬁ)ﬁ%%%ﬁ:% B2 R B3t p :}%S‘a{r"ﬁ?l’k’ iﬁrré] F5o- K ﬁ%ﬁ}‘aéﬁ%’ 3
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(a) Compressive-strained  (b) Strain-relaxed (c) Tensile-strained
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23 BRHAGHEL DRER
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@ 384 0 F T L (Hallbarmesa) (v T4 (F(B] 2.8)c 7 L > APREH =
F 8 et K FIHEE 7 2 15x 1.0em 2 BLY o R FRGT G BB ARG D RA Y
PR~ EPIESARFARESMINT U E FHRIC #FET AZS214 ke g igfs
(95 °C ~ 90 )2 A& TR e 5 3% 12k B ficd(photolithography) # & B # T &
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(b) Mesa region Contact region

Mesa region definition
cr/ cr/

Au Au

n-GeSn
GeSn RB
Ge VS

Mesa etching () -i_

n-GeSn n-GeSn

¥ CF, orCl, based dry etching

Contact region definition

GeSn RB GeSn RB GeSn RB
Contact deposition

¥v" Cr(10 nm) /Au(200 nm) Ge VS Ge VS

by thermal evaporation

Ge VS
Si
Sio,
Si

Bl 2.8 Bf 5~ %482 (a)imf2fEm ~ (b) ik B2 (o) LB -
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Cr/ Crf

GeSn RB

Ge VS
Si
Sio,
Si
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Bk @] SV 213 W el
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3.1.1 NL-EPM 2% # 4
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