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Chapter 1

Introduction

Let E be an elliptic curve defined over Q. By definition, E poses a structure of

abelian group ([1], chap. III, § 2), and according to Mordell-Weil Theorem (loc.cit.,

chap. VIII), the Mordell-Weil group E(Q) that consists of rational points of E over

Q is a finitely generated abelian group. Moreover, the fascinating theorem of Mazur

([2], chap. III, § 5) tells us that the torsion subgroup of E(Q) must be isomorphic

to one of the following 15 groups:

Z/NZ, for 1 ≤ N ≤ 10 or N = 12 ;

Z/2Z × Z/2NZ, for 1 ≤ N ≤ 4.

The main step to prove Mazur’s theorem is the following:

Theorem I: Let E be an elliptic curve defined over Q. Then E contains no Q-

rational point of prime order p, unless p = 2, 3, 5, 7, or 13.

Judging from the content of the paper [2], one might think that this theorem is

still too much technically involved to be the subject of study for even an advanced

master-degree thesis. However, by more careful readings of documents, we have
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persuaded ourselves that it is possible to write an article explaining the proof of

Theorem I, based on background knowledge understandable to normal graduate

students, as long as we organize our story in a way that some of the main characters

are either well known or convincible, and hence they can be introduced without much

elaboration. Thus, the main theme of this thesis is set in such fashion. It turns out

that in our story there will be two “characters” introduced without giving proofs of

their “validation”. One is Faltings theorem (see Section 4.1), which we considered

as well-known, and the other is Mazur’s unramified theorem, Theorem 4.3.2, which

we shall try to make convincible (see Lemma 4.3.3). We are very satisfied with the

work and wish the readers a happy reading of our short story.
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Chapter 2

Properties of Elliptic Curves

The material of this chapter can be found in [1], chap. III and chap. VII

2.1 The Weil Pairing

Let E be an Elliptic curve defined over a number field K, and let E[n] denotes

the n-torsion subgroup of E(K̄) for n∈ N. Here K̄ denote the separable closure of

K. The structure of E[n] is well known:

E[n] ∼= Z/nZ × Z/nZ.

Let μn denote the group of n’th roots of unity.

Proposition 2.1.1: There exists the Weil pairing

en : E[n] × E[n] −→ μn

that satisfies

(a) Bilinear: en(S1+S2, T ) = en(S1, T )en(S2, T ), and en(S, T1+T2) = en(S, T1)en(S, T2)

(b) Alternating: en(T, T )=1
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(c) Non-degenerate: If en(S, T ) = 1, for all S ∈ E[n], then T = 0

(d) Galois invariant: σen(S, T ) = en(σS, σT ) for all σ ∈Gal(K̄/K)

To define the Weil pairing, we need the following lemma. Let [n] denote the

multiplication by n on E.

Lemma 2.1.2: Suppose Pi ∈ E(K̄), for i = 1, ..., k then the divisor Σk
i=1ni · (Pi) is

the divisor of a rational function on E if and only if the integer Σk
i=1ni = 0 and the

point Σk
i=1[ni]Pi = 0.

By the above lemma, for each T ∈ E[n], there exit a rational function f such

that

div(f) = n(T ) − n(O).

Also, for a point T ′ ∈ E(K̄) with [n]T ′ = T , there exit a rational function g such

that

div(g) = Σ(T ′ + R) − (R), where R ∈ E[n].

Then, for each S ∈ E[n], the Weil pairing is defined as

en(S, T ) = g(X + S)/g(X) ∈ μn.

Corollary 2.1.3: If E[n] is contained in E(K), then μn ⊂ K∗.

Proof. The non-degenerate property of the pairing implies the surjectivity, and hence

there exist points S, T ∈ E[n] so that en(S, T ) is a primitive n’th root of unity. Since

en(S, T ) = en(σS, σT ) = σen(S, T ), we conclude that en(S, T ) ∈ K∗.
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2.2 Elliptic curves over local fields

In this section we assume that E is an elliptic curve defined over a local field K

that is complete with respect to a discrete valuation ν. Let R denotes the ring of

integers of K, π denote an uniformizer of R and FK denote the residue field of R.

We assume that E is defined by a minimal Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

for each i let ãi denote the reduction of ai modulo π, and set the reduction of E

modulo π as

Ẽ : y2 + ã1xy + ã3y = x3 + ã2x
2 + ã4x + ã6.

The cubic curve Ẽ contains at most one singular point which, if exists, is ratio-

nal over FK . We say that E has good (resp. multiplicative, additive) reduction, if

Ẽ(FK), and hence Ẽ, contains no singular point (resp. a node, a cusp). Further-

more, E has split (resp. non-split) multiplicative reduction, if it has multiplicative

reduction and the two tangent lines at the node are rational (resp. not rational)

over FK . In any case, the set of non-singular points, denoted by Ẽns(k), still form

a group. If E has god reduction, then Ẽ is an elliptic curve. In general, if FK(
√

d)

denotes the quadratic extension of FK , then we have

Ẽns(k) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

F∗
K , if E has split multiplicative reduction;

FK(
√

d)∗/F∗
K , if E has non-split multiplicative reduction;

FK , if E has additive reduction.

(2.1)

For a point P ∈ E(K), let P̃ denote its reduction modulo π, and set

E0(K) = {P ∈ E(K) : P̃ ∈ Ẽns(k)}
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E1(K) = {P ∈ E(K) : P̃ = 0}.

Then both E0(K) and E1(K) are subgroup of E(K) and we have the exact sequence

of abelian groups

0 → E1(K) → E0(K) → Ẽns(k) → 0, (2.2)

where the right-hand map is reduction modulo π. Certainly, E(K)/E0(K) is trivial,

if E has good reduction. On the other hand, we have

Lemma 2.2.1: If E has either non-split multiplicative reduction or additive re-

duction, then the order of E(K)/E0(K) is at most 4. If E has split multiplicative

reduction, then E(K)/E0(K) is a finite cyclic group.

There is associated a formal group law F, so that for each k = 1, ..., the set

F(πk · R) form a group with

F(π · R) � E1(K) (2.3)

and

F(πk · R)/F(πk+1 · R) � FK . (2.4)

We shall identify F(π · R) with E1(K) using (2.3) and denote Ek(K) = F(πk · R).

Thus, we have the filtration:

· · ·Ek+1(K) ⊂ Ek ⊂ · · · ⊂ E1(K) ⊂ E0(K) ⊂ E(K), (2.5)

so that the decomposition factors are described as above.

Lemma 2.2.2: If E has good reduction and p is prime to the characteristic of FK,

then the extension K(E[p]) is unramified over K.

Lemma 2.2.3: Suppose E is defined over Qp with good reduction and P ∈ E(Qp)

is a point of order p. Then P 	∈ E1(Qp).
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Proof. Write P = (x, y). Then we have

p2rx(P ), p3ry(P ) ∈ Zp, with r = [
1

p − 1
] = 0.

In other words, both x, y ∈ Zp, and hence x̃ 	= ∞ and ỹ 	= ∞.

2.3 Isogenies

In this, section, assume that E is an elliptic curve defined over a field extension of

Q. Suppose E ′/K is another elliptic curve and ϕ : E −→ E ′ is an isogeny of degree

n. Then ker(ϕ) is a subgroup of E[n] of order n. Furthermore, it is in fact defined

over K stable. In other words, the action of the Galois group Gal(K̄/K) stable

ker(ϕ). The converse is also true. If Λ is a subgroup of E[n] stable under the action

of Gal(K̄/K) with |Λ| = n, then there is a degree n isogeny ϕ : E −→ E ′ defined

over K with ker(ϕ) = Λ.

Lemma 2.3.2: Suppose ϕ is an endomorphism of an elliptic curve E defined over

R. If ϕ is also defined over R, then ϕ ∈ Z.

Proof. Let E and ϕ have the property as assumption. We can choose a suitable

lattice Λ ⊂ C such that E ∼= C�Λ related by Weierstrass p-function and Λ is an ideal

of R, where R is a ring of integer of a quadratic imaginary field. The endomorphism

ϕ corresponds to complex multiplication by α ∈ C, that is, for z ∈ C�Λ corresponds

to a point P ∈ E, then αz corresponds to ϕ(P ). Also, since elements in Λ has the

form

Z + Z
√−d or

Z + Z
√−d

2
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, we have Λ = Λ, therefore

p(z; Λ) =
1

z2 +
∑

ω �=0∈Λ

1

(z − ω)2
− 1

ω2
= p(z; Λ)

, similarly p′(z) = p′(z), thus z will correspond to P . By above discussion, we have

that αz corresponds to ϕ(P ), and αz corresponds to ϕ(P ). But ϕ(P ) = ϕ(P ) since

ϕ is defined over R. This force αz = αz for arbitrary z ∈ C, thus α ∈ R. Meanwhile,

α must send the lattice Λ to itself, thus α ∈ Z and hence the proof.
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Chapter 3

The Class Group

The main reference of this chapter is [4], chap. V, and [3], §6.3

3.1 Ideal Class Group and Hilbert Class Field

In this section, we review a basic fact from the class field theory. Let K be a number

field, and let R be the ring of integers of K. The equivalence class of nonzero ideals

of R under the relation:

I ∼ J, if αI = βJ, for some non zero α, β ∈ R,

together with ideal multiplication as operation form a finite abelian group CK called

the ideal class group of K. Its order of is called the class number of K, denoted

as hK . Also, the maximal abelian unramified extension of K, called Hilbert class

field, satisfies the following property:

Proposition 3.1.1: Let K be a number field and H be the Hilbert class field of
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K. Then H/K is a Galois extension with Gal(H/K) isomorphic to the ideal class

group of K.

Suppose K/k is a finite Galois extension with Gal(K/k) = Γ. Then Γ acts on CK

via its action on the set of ideals of R. Furthermore, H/k is also a Galois extension

and Γ acts on Gal(H/K) via the conjugation (in Gal(H/k)) g �→ σgσ−1, for g ∈

Gal(H/K), σ ∈ Γ. Then the isomorphism in Proposition 3.1.1 respects these Γ

actions.

3.2 Irregular Prime and Herbrand-Ribet Theo-

rem

Let p be an odd prime number and let K = Q(μp), the p’th cyclotomic field. Then

p is an irregular prime, provided it divides the class number hK . The celebrated

theory of Kummer says that p is an irregular prime if and only if it divides the

product
p−3
2∏

k=1

B2k,

of Bernoulli numbers. Moreover, the question which Bernoulli numbers a irregular

prime exactly divides is answered by the theorem Herbrand-Ribet quoted below.

For convenience, we choose a generator ζ of the group μp which is considered as

a subgroup of Z[ζ], the ring of integers of K. Let A be the p-Sylow subgroup of ideal

class group of K and let Γ denote the Galois group Gal(Q(μp)/Q) ∼= (Z/pZ)×. Then

A is a Γ-module and, since the order of Γ is prime to p, can be decomposed as a

direct sum of eigen-spaces. Let ω : (Z/pZ)× −→ μp−1 be the Teichmüller character
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that is the inverse of the composition:

μp−1 ↪→ Z[ζ] −→ Z[ζ]/(1 − ζ)
∼−→ (Z/pZ)×.

Every (Dirichlet) character of (Z/pZ)× is of the form ωi for some i = 0, 1, ..., p − 2.

For each i, let

εi =
1

p − 1

p−1∑
a=1

ωi(a)σ−1
a ∈ Zp[G].

Then εi · εj = 0, if i 	= j, εi · εi = 1 and
∑p−2

i=0 εi = 1. Also, if we identify Γ with

(Z/pZ)×, then σ · εi = ωi(σ) · εi. Thus, for each i, the subgroup Ai := εi · A is the

ωi-eigen-space of A so that

A =

p−2⊕
i=0

Ai.

.

Theorem 3.2.1 (Herbrand-Ribet): The eigen-space Ai is nontrivial, if and only if

p divides Bp−i.

We shall need to apply the “only if” part of the theorem, which is exactly the

classical Herbrand theorem.

Corollary 3.2.2: Suppose we are given a finite Galois extension L over k, which

contains K so that L/K is a non-trivial everywhere unramified abelian p extension

and the Galois group Gal(L/K) is actually an ωi-eigen-space under the conjugation

action of Γ. Then p must divides Bp−i.

Proof. We have the projection π : CK
∼−→ Gal(H/K) −→ Gal(L/K). Also, CK =

A × C with |C| prime to p and the restriction of π to C is trivial. Therefore, the

projection π sends A surjectively to Gal(L/K). This implies that Ai is non-trivial.
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Chapter 4

The Proof of Theorem I

4.1 Faltings’ theorem

Here we quote a famous theorem of Faltings.

Theorem (Faltings): If X is an algebraic curve defined over a number field K with

the genus greater than 1, then X contains only finitely many K-rational points.

4.2 The modular curves X0(p) and X1(p)

The following theorem is first proved in [2], chap. III.

Theorem 4.2.1: If p is prime number and not equal to 2, 3, 5, 7 or 13, then X0(p)

contains only finitely many Q-rational points.

What we really need is the following, for which we give a proof using Faltings

theorem.

Theorem 4.2.2: If p is prime number and not equal to 2, 3, 5, 7, then X1(p) contains

only finitely many Q-rational points.
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Proof. From [5],§ 9.1, the genus of X1(N) is 0 if N ≤ 4, and for N ≥ 5 the genus of

X1(N) is given by

g = 1 +
N2

24

∏
p|N

(1 − p−2) − N

4

∏
p|N

[1 − p−2 + υp(N)(1 − p−1)2].

Thus for prime N, the genus of X1(N) is given by

g = 1 +
N2

24

∏
p|N

(1 − p−2) − N

4

∏
p|N

[1 − p−2 + (1 − p−1)2] =
(N − 5)(N − 7)

24
.

We conclude that the genus of X1(p) is greater than 1 if p ≥ 13. Then by Faltings’

theorem, X1(p) contains only finitely many Q-rational points if N ≥ 13, i.e. p 	=

2, 3, 5, 7, 11. To complete the proof, it remains to check the case p = 11. For the

case p = 11, the genus of X1(11) = 1 which implies that it is an elliptic curve. From

[6],§ 4.2, the minimal equation for X1(11) is

y2 + y = x3 − x2

which has only 5 Q-rational points, {O, (0, 0), (0,−1), (1, 0), (1,−1)}.

4.3 The field generated by E[p]

From now on, we assume that E is an elliptic curve defined over Q and P ∈ E(Q)

is a point of order p. We choose another point Q ∈ E[p] so that P and Q generate

E[p]. Let L = Q(P, Q) be the field extension generated by (the coordinates of) P

and Q. As before, let K denote the cyclotomic field Q(μp) and let ζ = ep(P,Q) that

is a generator of μp (as ep is non-degenerated). Then Corollary 2.1.3 implies that

L is a field extension of K. Set G =Gal(L/Q) and Γ =Gal(K/Q). Then Γ acts on

Gal(L/K) via the conjugation.
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As G acts on E[p] which is in fact a 2-dimensional Fp-vector space with P and

Q as basis, there is associated a representation

ρ : G −→ GL2(Fp).

Since P is fixed by every σ ∈ G, we have

ρ(σ) =

⎛
⎜⎜⎝

1 a

0 b

⎞
⎟⎟⎠

with a ∈ Fp, b ∈ F∗
p. Also,

σζ = σe(P,Q) = e(σP, σQ) = e(P, aP + bQ) = e(P,Q)b = ζb.

This implies the following lemma.

Lemma 4.3.1: Let notation be as above. Then the restriction of Galois action

G −→ Γ

is given by σ �→ b. Furthermore, the Galois group Gal(L/K) is either trivial or of

order p.

Theorem 4.3.2: If p is prime number and not equal to 2, 3, 5, 7 or 13, then, the

extension L/K is everywhere unramified.

The theorem is proved by Mazur in [2]. We are not able to reproduce it here.

However, we can treat the following cases. First, L/K is unramified at ∞, since we

already have K∞ = C.

Lemma 4.3.3: Suppose p 	= 2, 3. Then the extension L/K is unramified at a place

v if v satisfies any of the following conditions:
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1. E has good reduction at p and v is sitting over p.

2. E has good reduction at v and v is not sitting over p.

3. E has additive reduction at v and v is not sitting over p.

4. E has non-split multiplicative reduction at v.

Proof. Suppose the lemma do not hold and L/K is ramified (and hence totally

ramified). Let Lv and Kv denote the completion of L and K.

If E has good reduction at p, then by Lemma 2.2.3, P 	∈ E1(Qp), and since in

this case the formal group law is stable over the field extension Lv/Qp, we have

P 	∈ E1(Lv). Also, since the residual characteristic of Lv equals p, Ẽ[p] � Z/pZ

and is generated by the reduction P̃ . This means we can choose Q so that Q̃ = 0

and hence Q ∈ E1(Lv). Now, Lv/Qp is totally ramified with Galois group G and

the group E1(Lv) ∩ E[p], which is generated by Q, is stable under the action of G.

Consequently, the representation ρ must be reducible and we shall have G � Γ, a

contradiction.

For the rest of the proof, we assume that v is not sitting over p. If E has good

reduction at v, then Lv/Qp is unramified by Lemma 2.2.2.

If E over Lv has either additive or non-split multiplicative reduction, then Lemma

2.2.1 together with (2.1) as well as the filtration (2.5) implies E(Lv)∩E[p] is either

trivial or cyclic. This contradicts to the fact that E[p] ⊂ E(Lv).

Finally, if E has additive reduction over Kv, while it has either good reduction or

split multiplicative reduction over Lv, then the minimal Weierstrass equation of E

over Lv must be changed due to the change of coordinate (x′, y′) = (π−2r
L ·x, π−3r

L ·y).
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Again, Lemma 2.2.1, (2.1) and (2.5) tell us that P ∈ E0(Kv) and hence from the

above change of coordinate, we should have P ∈ E1(Lv). But this is absurd, since,

by (2.5), E1(Lv) is a q-group where q is the residual characteristic of v.

4.4 The proof

Now We complete the proof of Theorem I.

Proof. Assume that the theorem does not hold and there is an elliptic curve E/Q

with a Q-rational point P of order p for some p not equal 2, 3, 5, 7, 13. Then keep

the notation used in Section 4.3.

First, consider the case where L 	= K. Then, as L/Q is a Galois extension,

Gal(L/K) is a Γ-module and hence, as it is of dimension 1 over Fp, must be an

eigen-space. In fact, from

⎛
⎜⎜⎝

1 a

0 b

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

1 x

0 1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

1 a

0 b

⎞
⎟⎟⎠

−1

=

⎛
⎜⎜⎝

1 b−1x

0 1

⎞
⎟⎟⎠

we can conclude that it is an ω−1-eigen-space. Since ω−1 = ωp−2, by Corollary 3.2.2,

p must divide (the numerator of) B2 = 1/6. This is impossible.

Therefore, we can assume that K = L, always. Then the representation ρ is

reducible and there is a splits exact sequence of Gal (Q̄/Q)-modules:

0 → Z/pZ → E[p] → μp → 0

where the left-hand map is the composition Z/pZ
∼−→< P >↪→ E[p] and the right-

hand one is given by T �→ e(T, P ), with a section μp −→ E[p] given by ζ l �→ lQ.
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Consider the isogeny

ϕ : E −→ E1 = E/μp

given by the quotient map. Then P1 = ϕ(P ) ∈ E1 is a Q-rational point of order p,

and our assumption implies that L1 := Q(E1[p]) = K, and hence E1[p] splits as the

direct product of Z/pZ with μp. Therefore, We can form the isogeny

ϕ1 : E1 −→ E2 = E1/μp

and so on. Thus, we have obtained a sequence of μp-isogenies

E0 = E
ϕ→ E1

ϕ1→ E2
ϕ2→ ....

with a non-trivial point Pi ∈ Ei[p], for each i = 0, 1, .... Each pair (Ei, Pi) gives

rise to a Q-rational point on X1(p). By Theorem 4.2.2, there are only finitely many

such point, and hence we must have an isomorphism ψ : Ei � Ej for some i and

j > i. Since, from our construction, the point Pi is not contained in the kernel of

the composition ψi : Ei
ϕi→ · · · ϕj−1→ Ej, which is of degree pj−i, the endomorphism

ψ−1 ◦ψi ∈ End(Ei) cannot be contained in Z. But, since ψ−1 ◦ψi is defined over Q,

Lemma 2.3.2 says it must be contained in Z. This is a contradiction.
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