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Abstract

Learning user mobility from sensor embedded in portable everyday object is a dom-

inant research area in pervasive computing. As a kind of human activity, transportation

modes,such as walking, cycling, riding, driving, and etc., can provide more knowledge

for mobility understanding. This thesis explores how single low-level acceleromter

data from smart phones can be used to recognize high-level properties of user trans-

portation. Our method considers both commonsense constraint of transportation in-

frastructure and regular user behavior on carrying mobile phone. With de-orientation

and relabeling, we constructed the vibration, which was caused by both user action

and vehicle motion, layer and extracted discriminable pattern from it for transporta-

tion mode inference. Evaluated with 831 user-labeled trails from the daily lives of 17

data collectors over a period of one month, our system got an overall average accu-

racy of 89% for trail-based analysis and 78% for window-based analysis on 6 kinds of

transportation in urban city.

Keywords: Mobile Phone, Accelerometer, Context Sensing, Activity Recognition,

Transportation Mode
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Chapter 1

Introduction

In this chapter, we first present the motivation and basic idea for transportation mode

detection. Second, several challenges from previous researches are described for the

difficulty to solve the problem. Finally, we brief the organization of the entire thesis.

1.1 Motivation

Learning user mobility from sensor embedded in portable everyday object is a domi-

nant research area in pervasive computing. As a kind of human activity, transportation

modes, such as walking, cycling, riding, driving, and etc., can provide more knowl-

edge for mobility understanding. In the past few years, more and more researches

work on applications supported with this context-sensing technique in various field,

including green issues, personal information, geographic applications. For green is-

sue, researchers [12][16] aware people and persuade them into green transportation

1



2 CHAPTER 1. INTRODUCTION

behaviors in order to lessen their impact on the environment. To provide personal

information, transportation mode classification is used to support modeling user be-

havior and calculate personalized estimates of environmental impact and exposure

[22][27]. Also, aided with transportation mode recognition, geographic applications

[3][18][21][23][24][40] build closer connections between locality and mobility.

However, the existing approaches based on both GPS/GSM coarse-grained data

and wearable sensor-based fine-grained data could be improved in accuracy, range and

user load. On one hand, GPS/GSM approaches [22][33][39][40] performs weak on

transportation with low speed, such as bicycle. Also, this approach is out of work in

the place without radio signal, like metro underground. On the other hand, wearable

sensor-based approaches [9][31] provides wider range and better accuracy but extra de-

vices discourage people from using. It’s hard to convince people to wear or carry extra

device in daily life. Thus, we seek the approach to accurately detect the transportation

mode by users’ own object.

1.2 Research Objectives

Context sensing on transportation mode is a good motivation and can help researcher

to build application on it. To achieve this goal, we want to design and implement the

system embedded in object which people bring with them during transportation. By

analyzing the data from it, the transportation mode can be real-time inferenced and

utilized by context-aware applications.
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1.2.1 Transportation Mode Detection by Everyday Object: Mobile

phone

On considering what people carry with them during transportation, mobile phone is

a good choice since everyone have it. In recent years, the mobile phones with ac-

celerometer graduately becomes prevalent in market where account for 14% of the

overall mobile device sales in 2009 and are supposed to make up around 37% by 2012

[29]. Modern people bring the cell phone with them every day so it won’t require

human effort to bring extra equipments. As coarse-grained data, single accelerome-

ter data is more challenging than GPS/GSM methods. The user behavior will affect

the accelerometer reading while GPS/GSM methods are dependent from users. For

example, how and where user place acceleromter will influence the orientation of ac-

celerometer. To mining from these coarse-grained data, we first did de-orientation and

relabeling. Then, we constructed the vibration, which was caused by both user action

and vehicle motion, layer and extracted discriminable pattern. Finally, we built SVM

classifiers based on these features for transportation mode inference.

1.2.2 Transportation Transit Recognition

Another goal is recognizing when people tranit the transportation. During the change

of transportation, the experimenters tag the transportation mode before or after leaving

the vehicle. The action won’t be made immediately right on the moment of changing.

The advance or the delay depends on the user condition and the transportation circum-

stance. For example, user on ,who hurries to get out of the crowdy bus when reaching
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his destination, might label the data a few minutes later. However, transportation tran-

sit is also an importation information which not only can seperate two transportation

but also an useful context itself.

1.3 Challenges

To detect the transportation mode with single accelerometer on the mobile phone, there

are two critical challenges. As a everyday object, the mobile phone is limited to make

some strong assumptions in the experiment. Also, the supervised learning performs

poorly on the original label and raw data from accelerometer.

1.3.1 Limitation on Everyday Object

Detecting with a everyday object will face many problems caused by the user behavior.

Unlike strict-controlled experiments in the laboratory, there are many unpredictable in-

cidents outbreaking in the natural environment. Asking users to change their habits and

adapt to our device is not reasonable. Therefore, the common sense of human interac-

tion with machine should be considered for designing the sensing and feedback from

the device. Some strong assumptions appearing in the laboratory are not allowed in the

real life, such as binding the mobile phone to the body for accelerometer orientation

problem. These constraints could not be traded off due to the technical limitations.
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1.3.2 Feature Selection and Relabeling

Each transportation is not an instant event but a series of human action and vehicle

motion. The fact that people won’t be motionless leads to more noisy and confused

data to distinguish. Based on previous work, it’s hard to recognize by the coarse-

grained raw data from sensor, like acceleromter, GPS, GSM, and et al. Also, how

much data we should collect for each transportation detection is another problem. The

least certain collecting period decides how soon the system can inference and give

feedback to user. Only if it is short enough, the system could be made to be real-time.

How to select feature and relabel data is a key to transportation detection.

1.4 Thesis Organization

The thesis is organized as follows. In the beginning, we review related work on every-

day object and transportation activity classification in Chapter 2. Secondly, the lim-

itations on everyday object and using scenerio are introduced in Chapter 3. Thirdly,

we present our transportation classification methodology in Chapter 4. Fourthly, the

experiments are conducted to verify the feasibility and evaluate the performance of

our approach to transportation classification for trail-based analysis and window-based

analysis in Chapter 5. Finally, we conclude the contribution, describe the limitation for

deploying in real world, and explore some possible direction for future work in Chapter

6.
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Chapter 2

Literature Review

The chapter introduces some related works for activity recognition using everyday

object and transportation mode detection. First, we describe how researchs utilize

everyday object for activity classigication. Then, we present the current methods for

transportation detection.

2.1 Ubiquitous computing

Ubiquitous computing is a research field where information processing has been thor-

oughly integrated into everyday objects and activities. Researchers on ubiquitous com-

puting share a dream of small, cheap, robust networked sensing and processing devices

, distributed at all scales throughout everyday life and generally turned to distinctly

common-place ends [36]. We introduce ubiquitous computing researches from the

sensor embedded in the environment to using the everyday object itself.

7



8 CHAPTER 2. LITERATURE REVIEW

2.1.1 Sensor Embedded in Environment

Researchers image to enhance human life and solve problems by placing small, robust,

inexpensive, networked processing devices, distributed at all scales throughout every-

day life. Waterbot [2] is a system positioned at a bathroom sink to track the amount

of water used in each wash. The system contains flow sensors to detect the amount of

water usage. It functions as a platform for experimenting with safety, hygiene and wa-

ter conservation in a sink. The Playful Toothbrush [8] is an augmented toothbrush that

uses assists parents and teachers in motivating kindergarten children to learn proper

and thorough toothbrushing skills by linking their brushing actions to a game. The

system includes a vision-based motion tracker that recognizes different tooth brushing

strokes and a tooth brushing game in which the child cleans a virtual, mirror picture

of his/her dirty teeth by physically brushing his/her own teeth. KitchenSense [20] is

a kitchen strengthened with sensor networked that uses Common Sense reasoning to

simplify control interfaces and augment interaction. A centrally-controlled system de-

velops a shared context across various appliances by combining embedded sensor data

together with daily-event knowledge.

2.1.2 Handhelds Device

Recently, the well-spread smart phone integrated with complex sensors are graduately

attracting researcher’s attention. Frank Siegemund et al. [32] identify the means by

which smart objects can make use of handheld devices such as PDAs and mobile

phones, and derive the following major roles of handhelds in smart environments: (1)
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mobile infrastructure access point; (2) user interface; (3) remote sensor; (4) mobile

storage medium; (5) remote resource provider; and (6) weak user identifier. They

present concrete applications that illustrate these roles, and describe how handhelds

can serve as mobile mediators between computer-augmented everyday artifacts, their

users, and background infrastructure services. Christian Frank et al. [11] make a sys-

tem for monitoring and locating everyday items using mobile phones. They show the

design of object location system and provide an algorithm which can be used to search

for lost or misplaced items efficiently by selecting the most suitable sensors based on

arbitrary domain knowledge. Norbert Gyorbiro et al. [13] develope a novel system

that recognizes and records the motional activities of a person using a mobile phone.

They measure the intensity of motions by wireless sensors attached to body parts of

the user. Sensory data is collected by a mobile application that recognizes prelearnt

activities in real-time. Tomas Brezmes et al. [6] implement a real-time classification

system for some basic human movements using a conventional mobile phone equipped

with an accelerometer. They check the present capacity of conventional mobile phones

to execute in real-time all the necessary pattern recognition algorithms to classify the

corresponding human movements. No server processing data is involved in this ap-

proach, so the human monitoring is completely decentralized and only an additional

software will be required to remotely report the human monitoring. SoundSense [25]

is a scalable framework for modeling sound events on mobile phones. It uses a com-

bination of supervised and unsupervised learning techniques to classify both general

sound types and discover novel sound events specific to individual users. Tong Zhang

et al. [38] embed a tri-axial accelerometer in a cellphone, connect to Internet via the
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wireless channel, and using 1-Class SVM algorithm for the preprocessing, KFD and

k-NN algorithm for the classification of fall detection.

2.2 Transportation Mode Detection

Transporation mode detection is strong related to traffic issuses and is a research is-

sue for long time. Here, we present some researches which predict the transportation

modes that a user takes, such as walking, biking, and taking a bus. Their work can be

grouped into three general categories: (1) GPS/GSM localization-based method and

(2) wearable sensor-based method (3) applications .

2.2.1 GPS/GSM Localization-Based Method

The first category targets GPS/GSM location trace data. Lin Liao et al. [22] uses hi-

erarchically structured conditional random fields to generate a consistent model of a

personDs activities and places to extract a personDs activities and significant places

from traces of GPS data. They demonstrate that the model can be trained cross person

and achieves more than 85% accuracy in determining low-level activities and above

90% accuracy in detecting and labeling significant places with data of four differ-

ent persons, approximately seven days of data per person. Yu Zheng et al. [39][40]

propose an approach based on supervised learning to infer peopleDs vibration type

modes from their GPS logs. They identify a set of sophisticated features and propose a

graph-based post-processing algorithm to further improve the inference performance.

Their algorithm considers both the commonsense constraint of real world and typical
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user behavior based on location in a probabilistic manner. Timothy Sohn et al. [33]

explore how coarse-grained GSM data from mobile phones can be used to recognize

high-level properties of user mobility, and daily step count. Evaluated by a total of 78

days of GSM logs consisting of 249 walking events and 171 driving events, their algo-

rithm can recognize mobility modes among walking, driving, and stationary correctly

85time, and estimate daily step counts that approximates commercial pedometers. Us-

ing GPS and GSM consumes more energy and is limited to the environment where

the devices can receive signal from satellites and base stations. On the contrary,we

concentrated on the method with the energy-saving accelerometer and extended the

detectable range.

2.2.2 Wearable Sensor-Based Method

The second category includes attempts to exploit simple wearable sensor combina-

tion or complex mobile sensor platform for transportation mode detection. iLearn [31]

classifies human activities using the Apple iPhone’s 200Hz three-axis accelerometer

and the Nike+iPod Sport Kit. Evaluated with eight students performing four activities

in the lab, their results suggest activities including running, walking, bicycling, and

sitting can be recognized at accuracies of 97% without any training by an end-user.

UbiGreen [12] explore the use of personal ambient displays on mobile phones to give

users feedback about sensed and self-reported transportation behaviors. UbiGreen re-

lied on three sources for transportation data: a Mobile Sensing Platform (MSP) [9],

the phoneDs own GSM cell signals, and the participants themselves. MSP provides

inference on board and processes data from many sensors, such as microphone, light
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photransistor, 550Hz three-axis accelerometer, barometer temperature sensor, humid-

ity/temperature sensor, digital compass, and etc. Both of them require the extra device

attached to the user while we focused on using users’ mobile phone alone. In addition,

our algorithm could work on the accelerometer with less accuracy (25Hz) and less

sample rate. It’s more scalable to port to other mobile phone with basic acceleromter

2.2.3 Applications

The third category are those using existing transportation detection techniques to sup-

port their system. Ecorio [16] track users’ mobile carbon footprint and inspire them

to reduce and offset it from their cell phone. By helping user figure out his personal

contribution to global warming from logging and display the transportation, it aims to

presuade people to transfer to transportation with less or no greenhouse gas emission.

As a participatory sensing application, PEIR [27] uses location data sampled from ev-

eryday mobile phones to calculate personalized estimates of environmental impact and

exposure. PEIR system automatically segment location data into trips by mobile hand-

set based GPS location data collection and server-side processing stages for activity

classication to determine transportation mode. Then, it lookups of traffic, weather,

and other context data needed by the models and uses efficient implementations of

established models for environmental impact and exposure calculation. Lin Liao et

al. [23] learn and infer a userDs daily movements through the community by a hi-

erarchical Markov model . Significant locations such as goals or locations where the

user frequently changes mode of transportation are learned from GPS data logs with-

out requiring any manual labeling. Lin Liao’s another work [24] learn personal maps
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customized for each user and infer his daily activities and movements from raw GPS

data. In the model, transportation mode is estimated from raw GPS data and is at the

lower level for building the middle level goal. Among these applications, transporation

mode detection plays a importation role for building higher level model or providing

context to analysis and respone to user.



Chapter 3

Design Consideration on Mobile Phone

To fulfill the goal of detecting transportation mode by everyday object mobile phone,

some constraints on ubiquitous computing were considered. Ubiquitous computing

engages many sensing from environment and computations for transpotation in real

time, and better not be aware by user that they are doing so. Except the accuracy and

response time, which are tranditional measurements for activity recognition, the po-

tential environment obstacles, the system requirement, such as power, user behaviors,

and user feeling, like privacy, are important factors to forge a pratical everyday object

in real world. In the following, we describe the limitaions on device user may concern.

The detail for implementing the system is mentioned in the next chapter.

14
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3.1 Without Researcher Supervision in Natural Envi-

ronment

As an everyday object, the device is supposed to use by people in natural environment.

Without supervision from researchers, user may arbitrarily operates the device with his

imagination. They might not follow the instructions and neglect any warnings from

machine. From the experiences by Ling Bao et al. [4], they excutes a seris of user-

annotated acceleration experiments on 20 everyday activities and show the result of

95.6The design should prevent users from crashing the device or spoiling the required

condition for detection.

The robustness and error-tolerant is an elemental specification for the device. Un-

like the experiment in the lab, researchers wouldn’t be able to recover and fix the de-

vice right away when it is broken or out of order. In our experience, the duration from

user’s breaking device to researcher’s recovery might be several days, sometimes even

a week. It might force the experiment to extend to remedy this fixing period. There-

fore, the return for repairing should be avoid by preparing problem shooting routine in

advance. Even if the user misuse the device, it is supposed to keep partial functioning

and log the error for tracking.

3.2 Power-Saving and System Requirement-Reducing

Power consumption is a critical issue for mobile phone since it is not wired and re-

quires people to recharge frequently. As an additional service, turning on transporta-
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Table 3.1: Power consumption before and after running the system with acceleromter
Before After

Power 760 mW 786 mW
Current 210 mA 207 mA

tion mode detection should not reduce battery life too much and threaten other mobile

phone services. Although the high power-consumption hardwares, that were GPS and

wifi on the mobile phone, could provide more information like velocity, location, and

surrounding buildings for inference ,they were abandoned to save energy.

In the trade-off between energy and sensing data, we chose to detect transportation

mode by single accelerometer. We measured the power usage before and after running

our program with acceleromter. As shown in Figure 3.1, the result shows a litte more

power consumption which is acceptable. Also, similiar results is reported in MohanDs

research [26] on the mobile phone for traffic condition where it shows accelerometer

cost almost trivial energy compared to the mobile phone.

Also, the device shouldn’t be special customed and only available to a few peo-

ple. As a additional service on mobile phones with single acceleromter, the program

should be run on most of moblie phone with same level. Thus, we reduce the system

requirement to the least standard among mobile phones with single acceleromter when

designing the algorithm. The feature selection and relabeling techniques described in

the next chapter were done for reducing system requirements.
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3.3 Privacy

With personal information from a ubiqutious computing device, context-sensing and

context-aware applications can provide appropriate services for people. However, the

privacy issues are raised by the personal information. Without extra security promise,

people may resist and hesitate to use something which uses and possibly leaks his

private data. Take GPS for example, it is a great context-sensing tool which provides

location and velocity but involved privacy issues have been discussed and debated for

long time [17]. Some approaches by either distributing the privacy [14] or reframing

interaction [35] are addressed by previous researches for this challenge.

Another way to avoid the privacy issue is collecting less-sensitive information from

users. In the price of being a little less accurate, shifting to other sensors, which people

get used to or are not concern with, or dirty the data collecting process with noise is

considerable. According to the statement that sensitivity of information refers to the

impact of disclosing information [1], the accelerometer is a less-sensitive sensor where

most people don’t care their acceleration data are revealed. The privacy concern is

another reason to support using single accelerometer only and discarding other sensers

on mobile phone.

3.4 Using Scenerio

Since we designed to provide more context instead of replacing original functionality,

the mibile phone is supposed to maintain its normal services during user’s daily life.

One critical concern is the position of mobile phone placed by the user might affect the
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strength of vibration and the orientation of accelerometer. People might put cell phones

in any pocket with arbitrary orientation and replace them in different orientation or

position after usage. Also, the pocket size, pocket looseness, and other objects in

pocket might weaken the strength of vibration by absoring the force. Therefore, we

proposed de-orientation to solve orientation and relabeling to lessen the variance of

vibration strength in the following section.



Chapter 4

Transportation Mode Detection

In this chapter, we address the processing flow shown in Figure 4.1 for transportation

detection. First, we demonstrate the pre-processing technique to de-orientation and

relabeling raw data from accelerometer. Then, the approach to cluster pre-processed

data into vibration type related to physical vibration without labeling from user is de-

scribed. Finally, we present the transportation mode classification from the vibration

data.

4.1 Pre-Processing

For each sensing from accelerometer, the raw data are 3 independent values for 3-axis.

They were processed to solve the orientation problem, filter the noise, and reduce the

feature space before converting them into vibration type.

19



20 CHAPTER 4. TRANSPORTATION MODE DETECTION

Figure 4.1: Process flow.

4.1.1 De-Orientation

The orientation problem shown in Figure 4.2 is critical for accelerometer embedded in

something since the coordinate of accelerometer is different from that of the vehicle,

that is human body in this thesis. We would like to know the acceleraion/deceleraion

of body instead of the device embedded with accelerometer so the mapping function

should be found. Nericell [26] propose a solution to map variables from accelerometer

to vehicle with some strong assumptions that are not for general purpose. The system

assumes that there exists other known force as strong to compared to gravity and uses

eular angle to reorient. The alternative common solution is fixing the device with

accelerometer to the vehicle. However, this solution is not pratical for using scenerio

and is against our design limitation for everyday object described above.

We observed a phenomenon that the usage and fatigue level of peopleDs legs was

based on the vibration of transportation when moving from one place to other place. In

other word, the vibration of the transportation makes people unconsciously tense his
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Figure 4.2: Orientation of accelerometer and that of the body.

leg muscle to keep body balance. For example, people feel more leg vibration riding

on the bus than sitting in a car. More stable and comfortable the transportation provides

leads to less vibration and fatigue people suffer in the travel. Through this concept, we

tried to detect transportation mode by measuring the vibration on legs. In physics, jerk

is used to sense stress changes and to adjust their muscle tension [34]. Theoretically,

the jerk function is consider to be a vector in the form shown in Equation 4.2. However,

we tested four different formulas shown in Equation 4.1, Equation 4.2, Equation 4.3,
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Equation 4.4 with trail-based evaluation to adapt to accelerometer measurement on

the smart phone. The result in Figure 4.3 shows that Equation 4.2 outperforms than

others. Therefore, we defined the vibration on userDs leg by summing up the absolute

value of jerk, that was the change of three-axis accelerometer, as shown in Equation

4.1 where X was x-axis accelerometer reading, Y was y-axis accelerometer reading,

Z was z-axis accelerometer reading, and t was time. In this way, the re-orientation

problem due to arbitrary placement of mobile phone was avoided. Also, the inaccurate

accelerometer problem is lessened because the orientation of two sequential readings

is similar and their subtraction eliminate the error caused by the orientation [28].

V ibration = |Xt −Xt−1|+ |Yt − Yt−1|+ |Zt − Zt−1| (4.1)

V ibration =
√
(Xt −Xt−1)2 + (Yt − Yt−1)2 + (Zt − Zt−1)2 (4.2)

V ibration = Minimum(|Xt −Xt−1|, |Yt − Yt−1|, |Zt − Zt−1|) (4.3)

V ibration = Maximum(|Xt −Xt−1|, |Yt − Yt−1|, |Zt − Zt−1|) (4.4)

4.1.2 Feature Selection and Relabeling

For sensing device, there are two acceleration/deceleration sources to consider: the

user and the vehicle. The action taken by user and the motion changed by vehicle both

influence the vibration. Since we couldn’t seperate them apart, we defined user action
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Figure 4.3: The vibration equation comparison.

and vehicle motion as a pair of vibration source shown in Equation 4.5. We selected

the feature from this vibration source pair for transportation mode prediction.

V ibrationSource = f(UserAction, V ehicleMotion) (4.5)

Figure 4.4 shows a example of vibration for six kinds of transportation mode.

It’s hard to recognize the transportation mode by measuring the properity of vibra-

tion value, such as minimum, maximum , standard error, standard deviation, quartile,

mean, meadien, and etc. As shown in Figure 4.5, even using FFT(fast Fourier trans-
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form) to transform to frequency domain won’t help to extract features. The reason is

that multiple transportation shares the same vibration source during some period of

time. To be more clear, the vibration was caused by user actions and vehicle motions

which compose the travel of the transportation. The same actions appear during dif-

ferent transportation, like sitting on bus and sitting in car. Also, different motions by

different kinds of transportation may lead to similar vibration, such as immediately

braking in gasoline-powered vehicle: car, bus, and motorcycle. Moreover, It’s possible

for similar vibrations to exist under different action and different motion, for example

waiting for the traffic light during walking and sitting on MRT.

Figure 4.4: Vibration samples of six kinds of transportation mode. From above to
below: all, motorcycle, bicycle, walking, MRT, car, bus.

As a result, we first focused to convert the vibration data into the corresponding

vibration source. The vibration type was proposed to model different pairs of vibration

source. To form the vibration type, we generated histograms by using non-overlapping

moving window over the sequential vibration data. Different kinds of window size
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were tested for minimum duration with discriminability of histogram pattern. His-

tograms produced with selected minimum window size should have similar graphic

contours as those produced with other larger window sizes. In the other word, his-

tograms created from the selected window size and those created from other larger

window sizes share the same shape but differ in the scale due to the repeated cycle.

Since the sample rate of the chosen accelerometer was low, the unnecessary details

were neglected and the major feature, that is distribution of the histogram, is kept.

This will reduce computation without general loss of feature. The similar technique

is mentioned in Dong et al.Ds research [10] that they project feature vectors into an

auxiliary space using locality sensitive hashing and to represent a set.

4.2 Vibration Type Clustering

With histogram series from above, we converted each histogram to vibration type with-

out labeling on vibration type from users. We first defined samples and then classified

the data by these samples. Two methods for sample definition and two methods for

classification with different features were proposed.

4.2.1 Vibration Type Sample Definition

A small amount data were randomly extracted from the whole data set to define sam-

ples for convertion in this process. The sample could be retrieved from early data

collection, too. The coverage over all users is not required by this process. The sam-

ple definition was desinged to extract features and was not involved in the supervised
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learning process for each user.

Human Definition

For the first method, we observed and divided these histograms into nine kinds of

vibration types, shown in the Figure 4.6, by their shape, distribution, and position in the

histogram. Some properties like Median, Mean, SD, SE, skewness, and kurtosis [15]

were used for helping clustering histogram. Vibration types are not unique in only one

transportation mode since they are caused by low-level motions. Some transportation

modes share the same vibration types but with different number and order sequence.

Some types of histogram pattern represent specific vibration caused by physical action,

for example, type 1 in Figure 4.6 is caused by vibration of regularly lifting and putting

down the leg. The other vibration types are generated by the traffic vehicles, such as

type 7 in Figure 4.6 is due to the slight swing of bus or car. Still others are not clearly

identified for the mapping to single physical vibration for multiple factors.

K-Clustering

In order to automatically create samples for the scalability and unsupervision , we

processed the small amount data with K-clustering using MDPA(minimum distance

of pair assignment) as similarity function. MDPA [7] takes the similarity of the non-

overlapping parts of histogram into account as well as that of overlapping parts in

linear time.

To compare with the human defined sample, we tested the accuracy for sample

defined with the same data and setting. Since the sample defining process used time
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as random seed to initialize, we repeated 5 times for each cluster amount. Result for

trail-based analysis is shown in Figure 4.7. The purple mark and the black line rep-

resents the average accuracy and the range from minimum to maximum of accuracy

for repeated 5-time test of k-clustering while the red line represents the accuracy of

human-defined samples. The accuracy of best machine-defined samples is worse than

that of human-defined samples. Moveover, the sample amount created by K-clustering

method is much more than human definition for the reason that human definition picks

up only a few representative instances while k-clustering cluster all instances into sam-

ple groups. To reduce computation time and increase accuracy, we still used human-

defined samples in the following experiments.

4.2.2 Vibration Type Classification

With the predefined samples, we classified histogram series into vibration type series.

We introduce the two approachs using different features for classification.

Histogram Bin as Feature

First, we treated each histogram bin as a feature and did supervised learning. Among

all the classifier we tested, the multiple layer perceptron was chosen for better accuracy.

These features made the histograms with similar skelton classified into corresponding

class. The big picture of histogram was saved by this method. However, some weak

but important cues were ignored because the relative position of histogram bin was not

considered. For example in Figure 4.6 , vibration type 6 and vibration type 9 were of-

ten confused by this method for two dots in the rightest. Those two dots was important
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for the meaning that user instantly encountered a strong acceleration or deceleration.

The other shortcoming is larger computation time due to the large amount of feature.

Therefore, the second feature space was proposed for better performance in the fol-

lowing.

KNN with MDPA as Similarity Function

On our observation of physical motions, when the vibration user took altered from

mild to severe, elements whose amount was fixed in histogram moved from left(low

acceleration/deceleration change) to right(high acceleration/deceleration change). As

a result, MDPA was suitable for measuring difference between two histograms. We

used KNN (K-nearest-neighbor) with MDPA as similarity function for classification.

Calculating the distances between the judgeing histogram and each histogram in pre-

defined sample, the histogram was categoried to be the vibration type with smallest

average distance of that type. MDPA calculated how many steps to move from one

histogram to another histogram in linear time. Hence, the computation complexty

for each histogram was reduced to O(mn) where m was sample amount and n was

histogram bin amount. it was much faster than using histogram bin as feature and

training with multilayer perceptron which we terminated the network with limit time

before it really converged. Also, the small amount of dots in previous example was

solved by weighting these far away dots with more moving steps.
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4.3 Transportation Mode Classification

From the vibration type clustering, we converted the data into a series of vibration type.

In the following, we described two methods with different feature space for supervised

learning on these vibration type data with user labeled transportation mode.

4.3.1 Vibration Type Occurance Probability as Feautre

From the sequential vibration type series, we observed that the occurrence frequency

of each vibration type was different for each transportation mode. Some vibration

type has more chance to appear in some transportation mode while the other vibration

type rarely exists in the same transportation mode. Some transportation mode has

its own dominant vibration type which is seldom found in other transportation mode.

We examined the occurrence probability of vibration type in each trail to distinguish

different transportation modes. Figure 4.8 shows the CDF (cumulative distribution

function) of probability distribution of vibration type occurrence in each trail of six

transportation modes for nine vibration types. If the CDF grows fast to top, most trails

of this transportation have lower occurrence probability of this vibration type. On the

contrary, if the CDF converges slowly to top, most trails of this transportation have

higher occurrence probability of this vibration type. For example, a point with x=70%,

y=28.6% in the CDF of walking of vibration type 1 (shown in the green line in the left-

top graph in Figure 4.8) means that occurrence probability of vibration type 1 for the

least 28.6% of walking trails is less than or equal to 70%. The vibration type is hard to

separate two transportation modes well when their CDFs are close to each other. For
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example, the CDFs of motorcycle and bicycle of vibration type 7 (red line and deep

blue line shown in the left-most and fourth-from top graph in Figure 4.8) are twisted

and are hard to distinguish with this vibration type.

Based on this finding, we used occurrence probability of each vibration type in

the specific window size of transportation trail as feature to build classifier. Small

amount of feature is computation-saving which is important for inference on the mo-

bile phone. There are nine features and each feature is dependent on other features

because the sum of all occurrence probability of each vibration type is 1. We filtered

the algorithms which assumed the independence between feature and another feature,

like naive bayes [30]. Each feature space is from 0% to 100% with interval unit 1%

and is linear because each feature is occurrence probability of each vibration type.

Therefore, we selected three common linear classifiers: SVM with linear kernel, lo-

gistic regression, and multilayer perceptron to compare with. We learned models and

classified transportation mode over our extracted features the Weka machine-learning

toolkit [37].

4.3.2 Vibration Type as Feautre

We observed another phenomenon that the vibration series was meaningful in their

sequential order. During different transportations, user’ physical motion causes dif-

ferent vibration combinations. We assumed 10 seconds as a unit for each vibra-

tion combination made up of 5 vibration type instance. Using CRF(Conditional ran-

dom field), we treated each label of transportation mode as the hidden nodes and the

group of vibration type as the observations. Figure 4.9 shows the dependency struc-
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ture between the hidden nodes and observations. Each segment was represented by

5 features, X1
i , X

2
i , X

3
i , X

4
i , X

5
i , which were vibration type data. The assumption

was that the transportation mode of segment i(Yi) depends on the label of current

segment(X1
i , X

2
i , X

3
i , X

4
i , X

5
i ).

CRF uses feature functions to calculate the conditional probability distribution.

For feature functions, we used only the uni-gram functions between the label and the

feature of one segment. For each combination of a hidden node and its 5 features, a set

of feature functions is defined for every transportation mode as Equation 4.6.

fa,k(Xi, Yi) =


x, if Yi = a and Xk

i = x

0, otherwise.
(4.6)

where a ∈ TM ∪ P, k = 1, 2, ..., 5.

In this research, we use an open source API CRF++ [19] for implementation. In

training phase, given the training data D = (D1, D2, ..., DN) where Di = (Ai, Xi),

the learning criteria was to find the weight vector w that maximized the log-likelihood

of the training data. In prediction phase, given the observation of segments X =

X1, X2, ..., XN , we got the label sequence Y = Y1, Y2, ..., YN with the maximum con-

ditional probability as the output. Then the label sequence in the specific window size

of transportation trail voted for the transportation mode inference in this duration.

4.4 Three Combinations

For this two-layer approach: vibration type clustering and transportation classification

to infer modes of transportation, there were two approaches for each layer. There are
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three combinations shown in Table 4.1 by picking up one approach from each layer.

The first combination was multilayer perceptron using histogram bin as feature in first

layer and SVM using vibration type occurance probability as feautre in second layer.

The second combination was KNN using MDPA as similarity function in first layer

and SVM using vibration type occurance probability as feautre in second layer. The

third combination was KNN using MDPA as similarity function in first layer and CRF

using vibration type as feautre in second layer. Among three combinations, the second

combination was implemented on mobile phone for real time transportation detection

due to better performance than others.

Table 4.1: Three combinations for transportation mode prediction
Combination Vibration type clustering Transportation classification
MLP+SVM multilayer perceptron using SVM using

histogram bin as feature vibration type occurance probability as feautre
KNN+SVM KNN using SVM using

MDPA as similarity function vibration type occurance probability as feautre
KNN+CRF KNN using CRF using

MDPA as similarity function vibration type as feautre
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Figure 4.5: Vibration in frequency domain samples of six kinds of transportation mode.
From above to below: all, motorcycle, bicycle, walking, MRT, car, bus.



34 CHAPTER 4. TRANSPORTATION MODE DETECTION

Figure 4.6: Human defined nine vibration type patterns. Each figure is a histogram
where x axis is bin and y axis is number of sample..
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Figure 4.7: The trail-based analysis accuracy on different cluster amount. The purple
mark and the black line represents the average accuracy and the range from minimum
to maximum of accuracy for repeated 5-time test of k-cluster. The red line represents
the accuracy of human-defined samples.
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Figure 4.8: CDF (cumulative distribution function) of probability distribution of vibra-
tion type occurrence in each trail of six transportation modes for nine vibration types.

Figure 4.9: The CRF model. The assumption was that the transportation mode of
segment i depended on the 5 features of observation of segment i.



Chapter 5

Experiment Design and Result

In this chapter, we present the design and results of our experiment. First, we compared

four formulas for defining vibration equation. Second, we introduce the collecting

device, progross for subjects to collect, and data description. Third, the evaluation for

post-hoc and real-time detection from mixed data from all subjects is shown. Finally,

we evaluated the data from each individual subject as basic unit for cross validation.

5.1 Data Collection

To explore the feasibility of our approach for classifying transportation activities, we

collected data from 17 subjects in 4 experiments performing several of six activities in

their daily life: walking, bicycle, bus, car, motorcycle, and MRT. Noticeably, user was

told to record the data during his daily transportation and was not required to perform

all kinds of transportation activities. Also, user was allowed to stop logging for privacy

37
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or any other personal reason. Some people may place the mobile phone somewhere

and forgot to take with them or misplace them in the bags. The data were abandoned

in these situations when they reported. Each travel from one place to another place

was divided into several trails where each trail was labeled to be only one kind of six

transportation mode. The duration of each trail varied from 5 minutes to hours due to

the different routine the user take. We trimmed several seconds off the start and the

end in consideration of the time the user interacted with the interface to log.

5.1.1 Collecting Device

Among all kinds of smart phone with acceleromter, we chose HTC diamond mobile

phone shown in Figure 5.1 to implement our application for its weak accelerometer

performance. Unlike other smart phones, such as Apple I-phone(100Hz) and Nokia

N95(100Hz), the highest sampling frequency of accelerometer in HTC diamond is only

25Hz. This sample rate is little more than sufficient compared to the 20 Hz frequency

required to assess daily physical activity [5].

Table 5.1: Collected six kinds of transportation data
Processor 528 MHz

Weight 110 g (with battery)
Dimensions 102 mm (Length)

51 mm (Width)
11.35 mm (Tall)

Storage 4 GB
Battery 900 mAh

Battery time 330 minutes(Talk)
285 hours(Standby)

The hardware specification of HTC diamond in shown in Table 5.1. The compu-
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Figure 5.1: The HTC diamond mobile phone.

tation power is strong enough for most classifiers with small amount of feature and

the storage is large enough for logging in a long period. The battery is moderate like

ordinal mobile phone and is required to recharge regularly. The weight and the vol-

ume is unobtrusive for user to carry in daily life. The software was written in C-sharp

language for the HTC diamond C-sharp accelerometer SDK.



40 CHAPTER 5. EXPERIMENT DESIGN AND RESULT

5.1.2 Data Description

There were 4 experiments held from June 16 2009 to July 16 2009, from September

14 2009 to October 18 2009 , from October 7 2009 to November 7 2009, and from

October 19 2009 to November 23 2009 respectively for collecting data. Except the

first experiment whose duration was two month, the rest 3 experiments were lasting

for one month. The duration of last 3 experimemt was decided by the observation from

the first one (See the Data Observation subsection). The subjects were asked to carry

the mobile phone with them in the daily life for two month(one month). Additionally,

they were not required to begain and end in the same time that some of them may start

(and end) early or later. The subject data is shown in Table 5.2.

Table 5.2: Subject data in 4 experiments
Experiment Date Amount Job Sex

1 Jun. 16 2009 - Jul. 16 2009 8 6 students 7 male
2 office workers 1 female

2 Sep. 14 2009 - Oct. 18 2009 4 4 office workers 4 males
3 Oct. 7 2009 - Nov. 7 2009 1 1 student 1 male
4 Oct. 19 2009 - Nov. 23 2009 4 4 students 3 males

1 female

Take one daily routine for example, one subject walked from home to bus stop, took

bus to the bus stop near school, and walked from bus stop to the department building

on her way to school. There were three trails collected in the traveling. To lessen

their burden, the subjects were only required to log trail more than 5 minutes from one

transportation mode to another transportation mode. They labeled the transportation

mode by pressing the corresponding button on the HTC diamond screen, and then put

the HTC diamond in their front trouser pocket in the beginning and the end of the
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routine. The back trouser pocket wasn’t used due to the sitting posture which might

squeeze and damage the mobile phone. We did not constrain what types of pockets

were worn or the orientation of the smart phone. Some data loss caused by userDs

forgetting or other reasons to label when he finished movement were discarded.

We collected total 1125 trail data from 4 experiments where 294 trail data were

not used due to short duration. The detail of collected valid data is shown in the Table

5.3. As expectation, the duration of car is longest and that of walking is shortest for

the reason that people walk to near place and drive to far place. Also, motorcycle,

bicycle, MRT, and bus meet the common sense which considers them as transportation

for short/middle range.

Table 5.3: Collected six kinds of transportation data
Class Transportation mode Event amount(trail) Average duration(minute, second)

A Motorcycle 222 16m19s
B Bicycle 68 16m36s
C Walking 220 12m37s
D MRT 110 19m32s
E Car 60 30m22s
F Bus 151 23m51s

5.1.3 Data Observation

The duration of experiment for each subject to collect sufficient data is a major prob-

lem. Peoeple gradually lose freshness and lower their willing to attend the experiment

with the time passing. Generally, the daily routine from home to working place is re-

peated for each subject in one week. However, there are many conditions affecting the

acceleromter reading for consideration, such as whether, on/off peak, multiple choice,
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and riding with a passenger.

If it rains, the traffic vehicles on road, like motorcycle, bicycle, car, and bus, will

be slowed down. On peak, the public transportation system, like bus and MRT, is more

crowded and more vibrations caused by actions are recorded by accelerometer. On the

other hand, subject usually have a seat and relative static values are logged when riding

off peak. Occasionally, there are multiple transportation choices for subject to consider.

For example, one subject in our experiment could take a bus or MRT from home to

school. For the vehicle whose weight is light and relatively close to that of human, like

bike and motorcycle, riding with a passenger increases mass to manage, causes the

center of gravity shifted rearward and higher, and influences acceleration/deceleration.

These variances make the g-sensor reading much different from that of riding alone.

As a result, we examined the data from the first experiment and verified the dif-

ference between one-month data and two-month data. The trail-based analysis and

window-based analysis were done in Figure 5.2. The accuracy, weighted recall, weighted

precision (not using average recall and average precision for different length of each

class data set) of them shows almost no difference between one-month data and two-

month data. Therefore, the experiments held in the following were designed for one-

month long.

5.2 Trail-Based Evaluation

From our observation on data collected, most subjects performed only 1 or 2 trans-

portation activity except walking in daily routine. Under this unbalanced condition,



5.2. TRAIL-BASED EVALUATION 43

we replaced subject-based evaluation with trail-based evaluation. Trails from all sub-

jects were mixed for cross validation where the instances from the same trail were put

into the training set or the testing set in the same time. The subject-based evaluation

was still done in the next section for reference.

5.2.1 Trail-based Analysis

To evaluate the feasibility of our method, we first verified the trail-based learning by

treating each trail as an instance. That is, the device have to collect data from the

whole trail and process post-hoc before answer the transportation mode. Using the

labeled trails of activity, we trained our classifier and evaluated it using a 10-fold cross

validation method over the entire data set for three combinations. This produced mod-

els which worked well across all collected accelerometer data. Table 5.4, Table 5.5,

and Table 5.6 show the confusion matrices, accuracy, (true positive+ true negative)

/ (true positive+ true negative + false positive + false negative), precision, true posi-

tive / (true positive + false positive), and recall, true positive / (true positive + false

negative) for three combinations. The values along the diagonal indicate the classi-

fiersDperformance for predicting and matching the ground truth events. Precision is

the percentage of predicted events that are correct. A high precision number indicates

less false positives. Recall is the percentage of ground truth events that were cor-

rectly identified. A high recall number indicates that many ground truth events were

hit. Accuracy represents the percentage of predictions that are correct and our over-

all accuracy for three methods are 87%, 89%, and 84%. As shown in Figure 5.3, the

KNN with MDPA for first layer and SVM with occurance probability as feature for
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second layer outperforms the other methods on accuracy, average recall, and average

precision.

In this combination, our classification scheme performed very well for walking

and MRT, correctly detecting most trails of themselves (recall 98%, 92%) and raising

few spurious events (precision 98%, 94%). Within a walking activity, there are two

motions: regular swings of legs causing strong vibration in spite of walking speed or

standing to wait for the traffic light. In our observation, these motions makes walking

feature strongly different from the other classes. The acceleration and brake of MRT

is highly automatically controlled and performed regularly so it also shows strongly

pattern to distinguish. For two-wheel drives, motorcycle and bicycle are inverse to

each other since their motions ,such as dodging and turning, and driving scenerio are

similar. The motorcycle detection(recall 94%,precision 95%) surpass bicycle detec-

tion (recall 81%,precision 74%)for more data collected (222 trails vs 68 trails). Also,

for the other two transportation mode sharing similar behaviors, the prediction of bus

(recall 82%,precision 76%) defeats that of car (recall 53%,precision 68%)for bigger

data set(151 trails vs 60 trails).

The results show that we are able to distinguish between different transportation

states with high accuracy without having to equip a person with any other additional

devices or sensors. The precision and recall numbers show that this type of scheme

could be used in a personDs daily life, to give an accurate logging of transportation

activity. In the following section, we will discuss how to extend trail-based analysis to

window-based analysis for real-time detection in the daily life.
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Table 5.4: Trail-based Analysis confusion matrix for MLP + SVM combination
Predicted results(trail)

A B C D E F
A 207 10 2 0 0 3 0.93
B 11 45 3 0 0 9 0.66

Ground C 1 0 215 2 0 2 0.98 Recall
truth D 0 0 1 105 1 3 0.95

E 0 0 2 1 30 27 0.5
F 3 5 1 3 16 123 0.81

0.93 0.75 0.96 0.95 0.64 0.74 Accuracy
Precision 0.87

Table 5.5: Trail-based Analysis confusion matrix for KNN + SVM combination
Predicted results(trail)

A B C D E F
A 209 10 1 0 0 2 0.94
B 5 55 2 0 2 4 0.81

Ground C 0 2 216 2 0 0 0.98 Recall
truth D 0 0 1 101 0 8 0.92

E 0 1 0 2 32 25 0.53
F 5 6 0 3 13 124 0.82

0.95 0.74 0.98 0.94 0.68 0.76 Accuracy
Precision 0.89

Table 5.6: Trail-based Analysis confusion matrix for KNN + CRF combination
Predicted results(trail)

A B C D E F
A 201 15 2 4 0 0 0.91
B 9 44 3 2 1 9 0.65

Ground C 1 1 214 2 1 1 0.97 Recall
truth D 0 0 1 101 2 6 0.92

E 1 0 0 1 20 38 0.33
F 4 3 0 8 19 117 0.77

0.93 0.70 0.97 0.86 0.47 0.68 Accuracy
Precision 0.84
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5.2.2 Window-based Analysis

Unlike the post-travel analysis, feedback from the mobile phone in real time should be

as soon as possible. Extending to real-time detection, we sampled the instances from

an overlapping moving window with 5 minutes of window size and 30 seconds of each

moving over all trails. That is, the system made a judgment on which transportation

mode the user was after 5 minutes from turning on the system and re-judged every

30 seconds. The system was supposed to be independent from the place or routine so

the bias of testing with the model trained by the instances from the same trail shall be

prevented. Therefore, we used trail-based 10-fold cross validation where the instances

from the same trail were put into the training set or the testing set in the same time. As

a comparison, the same criteria as the trail-based analysis for three combinations were

applied here shown in Table5.7, Table5.8, and Table5.9. The overall window-based

performance is worse than the trail-based analysis with accuracy declining from 87%

to 78%, 89% to 78%, and 84% to 75%. Like the result in trail-based analysis, the KNN

with MDPA for first layer and SVM with occurance probability as feature for second

layer defeats the other methods on accuracy and average recall shown in Figure 5.4.

The decreasing of right prediction of motorcycle and walking is small (recall 94%

to 93%, 98% to 94%) and the increasing fallacious events is not much (precision 95%

to 92%, 98% to 91%). The diminishing of correctly identifying taking on the MRT

is a few (recall 92% to 89%) and the enlarged false positive is higher (precision 94%

to 82%). The recognition of bus performed much worse than trail-based analysis (re-

call 82% to 76%) and raising much more false positives (precision 76% to 65%). The

inference of car became worse (recall 53% to 42%) but remained the precision (preci-
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Table 5.7: Window-based Analysis confusion matrix for MLP + SVM combination
Predicted results(5-minute overlapping window)

A B C D E F
A 4269 179 67 9 1 178 0.91
B 263 706 43 24 17 417 0.48

Ground C 27 5 2868 82 7 104 0.93 Recall
truth D 0 0 72 2745 27 171 0.91

E 0 13 1 112 1341 1439 0.46
F 143 152 21 264 778 4042 0.75

0.91 0.67 0.93 0.85 0.62 0.64 Accuracy
Precision 0.78

Table 5.8: Window-based Analysis confusion matrix for KNN + SVM combination
Predicted results(5-minute overlapping window)

A B C D E F
A 4353 146 107 2 2 93 0.93
B 234 788 42 32 15 359 0.54

Ground C 61 10 2895 39 8 80 0.94 Recall
truth D 0 0 114 2674 26 201 0.89

E 2 12 2 154 1208 1525 0.42
F 107 301 14 361 489 4128 0.76

0.92 0.63 0.91 0.82 0.69 0.65 Accuracy
Precision 0.78

Table 5.9: Window-based Analysis confusion matrix for KNN + CRF combination
Predicted results(5-minute overlapping window)

A B C D E F
A 4215 254 78 3 8 145 0.90
B 353 641 42 23 55 356 0.44

Ground C 83 27 2816 76 6 85 0.91 Recall
truth D 0 10 98 2565 113 229 0.85

E 30 6 0 115 1505 1250 0.52
F 148 247 9 229 1143 3624 0.67

0.87 0.54 0.93 0.85 0.53 0.64 Accuracy
Precision 0.75
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sion 88% to 65%) Among all transportation guessing, the decay (recall 81% to 54%,

precision 74% to 63%) of bicycle was worst. On our observation, the higher dropping

of the recall and precision numbers of transportation was related to the larger variance

on vibration type series of each trail. The other possible reason was that the window

size is smaller than the pattern cycle of the transportation.

Compared to the trail-based analysis, the result is not good enough. However,

the prediction is made every 30 seconds and the voting of the results from several

predictions can be used to raise accuracy. With the historical records of inference, the

window-based system could be used in a real scenario.

5.2.3 Different Window Size

To estimate the degeneration of recognition from infinite window size, that was the

whole trail, to small window size, we evaluated data with different moving window

size. The accuracy, recall, and precision of inference with different window sizes are

shown in the Figure 5.5. The instances of each classification were extracted from an

overlapping moving window with 1 to 5 minutes of window size and 30 seconds of

each moving over all trails. Larger window size is not tested since people wonDt

tolerate larger activating computation time on real time detection. An additional 30-

second non-overlapping moving window size was tested for shorter duration. All clas-

sification generated the model by the KNN with MDPA for first layer and SVM with

occurance probability as feature for second layer and tested it in trail-based 10-fold

cross validation.

The overall accuracy is over 701.5 minutes and the recall of MRT drops dramati-
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cally from 2.5 minutes. The precision of motorcycle, car, and walking decreases heav-

ily from 1.5 minutes and the precision of bike, bus, MRT decreases heavily from 3

minutes. Some classes have local optimum in recall or precision curve, for example

class motorcycle has local optimum in 3.5 minutes. This observation could be used to

build classifiers for each transportation mode with different window sizes. The result

also presents the inference performance before reaching the minimum activating time,

which is the window size, on real-time detection.

5.3 Subject-Based Evaluation

For reference, we trained and tested classifiers using subject-based cross validation in

two configurations : within-person models and cross-person models. However, the

result may be biased for the imbalanced data collected by each subject.

5.3.1 Single User Cross Validation

For each of the 17 people, we chose KNN with MDPA as first layer and vibration type

occurance probability as second layer to build classifier for 10-fold cross-validation

on his own data. As shown in Table 5.10, the average accuracy of each subject for

trail-based analysis and window-based analysis are 95% and 93%. Without doubt, the

accuracy of those subjects with only one mode is definitely one hundred percent and

meaningless. However, the accuracy of subjects with equal or more than 2 modes is not

related to amount of mode and is shown in Figure 5.6. The accuracy doesn’t decrease

when the transportation mode amount increasing. It is more related to the usage and
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habit of individual subject himself.

Table 5.10: Single User Cross Validation
Subject Mode amount Trail-based accuracy Window-based accuracy

1 5 98% 96%
2 1 100% 100%
3 4 100% 96%
4 1 100% 100%
5 4 95% 92%
6 1 100% 100%
7 2 100% 96%
8 4 93% 76%
9 3 95% 88%
10 2 96% 99%
11 1 100% 100%
12 4 80% 85%
13 2 67% 72%
14 2 100% 97%
15 4 99% 96%
16 4 85% 96%
17 1 100% 100%

Average 2.65 95% 93%

5.3.2 Leave-One-User-Out Validation

We also tested data from subject with models built by other people. For each of the 17

people, we trained a classifier, which used KNN with MDPA as first layer and vibration

type occurance probability as second layer, using data from other 16 people and testing

it on his own data. As shown in Table 5.11, the accuracy for trail-based analysis and

window-based analysis are 74% and 63%. One reason for low accuracy is individual

difference among subjects that the accelerometer data is affected by their habits for

transportation. For example, one motorcycle rider is used to not brake but slide while
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the other rides fast and brake often. The other reason is the imbalanced data collection

from each transportation mode. For the scarce transportation type, like car and bike , if

the major providing person is chosen for testing, the test data set may be much larger

than the train data set.

Table 5.11: Leave-One-User-Out Validation
Trail-based accuracy Window-based accuracy

74% 63%

5.4 Transportation Transit

During user’s transferring from one transportation mode to another transportation mode,

the window-based analysis was easily confused by mixed data of two modes in the

moving window. With the large window size of window-based analysis, it took too

much time for the pattern of new transportation mode to dominate the moving win-

dow. This caused a fuzzy period between the transferring of two trails. To remedy this

deficiency, a fast detecting method was come up to detect the accurate time stamp of

change of transportation.

Since the change of transportation was between walking and the other transporta-

tion mode, additional short time interval walking detector was used. It was responsible

for predicting whether user state was walking or non-walking. To verify how soon we

can guess the change of transportation without loss of accuracy, we evaluate the recall

and specificity of walking detection with different moving window size shown in the

Figure 5.7. The overlapping moving window data were tested by 10-fold cross valida-
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tion and the same classifier as window-based analysis. The recall and the specificity of

walking remained 82% and 90% even when the window size dropped to thirty seconds.

It was high enough to detect and record when the user changed the transportation.
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Figure 5.2: Trail-based analysis comparison between 1-month-long data and 2-month-
long data.
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Figure 5.3: Comparison of three methods for trail-based analysis.

Figure 5.4: Comparison of three methods for window-based analysis.
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Figure 5.5: The accuracy, recall, and precision of inference with different window
sizes.
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Figure 5.6: The accuracy and transportation mode amount.
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Figure 5.7: The recall and specificity of walking with different moving window size
for transportation transit detection.



Chapter 6

Conclusion

The thesis explores the work aiming to infer transportation modes using mobile phone

with accelerometer. For user to use in daily life, we designed the system to meet some

limitation, including no researcher supervision, power-saving, system requirement re-

ducing, and privacy issue. Our method considers both commonsense constraint of

transportation infrastructure and regular user behavior on carrying mobile phone. In

the pre-processing, we introduces the de-orientation to solve the orientation problem

for mobile phone place. Without labeling from user, we built the samples by two dif-

ferent methods, researcher’s handy labeling with histogram properity and machine’s

clustering, for the vibration, which was caused by both user action and vehicle motion,

Then, using two different feature selection and relabeling techniques, multi-layer per-

ceptron using histogram bin as feature and KNN with MDPA as similarity function, we

constructed layer and extracted discriminable pattern from it for transportation mode

inference. Finally, two different feature selections and classifiers, SVM using vibra-

58



6.1. SUMMARY OF CONTRIBUTION 59

tion type occurance probability as feautre and CRF using vibration type as feautre,

were used for the transportation mode classification.

We held 4 experiments on 8 people for 2 months and 9 people for 1 month for

retrieving the accelerometer data. Among multiple approach combinations, the combi-

nation KNN using MDPA as similarity function in first layer and SVM using vibration

type occurance probability as feautre in second layer outperformed than others. Eval-

uated by trail-based 10-fold cross validation, we got the 89% and 78% accuracy for

post-hoc trail-based analysis and the real-time window-based analysis respectively. To

understand how short for initial time of real time detection, we evaluated data with dif-

ferent moving window size. The accuracy remains 71% when the initial time decreases

to 1.5 minutes. For the transportation transit, another detector based on walking model

was built and evaluated.

6.1 Summary of Contribution

Our approach was relabeling the pre-processed data to select new features for physical

vibration. Then we did supervised learning on the vibration type with subjectsDlabeled

transportation modes. Using the accelerometer logs collected by 8 people for 2 months

and 9 people for 1 month, we evaluated our approach via a set of experiments. To

adapt to different scenarios, we analyzed the post-hoc trail-based processing and real-

time window-based processing respectively. Based on two-layer relabeling approach

and SVM inference model, we inference motorcycle, bicycle, walking , MRT, car, and

bus with accuracy 89% for trail-based analysis and 78% for window-based analysis
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respectively. Furthermore, to better understand the transportation transferring, another

detector based on walking model was built and evaluated. Without general loss of ac-

curacy (recall 82%), the detecting time shrank to 30 seconds. With above results, we

believe our approach can be used in real daily life.

6.2 Limitation

For now, our system is far from perfect. There are two limitations for user to use in

real life. First, the mobile carried by user should be placed in the pocket and shouldn’t

be placed in the bag or package. The system still works when other objects are put in

the pocket with mobile phone. But larger space of bag or package largely increase the

difficulty to recognize the vibration absorption by other objects, like a jacket. Second,

the longer initial time is required for resl time detection. Even we lower the standard

for accuracy to 71%, the initial time is still 1.5 minutes.

6.3 Future Work

There are many places needed to improve in the future. Our current system focuses

primarily on accuracy of vibration type pattern for transportation classification. The

property of sequential relation between vibration types is not sutdied right now. It is a

great indicator and provides more content on time series relation. Understanding time

series relation will not only increase the accuracy and the response time but also bring

us more action detail during transportation, such as waiting for the traffic light.
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