
doi:10.6342/NTU202300465

國立臺灣大學電機資訊學院電信工程學研究所

碩士論文

Graduate Institute of Communication Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

室內定位系統跨領域訓練之

資料擴增方法研究

Reducing Site-Survey Cost for Cellular Indoor Localization via

Data Augmentation

楊大寬

Ta-Kuan Yang

指導教授：謝宏昀 博士

Advisor: Hung-Yun Hsieh, Ph.D.

中華民國 112年 2月

February 2023

doi:10.6342/NTU202300465

doi:10.6342/NTU202300465

致謝

 時光荏苒，轉眼間為期兩年半的碩士生涯就要畫上句號，水深火熱念書的考

研期間彷彿還在昨日，如今卻已響起驪歌，令人感嘆。我是一個幸運的人，一路

上受到許多照顧和教導，這兩年半來無論遇到什麼困難，雖然跌跌撞撞，但也是

走過來了。

 感謝謝宏昀教授的指導，從一開始對於研究沒有半點概念，教授總是不厭其

煩地提點我研究的方法和重點；每個星期在百忙之中，教授也總會抽空討論研究

的重心以及提出建議，讓我能一步步邁上正軌，順利完成學位。教授細心、親力

親為的形象都深植我心，並期望自己也能如教授這般，行事一絲不苟。

 感謝家人給予的關心和愛，在我迷惘失去方向之際，總是尊重且支持我所做

的所有決定，激勵我完成我所選擇的路，以及提供經濟上的支援，讓我能夠無後

顧之憂的結束學業。

 感謝女友蘇華容，從大學到現在一路走來，無論我遇到什麼多重的困難及多

大的壓力，始終有妳的相伴，讓我有力量去解決和面對。多少寄出去的信以及海

報中，總能找到妳為我潤稿的痕跡，謝謝妳。

 感謝實驗室的學長，總會提醒我該注意的事以及回答我許多研究上的問題。

謝謝世紀、易錡，多少個疲憊的日子、遇到許多問題，能有你們一起度過真的很

幸運。謝謝建達，陪我一起走完最後的一段路。謝謝贊濱、奕寶、翊宏和定為，

好幾次在電腦瘋狂當機後，幫我重開電腦。祝福所有學弟及同學能夠順利結束學

業。

 感謝台大、清大泳隊的所有朋友，特別是拉麵店中的所有 JUDY 們，陪我一

起訓練、一起玩耍，讓我忘卻煩惱，也特別感謝在最後關頭，聽我練習口試和幫

我修改投影片的你們。有你們的日子都是我十分珍貴的回憶。

 最後，感謝我自己，沒有愧對自己所做的選擇。

 時光匆匆，兩年半的旅程已經結束，未來有許多不同的阻礙在等我，但我相

信我在碩班期間所學習到的一切，會讓我走的更加悠然。

2023/02/09 楊大寬筆

doi:10.6342/NTU202300465

摘要

在基於機器學習的室內定位系統中，當環境改變時，原本為特定環境建立

的模型可能不再能有效的運作。因此，我們必須重新收集目標場域中大量的數

據，這需要消耗許多時間。因此，這種方法是不實際的。在我們的研究中，我

們的目標是設計一個數據增強系統，以減少蒐集資料的時間成本；我們使用軟

件定義無線電（SDR）硬體和開源的平台（OAI 5G）建立定位系統。我們可以通

過這個系統收集基於 LTE的特徵，並將它們放入機器學習模型中以預測用戶的

坐標。在此之後，我們使用 Cycle GAN進行數據增強，這通常用於改變圖像的

風格。我們提出了一種基於 Cycle GAN的方法，稱為 Semi Cycle GAN，用於使

用在新場域中的少量資料和使用在舊場域中的大量資料以產生類似於新場域的

充足資料量。這種方法可以省下大量時間，並提高模型的精準度。它比 Cycle

GAN 更適用於低維度資料。與 Vanilla GAN相比，我們可以提高定位精準度，

並從目標場域和源頭場域中使用數據。我們的研究可以通過上述方法提高資料

使用率，並減少時間。此外，我們使用帶有不同評分機制的選擇方法以及數據

混合技術，以提高模擬數據的質量和多樣性。總而言之，我們可以通過平均距

離誤差（MDE）提高 36％的定位性能。

doi:10.6342/NTU202300465

ABSTRACT

In machine learning-based indoor localization systems, the initial model built

for a particular environment may no longer be useful when the environment is al-

tered. As a result, we must recollect a big amount of data, which takes time. This

approach, however, is ineffective. In our work, we aim to design a data augmenta-

tion system to reduce the time cost of the site survey; we used the Software-Defined

Radio (SDR) hardware platform and open-source software platform (OAI 5G) to

build the localization system. We can collect LTE-based features by this system

and fit them into a machine-learning model to predict the user’s coordinates. Af-

ter that, we used the cycle Generative Adversarial Network (cycleGAN) for data

augmentation, which is usually used to change the style of images. We propose a

method based on Cycle GAN called Semi Cycle GAN to utilize a small amount of

data in a new domain and a large amount of data in an old domain to produce a

sufficient amount of data similar to the new domain. This method can save lots

of time and incline the model’s accuracy. It is more suitable for low-dimension

data than Cycle GAN. Compared with Vanilla GAN, we can enhance localization

accuracy and utilize data from both the target and source domains. Our research

can increase the data usage rate and decrease time by the above methods. In

addition, we use the selection method with different scoring mechanisms and data

mixing techniques to increase the quality and diversity of simulation data. In con-

clusion, we can improve the localization performance by 36% in Mean Distance

Error (MDE).

ii

doi:10.6342/NTU202300465

TABLE OF CONTENTS

ABSTRACT . ii

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 BACKGROUND AND RELATED WORK 5

2.1 Localization Methods . 5

2.1.1 Received Signal Strength Indicator (RSSI) 5

2.1.2 Channel State Information (CSI) 6

2.1.3 Fingerprinting Method 7

2.1.4 Comparison and Conclusion 7

2.2 Localization Evaluation Methods 8

2.3 Generated Adversarial Network(GAN) 9

2.3.1 Vanilla GAN (GAN) . 9

2.3.2 Conditional GAN (cGAN) 12

2.3.3 Image-to-Image Translation with Conditional Adversarial
Nets (Pix2Pix) . 13

2.3.4 Comparison of a Different kind of GANs 14

2.4 Related Work . 15

2.4.1 Data Augmentation Without Using Machine Learning . . 16

2.4.2 Data Augmentation Using Machine Learning 17

CHAPTER 3 SYSTEM MODEL 21

3.1 System Architecture . 21

3.2 LTE Signal Features . 22

3.3 Environment . 23

3.4 Machine Learning Models . 25

3.4.1 Target Problem . 25

3.5 Upper Bound and Lower Bound 26

3.5.1 Upper bound . 26

iii

doi:10.6342/NTU202300465

TABLE OF CONTENTS iv

3.5.2 Lower bound . 26

3.6 Fine-tuning Method . 26

3.6.1 Localization Model Description 26

3.6.2 Conservative Training . 29

3.6.3 Evaluation of Fine-tuning Model 31

3.7 GAN-based Method . 31

CHAPTER 4 DATA AUGMENTATION 33

4.1 Cycle GAN Method . 33

4.1.1 Objective Loss Function 35

4.1.2 Generator Network . 36

4.1.3 Problem of Cycle GAN in Our Work 37

4.2 Semi Cycle GAN Method (SCG) 38

4.2.1 Objective Loss Function 39

4.2.2 Complexity Analysis . 41

4.3 Selection Method . 42

4.3.1 Scoring by Discriminator 43

4.3.2 Scoring by the Wasserstein Distance 46

4.4 Mixing Data from Different Methods 49

4.4.1 Standard ensemble of GAN 49

4.4.2 Mix-up . 49

4.4.3 Cut-mix . 50

4.5 Summary . 52

4.6 Evaluation Metrics . 53

4.6.1 t-Distributed Stochastic Neighbor Embedding (t-SNE) . 54

4.6.2 Density and Coverage . 56

CHAPTER 5 PERFORMANCE EVALUATION 58

5.1 Evaluation of GAN-based Method 58

5.1.1 Evaluation of Vanilla GAN Method 58

5.1.2 Evaluation of Semi Cycle GAN Method 61

5.2 Evaluation of Selected Semi Cycle GAN 65

doi:10.6342/NTU202300465

TABLE OF CONTENTS v

5.2.1 t-SNE . 65

5.2.2 Model Performance Evaluation 65

5.2.3 Scoring by Wasserstein distance 70

5.2.4 Discussion of the number of simulation data 70

5.2.5 Evaluation using Density and Coverage 75

5.3 Evaluation of Data Mixing Method 75

5.4 Summary . 79

CHAPTER 6 CONCLUSION AND FUTURE WORK 85

REFERENCES . 86

doi:10.6342/NTU202300465

LIST OF TABLES

1 Different between RSSI and RSS 6

2 Contrasting the three localization systems’ benefits and drawbacks. 8

3 Comparison of a different kind of GANs 15

4 FN model’s layer. 29

5 Comparison of Cycle GAN and Semi Cycle GAN 41

6 Contrasting the time of two GAN methods. 42

7 Contrasting the two selection methods. 48

8 Comparison of different mixing methods. 51

9 Comparison of Density and Coverage. 75

10 Comparison of MDE and MLE in BL114. 80

11 Comparison of MDE and MLE in BL521. 80

vi

doi:10.6342/NTU202300465

LIST OF FIGURES

1 Structure of Vanilla GAN. 10

2 The different conditions of pix2pix design. 11

3 Generation process training: Train generator G to increase the like-
lihood that the discriminator will determine the simulation data to
be “real.” . 12

4 Structure of cGAN. 13

5 The different conditions of pix2pix design. 14

6 Structure of the transfer learning structure proposed in [1]. 17

7 Pipeline of the selection GAN proposed in [2]. 19

8 System Architecture . 21

9 The reference point label and the 2D map of NTU BL112 23

10 The reference point label and the 2D map of NTU BL114 24

11 The reference point label and the 2D map of NTU BL521 24

12 Amount of source and target domain data for the dataset. 25

13 Concept of Fine-tuning. 27

14 XGBoost with time series data. 28

15 The XGBoost+FN model’s architecture. 28

16 Regression v.s. Classification. 29

17 Concept of Conservative Training. 30

18 Evaluation of fine-tuning model with an upper bound and lower
bound . 31

19 Architecture of GAN mixing Fine-tuning. 32

20 Structure of Cycle GAN. 34

21 Illustration of different loss. 35

22 Architecture of U-Net. 37

23 The Cycle GAN problem about mode collapse. 38

24 Structure of (SCG). 38

25 The SCG training situation. 40

26 Illustration of the data selection method. 43

vii

doi:10.6342/NTU202300465

LIST OF FIGURES viii

27 A Example of the disadvantage of JS divergence. 45

28 The relation between score and generated times of RP4. 46

29 A Example of the Wasserstein distance. 47

30 The relation between Wasserstein distance and generated times of
RP4. 48

31 Standard ensemble method. 49

32 Illustration of a mix-up method. 50

33 Illustration of cut mix method. 51

34 The data mixing method with Density and Coverage. 52

35 The Summary of data augmentation. 52

36 A example of KL divergence. 55

37 A example of Diversity and Coverage. 57

38 Visualize the original data and the simulation data generated by
Vanilla GAN. 59

39 Plotting the real data and simulation data together. 60

40 Use two Point-to-point methods on Vanilla GAN result. 62

41 evaluation of Vanilla GAN . 63

42 Use two Point-to-point methods on Semi Cycle GAN result. . . . 64

43 evaluation of Semi Cycle GAN . 66

44 Use two Point-to-point methods on Selective Semi Cycle GAN result. 67

45 Testing simulation data by fine-tuning model for different RPs. . . 69

46 Evaluation of Selected Semi Cycle GAN 71

47 Evaluation of Selected Semi Cycle GAN using Wasserstein distance. 72

48 The more number of simulation data 73

49 The training loss in the fine-tuned model training phase. 73

50 The MDE about a different number of simulation data. 74

51 The density and coverage of all methods. 76

52 The comparison between either using cut-mix. 77

53 Comparison of Cut-mix methods and all other generated methods. 78

54 Comparison of the Vanilla GAN and all of the methods in our work. 79

55 Comparison of different methods in BL114. 81

doi:10.6342/NTU202300465

LIST OF FIGURES ix

56 Effect of various techniques. 82

57 Comparison of the final result with a lower and upper bound in
BL114. 83

58 Comparison of different methods in BL521. 84

doi:10.6342/NTU202300465

CHAPTER 1

INTRODUCTION

Due to the creation and adoption of 5G communication technology, an increas-
ing number of 5G services and applications are emerging and integrating into daily
life. The Internet of Things (IoT), which requires minimal latency, and large data
per unit of time, have seen its technical limits substantially expand with the intro-
duction of 5G communication technologies. Large bandwidth, high transmission,
and low latency are three characteristics of 5G. Numerous 5G application scenarios
are focused on interior environments, including smart homes, futuristic industries,
retail malls, home care, warehouse management, etc. All of these scenarios ne-
cessitate getting user location data. High-precision indoor localization is already
a necessary technology to support 5G key applications, as shown by the 3GPP’s
pertinent localization accuracy specifications and crucial performance indicator
requirements for 5G application scenarios [1] [3]. However, Because our standard
for indoor localization is centimeter-level, the challenge to accuracy requirements
is that indoor localization has always been a comparatively hard problem com-
pared to outdoor localization technology. Because of the complexity of the indoor
environment and signal interference problems, indoor localization not only has a
higher accuracy than outdoor localization.

The study of indoor localization/ positioning has recently received a lot of
attention [4]. Additionally, numerous studies have been published using various
indoor localization techniques. Wireless radio technology, such as Wireless Fi-
delity (WIFI), Radio Frequency Identification Device (RFID), Bluetooth, Zigbee,
Ultra Wideband (UWB), and Base station (mobile network), etc., is the founda-
tion for all of these printed indoor localization technologies. Since different wireless
radio technologies have distinct deployment and transmission properties, achiev-
able localization performance, such as precision, reliability, real-time, etc., also
has advantages. Except for wifi, these systems cannot be implemented in large
numbers during transmission and reception due to the transmission distance or the
device’s popularity. In contrast, localization systems based on mobile communica-
tion technologies have benefits in pervasiveness and availability that other indoor
localization technologies cannot match since mobile communication networks are
nearly ubiquitous, whether outdoors or indoors [1].

Triangulation positioning, the time in different arrivals (TDOA, TOA), re-
ceived angle (AOA), received signal strength (RSS), and channel state information

1

doi:10.6342/NTU202300465

2

(CSI) or quality are part of the mobile network’s standard approach for indoor
localization. These localization techniques are typically required for location fin-
gerprinting from several base stations (BS) or access points (AP).

Utilizing machine learning for indoor localization has also been a research topic
with the rise of machine learning. According to the machine learning theory, ma-
chine learning models can be trained with a variety of high dimensional localization
fingerprints while preserving the original data’s characteristics as much as possible
during the data processing and transformation process. This allows them to de-
termine the relationships between the fingerprints. Foreign teams have employed
deep learning models to create LTE localization systems, which can attain sub-
meter accuracy in indoor conditions, according to recent research literature [5].

However, in the fingerprint method, a considerable site survey is a huge chal-
lenge when we face a new domain. If we carry out the high-cost site survey to
locate a new localization space, that is quite impractical. For instance, each Ref-
erence Point (RP) in our experiment has data for features like Power Headroom
Report (PHR), Physical Uplink Shared CHannel Signal-to-Noise Ratio (PUSCH
SNR), Physical Uplink Control CHannel Signal-to-Noise Ratio (PUCCH SNR),
and Subband Differential Channel Quality Indicator (CQI), for a total of 23 di-
mensions. It takes around 10 minutes to collect 500 data for each RP and between
15 and 20 minutes to acquire 1000 data for each RP. Additionally, we must first
set up the device, including noting the location coordinates, before we can begin
collecting data for each RP. Usually, this setting takes ten to thirty minutes. Ac-
cording to this time cost estimate, at least 6 RPs are needed in a classroom of
roughly 7m by 10m if the spacing between neighboring RPs is set at 2 to 3 meters.
It will take roughly 6×20 + 6×15 = 210 minutes to finish the data collection for
a classroom if we spend 20 minutes setting up the device at each RP site and
15 minutes collecting 1000 data. It is clear that site surveys take a lot of time
and cost to train a localization system based on a machine learning model. This
strategy will require too much time and resources over many deployments and lose
some of its usefulness if site surveys and data collection for each localization space
take the same time.

As a result, it has been suggested that data augmentation be used to shorten
training periods. By combining actual data with simulation data, we may com-
bine the source domain model [1] and train a robust model to predict the target
domain’s position, shortening the time required for data collection. Data augmen-
tation is the process of creating simulation data.

In related work, we collect the indoor localization based on fingerprinting
framework with data augmentation methods utilizing non-ML [6] [7] [8] and ML

doi:10.6342/NTU202300465

3

[1] [2] [9] structures, respectively. The non-ML methods suffer from low-quality
problems because they tune the original data by rotating or adding noise. More-
over, these methods have destroyed the physical meaning of data, such as signal
strength, because of the unpreventable, high randomness. In contrast, the ML
methods based on GAN are a feature of high-quality simulation data. The GAN
model can generate data with higher quality and diversity. However, when the
number of training data for generation is low, the generated data distribution is
constrained in a little range and leads to low diversity. Hence, we introduce the
cycle GAN in our proposed method to utilize many data in the source domain. In
addition, we also introduce a selective method to filter the simulation data with
worse quality. At last, we introduce the mixing method to combine simulation
data generated by different methods.

In our study, we can produce enough data to lower the localization error by
roughly 36% and 35% in MDE and MLE by the overall algorithm; we use just
100 real data to generate fake data. We can achieve great performance in just 1

10

of the time. Compared to [1], which is the dataset we use, the performance of
our work can improve by about 21% and 17% in MDE and MLE by our proposed
methods.

Following is an outline of this thesis’ main contributions:

1. Utilize the source domain data to generate simulation data in Cycle GAN
methods. We modify the cycle GAN into Semi Cycle GAN (SCG), which is
more suitable for low-dimension data by weakening the U-Net network and
simplifying the model architecture to conquer the simulation data with bad
quality and diversity.

2. Introduce the discriminator score mechanism to select the simulation data
with better quality. By this method, we can reach a higher accuracy for
localization with fewer simulation data.

3. To conquer the disadvantage of JS divergence, including unstable and spend-
ing lots of time to generate fake data, we introduce the Wasserstein distance
as a scoring mechanism and compare their performance to prove our pro-
posed method.

4. Introduce the Cut-mix method used in the image domain to combine the
simulation data for different generated methods. Moreover, we combine the
Density and Coverage indicators to pick the better methods and mix them.

This thesis’ remaining sections are structured as follows:

doi:10.6342/NTU202300465

4

1. In Chapter 2, we discuss our background knowledge and related work,
including LTE signal localization techniques, Localization evaluation meth-
ods, and different Generative Adversarial Networks (GAN). Finally, we will
introduce the different data augmentation methods used for indoor localiza-
tion.

2. In Chapter 3, we describe the environment, features, target problem, and
baseline model, which use the fine-tuning method [1] to translate the source
domain model into the target domain model by adding constraint.

3. In Chapter 4, we introduce our main idea about data augmentation, in-
cluding Semi Cycle GAN, data selection by different scoring mechanisms,
mixing data, and evaluation methods for simulation data.

4. In Chapter 5, we describe the performance of the SCG, selection methods,
and mixing methods by different aspects.

5. In Chapter 6, we will organize the findings of our work and further projects.

doi:10.6342/NTU202300465

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Localization Methods
Because it is becoming increasingly important in more and more applications,

location information has recently generated a lot of attention in wireless networks.
Received Signal Strength (RSS) [10] [11], Channel State Information (CSI) [5] [12],
Angle of Arrival (AoA) [13], Time of Flight (ToF), Time Difference of Arrival
(TDoA), Return Time of Flight (RToF), and Phase of Arrival (PoA) [4] are just a
few of the many features of indoor localization techniques that have been proposed
and extensively researched in the literature. Therefore, we will concentrate on
RSS, CSI, and Fingerprinting in this part and summarize their main ideas.

2.1.1 Received Signal Strength Indicator (RSSI)

The Received Signal Strength (RSS) [14] is the method widely used for indoor
localization, which represents the signal power strength receiver (RX) received.
The unit of RSS is usually in decibel-milliwatts (dBm) or milliWatts (mW). More-
over, the RSS and RSSI have a little difference, as shown in Table 1. Usually, RSSI
is a value relative to RSS, which is an absolute number. RSS and RSSI measure
the distance between the transmitter (Tx) and receiver (Rx). The closer between
Tx and Rx, the stronger the signal strength of the signal, which leads to a higher
RSS value. There is no exact figure. However, RSSI is used to gauge the relative
strength of the signal received for the client device. The signal propagation model
can calculate the distance between Tx and Rx if we have access to the Tx or Rx
power.

The equation below [15] can be used to express the received signal power PR.

PR = PT
GTGRλ2

(4π)2dn
, (2.1)

where PT is the transmitted signal power in Watt, GT is the gain of Tx’s antenna,
GR is the Rx’s antenna gain, λ is the signal wavelength, d is distance between Tx
and Rx, and n is the signal propagation constant. It needs to notice that the unit
of Equation 2.1 is Watt; we can convert the RSSI unit from Watt to dBm; hence,
we add a log into Equation 2.1 as follows:

P [dBm] = 10 log10(P [W] · 1000). (2.2)

5

doi:10.6342/NTU202300465

2.1. LOCALIZATION METHODS 6

According to Equation 2.2, for the case of a 1-meter reference distance, we can
establish a simpler connection between distance and receive power as:

RSSI = −(10 · log10 d− A), (2.3)

where A is the received power in dBm of 1-meter reference distance from antennas.
To calculate the distance d between Tx and Rx, we can use the RSSI and a

straightforward path-loss propagation model as

d = 10
RSSI−RSSIO

−10×n , (2.4)

where n is the path-loss exponent factor, for instance, the free space n will be 2,
and RSSIO is the RSSI value at a reference distance from Rx [16].

Table 1: Different between RSSI and RSS
Name Unit Value
RSS dBm or mW Negative

RSSI Arbitrary (Defined by
each chip supplier) Positive

2.1.2 Channel State Information (CSI)

Channel Quality Indicator (CQI), Rank Indicator (RI), and Precoder Matrix
Indicator (PMI) are three examples of Channel State Information (CSI) in LTE
that the data can be measured for.

As mentioned in Section 2.1.1, RSS has the features of ease of measurement,
simplicity, and low hardware requirement, which make RSS widely used in the
localization domain [4]. However, RSS calculates the average signal amplitude and
total signal strength across all antennas. As a result, RSS will be more vulnerable
to multipath interference, and its alterations will intensify with time. The reason
for the term “multipath” is that in a wireless transmission environment, nearby
objects will reflect radio waves to create many reflected waves [17]. There will be
a small time gap between the arrival of these several waves at the receiving end.
Inter-symbol interference can occur when the delay period is too long since it may
interfere with the next transmission signal (ISI). The phases of the different waves
may also vary. The signal level may be significantly lower than the noise if these
phases are added destructively, making it more challenging for the receiver to pick
up the signal. [1]

Channel state information (CSI), such as precoding matrix and channel quality
data, is primarily used to get channel state information, measure the channel
between the base station and the user equipment (UE), and obtain other channel

doi:10.6342/NTU202300465

2.1. LOCALIZATION METHODS 7

state information needed for scheduling and link adaption [18]. CSI, instead of
RSS, can obtain more specific data on each channel, such as amplitude and phase,
than the average value. For the channel frequency fi, the polar coordinate form
of CSI (Channel State Information) is as follows [19]:

H(fi) = |H(fi)| ej sin(∠H), (2.5)

where |H(fi)| is the CSI value at the subcarrier with the frequency fi as its central
frequency, and ∠H is the phase response of CSI for the central frequency fi. In
our work, we only use a part of CSI-measurement CQI.

2.1.3 Fingerprinting Method

Site surveys are typically necessary for the fingerprinting-based localization
technique to collect fingerprints or other environmental characteristics [4]. The
offline and online phases of the fingerprinting-based localization techniques can
be divided into two distinct phases. The offline phase will first collect the radio
signals associated with each reference position as fingerprints or characteristics.
The user’s current location can then be estimated using the real-time measurement
made in the online phase to retrieve the current radio signal and compare it to
the fingerprints measured in the offline phase. Machine learning is typically used
to establish the link between offline and online metrics. Typically, RSSI or CSI is
the radio signal utilized in fingerprinting as a feature or fingerprint.

2.1.4 Comparison and Conclusion

The merits and drawbacks of the three localization strategies, as shown in
Table 2, will be compared in Sections 2.1.1 to 2.1.3. Fingerprinting will be used
in our work to cover RSSI and CSI.

doi:10.6342/NTU202300465

2.2. LOCALIZATION EVALUATION METHODS 8

Table 2: Contrasting the three localization systems’ benefits and drawbacks.
Localization

method
Advantage Disadvantage

RSSI

It is simple to use,
affordable, and
compatible with
various wireless

technologies (such
as Wi-Fi,

Bluetooth, LTE, 5G
NR, etc.).

Its location
accuracy is poor, it
is vulnerable to the
effects of multipath
and environmental

noise, and
fingerprinting may

be required.

CSI
More resistant to

environmental noise
and multipath.

Not every piece of
hardware is capable
of picking up this

radio signal.

Fingerprinting
It is effective and

simple to use.

New fingerprints
might be needed

even if the space is
just slightly altered.

2.2 Localization Evaluation Methods
The method for evaluating the localization model is to compute the error

between the ground truth and prediction position. There are some methods [5] to
compute the error as follows:

• Mean Absolute Error (MAE)

MAE =
1

M

M∑

m=1

‖L̂m − Lm‖1, (2.6)

• Mean Distance Error (MDE)

MDE =
1

M

M∑

m=1

‖L̂m − Lm‖2, (2.7)

• Mean Square Error (MSE)

MSE =
1

M

M∑

m=1

‖L̂m − Lm‖22, (2.8)

doi:10.6342/NTU202300465

2.3. GENERATED ADVERSARIAL NETWORK(GAN) 9

• Root Mean Square Error (RMSE)

RMSE =

√√√√ 1

M

M∑

m=1

‖L̂m − Lm‖22, (2.9)

where M is the total number of data, Lm represents the ground truth of
m − th data, and the L̂m is the position of m − th data which is predicted
by f(•).

• cumulative distribution function (CDF)

FX(x) = P (X ≤ x), (2.10)

where X is random variable.

• Median Localization Error (MLE)

MLE = the error distance corresponding to CDF 0.5. (2.11)

We use the MSE as the metric evaluation function of the machine learning
model to predict the position. As a result, we can write the objective function
as follow:

min
f(•)

1

M

M∑

m=1

‖L̂m − Lm‖22

s.t. L̂m = f(vm),

(2.12)

where the vm means that the feature corresponding to the m− th data.

2.3 Generated Adversarial Network(GAN)
2.3.1 Vanilla GAN (GAN)

In [20], through the Adversarial between the generator and discriminator, the
Vanilla GAN method can generate different numbers of fake data from random
noise in our environment. Figure 1 shows the structure of the Vanilla GAN.
We train a discriminator (D) to maximize the probability of distinguishing the
different domains and predict them in the correct label. Simultaneously, we train
the generator (G) to minimize D’s correct rate; G and D are played in a two-player
minimax game. To understand this concept, we can define value function V (D,G)

as follows:

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log(1−D(G(z)))] , (2.13)

doi:10.6342/NTU202300465

2.3. GENERATED ADVERSARIAL NETWORK(GAN) 10

where pdata(x) is the distribution of training data and pz(z) is the random noise
distribution generated by noise variable z.

Figure 1: Structure of Vanilla GAN.

Algorithm 1 Minibatch stochastic gradient descent training of Vanilla GAN.
Require: The number of steps alternates to discriminator, k; The number of

training iterations, n; Data sample from the target domain, x; Data sample
from the noise prior pg(z), z;

1: for n iterations do
2: for k steps do
3: Sample mini-batch of M noise sample z(1), · · · , z(M) from noise prior

pg(z) .
4: Sample mini-batch of M example x(1), · · · , x(M) from data generating

distribution pdata(x) .
5: Update Discriminator by ascending its stochastic gradient:

∇θd

1

M

M∑

m=1

[
logD(x(m))

]
+
[
log(1−D(G(z(m))))

]

6: end for
7: Sample mini-batch of m noise sample z(1), · · · , z(M) from noise prior pg(z)

.
8: Update Generator by descending its stochastic gradient:

∇θg

1

M

M∑

m=1

[
log(1−D(G(z(i))))

]

9: end forWe can choose any gradient-based learning rule.

In Algorithm 1, we know that GAN will train D by k times in the inner loop
(from line 2 to line 6) and train G by one time (line 7 and line 8). This method
is because we would like D to finish training and train G. However, we can not
achieve this situation in practical training. So by Algorithm 1, D stays near its
optimal solution when G changes slowly enough.

In addition, Equation (23(b)) may not provide enough gradient for G in the
early stage of learning because simulation data is easy to distinguish by D at
first. As a result, we can train G to maximize

[
logD(x(m))

]
rather than minimize

[
log(1−D(G(z(i))))

]
.This objective function can achieve the same optimal but

provides a stronger gradient at the beginning training stage.

doi:10.6342/NTU202300465

2.3. GENERATED ADVERSARIAL NETWORK(GAN) 11

To better understand the training generator and discriminator concept, we
graphically illustrate the process during training shown in Figure 2 and 3.

Fake

Simulation target domain data

Random noise

Target domain data

Discriminator

Generator

(a) Train discriminator D to increase the likelihood that it will judge the data
to be “real” on the “real” data.

Real

Simulation target domain data

Random noise

Target domain data

Discriminator

Generator

(b) Train discriminator D to increase the likelihood that it will judge the data
to be “fake” on the “fake” data.

Figure 2: The different conditions of pix2pix design.

doi:10.6342/NTU202300465

2.3. GENERATED ADVERSARIAL NETWORK(GAN) 12

Real

Simulation target domain data

Random noise

Target domain data

Discriminator

Generator

Figure 3: Generation process training: Train generator G to increase the likeli-
hood that the discriminator will determine the simulation data to be “real.”

There are many kinds of networks extending from Vanilla GAN. Paper [21]
classifies the different models by their modification directions. Because our work
aims to utilize the data from the source domain, we extract some of them about
domain transfer to discuss their architecture and compare the different GANs.

2.3.2 Conditional GAN (cGAN)

Vanilla GAN can use only random noise as latent space to generate simulation
data. However, the application of Vanilla GAN is sometimes impractical because
the simulation data’s randomness is large. Hence, the Conditional GAN [22] is
proposed, which aims to generate the data in some condition; in other words,
its goal is to generate the data in a specific class. It introduces the additional
information and feeds into the generator and discriminator to achieve this goal. As
shown in Figure 4, the additional information can be a label or other information,
such as a feature. By concentrating the encoded information and the encoded
data, the method can produce fake data based on the presetting condition.

doi:10.6342/NTU202300465

2.3. GENERATED ADVERSARIAL NETWORK(GAN) 13

Real/Fake?

Simulation target domain data

Random noise

Target domain data

Discriminator

Generator

Additional information

Figure 4: Structure of cGAN.

In conditional GAN, the objective function of Vanilla GAN 23(b) can be rewrit-
ten as:

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD(x|y)] + Ez∼pz(z) [log(1−D(G(z|y)))] ,

(2.14)

where y is the extra information. The advantage of cGAN is that it can control
the simulation data in the specific label. However, the network is extremely easy
cause the quality of simulation data tends to be relatively low; it will bring out
the problem that the accuracy for classifying the simulation data is low. Hence,
the pix2pix and cycle GAN are based on the cGAN and modify the architecture
to solve the mentioned problems.

2.3.3 Image-to-Image Translation with Conditional Adversarial Nets
(Pix2Pix)

One of the specific applications for cGAN is the pix2pix [23]. The pix2pix aims
to transfer the style of the image by adding an extra condition to the image. It
fits the paired data into the generator and discriminator to achieve the domain
transfer of real and fake data. We illustrate the different conditions of the pix2pix
in Figure 5. Figure 5(a) shows that the real condition, where the rectangle without
color is the data of the source domain and the rectangle with color is the data
from the target domain; on the contrary, Figure 5(b) shows the fake condition that
the generator generates the triangle with color. Like Spirit of GAN, the generator

doi:10.6342/NTU202300465

2.3. GENERATED ADVERSARIAL NETWORK(GAN) 14

aims to confuse the discriminator, and the discriminator tries to distinguish the
real or fake condition.

Real

target domain data

source domain data

Discriminator

(a) The real condition.

Fake

Simulation target domain data

Random noise

source domain data

Discriminator

Generator

(b) The fake condition.

Figure 5: The different conditions of pix2pix design.

Moreover, it introduces the U-net technique to solve the problem of low-quality
fake data. We will discuss the U-net in more detail in Section 4.1.2. However, the
paired data from the source domain and target domain is uneasy about collecting,
and the condition of target domain data is less than the source domain data.

2.3.4 Comparison of a Different kind of GANs

This section will discuss the different GANs we mentioned from 2.3.1 to 2.3.3.
We write down the advantage and disadvantages [21] [24] of these methods in
Table 3.

doi:10.6342/NTU202300465

2.4. RELATED WORK 15

Table 3: Comparison of a different kind of GANs
GAN’s model Advantage Disadvantage

Vanilla GAN

It can generate
simulation data

through the
adversary between
the generator and
the discriminator.

The data from a
large number of the
source domain are
useless; the data

from a small
number of the

target domain leads
the fake data with

low diversity.

cGAN

It can introduce an
extra feature for the
model and generate
the simulation data

relative to the
information.

The quality of the
simulation data
does not well.

pix2pix

It introduces the
cGAN into the
image-to-image

translation problem
and uses U-net in
the generator to

improve the quality
of simulation data.

It needs lots of data
in pairs; data from
the source domain
must map to data

from the target
domain.

In our work, the number of data from different domains is not equal; this is
why we select to modify cycle GAN in Section 4.1.

2.4 Related Work
The indoor localization technique has been more important in the last two

decades [4] [25]. The most popular method in indoor localization technique is
the finger-printing method; hence, we read a paper [26], which is an overview of
different techniques to improve performance in the indoor localization domain. In
our work, we use data augmentation to decrease the cost of a site survey. Hence,
we will focus on data augmentation in this paper and discuss them.

doi:10.6342/NTU202300465

2.4. RELATED WORK 16

This section will discuss the data augmentation technique applied to finger-
printing to improve the performance or reduce the site-survey cost. Additionally,
we will classify the data augmentation into two classes: i) Augment data by non-
ML methods, ii) Augment data by ML methods such as GAN or VAE, etc.

2.4.1 Data Augmentation Without Using Machine Learning

In this subsection, we discuss some methods without using the ML technique.
These methods try to modify or add some noise to the original data to generate
simulation data.

• Paper [6] using data augmentation aim to reduce the effort of collecting data;
it uses a method of rotating the data to generate new simulation data. The
method used in the image may not be suitable for localization because the
continuous data collected in the different APs have different meanings. The
rotation may destroy the relationship in the one AP collected data.

• Paper [7] using data augmentation to fasten the real-time localization, it
augments the data by two schemes: i) randomly pick one AP’s non-zero
RSSI value, and add or minus 5 to RSSI value as a simulation data. ii)
randomly pick some APs and add random noise, which is produced from the
mean and variance of RSSI for N times. This method can generate new data
from old data; however, the randomness of this method is unpreventable.
Moreover, if the changed value is extremely large may produce interference
for localization.

• Paper [8] propose the data augmentation method by imitating the original
RSSI data at random to improve the performance. This method generated
fake data by recombining the real data; as a result, the simulation data is
limited by original data, which may lead to a low diversity problem.

The application for the above is data augmentation in the fingerprinting method.
The architecture is a good example for our work; however, both techniques use the
traditional method to augment the fake data, adding noise or randomly modifying
the real data to obtain simulation data. As a result, they may risk low quality
because these methods generate new data based on original data. Hence, the
simulation data may have poor quality when the original data have the same
problem. In addition, these methods may be destroyed the physical meaning of
real data. For example, the signal strength may change when adding the noise to
the original data.

To solve this issue, the machine learning method may generate data have more
flexibility. Training a model with original data and learning the more robust

doi:10.6342/NTU202300465

2.4. RELATED WORK 17

feature can generate data more flexibly and not lose the characteristic of real
data. Hence, in the following section, we will discuss the novel method based on
GAN we introduce in mentioned Section 2.3 to augment the data because GAN
features a higher quality and diversity.

2.4.2 Data Augmentation Using Machine Learning

The paper [9] proposes a method based on conditional GAN. It aims to con-
struct a localization system under the sparse condition of a sparse reference point.
It uses the KNN as its localization model. Additionally, these networks’ 0-1
sketch and Gaussian sketch conditions are designed to generate data effectively
and steadily. It creates two augmenters based on the networks with various cyclic
training approaches to compare the augmenting effects.

Paper [1] uses different techniques, including model fine-tuning, hyper-parameters
optimization, and data augmentation, to transfer the localization model into dif-
ferent domains.

As shown in Figure 6, this paper improves the performance by three steps:
i) fine-tuning, ii) hyper-parameters search, and iii) data augmentation. We will
describe the fine-tuning method and data augmentation in Chapter 3 and Chapter
4, respectively.

In the overall algorithm, which is mentioned after utilizing the above three
steps, the MDE can reduce by about 28%.

Target domain data
+

Simulation data

Source domain
data

Source domain
model

Fine-tuned
model

Fine-tuning

Target domain
model

Data
Augmentation

Hyperparameters
Search

Figure 6: Structure of the transfer learning structure proposed in [1].

In the data augmentation stage, although fitting our data into Vanilla GAN

doi:10.6342/NTU202300465

2.4. RELATED WORK 18

can decrease the localization error, it still deals with some problems when fitting
our situation.

• Because of the small amount of training domain data, the information for the
target domain may not be enough; it may tend to generate the simulation
data around a little information for the target domain.

• Many source domain data are not used during the GAN-training process.
We believe that the source domain data can reuse on the target domain
through translation because they have the same relative position to the user
equipment.

In our work, we reserve the part of fine-tuning as a basic transfer learning model
(described in Chapter 3). Moreover, we will introduce the cycle GAN in Section
4.1 to solve these dilemmas based on the above two reasons.

The paper [2] used the unsupervised method to localize the user and proposed
two criteria to select the fake data to improve the localization model’s performance:
1) Environment coverage: it aims to generate data that equally covers each zone
divided by the whole area. 2) Most realistic fake data: it compares the score
to the output of the discriminator. Figure 7 shows the pipeline of the semi-
supervised model train by simulation data proposed by [2]. It would first generate
the simulation data and train a model with insufficient data. It predicts the
simulation data by the model and synthesis of the pseudo-label for fake data.
After that, it adds the simulation data with a pseudo-label and tunes a model for
the online phase.

doi:10.6342/NTU202300465

2.4. RELATED WORK 19

10000 Simulation data

Real data

Discriminator

Generator

Selective method

1000 Simulation data

Train a prediction model

Predict the label of
simulation data

Train a prediction model

Prediction model

Figure 7: Pipeline of the selection GAN proposed in [2].

This paper inspires us; however, our model is supervised, and we generate the
simulation data by each RPs, respectively. We thought that the method this paper
proposed may face some problems in our work. The method picks the realistic
data; although let fake data is similar to real data, the simulation data would
concentrate on real data, making the diversity low.

Hence, we abandon the Environment Coverage because it is achieved already
in our experiment. On the other hand, because we use a small amount of data
to train the augmentation model (only 1

10 of training data), we hope that we can
reserve more diversity of fake data. We calculate the score during generating data

doi:10.6342/NTU202300465

2.4. RELATED WORK 20

rather than remove fake data after generating data. In addition, the discriminator
score is relative to the JS divergence, which may not be stable enough and time-
consuming. We introduce Wasserstein distance to solve this problem. In more
detail, we will introduce our method in Section 4.3.

In conclusion, these methods use only one domain’s data to augment data.
When the number of training data for generation is small, the simulation data
may suffer from the low diversity problem. Hence, our work will combine the data
from different domains.

doi:10.6342/NTU202300465

CHAPTER 3

SYSTEM MODEL

This chapter will introduce the environment, our features, and the model fine-
tuning method.

3.1 System Architecture

User Equipment (UE)

Base Station (BS)
USRP B210

Wireless connection
(uplink)

Laptop

Wired connection

(a) The device of our system.

Set reference point of the
localization area Data collection by UE Training a model

Data collection by UE prediction position of UE

Offline phase

Online phase

(b) The flowchart of the localization

Figure 8: System Architecture

Figure 8(a) shows our system and used device. We use a Laptop with OAI
5G and connect USRP (Universal Software Radio Peripheral) B210 with wire to

21

doi:10.6342/NTU202300465

3.2. LTE SIGNAL FEATURES 22

implement the Base Station (BS) and use a mobile phone as User Equipment (UE)
and connect BS with the wireless signal. Moreover, we use the uplink technique
to localize the UE, which means the BS needs to collect the signal sent by the UE
and find the location of the UE.

Figure 8(b) shows the pipeline of our localization flow; we first set up the
reference points (RPs) of the area in which we want to localization and collect the
data and corresponding label them as training data, then fit them into machine
learning model and train a localization model. The above flow is called offline
phase. After we get a model trained by training data, we collect the testing data,
then fit it into the model to predict the position of UE and calculate the error of
the real position of data and prediction position to evaluate the performance of
the localization model.

3.2 LTE Signal Features
We extract different elements belonging to RSS or CSI, respectively, as features

and input the model for training.

• RSS

1. Power Headroom Report (PHR) indicates the discrepancies between
the PUSCH transmission power currently being evaluated, PPUSCH ,
and the maximum transmission power permitted by the UE, PMAX , as
indicated in the following

PH = PMAX − PPUSCH . (3.1)

The normal PH range is between -23dB and 40dB.

2. Physical Uplink Shared CHannel Signal-to-Noise Ratio (PUSCH SNR)

3. Physical Uplink Control CHannel Signal-to-Noise Ratio (PUCCH SNR)
To control the transmit power of the various uplink physical chan-
nels, including PUSCH and PUCCH, the uplink power control first
determines the average power over a Single-Carrier Frequency Division
Multiple Access (SC-FDMA) symbols (in which the physical channel
is sent).

• CSI

1. Subband Differential Channel Quality Indicator (CQI): The UE notifies
the network, i.e., BS and EPC (Evolved Packet Core), of the CQI. It
is an indicator that provides details on the communication channel’s
quality, as its name suggests.

doi:10.6342/NTU202300465

3.3. ENVIRONMENT 23

For ease of notation, we refer to PHR, PUSCH SNR, PUCCH SNR, and Subband
Differential CQI as the radio characteristics at position L for PH(L), SNRPUSCH(L),
SNRPUCCH(L), CQI(L), respectively. The vector v represents all radio charac-
teristics in the following ways:

v = [PH(L), SNRPUSCH(L), SNRPUCCH(L), CQI(L)]. (3.2)

Notably, PH(L), SNRPUSCH(L), SNRPUCCH(L) ∈ R, and CQI(L) ∈ R1×20.
Machine learning models receive these 23-dimensional radio characteristics for
offline training and online prediction.

3.3 Environment
Our dataset is collected in National Taiwan University Barry Lam Hall, rooms

112 and 114. We will simplify them into BL112 and BL114 in the following.

USRPRP3

RP1

RP5

RP4

RP2

RP6

274cm 263.5cm

280cm

317cm

Label
USRP: 0,0
RP1: -274,280
RP2: 263.5,280
RP3: -274,0
RP4: 263.5,0
RP5: -274,-317
RP6: 263.5,-317

x

y

Figure 9: The reference point label and the 2D map of NTU BL112

Figure 9 shows the environment was built at BL112 with 6 RPs in different
positions. We assign this area as our source domain.

Figure 10 shows the environment was built at BL114. We assign this area as
our target domain.

In addition, we also collect the data in National Taiwan University Barry Lam
Hall, room 521. Figure 11 shows the environment was built at BL521. We assign
this area as our second target domain.

doi:10.6342/NTU202300465

3.3. ENVIRONMENT 24

USRPRP3

RP1

RP5

RP4

RP2

RP6

274cm 263.5cm

280cm

317cm

Label
USRP: 0,0
RP1: -274,280
RP2: 263.5,280
RP3: -274,0
RP4: 263.5,0
RP5: -274,-317
RP6: 263.5,-317

x

y

Figure 10: The reference point label and the 2D map of NTU BL114

USRP

RP3RP1 RP5

RP4RP2 RP6

180cm 200cm

Label
USRP: 0,0
RP1: 580,272
RP2: 580,0
RP3: 400,272
RP4: 400,0
RP5: 200,272
RP6: 200,0

x
y

272cm

200cm

Figure 11: The reference point label and the 2D map of NTU BL521

doi:10.6342/NTU202300465

3.4. MACHINE LEARNING MODELS 25

𝑇𝑎𝑟𝑔𝑒𝑡 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐷𝑎𝑡𝑎
600

𝑆𝑜𝑢𝑟𝑐𝑒 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐷𝑎𝑡𝑎
5,400

T𝑎𝑟𝑔𝑒𝑡 𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝐷𝑎𝑡𝑎
5,736

(920, 936, 950, 916, 1025, 989)

𝑆𝑜𝑢𝑟𝑐𝑒 𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝐷𝑎𝑡𝑎
1,457

(114, 176, 108, 116, 384, 559)

𝑆𝑜𝑢𝑟𝑐𝑒 𝐷𝑜𝑚𝑎𝑖𝑛 𝐷𝑎𝑡𝑎 BL112 (6,857)

𝑇𝑎𝑟𝑔𝑒𝑡 𝐷𝑜𝑚𝑎𝑖𝑛 𝐷𝑎𝑡𝑎 BL114 (6,336)

𝑇𝑎𝑟𝑔𝑒𝑡 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐷𝑎𝑡𝑎
600

T𝑎𝑟𝑔𝑒𝑡 𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝐷𝑎𝑡𝑎
5,736

(987, 951, 911, 907, 1461, 954)

𝑇𝑎𝑟𝑔𝑒𝑡 𝐷𝑜𝑚𝑎𝑖𝑛 𝐷𝑎𝑡𝑎 BL521 (6,771)

Figure 12: Amount of source and target domain data for the dataset.

Figure 12 shows the amount of source and target domain data for the dataset.
We use the dataset collected by paper [1], which divided source domain data into
5400 and 1457 for training and testing, respectively. The source training data is
composed of 900 data per RP, and source testing data is the number of data for
RP1 to RP6, which are 114, 176, 108, 116, 384, and 559, respectively. On the
other hand, the target domain data is divided into 600 and 5736, respectively.
The target training data collected in BL114 consists of 100 data per RP and
target testing data for RP1 to RP6, which are 920, 936, 950, 916, 1026, and 989,
respectively. The target training data collected in BL521 consists of 100 data
per RP and target testing data for RP1 to RP6, which are 987, 951, 911, 907,
1461, and 954, respectively. In these expert environments, we take only about 1

10

number for the target domain compared with the target domain.

3.4 Machine Learning Models
3.4.1 Target Problem

Our goal is to improve the localization performance of the target domain in
a small amount of data, and we can also concentrate the model or data from the
source data to achieve this target. We use the methods described in Section 2.2
to compute the error. In other words, we aim to reduce the distance between the
prediction position and ground truth.

In addition, because of the heavy cost of the site survey, we use only 1
10 number

data compared with the target domain’s source domain to train the prediction

doi:10.6342/NTU202300465

3.5. UPPER BOUND AND LOWER BOUND 26

model. In this section, we will set the lower and upper bounds. Also, the baseline
method proposed in the paper [1].

3.5 Upper Bound and Lower Bound
3.5.1 Upper bound

According to the situation of our problem, we believe that the upper bound
for the target domain prediction is the model trained by a complete site survey in
the target domain and training as we train the source model.

3.5.2 Lower bound

Our work aims to increase the performance by modifying the source model
into a fin-tuned model. Hence, we directly test the target domain data by source
model and set this method as a lower bound.

3.6 Fine-tuning Method
Model fine-tuning is a kind of Transfer Learning (TL) with the following de-

scription: 1) target domain data is insufficient; 2) source domain data is enough;
3) both target domain and source domain data are labeled. The idea of fine-tuning
is illustrated as follows.

• Using source domain data, train a prediction model F (x) for the source
domain.

• Using F (x)’s parameters as initial of fine-tuned model.

• By fitting target domain data into fine-tuned model and training, we can
finally have a prediction model for target domain F ′(x).

Figure 13 shows the concept of the fine-tuning method. The goal of the fine-
tuning method is that by modifying and training the source model, we can reserve
the general information for both domains and then improve the target domain
model when we have little data on the target domain.

3.6.1 Localization Model Description

As the description above, we adopt the model used by [1]. We will introduce
the Machine Learning model of our work.

doi:10.6342/NTU202300465

3.6. FINE-TUNING METHOD 27

Target domain data

Source domain data Source domain model

Fine-tuned model

Fine-tuning

Target domain model

Figure 13: Concept of Fine-tuning.

3.6.1.1 XGBoost+FN Model

Extreme Gradient Boosting is known by the term XGBoost [27]. XGBoost,
in contrast to the other models we previously discussed, is based on Classification
And Regression Trees (CART). For category prediction, CART is a decision tree
that employs tree branches to make judgments, with the outcome of the prediction
being a real number. A scalable tree-boosting system is XGBoost. The funda-
mental idea of the tree ensemble is exemplified by the use of numerous CARTs to
enhance the prediction outcomes:

ŷi =
K∑

k=1

gk(xi), gk ∈ g, (3.3)

where K denotes the number of CARTs, g is the area occupied by CARTs, xi ∈ Rd

is the i − th sample, d is the quantity of features, and ŷi ∈ R is the prediction
output of the i−th sample. Equation 3.3 shows that the initial model is maintained
while a new function g is introduced to the model each time. Thus, the idea of
tree boosting is represented by such an additive learning method [28].

We point out that [5] uses the output of the proposed SLN as a slot unit rather
than just applying the XGBoost model and learns the time link between numerous
slots through the FN (Fusion Network). The time relationship is therefore included
in the XGBoost model as a feature. As seen in Figure 14, we first pack every ten
slots of the original data together as a new piece of data before delivering the
training data into the XGBoost model indicated in [27]. After that, we give the
training data to the XGBoost model for training.

doi:10.6342/NTU202300465

3.6. FINE-TUNING METHOD 28

PH ℒ𝑚, 𝑡1

SNRPUSCH ℒ𝑚, 𝑡1

CQI20 ℒ𝑚, 𝑡1

𝐯𝑚(t1)
SNRPUCCH ℒ𝑚, 𝑡1

መℒ𝑚CQI1 ℒ𝑚, 𝑡1
.
.
.

XGBoost

𝐯𝑚(t1)

𝐯𝑚(t2)

𝐯𝑚(t3)

𝐯𝑚(t10)

.

.

.

Figure 14: XGBoost with time series data.

PH ℒ𝑚, 𝑡1

SNRPUSCH ℒ𝑚, 𝑡1

CQI20 ℒ𝑚, 𝑡1

𝐯𝑚(t1)
SNRPUCCH ℒ𝑚, 𝑡1

መℒ𝑚(t1)CQI1 ℒ𝑚, 𝑡1
.
.
.

XGBoost

(a)

𝐯𝑚(t1)
𝐯𝑚(t2)

𝐯𝑚(t3)

𝐯𝑚(t10)

.

.

.
.
.
.

input

.

.

.

hidden 2

.

.

.

hidden 3

.

.

.

hidden 4

output

100

1 × 2
linear

relu

መℒ𝑚

64 48 12
relu relu relu

hidden 1

10 × 2

.

.

.

𝐯𝑚(t4)

XGBoost

XGBoost

XGBoost

XGBoost

XGBoost

(b)

Figure 15: The XGBoost+FN model’s architecture.

Finally, we combine the XGBoost model with the FN model in [5]. Before
packing these data into a new one for every ten slots, we initially input the original
data into XGBoost for training. We then use the prediction made by XGBoost
of the original data as the new training data. Figure 15 shows the XGBoost+FN
model’s architecture. We consider indoor localization in two dimensions, or D = 2.
Note that the FN does not take Dropout and Batch Normalization into account,
as stated in Table 4.

doi:10.6342/NTU202300465

3.6. FINE-TUNING METHOD 29

Table 4: FN model’s layer.
Layer Type and Shape

loss function Mean Square Error

input
10 × 2, 2-dimensional coordinates are

the label.

hidden 1 Dense 100, ReLU.

hidden 2 Dense 64, ReLU.

hidden 3 Dense 48, ReLU.

hidden 4 Dense 12, ReLU.

output 1 × D, Linear.

Here, we develop FN (Fusion Network) using the SLN (Slot-based Localization
Network) model of [5]. The SLN model serves as the basis for the FN model.
The loss function is where the two differ the most. FN uses MSE, while Cross
Entropy is by SLN. The output layer’s activation function utilizes the Linear and
the Softmax, respectively. The activation functions of the hidden layers use the
Rectified Linear Unit (ReLU). SLN is a classification problem, whereas FN is a
regression problem. As seen in Figure 16, while regression problems are unaffected
by the impact of the RP placement range, the range of classification problems that
can be located may be. As a result, the prediction error for regression problems
is typically higher compared to classification issues.

RP1

RP4

RP6RP5

RP3

RP2

Possible prediction area

Location space

(a) Regression problem.

RP1

RP4

RP6RP5

RP3

RP2

Possible prediction area

Location space

(b) Classification problem.

Figure 16: Regression v.s. Classification.

3.6.2 Conservative Training

If we have insufficient training data during the training step, the over-fitting
problem will probably occur. In our situation, it is prone to occur over-fitting
under the premise of the source domain data far more than the target domain.

doi:10.6342/NTU202300465

3.6. FINE-TUNING METHOD 30

Thus, we must add the additional skills into the fine-tuning model to maximize the
benefit of transfer learning. We introduce a method to perform model fine-tuning
called conservative training.

The spirit of this method is adding some constrain, such as regularization, to
prevent the extreme difference between the source model and the target model.
The practical application for the localization system is adding additional regular-
ization into the loss function. The concept can be shown in Figure 3.6.2; we first
initialize the target model by source model, and after that, we aim to constrain
the target model and make the parameter of the target model close to the source
model; hence we add the regularizer into the loss function.

Source domain data Target domain data

Source model Target model
initialize

Source domain output Target domain output

Add constrain

Figure 17: Concept of Conservative Training.

The loss function of the system we use is MSE, which is shown below:

min
f(•)

1

M

M∑

m=1

‖L̂m − Lm‖22. (3.4)

The l1 regularizer λ
∑

i∈N(wi)2 and l2 regularizer λ
∑

i∈N |wi| can be mixed
and added to (3.4), as shown below:

min
f(•)

1

M

M∑

m=1

‖L̂m − Lm‖22 + λ
∑

i∈N

(wi)
2

s.t. L̂m = f(vm),

(3.5)

where wi is f(x)’s model parameters, wi is the parameter of f(•), N is the
number of model parameters, and λ is trade-off weight.

doi:10.6342/NTU202300465

3.7. GAN-BASED METHOD 31

3.6.3 Evaluation of Fine-tuning Model

After we train the fine-tuned model, we can test the target domain data. We
draw the performance of the fine-tuned model, lower bound, and upper bound
together in Figure 18. As we mentioned in Section 3.5.2 and 3.5.1, the source
model means we predict the target position by the model trained in Source domain
data, and the target model means we train a model by sufficient target domain
data to predict the coordinate of testing data directly. We can observe that the
fine-tuned model can reduce error by insufficient data to prove the fine-tuning
method is efficient. However, the fine-tuning performance has a large gap with
the upper bound we set; we treat this method as our baseline model and introduce
the enforce method to decrease the distance error.

Figure 18: Evaluation of fine-tuning model with an upper bound and lower bound

3.7 GAN-based Method
As we mentioned in Section 2.3.1, Vanilla GAN can generate the simulation

data from the random noise and target domain’s real data. We called this method
the “GAN-based method.”

The GAN-based data augmentation method can improve the performance of
indoor localization. Figure 19 shows how the GAN-based method mixes into the

doi:10.6342/NTU202300465

3.7. GAN-BASED METHOD 32

fine-tuning method. Thesis [1] mixes the simulation and site survey data to train
the target domain’s model. Moreover, the duplicated block of GANs model means
that we train a generator and generate the simulation data for different reference
points. For example, we generate fake data for RP1 from practical data collected
in RP1.

Target domain data
+

Simulation data

Source domain data Source domain model

Fine-tuned model

Fine-tuning

Target domain model

GAN
GANGANs for

different RPs

Figure 19: Architecture of GAN mixing Fine-tuning.

According to the theory and practical design description, we can fit our few
target domain data into the model and train the generator G and the discriminator
D at the training stage. After that, we can use the generator to generate simulation
data at the testing stage. We can easily label the simulation data and mix the
target domain data to improve fine-tuned model’s prediction correctness. Hence,
we will use the structure in Figure 19 as our system to utilize the simulation data
and train the model for localization in the target domain.

In Section 5.1, we will evaluate the Vanilla GAN’s method proposed in [1] and
compare it with our work.

doi:10.6342/NTU202300465

CHAPTER 4

DATA AUGMENTATION

Data augmentation is used to increase the amount of data by modifying copies
of existing data or creating simulation data from existing data. It helps generate
a sufficient number of data to reduce the over-fitting of the model.

We are inspired by GAN introduced in Section 2.3.1 and refer to 3.7, which
is used in [1] to generate data. In our work, we aim to utilize the data from the
source domain because we propose the similarity of the domain transfer is higher
than using random noise to generate data. However, the exceed similarity also
with the risk of over-fitting, quality control, and the number of simulation data is
the necessary topic in our method.

4.1 Cycle GAN Method
In [29], it proposed a method called Cycle GAN, which is a robust network

for unpaired data. Figure 20 is the structure of Cycle GAN. It can translate the
data from the source domain to the target domain through two generators and
two discriminators. In other words, the generator Gsource→target aims to transfer
the data from the source domain to the target domain; generator Gtarget→source’s
goal is to transfer the data from the target domain to the source domain; similarly,
Discriminator Dsource and Dtarget aim to determine whether data is real or fake.
These models can create a structure like Auto-Encoder and help us to generate
data. We will describe the loss function design and how we fit our environment
into this method in the following:

33

doi:10.6342/NTU202300465

4.1. CYCLE GAN METHOD 34

Reconstructed source domain
data

Simulation target domain data
(output)

Real/Fake?

Source domain data
(input)

Real/Fake?

D source

D targetG Source → Target

G Target → Source

Reconstructed target domain
data

Simulation source domain data
(output)

Real/Fake?

Target domain data
(input)

Real/Fake?

D Target

D sourceG Target → Source

G Source → Target

Figure 20: Structure of Cycle GAN.

1. Adversarial Loss:

Similar to Equation (23(b)), we also want to let G and D be Adversarial to
each other. But we replace the sample of random noise with a sample of
the domain in which we want to generate simulation data. For the mapping
function G : X → Y and its discriminator DY , we can define the objective
function as follow:

L(G,DY , X, Y) = Ex∼pdata(y) [logDY (y)] + Ex∼pdata(x) [log(1−DY (G(x)))] ,

(4.1)

where G aims to simulate the data similar to domain Y , while DY tries to
distinguish the real data sample from domain Y or generate from domain X.
In other words, G tries to minimize this objective, but D aims to maximize
it. It can be expressed as follow:

min
G

max
DY

L(G,DY , X, Y). (4.2)

On the other hand, we also need to define the mapping function F : Y → X

and its corresponding discriminator DX as follows:

min
F

max
DX

L(F,DX , X, Y). (4.3)

2. Cycle Consistency Loss:

doi:10.6342/NTU202300465

4.1. CYCLE GAN METHOD 35

Although adversarial training can learn mapping G and F to generate data
with the same distribution with target domain Y and X, there is still a risk
that mapping any random data in the target domain does not match the
same distribution with input data. Hence, only adversarial loss is not enough
to deal with this dilemma, ref4 argued that the mapping function should
be cycle-consistent: for short, after mapped x to G(x) and mapped back
F (G(x)) should be closer to original x. Similarly, after double translation,
G(F (y)) should be closer to y. By this concept, we can describe the cycle
consistency loss as follow:

Lcyc(G,F) = Ex∼pdata(x) [‖F (G(x))− x‖1] + Ey∼pdata(y) [‖G(F (y))− y‖1] ,
(4.4)

4.1.1 Objective Loss Function

Concluding the different losses include Equation (4.2), (4.3), and (4.4), the full
objective is as follows:

L(G,F,DX , DY) = L(G,DY , X, Y) + L(F,DX , Y,X) + λLcyc(G,F), (4.5)

where λ controls the relative importance. Our goal is to train the robust generator:

G∗, F ∗ = argmin
G,F

max
DX ,DY

L(G,F,DX , DY). (4.6)

Reconstructed domain A data

Simulation domain B dataDomain A data G A → B

G B → A

Cycle consistency loss

Domain B
data

Adversarial loss

Figure 21: Illustration of different loss.

In Figure 21, we illustrate the different types above in general cases. We can
see that cycle consistency is the distance between original data and reconstructed

doi:10.6342/NTU202300465

4.1. CYCLE GAN METHOD 36

data in domain A, and adversarial loss is the distance between simulated data and
real data in domain B. After all, our objective loss function mixes these conditions.

Algorithm 2 Minibatch stochastic gradient descent training of Cycle GAN.
Require: The number of training epochs, n; Data sample from the domain X, x;

Data sample from the domain Y, y; Data sample interval, i;
1: for n epochs do
2: for i samples time do
3: Sample mini-batch of M example x(1), · · · , x(M) from domain X without

replacement .
4: Sample mini-batch of M example y(1), · · · , y(M) from domain Y without

replacement .
5: Generate M simulation domain X data G(x(1)), · · · , G(x(M))

6: Generate M simulation domain Y data F (y(1)), · · · , F (y(M))

7: Update Discriminator DY by ascending its stochastic gradient:

∇θDY

1

M

M∑

m=1

[
logDY (y

(m))
]
+
[
log(1−DY (G(x(m))))

]

8: Update Discriminator DX by ascending its stochastic gradient:

∇θDX

1

M

M∑

m=1

[
logDX(x

(m))
]
+
[
log(1−DX(F (y(m))))

]

9: Update Generator G and F by descending its stochastic gradient:

∇θG,θF

λ

M

M∑

m=1

[
‖F (G(x(i)))− x(i)‖1

]
+
[
‖G(F (y(i)))− y(i)‖1

]

10: end for
11: end for

The Algorithm 2 shows that during an epoch, we will take out a fixed number
of the dataset without replacement and translate them into target domain data
to ensure that we can take different data to prevent over-fitting. We can see that
lines 7 and 8 in the Algorithm 2 handle the adversarial loss; line 9 handles the
cycle consistency loss.

4.1.2 Generator Network

The network architecture of the cycle GAN generator is similar to the U-Net
network, which uses down-sampling through the max pool and up-sampling to
learn the image feature. We show the architecture of U-Net in Figure 22.

doi:10.6342/NTU202300465

4.1. CYCLE GAN METHOD 37

Input
data

Output
data

Conv , ReLU

Copy and crop

Max pool

upsampling

Conv 1x1

Figure 22: Architecture of U-Net.

Based on the above designs, we can fit our source and target domain data into
the model and translate them. This method can fully use source domain data to
solve the problem of insufficient target domain data.

4.1.3 Problem of Cycle GAN in Our Work

However, the Cycle GAN method is designed for the image; we face the issue of
such a strong network that generating low-diversity data decreases performance.
In other words, we face a problem called mode collapse. That means the exceed-
ing strong discriminator leads to generator training failure and tends to generate
similar data in the training phase. We show this problem in Figure 23. We can
observe that in Figure 23(a), the discriminator remains in high accuracy; the ideal
situation in the GAN training phase is that the accuracy of the discriminator can
hold on to about 50 percent in the last. Also, we can prove that in Figure 23(b),
the generator loss stop in high loss leads to training fail and generate similar data
but can not against to discriminator.

doi:10.6342/NTU202300465

4.2. SEMI CYCLE GAN METHOD (SCG) 38

(a) Discriminator accuracy in Cycle GAN. (b) Generator loss in Cycle GAN.

Figure 23: The Cycle GAN problem about mode collapse.

According to the above reason, we proposed a new method to deal with the
issue based on Cycle GAN called Semi Cycle GAN.

4.2 Semi Cycle GAN Method (SCG)
Because we suffer from a mode collapse problem, which can damage simulation

data by low diversity and low quality, to solve this problem, we propose a method
inspired by the Cycle GAN and auto-encoder: simplify the Cycle GAN and only
reserve half of that. By this method, we can generate data that fit our data
distribution. Figure 24 shows the structure of Semi-Cycle GAN (SCG), and we
will explain the detail of modifying the cycle GAN in the following.

Reconstructed source domain
data

Simulation target domain data
Target domain

data

Real/Fake?

Source domain
data

D target

G Source → Target

G Target → Source

Figure 24: Structure of (SCG).

doi:10.6342/NTU202300465

4.2. SEMI CYCLE GAN METHOD (SCG) 39

• The structure of Cycle GAN is similar U-Net. However, the U-Net is so com-
plex that it does not fit our low-dimension data and decreases performance;
we modify the structure by removing the up-sampling and down-sampling.
The trouble we meet next is excessive discriminator accuracy. So we add
the drop-out layer to decrease the complexity of the discriminator to fit the
simpler generator.

• Although replacing the U-Net can achieve better performance, it still gen-
erates data similar to the target domain training data, which will cause the
fine-tuned model to over-fitting. As a result, we propose a method by re-
serving half of Cycle GAN, which can increase the diversity of generated
data and solve the over-fitting problem.

Similar to Equation (4.5), we can rewrite the loss function of mapping function
G : X → Y as follow:

1. Adversarial Loss:

min
G

max
DY

Ex∼pdata(y) [logDY (y)] + Ex∼pdata(x) [log(1−DY (G(x)))] . (4.7)

We reserve half of the two loss functions mentioned in Section 4.1 as our
adversarial loss.

2. Cycle Consistency Loss:

Lcyc(G,F) = Ex∼pdata(x) [‖F (G(x))− x‖1] . (4.8)

As mentioned above, we only need to maintain the loss between x and x

after double mapping function F (G(x)).

4.2.1 Objective Loss Function

L(G,F,DX , DY) = L(G,DY , X, Y) + λLcyc(G,F), (4.9)

Conclude both the loss function Equation (4.7) and (4.8); we can rewrite the
total loss function as equation(4.9).

By modifying these loss functions, we can implement the lightweight cycle
GAN as Algorithm 3, which is more suitable for our low-dimension data.

doi:10.6342/NTU202300465

4.2. SEMI CYCLE GAN METHOD (SCG) 40

Algorithm 3 Minibatch stochastic gradient descent training of SCG.
Require: The number of training epochs, n; Data sample from the domain X, x;

Data sample from the domain Y, y; Data sample interval, i;
1: for n epochs do
2: for i samples time do
3: Sample mini-batch of M example x(1), · · · , x(M) from domain X without

replacement .
4: Sample mini-batch of M example y(1), · · · , y(M) from domain Y without

replacement .
5: Generate M simulation domain X data G(x(1)), · · · , G(x(M))

6: Update Discriminator DY by ascending its stochastic gradient:

∇θDY

1

M

M∑

m=1

[
logDY (y

(m))
]
+
[
log(1−DY (G(x(m))))

]

7: Update Generator G and F by descending its stochastic gradient:

∇θG,θF

λ

M

M∑

m=1

[
‖F (G(x(i)))− x(i)‖1

]

8: end for
9: end for

In Algorithm 3, it decreases the complexity of Algorithm 2 by the cut-off half
of Cycle GAN. This method can theoretically generate data with suitable density
and diversity through the above design. In Figure 25, we can observe that the
training situation is better than Cycle GAN in Figure 23. Figure 25(a) is ideal for
training GAN because the generator can be adversarial to the discriminator.

(a) Discriminator accuracy in SCG. (b) Generator loss in SCG.

Figure 25: The SCG training situation.

doi:10.6342/NTU202300465

4.2. SEMI CYCLE GAN METHOD (SCG) 41

Table 5 compares the benefits and drawbacks of Cycle GAN with SCG, which
we proposed in this section.

Table 5: Comparison of Cycle GAN and Semi Cycle GAN
GAN’s model Advantage Disadvantage

Cycle GAN

It can translate the
data on different

scales between the
source and the

target domain data.
In addition, the

data can be
unpaired.

The mode collapse
tends to happen,
making the Cycle
GAN’s training

unstable and hard
to train.

Semi Cycle GAN

This method can
better prevent the
mode collapse in

low-dimension data
and reserve more
simulation data

diversity.

Due to the huge
diversity and
uncontrollable

volume of created
data, the quality of

phony data can
occasionally be

poor.

However, the exceeding number of data also leads to over-fitting, and we do
not know how much data is enough to train the model perfectly. We introduce
the selection method to control the number of data in the following.

4.2.2 Complexity Analysis

Compared to the Vanilla GAN method, we use one more generator to recon-
struct the source domain data and compute one more loss cycle consistency loss.
According to the open source code we used in [30], the Vanilla GAN uses the
Deep Neural Network (DNN), and the Cycle GAN uses the Convolution Neural
Network (CNN). Hence, the computing complexity of Vanilla GAN is less than
SCG. As shown in Table 6, the Vanilla GAN takes less time than SCG. However,
the performance of SCG is better than Vanilla GAN. In this thesis, we focus on
performance.

doi:10.6342/NTU202300465

4.3. SELECTION METHOD 42

Table 6: Contrasting the time of two GAN methods.
GAN methods cost time

Vanilla GAN
About 20 minutes per

reference point

SCG
About 30 minutes per

reference point.

4.3 Selection Method
Data augmentation aims to generate the simulation data and combine them

with real data to improve accuracy. To avoid the over-fitting problems caused
by insufficient data, we have generated a lot of data by various machine learning
methods and approached this goal. However, we observe some problems with this
method after the training phase:

1. Because of the randomness of the generator, the simulation data are some-
times unstable when training the model. In other words, the generated data
may have bad quality even if the generator is perfect.

2. The larger amount of simulation data is not necessarily for better localization
performance and leads to over-fitting when the diversity of simulation data
is low.

As we mentioned in Section 2.4.1, we refer to the design of paper [2] for our
work. Because this paper’s criteria and environment do not fit our environment
and we think there is a diversity problem in its structure, we redesign the selection
criteria and the structure of the selection method as shown in Figure 26. If the
score is higher than the average discriminator output, calculated by discriminator
accuracy during the training phase, we remove this data and regenerate a new
one. We will generate and evaluate it until it equals the number of simulation
data we are setting. This method helps us generate more realistic data to stabilize
and improve performance.

doi:10.6342/NTU202300465

4.3. SELECTION METHOD 43

Simulation data

Real data

Scoring

Generator

YES

Generate next data

NO
Score > avg?

Current number =
generate number?

NO

YES

End

Figure 26: Illustration of the data selection method.

Considering the above criteria, we can design different scoring mechanisms to
judge the similarity between original and simulation data. The score should reflect
the distance of the two domains’ data distribution. In the following subsection,
we will focus on fitting different methods to filter the simulation data and discuss
the difference between these methods.

4.3.1 Scoring by Discriminator

At first, we consider a scoring mechanism mode by Discriminator to control the
quality of simulation data. The discriminator in GAN is used to judge either data

doi:10.6342/NTU202300465

4.3. SELECTION METHOD 44

is real or fake; as a result, the discriminator is one of the best ways to choose the
most realistic data after the GAN training stage. We can recall that in Algorithm
3, after sample x from the source domain and fitting into generator G(x), we can
use the output of Discriminator DY (G(x)) as a score, which is associated with
lower lost function value:

Li
d = ∇θDY

1

M

M∑

m=1

[
logDY (y

(m))
]
+
[
log(1−DY (G(x(i))))

]
, (4.10)

where xi means the i − th number of data. Therefore, if the score is less than
average in the training phase, i will remain at the same value and regenerate the
new data.

The equation (4.10) shows that we can get the score by DY (where Y means
the target domain), which train by SCG. We will prove this method efficiently
improves the performance and can reduce the number of simulation data to achieve
a better result in visualization methods and performance in Section 5.2.

On the other hand, Equation 4.10 uses Jenson’s Shannon (JS) divergence [31]
to calculate the difference between two distributions. As shown in Equation 4.11,
the JS divergence is the method based on KL-divergence, which also use for esti-
mating the distance of different distributions.

JSD(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M)

=
1

2

∑
P log(

P
P+Q
2

) +
1

2

∑
Q log(

Q
P+Q
2

)

=
1

2

∑
P log(

2P

P +Q
) +

1

2

∑
Q log(

2Q

P +Q
)

=
1

2

∑
P log(

P

P +Q
) +

1

2

∑
Q log(

Q

P +Q
) + log(2)

(4.11)

where P and Q are probability distributions, M = P+Q
2 , and KL is the KL-

divergence.
However, the JS divergence may estimate the distance not well for some sit-

uations. In Figure 27, there are two distribution functions P (x) and Q(x). We
assume that these two distributions are not overlapping; hence, we can rewrite
Equation 4.11 as follows:

1

2

∑
0× log(

0

0 +Q(x)
) +

1

2

∑
Q(x)× log(

Q(x)

0 +Q(x)
) = 0, x ≥ x′,

1

2

∑
P (x)× log(

P (x)

P (x) +Q(x)
) +

1

2

∑
0× log(

0

P (x) + 0
) = 0, x < x′.

(4.12)

doi:10.6342/NTU202300465

4.3. SELECTION METHOD 45

We can observe that if two distribution has no overlapping, the JS divergence will
be the constant log(2), ∀x ∈ R. This is the disadvantage of JS divergence. In
other words, no matter how close between two distributions, JS divergence will be
constant when there is no overlap.

P(x) Q(x)

x
x’

Figure 27: A Example of the disadvantage of JS divergence.

For our situation, according to the defect of JS divergence, the score of sim-
ulation data may have dramatic changes, as shown in Figure 28. In this figure,
we aim to generate 3840 data scored by the discriminator, and the red horizontal
line is the average score. We can observe that most scores are larger than 0.5 or
less than 0.1. This result implies that it might cause every data we select may be
similar, which would also occur a low-diversity problem. Moreover, this problem
would also make the selection process time longer. It takes about 20 minutes
to finish the generate data stage in some situations. In summary, although this
scoring mechanism efficiently improves performance, there are disadvantages to
the unstable problem we need to handle. Hence, we introduce the Wasserstein
Distance to solve this problem.

doi:10.6342/NTU202300465

4.3. SELECTION METHOD 46

Figure 28: The relation between score and generated times of RP4.

4.3.2 Scoring by the Wasserstein Distance

The Wasserstein distance [32], also known as “Earth Mover’s Distance.” is
a method proposed to calculate the distance between two distributions. As its
name suggests, it saw a distribution as a mound, and the earth mover tried to
move one mound into the other. The minimum distance to move is what we want.
Compared to JS divergence, it can reflect the difference between two distributions
more smoothly. The Wasserstein distance of m-dimension probability distribution
P and Q with p factorial can be written as Equation 4.13.

Wp(P,Q) = (inf
π∈

∏
(P,Q)

∫

Rm×Rm

||x− y||pπ(dx, dy))
1
p (4.13)

where the || • || can be any norm,
∏
(P,Q) represent a set, which is the joint

distribution of all x ∈ Rm and y ∈ Rm with P and Q as marginal distributions.
The disadvantage of Wasserstein distance is the extremely high computational

complexity when computing the factorial. Hence, in our work, we only consider
the first Wasserstein distance. We can rewrite the Equation 4.13 as follow:

W (P,Q) = (inf
π∈

∏
(P,Q)

∫

Rm×Rm

|x− y|π(dx, dy)) (4.14)

doi:10.6342/NTU202300465

4.3. SELECTION METHOD 47

In addition, if the U and V are CDFs of P and Q, respectively, the Wasserstein
distance can also equals to [33]:

W (P,Q) =

∫ +∞

−∞
|U − V | (4.15)

To understand this method, in Figure 29, we plot the same example as Figure
27 to illustrate the concept of the Wasserstein Distance. We assume that distri-
bution P and Q have the same variance but different mean; the cost to change P

into Q is x2− x1, where the x1 and x2 is the mean of P and Q, respectively.

P(x) Q(x)

x
x1 x2

Wasserstein distance = x2 - x1

Figure 29: A Example of the Wasserstein distance.

As described above, the Wasserstein distance is a great way to compare the
similarity of two distributions; we also use this method to select the higher-quality
simulation data.

As we mentioned above, the unstable problem about generated time and
dramatic-change score shown in Figure 28 are the critical disadvantage of scoring
by the discriminator. Here, we plot the image of scoring by Wasserstein distance
as Figure 30. To the theory, the Wasserstein distance is more smooth, and we
can efficiently select the data with more diversity. In addition, because of the
characteristic of Wasserstein distance, the generated time can be more stable. In
addition, we also calculate the cost time between these two methods; they took
about 7 minutes and 30 minutes for the discriminator and Wasserstein distance,
respectively. We can observe that the Wasserstein distance leads to a better result.

doi:10.6342/NTU202300465

4.3. SELECTION METHOD 48

Figure 30: The relation between Wasserstein distance and generated times of
RP4.

Table 7: Contrasting the two selection methods.
Selection methods Advantage Disadvantage

Scoring by
discriminator

It is simple to use.
If the score is high,

the similarity
between the

simulation and the
original data will be

very high.

The score will
change

dramatically, which
may lead to a long

generated time.

Wasserstein
distance

It is more smooth
and has stable
generated time.

The similarity of
some data may not

be high enough.

Table 7 compares the different selection methods of Section 4.3.1 and Section
4.3.2. As a result, we can combine these two methods in the following section to
perform better.

doi:10.6342/NTU202300465

4.4. MIXING DATA FROM DIFFERENT METHODS 49

4.4 Mixing Data from Different Methods
In Section (3.7), we introduce different methods to realize data augmentation;

in the above section, we also evaluate the simulation data using some methods.
However, the real data distribution is also different for different reference points.
According to this concept, the same augmentation method in different reference
points may not be suitable for some.

Thus, we introduce a mixed method to combine simulation data from a differ-
ent method.

4.4.1 Standard ensemble of GAN

To reduce the risk of mode collapse and increase the diversity of fake data,
we can train multiple GAN models and randomly generate data from different
GAN models [34]. We illustrate the method in Figure 31; we randomly select
a trained generator to produce the fake data. We can combine simulation data
generated differently to implement this method in our work. For example, we aim
to get 1000 simulation data; we first generate 1000 fake data from Vanilla GAN
and SCG, then we randomly pick 1000 data from these 2000 simulation data and
concentrate them with real data to achieve the number of training data we need.

GAN 1

GAN 2

GAN 3

...

GAN R

Random pick

Simulation data

Figure 31: Standard ensemble method.

4.4.2 Mix-up

The other method to mix the data between different methods is called Mix
Up [35], which mixes the different data by different weights.

doi:10.6342/NTU202300465

4.4. MIXING DATA FROM DIFFERENT METHODS 50

In our work, we can mix the data from different methods randomly. Equation
4.16 shows how we fit this method into our environment.

x̃ = λx+ (1− λ)y, (4.16)

where the λ is the weight of different methods, x and y are the simulation data
drawn from different methods randomly.

For example, we plot an extreme situation shown in Figure 32, the left is data
all zero, and the right is the normal signal. After we mix up these two signals, the
data will be the weak signal of the right. And the weak rate according to the λ in
Equation 4.16.

Simulation data from semi cycle GAN Simulation data from Vanilla GAN

Cut mix simulation data

Figure 32: Illustration of a mix-up method.

4.4.3 Cut-mix

In the image data augmentation domain, a method called Cut Mix [36] is
proposed by cutting parts of the image and pasting it on the other image of the
same class to achieve data augmentation. In our problem, we saw all the data
collected simultaneously because we ignored the impact of time during the site
survey. Thus, we can sample the data from different generated methods randomly
and mix them. We cut half of the dimension of data ∼ GA(x) and paste it to
the data ∼ GB(x) where GA and GB are generator train from different methods.
In Figure 33, we illustrate how the cut mix method fits into our problem; we
cut half of the simulation data generated by Semi Cycle GAN and half of the

doi:10.6342/NTU202300465

4.4. MIXING DATA FROM DIFFERENT METHODS 51

simulation data generated by Vanilla GAN and paste them together to generate
a new simulation data.

Simulation data from semi cycle GAN Simulation data from Vanilla GAN

Cut mix simulation data

Figure 33: Illustration of cut mix method.

With this method, we can mix different data augmentation methods and com-
bine the advantage of both generators.

Finally, we conclude the different mixing methods in Table 9; the first row,
Usage of full data means that the method we use all of the data or not; the
second row, modify the data represents that the method either modifies the value
to mix them or not. And the last row, Regiondrop − out, indicates that the
method abandoned some parts to mix the other data. Concluding these aspects,
the Cut mix method is a better fusion of the different data. Hence, we will adopt
this method to mix the data.

Table 8: Comparison of different mixing methods.
Ensemble Mix up Cut Mix

Usage of full
data

yes yes yes

Modify the data no yes yes

Region drop-out no no yes

Moreover, we will introduce the Density and Coverage in Section 4.6.2. This
method can quantify the simulation data’s quality and diversity. First, the higher

doi:10.6342/NTU202300465

4.5. SUMMARY 52

Density value, the higher quality. Second, the higher diversity, the lower Cov-
erage value. Hence, we will choose the data with the highest Density and the
lowest Coverage for each RPs. We illustrate the architecture of this method in
Figure 34.

Simulation dataset 1

Simulation dataset 2

Simulation dataset 3

Highest Density

Lowest Coverage

Cut-mix Simulation dataset for RP-i

RP-i

Figure 34: The data mixing method with Density and Coverage.

4.5 Summary

Semi Cycle GAN

Select by
Wasserstein

Data mixing Simulation data

Data Source

Data Target

Select by
discriminator

Figure 35: The Summary of data augmentation.

doi:10.6342/NTU202300465

4.6. EVALUATION METRICS 53

As shown in Figure 35, we integrate the Semi Cycle GAN in Section 4.2,
selection method in Section 26, and mixing data in Section 4.4 for combining
simulation data selected by different score mechanism to generate the simulation
data.

Algorithm 4 Data augmentation system for reducing site-survey
Require: Data of the source domain in i − th RP, DataS,i; Data of the target

domain in i− th RP, DataT,i; The total number of RPs, N ;
1: for N do
2: Use DataS,i and DataT,i as input Algorithm 3 to train the SCGi for i− th

RP.
3: Generating simulation data DataSSCGfake,i

from SCGi and selecting the
data more realistic by the method mentioned in Section 4.3.1 for i− th RP.

4: Generating simulation data DataWSCGfake,i
from SCGi and selecting the

data more realistic by the method mentioned in Section 4.3.2 for i− th RP.
5: Mixing data DataSCGfake,i

, DataSSCGfake,i
,and DataWSCGfake,i

into
Datafake,i by the method we mentioned in the 4.4 for i− th RP.

6: Combining the Datafake,i and DataT,i into DataTraing for the as the input
of fine-tuned model we mentioned in Section 3.6 for predicting the UE position
in the online phase.

7: end for

The Algorithm 4 shows that we generate simulation data for different RPs
respectively, as we mentioned in Figure 19. In lines 2 to 4, we use the data we
obtain from site survey DataS,i and DataT,i to train a generator and then generate
the simulation data in the testing phase. In addition, we mix the framework of
data selection to control the generated data to be more realistic for Semi Cycle
GAN in lines 3 and 4. After all, we mix the data generated from different GAN
methods by the ensemble method with the Density and Coverage in line 5. At
last, we combine the real and fake data with training a robust fine-tuned model
to predict the position more precisely.

We will introduce the following evaluation metrics to prove the methods we
introduce in this chapter.

4.6 Evaluation Metrics
In comparison to image data augmentation, the result of simulation signal

data is hard to observe quality manually. Hence, we introduce various metrics to
evaluate the generated data.

doi:10.6342/NTU202300465

4.6. EVALUATION METRICS 54

4.6.1 t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-Distributed Stochastic Neighbor Embedding (t-SNE) [37] is an unsupervised,
non-linear technique to visualize high-dimensional data. tSNE can provide covert
high-dimensional data into two dimensions. Its goal is that the closer the data
belongs to the same cluster amount, the low-dimension data. These low-dimension
data can be visualized in two or three-dimension space. tSNE is created to solve
the crowding problem and difficult to optimize of SNE (Stochastic Neighbor Em-
bedding); hence we discuss SNE first. The goal of SNE is as follows:

• Transfer the Euclidean distance between high-dimension samples to condi-
tional probability pj|i to represent the similarity between xi and xj.

pj|i =
exp(−‖xi − xj‖2/(2σ2

i))∑
k)=i exp(−‖xi − xk‖2/(2σ2

i))
, (4.17)

where σi is the variance under a Gaussian distribution centered on xi.

• For corresponding low-dimension data points, also create the conditional
probability qj|i to represent the similarity between yi and yj.

qj|i =
exp(−‖yi − yj‖2)∑
k)=i exp(−‖xi − xk‖2)

. (4.18)

• The similarity with low-dimension and high-dimension conditional proba-
bility distribution can be calculated by the Kullback-Leibler (KL) diver-
gence(See Figure 36). We aim to minimize the KL divergence sum at all
data points.

C =
∑

i

KL(Pi‖Qi) =
∑

i

∑

j

pj|i log
pj|i
qj|i

. (4.19)

doi:10.6342/NTU202300465

4.6. EVALUATION METRICS 55

KL(P||Q) is small

Distribution P Distribution Q

KL(P||Q) is big

Distribution P

Distribution Q

Figure 36: A example of KL divergence.

As we mentioned above, the tSNE can solve the problem of SNE in two steps:

1. Using symmetric SNE, we can rewrite the low-dimension conditional prob-
ability distribution into joint probability between yi and yj:

qij =
exp(−‖yi − yj‖2)∑
k)=l exp(−‖xl − xk‖2)

. (4.20)

And we define the joint probability between xi and xj in the high-dimension
space as:

pij =
pj|i + pi|j

2n
. (4.21)

2. Using Student-t distribution in the low-dimension space. Hence, we can
rewrite the low-dimension joint distribution as follows:

qij =
(1 + ‖yi − yj‖2)−1

∑
k)=l(1 + ‖xl − xk‖2)−1

. (4.22)

According to the modifying of above, the cost function can be rewritten as:

C =
∑

i

KL(Pi‖Qi) =
∑

i

∑

j

pij log
pij
qij

=
∑

i

∑

j

pij log pij − pij log qij. (4.23)

By Equation (4.21)and (4.22), We can calculate gradient in optimize as:
δC

δyi
= 4

∑

j

(pij − qij)(yi − yj)(1 + ‖yi − yj‖2)−1. (4.24)

Thus, we can find the best mapping function Y : H → L to map data from
high-dimension to low-dimension space.

doi:10.6342/NTU202300465

4.6. EVALUATION METRICS 56

4.6.1.1 Analysis of t-SNE

We introduce two metrics by connecting the mean and fake data to evaluate
the similarity and diversity between practical and simulation data.

• Connecting the means of RP1 to RP6 in sequence, visualize the similarity
between real data and simulation pattern. We can quantize the similarity
by structural similarity(SSIM) [38] defined as follow:

SSIM(data1, data2) = [l(data1, data2)]α • [c(data1, data2)]β • [s(data1, data2)]γ.
(4.25)

In Equation 4.25, l means the luminance, c means the contrast, and s means
the structure. In the other hand, α, β, and γ represent the importance of l,
c, and s, respectively. In our work, we only care about structural similarity;
hence, we can set the α and γ to zero.

• Connecting the means of real and fake data for each RPs, we hope to clearly
distinguish the different RPs lines. This method can judge the simulation
data whether concentrated in their real data distribution.

4.6.2 Density and Coverage

In [39], it proposed a method to evaluate simulation data called Density and
Coverage.

• Density. Density can measure the intensive rate of simulation data. It is
defined as:

density :=
1

kM

M∑

j=1

N∑

i=1

1Yi∈B(Xi,NNDk(Xi)), (4.26)

where k is for the k-nearest neighborhoods.

• Coverage. Coverage can measure the diversity of simulation data. It is
defined as

coverage :=
1

N

N∑

i=1

1∃js.t.Yj∈B(Xi,NNDk(Xi)). (4.27)

Equation (4.27) means the rate of a real sample whose neighborhoods contain
at least one simulation sample.

doi:10.6342/NTU202300465

4.6. EVALUATION METRICS 57

Real samplesReal manifold

Fake samples

Density =
0 + 1 + 1 + 1 + 2
2 + 2 + 2 + 2 + 2 = 0.5

k=2

Coverage =
4
5

Figure 37: A example of Diversity and Coverage.

To understand these two concepts more clearly, we show a simple example in
Figure 37; we first create the manifold for all real samples by k-nearest neigh-
borhoods and then observe the relationship between the fake sample and real
manifold.

• Density: The numerator is 0, 1, 1, 1, 2 because one point does not belong to
any real manifold, three points belong to one real manifold, and one point
belongs to two real manifolds.

• Coverage: Three real manifolds include the fake sample, so the coverage is
0.8.

As a description above, we can observe that the simulation data with higher
density and coverage tend to have a better result. In our work, we generated
fake data for all RPs and computed the density and coverage for different RPs.
We can plot a picture to compare the simulation data generated from various
generation methods to visualize the quality of fake data. We can compute the
mean of different augmentation methods to analyze the quality. The following
chapter will evaluate the data quality by density and coverage.

doi:10.6342/NTU202300465

CHAPTER 5

PERFORMANCE EVALUATION

This chapter will evaluate the methods mentioned in Chapter 4 and prove our
work is efficient. In addition, the MDE and MLE in our methods are the means
of ten times testing result.

5.1 Evaluation of GAN-based Method
As mentioned above, we will try data augmentation using the GAN-based

method. In the following subsection, we will discuss the performance of different
GAN structures. In the following experiment, we use 900 data per RP from the
source domain (BL112) to fine-tune the source domain model and 100 data per
RP from the target domain (BL114) to train the fine-tuned model and generate
data. In our experiment setting, because we aim to reduce the time-consuming of
cite-survey for new localization area, we expect that these methods can achieve
better performance than fine-tuning method.

5.1.1 Evaluation of Vanilla GAN Method
5.1.1.1 t-SNE evaluation

According to the above chapter, we can easily observe the data in 2-D space
after using the t-SNE method. We first plot the original data in Figure 38(a).
Although there is some overlap, we can still distinguish the different RPs’ data.
For this reason, we can classify them by machine learning method to train. Next,
we plot the simulation data generated by GAN as shown in Figure 38(b). Same to
the real data, the fake data overlap, but we can still classify the data of different
RPs.

We plot the generated and original data in Figure 39. In the following Figure,
we use “true−i” to imply the real data of RPi, and “gen−i” means the simulation
data of RPi generated by vanilla GAN. In addition, Figure 39(a) is such a mess
that we can not distinguish the difference RPs easily. Hence, we extract the mean
point position of different data types shown in Figure 39(b).

As we mentioned in Section 4.6.1, we introduce two point-to-point methods to
evaluate the quality of the data we generated: i) connecting the data from RP1 to
RP6 in sequence and calculating the structure’s SSIM (structural similarity). The
SSIM of real data and fake data pattern is 0.899 in Figure 40(a), which means

58

doi:10.6342/NTU202300465

5.1. EVALUATION OF GAN-BASED METHOD 59

(a) Visualization of target domain data

(b) Visualization of simulation domain data

Figure 38: Visualize the original data and the simulation data generated by
Vanilla GAN.

doi:10.6342/NTU202300465

5.1. EVALUATION OF GAN-BASED METHOD 60

(a) Combine simulation data and real data in 2-D space.

(b) Extract the mean point from above.

Figure 39: Plotting the real data and simulation data together.

doi:10.6342/NTU202300465

5.1. EVALUATION OF GAN-BASED METHOD 61

that these two patterns are similar, and we can observe that there is only some
scale relationship between these two structures. In Figure 40(b), we connect the
different RPs’ mean of real and simulation data. We can see that the RP1, RP3,
and RP6 are intersections, which may make the result of the GAN method not
ideal enough.

5.1.1.2 Model Performance Evaluation

After analyzing the generated data above, we train the fine-tuned model by
combining the different numbers of simulation data and 100 real data to predict
the position of testing data and calculate the MDE and MLE as shown in Figure
41. The best performance in gen4900 can reduce error by about 22% and 27%
in MDE and MLE, respectively. Although the result of the GAN method can
efficiently improve performance, many training data are still not used for data
augmentation. We will introduce the translation method we mentioned in Section
4.2 to solve this problem and decrease the prediction error.

5.1.2 Evaluation of Semi Cycle GAN Method

We use CNN2D as the network of the generator and the discriminator. To fit
the input of CNN2D, we concentrate on 24 features and add one dimension for
each feature. Hence, our input is 24× 24 data.

5.1.2.1 t-SNE evaluation

We use the t-SNE to visualize the data of the target domain, and simulation
data make us easy to analyze.

As above, we analyzed them by the point-to-point method in Figure 42. We
can observe that the two different patterns composed of the orange line and purple
line in Figure 42(a) are similar, and the SSIM=0.905, which is better than Vanilla
GAN’s. On the other hand, the Figure 42(b) condition is better than Figure 40(b)
because we can distinguish every RPs clearly. In the t-SNE analysis, we can see
that the simulation data generated by the Semi Cycle GAN have more similarity
with real data, and the fake data have higher resolution than Vanilla GAN, which
means the model can better predict the data of different RPs. We can also prove
this viewpoint in the following description.

5.1.2.2 Model Performance Evaluation

Figures 43 show the result in different generated numbers of Semi Cycle GAN.
Compared to the performance of Vanilla GAN in Figure 41, the performance of
Semi Cycle GAN is better. For Figure 43(a), the best performance of gen4800

doi:10.6342/NTU202300465

5.1. EVALUATION OF GAN-BASED METHOD 62

(a) Connecting the RP1 to RP6 respectively.

(b) Connecting the similar RP respectively.

Figure 40: Use two Point-to-point methods on Vanilla GAN result.

doi:10.6342/NTU202300465

5.1. EVALUATION OF GAN-BASED METHOD 63

(a) MDE of Vanilla GAN.

(b) MLE of Vanilla GAN

Figure 41: evaluation of Vanilla GAN

doi:10.6342/NTU202300465

5.1. EVALUATION OF GAN-BASED METHOD 64

(a) Connecting the RP1 to RP6 respectively.

(b) Connecting the similar RP respectively.

Figure 42: Use two Point-to-point methods on Semi Cycle GAN result.

doi:10.6342/NTU202300465

5.2. EVALUATION OF SELECTED SEMI CYCLE GAN 65

is reduced by about 29% error in MDE, and Figure 43(b) is the CDF of the
Semi Cycle GAN, which shows that different numbers of generated data efficiently
increase the performance of the model.

In the above evaluation, we can find that the proposed method Semi Cycle
GAN is efficient for our environment and model; in the following, we will introduce
the selection method to stabilize the simulation data and improve the performance.

5.2 Evaluation of Selected Semi Cycle GAN
5.2.1 t-SNE

We also start from the t-SNE point-to-point method to evaluate Selective Semi
Cycle GAN. We can get SSIM = 0.912 from Figure 44(a), which is higher than
SCG’s SSIM. On the other hand, each RPs connected line in Figure 44(b) is
distinguished more clearly than Figure 42(b). These phenomena prove that the
selection method tends to have more ideal results.

However, the t-SNE method can not explain why we use the selection method
well. As a result, we proposed a method that translates the simulation data into
a real position to visualize the effect difference between SCG and Selective SCG.

5.2.2 Model Performance Evaluation

Because t-SNE can not distinguish the performance of Semi Cycle GAN (SCG)
and Selective SCG well, we try another method to visualize the simulation data.
The intuitive method is that we can use fake data as input for a fine-tuned model
and predict the position of these simulation data. These simulation data train the
fine-tuned model; for example, we predict the GAN’s fake data by a fine-tuned
model trained by GAN’s data. As shown in Figure 45, We plot the prediction
coordinate and each RPs ground truth on the map. The blue point is the position
that predicts the simulation data by fine-tuned model; we can easily observe that
the density of Selective SCG is higher and more concentrated in their RP position.
Hence, we can prove that the selection method works well and fits our experiment
environment.

doi:10.6342/NTU202300465

5.2. EVALUATION OF SELECTED SEMI CYCLE GAN 66

(a) MDE of Semi Cycle GAN.

(b) CDF of Semi Cycle GAN

Figure 43: evaluation of Semi Cycle GAN

doi:10.6342/NTU202300465

5.2. EVALUATION OF SELECTED SEMI CYCLE GAN 67

(a) Connecting the RP1 to RP6 respectively.

(b) Connecting the similar RP respectively.

Figure 44: Use two Point-to-point methods on Selective Semi Cycle GAN result.

doi:10.6342/NTU202300465

5.2. EVALUATION OF SELECTED SEMI CYCLE GAN 68

(a) SCG of RP1. (b) Selective SCG of RP1.

(c) SCG of RP2. (d) Selective SCG of RP2.

(e) SCG of RP3. (f) Selective SCG of RP3.

doi:10.6342/NTU202300465

5.2. EVALUATION OF SELECTED SEMI CYCLE GAN 69

(g) SCG of RP4. (h) Selective SCG of RP4.

(i) SCG of RP5. (j) Selective SCG of RP5.

(k) SCG of RP6. (l) Selective SCG of RP6.

Figure 45: Testing simulation data by fine-tuning model for different RPs.

After plotting the simulation data into a map, we next discuss the performance
of Selective SCG, which is shown in Figure 46. In these two pictures, we generate
different numbers of simulation data and train the fine-tuning model, respectively.
Compared to Figure 43(a) best performance → 4800 data, Figure 46(a) can reach

doi:10.6342/NTU202300465

5.2. EVALUATION OF SELECTED SEMI CYCLE GAN 70

the same performance in 1920 data, and Selective SCG has better performance
in 3840 data, which improves the performance by about 32%. According to these
results, we can conclude that the selective SCG can decrease the error distance
between the prediction position and ground truth in our work.

5.2.3 Scoring by Wasserstein distance

As we mentioned in Section 4.3.2, the Wasserstein distance is specific to higher
stability. We hence introduce it to select simulation data. As shown in Figure
47, using the Wasserstein distance has nearly the performance selected by JS
divergence. However, the Wasserstein distance has less generated time and is
more stable, mentioned in Section 4.3.2. Hence, we select the simulation data
with higher quality by Wasserstein distance.

Compared to Figure 46, the performance of Figure 47 has not only a small
improvement in localization accuracy, but the generated time and stability also
increase. Next, we will discuss the number of simulation data to prove that the
selection method controls the generated number.

5.2.4 Discussion of the number of simulation data

In Figure 48, we can observe that the performance of gan4800 is worse than
gan1920, gan2880, and gan3840. We infer that because the Selective SCG can
effectively increase simulation data density, we prove this viewpoint in Figure 45.
The sufficient density of fake data can reach the same performance in a lower
number of training data; however, the higher number of training data in a high
density leads to over-fitting. We plot the training loss and validation loss during
fine-tuning model training in Figure 49 to prove this viewpoint. The blue line of
the figure is training loss, and the orange line is validation loss. We can easily
know that in Figure 49(a), both two curves are decreasing. In Figure 49(b), the
validation loss increases. This situation is due to the over-fitting.

To understand the relationship between the number of real data and simulation
data. We also use 500 and 900 target domain data to generate fake data. As shown
in Figure 50, the performance of gan1500 and gan1100 are the best, respectively.
Compared to using 100 data, the best result occurs in gan3840 data, which means
that we need to generate more data when we have fewer data. In conclusion, the
more real data, the fewer simulation data we need to generate in Selective SCG.
In other words, the selection method can truly control the quality of simulation
data, leading to better performance in less data. However, exceeding the number
of simulation data can also lead to over-fitting and worse results.

doi:10.6342/NTU202300465

5.2. EVALUATION OF SELECTED SEMI CYCLE GAN 71

(a) MDE of Selected Semi Cycle GAN.

(b) CDF of Selected Semi Cycle GAN

Figure 46: Evaluation of Selected Semi Cycle GAN

doi:10.6342/NTU202300465

5.2. EVALUATION OF SELECTED SEMI CYCLE GAN 72

(a) MDE of Selected Semi Cycle GAN using Wasserstein distance.

(b) CDF of Selected Semi Cycle GAN using Wasserstein distance.

Figure 47: Evaluation of Selected Semi Cycle GAN using Wasserstein distance.

doi:10.6342/NTU202300465

5.2. EVALUATION OF SELECTED SEMI CYCLE GAN 73

Figure 48: The more number of simulation data

(a) Over-fitting does not occur in gan1920 (b) Over-fitting occur in gan4800

Figure 49: The training loss in the fine-tuned model training phase.

doi:10.6342/NTU202300465

5.2. EVALUATION OF SELECTED SEMI CYCLE GAN 74

(a) The MDE about a different number of simulation data generated by 500 real data.

(b) The MDE about a different number of simulation data generated by 900 real data.

Figure 50: The MDE about a different number of simulation data.

doi:10.6342/NTU202300465

5.3. EVALUATION OF DATA MIXING METHOD 75

5.2.5 Evaluation using Density and Coverage

Moreover, we introduce the Density and Coverage we mentioned in Section
4.6.2 to evaluate the quality of simulation data between SCG and Selective SCG.
According to that section, we can know that the higher density, the data have
higher quality; the lower coverage, the higher diversity. As shown in Figure 51(a),
we can observe that in the Density, the different methods have the best value
in different RPs. On the other hand, in the Coverage, WSCG is better for
most RPs. The mean density for SCG, SSCG, and WSCG are 0.65, 0.59, and
0.59, respectively. The mean of coverage for SCG, SSCG, and WSCG are 0.22,
0.21, and 0.19. As a result, we aim to combine these simulation data in the data
mixing method. We introduce the Cut-mix and combine them by the Density and
Coverage.

5.3 Evaluation of Data Mixing Method
As we mentioned in Section 4.4, we implement the cut mix method and fit it

into our model to combine the simulation data generated by different methods.
We concentrate on the simulation data generated by SCG, SSCG, and WSCG
to generate new data. According to method one, with the highest density, and
method two lowest coverage for each RPs, cut apart from method one and paste
them into method two. By this method, we can get the same number of data as
the Selection method’s simulation data, which has 3800 data. As shown in Figure
52, we compare the performance using a cut mix. We can improve performance in
MDE and MLE by using the Cut-mix method, proving that we can combine the
different methods’ advantages after utilizing the mixing method.

Here, we plot the density and coverage for the data mixing method as shown
in Figure 53. For the density, we can observe that the values are better than all
methods for most RPs. For the coverage, we can observe that the green line is
not the highest in most RPs. The mean density and coverage are 0.73 and 0.21.
According to these figures, we can prove that the Cut-mix method can enhance
the quality of simulation data and increase the diversity.

Table 9: Comparison of Density and Coverage.
Methods Density Coverage

SCG 0.65 0.22

SSCG 0.59 0.21

WSCG 0.59 0.19
Cut-mix 0.73 0.21

doi:10.6342/NTU202300465

5.3. EVALUATION OF DATA MIXING METHOD 76

(a) The Density of simulation data generated by SCG, SSCG, and WSCG.

(b) The Coverage of simulation data generated by SCG, SSCG, and WSCG.

Figure 51: The density and coverage of all methods.

doi:10.6342/NTU202300465

5.3. EVALUATION OF DATA MIXING METHOD 77

(a) MDE of Cut-mix.

(b) CDF of Cut-mix

Figure 52: The comparison between either using cut-mix.

doi:10.6342/NTU202300465

5.3. EVALUATION OF DATA MIXING METHOD 78

(a) The Density of all methods and Cut-mix method.

(b) The Coverage of all methods and Cut-mix method.

Figure 53: Comparison of Cut-mix methods and all other generated methods.

doi:10.6342/NTU202300465

5.4. SUMMARY 79

Table 9 concludes the density and coverage of the selection and mixing meth-
ods. In conclusion, the data mixing method can combine the data generated from
different methods and efficiently improve the quality of simulation data.

5.4 Summary
In this section, we summarize our methods and plot their MDE and CDF

shown in Figure 55 and Table 10. It proves that our methods are useful for do-
main transfer and efficiently improve localization performance in the new domain.
We first use the V anillaGAN to augment data according to [1]. It can improve a
little performance compared to the fine-tuned model. However, the gap between
the upper bound is large, and the source domain data are useless in the data aug-
mentation stage. Hence, we proposed the Semi Cycle GAN method mentioned in
Section 4.2 to utilize the source domain data and try to improve the performance,
SCG in the figure. The SCG method can improve about 28% accuracy in MDE.
After that, based on this method, we additionally use the selection method men-
tioned in Section 4.3 by our expert to control the quality of simulation data and
get better performance. We proposed two score mechanisms labeled SSCG and
WSCG, which the discriminator and Wasserstein distance select. These selection
methods can reduce errors by about 32% and 33% in MDE, respectively. More-
over, we can generate data in less amount to achieve the same error compared
to the other methods. To understand the number of simulation data, we label
the generated number in the parentheses after the methods in Figure 55. Last,
we analyze the advantage of utilizing the data generated from different methods
in Figure 51(a) and Figure 51(b). We introduce the mixing method to combine
the different methods into CutMix, which can improve the performance by about
36% in MDE.

Moreover, compared to the V anillaGAN method’s MDE, the SCG method
can improve by about 12.6%, the SSCG method can improve by about 17.9%,
the WSCG method can improve by about 19.3%, and the CutMix method can
improve by about 21.6% in MDE as shown in Figure 54.

(a) GAN vs. SCG. (b) GAN vs. SSCG. (c) GAN vs. WSCG. (d) GAN vs. Cut-mix.

Figure 54: Comparison of the Vanilla GAN and all of the methods in our work.

doi:10.6342/NTU202300465

5.4. SUMMARY 80

Figure 56 shows the boxplot of all the methods we mentioned. We can find
that compared to the “fine-tuned model,” the maximum and minimum localization
errors in “CutMix” has been improved by 35.4% and 81%, respectively.

Table 10: Comparison of MDE and MLE in BL114.
Methods MDE (cm) MLE (cm)

fine-tuned method 298.768 315.61
Vanilla GAN 244.548 229.45

SCG 213.846 229.99
SSCG 200.601 215.26
WSCG 197.265 208.10

Overall (with Cut-mix) 191.691 206.639
target model 178.554 143.46

In the final result, we can reduce the MDE and MLE by about 36% and
35% compared to the baseline method fine− tuned model, respectively. And we
decrease the performance gap between the upper bound as shown in Figure 57.

We also apply our proposed method in the second dataset mentioned in Figure
11. The MDE and MLE of different methods are shown in Table 11 and Figure 58.
The overall algorithm, which mixes all proposed methods, can reduce the MDE
and MLE by about 32% and 75% compared to the baseline method, respectively.
For these results, we can prove that our proposed method is useful in the low-
dimension method, and we can get a more precise position by these localization
methods.

Table 11: Comparison of MDE and MLE in BL521.
Methods MDE (cm) MLE (cm)

fine-tuned method 160.673 138.694
Vanilla GAN 175.15 164.593

SCG 121.644 39.39
SSCG 112.861 42.632
WSCG 111.118 41.823

Overall (with Cut-mix) 109.414 33.852

doi:10.6342/NTU202300465

5.4. SUMMARY 81

(a) MDE of different methods in BL114.

(b) CDF of different methods in BL114.

Figure 55: Comparison of different methods in BL114.

doi:10.6342/NTU202300465

5.4. SUMMARY 82

Figure 56: Effect of various techniques.

doi:10.6342/NTU202300465

5.4. SUMMARY 83

(a) CDF

(b) MDE (c) MLE

Figure 57: Comparison of the final result with a lower and upper bound in BL114.

doi:10.6342/NTU202300465

5.4. SUMMARY 84

(a) MDE of different methods in BL521.

(b) CDF of different methods in BL521.

Figure 58: Comparison of different methods in BL521.

doi:10.6342/NTU202300465

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, we extracted the radio features based on the Base Station (BS),
which implements OAI 5G using USRP hardware and a laptop. According to
the fine-tuning model refer to [1], we are using it as our baseline model. It uses
the comparatively reliable XGBoost+FN model as the foundation for the ensu-
ing indoor localization environmental adaptability. The XGBoost+FN model can
achieve decimeter-level positioning accuracy in the 2-D indoor localization sce-
nario.

We focus on data augmentation in environmental adaptation for indoor local-
ization. To utilize the source domain data and fit the low-dimension data, we
proposed a method inspired by Cycle GAN called Semi Cycle GAN. In addition,
this method can also prevent the model from overfitting by little training data.
However, we observe that we can not prove the quality of simulation data is high
enough. Hence, we introduce the selective method and different score mechanisms
to filter bad-quality data. At last, we introduce the Cut-mix method to combine
the simulation data generated by different methods. These methods can improve
the localization accuracy by about 36% and 35% in MDE and MLE, respectively.
We also efficiently reduce the gap between our work and the upper bound model.
In conclusion, we propose a data augmentation method and process these simula-
tion data to achieve higher accuracy.

In the future, in the GAN model, we can try more novel adversarial networks
to transfer the source domain data into the target domain. In data selection, we
can introduce more indicators as score mechanisms to filter the data and combine
them. In data mixing, we can try more complex methods, such as the cascade of
GAN, to combine the data from different kinds of GANs.

85

doi:10.6342/NTU202300465

REFERENCES

[1] J.-X. Liao, “An indoor localization system for cellular networks based on
transfer learning with reduced cost on site survey,” no. 2021, pp. 1–143, 2021.

[2] W. Njima, M. Chafii, A. Chorti, R. M. Shubair, and H. V. Poor, “Indoor
localization using data augmentation via selective generative adversarial net-
works,” IEEE Access, vol. 9, pp. 98 337–98 347, 2021.

[3] G. Draft, “Feasibility study on new services and markets technology enablers
stage 1 (release 14),” International Telecommunication Union, 2016.

[4] F. Zafari, A. Gkelias, and K. K. Leung, “A survey of indoor localization sys-
tems and technologies,” IEEE Communications Surveys & Tutorials, vol. 21,
no. 3, pp. 2568–2599, 2019.

[5] H. Zhang, Z. Zhang, S. Zhang, S. Xu, and S. Cao, “Fingerprint-based local-
ization using commercial lte signals: A field-trial study,” in 2019 IEEE 90th
Vehicular Technology Conference (VTC2019-Fall). IEEE, 2019, pp. 1–5.

[6] L. Xiao, A. Behboodi, and R. Mathar, “A deep learning approach to finger-
printing indoor localization solutions,” in 2017 27th International Telecom-
munication Networks and Applications Conference (ITNAC). IEEE, 2017,
pp. 1–7.

[7] R. S. Sinha, S.-M. Lee, M. Rim, and S.-H. Hwang, “Data augmentation
schemes for deep learning in an indoor positioning application,” Electronics,
vol. 8, no. 5, p. 554, 2019.

[8] R. S. Sinha and S.-H. Hwang, “Improved rssi-based data augmentation tech-
nique for fingerprint indoor localisation,” Electronics, vol. 9, no. 5, p. 851,
2020.

[9] L. Chen, S. Zhang, H. Tan, and B. Lv, “Progressive rss data augmenter with
conditional adversarial networks,” IEEE Access, vol. 8, pp. 26 975–26 983,
2020.

[10] H. Rizk, M. Abbas, and M. Youssef, “Device-independent cellular-based in-
door location tracking using deep learning,” Pervasive and Mobile Computing,
vol. 75, p. 101420, 2021.

[11] F. Alhomayani and M. H. Mahoor, “Deep learning methods for fingerprint-
based indoor positioning: a review,” Journal of Location Based Services,
vol. 14, no. 3, pp. 129–200, 2020.

[12] H. Mukhtar, “Machine learning enabled-localization in 5g and lte us-
ing image classification and deep learning,” Ph.D. dissertation, Université
d’Ottawa/University of Ottawa, 2021.

86

doi:10.6342/NTU202300465

REFERENCES 87

[13] A. Blanco, N. Ludant, P. J. Mateo, Z. Shi, Y. Wang, and J. Widmer, “Perfor-
mance evaluation of single base station toa-aoa localization in an lte testbed,”
in 2019 IEEE 30th annual international symposium on personal, Indoor and
Mobile Radio Communications (PIMRC). IEEE, 2019, pp. 1–6.

[14] Z. Yang, Z. Zhou, and Y. Liu, “From rssi to csi: Indoor localization via
channel response,” ACM Computing Surveys (CSUR), vol. 46, no. 2, pp. 1–
32, 2013.

[15] E. Goldoni, A. Savioli, M. Risi, and P. Gamba, “Experimental analysis of
rssi-based indoor localization with ieee 802.15. 4,” in 2010 European Wireless
Conference (EW). IEEE, 2010, pp. 71–77.

[16] P. Kumar, L. Reddy, and S. Varma, “Distance measurement and error es-
timation scheme for rssi based localization in wireless sensor networks,” in
2009 Fifth international conference on wireless communication and sensor
networks (WCSN). IEEE, 2009, pp. 1–4.

[17] W. Stallings, Data and computer communications. Pearson Education India,
2007.

[18] S.-K. T. Raphael, “Selecting robust features for cellular indoor localization
in environments with human activities,” Master’s thesis, Jan 2022.

[19] M. Aljumaily, “A survey on wifi channel state information (csi) utilization in
human activity recognition,” 2016.

[20] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
2014.

[21] Z. Wang, Q. She, and T. E. Ward, “Generative adversarial networks in com-
puter vision: A survey and taxonomy,” ACM Computing Surveys (CSUR),
vol. 54, no. 2, pp. 1–38, 2021.

[22] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv
preprint arXiv:1411.1784, 2014.

[23] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017, pp. 1125–1134.

[24] S. Saxena and M. N. Teli, “Comparison and analysis of image-to-image gen-
erative adversarial networks: A survey,” arXiv preprint arXiv:2112.12625,
2021.

[25] G. Oguntala, R. Abd-Alhameed, S. Jones, J. Noras, M. Patwary, and J. Ro-
driguez, “Indoor location identification technologies for real-time iot-based
applications: An inclusive survey,” Computer Science Review, vol. 30, pp.
55–79, 2018.

[26] N. Singh, S. Choe, and R. Punmiya, “Machine learning based indoor local-
ization using wi-fi rssi fingerprints: an overview,” IEEE Access, 2021.

doi:10.6342/NTU202300465

REFERENCES 88

[27] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in
Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining, 2016, pp. 785–794.

[28] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: a
statistical view of boosting (with discussion and a rejoinder by the authors),”
The annals of statistics, vol. 28, no. 2, pp. 337–407, 2000.

[29] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proceedings of the
IEEE international conference on computer vision, 2017, pp. 2223–2232.

[30] eriklindernoren, “Keras-GAN,” 2021. Online Available at: https://github.
com/eriklindernoren/Keras-GAN

[31] L. Weng, “From gan to wgan,” arXiv preprint arXiv:1904.08994, 2019.

[32] S. Vallender, “Calculation of the wasserstein distance between probability
distributions on the line,” Theory of Probability & Its Applications, vol. 18,
no. 4, pp. 784–786, 1974.

[33] A. Ramdas, N. García Trillos, and M. Cuturi, “On wasserstein two-sample
testing and related families of nonparametric tests,” Entropy, vol. 19, no. 2,
p. 47, 2017.

[34] Y. Wang, L. Zhang, and J. van de Weijer, “Ensembles of generative adver-
sarial networks,” 2016.

[35] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” arXiv preprint arXiv:1710.09412, 2017.

[36] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cutmix: Reg-
ularization strategy to train strong classifiers with localizable features,” in
Proceedings of the IEEE/CVF international conference on computer vision,
2019, pp. 6023–6032.

[37] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal of
machine learning research, vol. 9, no. 11, 2008.

[38] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: from error visibility to structural similarity,” IEEE transactions
on image processing, vol. 13, no. 4, pp. 600–612, 2004.

[39] M. F. Naeem, S. J. Oh, Y. Uh, Y. Choi, and J. Yoo, “Reliable fidelity and
diversity metrics for generative models,” in International Conference on Ma-
chine Learning. PMLR, 2020, pp. 7176–7185.

https://github.com/eriklindernoren/Keras-GAN
https://github.com/eriklindernoren/Keras-GAN

