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THESIS ABSTRACT
GRADUATE INSTITUTE OF INFORMATION MANAGEMENT
NATIONAL TAIWAN UNIVERSITY

Student: Wei-Cheng Liu Month/Year: February, 2023
Advisor: Yih-Kuen Tsay

Explicit and Symbolic Model-Checking Approaches for Multithreaded C
Programs: A Comparative Study

There are two primary approaches to implementing the process of model
checking, namely explicit-state model checking and symbolic model check-
ing. Explicit-state model checking uses some depth first search algorithm as
the core, while incorporating partial-order reduction techniques to limit the
number of states explored. Symbolic model checking is based on the manip-
ulation of Boolean functions, which represent sets of states and transitions,
rather than the traversal of explicit-state transition graphs. Binary decision
diagrams are often used to support the implementation of a symbolic model
checker. Both approaches have their own strengths and weaknesses.

The aim of this thesis is to provide a comparison between explicit model
checking and symbolic model checking and to analyze the results of the com-
parison. For the explicit approach, we adopt an existing implementation of
nested depth first search based on the ULTIMATE program analysis frame-
work. For the symbolic approach, we implement a fixpoint model checker,
also based on ULTIMATE and using JAVABDD as our BDD package. We use
SCANTU, an extensible source code analyzer, to facilitate the comparison. It
allows the choice of different model checkers through its user interface, so we
can alternate between the two approaches to verify various target C programs
and carry out the comparison easily. We design different experimental set-
tings by using different correctness combinations of temporal properties and
C programs to produce more diverse comparison results. From the experi-
ments, we conclude that the number of reachable states has a huge impact
on the time spent, and so does the number of traversed transitions during
the fixpoint calculation. We present the comparison results and analyze their
causes in this thesis.

Keywords: Biichi Automata, Fixpoints, Linear Temporal Logic, Model
Checking, Multithreaded programs, Software Verification, Binary Decision
Diagram
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Chapter 1

Introduction

Ensuring that a system meets its specification is very important for every
system designer. In many systems such as an elevator control system or a
space launch system, an error in the system might incur severe cost, even the
lost of human lives. To avoid such errors, software testing is developed and
widely adopted by many companies and systems. Software testing uses test
cases as input and checks whether the output of them is correct. However,
this kind of testing cannot guarantee correctness. In other words, we cannot
comfirm that the target system has no errors when the outputs of those test
cases are all correct.

Thus, software verification is applied to detect errors and counterexam-
ples comprehensively in a whole project or system and developers can exclude
the errors successfully. In software verification, model checking plays a big
role. It can help reaching an automatic and convenient approach for verifi-
cation. Despite having those advantages, model checking is more complex
and expensive compared with software testing. Therefore, methods making
model checking systematical have been searched and developed for a long
time, and automata-based model checking becomes more common.

1.1 Background

In 1963, Saul Kripke proposed the Kripke structure [12], which may be
transformed into a corresponding Biichi automaton. This form of automata
provides the convenience for analyzing a system and deriving useful proposi-
tions in a formal way. In 1977, Amir Pnueli proposed to use temporal logic
[15], for program specification and verification. Temporal logic formulae can
also be translated into Biichi automata.

In 1981, the conception of model checking was proposed by E. M. Clarke
and E. A. Emerson [8], including a method which has the ability to determine
whether a program meets its desired properties. Modeling, specification, and
verification are the three phases in the model checking. For the modeling
phase, Kripke structures provide a solid foundation, and for the specifica-
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tion phase, temporal logic helps. In these two phases, Biichi automata are
obtained from Kripke structures and temporal logic formulae, providing con-
venience and integrity for the whole process.

According to the different representations for automata states, model
checking can be distinguished into two kinds, explicit model checking and
symbolic model checking. In symbolic model checking, fixpoint calculus and
mu-calculus were assimilated into model checking in 1992, by D. L. Dill and
L. J. Hwang [4], and provided convenience for model checking. In 2001, A.
Biere and E. M. Clarke proposed bounded model checking [[7], which unrolls
the finite state machine for a fixed number of steps, and checks whether a
property violation can occur in fewer steps.

1.2 Motivation and Objectives

Both symbolic and explicit algorithms have advantages and shortcom-
ings, and choosing a most appropriate algorithm for different settings is not
a trivial task. However, little research has prescribed which method should
be used under which case. Thus, a tool with the ability for users to choose
the matching method for each case can be useful.

In explicit model checking, [13] developed an Ultimate-based tool support
for automata-based model checking of multithreaded programs, completing
a library for supporting explicit-state model checkers. [5] compared different
depth-first search algorithms for automata-based model checking, giving a
comprehensive view about different algorithms and their performance in dif-
ferent scenario. In this thesis, we address the symbolic part, namely fixpoint
calculus, and the comparison between symbolic model checking and explicit
model checking to find the most appropriate approach for different settings.
Our implementation is integrated in Ultimate, a plugin-based program anal-
ysis framework, and the comparison can be built with our implementation
and others’ in their research. Finally, we discuss the results, future works,
and limitations of our research.

1.3 Thesis Outline

The rest of this thesis is organized as follows:

o In Chapter 2, preliminary research and studies will be unified. Related
tools and techniques are also listed in this chapter, such as NuSMV and
Ultimate.
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In Chapter 3, the definitions of symbolic model checking and fix point
calculus will be listed to help readers understand the methods this paper
will discuss in the following chapters.

In Chapter 4, we implement the fixpoint methods in Ultimate, including
software architecture, algorithms and API provided.

In Chapter 5, examples and the usage of our model checkers are demon-
strated to elaborate our methods.

In Chapter 6, we will arrange the caparison between symbolic model
checking and explicit model checking. Finally, future work will be dis-
cussed.

doi:10.6342/NTU202300384



Chapter 2

Related Works

2.1 Existing Model Checkers

In this section, we will introduce several model checkers help our research.

2.1.1 NuSMV

SMV (https://www.cs.cmu.edu/ modelcheck /smv.html) system is a sym-
bolic model checker which was developed by E. M. Clarke and his team in
Carnegie Mellon. It concentrates on checking finite state systems In the
Computation tree logic (CTL). Credit to the CTL logic, temporal proper-
ties, such as safety, liveness, fairness and deadlock freedom, can be specified
in a concise syntax. Besides, OBDD-based symbolic model checking algo-
rithm is applied in SMV to efficiently generate result, namely determine
whether given specifications are satisfied.

NuSMYV is a powerful symbolic model checker which was reimplemented
from SMV model checking and it is the first model checking tool based on
binary decision diagram (BDD). With the use of BDD, NuSMV provides an
efficient memory management and becomes a widely used software verifica-
tion tools and support technique in other research areas. Besides, NuSMV
provides four more additional features with respect to SMV:

o« NuSMV provides a textual interaction shell.

» Specialized routines allow for checking invariants.

e The model can be partitioned conjunctively and disjunctively.

o LTL Model Checking is performed via reduction to CTL model checking.

NuSMV2 is the new version of NuSMV, which reserves the advantages
of the first version. Furthermore, new extension were updated, for instance,
the collection of Minisat SAT solver (http://minisat.se/) and ZChaff SAT
solver (http://www.princeton.edu/ chaff/zchaff.html). These extension help
NuSMV2 evolving to a SAT-based model checker.
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2.1.2 Spin

Simple PROMELA Interpreter (SPIN), a widely used open-source software
verification tool, was developed by Gerard J. Holzmann and his team in Bell
lab in 1980s. SPIN is adopted to verify the correctness of concurrent software
models, and brings convenience in model checking.

As the most famous explicit-state model checker, SPIN adopts improved
nested depth first search as its main model checking algorithm. providing
counterexamples for the corresponding specification. By this improved algo-
rithm, a number of verification procedures can be implemented efficiently.
On the other hands, an improvement called bit-state hashing is included to
make the algorithm more space-efficient.

2.1.3 Frama-C

Frama-C is a C program analysis platform developed by the French CEA-
List and Inria. It can inspect programs without executing them, making it
easy for developers to assure the logic of programs are flawless, for instance,
understanding C code written by others, proving formal properties, and deal-
ing with security flaws.

2.1.4 Ultimate

ULTIMATE was developed Matthias Heizmann and Daniel Dietsch and
their team in Freiburg. It is a modular, plugin-based program analysis frame-
work, providing an integrated platform which combines the existing plugins.
By this advantage, researchers can easily choose plugins they expect to uti-
lize and develop new tools with less obstacles.

Different kinds of automizers and model checkers are included in ULTI-
MATE, and they are adopted in different circumstances. For instances, ULTI-
MATE Automizer is dedicated to verification of safety properties based on an
automata-theoretic approach to software verification, and ULTIMATE Biichi
Automizer concentrates on Termination analysis based on Biichi automata.
Languages most of these tools use is Boogie, an intermediate verification
Language and C language.

2.2 Comparative Tests

There are numbers of research which are studied the comparirson of
explicit-state model checking and symbolic model checking. To conveniently

)
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observe the differences between our research and others’ before, we will in-
troduce those research in this part.

Cindy Eisner and Doron Peled compared symbolic and explicit model
checking of a software system. [10] Explicit-state model checking is usually
accepted that it performs better for verifing hardware systems, and sym-
bolic model checking for verifing software systems. In their research, both
explicit and symbolic approach were adopted in examining for verifing soft-
ware systems, and the result showed that symbolic approach gave a better
assurance about the verified system for a low number of processes, while
explicit approach allowed to simulate executions with more processes.

Roberto Sebastiani, Stefano Tonetta, and Moshe Y. Vardi studied hy-
brid approaches to LTL symbolic model checking, namely approaches that
use explicit representations of the property automaton, and symbolic rep-
resentations of the system. This research applied the comparison to three
model checking algorithm: doubly-nested fixpoint algorithm, the reduction
of emptiness to reachability and the singly-nested fixpoint algorithm. [17]

doi:10.6342/NTU202300384



Chapter 3

Preliminaries

3.1 Automata on Infinite Words

In symbolic model checking, dealing with words with infinite length
is a common work. As the reason mentioned above, the w-automata is
needed frequently. In this chapter, we will concentrate on the state-based
w-automata, whose acceptance conditions are defined over states. The defi-
nition of nondeterministic w-automata is as follows:

Definition 1 (Nondeterministic w-automata). A nondeterministic w-automaton
is a 5-tuple (Q, X%, 9, Qo, Acc), where

e () is a finite set of states,

Y is a finite alphabet,

§:Q x (XU{e}) — 29 is the transition function,

Qo C Q is the set of possible initial sets of states, and

Acc is the acceptance condition.

A run of a nondeterministic w-automata A on an infinite word w =
ogoy -+ - € XY for each o; € X, 1 > 0, is a sequence of states p, = qo, q1, - - -
where:

* qo € Qo, and
e ¢i+1 € 0(gi,04) for i >0

In this thesis, only Biichi automata [3], which is a specific type of w-
automata, will be discussed. Let Inf(p,) denote the set of states occurring
infinitely many times in the run p,,, formally

Inf(pw) ={q¢ € Q| Vidj > i,¢; = q;}

Then the acceptance condition of a Biichi automaton can be defined. We
say p, is an accepting run for a Biichi automaton B iff

7
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e aC Q, and

¢ Inf(/)w)ma%®~

An infinite word w € Y% is accepted by B if there exists an accepting
run of B over w.

Next, the following two propositions explain the closedness under inter-
section of Biichi automata. The first proposition talks about the intersection
between two ordinary automata, and the second is the intersection between
a safety one and an ordinary one:

Proposition 3.1. Let By and By be two Biichi automata. There is a Biichi
automaton B which accepts the intersected language L(B) = L(B1) N L(B2).
In other words, the class of languages recognizable by Biichi automata is
closed under intersection. [6]

Proof. Given two Biichi automata By = (X1, Q1, A1, @Y, Fy) and
By = (X9, Q2, Ao, QY, F). We can build an automaton for L(B;) N L(Bs) as
follows:

® Bl mBZ = (E7Q1 X QQ X {07 172}7A7Q(1) X Q(Q) X {0}7Q1 X QQ X {2})

o We have ((r,q,x),a,(r',q,y)) € A iff the following conditions hold:

— (r,a,r") € Ay and (q,a,q¢") € As.

— The third component is affected by the accepting conditions of By
and BQ.

(i) if x =0 and ' € F}, then y = 1.
(i) if x = 1 and ¢’ € Fy, then y = 2.
(iii) if x = 2, then y = 0.
(iv) otherwise, y = x.
e The third component is responsible for guaranteeing that accepting
states from both By and B, appear infinitely often.

[]

A simpler intersection may be obtained when all of the states of one of
the automata are accepting:

Proposition 3.2. Assuming all states of By are accepting and that the ac-
ceptance set of By is Fy, their intersection can be defined as follows:

BinBy = (%,Q1 x Qo, A, Q x Q3, Q1 x Fy)
where ((r,q),a,{r',q¢)) € A iff (r,a,7") € Ay and (q,a,q') € A,.

8
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3.2 Kripke Structure and Temporal Logic

In this section, Kripke structure and temporal logic will be discussed, as
they are basic knowledges of symbolic model checking.

3.2.1 Kripke Structure

Kripke Structure [11] is a kind of state-transition diagram which models
a system formally. The usage of Kripke structure allows us to conveniently
capture the necessary properties of a system.

Definition 2. Given a finite set AP of atomic propositions, a Kripke Struc-
ture over AP is a tuple (S, Sy, —, L) where:

S is a finite set of states,

So C S is the set of initial states,
o —C 8§ x S is the transition relation, and

L:8S — 247 is the labeling function.

A run (or computation) of a Kripke Structure /I is an infinite sequence
p = S0S1 - -+ such that

e 59 € 5p, and

o (84,8111 €—) forall i > 0.
And we define

e p(i) =s;, and

o p; = 8;S;11--- forall i > 0.

Let L(p) = L(s0)L(s1)--- and the language of K is defined as L(K) =
{L(p) | pis a run of KC}.

3.2.2 Temporal Logic

Temporal logic is a formalism for describing temporal ordering between
occurrences of “events’ which are often represented by propositions. Look
back at the history of temporal logic development, it was first introduced
by A. Prior in the 1960’s and further developed by A. Pnueli for computer
usage [[15]. Temporal logics are especially well suited to describe temporal
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constraints of concurrent, reactive, and non-terminating systems [16]. There-
fore, temporal logic take a importante position in the field of formal software
verification.

Propositional (Linear) Temporal Logic, namely PTL, is a restricted type
of temporal logic which describe both future and past in a linear structure.
And Linear Temporal Logic (LTL) is a subset of Propositional Temporal
Logic keeping only future operators, which include X (next), F (finally), G
(globally), U (until) and R (release). These operators can also be written
symbolically, i.e., O (next), < (eventually), O (always), U (until) and R
(release).

Definition 3 (Syntax of LTL Formulae). The LTL formulae over a set of
atomic propositions AP are defined as the following grammar:

¢u=p|[9|oVP|[OP|oUG|[PR ¢
where p € AP.

Definition 4 (Semantics of LTL). Given an infinite word w = ogoy - -+ € 3¢
where ¥ = 24T and an LTL formula ¢ over AP, we say that w satisfies ¢
(written w = @) if and only if (recursively):

e O =p andp € oy, or

o ¢ =01 and w = ¢y, or

Od=¢1 Vo and w = @1 or w = ¢o, or

=01 N and w = @1 and w = ¢g, or

¢ =0¢1 and o109 - -+ = @1, or

O = Uy and for some k € N, oropi1- - | ¢2 and for alli, 0 <i < k,

0i0i+1 """ }Z o1, or
¢ = d1 R @9 and for all k € N, if for every i, 0 << k, 0;0;11- -+ [~ ¢1,
then ook - -+ |: 0o.

With this definition, additional formulae and <, O operators can be
derived as follows:

o true = ¢V 1o,

o false = ¢ N\ o,
o O¢ =trueld ¢, and

10
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Altough ¢1 Ay and ¢1Rep9 can also be derived by ¢1 Apg = =(—¢1 V=—¢a)
and g1 Rpy = —(—d1U —¢9) respectively, we put them into the definition field
under the consideration of the structure of the negative normal form (NNF).
Definition 5 (Language Defined by an LTL formula). Given an LTL formula
o, language of ¢ is defined by L(¢) = {w € X¥ | w = ¢}.

Given an LTL formula ¢ and a Kripke structure K over AP, we say K
satisfies ¢ (written IC |= ¢) if and only if L(K) C L(¢), that is for all runs p
of K, L(p) = ¢.

3.3 Symbolic Model Checking

Symbolic model checking has been considered a more efficient approach
in model checking, as it considering large numbers of states at a single step.
In this section, two approaches in symbolic model checking we just men-
tioned in aforementioned sections will be discussed, the first one is fixpoint
calculus, and next is bounded model checking. These two approaches will
be implemented with Ultimate in our research.

3.3.1 Fixpoint Calculus

Recall that a complete lattice is a partially ordered set in which every
subset of elements has a least upper bound(supremum) and a greatest
lower bound (infimum).

Definition 6 (complete lattice). For a given set S, (P(S),C) forms a com-
plete lattice. Let S" C P(S), then

e the supremum of S’, usually denoted sup(S’), equals US" and
e the infimum of S', denoted inf(S’), equals NS’.

The least element in P(S) is the empty set ¢, which we refer to as False.
The greatest element in P(S) is the set S, which we refer to as True.

Use the definition of the complete lattice, Bronislaw Knaster and Alfred
Tarski stated the Knaster-Tarski theorem [9]:

Definition 7 (Knaster-Tarski Fixpoint Theorem). Let L be a complete lattice
and F': L — L an order-preserving map. Then,

W(F) = Mo € L| F(z) < 2.}
Dually, v(F) =V{x € L |z < F(x)}

11
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Knaster-Tarski theorem has important applications in formal semantics
of programming languages and abstract interpretation, bringing out the con-
cepts of least fixpoint and greatest fixpoint. To introduce the procedures of
calculaing least fixpoint and greatest fixpoint, we first need to introduce the
concept of the predicate transformer [14]:

Definition 8 (predicate transformer). A predicate transformer on P(S)
is a function 7 : P(S) — P(S). 7(Z) is used to denote i applications of T
to Z:

e T9(2)=Z
. 1(Z) = 1(71(2)

Next, we will discuss monotonic and continuous of the predicate trans-
former. Let 7 be a predicate transformer.

7 is monotonic (order-preserving) provided that
PCQ = 7(P)C7(Q).
e 7 is U-continuous provided that
P CPhC. = 7(UDP)=Ur(h).
e 7 is N-continuous provided that
P DOPD.. = 7(NF)=n7(F).

In the next part, we will discuss procedures which calculate the least
fixpoint and the greatest fixpoint [l]:

12
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Algorithm 1: Least Fixpoint Procedure

1 prog Lfp(t : Predicate Transformer) : Predicate
2 | @ := False;

3 | Q =1(Q);

4 | while (Q # Q') do
5 Q= Q;
o | | @ =)
7 | end

8 | return (Q)
9 end

Algorithm 2: Greatest Fixpoint Procedure

1 prog Gfp(t : Predicate Transformer) : Predicate

2 | Q := True;

s | Q= (Q)

4 | while (Q # Q') do
5 Q= Q;

6 Q"= 7(Q);

7 | end

8 | return (Q)

9 end

3.3.2 Theorem of the Model Checker Using Fixpoints

In symbolic model checking, binary decision tree (BDD) has been fre-
quently used as a symbolic representation of the system. [2] A BDD repre-
sents a Boolean function as a rooted, directed acyclic graph (function graph):

Definition 9 (Binary Decision Diagram (BDD)). We use r(G) to denote the
root of a function graph G. The vertex set V of a function graph G contains
two types of vertices:

« A nonterminal verter v has
an argument index : index(v) € {1,...,n} and
two children : low(v), high(v) € V.

o A terminal vertex v has a value value(v) € {0, 1}.

Transition systems can be encoded in Boolean functions and thus repre-
sentable in BDDs. Based on this reason, symbolic model checking becomes
possible with BDDs.

13
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Next, we want to check the emptiness of Ay X A, where Ay =
(Qm, I, 2,00m, Qm) is the safety Biichi automaton for M and A, =
(Q-p, [, 2,0, ) is the Biichi automaton for —p, we may use the fol-
lowing fixpoint:

Definition 10 (Fixpoint Formula). The fizpoint we used in our model checker:
Ro=anux- (Post(x)UI)

Fp =vy - px - (Post(x) U (Post(y) N Ray))

where I = Iy X 1,

a=QMm X ap,

Post(S) = {{(r',¢) | (r,q) € S 1" € dpm(r) Nq' € 6-p(q) where T,1" € Qum
and q,q' € Q-p}

R, is the set of reachable accepting states.

In this definition, R, is the set of reachable accepting states, and F, is
the set of reachable accepting states which are traversed infinitely often. In
other words, the goal of this fixpoint formula is to check whether there are
any reachable accepting states which are traversing infinitely often. Finally,
we have the following theorem:

Theorem 1. F, = & iff LAy x Ap) = 2.

By this theorem, we successfully finish calculating the fixpoint.

The last thing we concern about is the fairness issue. In our model
checker, we use fairness constraints to ensure the fairness. Fairness con-
straints are imposed to the system (or the specification) so that processes in

this system can be executed fairly. [18] lists three typical fairness constraints
formulated in LTL:

Definition 11 (Absolute Fairness, Impartiality). Fvery process should be
executed infinitely often:
Vi : GFex;

However, Absolute Fairness ignores that some processes might not be
ready to execute. Strong Fairness and Weak Fairness consider that:

Definition 12 (Strong Fairness). Every process that is infinitely often en-
abled should be executed infinitely often in a state where it is enabled:

Vi: (GFen;) = (GF(en; A ex;))
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Definition 13 (Weak Fairness). Every process that is almost always enabled
should be executed infinitely often:

Vi: (FGen;) = (GFex;)

In our model checker, we use Weak Fairness.

3.3.3 Bounded Model Checking

In the last part, we have introduced the way we utilize BDD in the
fixpoint model checker. However, there are drawbacks of BDDs:

 For large systems (with over a few hundred boolean variables), they can
be prohibitively large.

o Selecting the right variable ordering is often time-consuming or need
manual intervention.

To deal with these drawbacks, basic ideas of bounded model checking
(BMC) was proposed. Bounded model checking considers only a finite
prefix of a path that may be a witness of Ef. The length of the prefix is
restricted to a certain bound k, and the propositional formula can be solved
by a SAT solver. If there is no witness within bound k, we increase the
bound and look for longer and longer possible witnesses.

Definition 14 (LTL Semantic for Bounded Model Checking). Let M be a
Kriple structure, ™ be a path in M, and f be an LTL formula (in negation
normal form). @ = f (f is valid along 7) is defined as follows:

« T E=piff P e L(xn(0))

™ = —p iff P ¢ L(m(0))

TEfAgiffrEfadriEg
TEfVgiffrEformEg

7 EOf iff Vj €10,00).7m & f

Tl Of iff 3j € ]0,00).70 = f

TEQOf i Ef

mlEf Ugiff3jecl0,00).(n) =g and Yk €[0,5).7% = f)
mEf RgiffVje0,00).(n g orIkel0, )" f)
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Definition 15 (Bounded Semantics for a Loop). Let k € N and 7 be a
k-loop. Then an LTL formula f is valid along the path m with bound k (in

symbols m =i f) iff m = f

Definition 16 (Bounded Semantics without a Loop). Let k € N and 7 be a
path that is not a k-loop. w =y f iff (7,0) =i f where

(m,1) = p iff P € L(n(i))

(,1) Ex —p iff P ¢ L(m(i))

(m,2) = f A g diff (m,0) =i foand (7,0) =i g
(m, @) =i fV g iff (m,0) =i foor (m,0) e g
(7, 1) = OF iff false
()
(r, i)
()
()

1

3
~

S

i) e Of iff 35 € [, k].(m,J) Ei f

) B Of iffi <k and (m,i+ 1) i f

Fe f Ugiff 3j € i, kl.((m,j) Er g and Vn € [i,j).(m,n) =i f)
m,4) e f R g iff Vi € [i,k].((7, j) Fx f or In € [i,j].(7,n) Fr 9)

3

T,
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Chapter 4

Design and Implementation

The goal of this thesis is building an ULTIMATE-based symbolic fixpoint
model checker, which can deal with multithread C programs. Our fixpoint
model checker is called SCANTU-Fixpoint-Model-Checker and our library
is called LIBRARY-FIXPOINTMODELCHECKER. SCANTU-Fixpoint-Model-
Checker is a symbolic model checker using BDD and RCFG provided by
ULTIMATE. SCANTU-Fixpoint-Model-Checker can check a multithreaded C
program against an LTL formula that describes a desired behavior.

In this section, we will first introduce some technique supports provided
by ULTIMATE. Second, the basic usage of JAVABDD will be presented.
Last but not least, we will introduce the way we design SCANTU-Fixpoint-
Model-Checker, including the usage of supports provided by ULTIMATE and
JAVABDD and how to check specifications with fixpoints calculated by
SCANTU-Fixpoint-Model-Checker. Of course, the way we implement the
fixpoint formula introduced in the previous section will be illustrated in this
section. Because of these well-designed supports, we succesfully implemented
our fixpoint model checker.

4.1 Software Architecture

RCFG provided by ULTIMATE and JAVABDD package play big roles
in the processes we designed SCANTU-Fixpoint-Model-Checker. Because
ULTIMATE does not provide any symbolic tools, we need to adopt JAVABDD
to create symbolic environment.

In this following section, we will give RCFG and JAVABDD detailed
introduction:

4.1.1 Recursive Control Flow Graph (RCFG)

A recursive control flow graph is a directed graph which is composed
of two elements, the first one are nodes, which are called locations in the
graph, and the second are edges, which are called transition labeled with
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statements. No matter in explicit or symbolic model checking, the RCFG
helps us clearly analizing the concurrent C code. The definition of recursive
control flow graph is as follows:

Definition 17 (Recursive Control Flow Graph (RCFG)). A recursive control
flow graph (RCFG) is a tuple R = (Loc, Locipit, LoCerror, B, st) where

o Loc is a set of program locations,

o Locini € Loc is a set of initial program locations,

o Locerror € Loc is a set of program locations that violate a specification,
e« £ C P(Loc) x Loc is a transition relation and

o st: E — Stmt is a labeling function that labels each transition with a
statement s, where s is either an assignment, an assume, a havoc, a
call, or a return.

An element e of E is an ordered pair (S,t), where S is the non-empty set of
source locations of e and t is the target location. The size of S is restricted
to two locations, i.e., |S| < 2.

RootNode
ThrlEntry ULTIMATE .startENTRY Thr2Entry
Thrl S1 ULTIMATE.startENTRY S1 Thr2 S1

T ]

Figure 4.1: An example RCFG of one concurrent code which has two threads.

Figure 4.1 shows an RCFG of one concurrent code which has two threads.
the left-side chain and the right-side chain represent each thread in the target

code, and the middle chain represent other control flows which are not in
both threads.
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When creating BDD transitions for the RCFG, we need to observe all
changes in value of all variables of the RCFG. As mentioned above, transi-
tions of the RCFG are labeled with statements, and those are what we need.
As a result, dealing with the extraction of assignment statements and the
integration of changes in value of all variables are important tasks.

4.1.2 Different Kinds of Transitions in RCFG

There are different kinds of transitions in the RCFG provided by ULTIMATE,
and each kind of transition handles different statements. In this section, we
will introduce all statements we have dealt with in our model checker and
different expressions in these statements.

First of all, all expressions we have worked on are listed below, and we
will present how we use these expressions in ULTIMATE:

o Integer Literal
An Integer Literal is a form of an integer element, for example:

IntegerLiteral|[0]

means an integer 0. In ULTIMATE, the function getValue() is designed
to get the value of this expression, which type is String.

o Identifier Expression
An Identifier Expression is a form of primary expression, for example:

IdentifierExpression[x]

means an identifier . In ULTIMATE, the function getldentifier() is
designed to get the identifier of this expression, which type is String.

e Unary Expression
A Unary Expression contains one unary operator and one expression,
for example:

UnaryExpression[LOGICNEG, IdentifierExpression|x]]

means !z. In ULTIMATE, the function getOperator() is designed to
get the operator in Unary Expression, and the function getExpr() is
designed to get the expression in Unary Expression. Basically, this kind
of Expression is used to deal with case which operator is LOGICNEG.
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e Binary Expression
A Binary Expression contains one binary operator and two expres-
sion, for example:

BinaryExpression[ARITHPLUS, exprl, expr2]
where
exprl = IdentiferExpression[x], expr2 = IdentiferExpression[y]

means = + y. In ULTIMATE, the function getOperator() is designed to
get the operator in Binary Expression, and the function getLeft() and
get Right are designed to get the first and second expression in Binary
Expression. All kinds of Operator are listed below:

— LOGICIFF means <

— LOGICIMPLIES means —
— LOGICAND means logical AND
— LOGICOR means logical OR
— COMPLT means <

— COMPGT means >

— COMPLEQ means <

— COMPGEQ means >

— COMPNEQ means #

— ARITHPLUS means +

— ARITHMINUS means -

— ARITHMUL means X

— ARITHDIC means +

— ARITHMOD means %

e Boolean Literal
A Boolean Literal is a form of boolean value TRUE or FALSE, for
example:
BooleanLiteral TRUE]

means a boolean value TRUE. In ULTIMATE, the function getV alue()
is designed to get the boolean value in Boolean Literal.

In the next section, different kinds of statements are as follows. These
kinds of statements are all composed of expression we have introduced. By
the way, we will illustrate the way our fixpoint model checekr deal with these
statements.
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o Assignment Statement
An Assignment Statement deals with assignments of variables, and
has two important parameters: The type of the first one is an Array of
Identifier and the type of rhs is an Array of Expression. For examples:

AssignmentStatement[lhs, rhs]

where
lhs = VariableLHS[x, GLOBAL], rhs = IntegerLiteral[0]

means r = 0. In ULTIMATE, multiple variables may be assigned si-
multaneously. This is the reason that the type of lhs and rhs are all
arrays. The function get Lhs() is designed to get the first array, and the
function getRhs() is designed to get the second one in ULTIMATE.

o Assume Statement
An Assume Statement assumes that a boolean formula holds. The
target program will terminate if the formula does not hold. This kind of
statement has one parameter which type is Expression. For examples:

AssumeStatement[BooleanLiteral|[truel]]

means assume true. In ULTIMATE, The function getFormula() is
designed to get the Expression in the statement.

o Call Statement

A Call Statement represents a procedure call. This kind of statement
is always combined with an assignment and has three elements need to
be dealt with. The left hand side, the method name and arguments. The
left hand side must be variables, which type is an Array of Identifiers,
and the method name represents the name of the procedure, which type
is String. Last of all, the type of arguments is an Array of Expressions.
Next, we list all of the method names we met:

— #Ultimate.allocOnStack
When the method name is #£Ultimate.allocOnStack, the system
allocates memory to the left-hand-side variables.

— write~init~int
When the method name is write~init~int, the system initializes
values to the variables which have been allocated memory.

— write~int
When the method name is write~int, the system change values
stored in the left-hand-side variables.
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— read~int
When the method name is read~int, the system get values stored
in the left-hand-side variables.

— ULTIMATE.dealloc
When the method name is ULTIMATE.dealloc, the system deal-
locates memory out of the left-hand-side variables.

This kind of statements are always used to handle Arrays or List in C
code.

« Havoc Statement
A Havoc Statement destroy the contents of variables by over-writting
them with non-deterministically chosen values. In symbolic model check-
ing, this kind of statement does not change values of any variables, so
in our model checker, when meeting Havoc Statement, we just change
the program counter and do nothing.

o Fork Statement
A Fork Statement is an asynchrone procedure call. This kind of state-
ment is used to handle thread-creating actions in C code. In our model
checker, we need to check how many times one thread is created. Thanks
to Fork Statement, we can successfully record the exact number. For

examples:
ForkStatement|[[left, thrl, right]]

where thrl is the procedure name. The example Fork Statement means
that the procedure thrl is created once.

4.1.3 Java Binary Decision Diagram (JavaBDD)

Because ULTIMATE is built on Java, we choose JAVABDD, designed by
John Whaley, as BDD supporter in our model checker. JAVABDD is a
Java library which provides tools for manipulating BDDs. Thanks to its
convenience and systematic APIs, we can succesfully implement our fixpoint
model checker.

The JAvABDD APIs is based on BuDDY package, which is a famous
package written in C language and have been used a lot in model check-
ing project. Different from BUDDY package, JAVABDD is designed to be
object-oriented, so we do not have to struggle with the C function interface
which is harder to be familiar with.
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Besides BUDDY interface, JAVABDD can also interface with JDD li-
brary, or with other BDD libraries written in C, such as CUDD and CAL.
In our model checker, JAVABDD library, which is the default one, is used
to support our model checker.

In the next part, we will illustrate some common classes provided by this
library and how it helps us implementing our model checker:

« BDDFactory
To use functions JAVABDD provides, we have to initialize BDDFactory
first. Without BDDFactory, we can not do any operations. BDDFac-
tory is an interface for all manipulations of BDDs, for example, the
creation and the logic operations.

To initialize the factory successfully, we have to provide three param-
eters. The first parameter is the BDD package we want to initialize,
in our model checker, JFactory, which is the default package is used.
The second parameter is an integer, representing the node number. This
number decides the initial node table size of the whole system. The last
parameter is the cache number, deciding the operation cache size. How-
ever, the inital number of nodes is not that important because the table
will resized at the expense of efficiency when needed.

« BDDDomain
BDDDomain is a block of BDD variables which can represent inte-
ger value as opposed to only boolean values. To build BDD transi-
tions, we need to define all changes of states after doing each transition.
BDDDomain helps us doing all of these works.

In our model checker, besides changes of variables in the target C code,
changes of program counters are also a critical event. Thanks to the help
of BDDDomain, we did not have too much obstacles when implementing
our model checker.

« BDDBitVector
BDDBitVector is a data structure designed to store boolean vectors,
and there are two fields in it. The first field is bitnum, which means the
number of elements in the vector, and the second field is bitvec, which
contains the actual BDDs in the vector.

« BDD
BDD is the most important class. It is created by BDDFactory we
introduced in the previous section. This class provides lots of functions
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and operations that are commonly used, such as basic logic AND, OR.
We do not have enough room to introduce all the functions it provides,
so in the next section, we will illustrate how we build our model check
step by step, and it is more appropriate to give the functions we used
some discussion.

4.2 Design and Implementation

We now describe the processes we implement our model checker, starting
from getting the RCFG of the target system and the automaton of the prop-
erty we want to check by running toolchains RCFGBuilder and LTL2BA
provided by ULTIMATE. By utilizing these two structure and the theorem
we have introduced in [Theorem of the Model Checker Using Fixpoints, we
list all steps listed below:

Initialize BDDFactory

¥
Define BDDDomains

v

Translate Transitions into BDD

v

Calculate Set of Initial States

v
Build BDDs for Cross Product

v

Calculate the Fixpoint

v
Check the Emptiness

Figure 4.2: Steps of Our Fixpoint Model Checker

Figure shows the steps taken by our fixpoint model checker. We
discuss them one by one:

o Initialize BDDFactory
First of all, we initialize BDDFactory and we can use all functions pro-
vided by JAVABDD. In our system, the BDD package we use is the
default package: JFactory. Next, after setting 1000000 as the node

size and 1000000 as the cache size, we can start translating commands
in the system RCFG into BDDs.

24
doi:10.6342/NTU202300384



e Define BDDDomains

In the next step, we need to define the universe of all variables. In other
words, we need to find out all variables in the RCFG of the system
and the property automaton and create BDDDomains for each of those
variables. The way we find out all varialbes is to analyze the type
of system RCFG transitions starting from its initial state of thread
ULTIMATE.start ENTRY. This thread deals with works such as
creating threads, forking threads and joining threads. By analyzing this
thread first, we can take a detailed look on the input of different threads
and how many times each thread is created. We need to prepare one
BDDDomain for each created thread to record the change of program
counter.

Next, we browse all transitions in system RCFG, and then filter all tran-
sitions which type are AssignmentStatement or CallStatement. Assign-
mentStatement handles the assignment of normal variables, and Call-
Statement handles the assignment of arrays. For example, there is an
AssignmentStatement:

AssignmentStatement[lhs, rhs]j

where
lhs = VariableLHS[x, GLOBAL], rhs = IntegerLiteral[0]

we can find one normal variable: x, and it is stored in our variable list.
For another example for CallStatement:

CallStatement[assigned Value, write~init~int, left, right]

where
assignedValue = IntegerLiteral[0]

left=IdentifierExpression[flag.base]
right=IdentifierExpression[flag.offset]

This CallStatement shows the initialization of int flag[0] = 0. We can
not store an array with index in our variable list, so we create one new
String: flag~0, which represents flag[0], and stored it into our variable
list.

By repeating these actions, we can get one variable list which contains
all variables used in RCFG. By the way, we do not concern variables
used in property automaton, the reason is that in ULTIMATE, variables
that have not appeared in RCFG are not allowed in the property.
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« Translate transitions into BDDs for the system RCFG.
We designed different methods for each type of transitions to translate
them into BDDs:

— AssignmentStatement
The way we translate transitions with AssignmentStatement type is
to separate it into the left-hand side and the right-hand side, which
the functions ULTIMATE provides can help us getting these elements.
The left-hand side is the variable which value will be changed after
doing this transition, and the right-hand side provides the value
about to assigned to the left-hand-side variable. For example:

X=Y

can be seen as:
X' =y

X, X, y and y’ are represented by four different BDDDomains, and
we only need two BDDDomains which represent x’ and y to trans-
late this transition into BDD. Because this kind of work will be
called lots of times, so we design a AssignmentStatementEvaluator
to help us translating transitions with AssignmentStatement type
into BDDs. Back to this example, our AssignmentStatementEvalu-
ator first transforms these two BDDDomains into two BDDBitVec-
tors. We make sure that the bit number of these two BDDBitVectors
are the same. Then we do conjunction of a biimplication of each
element in these two BDDBitVector. Finally, we can get one result
BDD which represents the work of manipulations of assignment .
The structure of our AssignmentStatementEvaluator is recursive,
meaning that we can deal with assignments with arithmetic opera-
tions.

— AssumeStatement

The way we translate transitions with AssumeStatement type is
similar to the method we do to transitions with AssignmentState-
ment type. The difference between these two methods is that we
have additional deal with binary operations, such as AND and OR.
Next, instead of the change of values of variables, whether the cur-
rent values of states satisfy the assumes are what we really concern
about.

If any of the four arithmetic operations appear in the transition,
our AssignmentStatementEvaluator help us finishing those works.
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Same as AssignmentStatementEvaluator, the structure of AssumeS-
tatementEvaluator is recursive.

— CallStatement
There are different kinds of transitions with type CallStatement, so
we treat them individually:

x #Ultimate.allocOnStack
The work of CallStatements with this method name is not to
do changes on variables, but to provide the length of each array
emerged in our target C code. These length of arrays will be
used when we build BDDs for CallStatements with other method
name. So the only thing we meet this kind of transitions is to
build a BDD representing the change of program counters.

* write~init~int
CallStatement with this method name can be regarded as an-
other kind of AssignmentStatement, for examples:

int flag[2] = {0, 0, 0}
can be seen as:
flag~0 = 0, flag~1 = 0, flag~2 =0

Our AssignmentStatementEvaluator can handle all of these tran-
sitions.

* write~int
For this kind of method name, there are two cases we have to
give a discuss: If the index of the array is an integer, then as
same as the last part, CallStatement with this method name can
also be regarded as another kind of AssignmentStatement, for

examples:
flag[2] = 1

can be seen as:
flag~2 =1

Our AssignmentStatementEvaluator can handle all of these tran-
sitions.

However, if the index of the array is a variable, then we could
not treat this transition as one simple AssignmentStatement.
We have to discuss the length of each arrays we recorded ex-
haustively before to translate this kind of transitions into BDD.
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For examples:
flag[k]=1

Supposed that the length of the array flag is 2, then there are
three cases:
if k == 0 then flag~0 = 1

if k == 1 then flag~-1 =1
if k == 2 then flag~2 =1

We build BDDs for these three cases by utilizing our Assign-
mentStatementEvaluator and AssumeStatementEvaluator indi-
vidually, and then do AND operation between these BDDs. The
result BDD is what we need.
x read~int

Same as the last part, CallStatements with this method name
can also be regarded as another kind of AssignmentStatement,
and ur AssignmentStatementEvaluator can handle all of these
transitions.

x* ULTIMATE.dealloc
We do not concern with this type of transitions because despite
of program counters, these transitions do not change any value
of variables aftering doing them. So the only thing we meet this
kind of transitions is to build a BDD representing the change of
program counters.

— HavocStatement
As the same reason for CallStatement with type ULTIMATE.dealloc,
We do not concern with this type of transitions. The only thing we
meet this kind of transitions is to build a BDD representing the
change of program counters.

— ForkStatement
The work of transitions with type ForkStatement is all done, so
the only thing we meet this kind of transitions is to build a BDD
representing the change of program counters.

After doing these works, we add program counters in BDDs we just
created. These program counters are seen as BDD variables, which are
parts of pre-condition and post-condition. The input set of states only
do transitions on the corresponding program counter. There is one last
thing we need to do, which is to handle unchanged variables. Transition
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BDDs we just created only present the variables which represent the
pre-condition and the post-condition. Unchanged variables do not be
dealt with in these transition BDDs. We have tried to encode these
unchanged variables in our transition BDDs, but we face the out-of-
memory problem, which means that we cost too much memory to handle
these kind of variables. To mitigate this problem, we do not encode
these unchanged variables in our transtion BDDs, and we do not do
disjunction on these transition BDDs. In other words, we separate the
set of transition BDDs into lots of small BDDs to handle unchanged
varialbes BDDs more easily. The part we actually handle them is in the
process of calculating fixpoints, which will be discussed later.

In addition to the constructions of normal transitions, we also construce
self loops at the end of each threads. These self loops are built to avoid
losing states when we calculate the fixpoint. Without these self loops,
the result fixpoint we calculate is always be empty, and this is not what
we expected.

Translate transitions into BDDs for the property automaton.

The way we build BDD transitions for the property automaton is as
same as the way adopted in building for RCFG. However, Building BDD
transitions for the property automaton is more easily because there is
only one type of transition which is AsumeStatement in the property
automaton. Aftering building BDD transitions for the property automa-
ton, we can get one List of BDD which represents all BDD transitions
of the property automaton.

Calculate the set of initial states.

To start caluculating the fixpoint formula, we have to obtain the Set of
initial states first. The way we get this Set is to trace system RCFG from
initial states of each thread. It is important that only transition with
type AssignmentStatement or CallStatement can be seen as variable-
initialized transition. Transitios with the type AssignmentStatement
handle initializations of normal variables, and those with the type Call-
Statement, which method name is write~init~int, handle initializa-
tions of array variables.

Starting from initial states of the thread ULTIMATE.startEntry, we
will check whether the type of outgoing transitions of the initial state of
ULTIMATE.startEntry is AssignmentStatement or CallStatement.
If the type of the transition is AssignmentStatement, we check whether
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the assigned variable is initializeed before this transition. If it is not
initialized before, then this transition is an initialzation transition,
and if it is initialized before, then we end the trace of the thread
ULTIMATE.startEntry and do the same method to other threads.

For another circumstance, the type of the transition is CallStatement,
we directly check the method name of the CallStatement. If the method
name equals to write~init~int, then this transition is an initialza-
tion transition, and if its method name is not write~init~int, then we
end the trace of the thread ULTIMATE.startEntry and do the same
method to other threads.

By doing this method for each thread, we can get numbers representing
the program counter of the state. We have to do initializtions before
we meet this state for each thread, and all initialization transitions will
be filtered out from Set of RCFG transitions. Next, we create one new
BDD with all-zero program counters, and do all initial transitions(have
been translated into BDD) to get one initial BDD state. The last step
is doing AND operation between this BDD state and initial states of
property automaton(also have been translated into BDD). Finally, we
get one Set of initial states and are about to calculating fixpoint.

Build BDD transitions for the cross product of the system automaton
and property automaton.

Now we have BDD transitions of system RCFG (do not include tran-
sitions filtered out when deciding Set of initial states) and property
automaton. It is easy to calculate BDD transitions of the cross product
of the system automaton and property automaton by doing AND op-
erations between each BDD transition of system RCFG and each BDD
transition of property automaton.

Different from the theorem, we do not build a big BDD transition for
each RCFG and property automaton. The reason is the way we imple-
ment the function which is designed for getting the post state is not
as same as the theorem. We took a special approach to handle those
unchanged variables. If we do not do it separately, the BDD structure
for each transition will become very magnificant, and has a tremendous
memory cost. This is why we separate all BDD transitions of system
RCFG and property automaton. A more detailed instructions of the
function used to get the post state will be introduced in the next sec-
tion.
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o Calculate the fixpoint
In the definition [ we introduced in the preliminary section, we have
automaton Ay, automaton A, and the following fixpoint formula:

Ro =anpux- (Post(x)UI)

Fp =vy - px - (Post(x) U (Post(y) NRy))

In our model checker, Ay, represents the RCFG of the C code genera-
terd by ULTIMATE, which is a safe automaton, and .4, represents the
Biichi automaton of the given LTL property. We have one new symbolic
automaton by doing cross product between these two automaton. This
symbolic automaton, which represents the C program with the LTL
property, is not fully expanded. It records the change of each variable
but not the exact value of each variable. In other words, We record the
relation between different states in this symbolic automaton, so we can
not get the value of each variables in its states.

To implement our model checker, we can separate this formula into two
parts: the first part is the calculation of R,, and the second part is the
calculation of F).

To calculate R,, we first need to design the function Post() which is
used to calculate Post(x) in the above fixpoint and calculate the set of
initial states and the set of accepting states. The set of initial states
has been calculated in the previos step, and the way we deal with the
set of accepting states is to check the program counter of the property
automaton of all the states we have calculated. If the program counter
of the property automaton of the state is at the accepting state of the
property automaton, then this state will be left. As we get the fixpoint,
we finish calculating and get R,.

Greatest fixpoint procedure and Least fixpoint procedure are introduced
in Preliminaries, so the last thing we concern about is the function
Post(), which is designed to get post states. As mentioned before, our
Post() is different from the theorem’s because the BDDs we translated
do not afford the unchanged values. This is the reason our Post() need
to handle unchanged values after doing BDD transitions.

Our Post() has two parameters. The first parameter is the set of input
states, and the second parameter is the set of transitions after the pro-
cess of the cross product. To compute the set of post states, we use the
function restrict() provided by JAVABDD. The function restrict()
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restricts the variables in transition to constant true or false. How this
is done depends on how the variables are included in the state. For
example, there is a transition ¢1 represented by BDD:

tl = (Xv Yy, X’v Y’)

and one state in the input set of states sl represented by BDD:

sl =(x,y)

Where x, xX’, y, ¥y’ are BDD variables. Then the result after doing
restrict() is:
tl.restrict(sl) = (x’, y’)

which means BDD varialbe x becomes x* and y becomes y’ after doing
this transition. The value of x in the post state will be set as x’, and the
value of y in the post state will be set as y’. If the result of restrict() is
a NULL BDD, meaning the input set of states can not do this transition,
so we have nothing to do with it. If the result is not a NULL BDD, we
have to handle the unchanged values. For example, there is a transition
t1 represented by BDD:

t2 = (x, x)
and one state in the input set of states sl represented by BDD:

s2 = (x,y)
Then the result after doing restrict() is:
t2.restrict(s2) = (x°)

The result of the function restrict() implies that the value of x becomes
x’ and the value of y remains the same. The value of x in the post
state will be set to x’, and the value of y in the post state will be set
to y. Our Post() creates a new BDD which represents the combination
of the result after doing the function restrict()(changed variables) and
the rest variables which remain the same(unchanged variables). Finally,
we get one post state of the input state after doing the input transition.
The value of z in that post state becomes 2’ and the value of y in the
post state remains the same.

This Approach to handle unchanged variables will lead to a decrease in
time efficiency, and we will discuss the result in the next chapter.
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o Check the emptiness of the fixpoint.
After finishing all of steps listed above, we can finally check the empti-
ness of the fixpoint we just calculated. If it is empty, the system accepts
the specification, and if it is not empty, the specification does not hold.
This is the final result presented by our fixpoint model checker.

4.3 Fairness Issues

When verifing a program, we need to check whether the program satisfies
the fairness. Without checking the fairness, we could not guarantee the result
of the verification is exactly what we expected. In this section, we discuss
fairness issues at two different levels: one is at the execution level, and the
other is at the application level.

The system of our model checker using fixpoint is centralized. In other
words, our model checker traversed all possible transitions from the set of
initial states. However, we still have the fairness issue because we could
not ensure that any process that can execute a statement should eventually
proceed with that statement. To ensure fairness of the underlying execution
model, we use auxiliary variables to formulate Weak Fairness conditions. We
encode them in the property automaton: Suppose we have a fairness condi-
tion F' and a target property p. We write p’ = F' — p as the property that we
want to verify under the fairness condition. Then, we generate the automa-
ton A by using the RCFG provided by ULTIMATE, and A-, is generated
by the ULTIMATE’s toolchain LTL2BA. The last two things are to construct
the cross product of these two automata and to check its emptiness. We take
Algorithm @ as an example:
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Algorithm 3: two-process Peterson’s algorithm with auxiliary variables

1 //@ 1tl invariant positive: O((auzvl == 1) ==> O((auzvl == 2) V (auzvl == 3)))A
O((auxvl == 2) ==> O(auzvl == 3))A
O((auxv2 == 1) ==> O((auzv2 == 2) V (auzv2 == 3)))A
O((auzv2 == 2) ==> O(auxv2 == 3)) ==> (CAP(x < 1))

N

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

int flagl = 0, flag2 = 0, turn = 0
int auxvl = 0,auzv2 =0
intx=20

proc thread(

flagl = 1, turn = 1
int 21 = flag2
int t1 = turn
auzvl =1
while f21==1 and t1==1 do
auzvl = 2
f21 = flag2
tl = turn
end
auzvl =3
int yl1 =0
vyl =x
y14++
x =yl
flagl = 0

end

proc threadl

flag2 =1, turn = 0

int f12 = flagl

int t2 = turn

auzv2 =1

while f12==1 and t2==1 do

aurv2 = 2
f12 = flagl
t2 = turn
end
auzv?2 =3

critical section

end
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In Algorithm @, we show the design of the fairness condition for the
Peterson’s algorithm. The blue part in the LTL property is the fairness
condition of the target program, the red part is the property we want to
check, and auxiliary variables auxvl and auxv2 are added in the process
thread( and the process threadl. The first line of the fairness condition:

O((auzvl == 1) ==> O((auzvl == 2) V (auzvl == 3)))

ensures that the process thread0 is given a chance to do its statements, and
the second line:

O((auzvl == 2) ==> O(auzvl == 3))

ensures that the process thread0 will eventually get a chance to check the

loop condition and proceed to the corresponding following statement. The
third line and the fourth line work similarly as same as the first and the
second lines. This kind of auxiliary variables enforce Weak Fairness for the
system model. The time cost of the verification without auxiliary variables
reduces significantly, and we will show the data in the next section.
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Chapter 5

Experiments and Results

In this chapter, we will introduce the way we implement our fixpoint

model checkers with some program as examples. Our model checkers will

illustrste those programs and check whether the specification in the example

program holds.

To completely implement our verification work, we need to degine an

XML file which represents the whole process of our work, which starts from

a C file and ends up with the result of our fixpoint model checker.

<rundefinition>

<name>Ultimate Toolchain</name>

<toolchain>

<plugin
<plugin
<plugin
<plugin
<plugin
<plugin

id="de.

id="de

uni_freiburg.
.uni_freiburg.
id="de.
id="de.
id="de.

uni_freiburg.
uni_freiburg.

uni_freiburg.

informatik.
informatik.
informatik.
informatik.

informatik.

ultimate

ultimate

ultimate.
ultimate.

ultimate.

id="model-checking algorithms here" />

</toolchain>

</rundefinition>

.plugins.generator.cacsl2boogietranslator"/>

.boogie.procedureinliner"/>

boogie.preprocessor" />
plugins.generator.rcfgbuilder"/>

1tl2aut" />

Figure 5.1: The sample toolchain XML file.

As mentioned in the previous chapters, some tools designed by UL-
TIMATE are used to deal with RCFG-related and never claim automata
processing. These tools are included in the toolchain in this thesis, and our

model checker will be implemented in line 10 in Figure .
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5.1 Comparison between Different Algorithms

In this section, we will compare the result of the verification between our
symbolic model checker (fixpoint approach) and the explicit model checker
(double DFS approach) by using SCANTU system. We will concentrate
the result of doing verifications on different kinds of C files and properties,
such as the incorrect property with the correct code, the incorrect code with
the correct property, and the code and the property are all correct. The
target programs includes Algorithm B and programs shown at the end of
this section.

In Algorithm @, we verified the correct C program of Peterson’s algo-
rithm with one correct property (CAP(z < 1)). The verification result of
Algorithm @:

Double DFS | Fixpoint
with auxiliary variables 37,16ms 203.17ms

no auxiliary variables 33.98ms 179.31ms

In Algorithm @, we verified the correct C program of Peterson’s algorithm
with another correct property (O(AP(x == 0) ==> CAP(x == 2))). The
result of the verification of Algorithm

Double DFS Fixpoint

with auxiliary variables | 4001.83ms | 125019.97ms
no auxiliary variables 196.37ms 11707.37ms

There are some things worth noticing in results of these two cases. The
first information We observed is that the verification result of Algorithm
@ spent less time than the result of Algorithm @, through C files and the
properties are all correct. The key point is that the fixpoint computed in
Algorithm E becomes the empty set more earlier than the computation of
Algorithm . We can find some clues from the number of reachable states
of these two cases. The first case has only one reachable state which is the
initial state when it is verified with no auxiliary variables, which means the
initial state can not do any transition. The second case has 1968 reachable
states under the same premise, so our model checker has to spend time more
time computing the fixpoint.

The second thing we observed is that verifications with auxiliary vari-
ables spent more time than verifications with no auxiliary vairalbes. The
result is affected by the number of accepting reachable states, just like the
reason we presented in the previous case. We take Algorithm Y| as example:
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The number of accepting reachable states in the process of verification with
auxiliary variables is 3540, and 1968 with no auxiliary variables. We can
not guarantee that the more transitions there are, the more time the model
checker will cost, but we could infer that the number of reachable states is
positively related to time cost.

Next, we show the rest of results: In Algorithm H, we verified the correct
C program of Peterson’s algorithm with one incorrect property (J(AP(z ==
2) ==> OAP(x ==0))). The verification result of Algorithm f:

Double DFS | Fixpoint
with auxiliary variables 90.81ms 23353.62ms
no auxiliary variables 76.14ms 3141.73ms

In Algorithm E, we verified the incorrect C program of Peterson’s algo-
rithm with one correct property (J(AP(x == 0) ==> CAP(x == 2))). We
deleted the critical section in Threadl in Algorithm [, so the value of z will
be 1 when all processes are all finished. The verification result of Algorithm

Double DFS | Fixpoint
with auxiliary variables 98.44ms 83213.20ms
no auxiliary variables 71.56ms 6376.86ms

We can observed that the model checker with double DFS approach has
a high level of performance when there is something wrong in the property
or the C file. The model checker with fixpoint approach is struggled in the
exponential explosion of states when it computes the fixpoint. An incorrect
property always leads to a larger number of reachable states, thus reduces
the efficiency of the model checker.

In the verification result of Algorithm @, the deletion of the critical sec-
tion leads to a smaller number of reachable states, so the time cost of it
is less then the verification result of Algorithm It is intuitive that the

deletion reduces the difficulty of computing fixpoint.
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Algorithm 4: two-process Peterson’s algorithm with another right property and right

code

1 //@ 1tl invariant positive: fairness condition ==>
O(AP(z ==0) ==> (CAP(zx == 2)))

2 int flagl = 0, flag2 = 0, turn = 0

3 int auxvl = 0,auzv2 =0

4 intx=0

5 proc thread(

6 flagl = 1, turn = 1
7 int 21 = flag2
8 int t1 = turn
9 auzvl =1
10 while f21==1 and t1==1 do
11 auzvl = 2
12 f21 = flag2
13 tl = turn
14 end
15 auzvl =3
16 int yl =0
17 vyl =x
18 y14++
19 x =yl
20 flagl = 0
21 end

22 proc threadl

23 flag2 =1, turn = 0
24 int f12 = flagl

25 int t2 = turn

26 auxrv2 =1

27 while f12==1 and t2==1 do
28 auxrv2 = 2

29 f12 = flagl

30 t2 = turn

31 end

32 auzv?2 =3

33 critical section

34 end
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Algorithm 5: two-process Peterson’s algorithm with right code but incorrect property

1 //@ 1tl invariant positive: fairness condition ==>
O(AP(z == 2) ==> (CAP(x ==0)))
int flagl = 0, flag2 = 0, turn = 0

N

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

int auxvl =0, auzv2 =0
intx=20

proc thread(

flagl = 1, turn = 1
int 21 = flag2
int t1 = turn
auzvl =1
while f21==1 and t1==1 do
auzvl =2
21 = flag2
tl = turn
end
auzvl =3
int yl=20
vyl =x
y1++
x =yl
flag2 = 0

end

proc threadl

flag2 =1, turn = 0
int f12 = flagl
int t2 = turn
auxv2 =1
while f12==1 and t2==1 do
auxrv2 = 2
f12 = flagl
t2 = turn
end
auzv?2 =3
critical section

end
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Algorithm 6: two-process Peterson’s algorithm with the right property but incorrect

code

1 //@ 1tl invariant positive: fairness condition ==>
O(AP(z ==0) ==> (CAP(zx == 2)))
int flagl = 0, flag2 = 0, turn = 0

N

3 int auxvl = 0,auzv2 =0

4 intx=0

5 proc thread(

6 flagl = 1, turn = 1
7 int 21 = flag2
8 int t1 = turn
9 auzvl =1
10 while f21==1 and t1==1 do
11 auzvl = 2
12 f21 = flag2
13 tl = turn
14 end
15 auzvl =3
16 int yl =0
17 vyl =x
18 y14++
19 x =yl
20 flagl = 0
21 end

22 proc threadl

23 flag2 =1, turn = 0
24 int f12 = flagl

25 int t2 = turn

26 auzv2 =1

27 while f12==1 and t2==1 do
28 auzv2 =2

29 f12 = flagl

30 t2 = turn

31 end

32 auzv?2 =3

33 no critical section
34 end
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5.2 Comparison between Different Number of Threads

In this section, we use a simple multithread program to discuss the im-
pact of memory and time cost when increasing the number of threads. The
property we used in this example is safe, so we can ensure that it is fair when
we compute the fixpoint and concentrate on the influence of the number of
threads. We also design different experimental settings by using different
correctness combinations of temporal properties and C programs to produce
more diverse comparison results.

Algorithm H is the simple program we just mentioned. We first discuss
the combinition with the correct program and property:

Algorithm 7: Simple N-process Multithread Program with the correct program and
property
1 //@ ltl invariant positive: CAP(z == N)

2intx=0

3 proc thread

4 ‘ x=x+1

5 end

6 proc main

7 ‘ create and join thread N times.

8 end

Then we record the time cost of this combination:

thread number (N) | N =2 N =14 N=6 N =238 N =10
Double DFS 90.55ms | 254.66ms | 917.51ms | 1570.30ms | 3797.24ms
Fixpoint 204.77Tms | 617.52ms | 7757.02ms | 835836.08ms -

We can observe that as the number of threads increases, the time spent
grows on both model checkers, and the growth rate of the model checker
with fixpoint approach is more dramatic than that of the model checker
with double DFS approach.

Next we discuss the influence of the incorrect property, Algorithm § is
the program with the incorrect property and the correct program:
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Algorithm 8: Simple N-process Multithread Program with the correct program but

incorrect property

1 //@ 1tl invariant positive: CAP(z == N + 1)
2 intx=0

3 proc thread

4 ‘ x=x+1

5 end

6 proc main

7 ‘ create and join thread N times.

8 end

As same as before, we record the time cost of this combination:

thread number (N) | N =2 N=4 N=6 N =28 N =10
Double DFS 54.56ms | 89.88ms | 109.36ms 151.74ms | 217.14ms
Fixpoint 169.76ms | 584.61ms | 8023.92ms | 860803.38ms -

We can find that the time cost of the model checker using double DFS
is almost at the same level, and the time cost of the model checker using
fixpoints is not much difference from the previous comparison. Once the first
model checker finds the accepting cycle, the process of the verification is end
and this is the reason it is not strongly affected by the number of threads.
However, the second model checker still dramatically influenced by the the
number of threads because it still takes a long time to compute the fixpoint.

Last we discuss the influence of the incorrect program, Algorithm @ is
the program with the correct property but the incorrect program:
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Algorithm 9: Simple N-process Multithread Program with the correct property but

incorrect program

1 //@ 1tl invariant positive: CAP(z == N)

2 intx=0

3 proc threadl

4 ‘ Do nothing

5 end

6 proc thread?2

7 ‘ x=x+1

8 end

9 proc main

10 ‘ create and join threadl 1 times. create and join thread2 N-1 times.

11 end

the record of the time cost:

thread number (N) | N =2 N =14 N=6 N =28 N =10

Double DFS 55.99ms | 80.87ms | 109.81ms 131.04ms 153.38ms

Fixpoint 152.28ms | 498.90ms | 5223.06ms | 543766.59ms -

We can find that the time cost of the first model checker is roughly the
same as the time cost we recorded in the previous comparison. It always
quickly find the accepting cycle during the verification process. The model
checker using double DFS spends more time only if there is nothing incorrect.

The time cost of the second model checker is less than the time cost we
recorded in the previous comparison. The reason is just mentioned in the
previous section: the number of the reachable accepting states is less than
the previous comparison, and we have a conclusion that the growth of the
number of threads is more influential for the model checker with fixpoint
appraoch than the model checker with double DFS approach.

Finally, we discuss why our model checker is inefficient. As we just
mentioned in the previous chapter, we handle unchanged variables when
calculating fixpoints because of the out-of-memory problem. We confirm
that this is the reason why our model checker is more inefficient than the
explicit one. We spent too much time computing Post(). In other words,
the separation of transitions mitigates the out-of-memory problem, but at
the cost of spending too much time.
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Chapter 6

Conclusion

Model checking has been proposed for a long time, helping the progress
of formal verification. More and more model checking tools have been de-
veloped. We have reviewed the previous studies related to the comparison
between explicit-state model checking and symbolic model checking. In this
thesis, we have implemented a symbolic model checker using fixpoints with
Ultimate, and compared our model checker with an explicit model checker.
We now summarize the contributions of this thesis and suggest directions
for future research.

6.1 Contributions

Our research contributes to the field of formal software verification with
the following perspectives:

o Implementation of a symbolic model checker using fixrpoints
With the support of ULTIMATE and JAVABDD, we have succesfully
built a symbolic model checker using fixpoints, though its efficiency
is not as good as expected. Our model checker can directly verify C
programs against temporal properties, and, unlike NUSMV does not
need other modeling languages.

o FEaxtension of SCANTU
We have extended SCANTU with one more model checking engine. Now
there are two model checking engines in SCANTU: one using double DFS
and the other using fixpoints. Users can choose different model checkers
under different circumstances.

o Implications of the comparison results
Thanks to SCANTU, we have a very convenient way to do comparisons
between different model checkers using different approaches. We have
done some comparisons with different experimental settings in this thesis
and discussed experimental results. We confirm that:

45
doi:10.6342/NTU202300384



1. Under normal circumstances, when computing Post() the transition
is the disjunction of thr transitions in the automaton which is the
synchronized product of system automaton and property automa-
ton. However, we faced the out-of-memory problem when we did
the disjunction of those transitions. To get around the problem, we
separate the transition into different small BDDs. We found that
the computation of Post() takes a long time because of the separa-
tion of the transition. So, the separation of the transition does not
seem to be a good idea.

2. The model checker using fixpoints is affected by the number of
threads more dramatically than the model checker using double
DFS.

3. The model checker using double DF'S uses less time when there are
errors in the input program or property.

6.2 Future Work

There are several remaining issues for reseachers to futher explore:

o Use different BDD packages
First, we use JAVABDD to build transition BDDs. There are lots of
BDD packages, such as CUDD, CacBDD, JDD, and so on. Doing com-
parisons between the implementations with different BDD packages and
discussing the strengths and weaknesses of different BDD packages are
good to try.

o Improve the efficiency of our symbolic model checker
Second, we have tried to improve efficiency with different techniques.
However, the experimental results of our symbolic model checker using
fixpoints are not as good as expected. Due to the limited time, there
are still other techniques which may help us improve the efficiency but
are not adopted in our tools, for instance, antichains.

o More model checkers with different algorithms in the comparative study
Last but not least, the last future work is to compare more algorithms,
in other words, to expand the scope of our thesis. By this way, a more ef-
fcient model checking approach for different circumstances can be found
more easily.
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