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摘要

近年來深度學習在自然語言處理的問題上取得了卓越的成果，然而日常生活

中常見的應用，例如垃圾訊息過濾以及情緒分析等等，都很容易受到對抗性攻

擊，導致安全性上的疑慮。

本文提出兩個方法，干擾偵測可以判斷文字是否受到字元修改的攻擊，並接

著基於上下文將受到修改的文字恢復成可能的替代字詞。在字詞替換攻擊上，藉

由將重要的字詞替換成數個可能的替代文字以增加樣本數量，且預測結果為所有

增加的樣本中最多數被分到的類別。

本文提出的方法可以在不需要知道模型參數以及調整模型架構的條件下抵禦

對抗式攻擊。在 IMDb資料集上所完成的實驗證明，本文的方法可以有效防禦在

文字分類上的字元替換及字詞替換攻擊，並展現比比較基準更好的成果。

關鍵字：防禦對抗性攻擊、文字分類
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Abstract

In recent years, deep learningmodels have achieved prominent success on NLP tasks.

However, widely used real-world applications such as spam filter and sentiment analysis

are vulnerable to adversarial attacks.

This thesis proposes two methods to defend against adversarial attacks on the sen-

timent analysis task. Perturbation detector detects if a token in the sample is perturbed

through character level attacks, and the recovery process recovers the words from the

perturbed ones to possible substitutions based on the context. For word level attacks, aug-

menting inputs by replacing important words to their possible substitutions and the result

of the original sample is the majority class among all the augmented samples.

Our methods can block adversarial attacks without knowing the model parameters

and modifying model structures. Experiments on IMDb dataset demonstrate that our

methods can effectively block both character level and word level attacks and outperform

baseline method on text classification task.

Keywords: adversarial attack defense, text classification
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Chapter 1 Introduction

Deep neural networks have achieved prominent results on Natural Language Pro-

cessing (NLP) tasks in recent years. Although such DNN models are widely applied to

research and commercial systems, they are vulnerable to adversarial examples which are

intentionally generated by attackers. Many studies have proved that adding perturbations

to benign inputs could fool the targeted models. Such discovery has raised serious con-

cerns on the security issues of DNN NLP tasks.

Common adversarial examples are generated by inserting, swapping, replacing char-

acters [5] [4] or substituting words with their synonyms[6] [10][16]. These examples aim

to conserve semantic similarity with original samples and not be aware of humans but be

able to confuse deep neural network models without considering possible adversaries.

DNN-based classification tasks play an important role in information understanding

and analyzing. For instance, many recommendation systems rely on sentiment analysis

to deliver suitable results. Adversarial attacks on such classifiers can lead to incorrect

predictions and cause unexpected outcomes.

It is not straight forward to adapt existing approaches such as data augmentation [8]

and adversarial training [13] used in image domain to NLP tasks. Images have continuous

pixels while text are discrete tokens. Therefore, defending against adversarial attacks in

1
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NLP tasks remains a challenging and unsolved problem.

In this thesis, we proposed two methods to defend against adversarial attacks on the

sentiment analysis task. Perturbation detector detects if a token is modified through char-

acter level perturbation and then recovers the perturbed token to possible words based on

the context. For word level attacks, we augment an input by replacing important words

with their possible substitutions. The result class of the input is the majority class among

all augmented samples predicted by the model.

Our methods can block both character level and word level attacks in text classifica-

tion tasks. In addition, the prior knowledge to parameters of the classification model and

the access to retrain or modify the model structure is not necessary.

2
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Chapter 2 Related Work

2.1 TextBugger

TextBugger [9] proposed 5 methods to perturb the target words which are (1) Insert

: insert a space into a word, (2) Delete : delete a character of the word except the first and

the last ones, (3) Swap : swap two adjacent characters except the first and the last ones, (4)

Substitute-C : replace characters with virtually similar ones and (5) Substitute-W : replace

the word with synonyms in the embedding vector [15]. TextBugger achieved successful

attacks on both white-box and black box scenarios.

Experiment conducted in the study also shows that spelling check and adversarial

training using adversarial samples generated by TextBugger are effective in defending the

attack.

3
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Figure 2.1: Process of adversarial data augmentation

Table 2.1: Examples of perturbations generated by TextBugger

Original Insert Delete Swap Substitute - C Substitute - W
good g ood god good go0d great
awesome aw esome awsome awesmoe awesone amazing
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2.2 TextFooler

TextFooler [7] is a typical word level attack, which replaces the target words with

synonyms extracted from word embedding [14]. The result shows that not only simple

CNN and RNN models are vulnerable to the attack but also pre-trained BERT model is

not robust to synonym substitutions. Further, the result of human evaluation reveals that

synonym substitution is hardly recognize by human.

In this study, besides the success of the attack strategy, adversarial training using

adversarial samples generated by TextFooler could decrease the success rate of the attack

and increase the perturbation percentage required to evade target models.

5
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Figure 2.2: Algorithm of TextFooler
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2.3 Discriminate Perturbations

This study [17] uses two main modules to defend against adversarial samples. Per-

turbation Discriminator can detect if any token in an input sample is perturbed, which is

trained using adversarial samples as data. After determining the perturbed tokens, Embed-

ding Estimator comes along to estimate the original embedding of the perturbed tokens.

Therefore, the process recovers the adversarial samples and then forward the samples into

models to deliver correct predictions.

Figure 2.3: Schema of DISP framework
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Chapter 3 Methodology

3.1 Character level defense

Character level attacks usually modify the target words by inserting, deleting, swap-

ping, replacing characters in the word, which aim to map the embedding of the original

words to unknownwords, therefore, affecting the impact of the words on themodel predic-

tion. To defend against character level attacks, we adopt a perturbation detector to predict

if a word is modified with character perturbations. When a word is predicted as a potential

perturbed word, the recovery process takes place to recover the word from perturbed to

the possible substitution based on the context.

3.1.1 Perturbation Detector

The character perturbation detector is a classifier build to detect if a token ti in an

input S is perturbed based on the context. We first use BERT[3] tokenizer and model

to derive contextualized word embedding Ei for each token ti and then cascade it with a

logistic regression classifier to predict if the token ti is perturbed. Each contextual em-

bedding of contains the dimension of 768. Figure 3.1 and 3.2 shows the distribution of the

original word embedding and the perturbed word embedding. The classifier takes contex-

9
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tualized word embedding Ei of the token ti as an input and output two classes {0, 1} to

determine whether the word is perturbed.

Figure 3.1: Word embedding distribution of overdone in the original sentence ”Everything
was overdone to the point of absurdity.”

10
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Figure 3.2: Word embedding distribution of overd0ne in the perturbed sentence ”Every-
thing was overd0ne to the point of absurdity.”

3.1.2 Perturbation Recovery

Here we utilized BERT masked language model[11] to recover the perturbed tokens.

When a token ti is predicted as an potential perturbation, the sentence containing the token

is selected as the context for estimating the possible original word. For a perturbed token

ti, the token is replaced with the <mask> token. BERT-MLM will predict the possible

words to fill in the masked position. We select the most probable one as the substitution

to replace the perturbed token.

11
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Table 3.1: Example of perturbation detector and recovery

Original The acting seems very unrealistic and is generally poor.
Perturbed The acting seems very unrealistic and is generally pooor.
Masked The acting seems very unrealistic and is generally poor.
Recovered The acting seems very unrealistic and is generally boring.

3.2 Word level defense

Word level attacks usually replace the target word with their synonyms to preserve

semantic similarity, which decrease awareness by human and try to fool the model in

the meantime. Adversarial samples modified through word level perturbations are hardly

recognized by human and detected by the model trained based on the word embedding.

According to the common approaches that most attack strategies choose important

words in an input to modify, we assume that important words in an input sample are modi-

fied by attackers. Therefore, we generate augmented inputs by replacing important words

with possible words at the same position based on the context, aiming to smooth the ex-

treme impact on the intentionally perturbed word.

12
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3.2.1 Important word replacing

We first define the score Iwi representing the importance of a word in a sample s =

[ w0 .. wn ]. We denote X/wi as a input X = [ w0 .. wn ] removing a word wi, that is,

X/wi = [ w0 .. wi−1 wi+1 .. wn ]. The importance score is calculated by the prediction

difference before and after deleting the word wi.

Each token in a sample is sorted by the importance thenwemask theword by the order

of importance and use the BERTmasked languagemodel to predict the top 5most probable

words to fill the position of the masked word. These five new samples are appended to a

set. Table 3.2 shows the augmented inputs generated through the process. Each sample

produced last round loops to mask the next important word.

In particular, there are 5 augmented samples at the end of first loop, 25 for the second

and 125 for the last round. Therefore, there are 155 augmented samples at the end of the

whole process. The final classification result will be the most probable class among all

these augmented samples in the set. For example, if the prediction result are 120 positive

and 35 negative among 155 augmented samples in the set, the prediction result of the

original input will be delivered as positive.

13
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Table 3.2: Example of augmented samples for one masked word

Original A rating of ”1” does not begin to express how dull, depressing
and relentlessly bad this movie is.

Perturbed A rating of ”1” does not begin to express how dreary, depressing
and relentlessly bad this movie is.

Masked A rating of ”1” does not begin to express how <mask>, depressing
and relentlessly bad this movie is.

Augmented

A rating of ”1” does not begin to express how awful, depressing
and relentlessly bad this movie is.

A rating of ”1” does not begin to express how gross, depressing
and relentlessly bad this movie is.

A rating of ”1” does not begin to express how depressing, depressing
and relentlessly bad this movie is.

A rating of ”1” does not begin to express how bleak, depressing
and relentlessly bad this movie is.

A rating of ”1” does not begin to express how horrible, depressing
and relentlessly bad this movie is.

3.3 Overall attacks defense

Overall attacks combines both character level and word level attacks, which is more

likely to be applied by attackers targeting real-world applications. We concatenate meth-

ods proposed in the above sections to defend against overall attacks. Input sequence first

goes through the perturbation detector. if there is any perturbed token, the token is passed

to recovery process. Important word replacement is followed by the perturbation detec-

tor to augment the input. Augmented inputs are passed to the classifier and deliver the

final result at the end. Figure 3.3 is the structure of our methods to defend against overall

attacks.

14
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Figure 3.3: Structure to defend against overall attacks

15

http://dx.doi.org/10.6342/NTU202300303


doi:10.6342/NTU20230030316

http://dx.doi.org/10.6342/NTU202300303


doi:10.6342/NTU202300303

Chapter 4 Experiments

4.1 Experiment settings

4.1.1 Dataset

The experiment is conducted on the dataset Internet Movie Database (IMDb) [1],

which is a sentiment classification dataset containing movie reviews labeled with positive

and negative sentiment classes. The dataset has 25,000 training data and 25,000 testing

data.

4.1.2 Adversarial attacks

We consider four types of character level attacks, which contains Insertion, Deletion,

Swap and Substitute. Insertion inserts a random character or the same character to a ran-

dom position of the word. Deletion deletes a random character in the word. Swap flips

two adjacent characters in the word. Substitute replaces a random character in the word

with a similar looking character (e.g., replacing“o＂with“0＂, ”p” with ”q”,“l＂with

“1＂,“a＂with“@＂) or adjacent character on the keyboard (e.g., replacing“m＂with

“n＂, ”s” with ”d”, ”k” with ”l”). Table 4.1 shows the examples of character level attacks

implemented in this study.

17
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Table 4.1: Examples of character level attacks

Original outstanding well excellent dull
Insert outstaanding welll exceellent duell
Swap otustanding wlel execllent dlul
Delete outstading wel excelent dll

Substitute outst@nding we1l execllemt dill

For word level attack, we use pre-trained GloVe word vector [15] to substitute target

words with their similar words, which are the nearest words to the target word in the word

vector space. Top five similar words are selected as alternatives to perturb the sample.

Table 4.2 shows the examples of substitutions to replace target words.

Table 4.2: Examples of word substitutions

Target outstanding well excellent dull

Similar Substitutions

exceptional
phenomenal

terrific
fantastic
superb

good
sure
yes
yeah
better

fantastic
great

brilliant
superb

outstanding

bore
boring
rubbish
gloomy
messy

Perturbations are added to the top five important words by the order of their impor-

tance. To preserve semantic similarity we use Universal Sentence Encoder[2] which cal-

culates similarity between two sentences. The constraint of the similarity between original

and perturbed sentence is set as 0.7.

18
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The adversarial sample generating process stops when the prediction result becomes

different to the predicted label without perturbations, otherwise the perturbations with

largest prediction difference toward the other class is selected and the process loops to the

next target word.

4.1.3 Base model and baseline

We consider the LSTM model as our base model to evaluate vulnerability without

defense and the performance of defense methods. To evaluate our defense method, we

implemented the following baseline : (1) Spelling check[12], which is proved effective

defending against text adversarial attack.[9] (2) The original DISP model[17]. Baseline

methods as well as our methods are independent to the prediction model. Knowledge of

model parameters and the access to retrain the model are not necessary.

4.1.4 Evaluation metric

We evaluate the defense performance by classification accuracy. The accuracy in-

crease of a defense method against adversarial attacks is equivalent to the effectiveness of

the defense strategy.

19
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4.2 Experimental results

4.2.1 Performance of perturbation detector

Table 4.4 shows the accuracy of all character level defensemethods. After we applied

character level attacks to the model with original accuracy 88.7%, the accuracy drops to

68.1%. According to the results, baselines and our methods are effective defending against

character level attacks. Spelling check achieved the accuracy of 73.1%, which is the least

effective method among all implemented methods. Moreover, we discovered that spelling

check suffers from recognizing perturbations which substitute alphabetic characters with

non-alphabetic characters. Spelling check has limitations detecting uncommon and inten-

tionally generated typos as well as correcting words based on the context. Table 4.3 shows

the limitations of spelling check.

Table 4.3: Limitations of spelling check

Original Perturbed Recovered
well we1l we1l
garage g@rage g@rage
film f!lm f!lm
dull dill will

20
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Compared to DISP recovered the model accuracy from 68.1% to 77.4%, our method

achieved 81.6% accuracy after applying defense strategy. The DISP model increase the

accuracy by 9.3% and our perturbation detector by 13.5%, which performs better than the

DISP model on the character level attacks.

Table 4.4: The accuracy of methods on character level attacks

Method Attack-free Character level attacks
Original LSTM

88.7%

68.1%
Spelling check 73.1%

DISP 77.4%
Perturbation detector 81.6%

4.2.2 Effectiveness of augmenting input

Table 4.5 shows the experiment results on defending against the word level attack.

The original model accuracy is 88.7% on the data without perturbations. The accuracy

drops to 76.2% after we generateword level adversarial samples from the the data. Spelling

check does not show significant effectiveness defending against word level attack. More-

over, the accuracy even drops a little to 75.8%, which might caused by false positive

detection.

Both DISP model and our method increase the model accuracy when the defense

strategies are applied. Compared to theDISPmodel, the accuracy is 79.3% and ourmethod

is 80.1%, which recover the accuracy by 3.1% and 3.9%. Our method achieves better

performance defending against the word level attack.

21
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Table 4.5: The accuracy of methods on word level attack

Method Attack-free Word level attack
Original LSTM

88.7%

76.2%
Spelling check 75.8%

DISP 79.3%
Augmented input 80.1%

4.2.3 Defend against overall attacks

We applied adversarial attacks mixed with both character level and word level at-

tacks mentioned in the previous sections to the LSTM model. Perturbation detector and

augmenting input are combined to defend against the overall attacks. Table 4.4 shows the

experiment result of baseline methods and our methods defending against overall adver-

sarial attacks. The accuracy of original model is 88.7% and the accuracy drops to 61.7%.

Spelling check performs least effective among all the methods. DISP recovers the ac-

curacy from 61.7% to 74.6%, while our combined method achieves 77.5%. Our methods

perform better than baseline methods facing adversarial attacks mixed with character level

and word level perturbations.

Table 4.6: The accuracy of methods on overall attacks

Method Attack-free Character level attacks
Original LSTM

88.7%

61.7%
Spelling check 67.2%

DISP 74.6%
Perturbation detector
+ Augmented input 77.5%

22
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Chapter 5 Conclusion

This thesis proposed defense methods to defend against adversarial attacks in text

classification tasks. According to the experiment results, we can increase the model ac-

curacy under both character level and word level attacks. Furthermore, this method can

increase robustness without prior knowledge about actual classification model and the

access to retrain the model.

Once NLP tasks and services achieve more remarkable outcomes ,concerns on vul-

nerabilities and security issues of these models will also arise at the same time. Though

not all the defense methods against attacks on images with outstanding results can be ap-

plied to the NLP domains, there have been some methods proved effective to attacks on

test classification tasks. However, word level attacks is still hard to detect and discover

both by human and computers. Defense methods against word level attacks on text can

be further explored.
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