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中文摘要

近年來肺癌高居國內及全球癌症相關死因首位，其死亡率至今仍然居高

不下。非小細胞肺癌乃發生率最高之肺癌，其中又以肺腺癌最為普遍。研究

指出，肺癌病患的治療方式不只取決於腫瘤類型，而不同肺癌分期亦應適當

選擇給予不同治療方式。因此，為幫助病患選取最有利之治療方式，建立更

準確之新肺癌診斷方法，有其重要性及迫切性。其中，因前期肺癌病患仍有

數種治療方式可選擇，故對於前期肺癌病患之診斷最為重要。

生物晶片技術的發展使得研究人員得以同步測量數以萬計之基因表現量，

並提供了新的研究平台。一項大型的肺腺癌研究建立了豐富的肺腺癌病患之

基因表現量資料和臨床資料，用以建立及驗證數種以基因表現量導出之肺癌

診斷方法。然而，對於前期病患的存活預測，尚未能找到一種基因訊號對於

所有的驗證資料皆能達到百分之五之顯著水準。我們的研究目的即是重新研

究這份資料，以期建立一個新的基因訊號對於所有的驗證資料皆能有顯著的

存活預測力。

我們引用一個兩階段之維度縮減方法佐以部份的修正來導出肺癌診斷之

基因訊號。在第一階段中，我們以基因和存活時間的相關性與配對基因和存

活時間的流動關聯性來選出重要的候選基因。第二階段，我們則使用了改良

的切片逆迴歸分析方法導出最後的肺癌診斷基因訊號。

分析結果指出，以相同的驗證流程檢驗我們導出的基因訊號，在所有的

驗證資料都能達到百分之五之顯著水準的存活預測能力，更進一步的，在另

一個包含肺腺癌及鱗狀細胞癌的非小細胞肺癌資料上，我們導出的基因訊號

也同樣達到百分之五之顯著水準的存活預測能力。因此，我們認為以TMEM

66，CSRP1，BECN1，FOSL2，ERO1L，SRP54及PAWR七個基因所導出的基

因訊號對於非小細胞肺癌病患有好的存活預測能力。
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Abstract

Purpose Recently, several new gene expressions based signatures were pro-

posed to predictive the survival of Non Small Cell Lung Cancer (NSCLC)

patients. However, for stage I patients, the task is more difficult and no

signatures had been found from a large study of lung adenocarcinoma. We

reanalyzed this large sample data and tried to construct a gene signature,

which had significant prediction power for all stage and early stage patients

in all the validation sets. We also used an external independent cohort data

set containing both adenocarcinomas and squamous cell carcinomas to test

if our gene signature still had significant prediction power for all stage and

early stage NSCLC patients.

Materials A total of 442 lung adenocarcinoma gene expression profiles from

Shedden et al. (2008) containing four independent data sets were reanalyzed

in our study. Two of the data sets were combined as a training data set to

derive our gene signature. The other two data sets were used for validation.

An external NSCLC data from Duke lung caner cohort was used for addi-

tional validation.

Methods We modified a two-steps dimension reduction method proposed

by Wu et al. (2008) to derive our gene signature. In the first step, both

correlation and liquid association methods were used to select the candidate

genes. In the second step, we applied the modified sliced inverse regression

proposed by Li et al. (1998) to derive a gene signature from the candidate

genes.

Results Five genes TMEM66, CSRP1, BECN1, FOSL2 and ERO1L were

selected by correlation methods. SRP54 and PAWR (as a LA pair) were

selected by liquid association method. The final signature gave significant
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prediction power for samples with all stage patients and for samples with

stage I patients only in all the validation sets.

Conclusion The gene signature derived from the seven genes (TMEM66,

CSRP1, BECN1, FOSL2, ERO1L, SRP54 and PAWR) had good prediction

power for all stage and early stage NSCLC patients.
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Chapter 1

Introduction

In the latest years, lung cancer is the leading cause of caner death in many

Western countries and also in Taiwan. The most common cell type of lung

cancer is Non Small Cell Lung Cancer (NSCLC), especially the lung adeno-

carcinomas [1] [2]. The treatment selection of different patients is dependent

on various factors including tumor cell types and cancer stages. Recently,

the adjuvant chemotherapy has been proved for significantly improving the

survival of stage IB and stage II patients [3]. However, for some early stage

patients with good prognoses, the benefit is not significant. To help early

stage patients select the most beneficial treatment, a new diagnostic method

is urgently needed.

The development of microarray technology has helped researchers to mea-

sure more than ten thousands of gene expressions simultaneously. From the

information contained in these data, several new gene expression based sig-

natures were introduced to predict to survival of NSCLC patients [4]-[9].

However, to reproduce and to validate these signatures in general are not

easy. A large sample lung adenocarcinomas data containing four indepen-

1
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dent cohort data sets was generated to compare the performance of several

latest expression based diagnostic signatures [10]. Nevertheless, the study

did not found a signature having significant prediction power for samples

with stage I patients only in all the validation data sets.

We reanalyzed this large adenocarcinomas data starting from data pre-

processing to filter out some non-informative genes. A two-steps dimension

reduction method proposed by Wu et al. (2008) [11] was then applied with

some modifications for deriving diagnostic signature on the training set. In

the first step, both correlation and liquid association methods [13] [14] were

used to select the candidate genes. In the second step, we applied the mod-

ified sliced inverse regression proposed by Li et al. (1998) [16] to derive the

signature from the candidate genes. Based on the same validation procedure

for all the testing data as in Shedden et al. (2008), our signature gave signif-

icant prediction power for samples with all stage patients and samples with

stage I patients only. Furthermore, we also used an external independent

cohort data set containing both adenocarcinomas and squamous cell carci-

nomas to test if our gene signature still had significant prediction power for

all stage and early stage patients. Our gene signature still gave significant

prediction power in this validation data set.

Here we summarize the main contents of this thesis. We introduce all the

cohort data sets used in our analysis and our analysis procedure in Chapter

2. Three different criterions for gene filtering are introduced in Chapter 3.

In Chapter 4, we introduce how we select the candidate genes by correlation

and liquid association (LA) methods. A modified imputation method for

censored data is also given. In Chapter 5, we discuss how we derived the
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gene signature from the selected candidate genes. A brief introduction for

modified sliced inverse regression and its implementation is also given. The

validation results and cross platform adjustment for testing sets are presented

in Chapter 6. In Chapter 7, we discuss the genes we used in our signature, the

relationship between our permutation procedure and Benjamini-Hochberg

procedure under independent assumption in our data setting, and the effect,

which might be caused by different preprocessing methods.



Chapter 2

Materials and analysis

procedure

2.1 Materials

In this section, we introduce several independent cohort data sets we

used to construct our gene signature or to test the prediction power of our

gene signature. Each data set contains gene expression profiles measured by

Affymetrix microarray and survival outcome data of Non Small Cell Lung

Cancer (NSCLC) patients. Some relevant clinical and pathological data, such

as sex, age, TNM tumor stage and tumor cell type are also available. The

summary statistics of clinical variables in each data set are given as table

2.1.

442 lung adenocarcinoma data from Shedden et al. (2008)

In Shedden et al. (2008), a large lung adenocarcinomas microarray data

was generated from four institutions, Moffitt Cancer Center (HLM), Univer-

sity of Michigan Cancer Center (UM), Dana-Farber Cancer Institute (CAN/DF)

4
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Table 2.1: Summary statistics of the clinical and survival data

HLM UM CAN/DF MSK Duke

Sample size 79 177 82 104 111

Age (mean) 67 64 61 65 65

Cell type (% adenocarcinomas) 100% 100% 100% 100% 52%

Sex (% male) 51% 56% 56% 36% 57%

Stage IA 11% 39% 13% 26% 36%

Stage IB 43% 27% 55% 35% 24%

Stage II 27% 16% 32% 19% 16%

Stage III 19% 18% 0% 20% 20%

Stage IV 0% 0% 0% 0% 4%

Median follow up (months) 39 54 51 43 31

Number of deaths 60 102 35 39 58

and the Memorial Sloan-Kettering Cancer Center (MSK), using a common

platform, Affymetrix U133A. After excluding samples with poor quality of

microarray data or incomplete clinical data, a total of 442 samples from four

independent data sets were analyzed in their study. They analyzed the data

for validating the following four hypotheses: (1) can gene expression predict

the survival of all stage patients? (2) Can gene expression predict the sur-

vival of stage I patients? (3) Can gene expression with clinical covariates

(stage, sex and age) predict the survival of all stage patients? (4) Can gene

expression with clinical covariates predict the survival of stage I patients?

They combined the first two data sets, HLM and UM, as a training data set

to construct the gene signature, and used the rest two independent data sets,
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CAN/DF and MSK, to test the prediction power of the derived signatures.

In their reports, with the clinical covariates, several methods gave significant

prediction power for all stage and stage I patients in the rest two validation

sets, CAN/DF and MSK. However, without clinical covariates, there were

no signatures found with significant prediction power for stage I patients in

both validation sets. Therefore, in our analysis, we focused on the first and

the second hypotheses. Our purpose was to derive a gene signature from the

training data set which had significant prediction power for all stage and stage

I patients in both validation data sets. The raw data were downloaded from

https://caarraydb.nci.nih.gov/caarray/publicExperimentDetailAction.do?ex

pId=1015945236141280.

111 NSCLC samples from Duke lung caner cohort

Another microarray data set from Duke lung caner cohort containing 111

NSCLC samples was used to test our gene signature. This data set was a more

challenging external validation data set. First we noted that it contained

patients of two different tumor cell types, adenocarcinomas and squamous

cell carcinomas. The prediction power of our gene signature for patients with

different tumor cell types can be tested in this validation set. Second, since

the gene expression profiles were measured by a different microarray platform

Affymetrix HU133plus2, a cross platform adjustment was needed. The detail

of our adjustment is discussed in Chapter 6.
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2.2 Analysis procedure

In this section, we briefly introduce our analysis procedure and the main

methods we used to construct our gene signature. The theoretical and im-

plemented details of these methods are given in later chapters.

The major challenge in microarray data analysis is the large dimension-

ality. The number of genes (G) is in the range of ten to fifty thousands but

the sample size (n) is only about hundreds. To reduce the effect of microar-

ray noise, we used three criterions to filter out non-informative genes. We

excluded the genes with low expressions, small variation expressions or with

inconsistent expressions between three preprocessing methods, the MAS 5.0

Statistical algorithm from Affymatrix (2001) [18], the dChip algorithm from

Li and Wong (2001) [19] and the Robust Multi-chip Average (RMA) from

Irizarry et al. (2003) [20]. The detail of this part is discussed in Chapter 3.

After gene filtering, we reduced the number of genes (G) to a related

smaller number (G∗), but the true effective dimensions to the survival time

might be much smaller. Our strategy was to implement a two-steps dimen-

sion reduction method proposed byWu et al. (2008) with some modifications.

This approach contained gene selection and signature construction two steps.

In the gene selection part, we used both correlation and liquid association

methods to select the important candidate genes related to survival time.

Pearson’s correlation coefficient was introduced to measure the strength of

linear dependency between two variables. However, the association between

gene expressions and patients survival might not be linear and might be more

complicated. The liquid association (LA) method was implemented here to

explore the interaction of two genes related to the survival time. Due to the
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data censoring issue, both correlation and liquid association could not be

implemented directly. Therefore, we modified a nonparametric imputation

method [11] to impute the censored data, then the correlation coefficients

could be evaluated by plugging the imputed survival probability. After that,

we calculated and ranked the correlation coefficients between gene expres-

sions and the imputed survival probability by the absolute values. Genes in

the first few places were selected as candidate genes in this part. We also

proposed a permutation procedure to decide how many genes should be se-

lected. For implementing the liquid association (LA) method, our strategy

was to select the genes, which recurrently appeared in the first few extreme

LA gene pairs. These genes were called the LA hub genes. We selected the

LA hub gene and also its paired genes as candidate genes in this part.

We note that the gene expression profiles and the imputed survival proba-

bility were normalized by normal quantile transformed in the first two parts,

gene filter and the gene selection. The normal quantile transformation is

necessary for the liquid association method and makes the procedure robust

against the outliers. Both the correlation and liquid association can be com-

puted in the website http://kiefer.stat2.sinica.edu.tw/LAP3/index.php. The

details of the imputation methods and liquid association method are given

in Chapter 4.

In the signature construction part, the candidate genes selected from the

previous step were used to derive a gene signature for survival prediction.

First, we applied the modified sliced inverse regression to estimate the effec-

tive dimension reduction (e.d.r.) directions and projected the selected gene

expression profiles on the e.d.r. space. If there is only one SIR direction, the
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estimated e.d.r. direction, found significantly by a large sample chi-squared

test, we projected the expression profiles on it as our final gene signature.

Otherwise, we could use the projected directions to fit other survival model,

for example the multivariate Cox proportional hazard model, and derive the

final gene signature. We note that the normal quantile transformation was

not used in this part. The regressors (X) in the dimension reduction model

were the candidate gene expression profiles transformed by log-2 transforma-

tion and centered toward sample mean in training data set. The theoretical

derivation and practical implementation of modified sliced inverse regression

are given in Chapter 5.

The prediction power of our gene signature was tested in the independent

validation data sets. In each validation data set, we used the linear combina-

tion coefficients estimated from the training data set to combine the selected

gene expressions into a gene signature. We used two ways to present the

prediction power of our signature. First we used median of our signatures

in each validation set to separate the samples into two groups, high risk and

low risk groups, as a categorical classifier. For this categorical classifier, the

log rank test was used to test the difference of the survival distribution of

two groups. Second, we used our derived gene signature as a continuous risk

score to fit the Cox proportional hazard model. We estimated the hazard

ratios with corresponding p-value and the concordance probabilities (CPE)

[23] for both categorical classifier and the continuous risk score. The CPE

estimated the probability that survival outcome agreed with the risk score or

categorical classifier under the Cox proportional hazard model. To compare

the derived gene signature and the TNM tumor stage the results of multi-

variate Cox proportional hazard model were also presented. A flow chart of
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our procedure is given as figure 2.1.

Training data (HLM+UM) 

Gene filter  Inconsistent gene 
expressions 

Low gene 
expressions 

Small varia?on 
gene expressions 

Gene selec?on  Correla?on  Liquid associa?on 

Gene signature 
construc?on 

Modified sliced inverse regression 
(Mul?variate Cox model, if more than one significant direc?ons) 

Valida?on  CAN/DF  MSK  DUKE 

Normal score 
transforma?on 

Normal score 
transforma?on 

Log 2 
transforma?on 

Log 2 
transforma?on 

Survival 
imputa?on 

Figure 2.1: The flow chart of analysis procedures.



Chapter 3

Gene filter

3.1 Inconsistent gene expressions

At the beginning of microarray analysis, choosing data preprocessing

method is still an open issue. MAS 5.0 Statistical algorithm, dChip algo-

rithm and the Robust Multi-chip Average (RMA) method are three widely

used data preprocessing methods. However, different methods may lead to

different results. In Shedden et al. (2008), they preprocessed the expression

profiles by running dChip algorithm on all four data sets together. Never-

theless, there was an issue they remarked: running the dChip algorithm on

the entire data sets may have removed some of the inter-site differences but

is somewhat unrealistic. Figure 3.1 showed a dramatic shift of the data indi-

cating that gene expressions preprocessed separately or together as a group

using dChip algorithm are not comparably scaled. This inter-site difference

may impact the validation results a lot.

In our data analysis, we chose the MAS 5.0 Statistical algorithm for data

preprocessing. The MAS 5.0 algorithm allowed us to preprocess the microar-

11
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Figure 3.1: Scatter plots of gene expression profiles of DDR1 in HLM and

UM two data sets preprocessed together versus preprocessed separately by

dChip algorithm: The left panel is log-2 transformed gene expression profiles

and the right panel is normal quantile transformed gene expression profiles.

ray data entirely or chip by chip with the same results. However, we thought

that the genes with inconsistent expression profiles between three preprocess-

ing methods were unconvinced. Therefore, we filtered out the genes that had

inconsistent expression levels between three preprocessing methods. Corre-

lation coefficient is a measure also used to measure the similarity of two

variables. Here we used it to measure the similarity of the expression levels

preprocessed by each two of the three preprocessing methods for each gene.

Nevertheless, since the RMA preprocessed data is in log-2 scale, we may

transform it before we calculated the correlation coefficients. Furthermore,

the normal quantile transformed correlation coefficients between gene expres-

sions and imputed survival probability is an important selecting criterion in

the gene selection part. Thus, we also used the normal quantile transformed
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correlation coefficient in this part.

Before continuing the introduction of the gene filter, here we give a def-

inition of the normal quantile transformation and note some properties of

it.

Definition 3.1.1. For any n observations x = (x1, ..., xn)′ of variable X,

The normal quantile transformation is define by

N(x) =

(
Φ−1

( 1

n + 1
R1

)
, Φ−1

( 1

n + 1
R2

)
, ..., Φ−1

( 1

n + 1
Rn

))′

,

where Φ(·) is the cumulative distribution function of standard normal distri-

bution and Ri is the rank of xi in x for i = 1, 2, ..., n.

Since Pearson’s correlation coefficient with normal quantile transforma-

tion only depends on the rank of observations, it can be viewed as a kind of

rank correlation coefficient. It is more robust against outliers than the orig-

inal Pearson’s correlation coefficient. Furthermore, in elementary statistics,

the correlation coefficient between N(x) and x is used to test for the null hy-

pothesis that X is normally distributed. The correlation coefficient between

N(x) and x is closed to 1 under null hypothesis. If X1 and X2 are both

normally distributed, the correlation coefficient between N(x1) and N(x2) is

closed to the correlation coefficient between x1 and x2. Then some proper-

ties of the original Pearson’s correlation coefficient carried over. We also note

that the normal quantile transformation is necessary for the LA calculation.

Therefore, we used the normal quantile transformed correlation coefficient

for all the correlations between two variables in our analysis procedure.

For our real data analysis, first we preprocessed the expression profiles by

using all the three preprocessing methods separately in HLM, UM, CAN/DF



CHAPTER 3. GENE FILTER 14

and MSK four data sets for three versions of gene expression profiles. Since

the CAN/DF and MSK data sets were used for validation, the gene filter

was only implemented in the training data sets, HLM and UM. There were

22,215 probe sets on Affymetrix U133A microarray. For each gene in the two

training data sets, we evaluated the normal quantile transformed correlation

coefficients between each two of the three different preprocessed expression

profiles. Thus, there were six correlation coefficients evaluated for each gene.

The genes that had as least one of the six correlation coefficients smaller than

0.78 were excluded.

In each data set, the ranks of the mean expressions of the remaining genes

with a total of 22,215 probe sets were recorded. The histogram is given in

figure 3.2. In the histogram, the proportion of the remaining genes with high

rank is found larger than the proportion of the remaining genes with low

rank.

3.2 Low gene expressions

Although microarray can be used to detect more than ten thousands of

gene expression profiles simultaneously, the proportion of truly expressed

genes might be no greater than half. In this gene filtering part, we evaluated

the sample mean expression of each gene in the training set and filtered

out the genes with small sample mean expressions. In practice, the genes

with sample mean expressions smaller than 300 in the training data set were

excluded.
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Figure 3.2: Histogram of the ranks of mean expressions of 22,215 probe sets

in training data set after excluded inconsistent genes.

3.3 Small variation gene expressions

Another gene filtering criterion we used was the variation of each gene

expression profile. Some ”housekeeping” genes expressed constantly high or

low for basic reactions. The variations of these gene expression profiles were

small and may not relate to the survival time of patients. However, select-

ing genes by normal quantile transformed correlation coefficients compared

the correlations between gene expressions and survival time of patients at

the same sale of variation. Some non-informated genes might be selected.
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Therefore, we excluded the genes with small sample variation of expressions.

In practice, the genes that had standard deviation smaller than 135 in the

training data set were excluded.

After three-steps gene filtering, there were 6,252 genes remained in our

analysis. The histogram of the ranks of mean expression profiles of the

remaining genes with a total of 22,215 probe sets in training data set is given

as figure 3.3.
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Figure 3.3: Histogram of the ranks of mean expression profiles of the remain-

ing genes with a total of 22,215 probe sets in training data set.



Chapter 4

Gene selection

4.1 Correlation

In the previous chapter, we reduced the number of genes from 22,215

(G) to 6,252 (G∗) through the three-steps gene filter. However, the number

is still much larger than the sample size 256 (n). The implementation of

sliced inverse regression (SIR) requires the covariance matrix Σx to be non-

singular, which can not hold in such a case. To solve this issue, we used

both correlation and liquid association (LA) methods to select the important

candidate genes. The genes with greatest correlations to the survival time Y ◦

and gene pairs that had interaction related to the survival time were selected

as candidate genes in this part. Due to the censoring of survival data, both

correlation and liquid association methods could not be applied directly for

the observed time Y = min{Y ◦, C}, where C is the censored time. A modified

imputation method was proposed to impute the survival probability for the

censored time, and then both correlation and liquid association methods

could be implemented by plugging the imputed survival probability.

17
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4.1.1 Imputation of survival time with right censoring

Here we used the normal quantile transformed correlation coefficient de-

scribed in the previous chapter to measure the correlation between survival

time y◦ and each gene expression profile xg, where g = 1, 2, ..., G∗. Due to

data censoring, we could not use the correlation coefficient between observed

time y and gene expression xg. Let δ = 1{Y ◦≤C}(Y
◦, C) be the indicator that

indicated the status of each patient. To reduce the effect caused by right

censoring, an imputation Ŷ ◦ for δ = 0 was needed.

Suppose that Y ◦ was the true survival time with survival function S◦(y◦) =

P (Y ◦ > y◦) and density function f(y◦). In elementary statistics, we knew

that the conditional mean, E(Y ◦ | Y ◦ > y), minimized the 2-norm impu-

tation error loss, l2(Ŷ
◦) = E[(Ŷ ◦ − Y ◦)2 | Y ◦ > y]. However, Wu et al.

(2008) pointed out the limitation of estimating the conditional mean given

that Y ◦ > y by Kaplan-Meier estimate when the last observation was cen-

sored in practice. Therefore, we did not adopt the conditional mean. If the

1-norm imputation error loss l1(Ŷ
◦) = E[|Ŷ ◦ − Y ◦| | Y ◦ > y] was used,

we could impute the censored data by the conditional median given that

Y ◦ > y and evaluate the normal quantile transformed correlation coefficient,

corr(N(xg), N(ŷ◦)), to estimate the correlation coefficient between survival

time Y ◦ and each gene expression profile Xg.

First we noted that the normal quantile transformation N(·) only de-

pended of the ranks of variables. Therefore, it was invariant under any mono-

tone transformation, that isN((h(x1), h(x2), ..., h(xn))′) = N((x1, x2, ..., xn)′)

for any monotone function h. Second, the conditional median given that
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Y ◦ > y satisfied that

S◦(median(Y ◦ | Y ◦ > y)
)

=
1

2
S(y).

Furthermore, the distribution function F ◦(·) = 1−S◦(·) is a monotone func-

tion, so that we have

N(ŷ◦) = N
(
(ŷ◦

1, ŷ
◦
2, ..., ŷ

◦
n)′

)
= N

((
F ◦(ŷ◦

1), F
◦(ŷ◦

2), ..., F
◦(ŷ◦

n)
)′)

= N
((

1 − S◦(ŷ◦
1), 1 − S◦(ŷ◦

2), ..., 1 − S◦(ŷ◦
n)

)′)
and

S◦(ŷ◦
i ) =

 S◦(yi), if δi = 1

1
2
S◦(yi), if δi = 0.

Therefore, instead of estimating the conditional median, we could evaluate

the N(ŷ◦) by plugging the estimated survival function Ŝ◦(·).Wu et al. (2008)

proposed a nonparametric imputation procedure by using the Kaplan-Meier

estimation for the survival function. The procedure is summarized as the

following steps:

Imputation - Kaplan-Meier based

1. Calculate Ŝ◦
i the Kaplan-Meier estimate of the survival probability;

2. Impute the survival probability by the predicted conditional median

S̃◦
i =

 Ŝ◦
i , if δi = 1

1
2
Ŝ◦

i , if δi = 0;

3. Calculate the percentile p̂i = 1 − S̃i
◦;

4. Calculate the imputed N(ŷ◦) by performing the normal quantile transfor-

mation on p̂i.
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The implementation of this nonparametric imputation procedure is easy

since we only have to calculate the Kaplan-Meier estimate of the survival

probability. However, an issue is how we improve the imputation if we have

extra information. The TNM tumor stage is strongly related to the survival

time of NSCLC patients. It is not suitable to impute the same survival time

for different stage patients at the same censored time. It motivated us to

modify the imputation procedure with this extra information.

Modified imputation - Cox proportional hazard model based

Previous studies indicated that the survival of NSCLC patients in dif-

ferent TNM tumor stage were significantly different and it motivated us to

modify the imputation procedure. Since the original imputation procedure

directly followed by the Kaplan-Meier estimate of survival probability, one

nature idea was to modify the survival probability estimation by incorpo-

rating the TNM tumor stage Z. We assumed that the conditional survival

function given Z = z satisfied Cox proportional hazard model.

Cox proportional hazard model is one of the well-known regression sur-

vival models. It modeled that the hazard function given Z = z is propor-

tional to a baseline hazard function and the logarithm of the ratio is linearly

dependent on the regressors,

λ◦(y◦ | Z = z) = λ◦
0(y

◦)eγz.

Here we let Z be a four levels factor which indicated that the patient’s TNM

tumor stage is IA, IB, II or III/IV. Then, the relationship between conditional

survival function given Z = z and the baseline survival function can be



CHAPTER 4. GENE SELECTION 21

50 100 150 200

-2
0

2
4

Log-Log Survival curve

Figure 4.1: The log-log Kaplan-Meier curves of different stages for the train-

ing data set.

expressed as

S◦(Y ◦ | Z = z) = [S◦
0(Y

◦)]e
γz

. (4.1)

To check the assumption of Cox proportional hazard model, first we drew

the log-log Kaplan-Meier curves of different stages for the training data set.

From the equation (4.1) above, the log-log Kaplan-Meier curves should be

parallel if the assumption held. Figure 4.1.1 showed that there was no strong

evidence of non-parallelism for our data. Second, we drew the observed ver-

sus expected plot for the training data set and it also showed that there was

no strong evidence to reject the assumption.
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Figure 4.2: Observed Kaplan-Meier plot and Cox proportional hazard model.

Cox coefficients of (Stage IB, II, III/IV)= (0.50, 1.05, 1.81). The hazard ratio

of (Stage IB, II, III/IV)= (1.64, 2.85, 6.12).

Therefore, we assumed that Y ◦ | Z = z satisfied the Cox proportional

hazard model and imputed the censored time by ŷ◦ = median(Y ◦ | Y ◦ >

y,Z = z). Then we had

N(ŷ◦) = N
(
(ŷ◦

1, ŷ
◦
2, ..., ŷ

◦
n)′

)
= N

((
1 − S◦

0(ŷ
◦
1), 1 − S◦

0(ŷ
◦
2), ..., 1 − S◦

0(ŷ
◦
n)

)′)
,

where S◦
0(·) was the baseline survival function and it was also a monotone

function. Furthermore, we had S◦
0(ŷ

◦
i ) = S◦

0(yi) if δi = 1 and

S◦
0(ŷ

◦
i ) =

(
S◦(ŷ◦

i |Z)
) 1

exp(γZ)
=

(1

2
S◦(yi|Z)

) 1
exp(γZ)

=
(1

2
S◦

0(yi)
exp(γZ)

) 1
exp(γZ)

= (
1

2
)

1
exp(γZ) S◦

0(yi), if δi = 0.
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From the equations above, we observed that the modified imputation method

gave different weights for the censored survival probability of the patients in

different stages. In practice, the Cox coefficients γ could be estimated by

finding the γ that maximized the partial likelihood. The baseline survival

function could be estimated by the Nelson-Allen estimate or Breslow esti-

mate. Then the original procedure could be implemented by replacing the

survival probability estimation and the imputed weights. The modified im-

putation procedure is summarized as the following steps:

1. Estimate the Cox coefficients γ′s for each TNM tumor stage and the

baseline survival probability Ŝ◦
0i;

2. Impute the survival probability by the predicted conditional median

S̃◦
0i =

 Ŝ◦
0i, if δi = 1

(1
2
)

1
exp γzi Ŝ◦

0i, if δi = 0;

3. Calculate the percentile p̃i = 1 − S̃◦
0i;

4. Calculate the imputed N(ŷ◦) by performing the normal quantile transfor-

mation on p̃i.
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4.1.2 A simulation comparison between two imputa-

tion methods

To present the improvement of our modification, we did a simulation

study. First we randomly generated 256 survival time samples from Cox

proportional hazard model with a four levels factor regressor. The levels of

the factor regressor were uniformly random generated. The baseline survival

function was exponential distribution with rate parameter set to be 1 and the

Cox coefficients γ’s for each level were set to be (0, 2, 4, 8). Another 256 cen-

sored time samples were randomly generated from exponential distribution

with rate parameter 3. We set the minimum of the survival time samples and

the censoring time samples to be the observed time samples. The average

censoring rate was 0.5099.

To assess the performances of the imputation methods, the normal quan-

tile transformed correlation coefficient between true survival time samples

and the imputed values, corr(N(y◦), N(ŷ◦)), was used to measure the close-

ness. For 1,000 simulation runs, we implemented both imputation methods

and recorded the correlation coefficients in each run. The average of the cor-

relation coefficients of the Kaplan-Meier based imputation was 0.8684 and

the average correlation coefficients of Modified imputation was 0.9096. More-

over, there were only three times that the Kaplan-Meier based imputation

had correlation coefficient greater than the Modified imputation. We con-

cluded that the modified imputation method had better performance when

the Cox proportional hazard model assumption held. The results of our sim-

ulation were given in the following table.
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Table 4.1: Simulation comparison between two imputation methods
Estimated Cox model coefficients Average S.D.

Cox model coefficient γ̂2 (γ2 = 2) 2.1096 0.6260

Cox model coefficient γ̂3 (γ3 = 4) 4.1355 0.6264

Cox model coefficient γ̂4 (γ4 = 8) 8.2389 0.7948

Normal quantile transformed correlation coefficient Average S.D.

between true survival time and imputed value

No imputation (Observed time) 0.7786 0.0312

KM based imputation 0.8683 0.0205

Modified imputation 0.9096 0.0146

Censor rate 0.5099 0.0308

4.1.3 Gene selection in training data by correlation

In this subsection, we presented the results of candidate genes selection by

correlation method in the training data set (HLM+UM). For all the samples

in the training data set, first we implemented the modified imputation proce-

dure described in the previous subsection to impute the survival probability

and performed the normal quantile transformation on the imputed survival

probability and each gene expression profile. For each gene, we calculated the

correlation coefficient rg between normalized gene expression N(xg) and the

imputed N(ŷ◦) and ranked the 6,252 correlation coefficients by the absolute

values. The top five genes with the greatest absolute values of correlation

coefficients were selected as our candidate genes. These candidate genes were

the only five genes which had the absolute value of correlation coefficients

greater than 0.25. The cutoff was determined based on controlling the ra-

tio of the expected number of all true null hypotheses to the real observed
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number of correlation coefficients greater than the cutoff

c∗ = min
{

c |
[
E[

G∗∑
g=1

1(Rg > c)]/[
G∗∑
g=1

1(rg > c)]
]
≤ α

}
,

where Rg = corr
(
N(xg), N(ŷ◦)

)
under Xg ⊥ Y ◦ for all g. A permutation

procedure was proposed to select the cutoff. For any given cutoff, we esti-

mated the expected number of correlation coefficients greater than the cutoff

if survival time was irrelative to all the 6,252 genes by the average of 1,000

runs permutation. The ratio of the expected number to the real observed

number of correlation coefficients greater than the cutoff was used to choose

the cutoff. The procedure could be summarized as the following steps:

1. Calculate and rank the true absolute value of correlation coefficients

(r(1), r(2), ..., r(G∗))
′ between the imputed value N(ŷ◦) and each gene expres-

sion N(xg), where g = 1, 2, ..., G∗ and G∗ = 6, 252;

2. Permute the imputed N(ŷ◦) randomly as N(ŷ◦)∗;

3. Calculate and the absolute value of correlation coefficients (r∗1, r
∗
2, ..., r

∗
G∗)′

between N(ŷ◦)∗ and each gene expression N(xg), where g = 1, 2, ..., G∗;

4. Calculate the number of permuted values r∗g greater than the each ranked

true values m = (m1,m2, ..., mG∗), where mi =
∑G∗

g=1 1{r∗g≥ri}(r
∗
g), for i =

1, 2, ..., G∗;

5. Repeat step 2 to step 4 for 1,000 times and record the mk for the k-th

time, where k = 1, 2, ..., 1000;

6. Estimate the expected number of correlation coefficients greater each

ranked true values by chance by the average ê = m̄ = ( 1
1000

∑1000
k=1 (mk)1,

1
1000

∑1000
k=1 (mk)2, ...,

1
1000

∑1000
k=1 (mk)G∗)′;

7. Calculate the ratios of expected number to the observed number and

determin the cutoff to be the j-th place true absolute value of correlation



CHAPTER 4. GENE SELECTION 27

coefficients r(j), where j = max{i | êi/i ≤ α}, where α is specified by user.
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Figure 4.3: The scatter plot of ratios of expected number to the observed

number versus cutoffs of the absolute value of correlation coefficient in the

training data.

For a conservative criterion, we set α to be 0.05 and implemented this

permutation procedure in the training data set to determine the cutoff to be

0.251. A scatter plot of the top 70 places of true absolute value of correlation

coefficients and the corresponding ratios of expected number to the observed

number is given as figure 4.3. Figure 4.3 showed that the first five ratios of
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Figure 4.4: The scatter plot of ratios of expected number to the observed

number versus cutoffs of the absolute value of correlation coefficient in one

of the 1,000 permutations.

expected number to the observed number were smaller than the others. Fur-

thermore, we could see that the ratio increased when the cutoff decreased.

This tendency was expected, since we expected the rest correlation coeffi-

cients distributed similarly as randomly permuted correlation coefficients.

To illustrate the difference between the real data and the permuted data, a

scatter plot of ratios versus cutoffs for one of the 1,000 permutations is given

as figure 4.4. In figure 4.4, we could see that the first ratio was quite large
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and the rest ratios oscillated around 1. Thus, we suggested that no genes

should be selected in this situation. The candidate genes and the normal

quantile transformed correlation coefficients with the imputed survival value

were given in table 4.2.

Table 4.2: The candidate genes and the correlation coefficients of the candi-

date genes and the imputed survival time
Symbols Full names Correlation coefficients

TMEM66 transmembrane protein 66 0.272

CSRP1 cysteine and glycine-rich protein 1 0.265

BECN1 beclin 1, autophagy related 0.256

FOSL2 FOS-like antigen 2 -0.254

ERO1L ERO1-like -0.251
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4.2 Liquid association

In the previous section, we selected the genes correlated with the imputed

survival time as the candidate genes for subsequent analysis. Correlation

could be viewed as a measure of linear dependency of two variables X and

Y . However, some genes which had nonlinear association with survival time

might not be detected by our first step selection. To reveal these relations,

we applied the liquid association (LA) method from Li (2002) for the second

step selection. The details of methodology and the implementation of liquid

association method are given in this section.

4.2.1 Methodology of Liquid Association

Liquid association was originally proposed for studying the functionally-

associated gene pairs [13]. The correlation between a functionally-associated

gene pair (X,Y ) is usually not found significantly, because the functional

association may be varied from different cellular states, which are usually

unknown. However, if there is an expression profile of a third gene Z with

variation associated with the cellular state change, then the expression pro-

file of gene Z can be used to reveal the patterns of functionally-associated

in the gene pair (X, Y ). If the gene Z is known, we may draw the scatter

plot of profiles X and Y colored by profile Z to reveal the patterns by eyes.

Since the gene Z is usually unknown, to screen more than ten thousands of

scatter plots for whole genes searching is impractical. Therefore, LA score,

a scoring system for the average rate of change of correlation between a pair

(X, Y ) with respect to profile Z, was introduced to searching the latent gene

Z.
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We assume that the correlation of a gene pair (X, Y ) depends on the cel-

lular states, for example, the correlation is positive at state 1 and negative at

state 2. If there is a latent gene expression profileZ highly expresses at state

1 and lowly expresses at state 2, we can expect that the increase of expression

profile Z is associated with the increase of the correlation between X and

Y . Then the pair (X, Y ) is called a positive LA pair of Z. If the monotone

relation holds, the average rate of change of correlation between pairs (X, Y )

with respect to profile Z should be significantly greater than zero. Similarly,

a pair (X,Y ) is called a negative LA pair of Z, if the increase of expression

Z is associated with the decrease of the correlation between X and Y . If the

monotonic relation holds, the average rate of change of correlation between

pairs (X,Y ) with respect to profile Z should be significantly smaller than

zero. Thus, the LA score is defined as the follow.

Definition 4.2.1. Suppose X, Y and Z are random variables with mean 0

and variance 1. The LA score of X and Y with respect to Z, denoted by

LA(X, Y | Z), is

LA(X, Y | Z) = EZ [g′(Z)]

,where

g(Z) = EXY [XY | Z].

If Z follows the normal distribution, the LA score can be evaluated by Stein’s

Lemma, such that
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LA(X, Y |Z) = EZ [g′(Z)]

= EZ [Zg(Z)]

= EZ [ZEX,Y [XY |Z]]

= EZ [EX,Y [XY Z|Z]]

= EX,Y,Z [XY Z].

In practice, we can use the moment estimate for the sample version of LA

score, where

L̂A(X, Y | Z) = ÊX,Y,Z [XY Z] =
1

n

n∑
i=1

XiYiZi.

The three-tuples with extreme absolute value of LA scores are expected to

have liquid associations. Since the Stein’s Lemma holds only if the variable

Z follows the normal distribution. The normal quantile transformation is

necessary for the implementation of liquid association method. We note that

each variable is normal quantile transformed separately. Transforming the

variables into multivariate normal distribution will cause the violence to the

underlying pattern. There will be no significantly extreme LA scores found

if the variables are multivariate normal distributed, since the correlations

between each two variables are constants.

4.2.2 Implementation of Liquid Association

Wu et al. (2008) proposed a strategy for implementing LA method to

find the candidate gene pairs associated with the survival time. They took

the imputed survival time as the third variable to find gene pairs whose

functionally-associated pattern may vary as the imputed survival changes.
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The gene pairs with greatest absolute value of LA scores with respect to

the imputed survival were selected as candidate genes. However, they also

pointed out that due to the large number, 1
2
G∗(G∗ + 1), of comparison of

LA scores, the signals might be difficult to be detected by examining the

individual LA pairs. They suggested an alternative strategy; to select the

recurrent genes from a subset of the gene pairs with extreme LA scores with

respect to the imputed survival time. The recurrent genes were called LA

hub genes and selected as the candidate genes. Their LA hub genes selecting

procedure could be summarized as the following steps:

1. Perform the normal quantile transformation for both gene expression pro-

files and imputed survival value;

2. Calculate and rank the LA scores, LA(N(xi), N(xj) | N(ŷ◦)), of all pos-

sible gene pairs with respect to the imputed survival value;

3. Select the genes appeared at least k times in the top M positive and

negative places, where the cutoff k and M need to be specified by user.

In their examples, they took M to be 50 and then selected the cutoff k to

be 3 by their permutation result. They permuted the imputed survival time

for 1,000 runs and calculated the average number of genes appeared at least

k times in the first top M places. Then they used the average number to

compare with the observed number. The selection of k depended on M only,

which means that the recurrence was defined only by the ranks of all LA

scores. However, we found that due to correlation structure of genes, the

recurrence of the genes in the first M places was easy to pop out in the

randomly permuted cases but the LA scores were related small. Therefore,

we suggested selecting recurrent genes with significantly extreme LA score
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rather than selecting the recurrent gene in the first few places. We suggested

a two-steps permutation procedure to replace the third step in the original

procedure to select the LA hub genes. Our procedure could be summarized

as the following steps:

1. Normal quantile transform both the gene expression profiles and imputed

survival time;

2. Calculate the LA scores, LA(N(Xi), N(Xj) | N(Ŷ ◦)), of all possible gene

pairs with respect to the imputed survival time;

3. Applied the permutation procedure described in section 4.1.3 with a soft

criterion α to decide the cutoff of LA scores;

4. Compare the number of k-times hub genes with the average number of

genes appeared at least k times in LA pairs with LA scores greater than the

cutoff in 1,000 permutation runs.

4.2.3 Gene selection in training data by LA

We implemented the LA hub genes selection procedure in the training

data set. First we implemented the modified imputation. In the second steps,

a total of 19,546,878 LA scores of all possible gene pairs with respected to

the imputed value were computed. The scatter plot of ratios versus cutoffs in

step 3 is given as figure 4.5. Based on the scatter plot of ratios versus cutoffs

we decided to choose the cutoff to be 0.326. Then, we noticed that the gene

SRP54 appeared 4 times in a total of 11 pairs with LA score greater than

the cutoff. Then we permuted the imputed survival time for 1,000 runs and

computed the average number of genes appeared in gene pairs with LA score

greater than 0.326 at least 4 times. The average number was only 0.032
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Figure 4.5: The scatter plot of ratios of expected number to the observed

number versus cutoffs of the absolute value of LA scores in the training data.

in 1,000 permutation runs. Therefore, we selected these LA pairs as the

candidate genes for the subsequent analysis. The LA hub gene SRP54 with

the 4 paired genes and the LA scores with respect to the imputed survival

value are given in table 4.3.

Table 4.3: The LA hub gene SRP54 and its LA paired genes
Symbols Full names LA scores

SRP54 signal recognition particle 54kDa -

SART3 squamous cell carcinoma antigen recognized by T cells 3 0.3810

NR2C1 nuclear receptor subfamily 2, group C, member 1 0.3659

CROP cisplatin resistance-associated overexpressed protein 0.3269

PAWR PRKC, apoptosis, WT1, regulator 0.3268



Chapter 5

Signature construction

5.1 Methodology of modified sliced inverse

regression for censored data

In the gene signature construction part, first we applied the modified

sliced inverse regression for censored data by Li et al. (1999) to reduce di-

mensions. After finding out the effective dimension reduction (e.d.r.) space,

we could project the gene expression profiles on it and fit further survival

model if necessary.

Sliced inverse regression by Li (1991) [15] was originally introduced for di-

mension reduction. Assuming the p-dimension regressor X and the response

Y ◦ satisfied the dimension reduction model

Y ◦ = g(β′
1X, β′

2X, ..., β′
kX, ϵ) (5.1)

and the linear design condition; for any b in Rp

E(b′X|β′
1X, β′

2X, ..., β′
kX) = c0 + c1β

′
1X, ..., ckβ

′
kX, (5.2)

36
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for some constants c1, c2, ..., ck, the effective dimension reduction (e.d.r.)

space, B = span(β1, β2, ..., βk), could be estimated by the eigenvalue decom-

position of ΣE[X|Y ◦] with respect to ΣX, where ΣE[X|Y ◦] = cov(E[X | Y ◦])

and ΣX = cov(X). The function g and the distribution of ϵ were not need to

be specified for estimating the e.d.r. space. The key observation described

as Theorem 3.1 in Li (1991) [15] was that under conditions (5.1) and (5.2),

the centered inverse regression curve E[X | Y ◦] − E[X] was contained in

the linear subspace spanned by β1ΣX, β2ΣX, ..., βkΣX. Therefore, we could

estimate the e.d.r. space by estimating the inverse regression curve. To de-

termine how many e.d.r. directions should be select, Li (1991) also proposed

a large sample chi-squared test for testing the significance of the estimated

e.d.r. directions which is called the SIR directions. In practice, the imple-

mentation of sliced inverse regression method is summarized as the following

steps:

1. Sort the paired data (x, y◦) by y◦ and divide it into H slices (with similar

proportions);

2. Compute the sample mean within each slice x̄h = 1
np̂h

∑
yi∈Ih

xi, where

p̂h = 1
n

∑n
i=1 1Ih

(y◦
i );

3. Compute the sample covariance matrix Σ̂X = 1
n

∑n
i=1(xi − x̄)(xi − x̄)′

and the between slices sample covariance matrix Σ̂E[X|Y ◦] =
∑H

h=1 p̂h(xh −

x̄)(xh − x̄)′;

4. Conduct a eigenvalue decomposition of Σ̂E[X|Y ◦] with respect to Σ̂X ;

5. Applied the large sample chi-squared test to select the significant leading

eigenvectors to be the SIR directions.

In survival data analysis, due to the data censoring, applying the original
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sliced inverse regression by directly slicing observed time Y may cause the

estimation bias. Li et al. (1999) [16] studied the effects to the original

sliced inverse regression caused by two data censoring conditions. Under the

independent censoring condition

C is independent of X and Y ◦,

we can show that independent censoring did not affect the sliced inverse

regression by directly slicing observed time Y . Under the conditional inde-

pendent censoring condition, a more general condition,

Conditional on X, C is independent of Y ◦,

directly slicing observed time Y does cause the estimation bias. Li et al.

(1999) modified the original sliced inverse regression for this situation. As

described above, an important step in sliced inverse regression is estimating

the inverse regression curve E[X | Y ◦]. For Y ◦ ∈ [y◦
i , y

◦
i+1) the inverse

regression curve can be expressed by

E[X | Y ◦ ∈ [y◦
i , y

◦
i+1)] =

E[X1[y◦
i ,y◦

i+1)(Y
◦)]

E[1[y◦
i ,y◦

i+1)(Y ◦)]

=
E[X1(Y ◦ ≥ y◦

i )] − E[X1(Y
◦ ≥ y◦

i+1)]

E[1(Y ◦ ≥ y◦
i )] − E[1(Y ◦ ≥ y◦

i+1)]
,

where 0 = y◦
1 < y◦

2 < ... < y◦
H < y◦

H+1 = ∞ is a partition of true survival

time. One can observe that

E[X1(Y ◦ ≥ y◦
i )]

= E[X1(Y ≥ y◦
i )] + E[X1(Y < y◦

i , δ = 0)1(Y ◦ ≥ y◦
i )]

= E[X1(Y ≥ y◦
i )] + E[X1(Y < y◦

i , δ = 0)E[1(Y ◦ ≥ y◦
i ) | Y, δ, X]]

= E[X1(Y ≥ y◦
i )] + E[X1(Y < y◦

i , δ = 0)E[1(Y ◦ ≥ y◦
i ) | C, Y ◦ > C, X]]

= E[X1(Y ≥ y◦
i )] + E

[
X1(Y < y◦

i , δ = 0)
E[1(Y ◦ ≥ y◦

i ) | X]

E[1(Y ◦ ≥ Y ) | X]

]
,
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where the last equation holds under the condition (5.4). A weighted function

is defined by ω(t, t′, X) = E[1(Y ◦≥t)|X]
E[1(Y ◦≥t′)|X]

= S◦(t|X)
S◦(t′|X)

. Under the conditional

independent assumption, we can show that S◦(t|X)
S◦(t′|X)

= S(t|X)
S(t′|X)

where S◦ is the

survival function of failure time and S is the survival function of observed

time. Then we have,

E[X1(Y ◦ ≥ y◦
i )] = E[X1(Y ≥ y◦

i )] + E
[
X1(Y < y◦

i , δ = 0)ω(y◦, Y, X)
]
,

and

E[1(Y ◦ ≥ y◦
i )] = E[1(Y ≥ y◦

i )] + E
[
1(Y < y◦

i , δ = 0)ω(y◦, Y, X)
]

with a similar argument. Therefore, the inverse regression curve can be

estimated by replacing the expectations by the first sample moments and

plugging the weighted function ω(·, ·, ·) by its kernel estimation ω̂(·, ·, ·). The

proof of the consistency and the root-n rate convergence under some regu-

larity conditions were given in Li et al. (1999) [16].

Since the kernel estimation only performed well in the low-dimension

case, they also proposed an initial dimension reduction step called double-

slice before applying the modified sliced inverse regression for censored data.

We assumed that the censor time C also satisfied the dimension reduction

model

C = h(θ′1X, θ′2X, ..., θ′lX, ϵ′).

By applying the original sliced inverse regression, the space spanned by β’s

and θ’s, called the joint e.d.r. space, can be estimated by slicing the observed

time Y for δ = 1 and 0 separately. Then we can replace X by its projection

in the estimated joint e.d.r. space for a low-dimension kernel estimation of

weight function ω̂(·, ·, ·). The modified sliced inverse regression procedure can
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be summarized as the following steps:

1. Double-slice the survival time and censoring time and apply the original

sliced inverse regression;

2. Applied the large sample chi-squared test to select the first few significant

joint SIR directions;

3. Project the regressors into the space spanned by the joint SIR directions to

estimate the conditional survival function and the weight function by kernel

estimation;

4. Compute the estimated conditional expectation in each slice by plugging

the estimated weight function and the first sample moments;

5. Compute the estimated between slices covariant matrix Σ̂E[X|Y ◦] and the

sample covariant matrix Σ̂X;

6. Conduct a eigenvalue decomposition of Σ̂E[X|Y ◦] with respect to Σ̂X;

7. Applied the large sample chi-squared test to select the significant leading

eigenvectors be the survival time SIR directions.

5.2 Signature construction in the training data

set

After the gene filter and the gene selection two steps, 10 candidate genes

were selected to construct the gene signature, which included 5 genes X1, X2,

..., X5 selected by correlation method, 1 hub gene X6 and 4 genes X7, X8, ...,

X10 paired with the hub gene selected by liquid association method. Wu et

al. (2008) suggested applying the modified sliced inverse regression on the

genes selected by correlation method and the LA hub genes. However, we

found that in their data example, the four genes with the greatest weights
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(absolute value) were selected by correlation method and the weights of the

LA hub genes were relative small. It might not be suitable to use only the LA

hub genes without their paired genes, since the change of survival time was

related to the functionally-associated pattern based on the LA methodology.

Therefore, we thought that the genes paired with the LA hub gene were not

negligible for survival prediction.

Since correlation coefficient measured the linear dependency of two vari-

ables, the dimension reduction model assumption that survival time Y ◦

depended on the gene expression profiles (X1, X2, ..., X5)
′ only trough its

linear combinations was reasonable. Nevertheless, this assumption might

not be suitable when there were both correlation genes and LA pair genes,

due to the nonlinear conception of liquid association. Thus, to incorporate

the LA pairs into the dimension reduction model, we added the interac-

tion terms of LA pairs as regressors. However, we did not suggest adding

all the interaction pairs. Although the significance of LA hub gene was

showed in the previous chapter, the genes paired with it might be selected

by chance, due to the correlated structure of thousands of genes. Here we

presented how this happened with a simple simulation. First we gener-

ated variables (X1, X2, ..., X5)
′ from multivariate normal distribution with

mean 0, variance 1 and equal correlation 0.2 for each two variables. We

independently generated another cluster of genes (Z1, Z2, ..., Z20)
′ from mul-

tivariate normal distribution with mean 0, variance 1 and equal correla-

tion 0.7 for each two variables. The response variable Y ◦ was generated by

Y ◦ = exp(0.5X1 + 0.5X2 + 0.5X3 + 0.5X4 + 0.5X5Z1 + (0.5)2ϵ), where ϵ was

generated from standard normal distribution independent to X’s and Z’s.

200 independent variable W1,W2, ...,W200 were generated from multivariate
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normal distribution with mean 0 and covariance matrix (ΣW )ij = 0.9|i−j|.

After 1,000 simulation runs, the average number of X5 appeared in the first

10 LA pairs was 6.52 and there were 873 times X5 appeared more than one

time in the first 10 LA pairs. It showed that several paired genes might be

found by chance even there was only one true paired gene. Therefore, to

be conservative, we did not incorporate all the LA pairs into the dimension

reduction model.

Since our final goal was to derive a gene signature to predict the survival

for all stage patients and stage I patients, especially the stage I patients.

Our strategy was to incorporate the LA pair that improved the prediction

power of derived signature most. For the derived gene signature by modified

sliced inverse regression, the prediction power of it was presented in two

ways. First we used the gene signature as a continuous risk score r = β′x,

where β was the significant SIR direction, to fit the Cox proportional hazard

model, λ◦(y◦ | r) = λ◦
0(y

◦)eγr, and calculated the p-value for testing the null

hypothesis that hazard ratio eγ was equal to 1. To present the prediction

power, we calculated the concordance probability estimate (CPE) for the

probability that survival outcome agreed with the signature P (Y ◦
1 > Y ◦

2 |

γr1 ≤ γr2). Gönen and Heller (2005) proposed that under Cox proportional

hazard model, the concordance probability can be expressed by

P (Y ◦
1 > Y ◦

2 | γr1 ≤ γr2) =
P (Y ◦

1 > Y ◦
2 , γr1 ≤ γr2)

P (γr1 ≤ γr2)

=

∫ ∫
γr1≤γr2

P
(
Y ◦(γr1) > Y ◦(γr2)

)
dF (γr1)dF (γr2)∫ ∫

γr1≤γr2
dF (γr1)dF (γr2)

=

∫ ∫
γr1≤γr2

[1 + exp(γr2 − γr1)]
−1dF (γr1)dF (γr2)∫ ∫

γr1≤γr2
dF (γr1)dF (γr2)

,

where the last equation was followed by the proportional hazard assumption.
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Then the concordance probability could be estimated by

CPE(γ̂) =
2

n(n − 1)

∑
i<j

[ 1{γ̂ri≤γ̂rj}(ri, rj)

1 + exp(γ̂rj − γri)
+

1{γ̂rj≤γ̂ri}(ri, rj)

1 + exp(γ̂ri − γ̂rj)

]
.

We noted that the concordance probability estimate was in the range from 0.5

to 1. A CPE close to 1 indicated the good prediction power of the signature,

and a CPE close to 0.5 indicated the poor prediction power of the signa-

ture. Second we used the signature to separate the patients into two groups;

high risk and low risk, by cutting at the median of the signature. Then we

used the category classifier to fit the Cox proportional hazard model and

evaluated the hazard ratio, the corresponding p-value and the concordance

probability estimate. For the survival prediction of stage I patients, we used

the same genes and the same coefficients β estimated from all stage samples

to construct the signature for stage I patients. The two different risk groups

were separated by cutting at the median of signature in samples of stage I

patients only.

In practice, first we started from only the five genes selected by correlation

method. We noted that we did not perform normal quantile transformation

on any variables in this part, since it is somewhat unrealistic in the test set.

The expression profiles preprocessed by the MAS 5.0 Statistical algorithm

were used as our raw data. Then we took log-2 transformation and centered

each gene expression profile at its sample mean. For the five genes selected

by correlation method, we implemented the modified sliced inverse regression

method and selected the only significant (p-value < 0.05) SIR direction by

the large sample chi-squared test. We projected the expression profiles on

the only SIR direction as our final gene signature. The Kaplan-Meier sur-

vival functions for two different risk groups separated by our signature, the

corresponding p-values and the concordance probability estimate are given



CHAPTER 5. SIGNATURE CONSTRUCTION 44

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

All stage - 5 correlation genes

Time (months)

P
ro

po
rti

on
 a

liv
e

Low score (n=128)
High score (n=128)

Cat. p= 0  CPE= 0.61
Score p= 0  CPE= 0.67

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Stage I - 5 correlation genes

Time (months)

P
ro

po
rti

on
 a

liv
e

Low score (n=79)
High score (n=80)

Cat. p= 0.0618  CPE= 0.56
Score p= 0.00093  CPE= 0.63

Figure 5.1: Kaplan-Meier survival curves for all stage and stage I samples

in training data set separated by gene signature constructed by only five

correlation genes.

as figure 5.1.

Figure 5.1 showed that the signature constructed by only five correla-

tion genes had significant prediction power for all stage patients but not

for the stage I patients only. However, since survival prediction for early

stage patients is a more important issue, we wanted to incorporate LA

gene pair for improving the prediction power for sample of stage I patients

only. Each LA pair was incorporated to the dimension reduction model by

adding their interaction term and the main effect terms. Specifically, we

used X = (X1, X2, ..., X5, X6, Xi, X6Xi)
′ as the regressors in the dimension

reduction model, where i = 7, ..., 10. The interaction term was added for the

nonlinear association of the LA pair with respect to the survival time, and

the main effect terms were added for adjusting the miss centered issue for the

interaction term. We applied the modified sliced inverse regression for each
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Figure 5.2: Kaplan-Meier survival curves for all stage samples in training

data separated by gene signature constructed by five correlation genes and

one LA pair.

regressor X to find the SIR direction. For each case, there was exact one

significant SIR direction selected by the large sample chi-suared test. The

results were given as figure 5.2 and 5.3.

Figure 5.3 showed that incorporating the LA pair did improve the pre-

diction power for stage I patient only. We chose the best-performing gene

signature constructed by five correlation genes and the LA pair (SRP54,

PAWR) to be our final gene signature. To combine our signature and the
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Figure 5.3: Kaplan-Meier survival curves for stage I samples in training data

separated by gene signature constructed by five correlation genes and one

LA pair.

clinical covariates (TNM stage, sex ,age) for survival prediction, we fitted

them with the multivariate Cox proportional hazard model, where the TNM

tumor stage was coded as a four levels factor as in Chapter 3. After a stepwise

selection, our gene signature, age and TNM stage III were still significant in

the multivariate Cox proportional hazard model. The estimated sliced in-

verse regression direction was given in table 5.1, and the details of hazard

ratio for univariate and multivariate Cox proportional hazard model were

given in table 5.2.
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The genes with negative coefficients are called protect genes, because the

increase of its expression is associated with the decrease of hazard ratio.

On the other hand, the genes with positive coefficients are called risk genes

because the increase of its expression is associated with the increase of hazard

ratio. Table 5.1 showed that these coefficients agreed with our results in

gene selection part. All the protect genes had positive correlation with the

imputed survival time and all the risk genes had the negative correlation

with the imputed survival time. The coefficient of the interaction term of

the LA pair was negative, which also agreed with its positive LA score. The

absolute values of the coefficients and the standard deviations also presented

the strength of the genes affecting our signature. Table 5.1, showed that

the products of the coefficient and standard deviation of the regressors were

closed except the main effect terms of the LA pair. Thus, all these genes gave

important effects for our gene signature. Table 5.2 showed the significant of

our gene signature in the Cox proportional hazard model. Furthermore, the

p-values of the multivariate Cox proportional hazard model showed that our

gene signature was still significant even we incorporated the TNM tumor

stage and age.
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Table 5.1: The estimated coefficients of SIR direction
Variable SIR dir. coefficient S.D. SIR dir. coefficient*S.D.

TMEM66 -0.6457 (Protect) 0.3862 -0.2494

CSRP1 -0.4606 (Protect) 0.4738 -0.2182

BECN1 -1.1296 (Protect) 0.3671 -0.4147

FOSL2 0.2288 (Risk) 0.8292 0.1897

ERO1L 0.3333 (Risk) 0.9534 0.3178

(SRP54) 0.0253 ( - ) 0.5447 0.0138

(PAWR) 0.1045 ( - ) 0.6669 0.0697

SRP54*PAWR -0.7517 (Protect) 0.4647 -0.3493

p-value 0.032

Table 5.2: Hazard ratio with the corresponding 95% confident interval, p-

value and the CPE of our gene signature
UM+MICH - All stage Hazard ratio 95% C.I. p-value CPE

Risk score 2.22 (1.77, 2.79) 1.50e-13 0.688

Categorical 2.86 (1.96, 4.18) 1.20e-08 0.621

UM+MICH - Stage I Hazard ratio 95% C.I. p-value CPE

Risk score 1.83 (1.31, 2.57) 0.0002 0.648

Categorical 2.55 (1.43, 4.52) 0.0009 0.610
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Table 5.3: Hazard ratios with the corresponding 95% confident intervals and

p-values of our gene signature and clinical covariates
Multivariate Hazard ratio 95% C.I. p-value

Risk score 1.85 (1.48,2.32) 6.98e-08

age 1.02 (1.01,1.04) 9.66e-03

Stage IB 1.28 (0.73,2.25) 3.84e-01

Stage II 2.62 (1.47,4.69) 1.14e-03

Stage III 4.72 (2.68,8.34) 8.41e-08

Multivariate Hazard ratio 95% C.I. p-value

Categorical 2.24 (1.51, 3.31) 5.60e-05

age 1.03 (1.01, 1.05) 7.38e-03

Stage IB 1.37 (0.78, 2.41) 2.74e-01

Stage II 2.79 (1.55, 5.02) 5.94e-03

Stage III 5.33 (3.04, 9.36) 5.57e-09



Chapter 6

Signature validation

6.1 Validation procedure

To test the predication power of our gene signature derived from the

training data, we reconstructed our gene signature in two independent testing

data sets, CAN/DF and MSK. First we applied the MAS 5.0 Statistical

algorithm to get the raw data in the test sets. We chose the same probe

sets selected from the training data and took log-2 transformation as in the

training data. Second, we centered the testing data set at the sample means

in the training data. Then, we used the same coefficients derived from the

training data to combine the expression profiles into one gene signature as a

risk score. We also separated the patients into two groups; high risk and low

risk by cutting at the median risk score in the testing set. To present the

prediction power, both the continuous risk score and the categorical classifier

were used to fit the Cox model. The hazard ratios with the corresponding p-

values and the CPE were evaluated. For the samples of stage I patients only,

we applied the same procedure with the same probe sets, linear combination

coefficients to get the same risk score. The median of the risk score of the

50
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stage I patients in each testing set was used to be the cutoff as a categorical

classifier.

6.2 Cross platform adjustment

Another independent cohort data from Duke University was used as an

external validation data set. There were two challenges for applying our

gene signature in this data set. First, there were different tumor cell types,

squamous cell carcinomas and adenocarcinomas, in this data set. Second,

the platform, HU133plus2 array, used in this data set was different from the

training data. Therefore, to apply our signature in this data set, a cross

platform adjustment was needed. The HU133plus2 array contained all the

probe sets in U133A array but the additional 33,429 probe sets might cause

the scale change in the preprocessing procedure. To avoid this systematic

bias, first we applied the MAS 5.0 Statistical algorithm to get the raw data.

Then we selected the probe set contained both in U133A and HU133plus2 and

adjusted the expression profiles of these matched probe sets by implementing

the trim mean step again. After this adjustment, we implemented the same

validation procedure in this data set as in the other two validation sets.

6.3 Validation results

All the testing results were summarized in table 6.1. To compare with our

signature, the testing results of using TNM tumor stage as a classifier and

the best-performing method (method A) from Shedden et al. (2008) were

also included in table 6.1. Here the TNM tumor stage classifier was simply

separating the all stage patients into two groups; stage I and late stage. The
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stage I patients was separated by stage IA or IB. Method A gave a contin-

uous risk score constructed by using the average expression profiles of 100

clusters to fit ridged Cox proportional hazard model. We noted that the

results of method A were analyzed from the expression profiles preprocessed

by implementing dChip algorithm for entire training and testing data set.

In CAN/DF and MSK two testing sets, all of these four methods performed

good for the all stage patients prediction. Only our gene signature, both

continuous and categorical types, had all hazard ratios significantly greater

than 1 for all stage and stage I patients in both data sets. The hazard ratio

of method A was not significantly greater than 1 in CAN/DF data. The

hazard ratios of TNM tumor stage IA and IB were not significantly greater

than 1 in both testing sets. Furthermore, the hazard ratio of TNM tumor

stage IA and IB was smaller than 1 in CAN/DF data set. This result did

not suggest using the IA and IB as a classifier for stage I patients. In the

external validation cohort data from Duke University, the hazard ratios of

our signature were also significantly great than 1 for the patients of both the

all stage and early stage samples. We noticed that our signature performed

better for stage I than all the patients, in this data set. We found that there

were five stage IV and fifteen stage IIIB patients in this data set. However,

there were only 11 stage IIIB patients and no stage IV patients in training

data set. Furthermore, there were five of these late stage patients died within

half years. This might be a reason that all patients prediction performed not

good as the TNM tumor stage.

The Kaplan-Meier curves were given to illustrate the difference of survival

functions between high risk and low risk groups. The Kaplan-Meier curves for

classifying patients by TNM tumor stages were also given. Due to the small
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sample size, highly censored rate and the relatively homogeneous samples,

classifying CAN/DF into different risk groups was much harder than other

data set. The Kaplan-Meier curve showed that our signature had reasonable

good prediction power in such a data set. The significant p-value for the Duke

validation set showed that our gene signature, derived from adenocarcinomas

patients only, had potential to predict patients with different tumor types.

We concluded that our gene signature had good prediction power for all stage

or early stage non-small cell lung cancer patients.
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Table 6.1: Validation results in CAN/DF, MSK and Duke data sets
CAN/DF All stage Hazard ratio 95% C.I. p-value CPE

Risk score 1.65 (1.17, 2.31) 0.002 0.662

Categorical 3.96 (1.68, 9.34) 0.001 0.651

TNM stage 3.25 (1.54, 6.84) 0.002 0.616

Method A 0.57 (1.20, 2.60) 0.003 0.623

CAN/DF stage I Hazard ratio 95% C.I. p-value CPE

Risk score 1.59 (1.01, 2.51) 0.036 0.666

Categorical 3.78 (1.04,13.74) 0.027 0.648

TNM stage 0.55 (0.17, 1.80) 0.347 0.546

Method A 1.29 (0.84, 1.98) 0.243 0.574

MSK All stage Hazard ratio 95% C.I. p-value CPE

Risk score 1.68 (1.13, 2.51) 0.012 0.614

Categorical 2.65 (1.29, 5.45) 0.006 0.614

TNM stage 3.87 (1.91, 7.85) 0.000 0.642

Method A 1.83 (1.24, 2.70) 0.002 0.627

MSK stage I Hazard ratio 95% C.I. p-value CPE

Risk score 2.23 (1.14, 4.35) 0.023 0.654

Categorical 11.89 (1.53, 92.16) 0.001 0.715

TNM stage 2.60 (0.70, 9.63) 0.127 0.611

Method A 2.10 (1.15, 3.84) 0.014 0.656

Duke All stage Hazard ratio 95% C.I. p-value CPE

Risk score 1.22 (1.02, 1.47) 0.032 0.580

Categorical 1.71 (1.01, 2.87) 0.043 0.566

TNM stage 2.17 (1.29, 3.63) 0.004 0.589

Duke stage I Hazard ratio 95% C.I. p-value CPE

Risk score 1.44 (1.10, 1.87) 0.007 0.635

Categorical 2.93 (1.36, 6.34) 0.005 0.625

TNM stage 1.97 (0.95, 4.10) 0.070 0.580
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Figure 6.3: Kaplan-Meier curves for all stage samples separated by TNM

stage
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Figure 6.4: Kaplan-Meier curves for stage I samples separated by TNM stage



Chapter 7

Summary and discussion

7.1 Summary

We reanalyzed a large adenocarcinomas data from Shedden et al. (2008)

and derived a gene signature from seven gene expression profiles. Tested

in two independent validation data sets, our gene signature had significant

prediction power for the survival of samples of all stage patients or stage I pa-

tients only. Furthermore, our signature also had significant prediction power

in an external NSCLC data set that contained two different tumor cell types.

Most of the available analysis procedures contain three conceptions; ini-

tial data filter, feature selection and signature construction. Our analysis

procedure also contains three steps; gene filter, gene selection and signature

construction. Compared with other methods, our analysis procedure has

several advantages. First, we proposed a new criterion to filter out some

inconsistent genes. Second, the gene selection and the signature construc-

tion are both supervised by the patient survivals. Third, some non-linear

interactive structures are considered in our procedure. Fourth, the model
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assumption for the gene selection and the signature construction part in our

procedure is the least. Furthermore, the interpretation of our signature is

easy and clear. However, there are still some unsolved issues. Although our

LA hub gene selecting procedure shows the significancy of the selected LA

hub gene, but the significancy of its paired genes is not showed. A method to

screen the selected paired genes is need. However, in practice, we may rely

on some Biological knowledge to choose the paired genes. In our analysis

procedure, there is only one LA pair used in the signature construction part.

However, if there are more LA pairs selected, a better model to incorporate

the LA pairs in the dimension reduction model is needed.

7.2 Discussion

Discussion of the selected genes

Our gene signature was derived from the expression profiles of seven genes,

where five genes were selected by correlation method and other two genes

were selected by liquid association method. According to the sign of the coef-

ficient of our signature, we called one selected gene protect or risk genes. The

negative coefficient indicated the increase of expression associated with good

prediction and the positive coefficient indicated the increase of expression

associated with pool prediction. Both protect and risk genes were contained

in these 7 genes.

The 3 protect genes are TMEM66, CSRP1 and BECN1. BECN1, also

known as autophagy-related gene 6, played a key role in autophagy. It has

been reported to be involved in various cancers. It can inhibit the growth of

colorectal cancer cells. The expression of beclin 1 is associated with favorable
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prognosis in stage IIIB colon cancers. CSRP1 is related to gene regulation,

cell growth, and differentiation. And it is hypothesized to be a colorectal

cancer related tumor suppressor gene. TMEM66 is a novel gene known as

transmembrane protein 66. The 2 risk genes are FOSL2 and ERO1L. FOSL2

is contained in the Fos gene family which encodes leucine zipper proteins that

can dimerize with proteins of the JUN family, thereby forming the transcrip-

tion factor complex AP-1. It was implicated as regulators of cell proliferation,

differentiation, and transformation. The over expression of FOSL2 was also

indicated that may play a major role in CCR4 expression and oncogenesis in

ATLis associated with a more aggressive tumor phenotype and is probably

involved in breast cancer progression in vivo. ERO1L is essential oxidoreduc-

tase; a source of oxidative stres. However, it was indicated as a protect gene

in another lung adenocarcinoma prognostic study [30]. Another study [31]

suggested that ERO1L plays a key role for inhibiting tumor growth via in-

hibiting VEGF-driven angiogenesis. These results disagreed with our finding.

Therefore, to check this issue, we used the gene ERO1L to fit the univariate

Cox proportional hazard model. In the training data set, the hazard ratio is

1.35 and it is significantly greater than 1 with 95% confidence interval from

1.19 to 1.54 (p-value < 10−5). In other validation data sets, the hazard ratios

are all greater than 1, although they are not significant. Thus, in this large

sample data set, the increase of expression profile ERO1L was related poor

prediction.

The LA hub gene SRP54 is known as signal recognition particle 54kDa. It

binds to the signal sequence of presecretory protein when they emerge from

the ribosomes and transfers them to TRAM. A gene chromosomes study

suggest that SRP54, BAZ1A, NFKBIA, MBIP, HNF3A, and two unchar-
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acterized expressed sequence tags are candidate targets of the amplification

mechanism and therefore may be associated, together or separately, with de-

velopment and progression of esophageal squamous cell carcinoma (ESC). Its

paired gene PAWR is a human gene coding for a tumor-suppressor protein

that induces apoptosis in cancer cells, but not in normal cells and specifically

upregulated during apoptosis of prostate cells.

Relationship between our permutation procedure and Benjamini-

Hochberg procedure under independent assumption

In gene selection part, we used a permutation procedure to select the

cutoff of the correlation coefficients and LA scores. The cutoff was decided

by the ratio of the expected number and the observed number of correlation

coefficients greater than the cutoff. However, this issue can be viewed as

a multiple testing issue. A total of 6,252 null hypotheses that Xg and Y ◦

was uncorrelated were tested by the test statistics corr(N(xg), N(y◦)), for

g = 1, 2, ..., G∗. Since the normal quantile transformation only depended

on the ranks of the variables, N(xg)’s were identically distributed. Thus,

we can apply the permutation test to construct the reference distribution

of corr(N(x), N(y◦)) and get the significant level for each observed rg =

corr(N(xg), N(y◦)). The two-sided p-value for a corresponding cutoff r can

be evaluated by

p(r) =
1

256!

∑
N(x)∗∈N

1{|corr(N(x),N(x)∗)|≥r}(N(x), N(x)∗), (7.1)

where N was the collection of all the permutations of N(x)∗’s. Since the

number of elements in N was too large (256!), in practice, the p-value can

be estimated by

p̂(r) =
1

#(M)

∑
N(x)∗∈M

1{|corr(N(x),N(x)∗)|≥r}(N(x), N(x)∗), (7.2)
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where M was a large subset of N . With the p-value given from the permu-

tation test, we might implement the Benjamini-Hochberg procedure [17] to

solve the multiple testing issue. The Benjamini-Hochberg procedure can be

summarized as the follow. Let p(i) be the ordered p-value, for i = 1, 2, ..., n.

The null hypotheses H0
(1), H

0
(2), ..., H

0
(k) were rejected for k = max{i | p(i) ≤

i
m

q}. Under the independent or positively correlated assumption of the tests,

this procedure controlled the false discovery rate (FDR) at level m0

m
q ≤ q,

where m was the total number of hypotheses (G∗) and m0 was the num-

ber of true null hypotheses. Furthermore, in Benjamini and Yekutieli (2001)

[17], they concluded that if we replaced q by q/
∑m

i=1
1
i
, then the Benjamini-

Hochberg procedure still controlled the false discovery rate (FDR) at level
m0

m
q ≤ q. Nevertheless, the modified criterion became more conservative than

the Bonferroni method for the first few ordered p-value. In our data, there

were no genes could be selected with this modified procedure.

The complex correlation structure of thousands of genes is not clear.

The dependency of these tests is also not clear. The modified procedure

might be too conservative. Here we discuss the relationship between our

permutation procedure and the Benjamini-Hochberg procedure under the in-

dependent assumption. If we assume that the expressions x1, x2, ..., xG∗ were

independent, then our procedure constructed a reference distribution with

a total number 1,000×6,252. The p-value of the ordered absolute value of

correlation coefficients r̂(g) can be estimated by êg/G
∗ from equation (7.2)

with #(M) = 1000G∗. Then our selecting criterion j = max{i | ei/i ≤ α}

is the same as the original criterion in the Benjamini-Hochberg procedure

by taking α = q and dividing G∗ both side. Thus, under the independent

assumption, our selecting procedure is the same as the Benjamini-Hochberg
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procedure with p-value estimated by the permutation test.

Gene signature performance in different data preprocess methods

The expression profiles we analyzed in were preprocessed by MAS 5.0

Statistical algorithm from Affymatrix (2001). One reason we used the MAS

5.0 preprocessing method is that the MAS 5.0 algorithm allows us to imple-

ment on each chip separately. To preprocess the training and testing data

together is somewhat unrealistic. This reason also motivated us to filter

out the genes with inconsistent expression profiles by different preprocessing

method. However, we used the expression profiles preprocessed by two dif-

ferent preprocessing methods dChip and RMA of our selected genes to derive

the signature by applying modified SIR in training data. All the preprocess

methods were implemented separately for each data set. After implement-

ing the modified slice inverse regression method, the p-values of the large

sample chi-spuared test were all greater than 0.05 for these two preprocess

method. We did not suggest using any leading eigenvector as the gene sig-

nature. However, as a comparison, we still validated the signatures with the

same procedure on CAN/DF and MSK data sets. The estimated coefficients

of SIR direction for expression profiles preprocessed by dChip and RMA were

given in table 7.1

We noted that our cross platforms adjustment could not be applied for

these preprocessing methods. Therefore, we did not test the signatures on

the Duke data set. The estimated hazard ratios with the corresponding 95%

confident intervals, p-values and the CPE were given in table 7.2. The results

showed that the continuous risk were also significant in all testing sets and
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Table 7.1: The estimated coefficients of SIR direction for expression profiles

preprocessed by dChip and RMA
dChip SIR dir. coefficient RMA SIR dir. coefficient

TMEM66 -0.8949 (Protect) TMEM66 -0.6386 (Protect)

CSRP1 -0.4813 (Protect) CSRP1 -0.5222 (Protect)

BECN1 -1.7374 (Protect) BECN1 -1.0540 (Protect)

FOSL2 0.7738 (Risk) FOSL2 0.4945 (Risk)

ERO1L 0.6041 (Risk) ERO1L 0.5166 (Risk)

(SRP54) -0.5563 ( - ) (SRP54) -0.5033 ( - )

(PAWR) 0.0448 ( - ) (PAWR) 0.0600 ( - )

SRP54*PAWR -0.3652 (Protect) SRP54*PAWR -0.7517 (Protect)

p-value 0.10 p-value 0.10

the categorical classifier were not significant for stage I patients in CAN/DF

data. The Kaplan-Meier curves also illustrated that these signature per-

formed worse than the original signature for the stage I patients in CAN/DF

data preprocessed by MAS 5.0 algorithm. One possible reason was the mean

shift caused by preprocessing data set separately. Our dimension reduction

model was nonlinear because we added the interaction term. The mean shift

issue may affect our nonlinear structure. Therefore, these results suggest

that the gene signature had potential for lung adenocarcinomas diagnostic,

but for implementing in practice, the improvement of array technique and

the preprocessing is still needed.
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Table 7.2: Validation results in CAN/DF and MSK data preprocessed by

dChip and RMA
CAN/DF All stage Hazard ratio 95% C.I. p-value CPE

Risk score - dChip 2.76 (1.78, 4.28) 0.000 0.710

Risk score - RMA 2.04 (1.47, 2.82) 0.000 0.659

Categorical - dChip 4.35 (1.84, 10.28) 0.000 0.659

Categorical - RMA 3.44 (1.51, 7.84) 0.002 0.639

CAN/DF stage I Hazard ratio 95% C.I. p-value CPE

Risk score - dChip 2.12 (1.13, 3.97) 0.024 0.653

Risk score - RMA 1.70 (1.06, 2.73) 0.049 0.617

Categorical - dChip 2.11 (0.69, 6.50) 0.182 0.591

Categorical - RMA 1.48 (0.49, 4.42) 0.484 0.549

MSK All stage Hazard ratio 95% C.I. p-value CPE

Risk score - dChip 1.79 (1.20, 2.67) 0.004 0.632

Risk score - RMA 1.64 (1.09, 2.48) 0.019 0.607

Categorical - dChip 2.88 (1.38, 6.03) 0.003 0.622

Categorical - RMA 3.04 (1.45, 6.35) 0.002 0.627

MSK stage I Hazard ratio 95% C.I. p-value CPE

Risk score - dChip 3.08 (1.41, 6.71) 0.003 0.715

Risk score - RMA 2.46 (1.18, 5.15) 0.017 0.672

Categorical - dChip 9.97 (1.28, 77.5) 0.003 0.708

Categorical - RMA 9.97 (1.28, 77.5) 0.003 0.708
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Figure 7.1: Kaplan-Meier curves for all stage and stage I samples separated

by gene signature preprocessed by dChip in CAN/DF and MSK data
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Figure 7.2: Kaplan-Meier curves for all stage and stage I samples separated

by gene signature preprocessed by RMA in CAN/DF and MSK data
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