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Abstract

Purpose Recently, several new gene expressions based signatures were pro-
posed to predictive the survival of Non Small Cell Lung Cancer (NSCLC)
patients. However, for stage I patients, the task is more difficult and no
signatures had been found from a large study of lung adenocarcinoma. We
reanalyzed this large sample data and tried to construct a gene signature,

which had significant prediction power for all stage and early stage patients

.l Lx |‘:-

in all the validation sefs: W‘a"al 0 used an l17:3'131"I-;ai_|.1-11dependen’c cohort data

set containing bOt{l :;'ci-[-enocar;;u;has an.d.ﬂiujamou_s;{ ‘EH.H‘ }arcmomas to test
if our gene 81gﬂ'ia‘ture I"h nificant i 'an:‘pbwer-.-fﬂr all stage and
early stage NECL_'C pati "-'-_. '

Materials__-A total ' algene expréssion p:roﬁles from

Shedden e,-é'ul '&200 ining ts Weré‘haanalyzed
in our std'&y" Two sets g fe combined a raining Zfata set to
u,sl!;d for"'(?ahdatlon

derive our@né- gi-gn othe
An externa'l'NS CLQ..L

tional vahdatlo'n F‘:""
...-—'

: l—.\. LY lil-_":;l‘ _| — f%;i:il -I.-h-:
Methods We mod'fﬁ_gd ""I*Ewo—giéps dlmen'l'a?_n reductilan method proposed

by Wu et al. (2008) to""degﬂle }ur jgen 1.?Ha;tpre1 In the first step, both
correlation and liquid association methods were used to select the candidate
genes. In the second step, we applied the modified sliced inverse regression
proposed by Li et al. (1998) to derive a gene signature from the candidate

genes.

Results Five genes TMEM66, CSRP1, BECN1, FOSL2 and ERO1L were
selected by correlation methods. SRP54 and PAWR (as a LA pair) were

selected by liquid association method. The final signature gave significant



iv
prediction power for samples with all stage patients and for samples with

stage I patients only in all the validation sets.

Conclusion The gene signature derived from the seven genes (TMEMG66,
CSRP1, BECN1, FOSL2, ERO1L, SRP54 and PAWR) had good prediction
power for all stage and early stage NSCLC patients.
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The development of microarray technology has helped researchers to mea-
sure more than ten thousands of gene expressions simultaneously. From the
information contained in these data, several new gene expression based sig-
natures were introduced to predict to survival of NSCLC patients [4]-[9].
However, to reproduce and to validate these signatures in general are not

easy. A large sample lung adenocarcinomas data containing four indepen-
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dent cohort data sets was generated to compare the performance of several
latest expression based diagnostic signatures [10]. Nevertheless, the study
did not found a signature having significant prediction power for samples

with stage I patients only in all the validation data sets.

We reanalyzed this large adenocarcinomas data starting from data pre-
processing to filter out some non—informative genes. A two-steps dimension
reduction method propos,edqby eret af -{OO@’ l.rl" was then applied with
some modifications for derlvmg (ﬂﬁgnost _fgnature e'ﬂ_the training set. In

A5 ==
the first step, both “corrtlation Clauzﬁ:'hletho_ds [13] [14] were
used to Selecﬂl.,i_'i.lle candiI ep, we ap,ghed the mod-

S

ified sliced lﬁve.f;s'ld":ier ssion preposed by Jui . (199 [16] fo derive the

signature from the c,ﬁndidatﬂas ( he same ahdatlon procedure
i l

°nes. In the se

. . s ‘ ™ o
for all the:.-’c‘éstuq,g data as in S . nature gave signif-
icant prediction po | , s and samples with

— e
stage | patients?—nl xternal {pdependent

cohort data set con’&a.ln g

—'." o

m,ﬁ)lhs cell carci-
@%a:nt pre(hlctlon power for

nomas to test 1£.0ur genﬂ Sl

all stage and early" sta.ge -p"atlel‘rta"& Our geﬁﬁfﬁlgna‘curi st:'lﬂ gave significant

_—

prediction power in thls .vall:j,atlon data set. i 1 oy
i L
I
Here we summarize the main contents of this thesis. We introduce all the
cohort data sets used in our analysis and our analysis procedure in Chapter
2. Three different criterions for gene filtering are introduced in Chapter 3.
In Chapter 4, we introduce how we select the candidate genes by correlation
and liquid association (LA) methods. A modified imputation method for

censored data is also given. In Chapter 5, we discuss how we derived the
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gene signature from the selected candidate genes. A brief introduction for
modified sliced inverse regression and its implementation is also given. The
validation results and cross platform adjustment for testing sets are presented
in Chapter 6. In Chapter 7, we discuss the genes we used in our signature, the
relationship between our permutation procedure and Benjamini-Hochberg
procedure under independent assumption in our data setting, and the effect,

which might be caused by different preprocessing methods.

i




Chapter 2

Materials gjﬂ& j’gﬁf

-k
y ;51"'—' =

j =y

procedure-

In th1s.-!fct10n

wer of our

d 'ﬁlé?y.,_measured by
Affymetrix ml-c‘?}e%&‘ay @ '-No -'S'&nall Cell Lung
Cancer (NSCLC) pgﬁéﬁt Som@z_-r'%levq_nt ci'm‘]:’é-al and_ﬁvbhologlcal data, such
as sex, age, TNM tumor %&%M E’]_-kﬂyf)'}are also available. The

summary statistics of clinical variables in each data set are given as table

2.1.

used to corﬁgu t ou

gene 51gnatum-_E

442 lung adenocarcinoma data from Shedden et al. (2008)

In Shedden et al. (2008), a large lung adenocarcinomas microarray data

was generated from four institutions, Moffitt Cancer Center (HLM), Univer-

sity of Michigan Cancer Center (UM), Dana-Farber Cancer Institute (CAN/DF)
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Table 2.1: Summary statistics of the clinical and survival data

HLM UM CAN/DF MSK Duke

Sample size 79 177 82 104 111
Age (mean) 67 64 61 65 65
Cell type (% adenocarcinomas) 100% 100% 100% 100%  52%
Sex (% male) 36%  57%
Stage TA : 26%  36%
Stage 1B H% 35%  24%

32073*','E j 19%  16%

%, ;zg 20%
05‘-' 0) 4%

o<

Stage II .IE
St 111 8 S
ity L3

Stage IV'\?
' oy
Median %‘_I_'iovv‘up months 51 . l-'? 31
Numberféi__l_deaths 35 "_?9 58
l:!i. _\.{-;1: réﬁw
=i y

and the Merfraarlal%a o1 \/ %&"‘ usq%g a common
1."._.' h ; . | B
platform, Affy'lqé;r 2% A=Adie g Sa l.e@ w1t_ﬁ_'q|"poor quality of

microarray data of%noqm'ﬁfete'ﬂﬂ,lcal dataj_#‘ﬁotal' of,iﬁﬂﬁsamples from four
independent data sets \x;':ré.'?e 1 zed in thei %ﬂd-j[’?’hey analyzed the data
for validating the following four Eyﬁ& can gene expression predict
the survival of all stage patients? (2) Can gene expression predict the sur-
vival of stage I patients? (3) Can gene expression with clinical covariates
(stage, sex and age) predict the survival of all stage patients? (4) Can gene
expression with clinical covariates predict the survival of stage I patients?

They combined the first two data sets, HLM and UM, as a training data set

to construct the gene signature, and used the rest two independent data sets,
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CAN/DF and MSK, to test the prediction power of the derived signatures.
In their reports, with the clinical covariates, several methods gave significant
prediction power for all stage and stage I patients in the rest two validation
sets, CAN/DF and MSK. However, without clinical covariates, there were
no signatures found with significant prediction power for stage I patients in
both validation sets. Therefore, in our analysis, we focused on the first and
the second hypotheses. Our purpose was to derive a gene signature from the
training data set which haidfigm!ic&-&‘pétﬁf&réepower for all stage and stage
I patients in both validation data_igets T&‘mw dataqcbﬁe downloaded from
https:// Caarray.ébhﬁm}'ﬂq_.gov I i
pld= 1015945?-21_-36141280I

xpgr‘;ﬁ,{e;ntﬂ@ﬂAcmon .do?ex

o i
o vl ) T, -
& ) \ Lo "J','.i.
| ) =
Lt j:'_’I |
111 NSC?__E___C samples from . ]
= ‘ : -
Another microar ort cogf;éining 111
= - | 7 i
NSCLC saniplesﬁ;as eisi . S (fhfh, sq%was a more

patients of two-a&lﬁ"erer#tr" tu

Qs Ec;nomé&, and squamous
cell carcinomas. THe .gred'?f tloﬁiadiwer of o

ol ‘l-‘:iene s‘igna,it_‘}e for patients with

different tumor cell typeﬁ cqjl be tested in t?}s:ifa:hlatlon set. Second, since
-:Jj,l'. =) jl.

the gene expression profiles were measured by a different microarray platform

Affymetrix HU133plus2, a cross platform adjustment was needed. The detail

of our adjustment is discussed in Chapter 6.
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2.2 Analysis procedure

In this section, we briefly introduce our analysis procedure and the main
methods we used to construct our gene signature. The theoretical and im-

plemented details of these methods are given in later chapters.

The major challenge in microarray data analysis is the large dimension-
ality. The number of genes (G) -rIS—IF: the range of ten to fifty thousands but
= -_: | Rty Py = __|.1. b
the sample size (n) isli ohlly-:a!ﬁout -;-hundreds:q-TO reduce.the effect of microar-

ray noise, we used, thr crlterllbn§' to ﬁl’E;-nut non__ mformatlve genes. We

AN

1ncon51sten‘q_hexpf'ess10 _ _‘_. :

Statlstlcal-.él_go;-tlhm from A ymatrix (2001 7 Cllhr'rﬁ"algomthm from

Li and Worg (2001 L )

Irizarry et.ql (200 ssed in Chapter 3
After ge;e ﬁlterin | (G) to a related

smaller number (C‘?«]‘),.sbu i 1ons-‘ﬁ<=5 the."'Survwal time

might be much smlaller-: ﬁix'r stra OJmp]%i*ﬂehtf t:;fo—steps dimen-
sion reduction metho&" proposeﬂ"-by Wueet af' '6.2'008) fm‘ﬂh some modifications.
This approach contained gen'g seﬁ@’ﬁ}pn—apd glgngture construction two steps.
In the gene selection part, we used both correlation and liquid association
methods to select the important candidate genes related to survival time.
Pearson’s correlation coefficient was introduced to measure the strength of
linear dependency between two variables. However, the association between
gene expressions and patients survival might not be linear and might be more

complicated. The liquid association (LA) method was implemented here to

explore the interaction of two genes related to the survival time. Due to the
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data censoring issue, both correlation and liquid association could not be
implemented directly. Therefore, we modified a nonparametric imputation
method [11] to impute the censored data, then the correlation coefficients
could be evaluated by plugging the imputed survival probability. After that,
we calculated and ranked the correlation coefficients between gene expres-
sions and the imputed survival probability by the absolute values. Genes in
the first few places were selected as candidate genes in this part. We also
proposed a permutatlonlplqced:[lre-!;o dr Cldr hgw Ijrlany genes should be se-
lected. For implementing the- ’hqﬁid asso_"c%bion LA).aﬂ]_ethod our strategy
was to select th,'.e'gll'é'ne_z_s{ vg.hichI " '

ear._giitﬁ._ the ﬁj;st few extreme

LA gene palrlf., These g':

LA hub geﬂbl an% ‘;;le
"!'-j I

Fre called the genes. W‘e selected the

s pairedsgenes as i g;g&rhl_?part.

) ™
ene expressio tedgsurvival proba-

bility were normaliz rmal qua the first two parts,

T
gene ﬁlter'and Effe

. sl
SeiE‘C'lOIl. ’ le'transformation is

ciation method and ma, s.-ﬂ'l.e“q)rgs;edure robust

against the ou‘u].ng'rsTe Bol:’lg.h th i u -@.ssomabqpn can be com-
puted in the Websrli'é hgtp“ﬁkleféf.ﬁtatQ smf.g_aié_edu bw? LlhAlil?) /index.php. The
details of the 1mputat10H' mg,thods and hquld. aisodlatlon method are given

= ' 5 1
in Chapter 4. HEe

In the signature construction part, the candidate genes selected from the
previous step were used to derive a gene signature for survival prediction.
First, we applied the modified sliced inverse regression to estimate the effec-
tive dimension reduction (e.d.r.) directions and projected the selected gene

expression profiles on the e.d.r. space. If there is only one SIR direction, the
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estimated e.d.r. direction, found significantly by a large sample chi-squared
test, we projected the expression profiles on it as our final gene signature.
Otherwise, we could use the projected directions to fit other survival model,
for example the multivariate Cox proportional hazard model, and derive the
final gene signature. We note that the normal quantile transformation was
not used in this part. The regressors (X) in the dimension reduction model
were the candidate gene expression proﬁles transformed by log-2 transforma-

tion and centered toward sa*n-plxé 'mgari in t{augng data set. The theoretical

derivation and practabai 1mple.me££at10n Eﬁmdlﬁed sl-l'Ce.d inverse regression

§ =

T,

are given in Chef)té'r e

Jl"l 1 ll -';!;.-.'
The preaict]_QP"-ﬁ;o r of o d,in the independent
Vahdatlon"!data sets.| In eachlv: i etl, we useclli the linear combina-

tion coefﬁ:ﬁents.,est mbine the selected

gene expressions in ays to present the

;‘-IW o
prediction power” of an'of our signatures
- i i

in each Validaat,ion séfi.jz
L

low risk groups,,,a,s a categ}?n

!
o o.gm’ups,"ﬁhlgh risk and

log rank test WaS'ﬁsed fortest: 'th.q dlfferen-gf:af the su{vﬁfal distribution of
-

two groups. Second, we u'se.clllf.our derlved gene s-lrgnalbure as a continuous risk
score to fit the Cox propormonal_hgzaré model We estimated the hazard
ratios with corresponding p-value and the concordance probabilities (CPE)
[23] for both categorical classifier and the continuous risk score. The CPE
estimated the probability that survival outcome agreed with the risk score or
categorical classifier under the Cox proportional hazard model. To compare

the derived gene signature and the TNM tumor stage the results of multi-

variate Cox proportional hazard model were also presented. A flow chart of
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our procedure is given as figure 2.1.

[ Training data (HLM+UM) J

Inconsistent gene Low gene Small variation
expressions expressions gene expressions

Normal score
transformation

Survival
imputation

Normal score
transformation

Log 2
transformation

Modified sliced inverse regression
(Multivariate Cox model, if more than one significant directions)

Log 2
transformation
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rithm and. e Rob i . dﬂag__e f;&:ee widely

P | I'H._
:l-{i _ J B’d&%ay lead to
different resdié o‘g.%ed-"bbe expression

profiles by runrﬂ-ﬁg dC‘}_x{PEa .ﬁgﬁ sets-ﬂlgether Never-
theless, there was &i‘;:!'_ﬁsu-e;fthe&ffémarked It%mng t};ﬁ-.d h1p algorithm on

e
.;_?B‘fg_\i@?ﬁh&nter—swe differences but

the entire data sets may
is somewhat unrealistic. Figure 3.1 showed a dramatic shift of the data indi-

used data

cating that gene expressions preprocessed separately or together as a group
using dChip algorithm are not comparably scaled. This inter-site difference

may impact the validation results a lot.

In our data analysis, we chose the MAS 5.0 Statistical algorithm for data

preprocessing. The MAS 5.0 algorithm allowed us to preprocess the microar-

11
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1.5 12.0
1

11.0
HLM and UM preprocessed together
%

HLM and UM preprocessed together

10.5
1
o

o UM —— ': n gg
Fh. "- ::.: 7 ’-?I:‘::i I:-.l I.rE]'{l;'l‘J }- -\_ -
1<;.5 1.0 ‘l}k ?_ Jé‘_o‘* ’--t=__2 _{1.-. ‘ ;
HLM and UM przﬂis._'ed separatly 'j h’:_!' —1‘%& HLM !é&/jrqpmcessed separatly
i )f - A
o e ':"'dl
I¥ I
DR 11.1?_:| HLM and

-bl'i-
Figure 3.1:.____ t

UM two &iﬁ sets prepro essed s@hra’cely by
dChip alg?k:‘lth@: i ] exgres@n profiles
and the rl‘"ﬁt panel 7 : expressj:_'ﬁi profiles.

..iI

, | "y
ray data enﬁﬁa 0 i Howevehwe thought

r...

that the genemlt €onsi

L0
; etwqén thﬁbe preprocess-

_ﬁlt@}%@:,bu

WL r':;;" . i
inconsistent expressrzﬂl. ]Je,vels b@ween..thre%d%repr f—ﬁhtng methods. Corre-
lation coefficient is a meas'ifr'e- jﬂ _@.}.@ejl{ tqlm-ls{sure the similarity of two

ing methods Were'..?ﬁcoﬁ{‘/'r

p\-‘ﬁ"g' genes that had

variables. Here we used it to measure the similarity of the expression levels
preprocessed by each two of the three preprocessing methods for each gene.
Nevertheless, since the RMA preprocessed data is in log-2 scale, we may
transform it before we calculated the correlation coefficients. Furthermore,
the normal quantile transformed correlation coefficients between gene expres-
sions and imputed survival probability is an important selecting criterion in

the gene selection part. Thus, we also used the normal quantile transformed
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correlation coefficient in this part.

Before continuing the introduction of the gene filter, here we give a def-
inition of the normal quantile transformation and note some properties of
it.

Definition 3.1.1. For any n observations x = (z1,...,x,) of variable X,
The normal quantile transformatl is define by
Olt f".ﬂtﬁ-

N(x) = (<1> 1 fi?a);@jf(nif 2

J ——
where ®(+) is t;]de' Cumﬁ?ﬁ'v
bution and R‘:'-Is._’glhe ra,

L]

da::d normal distri-

uq;}ffm;

inal Pearsbn-s @

the Correlatlﬁfl coe

pothesis that" Xplsr ﬁo‘?ma istribu ation (':"o_eﬁ‘fﬁélent between
N(x) and x is CI—Q_ﬁEd ‘Cia—_f}unc]fr *pq@eswﬁﬂ')@ﬁand Xy are both

normally dlstrlbuted thli,corréfr 'ilon (fbefflCla-lt betIVeelh N(x7) and N(x3) is

Q.:I_test fo;"the null hy-

closed to the correlation coefflel!fm' ﬂzjeen.il;'(l and x5. Then some proper-
ties of the original Pearson’s correlation coefficient carried over. We also note
that the normal quantile transformation is necessary for the LA calculation.
Therefore, we used the normal quantile transformed correlation coefficient

for all the correlations between two variables in our analysis procedure.

For our real data analysis, first we preprocessed the expression profiles by

using all the three preprocessing methods separately in HLM, UM, CAN/DF
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and MSK four data sets for three versions of gene expression profiles. Since
the CAN/DF and MSK data sets were used for validation, the gene filter
was only implemented in the training data sets, HLM and UM. There were
22,215 probe sets on Affymetrix U133A microarray. For each gene in the two
training data sets, we evaluated the normal quantile transformed correlation
coefficients between each two of the three different preprocessed expression
profiles. Thus, there were six correlation coefficients evaluated for each gene.

The genes that had as leiag;l::qgalm%ﬁgﬁ@ﬁgln coefficients smaller than

e = - - . _-Ifl.-'\-j
0.78 were excluded. ! - ,-_?.F ""t-?' - e
F h.,_'\: ol | == - i f‘:%,..
i 7 B ?'“"-'-h_ (i,
& N

In each dﬁ_%-‘s‘em the
e .

3 of the f-i’a]lﬁa__aining genes
‘-:.-' iy L
with a total of ._Z.E','ﬂl

SR
Istogram is given in
I$'_I:___-T aly

figure 3.2.{;_5:;1 the histogram, th . he remaining gen?q_s,‘-with high
il
rank is fq.?;'_ﬁd larg e remaining .gen%o?with low
b -
rank. s L
=~ el
-:I-; H'?" iy .| '*E:"
'Hi | _:_.. i
1 ¥ ‘I'-:l' " .:_: !
1o ol
.1;3 13 ,

"

AL
= :'." ?\h-.
Although mié@?&r@j‘fﬁn béused to detect m'é%e- J'gh_é‘h:_-ten thousands of
e 1 e - ol e

gene expression pro@s?}.ﬁix@lt_@eouslfny, thégrl()?'clt'\ggn of truly expressed
genes might be no greater t-hgr.{ '%%Z%ﬂ?sjgigﬁe-ﬁltering part, we evaluated
the sample mean expression of each gene in the training set and filtered
out the genes with small sample mean expressions. In practice, the genes
with sample mean expressions smaller than 300 in the training data set were

excluded.
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Figure 3.2: Histograni-ofithe ranks of mean expressions«of:22,215 probe sets

in training data set aftetexcluded inconsistent geies.
3.3 Small variation genhe expressions

Another gene filtering criterion we used was the variation of each gene
expression profile. Some "housekeeping” genes expressed constantly high or
low for basic reactions. The variations of these gene expression profiles were
small and may not relate to the survival time of patients. However, select-
ing genes by normal quantile transformed correlation coefficients compared
the correlations between gene expressions and survival time of patients at

the same sale of variation. Some non-informated genes might be selected.



CHAPTER 3. GENE FILTER 16

Therefore, we excluded the genes with small sample variation of expressions.
In practice, the genes that had standard deviation smaller than 135 in the

training data set were excluded.

After three-steps gene filtering, there were 6,252 genes remained in our
analysis. The histogram of the ranks of mean expression profiles of the

remaining genes with a total of 22,215 probe sets in training data set is given

g “1'J'L qﬁbiﬂitgﬁ' Gl

' JL % e S
Tralm -d:?;s'ret mcons.stent-::;hﬂ'ress-ons er!g_ &j‘
| L
1 ||I:‘i; HH 2
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as figure 3.3.
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Figure 3.3: Histogram of the ranks of mean expression profiles of the remain-

ing genes with a total of 22,215 probe sets in training data set.
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Gene seleq@iﬁ%}:ﬁ “"{‘1‘5“{& 7o
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(G )t0623'2( ) through the
is still mu.&'lpzsi larger

sliced 1nverbd_41m‘:gzss1
singular, whm&d- C

both correlatloﬂ.'%d hqtli’l-}."as l@ﬁo Selei?l:' the important
candidate genes. Tﬁe‘__gen-e;gvvl l_:g""reatest C@atlons j;?:lahe survival time Y°

)

and gene pairs that had i '%{E@t;t? ?tl{g\ti&w?s vival time were selected

as candidate genes in this part. Due to the censoring of survival data, both

i Q__elp;e;ntatlon of
il)"(' Zi:‘:)to be non-

|
requi ec

}n such a case.l

SOC

correlation and liquid association methods could not be applied directly for
the observed time Y = min{Y°, C'}, where C' is the censored time. A modified
imputation method was proposed to impute the survival probability for the
censored time, and then both correlation and liquid association methods

could be implemented by plugging the imputed survival probability.

17
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4.1.1 Imputation of survival time with right censoring

Here we used the normal quantile transformed correlation coefficient de-
scribed in the previous chapter to measure the correlation between survival
time y° and each gene expression profile x,, where g = 1,2,...,G*. Due to
data censoring, we could not use the correlation coefficient between observed
time y and gene expression x,. Let 6 = Lyyo<cy(Y°, C') be the indicator that
indicated the status of each patien - ']gp reduce the effect caused by right

censoring, an imputation Y! "for d = 0 was %ee'égd F

1|_: . - :-;l - '\:E.‘;
g, = X [
Suppose that ¥° w/'?:tﬁ i I’l‘ég:f\'?ival-fﬁ'nction Se(y°) =
P(Y° > ¢°) fa"hd.glens,1

- L | I_ll

that the c&ndlt"unal

tation erroI' loss, (s
(2008) poued out
that Y° >,.g.| by Ka

we could 1mpu'ﬁ".-1;he qg.nse).re ond@hal ‘,,me'hlan given that
Y° >y and evaluate .’[.Be norma,lr_qﬁanqle tx%rﬁformed aprrelatlon coefficient,
corr(N(xg), N(y°)), to estlm'é.t%mh,e f@jela?loﬁbcoelﬁlclent between survival

time Y° and each gene expression profile X,.

First we noted that the normal quantile transformation N(-) only de-
pended of the ranks of variables. Therefore, it was invariant under any mono-
tone transformation, that is N((h(z1), h(z2), ..., h(x,))) = N((z1, 22, ..., 2,)")

for any monotone function h. Second, the conditional median given that
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Y > y satisfied that
1
S°(median(Y° | Y° > y)) = §S(y).

Furthermore, the distribution function F°(-) = 1— S°(+) is a monotone func-

tion, so that we have

NF°) = N33, 95 - 02))

~ O

3. Calculate the percentile p; = 1 -5, ;
4. Calculate the imputed N(y°) by performing the normal quantile transfor-

mation on p;.
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The implementation of this nonparametric imputation procedure is easy
since we only have to calculate the Kaplan-Meier estimate of the survival
probability. However, an issue is how we improve the imputation if we have
extra information. The TNM tumor stage is strongly related to the survival
time of NSCLC patients. It is not suitable to impute the same survival time
for different stage patients at the same censored time. It motivated us to

modify the imputation procedure with this extra information.
oy,
Modified 1mputat1?n| Coaé_p"ilt)portl,qﬂ'q-l- haz-a odel based

h l I-—’F —i__i B (1 '\:.E!::.
Previous st;ul‘dles mﬂ:@ate fi CEt;L_ipatients in dif-

ferent TNM -'%'u-mor sta and it n.aé‘&ivated us to
modify thet'mpi.tlﬁ'eﬁl proc pfgﬁ_ati'o-ﬁ procedure
directly fo}(')wed by the Ka lcﬁ[ i mate of survival prob:gbility, one

| : ; ¥ i 1‘ .
nature idea was to : S@ ation by incorpo-
o | .

rating thé TNM tu OIl),_dltIOf}al survival

S i

significantly

%ﬂ knovvﬂq regression sur-

:Efu!flctloh g_r.\;en Z = z is propor-

tional to a baseline hazaf"d fp}c‘gpn and the_ og;a'rrtﬂm of the ratio is linearly
-hjl o)

vival models. It mddeled'?f haﬁ-}h’e hazard

dependent on the regressors,
Xy | Z =2)=X(y°)e”.

Here we let Z be a four levels factor which indicated that the patient’s TNM
tumor stage is IA, IB, IT or ITII/TV. Then, the relationship between conditional

survival function given Z = 2z and the baseline survival function can be
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Log-Log Survival curve

Figure 4. :
ing data

'E'- .';.:i:j J‘:,é— -
the log-log Kaplan-Meier curves of different stages for the training data set.

From the equation (4.1) above, the log-log Kaplan-Meier curves should be
parallel if the assumption held. Figure 4.1.1 showed that there was no strong
evidence of non-parallelism for our data. Second, we drew the observed ver-
sus expected plot for the training data set and it also showed that there was

no strong evidence to reject the assumption.
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Observed and Expected Survival Curve

1.0

0.8

0.6

0.4

0.2

0.0

N(F°) = N((Qi’ i)
O [ ~O O/ A0 0/ ~AO !
= N((1= S50, = S339), 01 - 5352) ).
where S§(-) was the baseline survival function and it was also a monotone

function. Furthermore, we had S§(97) = S§(v;) if 6; = 1 and
1 1
o( 0 o(n0 exp(vZ) 1 o exp(v2)
Se) = (5°012)™7 = (55°wil2)) ™

1
exp(y 1 PR S .
= ( Soly )exp(72)> N (5)8""(172’ So (i), if 6; = 0.
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From the equations above, we observed that the modified imputation method
gave different weights for the censored survival probability of the patients in
different stages. In practice, the Cox coefficients v could be estimated by
finding the v that maximized the partial likelihood. The baseline survival
function could be estimated by the Nelson-Allen estimate or Breslow esti-

mate. Then the original procedure could be implemented by replacing the

4. Calculate th ' . i 7 e transfor-
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4.1.2 A simulation comparison between two imputa-

tion methods

To present the improvement of our modification, we did a simulation
study. First we randomly generated 256 survival time samples from Cox
proportional hazard model with a four levels factor regressor. The levels of
the factor regressor were uniformly random generated. The baseline survival
function was exponential dlStI‘lb}rltj(E, wﬂu?te parameter set to be 1 and the
‘were set ‘l:(l--b,e (0, :'f 4, 8) Another 256 cen-

Lo

randdfrﬂ A

=

with rate paran_f}é’cer 3. W

A%y

Cox coefficients ~’s f(;ilr eJLCh e.vei

sored time sampl’éB'W

ener‘é%%ll from ;@_%po‘ﬂ.emlal distribution

the censorix,l.g_‘tu'ﬁ'e isa sa.gﬂrﬁ{'es The average
censoring qx’pe was 0:5099 1 _.
= ~
[ e * -.
To asszass the pe o ] , the normal quan-

wvat tﬁh.e samples
I l- e

to measﬁ'fle the close-

|'.|'L

ness. For 1 O'Gﬁ- sﬁ’fﬂ.-ﬂatlo oth In’[putz;qtlon methods

m S, we mleme
and recorded the ggrrel'é'..lu.e}f cog ea.c::_h ra *The‘-ev'grage of the cor-

relation coefficients o'f 'the Kapi&n Meier ba&d 1mTu’cit10n was 0.8684 and
the average correlation coefff':enfsagﬁl'l\/fbjhﬁgd uh'putatlon was 0.9096. More-

over, there were only three times that the Kaplan-Meier based imputation
had correlation coefficient greater than the Modified imputation. We con-
cluded that the modified imputation method had better performance when
the Cox proportional hazard model assumption held. The results of our sim-

ulation were given in the following table.
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Table 4.1: Simulation comparison between two imputation methods

Estimated Cox model coefficients Average S.D.
Cox model coefficient 4, (72 = 2) 2.1096 0.6260
Cox model coefficient 43 (v3 = 4) 4.1355 0.6264
Cox model coefficient 44 (74 = 8) 8.2389 0.7948
Normal quantile transformed correlation coefficient Average S.D.

between true survival time and i im uted value

No imputation (Obseryed ﬂ]:mé{j LS U 077S6 00312
KM based 1mput€t-125n :';_;, _,E_.'- ' '*f-"'s §683 00205
Modified 1mp.gt-at10n~“'|{ o '--.,9{.- 0. 9;996 0.0146

Censor ratd 350997 0.0308
S i e 8
4.1.3 (}éne S ata by correlation

B, T o B
In thls,__s‘lllbsectlo we pre ;eTt genes selection by
correlatiori;@egpod training dd Eq-r-._allrﬁhe samples
in the trainf.lﬁ,g data s' thwe imple ed.i'fnpu'ﬁtion proce-
dure descrlbe&'m -t#e pr the',s:urw%l probability

'c!xs subsecion to i
and performed TE@, nonffx}_mfl__qua atléﬂgqn thﬁ -1;hputed survival

probability and each gene expresgfdn p;pﬁlel‘_ﬁbr each giine we calculated the
correlation coefficient beﬁ@eey.{lp}m}lzeq gék.e e’icpressmn N(x,) and the
imputed N(y°) and ranked the 6,252 correlation coefficients by the absolute
values. The top five genes with the greatest absolute values of correlation
coefficients were selected as our candidate genes. These candidate genes were
the only five genes which had the absolute value of correlation coefficients
greater than 0.25. The cutoff was determined based on controlling the ra-

tio of the expected number of all true null hypotheses to the real observed
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number of correlation coefficients greater than the cutoff

o mm{c EDS 1R, > )l/[> 1(r, > ¢)]] < a},

where R, = corr(N(x,4), N(y°)) under X, L Y* for all g. A permutation
procedure was proposed to select the cutoff. For any given cutoff, we esti-

mated the expected number of correlation coefficients greater than the cutoff

if survival time was irrelative t.ia,h]ﬂéa iﬁ.@? genes by the average of 1,000

!0 of g-}:le expea-tpd 1}12{‘1‘5.@1:, to the real observed
number of correlaﬁwn o fflClemts"greaterﬁan the c.._‘{(sz-;'a.vas used to choose

the cutoft. Thg-‘ll.p‘rocedlllrér be summar -‘"t'ﬁ-e folléw.rpg steps:

[ ]

runs permutation. Th&; rat

"- ,-hf'-l F akh
T ALY 5 ]I-..

i
1. Calcul ’E:e artdd ‘ ' value of c r@i-erdon _qoefflclents

(ray,r ,‘,'T(G* ) i each gﬂi_;e expres-
sion N ( Xd.).dwhere : :
2. Permutq..th

3. Calculate-d:lf he a
between N (y- 5 a'h?pﬁ:gach rhe;e- _(_;- L ﬁ""-Q , G*;
4. Calculate the ﬁ’u‘mbe{‘.df' berm

= i _ '.'i f‘%ﬂﬂ th‘q:r[}he each ranked
I'i
true values m = (my, ,mg, fm:é; where 7?’3.; % - 'F'l{r*>,,l} , for i =
1727"'7G*; }-Iﬁi:‘!r{:'j'.'-j: .
5. Repeat step 2 to step 4 for 1,000 times and record the my for the k-th
time, where k£ = 1,2, ..., 1000;

ments ('f"'g TSy ey Te )

6. Estimate the expected number of correlation coefficients greater each

ranked true values by chance by the average € = m = (ﬁ ]1C0:010 (my),

1000 1000
5655 Dot (ME)2, -y To55 Dok (M) G )

7. Calculate the ratios of expected number to the observed number and

determin the cutoff to be the j-th place true absolute value of correlation
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coefficients 7(;), where j = max{i | €;/i < a}, where « is specified by user.

0.10 0.12

0.08

0.06

Expected numbers/Observed numbers
0.04

0.02

0.00

training data.

For a conservative criterion, we set a to be 0.05 and implemented this
permutation procedure in the training data set to determine the cutoff to be
0.251. A scatter plot of the top 70 places of true absolute value of correlation
coefficients and the corresponding ratios of expected number to the observed

number is given as figure 4.3. Figure 4.3 showed that the first five ratios of
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Figure 4.4: The s@?@r plot © i ' 0 the observed

number versus | i_:;i i oefficient in one

of the 1,000 permu ons.

thermore, we could see that the ratio increased when the cutoff decreased.
This tendency was expected, since we expected the rest correlation coeffi-
cients distributed similarly as randomly permuted correlation coefficients.
To illustrate the difference between the real data and the permuted data, a
scatter plot of ratios versus cutoffs for one of the 1,000 permutations is given

as figure 4.4. In figure 4.4, we could see that the first ratio was quite large
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and the rest ratios oscillated around 1. Thus, we suggested that no genes
should be selected in this situation. The candidate genes and the normal
quantile transformed correlation coefficients with the imputed survival value

were given in table 4.2.

Table 4.2: The candidate genes and the correlation coefficients of the candi-

date genes and the imputed survival time

Symbols

Full names 2es! [0 vy o Correlation coefficients
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4.2 Liquid association

In the previous section, we selected the genes correlated with the imputed
survival time as the candidate genes for subsequent analysis. Correlation
could be viewed as a measure of linear dependency of two variables X and
Y. However, some genes which had nonlinear association with survival time
might not be detected by our first step selection. To reveal these relations,
we applied the liquid assocmtlor:r @E\ fp;etljpd from Li (2002) for the second
step selection. The dftaﬂls 0 metﬁodology-&n hefmplementatlon of liquid

i
association method are given 111"t'h“is sect ) " .
g i H LR
e LT
f}i -
4.2.1 ethodo ey
e hj:“."" ] ;'I;
quuld"assomatl ] or studying the f_flctlonally—
assoc1ated:‘gene*pa1 ( tioq,allj‘f:_'éssomated
gene pair!'ﬁ(, Y) is AUSE the:‘functional

Ll | l"'

. ey
assoclation '.may?Be

variation assom'ghe(t Wlthft e

v f-\. _-#J‘_I

] I e ghen the,ﬁexpresswn pro-
file of gene Z can—‘be Esﬁ"to .;'e.vgal the pitf'grns

func\ronally—assomated
in the gene pair (X, Y') . If the gene 7 is known We)may draw the scatter
plot of profiles X and Y CO]OI‘e(f 'by'-'f;rofﬁe Z; to reveal the patterns by eyes.
Since the gene Z is usually unknown, to screen more than ten thousands of
scatter plots for whole genes searching is impractical. Therefore, LA score,
a scoring system for the average rate of change of correlation between a pair

(X,Y) with respect to profile Z, was introduced to searching the latent gene
Z.
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We assume that the correlation of a gene pair (X,Y’) depends on the cel-
lular states, for example, the correlation is positive at state 1 and negative at
state 2. If there is a latent gene expression profileZ highly expresses at state
1 and lowly expresses at state 2, we can expect that the increase of expression
profile Z is associated with the increase of the correlation between X and
Y. Then the pair (X,Y) is called a positive LA pair of Z. If the monotone
relation holds, the average rate of change of correlation between pairs (X,Y)

with respect to proﬁle Z s &‘g’ﬂﬁ@f ater than zero. Similarly,
h{‘@iﬁ;@ j’

] ol Pt
a pair (X,Y) is cal negati"v Z,if t

A pair

rease of expression

Z is assoc1ate(}_,.,~\s,§:t‘llﬁ ﬁf‘d.ecre tloﬁweé'i{lﬁ and Y. If the
monotonic rd@ﬁion hold e of corr'iré:_etlon between

pairs (X, @N@%ﬂ"ﬁe

zero. Thuﬁhe LA score is
Deﬁmtlo'gél
and varlangil The

XY|Z§$I§\‘§\ P

aller than

Y
—.fl a e '-:E‘l
= LAY ¥l — EAG) "‘uﬁ
r ':'.'-'E"._"_"_;. —_{-:' = _r...';’L:-E' ’
where ﬁ%ﬁ@ﬁ@jﬁmﬂ?’

Q(Z) = EXY[XY | Z]-

If Z follows the normal distribution, the LA score can be evaluated by Stein’s

Lemma, such that
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LAX,Y|Z) = Eylg(2)
S R)
— Ey[ZExy[XY|Z]
— BBy [XYZ|Z)

Ex vy 7| XY Z].
1|J|f, "'ﬂ—:'a'fflfm
In practice, we can 1*&9 é mg_m‘lmt estl_rg ﬁ'-ﬂﬁ%&mple version of LA

J |."—'F
score, where __g:.\,

b ;;rzf.q

A
I i 1

The three';gples wif ‘ > value of LA scores are 1'§pected to

have hquxﬁ'!.jassgma ons. Si nly if % variable

Z followslﬁe nor i : transf@matlon is

necessary @1" thefimp

;garl i

.-_._|

underlying patterrﬂ'?-;;qgé'r-e"’ Wlll'b'egl no signi

each varlablegg ara ky_.i-,.r-Trggisformmg the
vil G_?,use th’qiﬂ_ylolence to the

tly -ext e;g'ﬁ LA scores found

variables mto

if the variables are m&fﬁ.‘s_{a%ate normal dlstmh‘uﬂ “since the correlations

F

) =
between each two variables are cbn@@{'

4.2.2 Implementation of Liquid Association

Wu et al. (2008) proposed a strategy for implementing LA method to
find the candidate gene pairs associated with the survival time. They took
the imputed survival time as the third variable to find gene pairs whose

functionally-associated pattern may vary as the imputed survival changes.
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The gene pairs with greatest absolute value of LA scores with respect to
the imputed survival were selected as candidate genes. However, they also
pointed out that due to the large number, %G*(G* + 1), of comparison of
LA scores, the signals might be difficult to be detected by examining the
individual LA pairs. They suggested an alternative strategy; to select the
recurrent genes from a subset of the gene pairs with extreme LA scores with
respect to the imputed survival time. The recurrent genes were called LA
hub genes and selected als tl#._ca&mhga‘be}gerrgb _é?he.lr LA hub genes selecting

procedure could be: Sﬁ;&nmarlzed a-:-g the fo_'lgwng Step%.-iﬂ
I —

,".-* b

";'i'l;-.: - F =™ .'%
1. Perform thlec,normal i oth gene -.;o'lg'epression pro-
LG rry -
files and 1m'bute%'.$i,1r e
2. Calculatel and rafik the T N (¥°)), of all pos-

sible gene::ﬂsmirs,wit h

3. Select!.?q'f'le gene

e, #
P M pesitive and

‘ ‘ﬁEd o
edi Y user.
i

S0 o B
_--_ .H.F - vy :\r ﬁl.
In their examp].es, they t.OQ -@elected.,l'the cutoff k£ to
L %;:n

be 3 by their pernﬁtat_lom"fesmﬁ iIhey perﬂaﬂ-ted the 1m uted survival time

for 1,000 runs and calcul&he‘(}pthe average num r.:of g’enes appeared at least
k times in the first top M places. ‘if’l’re'!l they u-sed the average number to
compare with the observed number. The selection of k depended on M only,
which means that the recurrence was defined only by the ranks of all LA
scores. However, we found that due to correlation structure of genes, the
recurrence of the genes in the first M places was easy to pop out in the

randomly permuted cases but the LA scores were related small. Therefore,

we suggested selecting recurrent genes with significantly extreme LA score
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rather than selecting the recurrent gene in the first few places. We suggested
a two-steps permutation procedure to replace the third step in the original
procedure to select the LA hub genes. Our procedure could be summarized

as the following steps:

1. Normal quantile transform both the gene expression profiles and imputed

survival time;

2. Calculate the LA SCOEQSJ.‘QA&VT\?&“) ‘ﬁ\"zng _'E'N (Y°)), of all possible gene
25 ~c.'"-_,
4“3:‘_&;‘510531 Al 3 with a soft

pairs with respect t.oﬂt_;he 1mpu’é€£§surv1val" i;me
i "y
3. Applied the .e_erﬁlu}qfl_g.n ibed in

criterion a td!,g.emde the "-'.-'
4 Compar@'ih@;jid} er of e'..avESa'g%' number of
genes app%'_lled at 1 LA scores greajc_f_‘,,r than the
cutoff in ];EdOO per - h
i ;-.._._. h!;
A, A
Loyt

4.2.3 Gene selecti rn tralnlnglfl t

We 1mplemen=t§q the: _Jg-A
data set. First we 1m;ﬂ1'ér{1ented-{hé mo,dlﬁec:fﬁ"?rputat,l@n; In the second steps,

a total of 19,546,878 LA‘seﬁesyn{ ﬁ;}l p ,?Sl?lﬁ' ge‘ne pairs with respected to

10m%£_@¢ed reh'm the training

the imputed value were computed. T he scatter plot of ratios versus cutoffs in
step 3 is given as figure 4.5. Based on the scatter plot of ratios versus cutoffs
we decided to choose the cutoff to be 0.326. Then, we noticed that the gene
SRP54 appeared 4 times in a total of 11 pairs with LA score greater than
the cutoff. Then we permuted the imputed survival time for 1,000 runs and
computed the average number of genes appeared in gene pairs with LA score

greater than 0.326 at least 4 times. The average number was only 0.032
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Expected numbers/Observed numbers

032 + 4 4034
~ Absolute value of LA s

i 4 se LA pairs as the
candidate .:;. the subs ! is. , %e P54 with
the 4 paired g d in}@ed survival

LA scores

Symbols % i

54

ka

SRP54  signal recognition pérfie

SART3  squamous cell carcinoma antigen recognized by T cells 3 0.3810
NR2C1  nuclear receptor subfamily 2, group C, member 1 0.3659
CROP cisplatin resistance-associated overexpressed protein 0.3269

PAWR  PRKC, apoptosis, WT'1, regulator 0.3268
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e ' |
In thé'_‘:ggs ignats elapplied tlla- modified

liced invelh - 1@5@ duce di
slice 1nvel=.=l! f’elges e _ ‘[_.S. educe di-
mensions. K,{%{ ﬁ_nr ing ' i imens d&p}.ljon Eie.d r.) space,

e

we could project. t e?'; ene “ex ion profilesionit, an(f -Eﬁg-iﬁ'ﬁ'irther survival
U

model if necessar%%j

-,'.I:-| b

Y
Sliced inverse regression by'-l'fz was originally introduced for di-

mension reduction. Assuming the p-dimension regressor X and the response

Y° satisfied the dimension reduction model
= 9(B1X, 33X, .., B X, €) (5.1)
and the linear design condition; for any b in R?
EWX|3X, 35X, ..., 5 X) = cg + 131X, ..., e B X, (5.2)

36
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for some constants ¢y, co,..., ¢, the effective dimension reduction (e.d.r.)
space, B = span((, B2, ..., Bi), could be estimated by the eigenvalue decom-
position of ¥ gx|ye) with respect to ¥x, where Xgxye) = cov(E[X | Y°])
and Yx = cov(X). The function g and the distribution of € were not need to
be specified for estimating the e.d.r. space. The key observation described
as Theorem 3.1 in Li (1991) [15] was that under conditions (5.1) and (5.2),
the centered inverse regression curve E[X | Y°] — E[X] was contained in
the linear subspace spanpﬁq Byl[ﬁ' &) é‘i‘{ = d-,@,izx Therefore, we could
estimate the e.d. ]rlII a&_gf:-e by eéjt}_linftlng tq%{mverse reg;efswn curve. To de-
termine how miﬁy e. d}r,‘f directi

eng%"Eq_ 199‘]-.) also proposed

e.d.r. dll"e(l.tl;onﬁiﬁﬁl ; 7 pr:anjlh('—;' the imple-
mentatlon}if sliced inverse grpeﬁ{ summarized as t'h‘é following
™~
steps: . %
2| doe P
1. Sort the gal éfl:tﬁs _g%? th similar
proportlons) Y . ::, % :r ‘
._.-l_; = i . 'y
2. Compute thﬁ}sampﬁ.l 2%_4‘“ nphfg,‘yle 1, Xi, Where
D 1@(@’1&* Xy ¥ f"f. ¥ Ty -'.

3. Compute the sampllefoop].tl;;lce n:.atrlx % XFTE%" (x; — X)(x; — x)'
and the between slices sample cothé:fg:l_-ge matrix 3 E[X|ye] = Zh 1 Pr(xp —
X)(xn — X)';

4. Conduct a eigenvalue decomposition of )y E[x|ye] With respect to )y X;

5. Applied the large sample chi-squared test to select the significant leading

eigenvectors to be the SIR directions.

In survival data analysis, due to the data censoring, applying the original
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sliced inverse regression by directly slicing observed time Y may cause the
estimation bias. Li et al. (1999) [16] studied the effects to the original
sliced inverse regression caused by two data censoring conditions. Under the

independent censoring condition
C' is independent of X and Y°,

we can show that independent censoring did not affect the sliced inverse

regression by directly shcln:q._gkﬁé-\ﬂﬂ'-’gw@:lﬁ

on, aﬁn‘:&re gene

] e

nder the conditional inde-
] ,.r "

pendent censoring ondlfl

|d'-.b1.l" ':-ii i

,-E'é'ndl ional , Cisi O,TE'E:'

';'-'
-.". LSy
P ] .
directly shclii",'ghibg.? a{?_n h!rri Li et al
(1999) mo'ﬂ-hﬁed theloriginal sliced i i this sifmatlon As
[ r_| L
described above, ani > d inyerse regression 1§kt1mat1ng
the invers%‘!regressa . 7 Y1) -:Eﬁe inverse
[ |_|I - 1]
regression 'eﬁrx‘/'é;z?m e IS
““—‘L i~
E[X1p,e b7e !

%.E O > yl-‘rl 7
where 0 = y7 < y5 < ... H-_:iiy?,&rjf_@&aa partition of true survival
- J! - !’-'. -

time. One can observe that

EX1(Y* > y;)]
= E[XL(Y >y9)] + E[XL(Y < 2,6 = 0)1(Y° > ¢°)]
= EX1Y > 9)]+ EXLY < 42,6 =0)E[1(Y° >¢) | Y, 5, X]]
= EXLY >9)]+ EXLY < 42,6 =0)E[1(Y° >y0) | C,Y° > C,X]]
= EX1(Y 2 y)] + B[ XL(Y < 7,6 =0) ?E[ﬁg = ?;)) || ;] ,
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where the last equation holds under the condition (5.4). A weighted function
is defined by w(t,t',X) = ]1;3[[11((11//535))”)()(]] = 5:((;”);)). Under the conditional
Se(tX) _ S(EX)
5(UX) — S(HX)

independent assumption, we can show that where S° is the
survival function of failure time and S is the survival function of observed

time. Then we have,

BIX1(Y* > 7)) = EX1(Y > yf)] + E[X1(Y < 47,6 = 0)w(y", ¥, X)],

and il fal 1o !'f Ll . e

El1 Y°>ybﬂ5}[-E (Y] ':E(Y <~§w 0)w (;,",Y,X)}

'\-l B J|.—'F

with a &mﬂal:‘-‘hfgum)ﬁc'
estimated bh}ep.l,acm

plugging the wé‘i‘ﬂi; ed functi 2k 'H‘Séﬁ-}dnli, ,+). The

‘f "
'E--g_‘-\é'gressrzﬁ curve can be

sa ""'moments and

proof of tEe consist ‘ncy anc ' under Sorme regu-
larity con@jmn‘é A " ..:;':
= ol

Since tﬁ'éJ,k ! n tlhe lijQ' -dimension

case, they aqu'p i*' i imension red tloﬂ step""halled double-

slice before app’Ez}ﬁ_;g thp'{godl Se ré@%‘slo&fﬁ% censored data.
We assumed that thﬁr‘llzeﬁnsor ’sﬂgxe C also Eﬁisﬁed t}:;d[dlmensmn reduction

o et

ORI ey [

C =h(0)X,0,X,....0X, ).

By applying the original sliced inverse regression, the space spanned by 3’s
and 6’s, called the joint e.d.r. space, can be estimated by slicing the observed
time Y for 6 = 1 and 0 separately. Then we can replace X by its projection
in the estimated joint e.d.r. space for a low-dimension kernel estimation of

weight function (-, -, -). The modified sliced inverse regression procedure can
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be summarized as the following steps:

1. Double-slice the survival time and censoring time and apply the original
sliced inverse regression;

2. Applied the large sample chi-squared test to select the first few significant
joint SIR directions;

3. Project the regressors into the space spanned by the joint SIR directions to
estimate the conditional wqwil ﬁ}gchgrt a'ﬁ'd Eﬂe Welght function by kernel

estimation; J|‘ ' .'-_,_. _;_ 25 ‘f-"i:u

Oﬁ‘ﬁfkﬁ{@a(}h -§hce by plugging

LT i
oments;ﬁ-l_—_

s | o) T _:'h_..
EAN oy
5.2 Slgn'ﬁvturq GEM@;E %rlé‘ining data

., T r,‘?x'ﬂ!. ST R

=i = _!.-'-- i e -

.-_"._ . 3 - .3'- i

set E1 45, b
-j i i.-\.jl - j
After the gene filter and the gene selection two steps, 10 candidate genes

were selected to construct the gene signature, which included 5 genes X, X,
.., X5 selected by correlation method, 1 hub gene X4 and 4 genes X7, X, ...,
Xy paired with the hub gene selected by liquid association method. Wu et
al. (2008) suggested applying the modified sliced inverse regression on the

genes selected by correlation method and the LA hub genes. However, we

found that in their data example, the four genes with the greatest weights
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(absolute value) were selected by correlation method and the weights of the
LA hub genes were relative small. It might not be suitable to use only the LA
hub genes without their paired genes, since the change of survival time was
related to the functionally-associated pattern based on the LA methodology.
Therefore, we thought that the genes paired with the LA hub gene were not

negligible for survival prediction.

Since correlation COG&ICI‘BI}'G :Elea[ ufed tlff‘: }Ea'isa-rr dependency of two vari-
ables, the d1mens10ﬂi reducu@n Elodel E%umptlon t:-hht survival time Y°

§ =

depended on tl&e g'en__e-;'éz.pres i

linear combm.a.tlons Wé! : ' this assumptlon might

;"; X5) _Finy trough its

not be sultgﬁ')ie wﬂén S .‘;LIId. .LA' palr genes,
due to the""honhnea}' conce hus to 1nc0rporate
the LA pairs into model, we added the interac-
tion terms of LA p not suggest adding
all the mteractiB'fl p f LA hlllml;h gene was
showed in thQ previ‘e}'us v h m-'mlglel’c be selected
by chance, due_ﬂa the C@ri:.el of b 'ﬂt sands of g fgenes. Here we

presented how th‘I§ happﬁned- 'Vihqh a 81mp_}g'-31mulat1lton"l First we gener-
ated variables (Xl,Xz, P, X;,). from multlvarlafe. mnormal distribution with
mean 0, variance 1 and equal corl‘élatt’on 62 for each two variables. We
independently generated another cluster of genes (71, Za, ..., Zag)" from mul-
tivariate normal distribution with mean 0, variance 1 and equal correla-
tion 0.7 for each two variables. The response variable Y° was generated by
Y° = exp(0.5X; +0.5Xs + 0.5X3 + 0.5X4 + 0.5X57; + (0.5)%¢), where € was
generated from standard normal distribution independent to X’s and Z’s.

200 independent variable Wy, W, ..., Wagg were generated from multivariate
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normal distribution with mean 0 and covariance matrix (Zy);; = 0.9/,
After 1,000 simulation runs, the average number of X5 appeared in the first
10 LA pairs was 6.52 and there were 873 times X5 appeared more than one
time in the first 10 LA pairs. It showed that several paired genes might be
found by chance even there was only one true paired gene. Therefore, to
be conservative, we did not incorporate all the LA pairs into the dimension

reduction model.

IO,
1 o "{ =) _Fr
Since our final goﬁl-'was to Eieigile a gej&agnature,;m_predlct the survival
h | e
for all stage pa,Elel‘fcs _and. sta

Our strategy"lwas to 1n'lc

‘ the~gage I patients.
te the LA pai 1mproved-t'he prediction

power of dehved_lsign ure m or the deri ﬁwx’e’fby modified
sliced 1nve~r"8e regression, t pm{i tion ipower of it was preser_ﬁ:ed in two
ways. Flrﬁ-rwe..use the gene sigl ntinuou rislascg;g r = 0%,

where [ was the sig roportional hazard
',—.-I' — | : ._:" ... rlh
model, \°( 'y‘-°. 7‘.?; X e fﬁ'ftteg'img the null

hypothesis that hazaxc
power, we Calcnl:at%d thé-cont i t -Qstlmams,l (CPE) for the
v l"" lfl.'. e

probability that S‘Iﬁ‘wn(al -i{-utco'ﬂiel agreed i@.ﬂh the Sl na ure P(YP > Yy |

Y was equal to 1 T p"ésent ilhe prediction

yr1 < yrp). Gonen and Heli? 2005 proposed ‘iha'ﬂ,under Cox proportional
i 1

hazard model, the concordance prd'B'I;LBﬂ!ty can be expressed by

PP > YP, v < yra)

P(yry < 1)
I S <y P(YO(y11) > YO (1) ) dF (yr1)dF (772)

P(Y? > Yy [yr1 <qrg) =

J Lo <oy AF (yr1)dF (72)
S Jori L+ exp(yra — yr)] T dF (yry)dF (yr2)
S Joicyey AF (yr1)dF (y72) ’

where the last equation was followed by the proportional hazard assumption.
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Then the concordance probability could be estimated by

CPE() — 2 Li5r,<5ri3 (T 75) L5, <ary (T35 75)
(9) = 1 Z 1 S — s 1 S — Ara )]
n(n ) + exp(yr; — 13) + exp(qr; — 47;)

We noted that the concordance probability estimate was in the range from 0.5
to 1. A CPE close to 1 indicated the good prediction power of the signature,
and a CPE close to 0.5 indicated the poor prediction power of the signa-
ture. Second we used the signature to separate the patients into two groups;
high risk and low risk, by cuttq&gqt the mlpdla,n of the signature. Then we
used the category clﬁm&%lher t& fiﬁi-the Cogipropor{ ﬁgl hazard model and
evaluated the haz&;d r-%no thé cor —%;g p- Vah;‘g aﬂ'd _tihe concordance

|.-'-

age | pat1ents we used

r@ﬁ%_li témge samples

Al
T Ly
d from only the ﬁl!e selected ﬁ?‘correlatlon
l' o l' I' fi
method. We mteaﬁhat we.e 1L not rm niﬂ!n | quan’c'lle t“ansformatlon

on any variables 1g."sh1§f pay’é sugpe 1 meqhat?.ﬁi‘téaﬁﬁtlc in the test set.
The expression proﬁf"s Breproce?ssed by the‘a.MASnP OIhStatlstlcal algorithm
were used as our raw data. 'Fhelf Whﬂtoojc.iog‘Q transformatlon and centered
each gene expression profile at its sample mean. For the five genes selected
by correlation method, we implemented the modified sliced inverse regression
method and selected the only significant (p-value < 0.05) SIR direction by
the large sample chi-squared test. We projected the expression profiles on
the only SIR direction as our final gene signature. The Kaplan-Meier sur-

vival functions for two different risk groups separated by our signature, the

corresponding p-values and the concordance probability estimate are given
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tion genes ﬁﬂi_ 81g i ' t_iai_gg-._patg_;hts but not
— e | . |
for the stage’ ?t e Ho sinc rv;:lval prgfilwtlon for early

]

stage patients is .ﬁmo?ﬁ'.glfmpmpt_%nt 1ssue, « eqL_ 1ncorporate LA

gene pair for 1mprov1ng‘%'@;§redictlon power f & 'kh“b'le of stage I patients
g =

only. Each LA pair was 1ncorp0Jl M@'dlmensmn reduction model by

adding their interaction term and the main effect terms. Specifically, we
used X = (X3, Xy, ..., X5, X6, X;, X6X;)" as the regressors in the dimension
reduction model, where ¢ = 7, ..., 10. The interaction term was added for the
nonlinear association of the LA pair with respect to the survival time, and
the main effect terms were added for adjusting the miss centered issue for the

interaction term. We applied the modified sliced inverse regression for each
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| ve cérrgth._ff‘,lon genes and

o “?t" E'r'
regressor X to find the%%ﬁﬁﬁlﬁke there was exact one
Qe

significant SIR direction selected by the large sample chi-suared test. The

results were given as figure 5.2 and 5.3.

Figure 5.3 showed that incorporating the LA pair did improve the pre-
diction power for stage I patient only. We chose the best-performing gene
signature constructed by five correlation genes and the LA pair (SRP54,

PAWR) to be our final gene signature. To combine our signature and the
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clinical covariates TN %@ﬁ%ﬁﬂf@%&*ﬂ prediction, we fitted

them with the multivariate Cox proportional hazard model, where the TNM
tumor stage was coded as a four levels factor as in Chapter 3. After a stepwise
selection, our gene signature, age and TNM stage I1I were still significant in
the multivariate Cox proportional hazard model. The estimated sliced in-
verse regression direction was given in table 5.1, and the details of hazard
ratio for univariate and multivariate Cox proportional hazard model were

given in table 5.2.
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The genes with negative coefficients are called protect genes, because the
increase of its expression is associated with the decrease of hazard ratio.
On the other hand, the genes with positive coefficients are called risk genes
because the increase of its expression is associated with the increase of hazard
ratio. Table 5.1 showed that these coefficients agreed with our results in

gene selection part. All the protect genes had positive correlation with the
imputed survival time an_ct‘agll L‘rﬁi@ﬁg _&q the negative correlation
with the 1mputed anl

e
i};ﬁ%l tmié’ he c%en’c OE % interaction term of
i bt ] |.'l—'F

0 agreed.v h\l@o{ . LA score. The

the LA pair Wﬂﬁ

absolute valudgof the coe ., [ eviatioﬁ%so presented
the strengtrh-{)ﬁ_,&tfd, ; : i | ovved that
the produﬁ of the coefficient tandarddeyiation of the reg{gssors were
closed exq_f;f]t the mai 1l theser-genes gave
importanﬁt%%c‘cs fo : Si e. le 5. ed the s.l.ghlﬁcant of

| | Ny
our gene signatute i : el/Purthermore, the
gacre ‘ s

u\‘gaa . < mgdel sh(:‘z\Wed that our
gene &gnature,..:;zas Stl}r;'&ipg i 01 qrated _ﬁ}:e TNM tumor
Jy 5 3

.-;"“_ A = end Y0 !:ﬂl-
i -:.:-.1'51

SHegeren®"

p-values of thei_m

stage and age.
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Table 5.1: The estimated coefficients of SIR direction

Variable SIR dir. coefficient S.D. SIR dir. coefficient*S.D.
TMEMG66 -0.6457 (Protect) 0.3862 -0.2494
CSRP1 -0.4606 (Protect) 0.4738 -0.2182
BECNI1 -1.1296 (Protect) 0 3671 -0.4147
FOSL2 ! 0.1897
ERO1L 0.3178
(SRP54) 0.0138
(PAWR) & . 0.0697
SRP54*PAWR. # ¥ ; 46 i, ¥ 0.3493
p-value

Table 5.2: Hazard : ath t -- esponding conf ent interval, p-

"'t-r !
value and the CPE of ou genEﬁggnatlre =

UMAMICH - All stage T

p-value CPE

Risk score 992 (1.77,2.79) 1.50e-13 0.688
Categorical 2.86 (1.96, 4.18) 1.20e-08 0.621
UM+MICH - Stage I ~ Hazard ratio 95% C.I.  p-value CPE
Risk score 1.83  (1.31,2.57)  0.0002 0.648

Categorical 2.55  (1.43, 4.52) 0.0009 0.610
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Stage IB
Stage 11
Stage 111




Chapter 6

Slgnature y&ﬁﬂﬁf ion' .

& = = aif
o

data sets,--QAN/D
algorithm ts‘: mhe 1 ; | Se! .g;.;ééme probe
sets selected ﬁém
training data. Sf,c?nd '?ef.'e.,-ben

a@ﬁ at tﬂ'\a" sample means

in the training data. __Eh.e%f W_é.,.-u'é'ed the siﬁ%. coefl nts derived from the

training data to eomblne%hﬁ;'fexgpes? .IB o.ijles’bﬁt:l one gene signature as a
risk score. We also separated the patients into two groups; high risk and low
risk by cutting at the median risk score in the testing set. To present the
prediction power, both the continuous risk score and the categorical classifier
were used to fit the Cox model. The hazard ratios with the corresponding p-
values and the CPE were evaluated. For the samples of stage I patients only,
we applied the same procedure with the same probe sets, linear combination

coefficients to get the same risk score. The median of the risk score of the

50
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stage I patients in each testing set was used to be the cutoff as a categorical

classifier.

6.2 Cross platform adjustment

Another independent cohort data from Duke University was used as an
external validation data set. There were two challenges for applying our
gene signature in this data, fe.t i F—'lnEt ﬁﬁer@'rw?e d}fferent tumor cell types,
squamous cell carcmipmas and:ac%nocarg%o‘mas in Qﬂs data set. Second,

the platform, H’EHIIB'Sp__hFéQ arra

—

is data sé‘ia:',was 'dlfferent from the
this dai.'a set, a cross
&}"'amntamed all the
,429 pr be sets 1 ght cause
oid .;hlst'_'ystematlc

training datag'_ “Therefor
platform adg-ns‘gdr_llwqt
probe sets"ih;l U133A
the scale Z“han%‘e i

bias, ﬁrsthﬁ?e applie o get th\‘tfraw data.

e
Then we se';r'cte(t't'he ; i nd"-H'U 1|'-‘q3plus2 and
. - . Pyt
adjusted the expressignprofile of these matc e I.S'eps by _élmplementmg

the trim mean st __gpr Lagain.

v f-\. -#J‘_I

Wq_ 1mple1qlented the same

validation proceduf‘e in t'F-E'é datar set as in ihea.other two- Oahdatlon sets.
-'_"_ = = ’ [ - ."'F
. i
1-‘_".7-15,".. = jiEl

6.3 Validation results

All the testing results were summarized in table 6.1. To compare with our
signature, the testing results of using TNM tumor stage as a classifier and
the best-performing method (method A) from Shedden et al. (2008) were
also included in table 6.1. Here the TNM tumor stage classifier was simply

separating the all stage patients into two groups; stage I and late stage. The
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stage I patients was separated by stage IA or IB. Method A gave a contin-
uous risk score constructed by using the average expression profiles of 100
clusters to fit ridged Cox proportional hazard model. We noted that the
results of method A were analyzed from the expression profiles preprocessed
by implementing dChip algorithm for entire training and testing data set.
In CAN/DF and MSK two testing sets, all of these four methods performed
good for the all stage patients prediction Only our gene signature, both

continuous and categorl(lzal ’1y_pej.s h';d all h{'zaid I‘i:_ClOS significantly greater

than 1 for all stage and stage r]_"-pa:ftlents in. eth dataﬁéts The hazard ratio

s

of method A vqﬁasll'ﬁop-w',ugmﬁc

han ._‘1_1;1-& CAN_,ADF data. The

hazard ra,tlos'l.gf TNM # not mgmﬁeantly greater
than 1 in b1l'ﬂ:h ’ce.éf,l : ra{cm of TNM tumor
stage TA E;ﬁd IB Wa,l:: small DF data | et T hlS result did

not sugge%"fl using t

external "Eﬁdation e hazard ratios of
e T

p:a.’c'l-entéi‘I of both the

all stage and. early Qﬁag n i &at
better for stage_l than al_l t.he

ity sxgnat-%re performed
& , %'ise...t: Wefound that there
were five stage IV‘ﬁnd fffteen stdg.e IIIB pg;_’gi.eﬂts i thlll-s aata set. However,
there were only 11 Stage-"IHP patlents and no s'tagb IV patients in training
data set. Furthermore, there were ﬁ("le of’i these late stage patients died within
half years. This might be a reason that all patients prediction performed not

good as the TNM tumor stage.

The Kaplan-Meier curves were given to illustrate the difference of survival
functions between high risk and low risk groups. The Kaplan-Meier curves for

classifying patients by TNM tumor stages were also given. Due to the small
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sample size, highly censored rate and the relatively homogeneous samples,
classifying CAN/DF into different risk groups was much harder than other
data set. The Kaplan-Meier curve showed that our signature had reasonable
good prediction power in such a data set. The significant p-value for the Duke
validation set showed that our gene signature, derived from adenocarcinomas
patients only, had potential to predict patients with different tumor types.

We concluded that our gene signature had good prediction power for all stage
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Table 6.1: Validation results in CAN/DF, MSK and Duke data sets

CAN/DF All stage Hazard ratio 95% C.I. p-value CPE

Risk score 1.65 (1.17,2.31)  0.002 0.662
Categorical 3.96  (1.68,9.34) 0.001 0.651
TNM stage 325 (1.54,6.84)  0.002 0.616
Method A 0.57  (1.20, 2.60) 0.003 0.623
CAN/DF stage I =~ Hazard ratio 95% C.I. p-value CPE
Risk score . Eﬁ 'J'!*i{)h“ '“"F';*iﬁ'i-}-.; 0.036  0.666

AEH
Categorical i.:?lll; 'ﬁﬂ_‘& (1 .I%?} 74) 1%{i 7 0.648
TNM stage o 0%.:;'0 342"" 0 546
Method A J

'F-.

"'.F

Risk scor*é_‘. o
Categon@il " : | ; . ',:,
TNM st e. 0.3y 1.91, 7. .0.642
Method A_L 1.8 24, 4 0.002" 03@27

MSK stage L'L \:E:"\ ard ratio 95%

Risk score -'1;:';:-_:.; ;ﬁ\*{% 3‘-"'l 0 654

Categorical ":".':‘;;:'_1 - ;'8:9 (1. 531#'16 |:th 0.715

TNM stage E'*@Fﬁ‘gﬂ?ﬁﬁﬁl 0.127 0.611
Method A 2.10  (1.15, 3.84) 0.014 0.656
Duke All stage Hazard ratio 95% C.I. p-value CPE
Risk score 1.22  (1.02, 1.47) 0.032 0.580
Categorical 1.71  (1.01,2.87)  0.043 0.566
TNM stage 217 (1.29, 3.63) 0.004 0.589
Duke stage I Hazard ratio 95% C.I. p-value CPE
Risk score 1.44  (1.10,1.87)  0.007 0.635
Categorical 293 (1.36,6.34)  0.005 0.625

TNM stage 1.97  (0.95, 4.10) 0.070  0.580
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Figure 6.1: Kaplan-Meier curves for all stage samples separated by gene

signature
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SummarY La;h“ﬁ“ﬂ%ﬁ&ﬁé&on
& |5 g L e

'S e,
& el
©

We rea’;j.alyzed ci from S edden eﬁ'al (2008)
and derlvg‘d‘ a ‘gene si ' ' n I?roﬁliéé. Tested
in two mdegendent :

predlctlon ‘-?E)r t

tients only. F,];I.f-'th nor 4 leCthD power
in an external N -iC Wi rent-:t;"lfmor cell types.
N‘%? A ! - @ﬁ;lﬁ? 3 yP
iy, % = 2
Most of the avallable‘éﬁ'ﬂyfﬁ-ﬁrf d?rejfm

tial data filter, feature selection and 51gnature construction. Our analysis

atleﬂts qf stage I pa-

Tl

il
’G;!ﬁ three conceptions; ini-

procedure also contains three steps; gene filter, gene selection and signature
construction. Compared with other methods, our analysis procedure has
several advantages. First, we proposed a new criterion to filter out some
inconsistent genes. Second, the gene selection and the signature construc-
tion are both supervised by the patient survivals. Third, some non-linear

interactive structures are considered in our procedure. Fourth, the model

29
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assumption for the gene selection and the signature construction part in our
procedure is the least. Furthermore, the interpretation of our signature is
easy and clear. However, there are still some unsolved issues. Although our
LA hub gene selecting procedure shows the significancy of the selected LA
hub gene, but the significancy of its paired genes is not showed. A method to
screen the selected paired genes is need. However, in practice, we may rely
on some Biological knowledge to choose the paired genes. In our analysis
procedure, there is only one‘[ﬁ.rpalgﬁsﬁ ml"r l;h_gmg;l_ature construction part.
However, if there arei;_-nore LA -pé-,gnrs selee _g a bettef'ha_odel to incorporate
the LA pairs 1511@"'6'@;;3;%951011' . s\;:'éaed

& =
7.2 Discussion e T
Y | e
Discussion of.th h
Our gene signatu files _oflsjiven genes
(= |
where five genes wer and %the{ two genes

ding t'e.t;ﬁe s’fgn of the coef-
ene?&fg{ect Qr'"lrlsk genes. The

ion method. A

ficient of our &giﬁl.ture 'flvfze;?:_a
negative coefﬁclent lry.‘hc -ffd the increase oE-’%xpressmn.'assomated with good
prediction and the posﬁf VGjOBﬁiCl?ﬂt mdu-ja:t.eﬁ "ti:l'e increase of expression
associated with pool prediction. B—c;t}; protect and risk genes were contained

in these 7 genes.

The 3 protect genes are TMEMG66, CSRP1 and BECN1. BECNI, also
known as autophagy-related gene 6, played a key role in autophagy. It has
been reported to be involved in various cancers. It can inhibit the growth of

colorectal cancer cells. The expression of beclin 1 is associated with favorable
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prognosis in stage IIIB colon cancers. CSRP1 is related to gene regulation,
cell growth, and differentiation. And it is hypothesized to be a colorectal
cancer related tumor suppressor gene. TMEMG66 is a novel gene known as
transmembrane protein 66. The 2 risk genes are FOSL2 and ERO1L. FOSL2
is contained in the Fos gene family which encodes leucine zipper proteins that
can dimerize with proteins of the JUN family, thereby forming the transcrip-
tion factor complex AP-1. It was implicated as regulators of cell proliferation,
differentiation, and transformation. The over expression of FOSL2 was also
indicated that may play a major r'é_le in CQII..%_AL expression and oncogenesis in
ATLis associated with#. more ‘aggressive tumor p?épotype and is probably
involved in breast cancerprogression in vivo. EROli:is esse_ntial oxidoreduc-
tase; a source of:;);tidative stllresflil-owever,lit'was indicaté&_a@ a protect gene
in another lung adenocarcinprgmpégg_pqd%i}?’st;qldy [30]. Another study [31]
suggested that JLRO1L plays zlt ke@(ﬁ_ﬂ inhiibiting tumomsgrowth via in-
hibiting VEGF-driven angio#e esis. ;-T:e-se results disagreed with our finding.

) r-t"}_ie gell?eiEROlL ta hit the univariate

Therefore, to check this issue, we us
Cox proportional héz_grd m‘jdqzl. In the trainh.}g'ldata sety.the hazard ratio is
1.35 and it is signi]ﬁéantlzy Iglre!;tter than 1 WithI 95%_conﬁaence interval from
1.19 to 1.54 (p-value < -10%5). Infother validation data sets, the hazard ratios
are all greater than 1, although -fhey z;re not significant. Thus, in this large

sample data set, the increase of expression profile ERO1L was related poor

prediction.

The LA hub gene SRP54 is known as signal recognition particle 54kDa. It
binds to the signal sequence of presecretory protein when they emerge from
the ribosomes and transfers them to TRAM. A gene chromosomes study

suggest that SRP54, BAZ1A, NFKBIA, MBIP, HNF3A, and two unchar-



CHAPTER 7. SUMMARY AND DISCUSSION 62

acterized expressed sequence tags are candidate targets of the amplification
mechanism and therefore may be associated, together or separately, with de-
velopment and progression of esophageal squamous cell carcinoma (ESC). Its
paired gene PAWR is a human gene coding for a tumor-suppressor protein
that induces apoptosis in cancer cells, but not in normal cells and specifically

upregulated during apoptosis of prostate cells.

Relationship between 0111‘ H’emﬁutaﬂ:iolﬂ ;‘?ocedure and Benjamini-
Hochberg procedufe- llnden .Imiepend._ehtv assum}mon

& =& Y
In gene sel_eg,t_ion _p!i'-;ta,- Wi tlep:;_ﬂmce(}u.ne to select the
£ {
cutoff of theleorrelation The cutoﬂ" was decided
G
by the ratio?o'f t}ié':!e : um'ls_f__.r QT correlatlon
coefficient;: éreater : is i can be,.wewed as
- \ ™
a multiple testing g s that X, and Y°

was uncorrelated wi ), N(y°)), for
- ol
= 1,2, T~ 7Sin tm)ﬂ'l-é]li'%z_ depended
on the ranks of '.of the Va bles) llj;_f,"djstmkl)uted Thus,
we can apply t.hé ﬁern}ﬂtatl - ’Er .referE'qee distribution
of corr(N(x), ("g)) aan('f get" ‘tﬁé. &gmﬁcg_ni_?level er'I: efl'ch observed 1, =
corr(N(x4), N(y°)). The"' tWIQ-‘Slded p-value flor rix-cdrrespondlng cutoff r can
- 3 H-l
be evaluated by e j
1 x
= 2— Z ]_{|COTT x),N(x)* )|>T}(N(X),N(X) ), (71)
N(x)*eN

where A was the collection of all the permutations of N(x)*’s. Since the
number of elements in A was too large (256!), in practice, the p-value can
be estimated by

p(r) Z L {jcorr(N (x).N ()% |2} (N (%), N (%)), (7.2)
N(x)*e./\/l
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where M was a large subset of N'. With the p-value given from the permu-
tation test, we might implement the Benjamini-Hochberg procedure [17] to
solve the multiple testing issue. The Benjamini-Hochberg procedure can be
summarized as the follow. Let p(;) be the ordered p-value, for i = 1,2, ..., n.
The null hypotheses H?l), H(Oz) H( » were rejected for k = max{i | pg) <
77%q}. Under the independent or positively correlated assumption of the tests,
this procedure controlled the false discovery rate (FDR) at level 72¢ < g,
where m was the total nuqlbelr ofﬂlypothéges{(Gp and my was the num-
ber of true null hypoﬁheses F’ur‘th:%rmore& Benjarﬁlm‘and Yekutieli (2001)

| == -
[17], they conc}qq(}ﬁ that if we

mﬂ"‘% thEn the Benjamini-

Hochberg procedure still ' ery rate _(-F-DR) at level
& e -

Mg < g Néverﬁlli.élés or.p mnS(e'fvatlve than
the Bonfertoni methiod for 1 p-value. In ouraata there
bt : . 3 ! ™~

were no genes gould be selecte 7 ures &
=
= - o W e Py
The co’riilple);?— cor ; genes is not clear.
| , : e
The dependeucy of"-'t.h i - e'"mod‘ ed procedure

]

might be too anservatw& * e e].atlonsh,}p between our

permutation proce‘&ure anef th(‘_‘;.':Bepj amlnl-i],%_fehberllgmf)rfc&dure under the in-
dependent assumptlon H' Wg,.assume that the exbpreﬂismns X1,Xs, ..., Xg+ Were
independent, then our procedure cdlnstr‘ucted a reference distribution with
a total number 1,000x6,252. The p-value of the ordered absolute value of
correlation coefficients 75 can be estimated by é,/G* from equation (7.2)
with #(M) = 1000G*. Then our selecting criterion j = max{i | ¢;/i < a}
is the same as the original criterion in the Benjamini-Hochberg procedure

by taking o = ¢ and dividing G* both side. Thus, under the independent

assumption, our selecting procedure is the same as the Benjamini-Hochberg
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procedure with p-value estimated by the permutation test.

Gene signature performance in different data preprocess methods

The expression profiles we analyzed in were preprocessed by MAS 5.0
Statistical algorithm from Affymatrix (2001). One reason we used the MAS
5.0 preprocessing method is that the MAS 5.0 algorithm allows us to imple-
ment on each chip sepatia,te!yt ‘rl'o g‘re.p{o:: s-ﬂfe E;alnlng and testing data
together is somewhal unreahstlc-:i:: This _Irfﬁon also ‘ﬁ;et.lvated us to filter

out the genes wqth 1n06§s&ste i s‘lgi‘-‘y:&ilfferen-t preprocessing
/! , }
method. HOW’EW@_I; we | i repi?__c_gssgc_l by two dif-
ferent prep%cesqsiﬁé ; i e'e;_fté_ﬂ_':g'é;lges to derive
the &gnatux;‘é by ap All the | preprocess
b ™
methods were impl After implement-
e = ruil -
ing the modlﬁed shi values r(h)i the large
i i S
sample chi- _Spuaf- dt hése"-fsti|| preprocess
method. We_ﬁl_d n(;f' 'su e veetor aﬁ,ﬁthe gene sig-

nature. HOWGV@!’ a,s a ?:QII}PJa

ai@%ﬁthe s@i&,atures with the
same procedure on CAN /“ﬁF an_,d MSK datja.-%t

s. The I(.?st}mated coefficients
of SIR direction for expre‘ESKya P }ﬁles preprgoesied 1)y dChip and RMA were

given in table 7.1

We noted that our cross platforms adjustment could not be applied for
these preprocessing methods. Therefore, we did not test the signatures on
the Duke data set. The estimated hazard ratios with the corresponding 95%
confident intervals, p-values and the CPE were given in table 7.2. The results

showed that the continuous risk were also significant in all testing sets and
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Table 7.1: The estimated coefficients of SIR direction for expression profiles

preprocessed by dChip and RMA

dChip SIR dir. coefficient RMA SIR dir. coefficient
TMEMG66 -0.8949 (Protect) TMEM66 — -0.6386 (Protect)
CSRP1 -0.4813 (Protect) CSRP1  -0.5222 (Protect)
BECN1 -1.7374 (Protect) BECN1  -1.0540 (Protect)
FOSL2 0.7738  (Risk) FOSL2 0.4945  (Risk)
(=) lt"i' -
ERO1L (%:1:}1'*?'&{‘rs ‘{E-Jﬁ&@l_L 0.5166  (Risk)
e P TRy
(SRP54) -'1'15563 kg ) _&E (SRP5 :3_‘;0 5033 (-)
(PAWR) \,w 0‘%48 ",:@1)600 (-)
LI
SRP54*PAWR -0. 07517 (Protect)
: 5 1.-.3:
p—value _____ ; e Nae 0.10
the categtﬂ.'}pal €las orstage I patients 1I‘CAN /DF
data. The Kaplan i S0 7 ese sig%gture per-

' 4o Py
formed worse t‘%?ﬁ t igi i a,h_ép,ts;f;_; CAN/DF
i efh&soq.ﬁwas the mean
; Qur dlrg{_qismn reduction

Ig%ieracblon_.b' ﬂ]ln The mean shift

data preproc@aﬁsed

shift caused by,;heproc?&%m
model was nonhneiL _b.@caﬂ'ée W.E-'aqlded the

-.r
issue may affect our ndi.ﬂm e structure eiei(-'le these results suggest
that the gene signature had potenfg'l f'o‘r Tung adenocarcinomas diagnostic,
but for implementing in practice, the improvement of array technique and

the preprocessing is still needed.
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Table 7.2: Validation results in CAN/DF and MSK data preprocessed by

dChip and RMA

CAN/DF All stage Hazard ratio 95% C.I. p-value CPE
Risk score - dChip 2.76  (1.78, 4.28) 0.000 0.710
Risk score - RMA B @,Eﬂu,-l‘ifgj_ﬁﬁ_z 0.000 0.659
Categorical - dChlp.{lr-,.'T -_15_21.‘&5 (1.84% 10. 28%’# 000 0.659
Categorical - W v 13 44 - -.84) e 0002 0.639
CAN/DF s}@ I Hagfidratio  95% Qi “p-value CPE

Risk scor "-i'dG E il

Risk sco RMA b

ﬁi it
Categorieal - dCh ) 2_ # (0769,/6150)
Categorih! RM : L4534, 0.49, 4 42)
MSK Au’.a:'ag-e?aﬂ

Risk score . QC

A |

Risk score -

D = 2 aes

Categorical - d 0.622
Categorical - RMA . ':-.}{. —%- 0.627
MSK stage I [. p-value CPE
Risk score - dChip 3.08 (1.41,6.71) 0.003 0.715
Risk score - RMA 246  (1.18,5.15)  0.017 0.672
Categorical - dChip 997 (1.28,77.5)  0.003 0.708
Categorical - RMA 9.97 (1.28,77.5)  0.003 0.708
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Figure 7.1: Kaplan-Meier curves for all stage and stage I samples separated

by gene signature preprocessed by dChip in CAN/DF and MSK data
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Figure 7.2: Kaplan-Meier curves for all stage and stage I samples separated

by gene signature preprocessed by RMA in CAN/DF and MSK data
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