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摘要

半監督式域適應涉及到學習使用少量的標記目標數據和許多未標記的目標數

據，以及來自相關領域的標記源數據，以對未標記的目標數據進行分類。當前的

半監督式域適應方法通常旨在通過特徵空間映射和偽標籤分配將目標數據與標記

的源數據對齊。然而，這種源導向的模型有時會將目標數據與錯誤類別的源數據

對齊，從而降低分類的表現。我們提出了一種新穎的域適應典範，可以調整源數

據以匹配目標數據。我們的核心思想是將源數據視為一種含有噪聲標記的理想目

標數據。我們提出了一個半監督式域適應模型，該模型借助從目標的角度設計的

清理元件來動態清除源數據的噪聲標籤。由於這種想法與現有的其他半監督式域

適應方法背後的核心理念有很大的不同，因此，我們提出的模型可以很容易地與

這些方法結合以提高它們的性能。在兩種主流的半監督式域適應方法上的實驗結

果表明，我們提出的模型有效地清除了源標籤內的噪聲，並在主流的數據集上得

到優於這些方法的表現。

關鍵字：域適應、半監督式域適應、機器學習、遷移學習、噪聲標籤學習
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Abstract

Semi-supervised domain adaptation (SSDA) involves learning to classify unseen tar-

get data with a few labeled data and many unlabeled target data, along with many labeled

source data from a related domain. Current SSDA approaches typically aim at aligning

the target data to the labeled source data with feature space mapping and pseudo-label

assignment. Nevertheless, such a source-oriented model sometimes aligns the target data

to source data of the wrong class, degrading the classification performance. We present a

novel source-adaptive paradigm that adapts the source data to match the target data. Our

key idea is to view the source data as a noisily-labeled version of the ideal target data.

We propose an SSDA model that cleans up the label noise dynamically with the help of a

robust cleaner component designed from the perspective of the target. Since this paradigm

differs greatly from the core ideas behind existing SSDA approaches, our proposed model

can be easily coupled with such approaches to improve their performance. Empirical

results on two state-of-the-art SSDA approaches demonstrate that the proposed model ef-

iv
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fectively cleans up noise within the source labels and exhibits superior performance over

those approaches across benchmark datasets.

Keywords: Domain Adaptation, Semi-Supervised Domain Adaptation, Machine Learn-

ing, Transfer Learning, Noisy Label Learning
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Chapter 1 Introduction

Domain adaptation (DA) focuses on a general machine learning scenario where train-

ing and test data originate from two related but distinct domains: the source domain and

the target domain. Extensive studies have been conducted on unsupervised DA (UDA),

where no labels in the target domain can be accessed, from theoretical [2, 18, 35] and

algorithmic [5, 8, 14, 15, 21, 36] angles. Recently, semi-supervised domain adaptation

(SSDA), another DA setting that allows access to a few target labels, has become popular

as it is simple but reflects the needs of real-world applications.

The most naive strategy for SSDA, commonly known as S+T [20, 32] is to train the

model using source data and labeled target data with standard cross entropy loss. This

strategy is generally vulnerable to the well-known domain shift problem, which stems

from the gap between different data distributions. To address this issue, many state-of-the-

art algorithms explore better use of unlabeled target data to align the target distributionwith

the source distribution. Recently, semi-supervised learning (SSL) algorithms have been

adopted for SSDA [11, 20, 29] to regularize unlabeled data via entropy minimization [6],

pseudo-labeling [10, 23], and consistency regularization [1, 23]. These classic source-

oriented strategies have prevailed for a long time. However, they usually overlook the

potential of making the alignment bi-directional. Therefore, once the S+T space has been

misaligned, it is generally hard to escape the situation illustrated in Figure 1.1.
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Typical Method trained by source labels

Source Label Adaptation (Ours)

source data

target data

target centers

corrected  
source data

Find the pseudo target  
centers of target data Correct source labels Trained by the 

corrected labels 

Figure 1.1: Top. Training the model with the original source labels can produce mis-
aligned target data. Bottom. After cleaning up noisy source labels with our SLA frame-
work, the target data aligns with the correct classes.
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Figure 1.2: T-SNE feature visualizations that illustrate misalignment on Office-Home A
→ C dataset with ResNet34. The model is trained by S+T. Left: 0-th iteration. Right:
5000-th iteration: misalignment has already occurred at an early stage. Guided by source
labels and a few target labels, a portion of the target data from the 59th class misaligns
with source data from the 7th class.

True\Pred Class 7 Class 59 Class 41 Others
Class 59 38.5% 19.8% 13.5% 28.2%

Table 1.1: Partial confusion matrix of S+T on 3-shot Office-Home A → C dataset with
ResNet34. About 40% of the target data from the 59th class is wrongly classified as the
7th class. Only about 20% of the data is predicted correctly.

We take a deeper look at a specific example from the Office-Home dataset [26] to

confirm this issue. Figure 1.2 visualizes the feature space trained by S+T using t-SNE [3].

We observed that misalignment between the source and target data has occurred at an early

stage. For instance, in the beginning, a portion of the target data from the 59th class is close

to the source data from the 7th class. Since we have access only to the source labels and a

few target labels, without proper guidance from enough target labels, such misalignment

becomes more severe after being trained by S+T. Table 1.1 shows the partial confusion

matrix of S+T. Roughly 40% of the target data in the 59th class is mispredicted as the 7th

class, and only around 20% of the data is classified correctly.

From the case study above, we argue that relying on source labels like S+Tmisguides

the model to learn the wrong classes for some target data. That is, source labels can be

3
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viewed as a “noisy” version of the ideal labels for target classification.

Based on this conjecture, the SSDA setting is more like a noisy label learning (NLL)

problemwith a massive amount of noisy labels (source labels) and a small number of clean

labels (target labels).

Learning with noisy labels is a widely studied machine learning problem. A popular

solution is to clean up the noisy labels with the help of another model: this is also known

as label correction [27]. To approach domain adaptation as an NLL problem, we borrow

from label correction by proposing a source label adaptation (SLA) framework, as shown

in Figure 1.1. We construct a label adaptation component that provides the view from

the target data and dynamically cleans up noisy source labels at each iteration. Unlike

other earlier studies that study how to regularize unlabeled data, we mainly investigate

how to train source data with adapted labels to better reflect the ideal target space. This

source-adaptive paradigm is entirely different from the core ideas behind existing SSDA

approaches. Thus, we can combine our framework with other strategies to produce supe-

rior results. We summarize our contributions as follows.

• We argue that classic source-oriented methods are still characterized by a biased

feature space from S+T. We address this by adapting the source data to the target

space by modifying the original source labels.

• We address DA as a particular NLL problem and present a novel source-adaptive

paradigm. As our SLA framework can be coupled with other methods, the adapta-

tion can be bi-directional, further enhancing performance.

• We demonstrate the usefulness of our proposed SLA framework when coupled with

state-of-the-art SSDA algorithms. The framework significantly improves existing

4
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algorithms on two major benchmarks, inspiring a new direction for solving DA

problems.

5
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Chapter 2 Related Work

2.1 Problem Setup

DA focuses on K-class classification with an m-dimensional input space X ⊆ Rm

and a set of labels {1, 2, . . . , K}. For simplicity, we define a label space Y on the prob-

ability simplex ∆K . A label y = k ∈ {1, 2, . . . , K} is equivalent to a one-hot encoded

vector y ∈ Y , where the k-th element is 1 and all others are 0. We consider two domains

overX×Y : the source domainDs and target domainDt. In SSDA, we sample an amount

of labeled source data S = {(xsi , ysi )}
|S|
i=1 from Ds, labeled target data L = {(xℓi , yℓi )}

|L|
i=1

from Dt, and unlabeled target data U = {xui }
|U |
i=1 from the marginal distribution of Dt

over X . Typically, |L| is considerably smaller than |S| and |U |, for instance, one or three

examples per class. Our goal is to train an SSDA model g with S, L, and U to perform

well on the target domain.

6
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2.2 Semi-Supervised Domain Adaptation (SSDA)

SSDA can be viewed as a relaxed yet realistic version of UDA. An SSDA algorithm

usually involves three loss functions:

LSSDA = Ls + Lℓ + Lu (2.1)

where Ls stands for the loss derived by the source data and Lℓ and Lu denote the losses

from the labeled and unlabeled target data. As discussed in Section ??, based on S+T,

a typical SSDA algorithm usually focuses on designing Lu to better align the target data

with the source data. Many recent methods tackle SSDA using SSL techniques because

of the problem similarity [34]. [20] proposes a variant of entropy minimization [6] to

explicitly align the target data with source clusters. [30] decomposes SSDA into an SSL

and a UDA task. The two different sub-tasks produce pseudo labels, respectively, and

learn from each other via co-training. [11] groups target features into clusters bymeasuring

pairwise feature similarity. [29] utilizes consistency regularization at three different levels

to perform domain alignment. In addition, [11] and [29] both apply pseudo labeling with

data augmentations [23] for improved performance. To the best of our knowledge, these

methods primarily explore the usage of unlabeled target data while adopting the most

straightforward strategy for the source data. In our study, we observe that source labels

can seem noisy from the viewpoint of the target data. We thus develop a source-adaptive

framework to gradually adapt the source data to the target space. Since we are addressing

a new facet of this problem, our framework can be easily applied to the SSDA algorithms

mentioned above, further improving the overall performance.

7
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2.3 Noisy Label Learning (NLL)

The effectiveness of a machine learning algorithm depends greatly on the quality of

the collected labels. In particular, for current deep neural network architectures [7], such

problems might become much worse as a deep model can usually arbitrarily fit the dataset

even if the labels are random [33]. To clean the noisy labels, [19] proposes a smoothing

mechanism to mix noisy labels with self-prediction. [25] models clean labels as trainable

parameters and uses joint optimization to alternatively update parameters. [16, 24, 31]

estimate a transition matrix to correct the corrupted labels. However, learning a global

transition matrix usually requires a strong assumption concerning the source of noisy la-

bels, which is hard to verify in real-world scenarios [28]. [37] trains a label correction

network in a meta-learning manner to help correct noisy labels. Motivated by [19, 37],

we propose a simple framework that efficiently builds a label adaptation model. By mod-

ifying the source labels, we adapt the noisy source labels to better fit the ideal labels for

target classification.

8
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Chapter 3 Proposed Framework

We propose source label adaptation (SLA), a novel SSDA framework. An overview

of our proposed framework is provided in Figure 3.1. In Section 3.1, we connect the

(SS)DA problem to NLL and show that a classic NLL method [19] cannot be directly

applied to solve SSDA. In Section 3.2, we review the prototypical network [22], a classic

few-shot learning algorithm, and propose protonet with pseudo centers (PPC) to better

estimate the prototypes. In Section 3.3, we summarize our framework and describe the

implementation in detail.

9
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A→ C P→ C
Method 1-shot 3-shot 1-shot 3-shot
S+T 52.9 58.1 48.8 55.5

Ideal S+T 82.9 87.4 81.6 86.0
Table 3.1: Accuracy (%) of S+T and ideal S+T on 3-shot OfficeHome dataset with
ResNet34. In the ideal case, where we have access to the ideal target model, the per-
formance is dramatically influenced simply by modifying the source labels to match the
target view.

3.1 Domain Adaptation as Noisy Label Learning

In domain adaptation, we seek an ideal model g∗ that minimizes the unlabeled target

risk. Ideally, the most suitable label for a source instance xsi in the target space is g∗(xsi ).

That is, the ideal source loss L∗
s is

L∗
s(g|S) =

1

|S|

|S|∑
i=1

ℓce(g(xsi ), g∗(xsi )). (3.1)

Combined with the labeled target loss Lℓ, we refer to the model trained by L∗
s and Lℓ

as ideal S+T. A normal S+T and an ideal S+T are compared in Table 3.1: performance is

influenced dramatically simply by modifying the source labels.

In practice, however, we can only approximate the ideal model. We thus take the

original source labels as a noisy version of the ideal labels and approach DA as a NLL

problem. We first apply a simple method proposed by [19] to help correct the source

labels; we refer to this as label correction with self-prediction [27]. Specifically, for each

source instance xsi , we construct the modified source label ŷsi by combining the original

label ysi and the prediction from the current model g with a ratio of α:

ŷsi = (1− α) · ysi + α · g(xsi ). (3.2)
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Then, the modified source loss L̂s is

L̂s(g|S) =
1

|S|

|S|∑
i=1

ℓce(g(xsi ), ŷsi ). (3.3)

However, in DA, such a method might not be helpful since the model usually overfits

the source data, which makes g(xsi ) ≈ ysi . That is,

ŷsi = (1− α) · ysi + α · g(xsi )

≈ (1− α) · ysi + α · ysi = ysi .
(3.4)

Figure 3.2 shows that when performing label correction with self-prediction, the KL

divergence from ys to g(xs) approximates 0 after 2000 iterations, indicating that self-

prediction is almost the same as the original label. In this case, label correction is nearly

equivalent to doing nothing.

To benefit from the modified labels, we must eliminate supervision from the source

data. As an ideal clean label is the output from an ideal model g∗, we should instead find

a label adaptation model gc that approximates the ideal model and adapt the source labels

to the view of the target data. We define an adapted label ỹsi as a convex combination

between the original label ysi and the output from gc, which is the same as [19]:

ỹsi = (1− α) · ysi + α · gc(xsi ). (3.5)

12
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Figure 3.2: Average KL divergence from ys to g(xs) at each iteration (3-shot Office-Home
A→ C with ResNet34, smoothing by EMA with a ratio of 0.8)

3.2 Protonet with Pseudo Centers

In the semi-supervised setting, we are given access to a few target labels. Nonethe-

less, learning from a limited number of target labels can lead to severe overfitting. Thus,

we learn a prototypical network (protonet) [22] to mitigate the few-shot problem.

Given a dataset {xi, yi}Ni=1 and a feature extractor f , letNk denote the number of data

labeled with k. The prototype of class k is defined as the center of the features with the

same class:

ck =
1

Nk

N∑
i=1

1{yi = k} · f(xi). (3.6)

Let Cf = {c1, . . . , cK} collect all centers with extractor f . We define PCf
: X 7→ Y

13
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as a protonet with centers Cf :

PCf
(xi)k =

exp(−d(f(xi), ck) · T )∑K
j=1 exp(−d(f(xi), cj) · T )

. (3.7)

Here d : F × F 7→ [0,∞) is a distance measure over feature space F , usually

measuring Euclidean distance, and T is a hyperparameter that controls the smoothness of

the output. As T → 0, the output of a protonet is close to a uniform distribution.

Since we have access to the labeled target dataset L, by Eqs. 3.6 and 3.7, we can

derive labeled target centers Cℓ
f and construct a protonet with labeled target centers PCℓ

f
.

When d measures Euclidean distance, a protonet is equivalent to a linear classifier

with a particular parameterization over F [22]. Thus, we can take the protonet as a label

adaptation model over a particular feature space. The protonet with labeled target centers

is built purely from the viewpoint of the target data, which should reduce our concerns

about the issue mentioned in Section 3.1.

However, for a protonet, the ideal centersC∗
f should be derived through the unlabeled

target dataset {(xui , yui )}
|U |
i=1. Since we have only a few target labels per class, the labeled

target centers Cℓ
f are located far from the ideal centers C∗

f . To better estimate the ideal

centers, we propose finding pseudo centers for unlabeled target data.

With the current model g, the pseudo label ỹui for an unlabeled target instance xui is

ỹui = argmax
k

gs(xui )k. (3.8)

After deriving unlabeled target datawith pseudo labels {(xui , ỹui )}
|U |
i=1, we obtain pseudo

centers C̃f by Eq. 3.6 and further define a protonet with pseudo centers (PPC) PC̃f
by

14
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From / to Labeled target centers Pseudo centers
Ideal centers 10.02 4.06

Table 3.2: Average L2 distance from ideal centers to labeled target centers / pseudo centers
over the feature space trained by S+T (3-shot Office-Home A→ C with ResNet34)

Eq. 3.7.

Table 3.2 compares the average L2 distance from the ideal centers C∗
f to the labeled

target centers Cℓ
f and the pseudo centers C̃f over the feature space trained by S+T. The

distance between C̃f and C∗
f is significantly shorter than that between Cℓ

f and C∗
f , which

indicates that the pseudo centers are indeed much closer to the ideal centers.

Taking PPC as the label adaptation model, the modified label ỹsi turns out to be

ỹsi = (1− α) · ysi + α · PC̃f
(xsi ). (3.9)

3.3 Source Label Adaptation for SSDA

We propose a label adaptation loss for source data to replace the typical source loss

with standard cross entropy loss. For each source instance xsi with label ysi , we first com-

pute the modified source label ỹsi by Eq. 3.9. Then, the label adaptation loss L̃s is

L̃s(g|S) =
1

|S|

|S|∑
i=1

ℓ(g(xsi ), ỹsi ). (3.10)

The proposed SLA for SSDA framework can be trained by the following loss func-

tion:

LSSDA w/ SLA = L̃s + Lℓ + Lu. (3.11)
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Lℓ is the loss function for labeled target data L, which can still be standard cross entropy

loss. In contrast to other widely used methods, we concentrate primarily on improving

the usage of the source data. Therefore, the loss function for unlabeled target data Lu can

be derived using any state-of-the-art algorithm, and our framework can be easily coupled

with other methods without contradiction.

3.3.1 Implementation Details

3.3.1.1 Warmup Stage

Our label adaptation framework relies on the quality of the predicted pseudo labels.

However, as prediction from the initial model can be noisy, we introduce a warmup hyper-

parameterW to produce more stable pseudo labels. During the warmup stage, we train our

model normally with original source labels. Specifically, at the e-th iteration, we compute

the modified source label ỹsi as

ỹsi =


ysi if e ≤ W

(1− α) · ysi + α · PC̃f
(xsi ) otherwise.

(3.12)

3.3.1.2 Dynamic Updates

The feature space and the predicted pseudo labels constantly evolve during the train-

ing phase. Updating the pseudo labels and centers ensures the quality of the projected

pseudo centers. It theory, it would be best to update the centers at each iteration. In prac-

tice, though, we update the pseudo labels using Eq. 3.8 and update the centers with the

current feature extractor f using Eq. 3.6 for every specific interval I . A similar issue was
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addressed by [13], who propose maintaining a memory bank to update the estimated cen-

ters dynamically. In our experiments, we update the pseudo labels simultaneously. As

maintaining a memory bank is time-consuming, we choose a relatively straightforward

approach.
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Chapter 4 Experiments

We first describe the experimental setup, including the datasets, competing methods,

and parameter settings in Section 4.1. We then present the experimental results to validate

the superiority of the proposed SLA framework in Section 4.2. We further analyze the

proposed framework and highlight limitations in Section 4.3.

4.1 Experimental Setup

4.1.1 Datasets

We evaluated the proposed SLA framework on two sets of SSDA benchmarks, in-

cluding Office-Home [26] and DomainNet [17]. Office-Home is a mainstream benchmark

for both UDA and SSDA that contains four domains: Art (A), Clipart (C), Product (P),

and Real (R), with 65 categories. DomainNet was initially designed for benchmarking

multi-source domain adaptation approaches. [20] picks four domains (Real (R), Clipart

(C), Painting (P), and Sketch (S)) with 126 classes to build a cleaner dataset for SSDA,

and focuses on seven scenarios instead of combining all pairs. Our experiments follow the

settings of recent studies [11, 20, 29], with the same sampling strategy for both the training

set and validation set, and we adopt both 1-shot and 3-shot settings on all datasets.
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4.1.2 Implementation

Our framework can be applied with many state-of-the-art methods. We applied it

with MME [20] and CDAC [11] to validate the efficacy of our method; the corresponding

methods are named MME + SLA and CDAC + SLA. For a fair comparison, we chose

ResNet34 [7] as our backbone, which was pre-trained on the ImageNet-1K dataset [4],

with the model architecture, batch size, learning rate scheduler, optimizer, weight decay,

and initialization strategy all following previous work [11, 20, 29]. We used the hyperpa-

rameters recommended for MME and CDAC. We set the mix ratio α in Eq. 3.12 to 0.3

and the temperature parameter T in Eq. 3.7 to 0.6. The update interval I mentioned in

Section 3.3 was 500. The warmup parameterW in Eq. 3.12 was 500 for MME on Office-

Home, 2000 for CDAC on Office-Home, 3000 for MME on DomainNet, and 50000 for

CDAC on DomainNet. After the warmup stage, we refreshed the learning rate scheduler

so that the label adaptation loss would be updated at a higher learning rate. All hyperpa-

rameters were properly tuned via the validation process. For each subtask, we conducted

the experiments three times. Detailed statistics concerning our results can be found in our

supplementary materials.

4.2 Comparison with State-of-the-Art Methods

We compare our results with several baselines, including S+T, DANN [5], ENT [6],

MME [20], APE [9], CDAC [11], DECOTA [30], MCL [29]. S+T is a baseline method

for SSDA, with only source data and labeled target data involved in the training process.

DANN is a classic unsupervised domain adaptation method, which [20] reproduces by

training with additional labeled target data. ENT is a standard entropy minimization orig-

19

http://dx.doi.org/10.6342/NTU202210189


doi:10.6342/NTU202210189

inally designed for semi-supervised learning, also reproduced by [20]. Note that for MCL,

we only compare with their DomainNet results. We leave the detailed analysis for MCL

on Office-Home to Section 4.3.

4.2.1 DomainNet

We show the results on the DomainNet dataset with 1-shot and 3-shot settings in

Table A.3. Note first that for MME and CDAC, almost all sub-tasks show improvement

after applying our SLA framework, except for two cases where CDAC + SLA performs

roughly the same as CDAC. Second, note that the overall performance of CDAC + SLA

for 1-shot and 3-shot settings reaches 75.0% and 76.9%, respectively; both outperform

previous methods and achieve new state-of-the-art results.
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4.2.2 Office-Home

We show the results on the Office-Home dataset with 1-shot and 3-shot settings in

Table 4.2. Similarly, after applying SLA to MME and CDAC, the performance improves

greatly except for one case under the 3-shot setting. Overall, our framework outperforms

the original methods by at least 1.5% under all settings.
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4.3 Analysis

4.3.1 MCL Reproducibility

MCL [29] uses consistency regularization for SSDA at three different levels and

achieves excellent results. However, in our experiments we were unable to fully repro-

duce their reported numbers. The reproduced 3-shot Office-Home results are shown in

Table A.5. After applying our SLA framework, although we stably improve the reproduc-

tion, we are still unable to compete with their reported values. We include our detailed

reproduced results in the supplementary materials, and will make the code publicly avail-

able.
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Method A→ P C→ A P→ A R→ C
S+T 74.7 56.3 58.1 59.1

S+T + PPC 77.1 59.8 60.9 62.1
S+T + SLA 77.7 60.5 61.3 62.5

Table 4.4: Accuracy (%) of S+T, S+T + PPC, and S+T + SLA on 3-shot Office-Home
with ResNet34. Although directly applying PPC to S+T improves performance, we show
that learning from the PPC-modified labels yields much better performance.

4.3.2 PPC for Inference

In SLA, we build a PPC to provide the view from the target data. PPC can be viewed

as a variant of the pseudo-labelingmethod proposed in [12], in which themethod is applied

to boost their final performance. If PPC performs well, a natural question is this: Is it

necessary to first modify the source labels by PPC and then learn from these modified

labels? As shown in Table 4.4, S+T + SLA outperforms directly taking PPC for inference.

This also confirms that we can do much better by carefully revisiting the usage of source

data.

4.3.3 Illustration of Adapted Labels

As discussed in Section 3.1, we seek to adapt the original source label ysi to the ideal

label g∗(xsi ). In practice, PPC helps predict the adapted labels. To demonstrate the effec-

tiveness of our framework, we implement S+T + SLA, predict the adapted labels by PPC

over a particular class, and illustrate the average probability distribution of the adapted

labels. The results are shown in Figure 4.1. Compared with the original source labels,

which are one-hot-encoded, our adapted labels are much closer to the ideal labels.

26

http://dx.doi.org/10.6342/NTU202210189


doi:10.6342/NTU202210189

Fi
gu
re

4.
1:

Av
er
ag
e
ad
ap
te
d
so
ur
ce

la
be
ls
fro

m
PP

C
an
d
id
ea
lS

+T
fo
ra

ce
rta

in
cl
as
s
(3
-s
ho
tO

ffi
ce
-H

om
e
A

→
C
w
ith

Re
sN

et
34
).
X
-a
xi
s:

th
e

cl
as
se
s;
Y-
ax
is:

th
e
pr
ob
ab
ili
ty

of
th
e
av
er
ag
e
ad
ap
te
d
la
be
ls.

W
e
ill
us
tra

te
th
e
av
er
ag
e
ad
ap
te
d
so
ur
ce

la
be
ls
in

S+
T
+
SL

A
fo
rs
ix

re
pr
es
en
ta
tiv

e
cl
as
se
s.

N
ot
e
th
at
th
e
or
ig
in
al
so
ur
ce

la
be
ls
sh
ou
ld

be
on
e-
ho
te
nc
od
ed
.
Th

e
re
su
lts

sh
ow

th
at
th
e
ad
ap
te
d
la
be
ls
ca
n
be

m
uc
h
cl
os
er

to
th
e
id
ea
l

la
be
ls.

27

http://dx.doi.org/10.6342/NTU202210189


doi:10.6342/NTU202210189

4.3.4 Warmup for MME + SLA

As described in Section 3.3, our framework relies on the quality of the predicted

pseudo labels. Thus, we introduce a warmup stage parameterW to derive a robust model.

We treat the warmup strategy as a two-stage algorithm. Taking MME as our backbone

method, the algorithm works in this fashion:

1. Train a model with normal MME loss forW iterations.

2. Take the model above as a pre-trained model and further apply label adaptation loss.

For the first step, intuitively, we should train the model until the loss converges. That is

how we select the warmup stage parameter for CDAC + SLA. Empirically, however, we

found that the performance of MME + SLA degrades if we train an MME model until it

converges. Table 4.5 shows the sensitivity test ofW ofMME + SLA on Office-Home. We

observe that regardless of the 1-shot or 3-shot setting, the performance generally worsens

with the number of warmup stages. To better understand this effect, we first pre-trained

a normal MME for W iterations, and then observed the label adaptation loss of MME +

SLA. Figure 4.2 plots the label adaptation loss of MME + SLA when first pre-training

MME for W iterations. We observe that when W = 5000, the initial label adaptation

loss is already close to 0. Label adaptation in this situation is almost equivalent to doing

nothing, as mentioned in Section 3.1.
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A→ C
Warmup stage (W ) 1-shot 3-shot

500 62.09 65.90
1000 61.95 64.99
2000 61.37 64.72
3000 61.53 64.87
5000 61.79 64.68

Table 4.5: Accuracy (%) for various warmup stagesW of MME + SLA on 3-shot Office-
Home A→ C with ResNet34

Figure 4.2: Label adaptation loss of MME + SLA by first pre-training MME forW itera-
tions on 3-shot Office-Home A → C with ResNet34 (smoothing by EMA with a ratio of
0.8)

4.3.5 Limitations

The proposed SLA framework might not be helpful if the label adaptation loss ap-

proaches 0. Although we address this using protonet with pseudo centers, the loss con-

verges to 0 in MME + SLA.We leave the analysis of the reason behind this convergence as

future work. Nevertheless, we argue that it is unnecessary to discuss the reason in our pro-

posed scope since we can strike a balance by carefully tuning the warmup parameter W ,

making this simply a problem of hyperparameter selection.
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Chapter 5 Conclusion

In this work, we present source label adaptation (SLA), a general framework for

semi-supervised domain adaptation. Our work demonstrates that the usage of source data

should be revisited carefully. We argue that from the perspective of the target data, the

original source labels are often noisy. We thus approach domain adaptation as a noisy label

learning problem and correct source labels with predictions from protonet with pseudo

centers. Our approach primarily addresses an issue that is orthogonal to other existing

works focused on improving the usage of unlabeled data. The empirical results show that

when applied to state-of-the-art algorithms for SSDA, the proposed framework further

improves their performance.
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Appendix A — Introduction

In this chapter, we provide our detailed implementation results. The link to the code to

reproduce our main results onOffice-Home andDomainNet datasets will be made publicly

available.

A.1 Implementation Detail

Our proposed framework, Source Label Adaptation (SLA) invovles cooperation with

other state-of-the-art algorithms. We take MME [20] and CDAC [11] as our backbone

models, named MME + SLA and CDAC + SLA, respectively. ForMME + SLA, we use

the official implementation in https://github.com/VisionLearningGroup/SSDA_MME

to obtain the MME loss. ForCDAC + SLA, we use the official implementation in https:

//github.com/lijichang/CVPR2021-SSDA to obtain the CDAC loss. We follow the

suggestions in both papers to select all hyper-parameters across different datasets.

A.2 Experiment Detail

For each sub-task on DomainNet and Office-Home datasets, we run three times with

different seeds and take the average to obtain the value. This sections provides the average
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values and the standard deviations of our experiments. Table A.1 and Table A.2 shows

the detailed statistics for one-shot and three-shot Semi-Supervised Domain Adaptation

(SSDA) on Office-Home dataset, respectively. Table A.3 shows the statistics for one-shot

and three-shot SSDA on DomainNet dataset.

A.3 Reproducibility Issue for MCL

MCL [29] is a state-of-the-art algorithm for SSDA,which performs consistency learn-

ing at three different levels and achieve great results. In our study, we also try to cou-

ple the MCL loss with our SLA framework. We follow the official implementation in

https://github.com/chester256/MCL to reproduce the experiments. However, when

reproducing the results on 3-shot Office-Home dataset. We found that it is generally hard

to reach the reported numbers provided in their original paper. We address the issue by

first reproducingMCL five times with different seeds using totally the same code in above.

The detailed statistics are shown in Table A.4. We then run another three trials for MCL

and MCL + SLA by fixing the seed for the generator in the DataLoader. This step is

to compare the two approaches in a much more fair manner. The link to our modified

code will also be made publicly available, and the results are shown in Table A.5. As we

stated in the main paper, though after applying SLA, we can generally do better than our

reproducing MCL, we are still not able to achieve the reported values in the original work.
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