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中文摘要 

 

    環境變遷與集水區水文循環之間的關係已成為環境規劃的重要課題。國內外

已有許多專家學者結合大氣環流模式  (General Circulation Models, GCMs) 與

GWLF 河川流量模式 (Generalized Watershed Loading Functions, GWLF)，探討氣候

變遷對集水區水資源的衝擊效應。但大部份的研究除受限於大尺度地表蒸發散量

的調查不易之外，在蒸發散覆蓋係數 (Evapotranspiration Cover Coefficient, CV) 之

設定方面，亦大多根據 GWLF 手冊中所列之參考值進行設定。然真實地表之土地

使用類別甚為複雜，如僅依手冊中之參考值進行參數設定，可能會影響分析結果

之正確性。此外，土地使用型態和蒸發散量的逐年變化，亦會影響集水區之未來

水文狀態，而傳統的流量模擬研究甚少針對此兩項因子之影響效應加以探討。 

  有鑑於此，本研究以台灣北部地區為試區，旨在利用遙測技術推估真實地表

的蒸發散量與 CV 值，以提昇流量模擬之正確性，進而結合 SEBAL 模式 (Surface 

Energy Balance Algorithm for Land, SEBAL)、CGCM1 大氣環流模式 (The First 

Version of the Canadian Global Coupled Model; CGCM1) 與 Markov 模式，模擬未來

土地使用型及蒸發散量的變化，並分析其對未來流量模擬之影響，最後再綜合氣

候、土地使用及蒸發散量等環境變遷因子，進一步評估台灣北部地區未來水文循

環可能遭受之衝擊效應。研究方法首先利用遙測混合式分類方法進行台灣北部地

區之大地資源衛星(Landsat-5)的土地使用分類，並配合數值地形模型(Digital Terrain 



Model, DTM)與 SEBAL 能量平衡模式，先計算與蒸發散量有關之 16 項環境參數，

再推估地表蒸發散量，並比較各土地使用型之蒸發散量，過程中為評估空間尺度

和生態分類系統二因子對環境參數之影響，乃選定兩種空間尺度 (台灣北部地區及

其轄內的 7 個集水區)和兩種生態分類系統 (12 個地理氣候分區及 7 個集水區)，透

過多變量逐步判別分析方法，探討該二因子對環境參數之影響效應；其次，在利

用 SEBAL 模式計算蒸發散量和應用遙測方法推估 CV 值之後，進而應用 GWLF

模式模擬淡水河集水區之河川流量，目的除了驗證流量模式之適用性之外，並評

估傳統查表方法和遙測方法所推估之 CV 的流量模擬差異；最後，以兩期土地使用

資料為基礎，整合 Markov 模式與 CGCM1 模式，預測未來短、中、長期之土地使

用變遷、並推估其 CV，再經由 GWLF 之流量分析，分析土地變遷及蒸發散變化

對於未來河川流量之影響，進而評估北台灣地區水文系統可能遭遇到的衝擊效應。 

  研究結果指出，北台灣地區經混合式影像分類後，計分為森林、建地、水體、

耕作農地、休耕農地、雲及陰影 7 類土地使用型，其整體分類準確度經檢核區檢

定後為 89.00%；在土地使用型之蒸發散量方面，以森林最大 (一月：0.723cm；七

月：0.395cm)，建地為最小 (一月：0.220cm；七月：0.088cm)；在空間尺度和生態

分類系統對環境參數之影響分析方面顯示，使用不同生態分類系統和空間尺度來

區分 5 種土地使用型 (森林、建地、水體、耕作農地及休耕農地) 所需要的環境參

數與參數數目皆不盡相同，但常態化差異植生指標與地表熱紅外光放射率兩項參

數，不管在那一種生態分類系統，均為重要的判別參數；在利用蒸發散量和土地



使用兩因子模擬河川流量之結果顯示，利用遙測推估之 CV 值(濕季：1.245；乾季：

0.851) 與查表所得之 CV 值 (濕季：0.842; 乾季：0.717) 確實有差異。若透過流量

站的觀測資料，並結合廻歸分析進行模式檢核時發現，利用遙測推估值所模擬之

流量與觀測流量之間的相關係數為 0.877，較查表值之 0.853 為佳；至於未來土地

使用變遷與蒸發散量變化之預測結果指出，建地面積由 1995 年的 13.36%和 2002

年的 14.05%，增加為 2030 年的 38.91%，2058 年的 52.13%及 2086 年的 62.36%，

此現象會造成未來短期、中期及長期之 CV 值呈逐漸下降的趨勢，而在 GWLF 模

式之流量分析結果指出，不管是未來短期、中期或長期的月平均流量、年總流量

及年平均流量，考慮未來土地使用變遷與蒸發散量變化兩項因子所模擬的流量均

較未考慮的流量值低；最後，未來集水區水資源衝擊評估結果指出，由於都市擴

張、蒸發散量減少及氣候變遷等因子之綜合作用，將造成台灣北部地區河川流量

之上升。 

  綜合上述結果可知，整合 SEBAL、CGCM1 與 Markov 模式模擬土地使用變遷

及蒸發散量變化，進而推估未來集水區之河川流量及評估區域水資源之衝擊效

應，確實為一有效、可行的方法。由於台灣北部地區為經濟商業之核心區域，無

論在工商業發展及水資源供給方面均占有相當重要的地位，因此相關單位應重視

此課題，並及早研擬因應策略。 

【關鍵詞】：遙測技術，水文循環，SEBAL 模式，GWLF 模式，CGCM1 大氣環流

模式，蒸發散覆蓋係數，流量模擬。 



ABSTRACT 

Watershed hydrology, especially stream flow, is expected to be highly sensitive to 

the influences of global climate change. Traditional studies have integrated the General 

Circulation Models (GCMs) with the Generalized Watershed Loading Function (GWLF) 

model to estimate stream flow rates. However, using these models in the context of a 

transitioning climate and on a large spatial is problematic, particularly for the estimation 

of two important parameters, evapotranspiration (ET) and cover coefficient (CV). 

 This study focuses on an integrated analysis of the hydrological cycle using 

remote sensing techniques to estimate the ET and the CV. Furthermore, we improved on 

older studies by integrating the Surface Energy Balance Algorithm for Land (SEBAL) 

model, the First Version of the Canadian Global Coupled Model (CGCM1), and the 

Markov model which allows us to predict land-use and ET change. The results were 

applied to assess the future impacts of global warming on hydrological cycles of 

northern Taiwan. Our methods include applying hybrid image classification to generate 

the land-use maps of the northern Taiwan using Landsat-5 images; using digital terrain 

model (DTM) and the SEBAL model to calculate 16 environmental parameters relevant 

to ET. We then compared the differences among different land-use types; (1) 

investigating the effects of two ecosystem classification systems (i.e., watershed 

division method and geographic climate method) at various spatial scales on 



environmental parameters using stepwise discriminant analysis; (2) comparing stream 

flow simulations according to the GWLF model with two CV values derived from 

remote sensing and traditional methods; (3) integrating the Markov model and the 

CGCM1 model to predict future land-use and CV parameters for evaluating the effect of 

land-use change and ET change; and (4) finally, assessing the future impacts on 

hydrological cycle of the northern Taiwan. 

The results indicated that the study area was classified into seven land types (i.e., 

forest, building, water, farmland, fallow farmland, cloud-covered, and shadow-covered) 

with 89.09% classification accuracy. These last two land types could not be analyzed 

further. A comparison of daily ET values among different land-use types revealed 

differences. In this study, forest ET is the largest (January: 0.723cm; November: 

0.395cm) while building is the smallest (January: 0.220cm; November: 0.088cm). These 

differences contrive to exist for ecosystem classification systems at various scales, but 

depend on the selected environmental parameters and the number of parameters 

included in the model. Two parameters, a normalized difference vegetation index and an 

emissivity are important factors for discriminating land types. On the aspect of land-use 

and ET effects on hydrological simulations, the stream flows simulated by two 

estimated CVs were different. The stream flow simulation using the remote sensing 

approach (wet season: 1.245; dry season: 0.851) presented more accurate hydrological 



characteristics than the traditional approach (wet season: 0.842; dry season: 0.717). 

Meanwhile, according to the result of regression analysis, the flow simulation using 

RSCV (remote sensing based CV; regression coefficient = 0.877) would represent truer 

flow characteristics than the use of REFCV (reference CV; regression coefficient = 

0.853). In the prediction of future land-use and ET, due to the increase of building area 

from 13.36% in 1995 and 14.05% in 2002 to 38.91% in 2030, 52.13% in 2052, and 

62.36% in 2086, the predicated CV values for next three periods display a decreasing 

trend no matter under which climatic change storyline. In addition, land-use and ET 

change indeed affect the predicted stream flows. The predicted flows with consideration 

of these two factors were lower than those without consideration. Finally, the impact 

assessment on the hydrology of the northern Taiwan indicated that the flow volumes 

increase due to urban expansion, ET decline, and climate change, and it will lead to the 

increase of stream flow.  

From above results, obviously the integration of remote sensing, the SEBAL model, 

the CGCM1 model, and the Markov model is a feasible scheme to predict future 

land-use, ET change, and stream flows. Therefore, it can be extended to the further 

studies in water resource management and global environmental change. 

【KEYWORDS】Remote sensing techniques, Hydrology，SEBAL model, GWLF 

model, CGCM1 model, Evapotranspiration cover coefficient, Stream flow simulation. 
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1. INTRODUCTION 

 

It is widely believed that an increased emission of greenhouse gases into the earth’s 

atmosphere has likely been occurring since the industrial revolution (Arnell and 

Reynard 1996). From 1750 to 2000 the concentration of carbon dioxide (CO2) and 

methane (CH4) increased 31 ± 4％ and 151 ± 25％, respectively. Such a rapid increase 

not only enhances the green house effect, but also promotes the occurrence of global 

warming (Manning and Nobre 2001). Because of the importance of the issues, the 

United Nations Framework Convention on Climate Change (UNFCCC) was adopted in 

May 1992 and opened for signatures a month later at the United Nations Conference on 

Environment and Development (UNCED) in Rio de Janeiro, Brazil. The UNFCCC 

provides the basis for global action to protect the climate system for present and future 

generations. Considerable attention has been given to investigate the interactions among 

climate change, human activities, and nature ecosystems around the world (Figure 1). 
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Figure 1. Interaction of driving forces and global environment changes 

 

    In the hydrologic cycle, precipitation and evapotranspiration (ET) are the main 

driving forces (Tung and Haith 1995), but the quantity and geographic distribution of 

these two factors has changed due to the increase of the average temperature of the earth. 

This phenomenon also affects other hydrological components such as infiltration, and 

stream flow, which in turn disturbs the available water resources for humans. If the 

current trend does not change, the impact of global warming on future climatic 

condition and hydrologic processes will become a major concern (Wu and Haith 1993). 
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Models (GCMs), which attempt to predict the impact of increased atmospheric CO2 

concentrations on climatic variables. In order to assess the sensitivity of hydrological 

regimes to the climatic changes associated with global warming, previous studies have 

often relied on the GCMs coupled with a stream flow model, and have used these 

models to predict the impact of climate change on hydrologic characteristics in different 

areas (Yu et al. 2002). To apply these models to global environment change, the 

acquisition of large-scale environmental information (e.g., daily ET amount) and 

land-use status are necessary. ET is traditionally calculated from records of weather 

stations or estimated by hydrological balance functions (Chiou, 2005). These methods 

are limited in their ability to provide point values of ET for specific locations and fail to 

provide ET on a regional scale. Regarding the acquisition of land-use data, traditional 

ground survey methods consume much effort, money, and time. The acquisitions of 

multi-temporal land-use information are also problematic. 

Today, remote sensing technologies have become readily available because satellite 

images can easily and effectively provide large scale and multi-temporal surface 

information for many purposes, including forest hydrology studies. The application of 

these newer technologies provides a more appropriate means for determining the spatial 

and temporal structure of ET and land-use information. If the hydrological parameters 

and land-use information derived from remote sensing techniques could be integrated 
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with an impact analysis of climate change on hydrology, it will improve the 

predictability of climate change effects on water resources. The combination of remote 

sensing, GCMs models, and stream flow models will become an important issue for 

hydrology study. 
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2. MOTIVE AND OBJECTIVE 

 

2.1. Motive 

In recent years, physically based and semi-distributed models have been frequently 

used to address the influence of land-use change and climate change on hydrology 

(Weiler et al., 2005). The Generalized Watershed Loading Functions (GWLF; Haith and 

Shoemaker, 1987; Haith et al., 1992; Wu and Haith, 1993) model is one of the stream 

flow models that incorporates the physical mechanisms and water balance relationship 

within a watershed. The most important advantage of using the GWLF model is that 

parameters can be adjusted according to the land-use types, soil characteristics and 

climate conditions of a watershed. For this reason, the GWLF model has been widely 

applied to estimate human, natural, and climate effects on hydrologic systems (Tung 

and Haith, 1995; Fan, 1998; Cheng et al., 2007; Markel, 2006).  

In previous studies, the amount of ET in a watershed was calculated using 

evapotranspiration cover coefficient (CV) during the GWLF simulated procedures. The 

CV for each land-use type is defined as a ratio of actual ET to potential 

evapotranspiration (PET). However, the estimation of actual ET and CV of a large 

spatial scale is problematic. For example, CV can be determined from the published 

seasonal values based on crop types such as those given in the user’s manual of the 
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GWLF model (Haith et al., 1992), this approach often requires estimates of crop 

development (e.g., planting dates, time to maturity, etc.) which may not be available. 

Moreover, a single set of consistent values is seldom available for all of a watershed’s 

land-use, and settling for a cursory CV value could greatly reduce the accuracy of 

stream flow simulations (Haith et al., 1992, Davis and Sorensen, 1969). 

    The increasing availability of remote sensing technology now produces satellite 

images that can easily and effectively provide large scale spatial and temporal surface 

information. For hydrology studies, Actual ET can be computed without quantifying 

other complex hydrological processes through remote sensing techniques (Morse et al., 

2000). Thus, much previous research adopted remotely sensed data to calculate the 

energy balance parameters such as surface temperature, net radiance, sensible heat flux, 

soil heat flux, and then estimated the actual ET according to these parameters (Chen et 

al., 2006; Laymon et al., 1998; Mauser and Scha¨dlich, 1998; Menenti and Choudhury, 

1993; Morse et al., 2000). Most of these earlier studies focused on the comparison of ET 

among various spatial scale and temporal stages. However, few researches have 

calculated CV parameters using remote-sensing-based ET for the purpose of stream 

flow simulation. Investigations regarding the effects of land-use types and spatial scales 

on ET are also seldom attempted.  

In addition to the climatic factors, land-use change will influence the amount of ET, 
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and thereby affect the balance of the hydrologic cycle (Cheng et al., 2007). In the 

GWLF model, parameters such as curve number (CN) and CV are related to the 

land-use status of a watershed. Most previous studies assumed that catchment land-use 

remains consistent over long periods of time (Arnell and Reynard 1996). This 

assumption may reduce the accuracy of prediction. Many existing spatial simulation 

models have been applied in various fields (Muller and Middleton 1994; Turner 1993). 

A Markov model is the most widely used approach. In the Markov model, area change 

is summarized by a series of transition probabilities from one state to another over a 

specified period of time. These probabilities can be subsequently used to predict the 

land-use properties at specific future time points (Burham 1973). Many researchers have 

applied the Markov model to monitor the land-use and landscape change (Cheng et al. 

2005; Lindsay and Dunn 1979; Muller and Middleton 1994; Turner 1993), but few 

integrate Markov predictions into hydrological assessments under changing climate 

conditions. 

During watershed ecosystem monitoring, we observed that ecosystems are nested 

and reside within each other. The boundaries of ecosystems are open to transfer energy 

and materials to or from other ecosystems, and this linkage among systems, energy 

exchange to occur at various spatial scales. A disturbance to a large system may also 

affect smaller component systems existing within it. Consequently, the relationship 
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between an ecosystem at one scale and ecosystems at smaller or larger scales must be 

examined to predict the effects of human disturbances (Bailey, 1996, Cheng et al., 2005). 

Previous research has focused on the effects of global and regional scales on 

environmental parameters (Rao, 1990; Tokumaru and Kogan, 1993; Yu et al., 2002; 

Chen et al., 2006), but studies evaluate the issues of ecosystems at various scales and 

their effects on environmental parameters. A further investigation of the multi-scale 

relationship of environmental characteristics under various ecosystem classification 

systems is needed.  

The northern part of Taiwan is a region which includes several political (ex. the 

capital city of Taiwan: Taipei city), scientific (ex. Hsin-chu science park), and 

agricultural centers (Lan-Yang flat land). These scientific or agricultural centers play 

important roles on technology development and crop supplies of Taiwan. An overall 

hydrological analysis is important in this area. Moreover, to realize how the hydrologic 

system would be changed in the future is also necessary for the water resource 

management. Figure 2 is an illustration of the study purposes. 
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Figure 2. Illustration of the study purposes 

2.2. Objective 

Based on above purposes, the objectives of this study are as follows: 

(1) To evaluate the ET difference among various land-use types 

Land-use maps generated by a hybrid classification approach (Hoffer and Fleming, 

1978, Lo and Choi, 2004) and daily actual ET obtained from Surface Energy Balance 

Algorithm for Land (SEBAL; Bastiaanssen et al. 1998a) are integrated to investigate the 

effects of land-use types on ET. 

(2) To analyze the effect of ecosystem classification systems at various spatial scales on 

environmental parameters 
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Two spatial scales (regional scale and local) and ecosystem classification systems 

(geographic climate method and watershed division method) were adopted to assess 

their effect on environmental parameters.  

(3) To investigate the effect of future land-use status and ET change on stream flow 

simulation under climate change conditions 

Compared with the traditional stream flow simulation, which calculates a CV using 

the published reference values and without evaluating land-use change, our present 

efforts presents an approach to estimate CV by Markov model and SEBAL model, 

which includes future land-use status and ET change. Our study was motivated by the 

following three questions. Is the accuracy of stream flow simulation improved by using 

the CV estimated from remote sensing? Is the integration of SEBAL model and Markov 

model a feasible scheme to predict the future land-use and ET parameters for stream 

flow simulations? Does the consideration of land-use change and ET change affect the 

results of hydrologic assessment under climate change conditions in north Taiwan? 

(4) To assess the future impact on hydrological cycle of north Taiwan 

Flow series from 1995 to 2002 were adopted to represent the current hydrological 

condition, and then compared with the future flows to investigate how land-use change, 

ET change, and climate change affected river flows and the hydrologic cycle of north 

Taiwan. 
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3. LITERATURE REVIEW 

 

3.1. Land-Use Classification using Remote Sensing 

Classification of land-use and land cover using satellite images is considered an 

essential task in modeling the earth as a system. Traditionally, supervised and 

unsupervised classifications are two common image classification approaches, each 

with advantages and disadvantages (Lillesand and Kiefer, 2004; Lang et al., 2008). The 

supervised approach involves a training stage, which allows the input of analyst’s 

experience into image classifications. However, this approach has been regarded as 

overly subjective and difficult to correctly implement, because user-defined training 

data may not be normally distributed. The unsupervised approach can automatically 

generate almost unlimited number of spectral classes, which are solid spectral 

foundations for generating information classes, but it requires the analyst manually label 

the resultant spectral classes into information classes (Lang et al., 2008). 

To improve the accuracy of image classification, an integrated algorithm called a 

hybrid classification approach that takes advantage of both classification approaches has 

been developed (Hoffer and Fleming, 1978, Lo and Choi, 2004). In this hybrid approach, 

cluster analysis was first used to acquire the spectral signatures objectively, and then the 

signature file was imported into the supervised classification to generate the land-use 
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map. Hybrid classification has been widely applied in ecosystem monitoring studies, 

and the results from previous studies demonstrated that the integrated algorithm could 

provide an accurate and consistent classification of land use mapping. For example, Lo 

and Choi (2004) adopted the hybrid classification method to map the land use/cover of 

the Atlanta metropolitan area using Landsat 7 Enhanced Thematic Mapper Plus (ETMz) 

data; Lang et al. (2008) applied the hybrid approach to generate a land-use map of 

Indiana, USA. Lillesand and Kiefer (2004) indicated that the hybrid approach indeed 

increased the repeatability and accuracy of land-use classification. 

 

3.2. Estimation of Environmental Parameters and ET based on the 

SEBAL Methodology 

SEBAL is an image processing model that calculates the actual ET and other 

energy exchanges at the earth’s surface using digital image data collected by Landsat or 

other remote sensing satellites measuring visible, near infrared, and thermal infrared 

radiation (Bastiaanssen et al., 1998a). The major concept of this model is that ET flux is 

calculated as a residual of the surface energy budget equation and is expressed as the 

energy consumed by the evaporation process: 

 

HGRnLE  0                                             (1) 
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where, LE is the latent heat flux (W/m2); Rn is the net radiation flux at the surface 

(W/m2); G0 is the soil heat flux (W/m2); H is the sensible heat flux to the air (W/m2). LE 

is converted into ET, expressed as a depth of water per time, by dividing by the latent 

heat of vaporization. 
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Figure 3. General computational process for determining ET using SEBAL      

(Morse et al., 2000) 

 

Figure 3 is the schematic of the general computational process for determining ET 

using SEBAL. During the model processes, actual ET is computed as a component 

using 15 energy balance parameters, including the cosine of solar incidence angle (cosθ; 
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unitless), twenty-four hour extraterrestrial radiation (Ra24; W/m2), surface albedo at the 

top of atmosphere (αtoa; unitless), surface albedo (α0; unitless), normalized difference 

vegetation index (NDVI; unitless), emissivity (ε0; unitless), surface temperature (T0; K), 

transmittance (τsw; unitless), air density (pair; kg/m3), aerodynamic resistance to heat 

transport (rah; s/m), estimating friction velocity (u*; m/s), surface roughness for 

momentum transport, (zom; m), net radiation (Rn; W/m2), soil heat flux (Go; W/m2), 

sensible heat flux (H; W/m2) (Morse et al., 2000). In SEBAL procedures, Rn was 

estimated based on the following relationship (Bastiaanssen et al., 1998; Oberg and 

Melesse, 2004): 

 

)1()1( 0   LLLsn RRRRR                                   ( 2 ) 

 

where, R
S↓

is the incoming direct and diffuse shortwave solar radiation that reaches the 

surface (W/m
2
); α is the surface albedo, the ratio of reflected radiation to the incident 

shortwave radiation; R
L↓

is the incoming longwave thermal radiation flux from the 

atmosphere (W/m
2
); R

L↑
is the outgoing longwave thermal radiation flux emitted from 

the surface to the atmosphere (W/m
2
); ε

o 
is the surface emissivity, the ratio of the radiant 

emittance from a gray body to the emittance of a blackbody.  

Soil heat flux (G0) is the rate of heat storage to the ground from conduction. In the 
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SEBAL model, an empirical relationship for G0 was given as: 

 

nRNDVIG )98.01(30.0 4
0                                              (3) 

 

where, NDVI is the normalized difference vegetation index.  

Sensible heat flux (H) is the rate of heat loss to the air by convection and 

conduction due to a temperature difference. The calculated equation was as bellow: 

 

ah

p

r

dTC
H


                                                          (4) 

 

where, ρ is the density of air (kg/m
3
); c

p 
is the specific heat of air (1004 J/kg/K); dT is 

the difference in temperature between the surface and the air (K); and r
ah 

is the 

aerodynamic resistance (s/m). To calculate dT, the inverse of equation (5) was 

considered: 

 

p
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C

rH
dT




                                                          (5) 

 

Therefore, during the SEBAL process, the user calculated dT at two extreme 
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“anchor pixels” by assuming values for H at the reference pixels. The reference pixels 

were carefully chosen so that at these pixels one can assume that H approximate zero at 

a very wet pixel (i.e., all available energy (Rn - G0) is converted to ET), and that LE 

almost equals zero at a very dry pixel, so that H = Rn - G0. These assumptions from the 

selected pixels provided endpoints for values and locations for H so that a relationship 

for dT can be established. 

Once the values of H and G0 were calculated, the latent heat flux (LE) can be 

calculated from equation (1). This LE represented the instantaneous evapotranspiration 

at the time of the Landsat overpass. Following the computation of the evaporative 

fraction at each pixel of the image, one can estimate the 24-hour evapotranspiration for 

the day of the image by assuming that the value for the evaporative fraction (　) is 

constant over the full 24-hour period (Bastiaanssen et al. 1998). The evaporative 

fraction is calculated for the instantaneous values in the image as: 

 

0

0

GR

HGR

n

n




                                                        (6) 

 

where, the values for Rn, G0, and H are instantaneous values taken from processed 

images. The 24 hour actual evaporation is calculated by the following equation: 
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
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                                              ( 7 ) 

 

where, ET24 is daily actual evapotranspiration (cm/day); Rn24 is daily net radiation; G24 

is daily soil heat flux; 86,400 is the number of seconds in a twenty-four hour period; and 

λ is the latent heat of vaporization (J/kg). The latent heat of vaporization allows 

expression of ET24 in cm/day. 

Many previous studies applied remotely sensed data to calculate the energy 

balance parameters, and then estimated the actual ET according to these parameters. For 

example, Chen et al. (2006) applied the SEBAL model and four seasons of moderate 

resolution imaging spectroradiometer (MODIS) satellite images to estimate ET for the 

entire island of Taiwan; Laymon et al. (1998) used Landsat thematic mapper (TM) 

images and experience functions to estimate energy fluxes and latent heat flux, and 

further to calculate the ET in a semidesert area of West America; Mauser and Scha¨dlich 

(1998) modeled the spatial distribution of ET on a different scale using remote sensing 

data; Menenti and Choudhury (1993) applied Landsat MSS data to develop the surface 

energy balance index (SEBI) model, and then to estimate the ET of the Libyan desert in 

West Africa by using surface albedo and aerodynamic roughness; Morse et al. (2000) 

applied the SEBAL model and satellite images to calculate the ET, and the results 

showed that the R2 value between ET acquired from remote sensing and observed data 
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was 0.98. 

Physical parameters obtained from the SEBAL model also have special meanings 

on the description of temperature, vegetated, hydrological and energy characteristics of 

an ecosystem. For example, Ra24 is the daily incoming solar radiation unadjusted for 

atmospheric transmittance; αtoa and α0 indicate the ratio of reflected to incident solar 

radiation at the atmosphere and ground surface; ε0 and T0 are temperature indices which 

denote the thermal energy radiated by the surface and surface temperature conditions of 

the area; NDVI is a sensitive indicator of the amount and condition of green vegetation; 

zom is defined as the height above the “zero-plane displacement” that the zero-origin for 

the wind profile just begins within the surface or vegetation cover; Rn is the net radiant 

energy that the land surface actually receives and loses from or to the atmosphere. The 

allotment of Rn represents the energy transmission process within the ecosystem. Rn is 

divided into three components; ET24 is the twenty-four hour actual evapotranspiration. It 

also indicates the energy that used to support the photosynthesis and evaporate soil 

water; H is the energy used to heat the air; Go is the rest of the net energy which is 

stored in the ground or water body. The above environmental parameters were 

computed by the SEBAL model based on an energy balance algorithm. However, the 

acquisition of surface reflectance would vary with different terrains and meteorological 

conditions. For instance, the instantaneous and 24-hour solar radiations on a south slope 
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are much higher than on a north slope in the Northern Hemisphere. Atmospheric 

humidity and soil moisture are two important factors for ground reflectance, and they 

might influence the calculation of environmental parameters (Cheng et al., 2008). 

 

3.3. Climate Change Scenarios 

Climate change is a very complex issue. Policymakers need an objective source of 

information about the causes of climate change, its potential environmental and 

socio-economic consequences, and the adaptation and mitigation options to respond to 

it. This is why World Meteorological Organization (WMO) and UNEP established the 

Intergovernmental Panel on Climate Change (IPCC) in 1988. 

     The IPCC is a scientific body. The information it provides with its reports is based 

on scientific evidence and reflects existing viewpoints within the scientific community. 

The comprehensiveness of the scientific content is achieved through contributions from 

experts in all regions of the world and all relevant disciplines including, where 

appropriately documented, industry literature and traditional practices, and a two stage 

review process by experts and governments. 

 The IPCC currently has three Working Groups and the Task Force on National 

Greenhouse Gas Inventories. The Working Groups and the Task Force have clearly 

defined mandates as agreed by the Panel and their activities are guided by two Co-chairs 
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each. They are assisted by a Technical Support Unit and the Working Group or Task 

Force Bureau. Working Group  (WG )Ⅰ Ⅰ  deals with "The Physical Science Basis of 

Climate Change", Working Group Ⅱ (WG ) with "Climate Change Impact, Ⅱ

Adaptation and Vulnerability" and Working Group  (WG ) with "Mitigation of Ⅲ Ⅲ

Climate Change". The main objective of the Task Force is to develop and refine a 

methodology for the calculation and reporting of national green house gas emissions 

and removals. In addition to the Working Groups and Task Force, further Task Groups 

and Steering Groups may be established for a limited or longer duration to consider a 

specific topic or question (IPCC, 2004). 

At regular intervals, the IPCC provides assessment reports of the state of 

knowledge on climate change, which become standard works of reference, widely used 

by policymakers, experts, and students. The findings of the first IPCC Assessment 

Report of 1990 played a decisive role in leading to the United Nations Framework 

Convention on Climate Change (UNFCCC), which was opened for signature at the Rio 

de Janeiro Summit in 1992 and enacted in 1994. It provides the overall policy 

framework for addressing the climate change issue. The IPCC Second Assessment 

Report of 1995 provided key input for the negotiations of the Kyoto Protocol in 1997, 

and the Third Assessment Report of 2001, as well as Special and Methodology Reports, 

provided further information relevant for the development of the UNFCCC and the 
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Kyoto Protocol. The IPCC continues to be a major source of information for the 

negotiations under the UNFCCC. The latest one is "Climate Change 2007", the Fourth 

IPCC Assessment Report (IPCC, 2007). 

In 2000 the IPCC published a new set of emission scenarios, which address 

changes in the understanding of driving forces and emissions and methodologies since 

the completion of the IPCC IS92 scenarios. The Special Report on Emissions Scenarios 

(SRES) are based on an extensive assessment of driving forces and emissions in the 

literature, alternative modeling approaches and an “open process” that solicited 

participation and feedback from scientist’s around the world. An important part of this 

report is the consideration of the contributions to future emissions, from demographic to 

technological and economic developments, but, as requested in the terms of reference, 

none of the scenarios included future policies that explicitly address climate change. 

Four different storylines were developed to describe the relationship between emission 

driving forces, and their evolutions, and add context to the scenario quantification 

(IPCC, 2000). 

 

3.4. Application of the GWLF Model on Hydrologic Monitoring 

The GWLF model is a physical hydrological model, which simulates the water 

balance within an upstream watershed. In the GWLF model, the stream flow consists of 
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runoff and discharge from groundwater. The latter is obtained from a lumped parameter 

watershed water balance. Daily water balance is calculated for unsaturated and shallow 

saturated zones. Infiltration to the unsaturated and shallow saturated zones equals the 

excess, if any, of rainfall and snowmelt less runoff and ET. Percolation occurs when 

unsaturated zone water exceed field capacity. The shallow saturated zone is modeled as 

a linear groundwater reservoir (Haith et al., 1992). The model structure of GWLF is 

shown as Figure 4. 

 

 

Figure 4. Water balance function of the GWLF model 

(modified from Haith et al., 1992) 
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ttt QGSF                                                           ( 8 ) 

 

where, SFt is the stream flows of a watershed (cm); Gt is the groundwater discharge 

(cm); Qt is the surface runoff (cm). 

 

Groundwater discharge is estimated by assuming shallow saturated zone as a linear 

reservoir using the follow equation: 

 

tt SG  r                                                             ( 9 ) 

 
where, r is the recession coefficient; St is the storage of shallow saturated zone (cm). 

 

To estimate surface runoff, the GWLF model used the curve number method to 

calculate runoff volumes with the considerations of land-use status and antecedent soil 

moisture. The equations are as follows: 
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where, Qt is the surface runoff (cm); Rt is the daily precipitation (cm); CN is the curve 

number; Wt is the maximum soil runoff load (cm). 

 

Curve number is selected as functions of land use types, soil texture and antecedent 

moisture. Curve number for antecedent moisture conditions 1 (driest), 2 (average) and 3 

(wettest) are CN1, CN2, and CN3, respectively. CN2 can be determined by referring to 

the GWLF manual, and CN1 and CN3 can be calculated from CN2. The functions of 

CN1 and CN3 are as follows (Haith et al., 1992): 
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                             (12) 

 

Moisture leaves the ground surface of a watershed as ET, that is, transpiration by 

plants and evaporation from moist soil and the stream surface (Weisman, 1977). 

Estimation of ET for watershed studies is problematic (Haith et al. 1992). In the GWLF 

model, ET is estimated as a function of the atmospheric and surface characteristics of a 

watershed, as equation (8). 
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tt PETCVET                                                       (13) 

 

where, ETt is evapotranspiration (cm); CV is cover coefficient; PETt is potential 

evapotranspiration (cm) as given by Hamon (1961): 

 

273

021.0 0
2




t

tt
t T

eH
PET                                                    (14) 

 

where Ht is the number of daylight hours per day during the month containing day t; e0t 

is the saturated water vapor pressure in millibars on day t, and Tt is the temperature on 

day t ( ). Saturated water vapor pressure can be approximated as in Bosen (1960):℃  

 

00136.08.48.1000019.08.0)8072.000738.0[(8639.330  ttt TTe     (15) 

 

In urban areas, ground cover is a mixture of trees, grass, water, and concrete 

constructions. It follows that CV for an area are weighted averages of the perennial crop, 

hardwood and softwood forest, water, and construction factors, as equation (16) and 

(17). 
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where, cvi is CV of class i; ETi is ET of class i (mm/day); CVe is the CV for the entire 

area; wi is percentage of class i; PETt is potential evapotranspiration (cm). 

 

Stream flows calculated by the GWLF model are based on a consideration of water 

balance within a watershed. Compared with other models, the GWLF model uses fewer 

parameters but processes a high degree of predictive accuracy. Consequently, many 

studies (Haith et al., 1992; Tung et al., 1999; Yu et al., 2002; Markel et al., 2006) 

applied the GWLF model to assess the watershed hydrology and stream flow volume, 

and also to validate the flow prediction of the GWLF model. For example, Haith et al. 

(1992) tested the GWLF model by comparing model predictions with measured stream 

flow from the West Branch Delaware River Basin (area = 850 km2) during a three-year 

period. The result showed that the derived coefficient of determination (R2) is 0.88, 

indicating that the model explains at least 88% of the observed monthly variation in 

stream flow. Although better results could perhaps be obtained by more detailed 

hydrologic models, such models have substantially greater data and computational 

requirements and must be calibrated from sampling data. 
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Many previous studies often rely on the GCMs coupled with the GWLF model to 

assess the sensitivity of hydrological regimes to the climatic changes associated with 

global warming (Yu et al. 2002). For example, Tung and Haith (1995) used the GWLF 

model and two kinds of GCMs scenarios to asses the impacts of global warming on 

stream flows for four large watersheds in New York State. Fan (1998) developed a 

procedure to evaluate the impacts of climate change on ground water recharge in 

Taiwan using the GWLF model and four climate change scenarios. Cheng et al. (2007) 

integrated the Markov model and the SRES scenario to investigate the influence of 

future land-use changes and climate changes on the stream flow simulations using the 

GWLF model, and also to assess the impacts on the Jiao-Long watershed of central 

Taiwan. 

 

3.5. Prediction of Land-Use Change using Markov Model 

The Markov model is a stochastic model. During its process, land-use change of an 

area is summarized by a series of transition probabilities from one state to another over 

a specified period (Hillier and Lieberman, 1995). These probabilities can be 

subsequently used to project the landscape properties at alternate future time points 

(Burham, 1973). 

The Markov model assumes that the land-use changes of the study area could be 
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depicted as a Markov process. A transition matrix, in which the element Tij represents 

the amount of land-use change from type i to type j during two periods, are derived 

from the land-use maps (Cheng, et al., 2006). The transition probability Pij, which 

represents the factions of land-use changes on each land-use type, is estimated by: 
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; i = 1, 2, ... m,                                          (18) 

 

where, m is the number of land-use types. 

 

To determine whether it is appropriate to apply the Markov model to the observed 

land-use changes, Goodman’s Chi-squared statistic (Goodman 1968) was used to test 

the null hypothesis that the land-use conditions in 1995 and 2002 were independent of 

each other. If the calculated α2 is larger than the reference value, we reject the 

hypothesis that land-use change during the period is a random procedure. In other word, 

the transition process is a Markov chain procedure. We can apply the Markov model to 

predict the possible land-use change of the area. 

 

  2

2

1 1

2 )1(;)ln( 








 
 

mdfAPT
m

i

m

j
jijij                                (19) 



 29

 

where, the definitions of Tij and Pij are same as in equation (18), Aj is the fraction of 

land-use in each of the land-use types in 1995; df is the degree of freedom. 

 

Assuming that the transition probabilities will remain constant in the future, the 

Markov model is then used to project the land-use at the next stage: 

 

12 tt nPn                                                           (20) 

 

where, P is the transition probability matrix, nt1 and nt2 are column vectors denoting the 

fractions of land-use types at t1 and t2. 

 

The Markov model is a widely used approach to evaluate the change of land-use 

types, landscape distribution, and ecosystem environment (Wu, 2004). For example, 

Turner (1993) used the Markov transition probability to monitor the landscape changes 

in nine rural counties in Georgia, USA; Avaiksoo (1995) simulated the vegetation 

dynamics and land use in a mire landscape using a Markov model; Hsu and Cheng 

(2000) assessed the landscape change in Liukuei ecosystem area using a Markov model. 

Lindsay and Dunn (1979) applied a transition matrix approach to project the land use 

status under alternative policies; Muller and Middleton (1994) used a Markov model to 
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simulate the land-use change dynamics in the Niagara Region, Ontario, Canada. 

This present study will contribute to these past efforts by proposing a hybrid of 

SEBAL, GCMs, and GWLF models in order to simulate more accurate hydrological 

change based on climate change conditions.  
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4. STUDY AREA and MATERIALS 

 

4.1. Study Area 

The study area selected for the empirical analysis was the north of Taiwan. There 

are four main streams (Dan-Shui river, Kee-Lung river, Xin-Dian river, and Da-Han 

creek) in this area, which divide the region into seven watersheds. The area covers 

734589.7 ha and involves five counties (Kee-Lung, I-Lan, Taipei, Tao-Yuan, and 

Hsin-Chu). Many land-use and cover types exist in this area, such as industrial and 

business center (e.g., Taipei city), scientific parks (e.g., Hsin-Chu science parks), 

mountainous forest area (e.g., I-Lan county), farmland (e.g., Lan-Yang plain) and ponds 

(e.g., Tao-Yuan county). Several industrial or scientific centers in this area demand 

water resource. Therefore, it is important to predict how the hydrologic system could 

change in the future. Figure 5 is the location of study area. 
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Figure 5. The study area: the north Taiwan covered by Landsat-5 TM image 

 

4.2. Materials 

Five kinds of data were consulted for this study, Landsat-5 TM images of 1995 and 

2002, digital terrain model (DTM), national land-use inventory data in 1995, and daily 

observational records of weather and stream flow. First, three Landsat-5 TM images 

from different dates (July 20 and November 25, 1995; January 4, 2002) were adopted. 

Landsat-5 TM images contain seven spectral bands ranging from the visible blue to the 

middle infrared (mid-IR). Bands 1 to 3 are the blue, green, and red bands; band 4 is the 
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near IR; band 5 and band 7 are the mid-IR. Each of above six bands has a 30 m ground 

resolution. Band 6 is the thermal IR with 120 m resolution. The extent of the study area 

was clipped from the raw images and used to generate land-use maps. Second, DTM 

with 40 m resolution was provided by the aerial survey office, Forestry Bureau. The 

DTM data was used to derive the slope, aspect, and elevation information for 

modification of the SEBAL model in a mountainous area. National land-use inventory 

data generated in 1995 by the Department of Land Administration, the Ministry of the 

Interior is regarded as the paragon for evaluating image classification. The period from 

1995 to 2002 was selected as the baseline, representing “current climatic conditions”. 

Daily temperature and precipitation data were collected from seven meteorological 

stations. These are: Fu-Guei-Jiao, Cyu-Chih, Sin-Wu, Cyue-Ci, Mei-Hua, Yi-Lan and 

Sih-Yuan weather stations. The Dan-Shui watershed, which occupies the largest 

drainage area in north Taiwan, was assigned to be the sample for model validation. 

Climatic records at the Cyu-Chih meteorological station and stream flow observations at 

Shang-Guei-Shan-Ciao flow station were collected from 1995 to 2002. Although the 

distance between two gauged stations is less than 1 km, both stations have similar 

elevation (Cyu-Chih station: 90.0m; Shang-Guei-Shan-Ciao station: 70.9m). Thus the 

meteorological stream flow data collected from these two stations is comparable for 

hydrological analysis. Figure 6 shows the location of the selected meteorological and 
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flow stations. Figure 7 shows the Landsat-5 TM images used in this study.  

 

 

Figure 6. Location of the selected meteorological and flow stations 
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a                                  b 

 

 
c 

 

Figure 7. Landsat-5 TM images of the north Taiwan in three dates 

(a: July 20, 1995; b: November 25, 1995; c: January 4, 2002) 
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5. METHODS 

 

This study integrated the SEBAL model, the CGCM1 model, and the Markov 

model to monitor the hydrological cycle of the north Taiwan through remote sensing. 

The processes included: (1) the evaluation of ET difference among various land-use 

types; (2) the analysis of ecosystem classification systems at various spatial scales on 

environmental parameters; (3) the effect of future land-use status and ET change for 

stream flow simulation under climate change conditions; (4) the assessment of future 

impact on hydrological cycle of the north Taiwan. Figure 8 is the flowchart of the study 

process. Detailed descriptions of the methodology were as follows. 
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Figure 8. Flowchart of the study process 
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5.1 Evaluation of ET Difference among Various Land-use Types 

5.1.1. Classification maps of land-use using hybrid algorithm 

Hybrid classification is an integrated algorithm which combines the advantages 

from both traditional supervised and unsupervised approaches (Hoffer and Fleming 

1978, Lo and Choi 2004). In this hybrid approach, cluster analysis was first used to 

acquire the spectral signatures objectively, and then the signature file was imported into 

the supervised classification to generate the land-use map. The analytical procedures 

included four steps: (1) Eight blocks were first selected from the study image according 

to ground land-use information. Each block contained three to four kinds of land-use 

types; (2) In the unsupervised stage, the selected blocks were clustered into spectral 

subclasses by unsupervised classification and then merged or deleted subclass 

signatures as appropriate based on transformed divergence (TD), see equation 21. TD 

ranged from 0 to 2000. If two classes can be separated completely, then the TD 

approaches 2000; (3) Spectral signatures obtained from each block were then combined 

and integrated into a single spectral signature; Finally (4) in the supervised stage: the 

single spectral signature was finally applied to generate the land-use map of the study 

area. 
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where, TD is the transformed divergence (-) ; D is the divergence; Covi is the covariance 

matrix of class i; m is the mean vector of class i; and  Atr  is the sum of the diagonal 

line of matrix A. 

 

To evaluate the result of land-use classification, test areas for each cover type were 

selected from the generated map of November 25, 1995. All test areas were used to 

compare with the national land-use inventory data, and the classification accuracy was 

then calculated. The same procedures were adopted to generate the land-use maps of 

July 20, 1995 and January 4, 2002. 

 

5.1.2. Daily actual ET estimation based on the SEBAL model 

The SEBAL model was used to compute 15 energy balance parameters, and then to 

calculate actual ET according to these parameters. Moreover, in order to consider the 

seasonal changes of ET, two actual ET maps (July, 20 and November, 25, 1995) were 

calculated. Mean daily ET values derived from the two ET maps were applied to define 

the actual ET amount and CV parameters for various land-use types in further steps. 
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5.1.3. Evaluation of ET difference among various land-use types 

Land-use maps generated using the hybrid approach and daily ET obtained from 

the SEBAL model were used to compare the difference among various land-use types in 

different seasons. However, because even a thin layer of shadow or cloud can 

considerably obscure the thermal band readings and cause large errors in calculation of 

ET (Morse et al., 2000), two cover types (i.e., shadow and cloud) within the study site 

were eliminated prior to the comparison. 

 

5.2. Analysis of Ecosystem Classification Systems at Various Spatial 

Scales on Environmental Parameters 

To assess the effect of ecosystem classification systems at various scales on 

environmental parameters, two methods of ecosystem classification were used in this 

study. One is called the geographic climate method which is based on the controlling 

factors such as temperature and precipitation to classify land as ecosystems (Su, 1992). 

The other is called the watershed division method which is based on the DTM to 

automatically extract watershed and regards watershed units as ecosystems. Under 

various scales of ecosystem classification systems (regional and local scales), the study 

area was further classified into different numbers of ecosystem units, for example, 

geographic climate method and watershed division method have 12 and 7 ecosystem 
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units, respectively (Figure 9). Ecosystem units obviously have unique characteristics of 

climate or terrain no matter what the ecosystem classification. For example, the major 

climate type in unit 3 of the geographic climate method is summer rain climate, and unit 

6 is everwet climate. But for the watershed division method, unit 3 was identified as a 

flat plain, and unit 2 is in a steep mountainous area. In addition, there are several 

industrial and scientific campuses in the study area, which demand more water 

resources and may indirectly influence the operation of ecosystem. Therefore, it is 

important to understand how land-use types and ecosystem classification systems affect 

the environmental parameters before making management decisions. 

During the process, land-use types were regarded as the dependent variables and 

16 environmental parameters (15 energy balance parameters + actual ET) obtained from 

the SEBAL model were regarded as the independent variables. Stepwise discriminant 

analysis was used to select the optimal combination of parameters for discriminating 

five land-use types, and further to assess the effect of ecosystem classification systems 

at various scales on environmental parameters. Wilks' lambda was used to determine 

which independent variables contributed to the discriminant function significantly. The 

Wilks' lambda ranges from zero to one, with 0 indicating groups are different and one 

meaning groups are the same. 
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a 

 

       
b                               c 

 

Figure 9. Spatial scales and two ecosystem classification systems 

(a: regional scale: the north Taiwan; b: local scale: geographic climate method;     c: 

local scale: watershed division method) 
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5.3. Effect of Future Land-Use Status and ET Change for Stream Flow 

Simulation under Climate Change Conditions 

5.3.1. Calculation of CV parameters using various methods 

This study used two various methods to estimate CV parameters. The first method, 

an innovation in the study, was to calculate the CV using remote sensing techniques (i.e., 

RSCV). Two different procedures could be applied to derive the CV using satellite data. 

The first one was a direct calculation procedure, which combined the water balance 

function used in the GWLF model and actual ET obtained from Landsat-5 TM images, 

and then to compute the remote sensing based CV for the entire study site directly 

(called the RSCVd). Due to the seasonal changes of vegetation structure and growing 

status, the values of CV should show seasonality. The assumption was made that May 

to October was the wet season and November to April was the dry season when 

calculating the CV, as suggested by Tien (2003) and Haith et al. (1992). Therefore, 

cover coefficients estimated from the actual ET of July 20, 1995 and November 25, 

1995 represented the wet and dry season’s CV values, respectively. The following were 

the equations for calculating RSCVd. 
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where, ETrs is the daily evapotranspiration (cm/day) of the overall study site by using 

remote sensing; RSCVd is the overall cover coefficient derived from remote sensing 

using direct calculation procedure. 

The second method of estimating the CV using the remote sensing images was a 

weighted calculation procedure. It integrated the results of land-use classification with 

the actual ET obtained from SEBAL model, and then computed a CV for each land-use 

type. To estimate the overall CV for the study area, the percentage of land-use types was 

regarded as a weighting factor. The CV obtained from the weighted procedure was 

called the RSCVw. The advantage of this method is future CV values could be obtained 

from the function of land-use status and PET under the assumption that the ET of 

land-use types was invariable in the future. The calculation equations of RSCVw were as 

equation (23) and (24). 
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where, cvrsi is the CV of class i derived from remote sensing techniques; ETi is the ET 

of class i (cm/day); RSCVw is the overall remote sensing based CV derived from the 
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weighted calculation procedure; wi is the percentage of class i; PETt is potential 

evapotranspiration (cm) of date t. 

 

Comparing these two methods of calculating the CV, the second method was the 

more traditional approach to specify the CV of each land use area, based on using 

reference values published in the GWLF manual, (Tung and Haith, 1995; Davis and 

Sorensen, 1969) then, similar to RSCV, calculate the overall CV (called REFCV). The 

equation for calculating REFCV was as below: 
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where, REFCV is the overall CV determined by published reference; cvrefi is the CV of 

class i derived from GWLF manual; wi is the percentage of class i. 

 

5.3.2. Weather generation 

The Thiessen method was employed for the spatial integration of the seven point 

meteorological observations within the study area. This is a graphical method, adjusting 

for the non-uniform location of gauged stations by determining their area of influence. 

The method is based on the construction of areas of influence centered on each point 

measurement, the so-called Thiessen polygons. The measurement for each point is then 
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taken to be representative of the variable on its respective area of influence. The 

adjusting equations were as follows. 
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where, TEMPmean is the integrated areal temperature ( );℃  TEMPi is daily temperature of 

gauged station i; RAIINmean is the integrated precipitation (cm); RAINi is daily 

precipitation of gauged station i; and Ai is influence coefficient of gauged station i.  

 

A stochastic weather generation model (Tung and Haith 1995) was used to reflect 

possible variations in daily temperature and precipitation heights based on the local 

climate statistics from 1995~2002. Daily temperature was calculated using the 

first-order autoregressive equation given in Pickering et al. (1988) as follows. 
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where, TEMPi is the temperature on day i; Tm is the mean temperature for a period ( ) ℃

(one month herein);  is the lag-one autocorrelation coefficient of temperature during 
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the period;  is the normal sampling deviate between 0~1; T is the standard deviation 

of temperature during the period. 

 

Daily precipitation was determined by a conditional probability for the occurrence 

of wet and dry days based on the recorded climate sequences. Rainfall amount was 

generated as a logarithmic distribution function stated as below (Hong 1997): 

 

    RNIRAIN Pi  1ln                                            (28) 

 

where, RAINi is rainfall amount on day i (cm); P(I) is the mean rainfall on month I (cm); 

and RN is a random number, the range of RN was “0＜RN＜1”. 

 

As for the simulation of future weather data, the normalized predictor variables 

which were exported from the CGCM1 model (The First Version of the Canadian 

Global Coupled Model; Flato et al. 2000) under SRES A2 and B2 experiments were 

selected to predict the possible climate change conditions. Scenario parameters acquired 

from the grid point N24.1°E120.0° on CGCM1 model was adopted in this study 

because the distance between the point and study area is the nearest. 

The study procedures were as follows. First, we used the weather generation model 
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to generate a 100 year weather record based on the historic statistic. And then, two 

monthly means of CGCM1 outputs, such as the difference of temperature ( T) and the △

ratio of precipitation (RP), were applied to modify the generated weather sequence. 

Finally, the simulated future weather data was used to assess the impacts of short-term, 

mid-term and long-term climate change on watershed hydrology. The modified 

functions of weather data were stated as equations (29). 
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where, T’t,m and P’t,m are the modified temperature and precipitation on day t; Tt,m and 

Pt,m are the historic recorded temperature and precipitation on day t; Tm and RPm are 

the difference of temperature and ratio of precipitation obtained from CGCM1 forecasts. 
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Table 1. Scenario parameters of the SRES-A2 experiment exported from the CGCM1 

model (Tien, 2003) 

 Difference in temperature ( T)△ Ratio of precipitation (RP) 

Month Short Middle Long Short Middle Long 

Jan 0.94 1.62 2.76 1.22 1.12 1.02 

Feb 1.81 2.57 3.27 1.35 1.01 0.89 

Mar 1.25 2.64 3.78 1.30 1.03 0.88 

Apr 0.6 1.82 4.64 1.13 0.80 0.76 

May -0.46 2.78 4.54 1.10 0.82 0.54 

June 1.09 3.62 5.62 1.03 0.79 0.70 

July 1.18 2.26 4.52 0.92 0.93 0.70 

Aug 0.52 2.05 3.45 1.19 1.03 1.23 

Sept 0.45 1.9 3.12 1.18 0.97 1.29 

Oct 0.43 1.81 2.68 0.92 0.99 1.09 

Nov 0.47 2.1 2.53 1.10 1.24 0.80 

Dec 1.41 2.43 2.81 0.96 0.88 0.69 

 

Table 2. Scenario parameters of the SRES-B2 experiment exported from the CGCM1 

model (Tien, 2003) 

 Difference in temperature ( T)△ Ratio of precipitation (RP) 

Month Short Middle Long Short Middle Long 

Jan 1.14 1 0.83 1.36 1.71 1.65 

Feb 1.45 0.91 1.01 1.48 1.81 2.54 

Mar 1.18 0.97 0.95 0.71 2.44 3.26 

Apr 1.15 0.98 0.85 0.62 2.28 3.09 

May 0.83 0.95 0.77 1.69 1.76 2.75 

June 0.76 1.18 0.95 2.6 1.72 3.18 

July 0.96 0.97 0.97 1.59 1.47 2.6 

Aug 1.12 1.07 1.26 0.72 1.16 1.84 

Sept 1.07 1.04 1.19 0.73 1.28 1.8 

Oct 1.02 1.08 1.39 1.11 1.37 1.58 

Nov 0.82 0.94 1 0.55 1.72 1.8 

Dec 0.94 0.56 0.76 1.6 1.3 2.63 
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5.3.3. Assessment of the effects of CV on stream flow simulations 

Stream flow simulations were performed using the two types of calculated CV 

values, to investigate the effect of CV parameters on the GWLF simulations. The 

processes were as follows: 

First, the daily temperature and precipitation exported from the weather generation 

model based on the historic climate statistics, and CV’s calculated from different 

methods as above were substituted into the GWLF model to simulate the stream flows 

based on current conditions. Then, the observed stream flow records taken from the 

Shang-Guei-Shan-Ciao gauged station were applied to investigate the simulated 

accuracy of the simulation using regression analysis. 

 

5.3.4. Predictions of land-use change and future CV values 

The land-use status in 2030 of short-term, 2058 of mid-term, and 2086 of 

long-term future were predicted to represent the land-use conversions in the next three 

periods (28 years each). Furthermore, the results were integrated with the climate 

change data exported from the CGCM1 model to simulate the future values of CV 

according to equation (23) and (24). The predicted time stages for future land-use 

conversions and CV values were shown in Figure 10. 
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2030 2058 208620021995

Short-term (28 years after)

Long-term (84 years after)

Middle-term (56 years after)

Present 
condition

 

Figure 10. The predicted time stages for future land-use conversions and CV values 

 

Two assumptions were made in the calculation of future land-use status and CV 

values. The first assumption was that the land-use change of north Taiwan was constant. 

Under this assumption, the Markov model was applied to predict the percent of each 

land-use type using a transition probability matrix considering the land-use change from 

1995 to 2002. The second assumption was that the ET of land-use types was invariable 

in the future. This simplification allowed us to estimate a CV which was determined by 

the land-use status as shown in equation (23) and (24). Finally, the actual ET estimated 

from remote sensing, the PET calculated using the future temperature, and the land-use 

change projected by the Markov model were integrated together to calculate the future 

CV value. Simulations of future CV values were shown as equations (25) and (26). 
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where, fcvrsi is the future CV of class i derived from remote sensing techniques; ETi is 

the ET of class i (cm/day); FRSCVw is the future values of overall remote sensing based 

CV derived from the weighted calculation procedure; wi is the percentage of class i; 

FPETt is future potential evapotranspiration (cm/day). 

 

5.3.5. Effects of land-use status and ET parameters on future stream flow 

simulation 

Future temperature and precipitation defined by the SRES scenario were entered 

into the GWLF model to predict the stream flows based on climate change condition 

using various land-use and CV parameters. The objective of this process was to 

compare the difference of simulated flows between two approaches. The first approach 

is the traditional approach. Current land-use data was adopted and the CV parameters 

were acquired from the published references without considering its future change. Both 

parameters were assumed to be consistent during the simulated procedures. In the 

proposed approach, future land-use data was projected using the Markov model and the 

future CV values were derived from the integration of SEBAL model, CGCM1 model, 

and Markov model. A parameter comparison between two methods is shown in Table 3. 
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Table 3. A parameter comparison between traditional approach and proposed approach 

used in this study 

Methods 
Climate change 

simulation 
Land-use status ET parameter (CV value) 

Traditional 

approach 

CGCM1 model, 

SRES scenario 

Without considering 

land-use change, only 

adopted the current 

land-use data directly. 

CV values were acquired 

from the published 

references and without 

considering their future 

change. 

Proposed 

approach 

CGCM1 model, 

SRES scenario 

Future land-use status 

was predicted using the 

Markov model. 

Future CV values were 

derived from the integration 

of SEBAL model, CGCM1 

model, and Markov model. 

 

5.4. Assessment of Future Impacts on Hydrological Cycle of North 

Taiwan 

Flow series from 1995 to 2002 was generated from the GWLF model and taken as 

the baseline of the current hydrological condition. The simulated stream flows between 

future and current conditions were compared for assessing the impacts of short-term, 

mid-term and long-term climate change, land-use change and ET change on the 

hydrology of north Taiwan. 
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6. RESULTS 

 

6.1 Comparison of ET Difference among Various Land-use Types 

6.1.1. Land-use classification of north Taiwan 

The study area was classified into seven categories using the hybrid classification 

method, forest, building, farmland, fallow farmland, water, cloud, and shadow. To 

assess the classification accuracy, national land-use inventory data from 1995 was first 

combined to fit the objective categories and applied to compare with the generated maps. 

Excluding shadow and cloud, two test areas for each land-use type were selected and 

used to calculate the classified accuracy based on these examinations. Spatial 

distribution of the selected blocks and test areas is shown as Figure 11; classification of 

the test area is shown as Table 4; accuracy assessment of the land-use classification of 

November 25, 1995 is calculated in Table 5. 
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Figure 11. Spatial distribution of the selected blocks and test areas 

(The size of each block is 100 ha, which was extracted from each landsat image. As for 

the test area, the size for forest1, forest2, building1, building2, water1, water2, 

farmland1, and farmland2 is 140.40ha, 694.71ha, 563.04ha, 376.83ha, 161.46ha, 

439.02ha, 206.88ha, and 1020.78ha, respectively.) 
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Table 4. Classification of test areas 

Land-use type Satellite image Ground truth Image 

classification

Image 

subtraction 

Forest 1 

    

Forest 2 

    

Building1 

    

Building2 

    

Water 1 

    

Water 2 

    

Farmland1 

    

Farmland2 
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Table 5. Examination of the land-use classification of November 25, 1995 

Land type Forest  Building Water Farmland
Fallow 

Farmland
Total 

User's 

accuracy

Forest  9144 0 0 128 7 9279 98.55%

Building 0 9212 414 221 596 10443 88.21%

Water 0 27 6539 3 103 6672 98.01%

Farmland 281 1031 97 6558 75 7762 84.49%

Fallow Farmland 11 1466 186 0 4212 5875 71.69%

Total 9306 11711 7186 7190 4918 40031   

Producer's 

accuracy 
98.26% 78.66% 91.00% 91.21% 85.64%     

Overall accuracy＝89.09% 

Kappa statistic＝0.8525 

 

Table 4 and Table 5 show that most errors occurred when categorizing fallow 

farmland. This might be due to the fact that building and fallow farmland both have 

similar characteristics on spectral reflectance making the two types difficult to separate 

well. However, the accuracy of forest, buildings, water, and farmland was 98.55%, 

88.21%, 98.01%, and 84.49%, respectively. The overall accuracy was about 89.09%, 

suggesting that hybrid classification is a suitable approach to generate a land-use map. 

The same procedures were adopted to create the land-use maps of north Taiwan on July 

20, 1995 and January 4, 2002, and the results are shown in Figure 12. Further to gather 

the statistics of pixel numbers and percentages of five land-use types, the result is 

shown in Table 6. 

A further comparison of land-use status among three different dates indicated that 
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in July 1995, forest occupied most of the study site (37.78%), then farmland (36.71%), 

building (10.58%), fallow farmland (7.52%), and water (7.41%) was smaller. In 

November 1995, forest has the largest area (35.89%), then farmland (22.39%), fallow 

farmland (21.88%), building (12.99%), and water (6.85%). The results showed that 

there was a significant transition between the farmland and fallow farmland because of 

the cultivation and fallow time in Taiwan. The classification of image from January 4, 

2002, revealed that forest was still the largest area (34.26%), then farmland (25.25%), 

fallow farmland (23.20%), building (14.05%) and water (3.19%). Obviously, the 

building area increased from 12.99% on November 25, 1995, to 14.05% on January 4, 

2002. 
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         a                                  b 

 

c 

Figure 12. Land-use maps generated by the hybrid classification                  

(a: July 20, 1995; b: November 25, 1995; c: January 4, 2002) 
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Table 6. Pixel number and percentages of five land-use types 

 July 20, 1995 November 25, 1995 January 4, 2002 

Land-use 

types 

Pixel 

number 
Percentage

Pixel 

number 
Percentage

Pixel 

number 
Percentage

Forest 2075851 37.78% 1971918 35.89% 1882195 34.26% 

Building 581463 10.58% 713486 12.99% 772093 14.05% 

Wate 407305 7.41% 376406 6.85% 175180 3.19% 

Farmland 2016862 36.71% 1230342 22.39% 1387287 25.25% 

Fallow 

farmland 
412923 7.52% 1202252 21.88% 1277649 23.25% 

Total 5494404 100% 5494404 100% 5494404 100% 

 

6.1.2. Estimation of the daily actual ET using remote sensing 

Figure 13 and Figure 14 present the generated maps of energy balance parameters 

and actual ET of July 20 and November 25, 1995 using SEBAL model (only five major 

parameters such as NDVI, surface temperature, soil heat flux, sensible heat flux and 

actual ET are shown here). When forestland is compared to other types of land-use, it 

had the higher value of NDVI and actual ET, and had the lower value of surface 

temperature, soil heat flux and sensible heat flux. A comparison of parameters between 

the two time periods, confirmed that surface temperature, NDVI and actual ET had 

higher values in July, and sensible heat flux and soil heat flux had higher values in 

November. Knapp (1985) stated that “Seasonal trends of evapotranspiration within a 

given climatic region follow the seasonal declination of solar radiation and the resulting 

air temperatures. Minimum evapotranspiration values generally occur during the coldest 

months of the year. Maximum values generally coincide with the summer season.” In 

our study, ET in summer revealed the highest value (July 20, 1995: 0.531 cm/day) and 

the lowest value in winter (January 9, 1995; 0.233 cm/day). The result showed the 

similar trend with previous study. 
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a                      b                      c 

     

d                        e 

Figure 13. Estimated energy balance parameters and ET maps of July 20, 1995 

(a: NDVI; b: surface temperature; c: soil heat flux; d: sensible heat flux; e: ET) 
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a                      b                      c 

     

d                        e 

Figure 14. Estimated energy balance parameters and ET maps of November 25, 1995 

(a: NDVI; b: surface temperature; c: soil heat flux; d: sensible heat flux; e: ET) 
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6.1.3. Difference of ET among various land-use types 

ET among five land-use types is computed in Table 7. In July, forest had the 

highest mean daily ET value (0.723cm/day), then farmland (0.530cm/day), water 

(0.281cm/day), fallow farmland (0.267cm/day), and building (0.220cm/day); During 

November, consistently forest was consistently the highest value (0.395cm/day), then 

farmland (0.185cm/day), fallow farmland (0.139cm/day), water (0.113cm/day), and 

building (0.088cm/day). 

 

Table 7. Computation of ET (cm/day) of five land-use types in 1995 

 Forest Building Water Farmland 
Fallow 

farmland 

July 20 
0.723  

0.227 
0.220 0.048

0.281  

0.045 
0.530 0.159 0.267 0.042 

November 25 
0.395  

0.148 
0.088 0.024

0.113  

0.020 
0.185 0.054 0.139 0.043 

 

6.2. Effect of Ecosystem Classification Systems at Various Spatial 

Scales on Environmental Parameters 

Table 8 presents the results after the stepwise discriminant analysis. They indicated 

that the required parameters and the numbers of parameters for discriminating five 

land-use types varied with different ecosystem classification systems at various scales. 

Considering unit 3 and unit 2 of the watershed division as an example, it is clear that 
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both units have different required parameters and numbers of parameters when 

discriminating five land-use types. For example, unit 3 and unit 2 are located in a flat 

plain and a steep mountainous area, respectively. The results indicate that unit 2 has four 

parameters (NDVI , zom , ε0 , α0) and unit 3 has eleven parameters (rah, ε0 , NDVI , H , T0 , 

zom , τsw , ET24 , pair,  Rn, cosθ). The reasons for the different numbers may result from 

the characteristics of the ecosystem units. As stated previously, ecosystem units have 

unique characteristics for climate, terrain or ecological conditions. This characteristic 

may influence the calculation of environmental parameters and indirectly affect the 

result of stepwise discriminant analysis. 

No matter what kind of spatial scales and ecosystem classification systems were 

used, both NDVI and ε0 parameters were extracted in the stepwise discriminant analysis, 

which suggests that these two parameters can be regarded as the most significant 

factors. 
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Table 8. Stepwise discriminant analysis under different ecosystem classification systems 

at various scales 

 

Spatial scales Selected parameters 

North Taiwan NDVI  zom  ε0  α0  Rn  Go  rah  pair  τsw  u*

Unit 1 
NDVI  T0  ε0  αtoa  zom  rah  H  u*  τsw  α0  

ET24  Rn  Ra24  Go 

Unit 2 
NDVI  T0  zom  rah  ε0  u*  α0  Go  Rn  H  

τsw  αtoa  ET24 

Unit 3 
NDVI  zom  ε0  rah  α0  cosθ  H  Go  Rn 

ET24 

Unit 4 
NDVI  T0  zom  rah  ε0  Go  α0  Rn  u*  H  

τsw 

Unit 5 
zom  T0  u*  cosθ  H  NDVI  τsw  α0  Go  

Rn rah  ε0 

Unit 6 
NDVI  zom  T0  u*  rah  ε0  Rn  ET24  α0  

αtoa  Go 

Unit 7 zom  cosθ  NDVI  T0  H τsw  ε0  u*  rah 

Unit 8 
zom  T0  H  Go  αtoa  ε0  NDVI  τsw  u*  rah  

Rn 

Unit 9 NDVI  ε0  T0  cosθ  τsw  α0  H  zom 

Unit 10 NDVI  T0  τsw  ε0  zom  rah  u*  Go  α0  Rn 

Unit 11 
NDVI  T0  ε0  H  α0  τsw  zom  u* τsw  rah  

Go  Rn 

  Geographic 

climate method 

Unit 12 
NDVI  T0  τsw  cosθ  ε0  Go  Rn  α0  αtoa  

Ra24  pair  H  zom 

Unit 1 NDVI  ε0  zom  rah  Go  cosθ  pair  Rn  Ra24 

Unit 2 NDVI  zom  ε0  α0 

Unit 3 
rah  ε0  NDVI  H  T0  zom  τsw  ET24  pair  

Rn  cosθ 

Unit 4 
zom  NDVI  ε0  T0  Ra24  α0  Rn  u*  rah  H  

τsw  Go  ET24 

Unit 5 NDVI  zom  ε0  u*  rah  T0  ET24 

Unit 6 
NDVI  rah  τsw  u*  ε0  Go  Rn  H  pair  

Ra24 

Watershed 

division method 

Unit 7 NDVI  ε0  zom  α0  rah  Go  cosθ  αtoa 
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6.3. Assessment of Future Land-Use Status and ET Change on Stream 

Flow Simulation under Climate Change Conditions 

6.3.1. Calculations of CV under present condition 

Figure 15 illustrates the Thiessen polygon divisions and the influence coefficients 

for the seven meteorological stations. These coefficients were adopted to integrate the 

historical temperature and precipitation observations collected from seven gauged 

stations for deriving a weather series which involved the climatic characteristics of the 

whole of north Taiwan. The mean daily temperature, saturated water vapor pressure and 

potential evapotranspiration on July 20 and November 25, 1995, were then calculated 

from the integrated weather data and shown as Table 9. 

 

Figure 15. Thiessen polygons and their influence coefficients 
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Table 9. Mean daily temperature, saturated water vapor pressure and potential 

evapotranspiration on July 20 and November 25, 1995 

 
Mean daily 

temperature ( )℃
e0t (mb) PET (cm) 

July 20 

(wet season) 
26.268 33.905 0.427 

November 25 

(dry season) 
14.390 31.523 0.274 

 

Table 10 and Table 11 are the CV values obtained from the proposed remote 

sensing using various procedures; Table 12 is the CV calculated from the traditional 

approach. From Table 10 and Table 11, the remote sensing-based CV derived from 

various procedures showed similar results (RSCVd: 1.243 and 0.850; RSCVw: 1.245 and 

0.851). Due to the advantage of RSCVw on future CV calculation, it was applied in 

further hydrologic simulations instead of RSCVd.  

Comparing Table 11 with Table 12, the calculated CVs of the wet season (RSCVw: 

1.245; REFCV: 0.842) were higher than the value of the dry season (RSCVw: 0.851; 

REFCV: 0.717). Regardless of whether it was the wet season or the dry season, the CV 

values derived from the remote sensing approach (wet season: 1.245; dry season: 0.851) 

were larger than those from the traditional approach (wet season: 0.842; dry season: 

0.717). To reconfirm this situation and to validate the following stream flow model, the 

Dan-Shui watershed was selected for more detail analysis. The results of the calculated 
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CVs for Dan-Shui were similar; that is, the remote sensing approach (wet season: 1.518; 

dry season: 0.983) remained a larger CV value than the traditional approach (wet season: 

0.826; dry season: 0.754). 

Table 10. CV obtained from the remote sensing using the direct calculation procedure 

 RSCVd (=ET/PET) 

RSCVd of July 20 

(for wet season) 
0.531 / 0.427= 1.243

RSCVd of November 25

(for dry season) 0.233 / 0.274= 0.850

 

Table 11. CV obtained from the remote sensing using the weighted procedure 

 
Forest Building Water Farmland 

Fallow 

farmland

cvrs of July 20 1.69 0.51 0.66 1.24 0.63 

RSCVw of July 20 

(for wet season) 

1.69× 0.3778 + 0.51 × 0.1058 + 0.66 × 0. 0741 

+ 1.24 × 0.3671 + 0.63 × 0.0752 = 1.245 

cvrs of November 25 1.44 0.32 0.41 0.67 0.51 

RSCVw of November 25 

(for dry season) 

1.44× 0.3589 + 0.32 × 0.1299 + 0.41 × 0. 0685 

+ 0.67 × 0.2239 + 0.51 × 0.2188 = 0.851 

 

Table 12. CV obtained from the traditional approach 

 Forest Building Water Farmland Fallow farmland 

cvref 1 0 1 1 0.3 

REFCV of July 20 

(for wet season) 

1× 0.3778 + 0 × 0.1058 + 1 × 0. 0741 

+ 1 × 0.3671 + 0.3 × 0.0752 = 0.842 

REFCV of November 25 

(for dry season) 

1× 0.3589 + 0 × 0.1299 + 1 × 0. 0685 

+ 1 × 0.2239 + 0.3 × 0.2188 = 0.717 
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6.3.2. Validation of stream flow simulation 

The Dan-Shui watershed was also used to validate the GWLF model. The CV 

values obtained from two approaches were applied to assess their effects on stream flow 

simulations using the GWLF model. To validate the weather generation model, the 

following Table compared the historical records and simulated values. The Table 

showed that the correlation coefficient was higher than 0.99. Intercept and slope were 

approaching to “zero” and “one”, respectively. Therefore, the simulated weather records 

can be adopted for the GWLF simulation. 

 

Table 13. Comparison between the observed and simulated temperature data 

Cyu-Chih 
station 

observed simulated

January 15.63 15.7 

February 15.7 16.02 

March 18.59 18.24 

April 21.54 21.24 

May 24.1 24.32 

June 26.83 27.28 

July 28.17 27.79 

August 28.1 28.02 

September 25.91 26.16 

October 23.89 24.42 

November 20.31 20.18 

December 17.25 18.02 

Correlation coefficient 0.99684 

Intercept -0.25652 

Slope 1.006389 

 

The basis of setting model parameters was as follows. First, the values of CN2 for 

five land-use types were derived from the user’s manual of the GWLF model, as 
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follows, 63 for forest, 98 for building, 98 for water, 79 for farmland and 70 for fallow 

farmland. The recession coefficient was adopted from the advice of Li et al., (2006) 

using a set value of 0.1. Daylight hours, which were related to the latitude of study area, 

were also given in the GWLF user’s manual as shown in Table 14. Figure 16 is the 

generated map of seven land-use types of the Dan-Shui watershed in July, 20 and 

November, 25, 1995. From the classification map, clear shadow and cloud excluded 

from further analysis, and Table 15 shows the area and percentages of the five 

remaining land-use types in two periods. The result revealed that forestland occupied 

most of the Dan-Shui watershed (July 20: 51.53 %, November 25: 48.83 %). Finally, 

Figure 17 presents the estimated ET maps. RSCV and REFCV of the Dan-Shui 

watershed in wet and dry seasons are calculated in Table 16 and Table 17. The CV 

values obtained from remote sensing (wet season: 1.518; dry season: 0.983) and the 

reference manual (wet season: 0.826; dry season: 0.754) were applied in the following 

hydrologic simulations. 
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Table 14. Mean number of daylight hours in the study area (hours) 

Month 
Mean number of daylight 

hours  

January 10.7 

February 11.2 

March 11.9 

April 12.6 

May 13.1 

June 13.4 

July 13.3 

August 12.8 

September 12.1 

October 11.4 

November 10.9 

December 10.6 

 

     

a                                 b 

Figure 16. Land-use maps of the Dan-Shuei watershed from 1995 

(a: July 20; b: November 25) 
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Table 15. Numbers of pixel and percentages of five land-use types of the Dan-Shui 

watershed (Excluding shadow and cloud types in both periods) 

 July 20, 1995 November 25, 1995 

Land-use 

types 

Pixel 

number 

Percentage of each 

land-use 

Pixel 

number 

Percentage of each 

land-use 

Forest 860157 51.53% 814997 48.83% 

Building 237603 14.24% 260744 15.62% 

Water 142952 8.56% 165368 9.90% 

Farmland 353850 21.20% 213600 12.80% 

Fallow 

farmland 
74601 4.47% 214454 12.85% 

Total 1669163 100% 1669163 100% 

 

     

a                                 b 

Figure 17. ET maps of the Dan-Shuei watershed from 1995 

(a: July 20; b: November 25) 
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Table 16. RSCV calculations of the Dan-Shui watershed in wet and dry seasons 

 
Forestland Building Water body Farmland 

Fallow 

farmland

cvrs of July 20 1.98 0.62 0.87 1.39 0.91 

RSCVw of July 20 

(for wet season) 

1.98× 0.5153 + 0.62 × 0.1424 + 0.87 × 0. 0856 

+ 1.39 × 0.2120 + 0.91 × 0.0447 = 1.518 

cvrs of November 25 1.58 0.22 0.26 0.60 0.58 

RSCVw of November 25 

(for dry season) 

1.58× 0.4883 + 0.22 × 0.1562 + 0.26 × 0. 0990 

+ 0.60 × 0.1280 + 0.58 × 0.1285 = 0.983 

 

Table 17. REFCV calculations of the Dan-Shui watershed in wet and dry seasons 

 Forestland Building Water body Farmland Fallow farmland

cvref 1.0 0 1.0 1.0 0.3 

REFCV of July 20 

(for wet season) 

1.0× 0.5153 + 0 × 0.1424 + 1.0 × 0. 0856  

+ 1.0 × 0.2120 + 0.3 × 0.0447 = 0.826 

REFCV of November 25 

(for dry season) 

1.0× 0.4883 + 0 × 0.1562 + 1.0 × 0.0990  

+ 1.0 × 0.1280 + 0.3 × 0.1285 = 0.754 

 

The daily temperature and precipitation exported from the weather generation 

model based on the climate statistics of the Cyu-Chih station from 1995 to 2002 were 

entered into the GWLF model with the above parameters to calculate the flow series. 

The results are shown as Table 18 and Figure 18. A regression analysis was used to 

investigate the relationship between the observed and calculated flow series. The results 

indicated that the regression coefficient was 0.877 when using RSCVw, and 0.853 for the 

use of REFCV. Such a high regression coefficient implies that, even though the 
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simulated values are overestimates compared with the observed values, the CV value 

obtained from the proposed remote sensing approach could represent truer stream flow 

characteristics than the traditional approach. In other words, the use of the remote 

sensing approach to derive the parameters for the GWLF model was more suitable to 

simulate the hydrological flow in north Taiwan.  

 

Table 18. Observed and simulated stream flow values (cm/month) of the Dan-Shui 

watershed 

Month 
Observed 

value 

Simulated value 

(Using REFCV) 

Simulated value 

(Using RSCV) 

January 2.31 7.9 6.7 

February 7.43 15.5 14.4 

March 6.37 12.1 10.7 

April 2.56 13.1 11.5 

May 5.78 14.8 11.8 

June 10.17 27.7 20.3 

July 13.62 24.3 17 

August 17.96 18.8 15.3 

September 51.65 46.5 40 

October 19.90 29.6 24.2 

November 21.93 13.8 10.7 

December 9.63 14.4 11.4 

Total 169.30 238.50 194.00 

Average 14.11 19.88 16.17 
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Figure 18. The observed and simulated hydrographs 

 

6.3.3. Assessment of Future Land-Use Status and ET Change on Stream Flow 

Simulation under Climate Change Conditions 

The transition matrix of the observed land-use changes based on the land-use maps 

on November 25, 1995 and January 4, 2002 is shown in Table 19. Goodman’s 

Chi-squared statistic for the two periods (χ2 = 76742.52) was larger than the reference 

value (χ2 = 32.00) and was statistically very significant (p << 0.001), indicating that the 

processes of land-use transition during the periods are not random. Moreover, to 
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validate the Markov projection, the calculated transition probability matrix was used to 

predict the land use in 2002. It was then compared with the image classification of 2002 

using regression analysis. The result was shown as Table 20. Clearly correlation 

coefficient was higher than 0.96 even though the predicted result was not exactly the 

same with the image classification. From above validation, integrating the Markov 

model and remote sensing technique for future land-use prediction should be feasible. 

 

Table 19. Transitional pixels and probabilities from 1995 to 2002 

Transition from 

row to column 
Forest Building Water Farmland Fallow farmland

Column total 

(1995 distribution)

Forest 
274 

(0.823) 

2 

(0.006)
0 

44 

0.132 

13 

(0.039) 
333 

Building 0 
86 

(1) 
0 0 0 86 

Water 
2 

(0.033) 

17 

(0.283)

13 

(0.217)

13 

(0.217)

15 

(0.250) 
60 

Farmland 
34 

(0.143) 

18 

(0.076)

1 

(0.004)

121 

(0.508)

64 

(0.269) 
238 

Fallow farmland
14 

(0.059) 

33 

(0.139)

7 

(0.030)

80 

(0.338)

103 

(0.435) 
237 

Row total 

(2002 distribution)
324 156 21 258 195 954 

The numbers in parentheses indicate the transitional probability. 
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Table 20. Validation of Markov prediction 

 Land classification Markov prediction Difference 

Forest 34.23% 32.80% -1.43% 

Building 16.11% 20.52% 4.41% 

Water 3.16% 2.32% -0.84% 

Farmland 23.95% 25.09% 1.14% 

Fallow farmland 22.55% 19.27% -3.28% 

Total 100.00% 100.00%  

Correlation coefficient 0.9668 

Intercept 0.0028 

Slope 0.9861 

 

For climate change simulation, IPCC (2007) strongly recommended that at least a 

30-year period be employed for averaging GCM output data, to dampen the effects of 

inter-decadal variability. In our study, the base-line data for future land-use simulation 

is a 7-year period (from 1995 to 2002). In order to coincide with the climate change 

simulation, we followed the suggestion of IPCC (2007) and adopted four periods (28 

years, approximate to 30 years) as a stage. Therefore, three predicted years in 2030, 

2058, and 2086 represent the short-term, middle-term, and long-term land-use change. 

The predicted results are shown as Table 21. The prediction distinctly reveals that the 

building areas will increase from 13.36% in 1995 and 14.05% in 2002 to 38.91% in 

2030, 52.13% in 2058, and reach 62.36% in 2086. Furthermore, the results obtained 

from Markov model and SEBAL model were combined to calculate the future CV 

values using equation (25) and (26), and shown as Table 22. From the results, the CV 

values for north Taiwan would reveal a decreasing trend no matter which storyline was 
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used. 

 

Table 21. Predictions of land-use types in 2030, 2058, and 2086 

Land-use types 2030 2058 2086 

Forest 28.02% 22.58% 17.91%

Building 38.91% 52.13% 62.36%

Water 0.67% 0.50% 0.39%

Farmland 19.31% 14.95% 11.72%

Fallow farmland 13.09% 9.97% 7.79%

Total 100.00% 100.00% 100.00%

 

Table 22. Predictions of future CV values 

CV 2030 2058 2086

CV for wet season 

(A2 storyline) 
0.997 0.896 0.813

CV for dry season 

(A2 storyline) 
0.719 0.636 0.564

CV for wet season 

(B2 storyline) 
1.000 0.902 0.813

CV for dry season 

(B2 storyline) 
0.723 0.643 0.573

 

6.3.4. Effects of land-use change and ET change on future flow simulation 

   The future meteorological data was generated by using the CGCM1 modified 

predictors and weather generation model based on previous integrated weather records. 

Finally, flow series under short-term, mid-term and long-term climate change scenarios 

were projected using the GWLF model to assess the effects of land-use status and ET 

change on hydrological simulations. The two approaches to simulations were compared 
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in this step. Figure 19 compared the predicted stream flows between the traditional 

approach (REFKc parameter for current condition, without considering its future change) 

and proposed approach (RSKc, considering both land-use and ET change in the future). 

Table 23 represents the difference between the two simulations. The results revealed 

that the simulated flows using proposed approach were lower than those using 

traditional approach, regardless of the monthly stream flow, mean value of monthly 

stream flow, and annual total volume. 
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Figure 19. Comparison of the predicted stream flows between the traditional approach 

and proposed approach based on CGCM1 climate change model (a: A2, short-term; b: 

A2, middle-term; c: A2, long-term; d: B2, short-term; e: B2, middle-term; f: B2, 

long-term) 
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Table 23. Difference of stream flows (cm/month) between various approaches 

  A2 Storyline   B2 Storyline  

Month 
Short 

term 

Middle 

term 

Long

term

Short

term 

Middle 

term 

Long 

term 

January 0.00 0.00 0.90 0.00 0.40 0.40 

February 1.00 1.10 1.80 0.80 1.10 2.80 

March -0.90 0.20 0.40 -0.90 0.00 -0.40 

April 0.30 0.50 1.80 0.10 1.00 1.30 

May -0.50 0.80 0.60 -0.60 0.00 1.20 

June -1.60 -0.40 1.90 -1.10 0.50 1.10 

July -2.00 -0.60 2.50 -2.00 -1.00 1.20 

August -1.50 -0.60 0.60 -2.20 -1.00 1.00 

September -1.40 -0.20 0.90 -1.70 0.10 1.40 

October -2.40 -0.70 -0.90 -1.90 -1.40 0.60 

November -0.70 -1.20 -2.50 -1.30 -0.80 -2.80 

December -0.20 0.50 0.70 0.00 -0.40 -0.10 

Total -9.90 -0.60 8.70 -10.80 -1.50 7.70 

Average -0.82 -0.05 0.73 -0.90 -0.12 0.64 

 

6.4. Investigation of Future Impact on Hydrological Cycle of North 

Taiwan 

To further investigate how land-use change, ET change, and climate change 

affected river flows of north Taiwan, flow series from 1995 to 2002 (Table 24) was 

estimated to represent the current hydrological condition, and then compared with the 

future flows, the result was in Figure 20. Table 25 shows the value changes for future 

condition to the current condition. Positive values in the table denote an increase of flow, 

whereas negative values represent a decrease of flow. The results indicate that the 

overall values in future flow change have increasing trend. That is, the integrated effects 
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from urban sprawl, ET decline, and atmospheric changes would lead to an increase in 

the flow volumes of north Taiwan. 

 

Table 24. Simulated flow values (cm/month) of north Taiwan under current condition 

Month 
Simulated flow values

(Using RSCV) 

January 9.5 

February 16.9 

March 13.2 

April 11.7 

May 12 

June 15.1 

July 16.2 

August 13.2 

September 27.2 

October 27.4 

November 16.7 

December 15.1 

Total 194.2  

Average 16.2  
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Figure 20. Comparison of hydrographs between current and future conditions (a: 

SRES-A2 scenario; b: SRES-B2 scenario) 
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Table 25. Stream flow changes (cm) of north Taiwan due to land-use change, ET change 

and climate change 

  A2 Storyline   B2 Storyline  

Month 
Short 

term 

Middle 

term 

Long

term

Short

term

Middle 

term 

Long 

term 

January 2.6 0.8 0.9 1.3 0.1 -1.9 

February 6.6 1.2 -0.9 7.2 -1.8 3.8 

March 2.2 1.7 2.0 2.3 -0.7 2.6 

April 1.9 -1.6 0.7 0.9 0.7 1.1 

May 4.4 0.2 -6.2 -0.9 0.6 -0.4 

June 0.9 -6.9 -6.8 -6.3 11.9 -0.4 

July 2.2 -1.4 -6.2 0.9 -0.5 -0.6 

August 14.8 3.4 6.2 9.0 5.9 8.9 

September 6.5 -6.2 11.0 5.6 3.3 17.4 

October -0.9 -1.7 7.9 3.5 -4.1 21.5 

November -2.8 2.7 -2.1 -6.0 -1.4 -1.6 

December -1.0 0.9 -5.7 -2.2 -5.3 -4.0 

Total 37.4 -6.9 0.8 15.3 8.7 46.4 

Average 3.1 -0.6 0.1 1.3 0.7 3.9 
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7. DISCUSSIONS 

 

7.1. Daily ET Difference among Various Land-use Types 

1. In this study, a hybrid approach was applied to generate the land-use maps of north 

Taiwan. The examination of test area obtained a satisfactory result with the overall 

accuracy of 89.09%. However, the discrimination between spectral class and 

information classes was still problematic. For example, according to the national 

land-use inventory data, both farmland and fallow farmland are subclasses under 

agriculture land. During the image classification, farmland and fallow farmland can 

not be combined into one class because the two cover types have different 

characteristics of spectral reflectance. Thus, it becomes an important subject for 

further study to decide on the appropriate number of spectral classes coinciding with 

the classes categorized using information from actual field studies. 

2. Ground land-use inventory is necessary for validating the accuracy of image 

classification. But acquiring ground truth data which has the same land types as the 

classification objective is difficult, particularly for intensive land use like Taiwan. In 

this study, the categories of the national land-use inventory data were firstly 

combined to coincide with those of remote sensing classification before the 

accuracy assessment. Certainly some errors may occur during the combination. But 
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with 89.09% overall accuracy, the result seems satisfactory. Further studies should 

be aware of the influence of the thematic difference between ground truth data and 

image classification on the accuracy assessment. 

3. To validate the SEBAL simulations, the Pan ET records obtained from five weather 

stations (i.e., Taipei, Zhu-ZI-Hu, Ji-Long, Yi-Lan, and Xin-Zhu) on November 25, 

1995 were regarded as ground truth data. An unpaired t-test was then applied to 

assess the difference between the field record and the simulated ET. The result 

showed that the calculated p value was 0.395, greater than 0.05. This result explains 

that there is no significant difference between the observed ET and the simulated ET. 

Therefore, the SEBAL model can be a feasible approach to estimate the ET on a 

large scale. 

4. The main limitation of this and other studies relying on remote sensing technologies 

is that satellite image quality and land-use classification affect the estimations of 

actual ET and CV. In Taiwan, it is not easy to collect a clear image because of the 

weather, and shadow effects are also common due to a mountainous terrain. These 

two factors increase the difficulty of image classifications. To solve the problem, our 

study and most previous studies have opted to mask out the shaded areas of cloud 

and shadow before ET and CV were calculated. If clearer images become available 

in the future, they would be helpful in applying the SEBAL model. On the other 
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hand, SEBAL can potentially use other satellites images such as MODIS, AVHRR 

(Morse et al., 2000). These satellite images are able to provide more frequent 

observations to allow more frequent calculations of ET in addition to the large-scale 

analysis and the solution of cloud cover with Landsat data. Further studies can 

extend to this issue. 

5. ET is a term used to describe the sum of “evaporation” and “plant transpiration” 

from the Earth's land surface to atmosphere. Evaporation accounts for the movement 

of water to the air from sources such as the soil, canopy interception, and 

waterbodies. Transpiration accounts for the movement of water within a plant and 

the subsequent loss of water as vapor through stomata in its leaves. In north Taiwan, 

seldom species of plant live on the water area. ET released from water surface 

usually involves only “evaporation”, no “transpiration”. However, the ET from the 

forest includes both “evaporation” and “transpiration”. A fully grown tree may lose 

several hundred gallons of water through its leaves on a hot, dry day. About 90% of 

the water that enters a plant's roots is used for this process (Cummins 2007; Martin 

et al. 1976). Chen et al. (2006) also showed the same result as our study. For above 

reasons, the ET value of forest can be higher than that of water. 

6. The FAO paper of crop evapotranspiration (Allen et al. 1998) stated that: The CV 

should be adjusted for the local climate as indicated in Table 26. For this reason, the 
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value of actual ET might be greater than the potential ET due to the effect of wind 

speed. This effect also led to the value of CV could be higher than “one”. In fact, the 

SEBAL model also considered the wind effect, and in our study, information of 

wind speed was obtained from the weather stations (Table 27 and Table 28). 

Therefore, our results seem reasonable. 

Table 26. CV for rice for various climatic conditions (Allen et al. 1998) 

Wind speed 
Humidity 

light moderate strong

arid - semi-arid 1.10 1.15 1.20 

sub-humid - humid 1.05 1.10 1.15 

very humid 1.00 1.05 1.10 

 

Table 27. Evapotranspiration cover coefficients for annual crops (Davis and Sorensen 

1969; cited in Novotny and Chesters 1981; Haith et al. 1992) (only the value 

greater than “one” is shown) 

Percent of Growing Season 

Crop 0 10 20 30 40 50 60 70 80 80 100

Field corn - - - - - - - 1.08 1.2 1.08 - 

Grain sorgh - - - - 1.1 1.2 1.1 - - - - 

Wint wheat 1.08 1.19 1.29 1.35 1.4 1.38 1.36 1.23 1.1 - 1.08

Cotton - - - - - - 1.19 1.11 - - - 

Sugar beets - - - - - - 1.08 1.26 1.44 1.3 - 

Cantaloupe - - - - - - 1.05 1.22 1.13 - - 

Potatoes - - - - 1.06 1.24 1.4 1.5 1.5 1.4 - 

Papago peas - - - - 1.04 1.16 1.26 1.25 - - - 

Beans - - - 1.05 1.07 - - - - - - 

Rice - 1.06 1.13 1.24 1.38 1.55 1.58 1.57 1.47 1.27 - 
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Table 28. Evapotranspiration cover coefficients for perennial crops (Davis and Sorensen 

1969; Novotny and Chesters 1981; Haith et al. 1992) (only the value greater 

than “one” is shown) 

 
Alfalfa 

Pasture 
Grapes

Citrus 

Orchards 

Deciduous 

Orchards 
Sugarcane

January - 1.16 - - - - 

February - 1.23 - - - - 

March - 1.19 0.15 - - - 

April 1.02 1.09 - - - 1.17 

May 1.08 - - - - 1.21 

June 1.14 - - - - 1.22 

July 1.2 - - - - 1.23 

August 1.25 -  - - 1.24 

September 1.22 -  1.08 - 1.26 

October 1.18 -  1.03 - 1.27 

November 1.12 -  - - 1.28 

December - -  - - - 

 

7.2. Estimations of Environmental Parameters under Various 

Ecosystem Classification Systems and Spatial Scales 

This study integrated the SEBAL model and Landsat thematic data to investigate 

the effect of ecosystem classification systems and spatial scales on environmental 

parameters. The results showed that spatial scales and ecosystem classification systems 

affected the estimation of environmental parameters. In fact, locality is also an influence 

on the characteristics of environmental parameters. This study only adopted north 

Taiwan for the empirical analysis, and did not consider the difference among various 
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regions of Taiwan (i.e. central, eastern, western, and southern Taiwan). It is suggested 

that further studies focus on the investigation of locality on environmental parameters in 

other regions.  

 

7.3. Effects of Future Land-Use Status and ET Change on Stream Flow 

Simulation 

1. This study is novel in that it used an integration of the SEBAL model, the CGCM1 

model, and the Markov model to estimate future land-use and ET parameters for 

stream flow simulations assuming a climate change scenario and then compared the 

simulated results with the traditional approach. Flow values derived from the 

proposed method were smaller than those using the traditional approach. Readers 

should be aware of some limitations regarding the numbers of CV used herein. In 

general, CV might vary in different seasons due to the effects of land cover change 

and vegetation growth. In addition, cloud effects are always a serious problem in 

Taiwan. For the above reasons, this study was able to apply only these two clear 

Landsat-5 images (July 20 and November 25, 1995) representing the CV of wet and 

dry seasons. When images from different months or seasons become available, 

certainly the monthly or seasonal RSCV values can be calculated using our remote 

sensing approach. Thus, it is suggested that further studies focus on the comparison 
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of the influence of CV at different months or seasons. 

2. The CVs of the two approaches were higher than the reference CV from the 

traditional approach (wet season: 0.826; dry season: 0.754), even though the values 

applied in the proposed approach were decreasing due to the effects of land-use 

change such as urban and deforestation (see Table 22). Higher CV values indicate 

higher amounts of evapotranspiration, which would lead to the decrease of stream 

flows. This explains the differences of derived flow values between the proposed 

and traditional approaches. 

3. In this study, the future CV values derived from the integration of the SEBAL model, 

the CGCM1 model, and the Markov model were based on the assumption that the 

ET of each land-use type would be invariable in the future. However, ET might be 

affected due to the change of forest structure (species, age) and urban composition 

(including more concrete building or vegetation). Readers should be aware of the 

fact that the accuracy of future CVs can be improved when the future ET values are 

available. Therefore, how to estimate the future ET values is an important issue for 

further study. 

4. To predict future land-use status, the Markov model has the following assumptions. 

(1) Land-use change of the study area is stable with no new disturbances; (2) 

Transition probability remains consistent in the future. However, land-use is usually 
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a dynamic process. The transition probability might be variable due to the impacts 

of social or economical factors. For this reason, the uncertainty of land-use 

simulation should be considered before applying the Markov model. 

 

7.4. Future Impacts on Hydrological Cycle of North Taiwan 

Atmospheric and hydrological conditions are complex and highly changeable over 

time. The amounts of data are an unavoidable influence on trend analysis and the 

predicted changes of stream flow. Therefore, the collection of basic data records over a 

long period is necessary to improve the reliability of climate change simulations. This 

study was limited by the data acquisition and was able to use only eight years of records 

(from 1995 to 2002) from gauged weather and flow observations to assess the effect of 

climate change on hydrology. 
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8. CONCLUSIONS 

 

This study focused on an integrated analysis of the hydrological cycle in north 

Taiwan using remote sensing. Three kinds of models such as the SEBAL model, the 

GWLF model, and the CGCM1 model were integrated with the purposes of estimating 

the daily ET among various land-use types; the effects of ecosystems classifications and 

spatial scales on environmental parameters; the potential effects of land-use change and 

ET change on future stream flow simulations; and the assessment of future impacts on 

the hydrology of north Taiwan. The main conclusions of the study are as follows: 

1. Using the hybrid classification method and Landsat-5 images, the generated 

land-use maps of the study area were classified into seven categories including 

forest, buildings, farmland, fallow farmland, water, cloud, and shadow. The 

accuracy of land-use classification evaluated by test areas was 89.09%. This implies 

that hybrid classification is a useful approach to generate a land-use map. In turn, 

the generated land-use maps are suitable for estimating the CV and actual ET. 

2. The values of energy balance parameters among various land-use types were 

different.  Forestland had higher values with NDVI and actual ET, and had lower 

values of surface temperature, soil heat flux and sensible heat flux. The calculated 

parameters conformed to our expectations that surface temperature, NDVI and 
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actual ET had higher values in July, and sensible heat flux and soil heat flux had 

higher values in November. Similarly, the mean daily ET in July (0.531 cm/day) was 

higher than in November (0.233 cm/day). Meanwhile, the ET values derived from 

the SEBAL model were different among different land-use types. For example, in 

this study, forest has larger ET (January: 0.723cm; November: 0.395cm) than 

building (January: 0.220cm; November: 0.088cm). 

3. Environmental parameters among various land-use types were different among five 

land-use types, and the required parameters and the numbers of parameters for 

discriminating five land-use types were also different under different ecosystem 

classification systems at various scales. However, NDVI and emissivity seem to be 

the most significant parameters no matter what the kind of spatial scales and 

ecosystem classification systems. 

4. The calculations of CV using two approaches have large differences in different 

seasons. For example, the calculated CV for the wet season (RSCV: 1.245; REFCV: 

0.842) was higher than the value of the dry season (RSCV: 0.851; REFCV: 0.717). 

Moreover, the overall trend of CV values derived from remote sensing techniques 

(July 20: 1.245; November 25: 0.851) were larger than the CV of the traditional 

approach (July 20: 0.842; November 25: 0.717). This result affected the stream flow 

simulations. 
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5. The assessment of CV effects on stream flow simulation indicated that, the flows 

obtained from RSCV were more accurate than that from REFCV, regardless of the 

monthly stream flow, the mean value of monthly stream flow, and the annual total 

stream flow from 1995 to 2002. The regression analysis also pointed out that the 

flow simulation using RSCV (regression coefficient = 0.877) would represent truer 

flow characteristics than the use of REFCV (regression coefficient = 0.853). 

6. Goodman’s Chi-squared statistic indicates that the procedures of land-use change 

during 1995 to 2002 were not random. The prediction of overall land-use status 

from 1995 to 2002, 2030, 2058, and 2086, respectively showed that the building 

area increased rapidly from 13.36% in 1995 and 14.05% in 2002 to 38.91% in 2030, 

52.13% in 2052, and 62.36% in 2086. The predicated CV values for next three 

periods revealed a decreasing trend no matter which climatic change storyline was 

chosen. 

7. Flow simulations were affected by the predicted future land-use change and ET 

change. Regardless of the monthly stream flow, mean value of monthly stream flow, 

and annual total stream, the predicted flows considering land-use change and ET 

change were lower than those calculated without considering the two effects. 

8. Impact assessment of north Taiwan hydrology indicated that, even though some 

values were reduced, the overall results predicted a raising tendency for future flow 
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change. That is, That is, the impacts of urban expansion, ET decline, and climate 

change will increase the flow volumes. 

The conclusions summarized from this study indicate that land-use type and spatial 

scales affected the estimation of ET, and their effects can be investigated by integrating 

remote sensing techniques, SEBAL model and multivariate statistical analysis. Stream 

flow simulation using remote sensing-based CV could present truer hydrological 

characteristics than the traditional approach. The integration of the SEBAL model, the 

CGCM1 model, and the Markov model is also a feasible scheme to estimate the future 

land-use status and CV values for stream flow. The consideration of land-use change 

and ET change indeed affects the predicted flows. The results of the hydrology analysis 

based on the SRES scenarios of CGCM1 model predicted that the river flows of north 

Taiwan will become greater due to the effects of climate change, land-use change and 

ET change. Therefore, the results obtained from this study can be extrapolated to the 

future studies of global environmental change and water resource management. 
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