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中文摘要 

研究背景：異位性皮膚炎是最常見的皮膚疾病，許多患者在幼兒時期即已罹病，

2009 年一篇研究使用邏輯斯迴歸，建立新生兒 6 個月大時罹患異位性皮膚炎的風

險預測模型，近年來機器學習演算法快速發展，廣泛應用於臨床醫學，有潛力改善

2009年研究建立的異位性皮膚炎預測模型。 

研究目的：使用機器學習演算法，以先天及後天的風險因子建立 6個月大新生

兒異位性皮膚炎的風險預測模型，並與邏輯斯回歸模型比較。 

研究方法：研究使用與 2009 年研究相同的資料集，即「台灣世代研究」資料

庫，此資料庫抽樣收集台灣 88個鄉鎮於 2005年出生的新生兒資料，於新生兒 6個

月大時進行首次調查。本研究先移除遺漏值，並以性別將資料分開，再以 80%：20%

的比例將原資料集切成訓練集與測試集。在機器學習模型部分，預測變數使用 19個

特徵，首先依照臨床上合理的切點將特徵離散化，並新定義倆性別的風險組，分為

極低、低、高、極高四組，接著對訓練集進行 100次「隨機特徵集選取、風險重標

籤」以創造出新訓練集，使用新訓練集訓練 XGBoost模型，並使用測試集以「5組

驗證」的方式驗證模型，透過窮舉搜索的方式調整參數，找出預測各風險組的最佳

模型，再定義「二模型混合預測」與「三模型混合預測」規則，採用三模型混合預

測作為機器學習模型預測結果；在邏輯斯迴歸模型部分，使用與 2009 年相同的 8

個特徵訓練邏輯斯迴歸模型，並使用測試集以「5組驗證」的方式驗證模型。兩模

型最終以混淆矩陣呈現，以對角線和、均方根誤差、加權誤差等作為模型表現的指

標。 

研究結果：本研究最終使用的資料集包含 20235 名新生兒（9607 名女性，占

47%），女性異位性皮膚炎比例約 6%，男性異位性皮膚炎比例約 8%，女性機器學

習三模型混合預測準確率為：低風險組 0.953、高風險組 0.753、極高風險組 0.706，

混淆矩陣對角線和 2.412，均方根誤差 0.533，加權誤差 0.302，女性邏輯斯迴歸模
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型預測準確率為：低風險組 0.958、高風險組 0.734、極高風險組 0.644，混淆矩陣

對角線和 2.337，均方根誤差 0.580，加權誤差 0.370。男性機器學習三模型混合預

測準確率為：低風險組 0.963、高風險組 0.811、極高風險組 0.816，混淆矩陣對角

線和 2.590，均方根誤差 0.394，加權誤差 0.175，男性邏輯斯迴歸模型預測準確率

為：低風險組 0.936、高風險組 0.772、極高風險組 0.821，混淆矩陣對角線和 2.529，

均方根誤差 0.412，加權誤差 0.227。 

結論：本研究將機器學習方法應用於一個具全國代表性的出生世代資料集，為

6個月大的新生兒建立異位性皮膚炎風險預測模型，研究顯示機器學習模型比過去

的邏輯斯迴歸模型表現更佳，有效提高預測準確率，可以協助臨床醫師預測新生兒

罹患異位性皮膚炎的風險並採取預防措施。 

 

關鍵字：異位性皮膚炎、新生兒、風險預測模型、機器學習、XGBoost 
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Abstract 

Background: Atopic dermatitis (AD) is the most common skin disorder and many 

patients develop symptoms early. A risk prediction model of AD in 6-month-old newborns 

was established in 2009 using logistic regression (LR). Recently, machine learning (ML) 

methods keep gaining popularity and have been applied in various clinical settings. 

Whether ML can outperform LR remains inconclusive.  

Objective: To apply ML methods to set up AD risk prediction model among 6-month-

old newborns based on hereditary and environmental risk factors, and to compare 

performance between ML model and LR model. 

Methods and Participants: Taiwan Birth Cohort Study (TBCS) was used in this 

study, same as the study in 2009. Babies born in 2005 in 88 townships in Taiwan were 

sampled and the first follow-up interview took place when the babies were 6 months old. 

Data with missing values were removed. The data were stratified based on gender and 

were split to a train set and a test set in 80-20 ratio. Nineteen features (risk factor) were 

included in the ML model. Feature discretization, 100 rounds of random feature set 

selection and AD risk level relabeling were performed sequentially to create a new train 

set. The ML model was trained on the new train set and was validated by 5-run validation 

on the test set. Through exhaustive grid search of parameters, the best model of each risk 

level was identified. We assigned prediction rules of 2-model and 3-model mixed 
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prediction. The 3-model mixed prediction was the final ML model. The LR model was set 

up using the same 8 features as the study in 2009 and was validated by 5-run validation on 

the test set. Standardized confusion matrix was used to summarize the final prediction 

results of two models. Sum of diagonals, RMSE and weighted error were calculated to 

compare performance between ML and LR.  

Results: A total of 20235 newborns (9607 female [47%]) were analyzed. The AD 

percentage was about 6% in female and about 8% in male. The prediction accuracy of ML 

model of female was 0.953, 0.753, and 0.706 in low, high and very high risk group, 

respectively and the sum of diagonals, RMSE and weighted error were 2.412, 0.533 and 

0.302, respectively. The prediction accuracy of LR model of female was 0.958, 0.734 and 

0.644 in low, high and very high risk group, respectively and the sum of diagonals, RMSE 

and weighted error were 2.337, 0.580 and 0.370, respectively. The prediction accuracy of 

ML model of male was 0.963, 0.811, and 0.816 in low, high and very high risk group, 

respectively and the sum of diagonals, RMSE and weighted error were 2.590, 0.394 and 

0.175, respectively. The prediction accuracy of LR model of male was 0.936, 0.772 and 

0.821 in low, high and very high risk group, respectively and the sum of diagonals, RMSE 

and weighted error were 2.529, 0.412 and 0.227, respectively. Overall, compared to the 

LR model, the ML model of female had 3.2% higher sum of diagonals, 8.1% lower RMSE 

and 18.4% lower weighted error. Compared to the LR model, the ML model of male had 
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2.4% higher sum of diagonals, 4.4% lower RMSE and 23% lower weighted error.  

Conclusions: In this study, a novel ML approach combining with XGBoost was 

applied on a national representative birth cohort to set up AD risk prediction models in 6-

month-old newborns. For both genders, the ML model had better overall performance than 

the LR model. Our ML model can help clinicians stratify newborns into different risk 

levels with high accuracy and help clinicians design preventive strategies based on the risk. 

 

Keywords: atopic dermatitis, newborn, risk prediction model, machine learning, 

XGBoost 
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Chapter 1. Introduction 

1.1  Background and motivation 

Atopic dermatitis (AD) is one of the most common skin disorders in both the 

developed and developing world. AD is notorious for its early onset, relapsing nature, 

severely itchy skin lesions and accompanying complications, which lead to substantial 

medical costs and economic burden for the whole society. Although various hereditary 

and environmental risk factors for AD have been identified, there has not been an 

optimal AD prediction model for newborns. As the old saying goes, prevention is better 

than cure. We can put the old saying into practice through a risk prediction model based 

on risk factors. The model could help clinicians and parents design individualized 

prevention strategies for those newborns at risk. 

Clinical prediction models usually aim to predict binary outcomes such as survival 

status or disease status, and thus, logistic regression (LR) has commonly been used to 

set up many models. Machine learning (ML) offers an alternative choice to accomplish 

the task and has been prosperously developed lately. Various new algorithms were 

proposed to solve real-world problems, to make prediction and to assist decision-making, 

not only in the commercial world but also in clinical scenarios.  

Previously, a study applied logistic regression (LR) model to set up an AD 

prediction model for 6-month-old newborns using Taiwan Birth Cohort Study (TBCS) 
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[1]. The model was a typical regression model with preselection of important variables 

from the dataset based on experts’ knowledge. Despite its easy interpretability, its area 

under receiver-operating characteristics curve (AUC) is suboptimal, indicating that its 

discrimination ability is not satisfactory. There is still room for improvement. ML, 

solving classification problem through algorithms different from LR, has the potential 

to improve AD risk prediction. 

 

1.2  Research aims 

The study aims to apply ML method to set up model which could separate newborns 

with AD from those healthy individuals at the age of 6 months, based on hereditary and 

environmental risk factors. We examined whether ML could improve prediction 

performance of the LR model proposed by the previous study.  
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Chapter 2. Literature Review 

2.1  Epidemiology and impacts of atopic dermatitis 
Atopic dermatitis (AD) is a common inflammatory skin disease, characterized by 

relapsing eczematous rash [2]. AD typically occurs early in the childhood [3, 4]. One 

study showed that among those children who were diagnosed with AD, nearly half had 

already developed symptoms within the first six months of their lives [5]. AD prevalence 

in children has increased for several decades around the globe [6]. The lifetime 

prevalence in children under 8 years of age was 20%-40% in both the developed and 

developing countries [7]. The figure in Taiwan showed a similar rising trend. The 

lifetime prevalence of AD in 6 to 15-year-olds rose from less than 2% before 1995, to 

3.35% in 2002, and reached 6.7% during the period of 2000-2007 [8, 9]. 

AD has a substantial impact on many aspects of life. At individual level, AD does 

harm to the physical and psychological health of the patients and further impair their 

interpersonal relationship and social functioning. As children are the most susceptible to 

AD, the quality of life of their caregivers is also inevitably affected [10, 11]. From a 

social point of view, annual costs per patient were approximately USD 1000 to 6000 in 

Asia-Pacific countries, USD 2000 in the United States, Cdn$1200 in Canada [12, 13]. 

In Taiwan, the costs are more than USD 1000 per patient per year [14]. Therefore, 

development of preventive strategies could be critical to save the society from 
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considerable economic burden. To address this issue, a risk prediction model is the first 

step. 

 

2.2  Risk factors for atopic dermatitis 
AD is a disease with multiple etiologies, in which biological, psychological and 

socioeconomic factors all play a role. The exact pathophysiological mechanism of AD 

has not been fully understood. There is a complex interaction between potential allergens 

in the surroundings and impaired host immune system. Various risk factors for atopic 

dermatitis have been investigated. Recently, a systematic review and meta-analysis 

summarized epidemiological studies examining risk factors for AD in Asia [15]. The 

study classified risk factors into modifiable and non-modifiable. Modifiable factors are 

generally easier to be changed or improved, such as lifestyle, environmental exposures 

and medications. Non-modifiable factors refer to factors which are typically inherited or 

unchangeable by nature, including demographic data, medical condition and 

socioeconomic status of parents. Although practically, preventive strategies can only 

target modifiable factors, the prediction model should include both modifiable and non-

modifiable factors since both could affect development of AD. 

 

2.3  Previously established AD prediction model using LR 

Wen and colleagues applied logistic regression (LR) with backward stepwise 
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variable selection on TBCS, which was a national representative birth cohort consisting 

of more than 20,000 newborns, to set up a risk prediction model for AD in 6-month-old 

newborns [1]. In their study, Wen and colleagues examined the association between AD 

and various hereditary and environmental risk factors. Family history of atopy, higher 

maternal education, presence of fungus on walls, exposure to indoor painting and 

renovation during pregnancy were identified to be significantly associated with 

increased risk of AD and were included in their final LR model. Based on these risk 

factors, individualized AD risk can be calculated by the LR model. A 5-run validation 

test was performed to validate the model and the validation results confirmed the 

prediction ability of the model. However, misestimate of AD risk occurred when the LR 

model made prediction for high-risk female babies. Thus, there is room for improvement. 

 

2.4  Machine learning 

Lately, machine-learning (ML) methods continued gaining attention and have been 

applied in various fields of research. such as 6-month mortality of patients with 

malignancy[16], risk of hypoxemia during general anesthesia [17] and long-term 

prognosis of ischemic stroke patients [18]. Risk prediction models provide valuable 

assistance in clinical decision-making and have already become a crucial part in modern 

clinical medicine. Traditionally, regression models make a great contribution in deriving 
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many of those models. Logistic regression is a common choice for the task since many 

of the models aim to predict binary outcomes. [19, 20].  

ML algorithms analyze data in a different way than traditional regression models 

do. Regression models are based on statistics theories. To make regression models robust 

enough, certain assumptions are required and certain rules should be met. For example, 

independence of errors, low multicollearity between variables and lack of outliers in data 

should be checked, and sample size should be much greater than number of variables 

[21]. Human intervention based on subject knowledge is heavily needed in the variable 

selection process, in which researchers have to decide which variables should be 

removed from or be kept in the model so as to prevent multicollearity problem. 

Furthermore, nonlinear relationship could sometimes exist between an independent 

variable and the dependent variable and interaction between some independent variables 

could also exist. It is time-consuming and difficult for researchers to test all potential 

nonlinear relationship and interaction between variables. On the other hand, ML models 

solve classification task based on theories different from regression models. ML models 

can learn directly from data without specifying too many rules beforehand [22]. It is 

argued that ML methods could outperform traditional regression due to its capability of 

dealing with much greater amounts of explanatory variables and variable 

intercorrelation by automatically testing all possible variable combinations through 
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method of exhaustion. However, a recent systematic review concluded that whether ML 

models definitely have better performance still remains a subject of debate [19]. 

XGBoost, one of the widely used ML algorithms, is a tree-based ensemble learning 

method known for its high predictive accuracy, learning efficiency and capability of 

analyzing nonlinear relations. With its algorithmic innovation, it has offered solutions to 

some of the challenging problems in the ML competition and it has gained enormous 

popularity lately [23]. XGBoost has been shown effective in predicting clinical 

outcomes in various medical fields [24-26]. The objectives of this study are to apply ML 

approach and XGBoost algorithm on the same cohort of TBCS to establish a prediction 

model for AD risk prediction in 6-month-old newborns and to compare the performance 

of the XGBoost model and the LR model. 
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Chapter 3. Materials and Methods 

3.1  Study cohort recruitment 

The study cohort was derived from the Taiwan Birth Cohort Study (TBCS). The 

details of the TBCS recruitment were described elsewhere [27]. Initiated in the year 2003 

by the Taiwan Health Promotion Administration, TBCS aimed to examine early 

development of children and risk factors potentially affecting children health. The babies 

who were born between 1st Jan 2005 and 31st Dec 2005 were eligible for enrollment. The 

TBCS employed stratified systematic random sampling method to recruit the cohort. 

First, 369 townships of Taiwan were divided into 12 strata based on urbanization levels 

and total fertility rate. Eighty-eight townships were randomly selected from the 12 strata. 

From those townships, eligible population were sampled by the method of probability 

proportional to size. In the year 2005, there were 206,741 live births in total in Taiwan. 

In the end, the TBCS recruited 24,200 mother-infant pairs, which accounted for 

approximately one-eighth of the newborns in that year. 

The first home interview was conducted by trained interviewers when the babies 

were 6 months old. Serial follow-up interviews took place when the babies were 18 

months, 3 years and 5.5 years old. The mothers were the prioritized interview targets. If 

a baby’s mother was unavailable for the interview, the main caregiver would be the 

alternative. “Whether the baby had ever been diagnosed with AD by a physician” was 
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one of the questions in the interview. In the study of Wen et al. [1], the answer to this 

question, a binary variable, was the dependent variable of the logistic regression model.  

 

3.2  Data preprocessing 

The data with missing values were removed. We did not impute missing value. Due 

to difference of disease prevalence between both genders, we aimed to set up model for 

girls and boys separately. Therefore, the data were stratified by gender at the beginning 

of the analysis. All the following steps were performed in both genders separately.  

We randomly split the data into a train set and a test set in 80:20 ratio. Next, we 

prepared the features for the analysis. In total, there were 19 features, including 

demographics, medical history of parents and baby and environmental exposures. 

Feature discretization was carried out. The categorical features were kept categorical 

and the continuous features were transformed into categorical based on clinically 

appropriate cut-off values. Table 1 showed the features included in the final analysis.  

 

3.3  Defining a new variable, “AD risk level” 

The dependent variable of the logistic regression model by Wen et al. [1] was a 

binary variable and recorded whether a 6-month-old newborn had ever been diagnosed 

with AD. In the current study, we defined a new dependent variable with four levels, the 

“AD risk level”, to replace the original dependent variable. Our prediction target shifted 
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from binary disease outcomes to multiple risk levels. The new dependent variable had 

four risk levels, including very low, low, high and very high. The three cut-off values 

separating the four levels were derived from the AD percentage of the original data, 

including half of the AD percentage, the AD percentage and twice of the AD percentage. 

In the original dataset, the AD percentage of boys and girls were 8.07% and 5.79%, 

respectively. These two numbers were rounded to the nearest whole number, and the cut-

off values were 4%, 8% and 16% for the boys, 3%, 6% and 12% for the girls. 

 

3.4  Random feature set selection and AD risk level relabeling 

The complete steps of our novel ML approach are shown in Figure 1. We began our 

ML analysis with random feature set selection and AD risk level relabeling for the study 

participants in the train set before training the prediction models. We randomly selected 

some features out of the 19 features to form a random feature set. The process began 

with an empty feature set. One feature was randomly selected and added in the feature 

set. Next, the study participants who had the same value combination of the selected 

feature(s) were grouped together. For example, if maternal history of asthma, paternal 

history of AD, breastfeeding duration and molds on walls at home were selected, all 

participants whose mother had asthma, whose father had AD, who had never been 

breastfed and whose home was free from molds would be put into one group. Similarly, 
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all participants whose mother had asthma, whose father had AD, who had never been 

breastfed but whose home suffered from moldy walls would be put into another group.  

We set criteria to keep at least a certain percentage of groups in optimal size to 

prevent potential bias due to small group size. The group size was kept above X for at 

least Y% of the boys, and above Z for at least W% of the girls. After a new feature was 

selected and added in the feature set, we examined the criteria. If the criteria were met, 

the newly selected feature stayed in the feature set. If the criteria were not met, the newly 

selected feature was removed from the feature set. The feature was selected one at a time 

until the criteria cannot be kept. The parameter X, Y, Z and W were adjusted through an 

exhaustive grid search process in a later step to identify the best model of each risk level. 

The algorithm and criteria of random feature set selection was shown in Figure 2. 

After all participants were grouped based on value combination of selected features, 

actual AD percentage of each group was calculated and compared to the pre-defined cut-

off values of the “AD risk levels”. Based on the comparison, the new dependent variable 

of each study participant was imputed with one of the four risk levels. For example, if 

actual AD percentage of a boy group was 11%, the new dependent variable, “AD risk 

level”, of all boys of this group would be imputed with “high risk” because 11% was 

between the cut-off values, 8% and 16%. Through this method, the study participants of 

the train set were relabeled with an AD risk level.  
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The random feature set selection and AD risk level relabeling were repeated 100 

rounds on the train set. The results of every round were all kept. After 100 rounds, each 

study participant in the train set was turned from one single data into 100 data and the 

size of the train set became 100 times larger. The size of the test set remained unchanged. 

 

3.5  XGBoost model training and 5-run validation 

After data preparation, we applied XGBoost algorithm to train the prediction model 

based on the newly relabeled train set. The prediction target was the multi-level 

dependent variable, AD risk level. The analysis was conducted using Python and the 

XGBoost Python package version 1.1.1. Three important hyperparameters of XGBoost 

algorithm, max_depth, n_estimators and max_delta_step, were set equal to 6, 3 and 5, 

respectively. The rest of the hyperparameters were kept as default. 

We performed 5-run validation to test the trained XGBoost model on the test set. 

The test set was randomly divided into 5 partitions. The trained XGBoost model was 

applied on each partition to predict AD risk level for the participants. In each partition, 

the participants were classified into 4 predicted risk groups based on the predicted results. 

The actual AD percentage in each predicted risk group was calculated and compared 

with the predicted risk level. We performed the 5-run validation for 10,000 rounds. Each 

round resulted in 4 predicted risk groups in the 5 partitions, so 20 comparison results 

were yielded through each round. The comparison results between predicted risk and 
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actual risk of the 10,000 rounds of 5-run validation were summed up in a confusion 

matrix, as shown in Table 2. A standardized confusion matrix can be derived by having 

each grid divided by the sum of all grids of a confusion matrix. Take Table 2 as an 

example, a standardized confusion matrix can be derived by having every Xij divided by 

the sum of all Xij.  

Wen and colleagues used 3 risk levels to validate the performance of the LR model, 

which were < 8%, 8%-16%, and ≥ 16% for the boys and < 6%, 6%-12%, ≥ 12% for the 

girls, respectively [1]. The risk level < 8% for the boys and < 6% for the girls 

corresponded to the very low risk level and the low risk level of our XGBoost model. 

The two higher risk levels of the LR model corresponded to the high risk level and the 

very high risk level of our XGBoost model. To allow comparison between XGBoost and 

LR model, we combined the predicted results of very low risk level and the low risk 

level into one risk level, the low risk level. Consequently, only three risk levels remained 

in the standardized confusion matrix, including low, high and very high risk levels. 

 

3.6  Mixed XGBoost prediction 

To improve prediction performance of XGBoost, we propose a mixed XGBoost 

prediction method by combining the best XGBoost model of each risk levels. We 

repeatedly performed 100 rounds of random feature selection and AD risk relabeling, 

XGBoost model training and 10,000 rounds of 5-run validation with exhaustive grid 
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search of all possible combination of X, Y, Z and W. The best model of each risk level 

was identified based on the results of 5-run validation. As shown in Table 2, the XGBoost 

model with the highest accuracy in the grid X11 was defined as the best model of low 

risk level and was named Model 1. The model with the highest accuracy in the grid X22 

was defined as the best model of high risk and was named Model 2. The model with the 

highest accuracy in the grid X33 was defined as the best model of very high risk level 

and was named Model 3.  

Next, we defined the prediction rules for the 2-model mixed XGBoost prediction. 

Table 3 summarized the prediction rules of the 3 possible model pairs consisting of 

Model 1 and Model 2, Model 1 and Model 3, Model 2 and Model 3. Following the rules, 

a participant’s risk level separately predicted by two models was integrated into one 

mixed predicted outcome. Finally, the 3-model mixed XGBoost prediction was 

performed on the test set through majority voting among the predicted outcomes of the 

three 2-model mixed prediction. The final results of 3-model mixed prediction were 

demonstrated in a standardized confusion matrix. 

 

3.7  Logistic regression (LR) model training, 5-run validation and 

model comparison 

We applied LR on the preprocessed but unenlarged train set to train the LR model. 

The features included here were the same as those used to set up the LR model of Wen 
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and colleagues’ work [1], including parental history of AD and allergic rhinitis, fungus 

on walls, painting furniture during pregnancy, home renovation during pregnancy and 

maternal education. The trained LR model was tested on the test set through 10,000 

rounds of 5-run validation, same as XGBoost model. The ranges of risk levels of the 5-

run validation here were < 8%, 8%-16%, and ≥ 16% for the boys and > 6%, 6%-12%, ≥ 

12% for the girls, respectively, which were the same as the aforementioned risk levels 

of XGBoost model and the same as those in Wen and colleagues’ work. The prediction 

of the LR model was demonstrated in a standardized confusion matrix. 

To compare the prediction performance between the 3-model mixed XGBoost 

prediction and the LR model, we calculated the sum of diagonals, root mean squared 

error (RMSE) and weighted error based on the results summarized in the confusion 

matrix. Take Table 2 as an example. The sum of diagonals and the RMSE were calculated 

as below: 

 

Sum of diagonals = 
∑"!",	$%&

∑ ∑ "!"$
"%&

$
!%&
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"%&
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!%&

 

 

Besides the sum of diagonals and the RMSE, we calculated weighted error to 

further compare the models. As shown in Table 4, we assigned the costs for different 
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scenarios of inaccurate predictions. The cost of an accurate prediction was assigned to 

be 0, and the costs of all possible inaccurate predictions were assigned as Table 4 

demonstrated. Overall, underestimation results in higher costs than overestimation of 

risk. The cost is 10 when newborns at very high risk of AD are predicted to be at low 

risk. The costs are 3 when newborns at high risk and very high risk are predicted to be 

at low risk and high risk, respectively. The cost is 2 when newborns at low risk are 

overestimated to be at very high risk. The costs are 1 when newborns with low risk and 

high risk are overestimated to be at high and very high risk, respectively. Take Table 2 

as an example. The costs in Table 4 served as the weight as the weighted error was 

calculated as below:  

 

Weighted error = 
∑ ∑ ("!"×-!")$

"%&
$
!%&
∑ ∑ "!"$

"%&
$
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3.8  Statistical analysis 

All the above analytical steps were performed by Python. Odds ratios (ORs) and 

95% confidence intervals (CIs) were calculated to evaluate univariate association 

between the features and AD. The significance level was 0.05. 

  



doi:10.6342/NTU202202317

 17 

Chapter 4. Results 

4.1  Study cohort recruitment 

The steps of study cohort recruitment and data preprocessing were shown in Figure 

3. In total, 24,200 mother-infant pairs were recruited in the TBCS. Among them, 2,952 

lost follow-ups due to refusal of being interviewed, wrong addresses, moving abroad, 

absence after multiple interview visits, death of the baby and other reasons. Multiparity 

samples were also excluded. Among the remaining 20,687 subjects, 452 (2.18%) had 

missing values in some features and were excluded. In total, we included 20,235 

participants in the final analysis. 

 

4.2  Characteristics of study population 

The demographic characteristics of the female and male newborns were shown in 

Table 5 and Table 6. The data included in the final analysis consisted of 9,607 girls and 

10,628 boys. Among them, 557 girls and 858 boys were diagnosed with AD. The AD 

prevalence was 5.80% in female babies and 8.07% in male babies. Overall, the 

demographic characteristics were relatively similar between both genders. 

Approximately one-third of the girls and the boys were delivered by cesarean section, 

and about half of the babies were the first child of the mothers. In average, the 

breastfeeding duration was 2.4 months in girls and 2.1 months in boys. At childbirth, the 
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mean maternal age was 30 years and the mean paternal age was 33 years among both 

genders. Parents with longer than 12 years of education accounted for 45% of the 

participants. About 1.5% of the mothers of both genders and 1.2% of the fathers of both 

genders had history of asthma. Nearly 36%, 2.6% and 4% of the mother-infant pairs 

were exposed to wall molds, indoor painting and indoor renovation in their residences 

during pregnancy, respectively. 

The unadjusted ORs of risk factors for AD were also shown in Table 5 and Table 6. 

In both genders, higher parental educational level, parental history of AD and allergic 

rhinitis, maternal history of asthma, longer duration of breastfeeding, older maternal age 

at childbirth, molds on walls and indoor renovation during pregnancy were associated 

with higher risk of AD, while older maternal menarche age was associated with lower 

risk of AD. Longer gestational length and higher birth weight were positively associated 

with AD risk in girls. Indoor painting during pregnancy was positively associated with 

AD risk in boys. 

 

4.3  Model comparison 

The results of the XGBoost model (3-model mixed prediction) and the LR model 

on the test sets of both genders were shown in Table 7. For the girls, the accuracy of 

XGBoost model in the low risk, high risk and very high risk level was 0.953, 0.753 and 

0.706, respectively, and the accuracy of LR model was 0.958, 0.734 and 0.644, 
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respectively. Compared to the LR model, the XGBoost model has higher sum of 

diagonals, lower RMSE and lower weighted error. The sum of diagonals of the XGBoost 

model and the LR model were 2.412 and 2.337, respectively. The RMSE of the XGBoost 

model and the LR model were 0.533 and 0.580, respectively. The weighted error of the 

XGBoost model and the LR model were 0.302 and 0.370, respectively.  

For the boys, the accuracy of XGBoost model in the low risk, high risk and very 

high risk level was 0.963, 0.811 and 0.816, respectively, and the accuracy of LR model 

was 0.936, 0.772 and 0.821, respectively. Compared to the LR model, the XGBoost 

model has higher sum of diagonals, lower RMSE and lower weighted error. The sum of 

diagonals of the XGBoost model and the LR model were 2.590 and 2.529, respectively. 

The RMSE of the XGBoost model and the LR model were 0.394 and 0.412, respectively. 

The weighted error of the XGBoost model and the LR model were 0.175 and 0.277, 

respectively. 
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Chapter 5. Discussion 

In this study, machine learning method was applied on a national representative 

birth cohort to set up AD risk prediction models for 6-month-old newborns. For both 

genders, the XGBoost model had better overall performance than the LR model in terms 

of prediction accuracy, sum of diagonals, RMSE and weighted error. The XGBoost 

model had higher accuracy than the LR model in predicting girls at high and very high 

risk of AD, while the accuracy of both models in predicting girls at low risk of AD was 

similar. For the girls, the XGBoost resulted in 3.2% increase of sum of diagonals, 8.1% 

decrease of RMSE and 18.4% decrease of weighted error compared to the LR model. 

The XGBoost model had higher accuracy than the LR model in predicting boys at low 

and high risk of AD, while the accuracy of both models in predicting boys at very high 

risk of AD was comparable. For the boys, the XGBoost resulted in 2.4% increase of sum 

of diagonals, 4.4% decrease of RMSE and 23% decrease of weighted error compared to 

the LR model. A recent systematic review argued that whether ML methods outperform 

regression remained inconclusive [19]. Our results demonstrated that XGBoost could 

have better performance than LR.  

The improvement achieved by the XGBoost model can be attributed to the 

inclusion of 11 additional features. The LR model in our study and in Wen and 

colleagues’ study [1] was set up only based on 8 risk factors, including parental history 
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of AD and allergic rhinitis, maternal education, fungus on walls, painting furniture and 

renovation in the house during pregnancy, while the XGBoost model were established 

based on 19 risk factors. The 11 extra features included birth order, gestational age, birth 

weight, delivery mode, parental age at childbirth, parental history of asthma, maternal 

menarche age, breastfeeding duration, paternal education.  

The association of these 11 extra features and risk of AD has been examined in 

previous studies. Lower parity and higher gestational age were shown associated with 

higher risk of AD [28, 29]. In a meta-analysis, very preterm babies were associated with 

decreased risk for AD, and moderate preterm babies were at comparable risk for AD 

compared to full term babies [30]. Newborns with higher birth weight were at higher 

risk for AD and low birth weight could be a protective factor [31-33]. Compared to 

vaginal delivery, Cesarean section did not increase risk of developing AD in newborns 

[34-36]. One study using a national representative survey showed that younger paternal 

age was a risk factor for AD in children. The researchers argued that there could be 

confounding factors affecting this association such as richer economic status or smaller 

family size [37]. Another study reported unadjusted association between AD and 

maternal age at childbirth [38]. A recent systematic review and meta-analysis 

demonstrated that parental history of asthma was associated with increased risk of AD 

in children [39]. One study analyzing a Finnish birth cohort found that children whose 
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mothers’ first menstrual cycle began earlier than the age of 15 were at lower risk of AD 

[40]. However, another study using a birth cohort of the UK did not find a significant 

association between AD risk in children and maternal age of menarche. Thus, further 

investigation of this association is warranted. A study using a Japanese nationwide birth 

cohort showed that breastfeeding duration was positively associated with risk of AD in 

children up to the age of 3 years. Newborns who were breastfed exclusively were at 

significantly higher risk of AD compared to those who were fed with formula milk 

exclusively [38]. However, a recent meta-analysis demonstrated that breastfeeding acted 

as a protective factor against AD in children with parental history of atopy and 

breastfeeding could be a risk factor for AD in children without parental history of 

atopy[41]. High parental education levels were correlated with increased risk of AD [2]. 

In Wen and colleagues’ study, parental education levels were significant risk factors for 

AD [1]. However, in that study, the final LR model which adopted backward variable 

selection strategy only included maternal education level. Paternal education level was 

left out possibly due to high collinearity with maternal education level. In our XGBoost 

model, parental education level was kept.  

Another reason the XGBoost model could improve prediction of AD in newborns 

was the methodological innovation. Our novel ML approach comprised the feature 

discretization, random feature set selection, risk level relabeling, XGBoost model 
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training, 5-run validation, identification of best model for each risk level through 

exhaustive grid search, 2-model mixed prediction and 3-model mixed prediction. The 

identification of best model for each risk level through exhaustive grid search of optimal 

combination of X, Y, Z and W was a key step. It allowed the 2-model mixed prediction 

and the subsequent 3-model mixed prediction to be carried out. Human intervention 

played a critical role in the rule assignment of the multiple-model mixed prediction. The 

rules of the 2-model mixed prediction were defined based on clinically reasonable 

rationale. The weight of error which was used to calculate weighted error was also 

assigned based on clinical experience.  

There are several limitations in this study. First, the test set we used to validate our 

models was derived from the TBCS data. We did not use an independent external dataset 

due to lack of such data. To enhance the robustness of the validation, we performed 5-

run validation for 10,000 times. Second, the AD status of the study participants was self-

reported. Whether or not the newborns were diagnosed with AD by a physician was not 

validated by medical records or other databases. Recall bias could occur. Last, the TBCS 

did not collect biological samples such as urine, blood or skin tissue. Therefore, such 

data was not available for model establish. Although the XGBoost model was set up 

solely based on epidemiological and socioeconomic risk factors, it achieved good 

prediction performance with high prediction accuracy, low RMSE and low weighted 
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error. 

 

5.1  Strengths 

Our novel ML approach has several strengths and can assist in clinical scenarios in 

several ways. First, in preventive medicine, a model stratifying risk levels can be more 

usable than a model performing binary decision. Through our ML approach, we 

transformed binary AD outcomes into multi-level AD risk levels, and the binary 

classification task was transformed into a multi-level classification task. Our XGBoost 

model does not predict whether a newborn would have AD within 6 months of age. 

Instead, our XGBoost model put a newborn into a certain AD risk level. With the 

assistance of our model, clinicians can classify newborns into different AD risk levels 

and design different prevention plans. Second, our ML method can prevent 

underestimation of AD risk and can solve the imbalanced data problem. For a newborn 

whose risk is merely lower than the risk threshold of having AD, a model only predicting 

binary outcomes would predict that this individual would not have AD. This leads to 

underestimation of risk, and consequently, clinicians and caregivers may not take 

sufficient preventive measures to protect this newborn. Risk underestimation can even 

be worsened by the problem of imbalance data. When majority and minority outcomes 

of a dataset are highly imbalanced, it is common to yield a model that tends to predict 

majority outcomes. In the TBCS data, without AD is the majority outcome, which 
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accounted for 92% of the boys and 94% of the girls. A model trained on this imbalanced 

data can easily predict a newborn to be without AD. This imbalanced prediction 

tendency is an additional aggravating factor for risk underestimation. 

 

5.2  Limitations 

There are several limitations in this study. First, the test set we used to validate our 

models was derived from the TBCS data. We did not use an independent external dataset 

due to lack of such data. To enhance the robustness of the validation, we performed 5-

run validation for 10,000 times. Second, the AD status of the study participants was self-

reported. Whether or not the newborns were diagnosed with AD by a physician was not 

validated by medical records or other databases. Recall bias could occur. Last, the TBCS 

did not collect biological samples such as urine, blood or skin tissue. Therefore, such 

data was not available for model establish. Although the XGBoost model was set up 

solely based on epidemiological and socioeconomic risk factors, it achieved good 

prediction performance with high prediction accuracy, low RMSE and low weighted 

error. 
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Chapter 6. Conclusion 

In this study, a combination of a novel ML approach and XGBoost algorithm was 

applied on a national representative birth cohort to set up a prediction model for risk of 

AD in 6-month-old newborns. Our XGBoost model improved AD prediction compared 

to the previously established LR model and can help clinicians classify newborns into 

risk levels of AD and take timely preventive measures. The incidence of many other 

diseases such as malignancies can be much lower than AD and the datasets of such 

diseases can be much more imbalanced than this study. Our ML approach provides a 

promising solution to solve the imbalanced data problem for such disease. 
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TABLE 1. FEATURES INCLUDED IN THE FINAL ANALYSIS 
Features Cut-off values for discretization 
Gender 2 levels: male, female 
Gestational week 3 levels: < 38, ≥ 38 and < 41, ≥ 41 
Birth weight (grams) 3 levels: < 2500, ≥ 2500 and < 4000, ≥ 4000 
Parity 3 levels: 1, 2, > 2 
Cesarean section 2 levels: yes, no 
Maternal age at childbirth (years) 3 levels: < 26, ≥ 26 and < 33, ≥ 33 
Paternal age at childbirth (years) 3 levels: < 26, ≥ 26 and < 33, ≥ 33 
Maternal asthma history 2 levels: yes, no 
Paternal asthma history 2 levels: yes, no 
Maternal AR history 2 levels: yes, no 
Paternal AR history 2 levels: yes, no 
Maternal AD history 2 levels: yes, no 
Paternal AD history 2 levels: yes, no 
Maternal first menarche (years) 3 levels: ≤ 11, > 11 and ≤ 15, 15 
Parental education (years) 3 levels: both ≤ 12, one > 12 and one ≤ 12, both > 12 
Breastfeeding duration (months) 3 levels: 0, 1, > 1 
Molds on walls at home 2 levels: yes, no 
Furniture painting during 
pregnancy 

2 levels: yes, no 

House renovation during 
pregnancy 

2 levels: yes, no 

Abbreviation: AR, allergic rhinitis; AD, atopic dermatitis 
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TABLE 2. A PROTOTYPICAL CONFUSION MATRIX  

 Actual AD risk level 

 Low High Very high 

Predicted AD risk level    

Low !!! !!" !!# 
High  !"! !"" !"# 
Very high  !#! !#" !## 
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TABLE 3. RULES OF 2-MODEL MIXED PREDICTION 
AD risk level predicted by 
combining Model 1 and Model 2 

AD risk level predicted by Model 2 
Low High Very high 

AD risk level 
predicted by 
Model 1 

Low Low High Low 
High High High Very high 
Very high Very high High Very high 

  
AD risk level predicted by 
combining Model 1 and Model 3 

AD risk level predicted by Model 3 
Low High Very high 

AD risk level 
predicted by 
Model 1 

Low Low Low Very high 
High High High Very high 
Very high Very high High Very high 

  

AD risk level predicted by 
combining Model 2 and Model 3 

AD risk level predicted by Model 3 
Low High Very high 

AD risk level 
predicted by 
Model 2 

Low Low Low Very high 
High High High Very high 

Very high Low Very high Very high 
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TABLE 4. WEIGHT OF ERRORS  

 Actual AD risk level 

 Low High Very high 

Predicted AD risk level    

Low 0	(%!!) 3	(%!") 10	(%!#) 
High  1	(%"!) 0	(%"") 3	(%"#) 
Very high  2	(%#!) 1	(%#") 0	(%##) 
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TABLE 5. DEMOGRAPHIC CHARACTERISTICS OF THE 6-MONTH-OLD FEMALE NEWBORNS AND UNADJUSTED 

OR FOR AD 
Categorical variables No. of 

subjects 
No. with AD (%) 

 
Unadjusted OR (95% CI) 

Total  9607 557  
Delivery method 

Cesarean section 
Natural delivery 

 
3303 
6574 

 
181 (5.5) 
376 (5.7) 

 
Reference 
0.96 (0.80-1.15)  

Birth order 
1st child 
2nd child 
≥ 3rd child 

 
4924 
3730 
953 

 
304 (6.2) 
202 (5.4) 
51 (5.4) 

 
Reference 
0.87 (0.72-1.04) 
0.86 (0.63-1.16)  

Maternal education level 
≤ 12 years 
> 12 years 

 
5259 
4348 

 
233 (4.4) 
324 (7.5) 

 
Reference 
1.74 (1.46-2.07) *** 

Paternal education level 
≤ 12 years 
> 12 years 

 
5187 
4420 

 
222 (4.3) 
335 (7.6) 

 
Reference 
1.83 (1.54-2.19) *** 

Maternal asthma history 
No 
Yes 

 
9457 
150 

 
539 (5.7) 
18 (12.0) 

 
Reference 
2.26 (1.32-3.62) ** 

Paternal asthma history 
No 
Yes 

 
9503 
104 

 
546 (5.7) 
11 (10.6) 

 
Reference 
1.94 (0.98-3.49)  

Maternal AR history 
No 
Yes 

 
8175 
1432 

 
436 (5.3) 
121 (8.4) 

 
Reference 
1.64 (1.32-2.01) *** 

Paternal AR history 
No 
Yes 

 
8041 
1566 

 
408 (5.1) 
149 (9.5) 

 
Reference 
1.97 (1.61-2.39) *** 

Maternal AD history 
No 
Yes 

 
9303 
304 

 
502 (5.4) 
55 (18.1) 

 
Reference 
3.87 (2.83-5.22) *** 

Paternal AD history 
No 
Yes 

 
9320 
287 

 
511 (5.5) 
46 (16.0) 

 
Reference 
3.29 (2.34-4.52) *** 

Molds on walls at home 
No 
Yes 

 
6123 
3484 

 
319 (5.2) 
238 (6.8) 

 
Reference 
1.33 (1.12-1.59) ** 

Painting during pregnancy 
No 
Yes 

 
9358 
249 

 
537(5.7) 
20 (8.0) 

 
Reference 
1.43 (0.87-2.23)  

Renovation during pregnancy 
No 
Yes 

 
9219 
388 

 
520 (5.6) 
37 (9.5) 

 
Reference 
1.76 (1.22-2.47) ** 

Continuous variables  Mean (SD) Unadjusted OR (95% CI) 
Gestational length (weeks)  38.7 (1.29) 1.07 (1.01-1.14) * 
Birth weight (gram)  3126.6 (400.8) 1.00 (1.00-1.00) ** 
Breastfeeding duration (months)  2.4 (2.3) 1.08 (1.04-1.12) *** 
Maternal age at childbirth (years)  30.3 (4.4) 1.04 (1.03-1.06) *** 
Paternal age at childbirth (years)  33.3 (4.8) 1.00 (0.99-1.02) 
Mother menarche age (years)  13.2 (1.3) 0.91 (0.86-0.97) ** 

Abbreviation: AD, atopic dermatitis; AR, allergic rhinitis  

*P < 0.05, **P < 0.01, ***P < 0.001 
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TABLE 6. DEMOGRAPHIC CHARACTERISTICS OF 6-MONTH-OLD MALE NEWBORNS AND UNADJUSTED OR FOR 

AD 
Categorical variables No. of 

subjects 
No. with AD (%) 

 
Unadjusted OR (95% CI) 

Total  10628 858  
Delivery method 

Cesarean section 
Natural delivery 

 
3597 
7031 

 
273 (7.6) 
585 (8.3) 

 
Reference 
1.11 (0.95-1.28) 

Birth order 
1st child 
2nd child 
≥ 3rd child 

 
5384 
4041 
1203 

 
456 (8.5) 
330 (8.2) 
72 (5.9) 

 
Reference 
0.96 (0.83-1.11) 
0.69 (0.53-0.88) ** 

Maternal education level 
≤ 12 years 
> 12 years 

 
5754 
4847 

 
333 (5.8) 
525 (10.8) 

 
Reference 
1.97 (1.70-2.27) *** 

Paternal education level 
≤ 12 years 
> 12 years 

 
5675 
4953 

 
328 (5.8) 
530 (10.7) 

 
Reference 
1.95 (1.69-2.26) *** 

Maternal asthma history 
No 
Yes 

 
10473 
155 

 
836 (8.0) 
22 (14.2) 

 
Reference 
1.91 (1.18-2.95) ** 

Paternal asthma history 
No 
Yes 

 
10493 
135 

 
842 (8.0) 
16 (11.9) 

 
Reference 
1.54 (0.88-2.53) 

Maternal AR history 
No 
Yes 

 
8949 
1679 

 
655 (7.3) 
203 (12.1) 

 
Reference 
1.74 (1.47-2.05) *** 

Paternal AR history 
No 
Yes 

 
8909 
1719 

 
648 (7.3) 
210 (12.2) 

 
Reference 
1.77 (1.50-2.09) *** 

Maternal AD history 
No 
Yes 

 
10274 
354 

 
771 (7.5) 
87 (24.6) 

 
Reference 
4.02 (3.10-5.15) *** 

Paternal AD history 
No 
Yes 

 
10323 
305 

 
778 (7.5) 
80 (26.2) 

 
Reference 
4.36 (3.33-5.66) *** 

Molds on walls at home 
No 
Yes 

 
6855 
3773 

 
498 (7.3) 
360 (9.5) 

 
Reference 
1.35 (1.17-1.55) *** 

Painting during pregnancy 
No 
Yes 

 
10349 
279 

 
818 (7.9) 
40 (14.3) 

 
Reference 
1.95 (1.37-2.71) *** 

Renovation during pregnancy 
No 
Yes 

 
10218 
410 

 
810 (7.9) 
48 (11.7) 

 
Reference 
1.54 (1.12-2.08) ** 

Continuous variables  Mean (SD) Unadjusted OR (95% CI) 
Gestational length (weeks)  38.4 (1.45) 1.02 (0.97-1.06) 
Birth weight (gram)  3196.3 (427.4) 1.00 (0.99-1.00) 
Breastfeeding duration (months)  2.1 (2.2) 1.06 (1.03-1.09) *** 
Maternal age at childbirth (years)  30.3 (4.4) 1.04 (1.02-1.06) *** 
Paternal age at childbirth (years)  33.4 (4.8) 1.00 (0.99-1.02) 
Mother menarche age (years)  13.3 (1.3) 0.93 (0.88-0.97) ** 

Abbreviation: AD, atopic dermatitis; AR, allergic rhinitis  

*P < 0.05, **P < 0.01, ***P < 0.001
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TABLE 7. RESULTS OF THE FINAL 3-MODEL MIXED PREDICTION AND THE LOGISTIC REGRESSION MODEL ON THE TEST SETS OF BOTH GENDERS. 

Girls   

XGBoost  Logistic regression 

 Actual AD risk level   Actual AD risk level 

Predicted AD risk level Low 

(eP < 6%) 

High 

(eP = 6%-12%) 

Very high 

(eP ≥ 12%) 

 Predicted AD risk level Low 

(eP < 6%) 

High 

(eP = 6%-12%) 

Very high 

(eP ≥ 12%) 

Low (eP < 6%) 0.953 0.047 0.000  Low (eP < 6%) 0.958 0.042 0.000 

High (eP = 6%-12%) 0.182 0.753 0.065  High (eP = 6%-12%) 0.148 0.734 0.118 

Very high (eP ≥ 12%) 0.095 0.199 0.706  Very high (eP ≥ 12%) 0.127 0.229 0.644 

Sum of diagonals =  2.412  Sum of diagonals =  2.337 

RMSE =  0.533  RMSE =  0.580 

Weighted error =  0.302  Weighted error =  0.370 

   
Boys   
XGBoost  Logistic regression 

 Actual AD risk level   Actual AD risk level 

Predicted AD risk level Low 

(eP < 8%) 

High 

(eP=8%-16%) 

Very high 

(eP ≥ 16%) 

 Predicted AD risk level Low 

(eP < 8%) 

High 

(eP=8%-16%) 

Very high 

(eP ≥ 16%) 

Low (eP < 8%) 0.963 0.037 0.000  Low (eP < 8%) 0.936 0.064 0.000 

High (eP = 8%-16%) 0.182 0.811 0.007  High (eP = 8%-16%) 0.198 0.772 0.030 

Very high (eP ≥ 16%) 0.027 0.157 0.816  Very high (eP ≥ 16%) 0.021 0.158 0.821 

Sum of diagonals =  2.590  Sum of diagonals =  2.529 

RMSE =  0.394  RMSE =  0.412 

Weighted error =  0.175  Weighted error =  0.227 

eP, expected probability. 



doi:10.6342/NTU202202317

 38 

Figures
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FIGURE 1. STEPS OF ANALYSIS. 

Data was preprocessed and split into a train set (80%) and a test set (20%). The XGBoost model was set up 
through random feature set selection, AD risk imputation (relabeling), model training, 5-run validation, 2-
model and 3-model mixed prediction. The LR model was set up through model training and 5-run 
validation. The performance of the XGBoost and LR model was compared based on sum of diagonals, 
RMSE and weighted error. 
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FIGURE 2. ALGORITHM AND CRITERIA OF RANDOM FEATURE SET SELECTION. 

The random feature set selection process began with an empty feature set. One feature was randomly selected and added in the feature set. Next, the study 
participants who had the same value combination of the selected feature(s) were grouped together. We set the above criteria to keep at least a certain percentage 
of groups in optimal size. The group size was kept above X for at least Y% of the boys, and above Z for at least W% of the girls. After a new feature was selected 
and added in the feature set, we examined the criteria. If the criteria were met, the newly selected feature stayed in the feature set. If the criteria were not met, the 
newly selected feature was removed from the feature set. The feature was selected one at a time until the above criteria cannot be kept. The parameter X, Y, Z 
and W were adjusted through a grid search process in a later step to identify the best model of each risk level. 
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FIGURE 3. STUDY COHORT ENROLLMENT, DATA PREPROCESSING AND SPLITTING. 


