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Abstract

Background: Atopic dermatitis (AD) is the most common skin disorder and many
patients develop symptoms early. A risk prediction model of AD in 6-month-old newborns
was established in 2009 using logistic regression (LR). Recently, machine learning (ML)
methods keep gaining popularity and have been applied in various clinical settings.
Whether ML can outperform LR remains inconclusive.

Objective: To apply ML methods to set up AD risk prediction model among 6-month-
old newborns based on hereditary and environmental risk factors, and to compare
performance between ML model and LR model.

Methods and Participants: Taiwan Birth Cohort Study (TBCS) was used in this
study, same as the study in 2009. Babies born in 2005 in 88 townships in Taiwan were
sampled and the first follow-up interview took place when the babies were 6 months old.
Data with missing values were removed. The data were stratified based on gender and
were split to a train set and a test set in 80-20 ratio. Nineteen features (risk factor) were
included in the ML model. Feature discretization, 100 rounds of random feature set
selection and AD risk level relabeling were performed sequentially to create a new train
set. The ML model was trained on the new train set and was validated by 5-run validation
on the test set. Through exhaustive grid search of parameters, the best model of each risk

level was identified. We assigned prediction rules of 2-model and 3-model mixed
X
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prediction. The 3-model mixed prediction was the final ML model. The LR model was set

up using the same 8 features as the study in 2009 and was validated by 5-run validation on

the test set. Standardized confusion matrix was used to summarize the final prediction

results of two models. Sum of diagonals, RMSE and weighted error were calculated to

compare performance between ML and LR.

Results: A total of 20235 newborns (9607 female [47%]) were analyzed. The AD

percentage was about 6% in female and about 8% in male. The prediction accuracy of ML

model of female was 0.953, 0.753, and 0.706 in low, high and very high risk group,

respectively and the sum of diagonals, RMSE and weighted error were 2.412, 0.533 and

0.302, respectively. The prediction accuracy of LR model of female was 0.958, 0.734 and

0.644 in low, high and very high risk group, respectively and the sum of diagonals, RMSE

and weighted error were 2.337, 0.580 and 0.370, respectively. The prediction accuracy of

ML model of male was 0.963, 0.811, and 0.816 in low, high and very high risk group,

respectively and the sum of diagonals, RMSE and weighted error were 2.590, 0.394 and

0.175, respectively. The prediction accuracy of LR model of male was 0.936, 0.772 and

0.821 in low, high and very high risk group, respectively and the sum of diagonals, RMSE

and weighted error were 2.529, 0.412 and 0.227, respectively. Overall, compared to the

LR model, the ML model of female had 3.2% higher sum of diagonals, 8.1% lower RMSE

and 18.4% lower weighted error. Compared to the LR model, the ML model of male had

XI
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2.4% higher sum of diagonals, 4.4% lower RMSE and 23% lower weighted error.

Conclusions: In this study, a novel ML approach combining with XGBoost was

applied on a national representative birth cohort to set up AD risk prediction models in 6-

month-old newborns. For both genders, the ML model had better overall performance than

the LR model. Our ML model can help clinicians stratify newborns into different risk

levels with high accuracy and help clinicians design preventive strategies based on the risk.

Keywords: atopic dermatitis, newborn, risk prediction model, machine learning,

XGBoost
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Chapter 1. Introduction

1.1 Background and motivation

Atopic dermatitis (AD) is one of the most common skin disorders in both the
developed and developing world. AD is notorious for its early onset, relapsing nature,
severely itchy skin lesions and accompanying complications, which lead to substantial
medical costs and economic burden for the whole society. Although various hereditary
and environmental risk factors for AD have been identified, there has not been an
optimal AD prediction model for newborns. As the old saying goes, prevention is better
than cure. We can put the old saying into practice through a risk prediction model based
on risk factors. The model could help clinicians and parents design individualized
prevention strategies for those newborns at risk.

Clinical prediction models usually aim to predict binary outcomes such as survival
status or disease status, and thus, logistic regression (LR) has commonly been used to
set up many models. Machine learning (ML) offers an alternative choice to accomplish
the task and has been prosperously developed lately. Various new algorithms were
proposed to solve real-world problems, to make prediction and to assist decision-making,
not only in the commercial world but also in clinical scenarios.

Previously, a study applied logistic regression (LR) model to set up an AD

prediction model for 6-month-old newborns using Taiwan Birth Cohort Study (TBCS)
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[1]. The model was a typical regression model with preselection of important variables
from the dataset based on experts’ knowledge. Despite its easy interpretability, its area
under receiver-operating characteristics curve (AUC) is suboptimal, indicating that its
discrimination ability is not satisfactory. There is still room for improvement. ML,
solving classification problem through algorithms different from LR, has the potential

to improve AD risk prediction.

1.2 Research aims

The study aims to apply ML method to set up model which could separate newborns
with AD from those healthy individuals at the age of 6 months, based on hereditary and
environmental risk factors. We examined whether ML could improve prediction

performance of the LR model proposed by the previous study.
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Chapter 2. Literature Review

2.1 Epidemiology and impacts of atopic dermatitis

Atopic dermatitis (AD) is a common inflammatory skin disease, characterized by
relapsing eczematous rash [2]. AD typically occurs early in the childhood [3, 4]. One
study showed that among those children who were diagnosed with AD, nearly half had
already developed symptoms within the first six months of their lives [5]. AD prevalence
in children has increased for several decades around the globe [6]. The lifetime
prevalence in children under 8 years of age was 20%-40% in both the developed and
developing countries [7]. The figure in Taiwan showed a similar rising trend. The
lifetime prevalence of AD in 6 to 15-year-olds rose from less than 2% before 1995, to
3.35% in 2002, and reached 6.7% during the period of 2000-2007 [8, 9].

AD has a substantial impact on many aspects of life. At individual level, AD does
harm to the physical and psychological health of the patients and further impair their
interpersonal relationship and social functioning. As children are the most susceptible to
AD, the quality of life of their caregivers is also inevitably affected [10, 11]. From a
social point of view, annual costs per patient were approximately USD 1000 to 6000 in
Asia-Pacific countries, USD 2000 in the United States, Cdn$1200 in Canada [12, 13].
In Taiwan, the costs are more than USD 1000 per patient per year [14]. Therefore,

development of preventive strategies could be critical to save the society from
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considerable economic burden. To address this issue, a risk prediction model is the first

step.

2.2 Risk factors for atopic dermatitis

AD is a disease with multiple etiologies, in which biological, psychological and
socioeconomic factors all play a role. The exact pathophysiological mechanism of AD
has not been fully understood. There is a complex interaction between potential allergens
in the surroundings and impaired host immune system. Various risk factors for atopic
dermatitis have been investigated. Recently, a systematic review and meta-analysis
summarized epidemiological studies examining risk factors for AD in Asia [15]. The
study classified risk factors into modifiable and non-modifiable. Modifiable factors are
generally easier to be changed or improved, such as lifestyle, environmental exposures
and medications. Non-modifiable factors refer to factors which are typically inherited or
unchangeable by nature, including demographic data, medical condition and
socioeconomic status of parents. Although practically, preventive strategies can only
target modifiable factors, the prediction model should include both modifiable and non-

modifiable factors since both could affect development of AD.

2.3 Previously established AD prediction model using LR

Wen and colleagues applied logistic regression (LR) with backward stepwise
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variable selection on TBCS, which was a national representative birth cohort consisting
of more than 20,000 newborns, to set up a risk prediction model for AD in 6-month-old
newborns [1]. In their study, Wen and colleagues examined the association between AD
and various hereditary and environmental risk factors. Family history of atopy, higher
maternal education, presence of fungus on walls, exposure to indoor painting and
renovation during pregnancy were identified to be significantly associated with
increased risk of AD and were included in their final LR model. Based on these risk
factors, individualized AD risk can be calculated by the LR model. A 5-run validation
test was performed to validate the model and the validation results confirmed the
prediction ability of the model. However, misestimate of AD risk occurred when the LR

model made prediction for high-risk female babies. Thus, there is room for improvement.

2.4 Machine learning

Lately, machine-learning (ML) methods continued gaining attention and have been
applied in various fields of research. such as 6-month mortality of patients with
malignancy[16], risk of hypoxemia during general anesthesia [17] and long-term
prognosis of ischemic stroke patients [18]. Risk prediction models provide valuable
assistance in clinical decision-making and have already become a crucial part in modern

clinical medicine. Traditionally, regression models make a great contribution in deriving
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many of those models. Logistic regression is a common choice for the task since many

of the models aim to predict binary outcomes. [19, 20].

ML algorithms analyze data in a different way than traditional regression models

do. Regression models are based on statistics theories. To make regression models robust

enough, certain assumptions are required and certain rules should be met. For example,

independence of errors, low multicollearity between variables and lack of outliers in data

should be checked, and sample size should be much greater than number of variables

[21]. Human intervention based on subject knowledge is heavily needed in the variable

selection process, in which researchers have to decide which variables should be

removed from or be kept in the model so as to prevent multicollearity problem.

Furthermore, nonlinear relationship could sometimes exist between an independent

variable and the dependent variable and interaction between some independent variables

could also exist. It is time-consuming and difficult for researchers to test all potential

nonlinear relationship and interaction between variables. On the other hand, ML models

solve classification task based on theories different from regression models. ML models

can learn directly from data without specifying too many rules beforehand [22]. It is

argued that ML methods could outperform traditional regression due to its capability of

dealing with much greater amounts of explanatory variables and variable

intercorrelation by automatically testing all possible variable combinations through
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method of exhaustion. However, a recent systematic review concluded that whether ML

models definitely have better performance still remains a subject of debate [19].

XGBoost, one of the widely used ML algorithms, is a tree-based ensemble learning

method known for its high predictive accuracy, learning efficiency and capability of

analyzing nonlinear relations. With its algorithmic innovation, it has offered solutions to

some of the challenging problems in the ML competition and it has gained enormous

popularity lately [23]. XGBoost has been shown effective in predicting clinical

outcomes in various medical fields [24-26]. The objectives of this study are to apply ML

approach and XGBoost algorithm on the same cohort of TBCS to establish a prediction

model for AD risk prediction in 6-month-old newborns and to compare the performance

of the XGBoost model and the LR model.
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Chapter 3. Materials and Methods

3.1 Study cohort recruitment

The study cohort was derived from the Taiwan Birth Cohort Study (TBCS). The
details of the TBCS recruitment were described elsewhere [27]. Initiated in the year 2003
by the Taiwan Health Promotion Administration, TBCS aimed to examine early
development of children and risk factors potentially affecting children health. The babies
who were born between 1% Jan 2005 and 315 Dec 2005 were eligible for enrollment. The
TBCS employed stratified systematic random sampling method to recruit the cohort.
First, 369 townships of Taiwan were divided into 12 strata based on urbanization levels
and total fertility rate. Eighty-eight townships were randomly selected from the 12 strata.
From those townships, eligible population were sampled by the method of probability
proportional to size. In the year 2005, there were 206,741 live births in total in Taiwan.
In the end, the TBCS recruited 24,200 mother-infant pairs, which accounted for
approximately one-eighth of the newborns in that year.

The first home interview was conducted by trained interviewers when the babies
were 6 months old. Serial follow-up interviews took place when the babies were 18
months, 3 years and 5.5 years old. The mothers were the prioritized interview targets. If
a baby’s mother was unavailable for the interview, the main caregiver would be the

alternative. “Whether the baby had ever been diagnosed with AD by a physician” was
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one of the questions in the interview. In the study of Wen et al. [1], the answer to this

question, a binary variable, was the dependent variable of the logistic regression model.

3.2 Data preprocessing

The data with missing values were removed. We did not impute missing value. Due
to difference of disease prevalence between both genders, we aimed to set up model for
girls and boys separately. Therefore, the data were stratified by gender at the beginning
of the analysis. All the following steps were performed in both genders separately.

We randomly split the data into a train set and a test set in 80:20 ratio. Next, we
prepared the features for the analysis. In total, there were 19 features, including
demographics, medical history of parents and baby and environmental exposures.
Feature discretization was carried out. The categorical features were kept categorical
and the continuous features were transformed into categorical based on clinically

appropriate cut-off values. Table 1 showed the features included in the final analysis.

3.3 Defining a new variable, “AD risk level”

The dependent variable of the logistic regression model by Wen et al. [1] was a
binary variable and recorded whether a 6-month-old newborn had ever been diagnosed
with AD. In the current study, we defined a new dependent variable with four levels, the

“AD risk level”, to replace the original dependent variable. Our prediction target shifted
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from binary disease outcomes to multiple risk levels. The new dependent variable had
four risk levels, including very low, low, high and very high. The three cut-off values
separating the four levels were derived from the AD percentage of the original data,
including half of the AD percentage, the AD percentage and twice of the AD percentage.
In the original dataset, the AD percentage of boys and girls were 8.07% and 5.79%,
respectively. These two numbers were rounded to the nearest whole number, and the cut-

off values were 4%, 8% and 16% for the boys, 3%, 6% and 12% for the girls.

3.4 Random feature set selection and AD risk level relabeling

The complete steps of our novel ML approach are shown in Figure 1. We began our
ML analysis with random feature set selection and AD risk level relabeling for the study
participants in the train set before training the prediction models. We randomly selected
some features out of the 19 features to form a random feature set. The process began
with an empty feature set. One feature was randomly selected and added in the feature
set. Next, the study participants who had the same value combination of the selected
feature(s) were grouped together. For example, if maternal history of asthma, paternal
history of AD, breastfeeding duration and molds on walls at home were selected, all
participants whose mother had asthma, whose father had AD, who had never been

breastfed and whose home was free from molds would be put into one group. Similarly,

10
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all participants whose mother had asthma, whose father had AD, who had never been

breastfed but whose home suffered from moldy walls would be put into another group.

We set criteria to keep at least a certain percentage of groups in optimal size to

prevent potential bias due to small group size. The group size was kept above X for at

least Y% of the boys, and above Z for at least W% of the girls. After a new feature was

selected and added in the feature set, we examined the criteria. If the criteria were met,

the newly selected feature stayed in the feature set. If the criteria were not met, the newly

selected feature was removed from the feature set. The feature was selected one at a time

until the criteria cannot be kept. The parameter X, Y, Z and W were adjusted through an

exhaustive grid search process in a later step to identify the best model of each risk level.

The algorithm and criteria of random feature set selection was shown in Figure 2.

After all participants were grouped based on value combination of selected features,

actual AD percentage of each group was calculated and compared to the pre-defined cut-

off values of the “AD risk levels”. Based on the comparison, the new dependent variable

of each study participant was imputed with one of the four risk levels. For example, if

actual AD percentage of a boy group was 11%, the new dependent variable, “AD risk

level”, of all boys of this group would be imputed with “high risk” because 11% was

between the cut-off values, 8% and 16%. Through this method, the study participants of

the train set were relabeled with an AD risk level.
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The random feature set selection and AD risk level relabeling were repeated 100
rounds on the train set. The results of every round were all kept. After 100 rounds, each
study participant in the train set was turned from one single data into 100 data and the

size of the train set became 100 times larger. The size of the test set remained unchanged.

3.5 XGBoost model training and S-run validation

After data preparation, we applied XGBoost algorithm to train the prediction model
based on the newly relabeled train set. The prediction target was the multi-level
dependent variable, AD risk level. The analysis was conducted using Python and the
XGBoost Python package version 1.1.1. Three important hyperparameters of XGBoost
algorithm, max_depth, n_estimators and max_delta_step, were set equal to 6, 3 and 5,
respectively. The rest of the hyperparameters were kept as default.

We performed 5-run validation to test the trained XGBoost model on the test set.
The test set was randomly divided into 5 partitions. The trained XGBoost model was
applied on each partition to predict AD risk level for the participants. In each partition,
the participants were classified into 4 predicted risk groups based on the predicted results.
The actual AD percentage in each predicted risk group was calculated and compared
with the predicted risk level. We performed the 5-run validation for 10,000 rounds. Each
round resulted in 4 predicted risk groups in the 5 partitions, so 20 comparison results

were yielded through each round. The comparison results between predicted risk and
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actual risk of the 10,000 rounds of 5-run validation were summed up in a confusion
matrix, as shown in Table 2. A standardized confusion matrix can be derived by having
each grid divided by the sum of all grids of a confusion matrix. Take Table 2 as an
example, a standardized confusion matrix can be derived by having every Xj; divided by
the sum of all Xj;.

Wen and colleagues used 3 risk levels to validate the performance of the LR model,
which were < 8%, 8%-16%, and > 16% for the boys and < 6%, 6%-12%, > 12% for the
girls, respectively [1]. The risk level < 8% for the boys and < 6% for the girls
corresponded to the very low risk level and the low risk level of our XGBoost model.
The two higher risk levels of the LR model corresponded to the high risk level and the
very high risk level of our XGBoost model. To allow comparison between XGBoost and
LR model, we combined the predicted results of very low risk level and the low risk

level into one risk level, the low risk level. Consequently, only three risk levels remained

in the standardized confusion matrix, including low, high and very high risk levels.

3.6 Mixed XGBoost prediction

To improve prediction performance of XGBoost, we propose a mixed XGBoost
prediction method by combining the best XGBoost model of each risk levels. We
repeatedly performed 100 rounds of random feature selection and AD risk relabeling,

XGBoost model training and 10,000 rounds of 5-run validation with exhaustive grid
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search of all possible combination of X, Y, Z and W. The best model of each risk level
was identified based on the results of 5-run validation. As shown in Table 2, the XGBoost
model with the highest accuracy in the grid Xi1 was defined as the best model of low
risk level and was named Model 1. The model with the highest accuracy in the grid X2
was defined as the best model of high risk and was named Model 2. The model with the
highest accuracy in the grid X33 was defined as the best model of very high risk level
and was named Model 3.

Next, we defined the prediction rules for the 2-model mixed XGBoost prediction.
Table 3 summarized the prediction rules of the 3 possible model pairs consisting of
Model 1 and Model 2, Model 1 and Model 3, Model 2 and Model 3. Following the rules,
a participant’s risk level separately predicted by two models was integrated into one
mixed predicted outcome. Finally, the 3-model mixed XGBoost prediction was
performed on the test set through majority voting among the predicted outcomes of the
three 2-model mixed prediction. The final results of 3-model mixed prediction were

demonstrated in a standardized confusion matrix.

3.7 Logistic regression (LR) model training, S-run validation and

model comparison

We applied LR on the preprocessed but unenlarged train set to train the LR model.

The features included here were the same as those used to set up the LR model of Wen
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and colleagues’ work [1], including parental history of AD and allergic rhinitis, fungus
on walls, painting furniture during pregnancy, home renovation during pregnancy and
maternal education. The trained LR model was tested on the test set through 10,000
rounds of 5-run validation, same as XGBoost model. The ranges of risk levels of the 5-
run validation here were < 8%, 8%-16%, and > 16% for the boys and > 6%, 6%-12%, >
12% for the girls, respectively, which were the same as the aforementioned risk levels
of XGBoost model and the same as those in Wen and colleagues’ work. The prediction
of the LR model was demonstrated in a standardized confusion matrix.

To compare the prediction performance between the 3-model mixed XGBoost
prediction and the LR model, we calculated the sum of diagonals, root mean squared
error (RMSE) and weighted error based on the results summarized in the confusion
matrix. Take Table 2 as an example. The sum of diagonals and the RMSE were calculated

as below:

X xij i=j

Sum of diagonals = —/——=——
8 DYDY T

Si1 Xjoq ey (i-)?]

RMSE =
DN PN RE

Besides the sum of diagonals and the RMSE, we calculated weighted error to

further compare the models. As shown in Table 4, we assigned the costs for different
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scenarios of inaccurate predictions. The cost of an accurate prediction was assigned to
be 0, and the costs of all possible inaccurate predictions were assigned as Table 4
demonstrated. Overall, underestimation results in higher costs than overestimation of
risk. The cost is 10 when newborns at very high risk of AD are predicted to be at low
risk. The costs are 3 when newborns at high risk and very high risk are predicted to be
at low risk and high risk, respectively. The cost is 2 when newborns at low risk are
overestimated to be at very high risk. The costs are 1 when newborns with low risk and
high risk are overestimated to be at high and very high risk, respectively. Take Table 2
as an example. The costs in Table 4 served as the weight as the weighted error was

calculated as below:

3 3
2i=12j=1(xijXwyj)

3 3
Yi=1 Zj=1 Xij

Weighted error =

3.8 Statistical analysis

All the above analytical steps were performed by Python. Odds ratios (ORs) and
95% confidence intervals (CIs) were calculated to evaluate univariate association

between the features and AD. The significance level was 0.05.
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Chapter 4. Results

4.1 Study cohort recruitment

The steps of study cohort recruitment and data preprocessing were shown in Figure
3. In total, 24,200 mother-infant pairs were recruited in the TBCS. Among them, 2,952
lost follow-ups due to refusal of being interviewed, wrong addresses, moving abroad,
absence after multiple interview visits, death of the baby and other reasons. Multiparity
samples were also excluded. Among the remaining 20,687 subjects, 452 (2.18%) had
missing values in some features and were excluded. In total, we included 20,235

participants in the final analysis.

4.2 Characteristics of study population

The demographic characteristics of the female and male newborns were shown in
Table 5 and Table 6. The data included in the final analysis consisted of 9,607 girls and
10,628 boys. Among them, 557 girls and 858 boys were diagnosed with AD. The AD
prevalence was 5.80% in female babies and 8.07% in male babies. Overall, the
demographic characteristics were relatively similar between both genders.
Approximately one-third of the girls and the boys were delivered by cesarean section,
and about half of the babies were the first child of the mothers. In average, the

breastfeeding duration was 2.4 months in girls and 2.1 months in boys. At childbirth, the
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mean maternal age was 30 years and the mean paternal age was 33 years among both
genders. Parents with longer than 12 years of education accounted for 45% of the
participants. About 1.5% of the mothers of both genders and 1.2% of the fathers of both
genders had history of asthma. Nearly 36%, 2.6% and 4% of the mother-infant pairs
were exposed to wall molds, indoor painting and indoor renovation in their residences
during pregnancy, respectively.

The unadjusted ORs of risk factors for AD were also shown in Table 5 and Table 6.
In both genders, higher parental educational level, parental history of AD and allergic
rhinitis, maternal history of asthma, longer duration of breastfeeding, older maternal age
at childbirth, molds on walls and indoor renovation during pregnancy were associated
with higher risk of AD, while older maternal menarche age was associated with lower
risk of AD. Longer gestational length and higher birth weight were positively associated
with AD risk in girls. Indoor painting during pregnancy was positively associated with

AD risk in boys.

4.3 Model comparison

The results of the XGBoost model (3-model mixed prediction) and the LR model
on the test sets of both genders were shown in Table 7. For the girls, the accuracy of
XGBoost model in the low risk, high risk and very high risk level was 0.953, 0.753 and

0.706, respectively, and the accuracy of LR model was 0.958, 0.734 and 0.644,
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respectively. Compared to the LR model, the XGBoost model has higher sum of

diagonals, lower RMSE and lower weighted error. The sum of diagonals of the XGBoost

model and the LR model were 2.412 and 2.337, respectively. The RMSE of the XGBoost

model and the LR model were 0.533 and 0.580, respectively. The weighted error of the

XGBoost model and the LR model were 0.302 and 0.370, respectively.

For the boys, the accuracy of XGBoost model in the low risk, high risk and very

high risk level was 0.963, 0.811 and 0.816, respectively, and the accuracy of LR model

was 0.936, 0.772 and 0.821, respectively. Compared to the LR model, the XGBoost

model has higher sum of diagonals, lower RMSE and lower weighted error. The sum of

diagonals of the XGBoost model and the LR model were 2.590 and 2.529, respectively.

The RMSE of the XGBoost model and the LR model were 0.394 and 0.412, respectively.

The weighted error of the XGBoost model and the LR model were 0.175 and 0.277,

respectively.
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Chapter 5. Discussion

In this study, machine learning method was applied on a national representative
birth cohort to set up AD risk prediction models for 6-month-old newborns. For both
genders, the XGBoost model had better overall performance than the LR model in terms
of prediction accuracy, sum of diagonals, RMSE and weighted error. The XGBoost
model had higher accuracy than the LR model in predicting girls at high and very high
risk of AD, while the accuracy of both models in predicting girls at low risk of AD was
similar. For the girls, the XGBoost resulted in 3.2% increase of sum of diagonals, 8.1%
decrease of RMSE and 18.4% decrease of weighted error compared to the LR model.
The XGBoost model had higher accuracy than the LR model in predicting boys at low
and high risk of AD, while the accuracy of both models in predicting boys at very high
risk of AD was comparable. For the boys, the XGBoost resulted in 2.4% increase of sum
of diagonals, 4.4% decrease of RMSE and 23% decrease of weighted error compared to
the LR model. A recent systematic review argued that whether ML methods outperform
regression remained inconclusive [19]. Our results demonstrated that XGBoost could
have better performance than LR.

The improvement achieved by the XGBoost model can be attributed to the
inclusion of 11 additional features. The LR model in our study and in Wen and

colleagues’ study [1] was set up only based on 8 risk factors, including parental history
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of AD and allergic rhinitis, maternal education, fungus on walls, painting furniture and

renovation in the house during pregnancy, while the XGBoost model were established

based on 19 risk factors. The 11 extra features included birth order, gestational age, birth

weight, delivery mode, parental age at childbirth, parental history of asthma, maternal

menarche age, breastfeeding duration, paternal education.

The association of these 11 extra features and risk of AD has been examined in

previous studies. Lower parity and higher gestational age were shown associated with

higher risk of AD [28, 29]. In a meta-analysis, very preterm babies were associated with

decreased risk for AD, and moderate preterm babies were at comparable risk for AD

compared to full term babies [30]. Newborns with higher birth weight were at higher

risk for AD and low birth weight could be a protective factor [31-33]. Compared to

vaginal delivery, Cesarean section did not increase risk of developing AD in newborns

[34-36]. One study using a national representative survey showed that younger paternal

age was a risk factor for AD in children. The researchers argued that there could be

confounding factors affecting this association such as richer economic status or smaller

family size [37]. Another study reported unadjusted association between AD and

maternal age at childbirth [38]. A recent systematic review and meta-analysis

demonstrated that parental history of asthma was associated with increased risk of AD

in children [39]. One study analyzing a Finnish birth cohort found that children whose
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mothers’ first menstrual cycle began earlier than the age of 15 were at lower risk of AD

[40]. However, another study using a birth cohort of the UK did not find a significant

association between AD risk in children and maternal age of menarche. Thus, further

investigation of this association is warranted. A study using a Japanese nationwide birth

cohort showed that breastfeeding duration was positively associated with risk of AD in

children up to the age of 3 years. Newborns who were breastfed exclusively were at

significantly higher risk of AD compared to those who were fed with formula milk

exclusively [38]. However, a recent meta-analysis demonstrated that breastfeeding acted

as a protective factor against AD in children with parental history of atopy and

breastfeeding could be a risk factor for AD in children without parental history of

atopy[41]. High parental education levels were correlated with increased risk of AD [2].

In Wen and colleagues’ study, parental education levels were significant risk factors for

AD [1]. However, in that study, the final LR model which adopted backward variable

selection strategy only included maternal education level. Paternal education level was

left out possibly due to high collinearity with maternal education level. In our XGBoost

model, parental education level was kept.

Another reason the XGBoost model could improve prediction of AD in newborns

was the methodological innovation. Our novel ML approach comprised the feature

discretization, random feature set selection, risk level relabeling, XGBoost model
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training, 5-run validation, identification of best model for each risk level through

exhaustive grid search, 2-model mixed prediction and 3-model mixed prediction. The

identification of best model for each risk level through exhaustive grid search of optimal

combination of X, Y, Z and W was a key step. It allowed the 2-model mixed prediction

and the subsequent 3-model mixed prediction to be carried out. Human intervention

played a critical role in the rule assignment of the multiple-model mixed prediction. The

rules of the 2-model mixed prediction were defined based on clinically reasonable

rationale. The weight of error which was used to calculate weighted error was also

assigned based on clinical experience.

There are several limitations in this study. First, the test set we used to validate our

models was derived from the TBCS data. We did not use an independent external dataset

due to lack of such data. To enhance the robustness of the validation, we performed 5-

run validation for 10,000 times. Second, the AD status of the study participants was self-

reported. Whether or not the newborns were diagnosed with AD by a physician was not

validated by medical records or other databases. Recall bias could occur. Last, the TBCS

did not collect biological samples such as urine, blood or skin tissue. Therefore, such

data was not available for model establish. Although the XGBoost model was set up

solely based on epidemiological and socioeconomic risk factors, it achieved good

prediction performance with high prediction accuracy, low RMSE and low weighted
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5.1 Strengths

Our novel ML approach has several strengths and can assist in clinical scenarios in
several ways. First, in preventive medicine, a model stratifying risk levels can be more
usable than a model performing binary decision. Through our ML approach, we
transformed binary AD outcomes into multi-level AD risk levels, and the binary
classification task was transformed into a multi-level classification task. Our XGBoost
model does not predict whether a newborn would have AD within 6 months of age.
Instead, our XGBoost model put a newborn into a certain AD risk level. With the
assistance of our model, clinicians can classify newborns into different AD risk levels
and design different prevention plans. Second, our ML method can prevent
underestimation of AD risk and can solve the imbalanced data problem. For a newborn
whose risk is merely lower than the risk threshold of having AD, a model only predicting
binary outcomes would predict that this individual would not have AD. This leads to
underestimation of risk, and consequently, clinicians and caregivers may not take
sufficient preventive measures to protect this newborn. Risk underestimation can even
be worsened by the problem of imbalance data. When majority and minority outcomes
of a dataset are highly imbalanced, it is common to yield a model that tends to predict

majority outcomes. In the TBCS data, without AD is the majority outcome, which
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accounted for 92% of the boys and 94% of the girls. A model trained on this imbalanced

data can easily predict a newborn to be without AD. This imbalanced prediction

tendency is an additional aggravating factor for risk underestimation.

5.2 Limitations

There are several limitations in this study. First, the test set we used to validate our

models was derived from the TBCS data. We did not use an independent external dataset

due to lack of such data. To enhance the robustness of the validation, we performed 5-

run validation for 10,000 times. Second, the AD status of the study participants was self-

reported. Whether or not the newborns were diagnosed with AD by a physician was not

validated by medical records or other databases. Recall bias could occur. Last, the TBCS

did not collect biological samples such as urine, blood or skin tissue. Therefore, such

data was not available for model establish. Although the XGBoost model was set up

solely based on epidemiological and socioeconomic risk factors, it achieved good

prediction performance with high prediction accuracy, low RMSE and low weighted

€I1ofr.
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Chapter 6. Conclusion

In this study, a combination of a novel ML approach and XGBoost algorithm was
applied on a national representative birth cohort to set up a prediction model for risk of
AD in 6-month-old newborns. Our XGBoost model improved AD prediction compared
to the previously established LR model and can help clinicians classify newborns into
risk levels of AD and take timely preventive measures. The incidence of many other
diseases such as malignancies can be much lower than AD and the datasets of such
diseases can be much more imbalanced than this study. Our ML approach provides a

promising solution to solve the imbalanced data problem for such disease.
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TABLE 1. FEATURES INCLUDED IN THE FINAL ANALYSIS

Features

Cut-off values for discretization

Gender

2 levels: male, female

Gestational week

3 levels: <38,>38 and <41, >41

Birth weight (grams)

3 levels: <2500, > 2500 and < 4000, > 4000

Parity

3levels: 1,2,>2

Cesarean section

2 levels: yes, no

Maternal age at childbirth (years)

3 levels: <26,>26 and <33,>33

Paternal age at childbirth (years)

3 levels: <26,>26 and <33,>33

Maternal asthma history

2 levels: yes, no

Paternal asthma history

2 levels: yes, no

Maternal AR history 2 levels: yes, no
Paternal AR history 2 levels: yes, no
Maternal AD history 2 levels: yes, no
Paternal AD history 2 levels: yes, no

Maternal first menarche (years)

3levels: <11,>11and <15, 15

Parental education (years)

3 levels: both < 12, one > 12 and one < 12, both > 12

Breastfeeding duration (months)

3levels: 0,1,>1

Molds on walls at home

2 levels: yes, no

Furniture painting during

pregnancy

2 levels: yes, no

House renovation during

pregnancy

2 levels: yes, no

Abbreviation: AR, allergic rhinitis; AD, atopic dermatitis
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TABLE 2. A PROTOTYPICAL CONFUSION MATRIX

Actual AD risk level
Low High Very high
Predicted AD risk level
Low X11 X12 X13
High X21 X22 X23
Very high X31 X32 X33
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TABLE 3. RULES OF 2-MODEL MIXED PREDICTION

AD risk level predicted by

AD risk level predicted by Model 2

combining Model 1 and Model 2 | Low High Very high
AD risk level Low Low High Low

predicted by High High High Very high
Model 1 Very high | Very high High Very high

AD risk level predicted by

AD risk level predicted by Model 3

combining Model 1 and Model 3 | Low High Very high
AD risk level Low Low Low Very high
predicted by High High High Very high
Model 1 Very high | Very high High Very high

AD risk level predicted by

AD risk level predicted by Model 3

combining Model 2 and Model 3 | Low High Very high
AD risk level Low Low Low Very high
predicted by High High High Very high
Model 2 Very high Low Very high Very high
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TABLE 4. WEIGHT OF ERRORS

Actual AD risk level
Low High Very high
Predicted AD risk level
Low 0 (wqq) 3 (wi2) 10 (wy3)
High 1 (wz1) 0 (waz) 3 (W23)
Very high 2 (w3q) 1 (ws;) 0 (w33)
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TABLE 5. DEMOGRAPHIC CHARACTERISTICS OF THE 6-MONTH-OLD FEMALE NEWBORNS AND UNADJUSTED

OR FOR AD
Categorical variables No. of No. with AD (%) Unadjusted OR (95% CI)
subjects

Total 9607 557
Delivery method

Cesarean section 3303 181 (5.5) Reference

Natural delivery 6574 376 (5.7) 0.96 (0.80-1.15)
Birth order

1%t child 4924 304 (6.2) Reference

27 child 3730 202 (5.4) 0.87 (0.72-1.04)

> 31 child 953 51(5.4) 0.86 (0.63-1.16)
Maternal education level

<12 years 5259 233 (4.4) Reference

> 12 years 4348 324 (7.5) 1.74 (1.46-2.07) ™
Paternal education level

<12 years 5187 222 (4.3) Reference

> 12 years 4420 335 (7.6) 1.83 (1.54-2.19) ™
Maternal asthma history

No 9457 539 (5.7) Reference

Yes 150 18 (12.0) 2.26 (1.32-3.62) ™"
Paternal asthma history

No 9503 546 (5.7) Reference

Yes 104 11 (10.6) 1.94 (0.98-3.49)
Maternal AR history

No 8175 436 (5.3) Reference

Yes 1432 121 (8.4) 1.64 (1.32-2.01) ™
Paternal AR history

No 8041 408 (5.1) Reference

Yes 1566 149 (9.5) 1.97 (1.61-2.39) ™
Maternal AD history

No 9303 502 (5.4) Reference

Yes 304 55 (18.1) 3.87 (2.83-5.22) "
Paternal AD history

No 9320 511 (5.5) Reference

Yes 287 46 (16.0) 3.29 (2.34-4.52) ™
Molds on walls at home

No 6123 319 (5.2) Reference

Yes 3484 238 (6.8) 1.33 (1.12-1.59) ™"
Painting during pregnancy

No 9358 537(5.7) Reference

Yes 249 20 (8.0) 1.43 (0.87-2.23)
Renovation during pregnancy

No 9219 520 (5.6) Reference

Yes 388 37 (9.5) 1.76 (1.22-2.47) ™"
Continuous variables Mean (SD) Unadjusted OR (95% CI)
Gestational length (weeks) 38.7 (1.29) 1.07 (1.01-1.14) "
Birth weight (gram) 3126.6 (400.8) 1.00 (1.00-1.00) ™
Breastfeeding duration (months) 2.4 (2.3) 1.08 (1.04-1.12) ™
Maternal age at childbirth (years) 30.3 (4.4) 1.04 (1.03-1.06) ™
Paternal age at childbirth (years) 33.3 (4.8) 1.00 (0.99-1.02)
Mother menarche age (years) 13.2(1.3) 0.91 (0.86-0.97) ™"

Abbreviation: AD, atopic dermatitis; AR, allergic rhinitis
*P < 0.05, **P <0.01, ***P < 0.001
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TABLE 6. DEMOGRAPHIC CHARACTERISTICS OF 6-MONTH-OLD MALE NEWBORNS AND UNADJUSTED OR FOR

AD
Categorical variables No. of No. with AD (%) Unadjusted OR (95% CI)
subjects

Total 10628 858
Delivery method

Cesarean section 3597 273 (7.6) Reference

Natural delivery 7031 585 (8.3) 1.11 (0.95-1.28)
Birth order

1%t child 5384 456 (8.5) Reference

2md child 4041 330 (8.2) 0.96 (0.83-1.11)

> 31 child 1203 72 (5.9) 0.69 (0.53-0.88) **
Maternal education level

<12 years 5754 333 (5.8) Reference

> 12 years 4847 525 (10.8) 1.97 (1.70-2.27) ***
Paternal education level

<12 years 5675 328 (5.8) Reference

> 12 years 4953 530 (10.7) 1.95 (1.69-2.26) ***
Maternal asthma history

No 10473 836 (8.0) Reference

Yes 155 22 (14.2) 1.91 (1.18-2.95) **
Paternal asthma history

No 10493 842 (8.0) Reference

Yes 135 16 (11.9) 1.54 (0.88-2.53)
Maternal AR history

No 8949 655 (7.3) Reference

Yes 1679 203 (12.1) 1.74 (1.47-2.05) ***
Paternal AR history

No 8909 648 (7.3) Reference

Yes 1719 210(12.2) 1.77 (1.50-2.09) ***
Maternal AD history

No 10274 771 (7.5) Reference

Yes 354 87 (24.6) 4.02 (3.10-5.15) ***
Paternal AD history

No 10323 778 (7.5) Reference

Yes 305 80 (26.2) 4.36 (3.33-5.66) ***
Molds on walls at home

No 6855 498 (7.3) Reference

Yes 3773 360 (9.5) 1.35 (1.17-1.55) ***
Painting during pregnancy

No 10349 818 (7.9) Reference

Yes 279 40 (14.3) 1.95 (1.37-2.71) ***
Renovation during pregnancy

No 10218 810 (7.9) Reference

Yes 410 48 (11.7) 1.54 (1.12-2.08) **
Continuous variables Mean (SD) Unadjusted OR (95% CI)
Gestational length (weeks) 38.4 (1.45) 1.02 (0.97-1.06)
Birth weight (gram) 3196.3 (427.4) 1.00 (0.99-1.00)
Breastfeeding duration (months) 2.1(2.2) 1.06 (1.03-1.09) ***
Maternal age at childbirth (years) 30.3 (4.4) 1.04 (1.02-1.06) ***
Paternal age at childbirth (years) 33.4 (4.8) 1.00 (0.99-1.02)
Mother menarche age (years) 13.3(1.3) 0.93 (0.88-0.97) **

Abbreviation: AD, atopic dermatitis; AR, allergic rhinitis
*P<0.05, **P <0.01, ***P <0.001
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TABLE 7. RESULTS OF THE FINAL 3-MODEL MIXED PREDICTION AND THE LOGISTIC REGRESSION MODEL ON THE TEST SETS OF BOTH GENDERS.

Girls
XGBoost Logistic regression

Actual AD risk level Actual AD risk level
Predicted AD risk level Low High Very high Predicted AD risk level Low High Very high

(eP < 6%) (eP=6%-12%)  (eP>12%) (eP<6%) (eP=6%-12%) (eP>12%)

Low (eP < 6%) 0.953 0.047 0.000 Low (eP < 6%) 0.958 0.042 0.000
High (eP = 6%-12%) 0.182 0.753 0.065 High (eP = 6%-12%) 0.148 0.734 0.118
Very high (eP > 12%) 0.095 0.199 0.706 Very high (eP > 12%) 0.127 0.229 0.644
Sum of diagonals = 2412 Sum of diagonals = 2.337
RMSE = 0.533 RMSE = 0.580
Weighted error = 0.302 Weighted error = 0.370
Boys
XGBoost Logistic regression

Actual AD risk level Actual AD risk level
Predicted AD risk level Low High Very high Predicted AD risk level Low High Very high

(eP < 8%) (eP=8%-16%) (eP>16%) (eP<8%)  (eP=8%-16%) (eP>16%)

Low (eP < 8%) 0.963 0.037 0.000 Low (eP < 8%) 0.936 0.064 0.000
High (eP = 8%-16%) 0.182 0.811 0.007 High (eP = 8%-16%) 0.198 0.772 0.030
Very high (eP > 16%) 0.027 0.157 0.816 Very high (eP > 16%) 0.021 0.158 0.821
Sum of diagonals = 2.590 Sum of diagonals = 2.529
RMSE = 0.394 RMSE = 0.412
Weighted error = 0.175 Weighted error = 0.227

eP, expected probability.
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Figures
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T_ AD risk
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Exhaustive i v
grid search
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(in a confusion matrix) l (in a confusion matrix)

Model comparison
(Sum of diagonals, RMSE, weighted error)

FIGURE 1. STEPS OF ANALYSIS.
Data was preprocessed and split into a train set (80%) and a test set (20%). The XGBoost model was set up
through random feature set selection, AD risk imputation (relabeling), model training, 5-run validation, 2-
model and 3-model mixed prediction. The LR model was set up through model training and 5-run
validation. The performance of the XGBoost and LR model was compared based on sum of diagonals,
RMSE and weighted error.
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Create an empty feature set

v

A 4

Randomly select a feature from all features

A

Male /\ Female
Gender?

N = Total number of male
n; = Group size of the i value
combination

I = Value combinations resulting
in a group with group size = X

Remove the last (newly) selected
feature from the feature set

!

Output the feature set

FIGURE 2. ALGORITHM AND CRITERIA OF RANDOM FEATURE SET SELECTION.

Dier i
_— 0,
N => W%

N = Total number of female
n; = Group size of the i value
combination
I=Value combinations resulting in a
group with group size > Z

The random feature set selection process began with an empty feature set. One feature was randomly selected and added in the feature set. Next, the study

participants who had the same value combination of the selected feature(s) were grouped together. We set the above criteria to keep at least a certain percentage

of groups in optimal size. The group size was kept above X for at least Y% of the boys, and above Z for at least W% of the girls. After a new feature was selected

and added in the feature set, we examined the criteria. If the criteria were met, the newly selected feature stayed in the feature set. If the criteria were not met, the

newly selected feature was removed from the feature set. The feature was selected one at a time until the above criteria cannot be kept. The parameter X, Y, Z

and W were adjusted through a grid search process in a later step to identify the best model of each risk level.

40

doi:10.6342/NTU202202317



369 Townships

v

88 townships, proportionally sampled according to birth rate.

Final Mother-infant pairs = 24200

A 4

Final cohort
n =20687

v

Data without missing values (m=20235)

v
Boys (n=10628)

I
v v

v

Gitls (n=9607)

v

v

Train set Test set
(80%) (20%)

Train set
(80%)

Test set
(20%)

1

: Exclusion

E Lost follow-up (n =2952)

X Refusal of being interviewed (n = 1734)
: Wrong addresses (n = 358)

E Moving abroad (n =351)

' Absence after multiple visits (n = 104)
: Death of the baby (n = 67)

E Other reasons (n = 338)

. Multiparity (n = 561)

1

FIGURE 3. STUDY COHORT ENROLLMENT, DATA PREPROCESSING AND SPLITTING.
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