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Abstract

The Boltzmann Equation is an important mathematical model that describes the evo-
lution of a thermodynamic system. It has been studied and applied in various scientific
areas. In this article, we review the properties of collision operator of Boltzmann equation.
We will focus mainly on the well-posedness and the asymptotic behaviour of the Milne and
Kramers problem as well as the recent work in the boundary singularity of macroscopic

variables for linearized Boltzmann equation.
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Chapter 1 Introduction

The Boltzmann equation provides a characterization of the motion of a collection of
molecules. In 1872, Boltzmann introduced the fundamental equation of the kinetic the-
ory of gases [3]. Thousands of works and analysis on this equation had been done over
decades. As of our interest, we consider the linearized Boltzmann equation satisfies the
angular cutoff assumption. Some related progress on linearized Boltzmann equation can
bereferred to [1, 9, 10, 12, 14, 15, 19]. Applications and analysis of the Boltzmann equa-
tion can be found in the books of Cercignani [4, 5]. We will not go through the physical
interpretation in this review. In 2015, Chen and Hsia [6] [ 7] has established an asymptotic
formula for the gradient of the moments of solution to the stationary Boltzmann equation
for both hard-sphere potential and hard potential cases. They showed that the logarithmic
singularity occurs near the boundary for macroscopic variables. Later, in 2020, Huang
[11] extended the result to the soft potential case (—g < v < 0). The challenges of the
remaining cases is that the technique developed by Chen and Hsia is no longer applicable
for soft potential cases as the L? norm can no longer be controlled by the weighted L?
norm anymore, which is employed frequently for hard potential case (0 < v < 1). By
introducing some special functions, Huang is able to extend the result to (—% < v <0),

however, the downside is that we cannot obtain a better estimate with Huang’s technique.
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Now, we shall begin with the classical Boltzmann equation

where F' = F(t,x,§) is the distribution function of the gas particle at time ¢t > 0, x =
(z,y,2) € Q the position and £ = (£;,&,&3) € R? is the velocity, where Q C R3. The
functional () is called a Boltzmann collision operator which depends only on the velocity

&, and it takes the form

ARG = [ [FEICE) - FEIGOBw. (12)

where B = B(|& — £],| cosf)]) is the collision kernel. It is difficult to write down the

explicit form of the collision kernel B. Grad suggested to make the following assumptions:
B(|& = &l, [ cos O]) = [§. — &[7B(| cos 0]), (1.3)

where v € (—3, 1] and it satisfies the angular cutoff assumption
0 < B(|cosb|) < C|cosb|, (1.4)

for all 0 < 8 < 7 and some constant C' > 0.

Next, we consider linearized Boltzmann equation which the linearization is per-

formed around the Maxwellian
M(&) = (2m) " 2e 2P, (1.5)

Substituting F' = M + M 2 f into (1.1) and dropping the higher order terms of f gives the
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linearized Boltzmann equation

Of+&-Vaf + L(f) =0, (1.6)

where

L(f) = —~M72(Q(M, M= f) + Q(M?= f, M)). (1.7)

Let us introduce the properties of the operator L. L acts on the function f which
depends only on &, it is self-adjoint and non-negative. It has the domain D(L) = {f :

(14 [€])f € L*}, while the null space N (L) of L is spanned by the following functions:

o = M2 (£), (1.8)
i = &M3(€),  fori=1,2,3, (1.9)
Wy = [€[2M2(¢). (1.10)

Moreover, its range R(L) is equal to N (L)+, the orthogonal complement of its null space.
Also, we can write

L=uv()+K, (1.11)

where v is a function of £ only and K is a compact integral operator. A well-known fact

about the function v is it satisfies

v(€) = v(l£]), (1.12)
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and

w(l+[E)" < v() <m+[E]), (1.13)

for some positive constant 0 < 1y < v; and for —3 < v < 1. The following are the

definitions for different value of ~

v=1 , Hard-sphere model,
0<y<l1 , Hard potential model,
v=0 , Maxwellian model,
\ —3 <7v<0 , Soft potential model.

It is also useful to introduce the following fluid dynamic moments of f:

* Density
p= /M%f de. (1.14)
* Velocity
v; :/giM%f de. (1.15)
* Temperature
N RN
T = 3 /(§ 3)Mz=f de. (1.16)

Notice that, the density of Maxwellian is normalized to 1, so the mass flux and the velocity

are equal, that is, the mass flux in the z-direction has the formula

my = /glM%f de. (1.17)

In fact, m is constant in = which will be shown in the next chapter.
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Here, we recaptilate the mathematical setting of Bardos, Caflisch and Nicolaenko [2].
One can decompose the distribution function f into two parts, namely, the fluid dynamic

part ¢ € N(L) and the nonfluid dynamic part w € N(L)*, that is,

f=w+gq, (1.18)

q = (a+ bi&y + bols + bs&s + c€2) M3 (€), (1.19)

where a, by, b, b3, ¢ depend only on x. Furthermore, for any f,g € D(L),

/ LS dE > v / (1+ Je)w? de, (1.20)

[1szalde < [+ el de (121
where the w and w, are the nonfluid dynamic part of f and g respectively.

It is convenient to restrict the Boltzmann equation to the domain
Ry ={¢:1&|> N1 ¢ < N} (1.22)
and define the following functions:

1 if]|&] > N~'and €] < N,
XN = (1.23)

0 otherwise,

Yin = XNYi, (1.24)
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Py = Projection onto {¢;n, ¢ =0, ..., 4}. (1.25)

Then the cutoff collision operator can be defined readily:

LN :XN(I_PN>L(I_PN)XN :VXN+KN- (126)

Notice that, L shares the same properties which mentioned above as L. Besides that, K
is compact on L?(R%;) and the null space N (Ly) is spanned by ¢;n, i = 0, ..., 4. Similarly,

one can decompose f € L*(RY ) as f = w+qgwithw € N(Ly)* and ¢ € N(Ly), where

g = xn (@ + bi&y + boly + bsés + c€2) M2 (€). (1.27)

Also, we have the following properties:

[ toardezm [ it de (1.28)
RY R
[ 1iwglde<w [+ leDlupu,) de (1.29)
RY, RY,

for any f,g € L*(R%) with w; and w, correspond to f and g, respectively.
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Chapter 2 The Milne Problem

The Milne problem is to solve stationary linearized Boltzmann equation for 0 < x <
0o, with a given distribution g at x = 0 and f is required to be bounded at x = oco. In
[2], the Bardos, Caflisch and Nicolaenko has shown that this problem is well-posed if the
average mass flux m as defined in the previous chapter is specified. The proof for the

existence and uniqueness of the solution will be shown in this chapter.

We say distribution function f solves the Milne problem if it satisfies

£1£f+Lf:O, for0 < x < o0, 2.1
ox

=g forz =06 >0, 2.2)

/ QM de = my, (2.3)

Also, define the solution space D = {f : (1+[¢])2 f € L=(R}, L*(RY)), f, € L} (RE, L*(R}))},

loc

and assume that the function g satisfies

/5 0(1 +1€)7g? dé = Kg < 00. (2.4)
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Bardos, Calflisch and Nicolaenko have shown the following theorem in 1986 for the

hard sphere model (v = 1). [2]

Theorem 2.1. (Existence) [’] Let v = 1. For any my € R and any g satisfying (2.4),

there exists a solution f € D for the Milne problem (2.1)-(2.3).

Theorem 2.2. (Uniqueness) [’] Let v = 1. For a specified m; € R and a given g

satisfying (2.4), there is a unique solution f € D for the Milne problem (2.1)-(2.3).

Theorem 2.3. (Orthogonality and asymptotic properties) [’] Let v = 1. Suppose f € D
satisfies (2.1)-(2.3) with my € R and g satisfying (2.4). Write f = w + q as in chapter 1.

Then we have the following properties:

Orthogonality:
d 1
o [eartsac—o, @3)
d 1
dz / GEMfdE=0, i=1.23, 2:6)
d 1
5 [aearisac—o e

the first one implies that by = my, for all x.

Asymptotics:
im ¢ = (o + 117€1 + baoo + bynes + o€ M2, 28)

exists, with
’CLOO‘ + |b20<>| + |b300‘ + |C<><>| < K, (2.9)
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/(1 + [ENw? d€ 4 |a — aoe|* + |ba — baso|? + |b3 — b3 |* + |€ — Coo|* < k(1o — ) 2e**,
(2.10)
forany 0 < a < vy in which k = k(ky, my). Furthermore, for any 6 > 0 and any

0< o<y,

/oo /(1 + |&])e?* 2 déda < rs(vo — )2, (2.11)
4

where k5 = Ks(Kg, 0, m7).

We shall begin with the proof of Theorem 2.3 first. Following the argument by Bar-

dos, Caflisch and Nicolaenko [2], the proof is divided into four parts:

Proof. (a) Let f € D be the solution of the Milne problem (2.1)-(2.3). We multiply
the stationary linearized Boltzmann equation (2.1) by ¢; € N(L) and integrate both

sides with respect to £, we obtained

0
/Tﬂifl%f df%—/@bﬂf ¢ =0
% / Y&y f d€ + / (Laps) f dé =0 (- L is self-adjoint) (2.12)
d
+ [warag=o. ¢ veNw)

for: = 0,1,2,3,4. Thus, (2.5)-(2.7) follow immediately. To see the identity b; =

my¢, we observe that

[emds = [agarac—o

for i = 2, 3, 4 because we are integrating an odd function over a whole line. Then,

9 doi:10.6342/NTU202202294
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by using spherical coordinates, we have that

—a [wvodg by [uddg b [wds sy [vinds e [ d
:a/glM d§+b1/§fM d§+62/§1§2M d§+bg/§1§3M d§+c/§1§2M dé

1/ﬁM&

=b
=b

1-
Next, we subtract m ;& M2 from f and define

fi=f-mE Mz =w+q, (2.13)
where

w=wy=wy, (2.14)

~ 1
q=q5=qy —ms&M> 015

= (a -+ b + by + €)M 2.
Since my is a constant and &; M 2 = ¢y € N(L), direct computation shows that f

solves the Milne problem as well:

o - _
G- f+Lf=0, >0, (2.16)

f=g x=0, &>0, (2.17)

10 doi:10.6342/NTU202202294
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where § = g — ms&§ M 2. Furthermore,

JaripPae<e] [asinras [a+gmand] @
Clearly, f € D. From (2.15), we see that
/ &g dé =0, (. integrands are odd functions) (2.19)

for: =0, 2, 3, 4. Immediately we have,

/ &1q° d¢ = 0. (2.20)

By (2.12),

d
dr /%’flw d§ =0, (2.21)

for i = 0,2,3,4. To proceed, we multiply (2.16) by f and integrate the equation

with respect to £&. Then, by (1.20)
Y R
0= [y FFLia
1 d . -
— 5 [t aes [ Lia 222)

1d

> oo [a dern [+ g ae

Since f € D implies [ & f2 d¢ € L®(R}), integrating (2.22) with respect to =

over 0 to oo, we get

%flfQ(x =00) — %{1];2@ =0)+ 1/0/0 /(1 + |€w? dédx < 0. (2.23)

11 doi:10.6342/NTU202202294
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This implies,
/OO /(1 e deda < 0 —> /(1 et de € LRY).  (2.24)
0

Moreover,

| [ e del < ([ et a9 [ 2 ag!

— [T1[evwagt o< o0

(2.25)

— /flqw d¢ = 0.

Combining the results above, we have that
/&F d¢ = /&w2 de. (2.26)

(b) Continuing from (2.26), (2.22) can be reduced to

s [Evtdem [arightae <o — L [awrdc<o. @an

This shows that [ & w? d€ is decreasing and since itis in L' (R;), it must be converg-
ing to zero. Indeed, if the integral converges to some nontrivial constant, namely c,
then

/ &w? dédx > /c dr = oo. (2.28)

12 doi:10.6342/NTU202202294
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Further,

< [ e —07 ae
< / &1 f(x = 0)2 de

(2.29)
< &ig° d¢

£1>0

< &1g% dE +m3 M dE)

£1>0 £1>0
< Clkg +m}) = k.

Next, multiply (2.16) by e®* to obtain

0= flg%[eaxf] — &ae™ f + L[e* f]

_ éleaxf%[eazf] . £1a€2a1f~2 + eafo[eaxf]

~ 0 ~ ~ ~ ~
= / Ge fo-[e™ ] dg — / &ae®™® f2 dE + / e fL[e™" f] d¢ (2.30)
> %%/§162azf2 d{—aean/§1w2 d§+62ax/yo(1 + |£Dw2 dg

- %% /&ezwuﬂ de — > /(—a& + o1+ [¢]))w? de.

Now observe that, if 0 < o < 1

—a&y + (1 + [€]) = —alg] + r(1 +[£])
> —a(l+ [£]) + (1 + [€])
> (v —a)(1+[¢])

> 0.

This implies that
d
— /51620”%02 d¢ <O0.
dx
That is, [ &e**w? d¢ is decreasing and nonnegative for all =, we can integrate

13 doi:10.6342/NTU202202294
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(2.30) with respect to = over 0 to oo.

_%e%x /51w(x = 0)2 d€ + /Ooo/e2ax(—oz£1 + (1 + \5!))11}2 déds <0
/00/@20427(”0 — Oé)(l + |§|)w2 dng o
0

/oo /(ﬂo@(l + |f|)w2 dédx < (]/0 _ a)—l/{’
0 2.31)

where k = Kk(k,, my).

(c) We shall deduce the integrated decay of w,, first and then use it to obtain the point-
wise decay of w. Notice that, f, = f, and since K f, € L} (R}, L*(RY)), we have

loc

that (£,(2) +v) fo € L, (RS, L*(RY)) and therefore f, satisfies the equation

loc
O - _
i fe+ Lfe=0. (2.32)
ox

Since we do not have any information about the boundary conditions for f,, it can
be remedied by introducing a cutoff function ¢(x) € C°(R* U {0}) defined as

(

0, for0<z< %Y,
o) =91, forY <z<X, (2.33)

0, forX+1<z< 0.

\

Then, we observe the following, let g(x) = e*“*¢(x).

Next, we multiply the equation above by (¢pe®” f ). and integrate with respect to &,

14 doi:10.6342/NTU202202294
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we see that

LHS———/flgf d£+/(gf) L(gf). dé
> / &1(9f)% dE + vo / (1+ [€)) [ (guw)a]? de (2.34)
> 50 [aai? de+ —a) [+ leltgu).? de

while for the right hand side,

RHS — / (0F)al€1guef — 9oL f) de

< / (14 [€]) (gu)? dé) 3 / (1+ [€)e™u? d)b.

Integrate both sides with respect to « and using Holder’s inequality, we get

yo—a/ / 1+ [€])(gw)? déda
<x [ (/ (1+ Je]) (gu)? ) (/0m1+|§| szds)ldx
(/ | asinee: dfdx) ( [ [a+e QO‘Iwzdaczx) |

(2.36)

Therefore, by (2.31),

(v — @) // (14 [€])(gw)? d&d:c</<;(// 1+ €)) 2‘“w2d§dw>

< k(v —a)
/ / (14 [€])(e*pw)? dédr < k(vy — )3
/ / (1+ €N (e™w)3 dédr < k(g — ) >
/y /0 (1+[&)e”* w? dédr < k(vg — ).

(2.37)
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Since « here doesn’t depend on X, by taking the limit X — oo,

/ / (1 + |€))e** ™ w? dédr < k(vy — a) 2. (2.38)
v Jo
Now, we are ready to show the pointwise decay of w.

20X / (1+ [¢)w(X)? de

_ [ [a O (e guw)? dud
= [ | i e ony dve

=2 [ [l ou) e o), duds

<2(//1+|§\ £ )2 mg) (//1+|g| (¢9% )2 dxdg)

< k(v —a)?

Thus,

/(1 + [€)w(X)? dé < ke 2 (1y — )72, (2.39)

where k = Kk(k,, my).

(d) To show the behavior of § = (a+ba&s+bs&s+c€?) M 2 when z is large, we multiply
(2.16) by the vector =; = &(1, &, &3, fz)TM% and integrating with respect to £. Let

A = (a, by, b3, c)T, we have that

/fl&%fdﬁ—l—/ElLfdg:o

_ o d _ _d
/51:1—(1 d§+/:1Lw d§ = —/51:1—10 d§
dx dx

_d 1 — d —
/fldla(a + bobo + bs&s + €)M 2 dE + /:le d§ = I /51:110 d§

d d
Bl—A+/Ele df = ——
dx

= / 151w de,

(2.40)

16 doi:10.6342/NTU202202294
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where

B = / 1 (L, 6, &, )T dt

100 5
010 O
_0010’
5 0 0 35

which can be calculated easily by odd and even function properties.

Now observe that,

\ J=T dé‘ < [a+lehizilul

<(fa+ aP)é (fa~ |s|>w2)é 241)

< k(v —a) te ™,

Similarly,

‘ / = Lw dé‘ <u / (1+ |€D) s [l de

< (/(1 + |§|)|w51|2)é (/(1 + |g|)w2>% (2.42)

< k(v —a) te ™,

Therefore, these two terms will go to 0 as © — oo, this implies that %A — 0
as © — oo. To ensure the boundedness of (G0, b2so, D300, Coo ), it suffices to show
the bounededness of (a, b, b3, c) at = 0. Multiply (2.16) by the vector =, =
(1, &, &, {2)TM%, integrate with respect to &; > 0 and evaluate at x = 0, we have
that

/ q52d£+/ wEyde = [ fE,de
£§1>0 £1>0 £&1>0

(2.43)
BQA(ZL’ = O) = /6 0(9 - U})Eg df,

17 doi:10.6342/NTU202202294
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where

32:/52(1,52,53,§2> dé
1 0 0 3

010 O

Now, observe that,

=, dE < 1 Qd)z( 1 EQd)Q
/@0925 (/(Hﬂ)gé Ja+iezsae

1

<k ( Ja+iene d5)2 (2.44)

<k.

Similarly,

— =9 d. =| d
e i
< <1+|s|>w2d§)2( <1+|§|>E?d§)2
</ 1/ 2 (2.45)
Sk(/(1+|£\)w2dé>2

<k,

for some constant k. Hence, we conclude that
ByA(x =0) < k. (2.46)

This shows that A(x = 0) is bounded. Notice that, A is converging at the rate of

e~ which implies (2.10).

18 doi:10.6342/NTU202202294
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To prove the existence and uniqueness theorems, Bardos, Caflisch and Nicolaenko
[2] suggest that it is convenient to restrict the Boltzmann equation to the domain & € R3, =
{€:1&| > N71 €] < N} and x € [0, 1] with reflection boundary condition at the right

end z = [. So the problem now reads

5131‘ +Lyf=0 0<ux<lI, (2.47)
ox

f=g9 ©=0,6>0, (2.48)

f(517€2753) - f(_§1752753) z =1 (249)

where L is an operator restricted to R3; as defined earlier. Theorem 2.3 can be rephrased

as follows:

Proposition 2.1. (Orthogonality and asymptotic properties for finite interval) [’] Let |

and N be two positive constants and let
™ e L[0,1] x Ry}, (2.50)

be the solution of (2.47) - (2.49) with g € L*(RY;) satisfying (2.4). Decompose [N = w+q

as before with ¢ = xn(a+ b€y + b3&3 + cﬁz)M%. Then we have the following properties:
1
I R @)
R
there exist constants ag, bag, bsg, co with

|ao| + [bao| + [bao| + [co| < &, (2.52)

19 doi:10.6342/NTU202202294
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/(1—|—|£])w2 dé+]a—ag|* 4 |by—bag |2+ |bs —b3o|* +|c—co|* < k(v —a) 2e* ™, (2.53)

Jorany 0 < o < vy in which k depends only on k,. Furthermore, for any 0 < 0 < | and

any 0 < a < vy,

[
/ / (14 [€))e 2 deda < rs(vy — a) >, (2.54)
)

where k5 depends only on kg and 0. Notice that, kappa and k, are independent of |, N

and .

Proof. The proof is similar to that one in Theorem 2.3 with a few exception:

(1) Since f, = —& 'Ly f, f is smooth in R, thus, (1 + |¢])2 € L>=([0,1], L2(R3,)).

(2) Since we have the reflection boundary condition at z = [, both f and w are even
function at x = [. Therefore, the derivation of (2.25) and (2.26) can be replaced by

the following identities

/511/)111) d¢ =0, fori = 0,2,3,4, (2.55)

/§1w2 dé = /§1f2 dé¢ =0, atz = 1. (2.56)

(3) The values (aso, baoo, b300, Coo) May be replaced by (ag, bag, bso, o) Which are the

value evaluated at x = [.

Now, we will prove the existence theorem for the finite interval.

20 doi:10.6342/NTU202202294


http://dx.doi.org/10.6342/NTU202202294

Proposition 2.2. (Existence of solution for finite interval) [’] Let g satisfies the condition

(2.4) and |, N are two positive constants. Then, there exist a solution f = ' € L2(]0, ] x

R3;) for the problem
6 i Inf=0 0<a<l, (2.57)
ox
f=9g =08 >0, (2.58)
f(61,62,83) = f(=61,62,83) =1 (2.59)
my = 0. (2.60)

Decompose f'™N = w + q as before with ¢ = n(a + bs&s + bs&s + c€2)M=. Then, there

exist constants ag, bag, bsg, co with

’(Io| + |bgo’ + ’bgo’ + ’Co‘ <K, (261)

/(1—|—|§’)U}2 d§—|—’CL—CL0|2+|b2—b20|2+|b3—b30|2+‘0—00|2 S H(Vo—a)_262am, (262)

forany 0 < o < vy in which k = k(kg). Furthermore, for any 0 < 6 < | and any

0<a<u,

l
/ /(1 + |€))e* f2 déda < ks(vg — @) 7, (2.63)
1)

where k5 = Ks(g, ).
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Proof. Detine

0
Anv =& +— + Ly, (2.64)
ox
with the domain

D(AN) ={f: f,f. € L*([0,1] x R3,) with f =0 forz =0, & >0

and f(&1,82,&3) = f(—&1,62,83) for v =1},
(2.65)

We claim that 0 is in the resolvent set of Ay, so that by Fredholm alternative, we know that

for every h € L*([0,1] x R3;), there exist a unique solution f € D(Ay) for the equation
Anf = h. (2.66)
Indeed, suppose 0 is an eigenvalue of Ay and suppose
Anf =0, (2.67)

for some f € D(Ay). Then, we multiply the equation by f and integrating over &

ANf - O
fiaf+ Lnf =0
5 v (2.68)
[atgntaes [ fourds=o
1d
s | Grtde [ fLasac=o

Integrating over x again, and using the fact that the integrand in the first term is an odd
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function in &,

l
3 [ara@=na—3 [are-0d+ [ [0 )5
1 .

l
—= 2(x=0)d Lyf dédx = 0.
62 >§+/0/fo§9:

2 £1<0

Since,

[ Lt dezw [+ ighs de (2.70)

all the terms in L.H.S. of (2.68) are positive and this implies that each terms on the left

must be zero. Thus, we arrived at

flz=0)=0and Lyf =0
0

=& 9 f=0
L (2.71)
or”
= f=0.
Therefore, 0 is not an eigenvalue of Ay. As a consequence, the system
Anf =h, (2.72)

possessed a unique solution for A € L?([0,1] x R%,). Hence, the solution of (2.55) -
(2.57) can be constructed as f = f + ¢ - g where ¢ = ¢(x) is a smooth cutoff funtion

with ¢ = 1 for z < é, and ¢ = 0 for z > é f is the solution of Ay f = h, with
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h=—&db.g9 — dLng € L2([0,1] x RY;). Clearly,

Avf=An(f+ ¢ 9)

0 ~ 0
(51@ +Ln)f =ANf+ (fla—x +Ly)(¢-9)

= Axf +65-(6-0) + Ln(o-g)

2.73)
= Anf +&90, + dLng
=Anf—h
=0.

L]

Proposition 2.3. (Existence of solution for zero mass flux) [’] Let g satisfies the condition

(2.4). Then, there exist a solution f € D of the Milne problem with zero mass flux,

60 F VD=0, for0 <z < oo, (2.74)
ox

f =9, fOl"fIf = 0761 > 07 (275)

/&Méf d¢ = 0. (2.76)

With proposition 2.3, theorem 2.1 can be established immediately. Bardos, Caflisch
and Nicolaenko [2] found that one can simply construct the solution in the following way:
Let my # 0 and g satisfy (2.4) denote § = g — mfglM% and solve the zero mass flux
problem with this § to obtain f. Then f = f + m &M 2 will solves the Milne problem
(2.1)-(2.3).
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Proof. (Proposition 2.3) Let f'V solves (2.57) - (2.59) and define ¢} = xn(ag + baoéa +
bso&s + co€2)Mz. Clearly, by (2.60) - (2.63), the sequence ¢/, f' and fX are bounded
with bounds that does not depend on [ or N. Therefore, by taking [ — o0 and N.— o0

there exists a subsequence with

(1) 45" — goo in L*(RY),

2) fN — hweakly in L2, (R}, L*(RY)),

loc

(3) f'N — g — f — g weakly in L*(R} x RE).

Next, we will show h = f, and that f is the solution to the Milne problem (2.1) - (2.3).

Firstly, we regard the Boltzmann equation as a first order ODE in z and solve for f'V we

have that
N Gre” 5 g() — Jy e S Ky N (2 —y.€) dy, for & > 0,
glf (ZE, 5) -
_(—=)v _r _yv
Ge o fLO+ fy T a RN (e 4y, &) dy, for& <.
(2.77)
Similarly, we can solve &, f, + vf = —K f in an infinite strip
Ge 8 g(e) — [y e S K f(x =y, ) dy, for& >0,
&f(z,§) = (2.78)

(y—z)v

[Ze w K f(y.€)dy, for £ < 0.
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Plugging in the expression for f(l,£) we have

;

Gie G g(€) + [T e 9 Ky f™N(x —y,€) dy,

Jfor& >0,
flle(fL’, g) =

_ (=z)v

e A Ge agl@)+ e EEN N - y,€) dy

+f0l_$ 6_%KNle(x+y7€) dya ,fOI‘ 61 < Oa
(2.79)

where §~ = (=£&1,&,&3). Next, we subtract £;¢5" from both sides and using the fact that

Kyqy" = —vqy", we get

&(f"™ —ag")(2,€) Ifle_ﬁ(g—fJéN)(f)—/o e G Ky (N —q")(x—y,€) dy, (280)

for & > 0 and

_ (=2

lv ~. ! yv ~
GUN =) (@, &) =€ T {&e 5 (g— i) +/0 e S Kn(f™N — g1 -y, &) dy}

l—x
+/ e S Kn(f"™ —gf¥)(z +y.€) dy,
’ 2.81)

for & < 0. Now observe that, since |&]2(g — ¢iY) € L*(RY), Ky — K, f'N — ¢V —

f— Qoos %1 is finite, and both K and Ky are compact, (2.80) converges to

yv

lim fl(le—QéN)(x,€)=§16g(g—qoo)(f)—/o e STK(f — goo)(x—y, &) dy

[,N—o0

= flf_gl%oa
(2.82)
and (2.81) converges to
- IN _ N e
Jim &0 w6 = [ EIR - a0 dy
e @ (2.83)

- glf - 51%0
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This shows that the convergence is in L°(R;, L*(R?)) and thus, f € L>=(R}, L*(RR}))

by the uniform boundedness of f'V.

Next, we show fLN converges to h = f,. First, we introduce a smooth cutoff function
to avoid the boundary values. Let ¢(z) be a smooth cutoff function such that

(

0, for0<uz<3Y,
o) =91, forY <z < X, (2.84)

0, forX+1<z< .

\

Then, let X + 1 < [, (¢ f1), satisfies

51%(¢f”\7)x + LN(¢le)x = 51(@5:03[:le + 2¢:cfgl;N + ¢ j;];[) + ¢xLNle + QZSLNfglCN,
— E10ua ™ = 20, L ™ — SLnf™N + du Ly N + oL fIN,

= 51@5:01‘le - gszNlea
(2.85)

with the boundary conditions
(pf™M), =0forz =0, & >0andforz =1, & < 0. (2.86)

We can solve this equation in the similar fashion to obtain

S RN (0F ™)+ urbafN — GuLnfN] dy, € >0,

Joe

JLe T (K (6N ), — brala N + 6L fN] dy, & < 0.
(2.87)

51 (¢le)x =

Now, recall that (¢ '), converges weakly, Ky — K and K is compact, both &; 'V and

Ky f™ converge. Therefore, every term in (2.87) behave nicely except for the term v f!V
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from Ly f'V. To remedy the problem, we multiply (2.87) by &v~t. Then

[T e TE Ky (6™ s + bu fN — $u Ly Y] dy, & > 0,

(o), =
Ev [le BT K (0f™)a — buabr fN + bl fN] dy, & < 0,

_(z—y)v

v fo 8 [~K(0f)e + Guclsf — G Lf] dy, & >0,

*fewﬂ K(6f)s — bualif + 0uLf] dy, & <0,

=& (o)
(2.88)

This shows that 7! fIV converges to &2v! f, in L7 |

(R}, L? (Rg’)) and as a result f, =

h € Lj, (RE, L*(R})). This concludes our proof. O

Finally, we turn our attention on the uniqueness theorem.

Proof. (Uniqueness) Suppose we have two solutions f; and f5 to the Milne problem (2.1)

- (2.3) with same boundary data g at + = 0 and mass flux m¢. Let h = f; — f5. Clearly,

we have
0
& —h+ Lh =0, forz > 0, (2.89)
ox
h=0forz=0, & >0, (2.90)
my, = 0. (2.91)

Decompose h like what we did before, h = w(z, &) + ¢(z, &) + ¢oo(€) and assume that
iMoo h = Qoo = (Goe + baoola + bsocls + Coo€?)M3, Where § = q — goo. Since
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by = my, = 0, we have

e de= [ de= [ane =0 (2.92)

since every integrand above are odd functions in &;. Also, since ¢, € N(L) and Lh €

N(L)*, multiply (2.89) by ¢, and integrate over &

d
— /&qooh d§ + /qooLh d§ =0,
dx

] (2.93)
= [ b dc~o.
xr
This shows that the integral is a constant. Furthermore,
tim [ g d = [ €ia2 dé =0, (2.94)
Tr—r00
Thus,
0= [ uahds = [ Gug.w de (2.95)
After that,at z = 0
[atw+ards= [an-a e
~ [anac-2 [ahgadc+ [ad i
(2.96)

= &ih? d¢

£1<0

<0.
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On the other hand,

& hih—o
ox

0
&S—(w+q§)+ Lw=0

ox
0
&G(w+q)5-(w+q) + (w+q) Lw =0
f1/(w+q~)%(w+d) dg+/(w+q)Lw A€ =0 (2.97)

d
%/51(w+cj)2d§:—/wLwd§
< [ (L leu? dg
<0.

Since [ & (w+¢)* hasalimit 0 atz — 0o, (2.96) and (2.97) implies that [ & (w+¢)* =0

for all z. Therefore, (2.97) shows that

d
0:5/61(w+6)2 d¢ < —uo/(1+]§\)w2 d¢ <0, (2.98)
this implies w = 0. Furthermore,

B
§im—(w+q)+ Lw =0
e T (2.99)

J .

So, ¢ is a constant and since lim,_,, § = ¢, this implies that § = ¢.,. Hence, at x = 0

h:w+g+qoo
0= 0+ o + (2.100)
QOO:O7

and this is true for all x. Thus, h = 0 for all . The proof for the uniqueness theorem is

now complete. O
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Chapter 3 The Kramers Problem

The Kramers problem is similar to the Milne problem. However, this time we allowed
the distribution to grows linearly at + = oo. This time, if the average mass flux my,
asymptotic gradient for velocity in both x5 and x5 direction, and temperature are specified,

then we will have the existence and uniqueness theorem. [2]

We say f is the solution of the Kramers problem if

§1£f+Lf:0, 0 <z < o0, (3.1)
ox
f=g. r=0.6>0, (32
/ QM dg = my, (3.3)
Jim / EME [ dé = vy, (3.4)
Jim / &MY [ dé = vy, (3.5)
_d1l .
JE&@g/(g _3)MEfdE = 0. (3.6)

Following Bardos, Caflisch and Nicolaenko’s [2] idea, one can expect for the solution
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that behaves like fy + = f; near x = co with f and f; depend only on £. Clearly,

)
£1£f+Lf:0
Sfi+ L(fo+af)=0 (3.7)

§ifi+ Lfo+xLfi =0.

Equating the coefficients of = to zero, we have

Lfi =0, (3.8)

Lfo=—-&f1. (3.9)

From previous section, we know that f; € N(L) implies fi; = (a + b1&1 + ba&o + b3&3 +
cfQ)M%. By multiplying (3.9) with ¢; for ¢ = 0, ...,4 as defined in (1.8) - (1.10) and

integrate over &, we see that [ 1,1 fi d€ = 0. Now observe that,

[ wnaside =0
Q/%&w+h&+@&+@@+@%M%@:o

[0+ b6+ + s 4 e d =0 (3.10)
M/ﬁM%:O

by = 0.
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Also,
/¢£Jﬂ%=0

/wﬁ“a+%&+ﬁﬁy+¢%wﬁd§=o
/5%@ + bao + bsés + €)M dE = 0
a/2m4%+c/§§Mds=o

a+5c=0

a = —bc.

Furthermore,
n=lin g [ ety d
= tim [[ertiag
— [y i
_ /gz(a oy + babs + €2)M dE

=@/£M&
= b,.

33
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Similarly, we can show that v3 = b3, and

.od1 1
o= lim g [ € - 9asae
—1/(52—3)(a+b§ + bs&s + c€*)M dE
- 3 282 363
— 5 [ (€= 3)(5e o) g
_¢ _ _ 3.13
— ¢ (@9 s (.13)

:%(/§4Md§—8/§2Md§+15/Md£)
:%(15—8(3)+15(1))

= 2c.

Therefore, f; takes the form

N[

fi= U2§2+U3§3+g(§2_5) Mx=. (3.14)

and the equation L f, = —&; f; has a unique solution f, € N(L):. Now, we are all set to
define the solution space for Kramers problem. The solution space takes the form D) =
{f:f—afi €D, fi = [v2&s+v3& + 4(¢ —5)] Mz}. Similar to the Milne prob-
lem, we have the following existence, uniqueness and asymptotic properties for Kramers

problem.

Theorem 3.1. (Existence) [] Let v = 1. For any my, vs, v3, 0 € R and any g satisfying

(2.4), there exist a solution f € Dy, for the Kramers problem (3.1)-(3.6).

Theorem 3.2. (Uniqueness) [’] Let v = 1. For a specified my, vo, vs, 0 € R and a

given g satisfying (2.4), there exist a unique solution [ € Dy, for the Kramers problem
(3.1)-(3.6).

Theorem 3.3. (Orthogonality and asymptotic properties) [’] Let v = 1. Suppose f € D,

34 doi:10.6342/NTU202202294


http://dx.doi.org/10.6342/NTU202202294

satisfies (3.1)-(3.6) withmy, vs, v3, 0 € Rand g satisfying (2.4). Write f(x,£) = (= &)+
x f1(§) where f1(€) = [v2&s + v3&s + £(€2 — 5)] M. Then f satisfies (2.5) - (2.7) while

fsatisﬁes (2.8) - (2.11).

Remark 3.1. We have shown the existence, uniqueness and the asymptotic behaviour for
the hard-sphere model case. However, the technique used in proving the existence and
uniqueness theorem may not work for other cases (—3 < v < 1) as the term % is not
bounded anymore. Therefore, Golse and Poupaud modified the technique and used an

suitable truncation to tackle the problem [10]. The detailed proof can be found in [10].
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Chapter 4 Boundary singularity

In this section, we shall discuss the boundary singularity of the gradient of macro-

scopic variables. Consider the following stationary linearized Boltzmann equation:
0 3
gla_xf(x7€>+Lf(x7£)zoa f01'0<33’<l, gGR ) (41)
with given boundary data:

f(0,&), given for & > 0, 4.2)

f(l,€), givenfor & <O0. 4.3)

Before we define the solution space for this problem, we first introduce the following

definitions:

Il = sup 1+ el (E). (4.4)
T ( [ reme d5)2 , 4.5)
17 = sup 1£1l. (4.6)

0<z<l
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and the space

LeR?) = {f : [Ifll < oo} (4.7)

Now, we say that f € Ly°{[0,1], L(R?)} is a solution to the problem (4.1) - (4.3) if it

satisfies

6_%][.(075) - foz Fme_%[(f(yag) dya for 61 > 07
f(x,6) = (48)

(=)

(y—z)v
e T f(LE) + [1ZqeT K f(y,§) dy, for& <0,

which can be obtained by considering the equation (4.1) as a first order ODE in variable
x. Notice that, the solution takes different form for different value of &;. Indeed, & < 0
means the particle is moving to the left, so we can see the right end as the starting point.
Also, we can easily see that L°{[0, ], LZ(R?)} contains the solution space we discussed

for Milne and Kramers problem. Indeed, by using (1.13)

/ (14 [l de < / v f d. (4.9)

Now, we define -moment.

ola) = [ F(.&)00(6) de. (4.10)
where
a=(a,az,a3), a; >0 4.11)
and,
Bal€) = £°M3 = (2m)tepgsggre (4.12)
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For different choices of «, this function will give us a different macroscopic variable.
For instance, as what we have shown in chapter 2, p = 09,00 depicted the density, while
U1 = 0(1,0,0) is the velocity in z;-direction and T’ = %(0(270,0) +0(0,2,0) + 7(0,0,2)) = F(0,0,0)
is the temperature. In 2015, Chen and Hsia derived a formula to calculated the derivative
of this moment function for hard potential case (0 < v < 1) [7]. Later, Huang extended

the result to soft potential case (—% < v < 0)[11]. We summarize their results as follow:

Theorem 4.1. [//] Consider the stationary linearized Boltzmann equation with cutoff
(assuming (1.3) and (1.4)) and v € (—3,1]. Let f € LY{[0,1], L{(R®)} be a solution to

the problem (4.1) - (4.3) such that

V£, e Lg(R‘%), for some p € (1,00), (4.13)
f(0,8) € LE(R*), (4.14)
f(1,€) € LE(RP), (4.15)

then for small x > 0, we have the formula

seoale) = =i [ [ 6,2)(0,6 €)LF (@ = 0,0% 0.8) déadés + O(U1)), (410
where
Lf(z=0,0%,&,&) = glli_?(}+ Lf(x=0,£&,&,&), (4.17)

(f) =T+, Mg sy + 1) g @) + VIO, )l zmas),

(4.18)
R* .= {¢ € R*: & > 0}, (4.19)
R* = {¢ €R*: & < 0} (4.20)
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This singularity was first discovered by Sone [ 16],[ 1 7], and Sone and Onishi [ 1 8],[ | 3].
Later, the logarithmic singularity was presented by Chen, Liu and Takata [¢] for the deriva-
tive of flow velocity. Another way to interpret this result is the macroscopic variables

behave like —z In = and approaching to zero near x = 0.

Since,

0
0)= [ oyt i @21
X
to derives the formula (4.16), we first differentiate the solution (4.8) to obtain

0

5 d (06 = —11¢ 0.6 |§1| Kf(x.6) + / Bt K8 dy 422)

Observe that, when x = 0, the first term will not be integrable in £ since it has a singularity

at £&; = 0. To remedy this issue, authors in [ 7] utilized the identity

T ey _ v
/ e el dy |£1| < —e I€1I>7 (423)
0

to rewrite the equation (4.22) so that the problematic term — @l will be associated with the

6

integral operator which can helps to improve the regularity. Therefore,

S @8) = e FILF0,.6) = e HIK f(0,6) = KF(0.6)

/x v
— —e 1
o &

K f(w,€) — Kf(y,€)] dy, (4.24)

for & > 0. Similarly, for & < 0

5o @8 = e T LA + e B UKL~ Kf(0.6)
! z—y
e K. K S 6) dy. @429
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Thus, both the second and the third terms can be treated by the Lipschitz-type continuity of
the operator K, and it can be showed that both of them are uniformly bounded. Therefore,
the logarithmic singularity we have concerned about is actually contributed by the first
term. Before we derive the logarithmic singularity, let us adopt the following crucial

estimates regarding the collision operator.

Lemma4.1. [7], [1]] Let =3 < v < 1, and a > 0, then we have the following estimate

on the operator K

[ K (f)lpooarz— < Copyll fllpoee. (4.26)
Furthermore, if —% < v <1, then we can improve the estimate

IO g < Coll fllz2, (4.27)

K oz-3 < Cyllfll2e- (4.28)

Lemma4.2. [7], [1]] Let =2 < v < 1, and q € [1,00]. Then we have the bound

IVeK (fllze < Conllfll o (4.29)

Lemma 4.3. [7], [/1]] Let =% < v < 1. Suppose f € L2{[0,1], LE(R?)} is the solution

to (4.1) and that L satisfying (1.11), (1.13) and (4.24) - (4.27) such that

f(0,€) € LE(R*), (4.30)

f(1,€) € LE(RY). (4.31)
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Then we have

'/ e ﬁlLf0£d€’<Cm(\1nx|+ DU,
£1>0 |§1

\ / 0 %Ee K (2, €) — KF(0,6) dfléCaMf)’,

L] R

where

(A= WA+ 1O, Mzge@oey + 1)l zgees--

(2,6) — K f(y,€)] dyd€’<0a»yf>

(4.32)

(4.33)

(4.34)

(4.35)

A few remarks on the result above are as follow. Lemma 4.1 is crucial in proving

the theorem 4.1 as well as Lemma 4.3. The proof for theorem 4.1 and Lemma 4.3 are

identical for both cases, —% < v < 0and 0 <~ < 1 with an exception that (4.28) has to

be adopted for —% < v < 0. For the case when 0 < v < 1, we do not need the estimation

(4.28) since we have the inclusion L* C L?, however, the inclusion might not be true for

the case —% < v < 0. The advantage of the estimations (4.27) and (4.28) allowed us to

replace the collision term with a reciprocal function which can be further improved by a

Gaussian functions.

(/)

3_7
||L007§—7

(1+ €D 2K (f) <

3
2

K(f) <C,(1+¢))2 2| f

L*
le?
< C,e* || f|lp+, foranyk > 0.
Therefore,
_le? _le?
K(f)em®» <C,e ®1|f|p-, foranyk > 0.

(4.36)

(4.37)
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However, this formula is only valid for —% < v < 1. As we have mentioned, (4.28) plays
an important role of improving the results to soft potential case. The proof of Lemma 4.1
relies mainly on the pointwise estimate of kernel k; and k; which appear in the operator

K,

K(UEQ) = [ Me615(€) d = [ hle.&) ~ hle L)FE€) de @38)

The explicit form of the kernels can be found in [11] appendix A, and then using the

formulas we will arrive at the following lemmas.

Lemma4.4. [/]/] Let —3 < v < 1. We have

2
1 1e12—1€x 12 1 2
(L) e

(14 [€] + &) w(]E — &), (4.39)

and

(122N, e
|£k1(f>f>«)’ <C L+ |¢] e 16( = ) 15 l€—&x]

(L+[gl+16) " w(E =& 1), (4.40)

o3 1€ — &
where
( (
ﬂ+1X{0<t<§} + Xq>1y O, ify < -1,
w(t) = |lnt’X{0<t<%} + X{tz%}ﬂ S t—0.05 + 1’ lf‘,y — _17 (441)
1, 1, if —1<~y< 1.
\ \

Lemma4.5. [//] Let —3 < v < 1. We have

2
1 (1621412 1 2
—E(ﬁ) ~1l6=&

|€_§*‘

e

|k2(€,8:) < C (1+ €]+ &) (€ = &), (4.42)
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and

2
ot le -H (et

“E-er ) e ) )

| ka (&, 6] <

23

where w as defined in Lemma 4.4.

Thus, using these two lemmas we can conclude that

2, 12
6,%(@‘&75*‘\ =&l

|§_§*|

k(€ &)] < (1+[€] + 1€0) w(l€ — &1). (4.44)

The challenging part of this problem is that to improves the result beyond —% we will
need to improve the bound on the kernels, because the best the (4.44) could gives us is
the estimate in Lemma 4.1. Another approach to this problem is to improve the result by

Caflish in 1980, which states the following.

Lemma 4.6. /9] Let d > 3 and —oo < 7 < d. Then for any ¢y, ca > 0, we have

1 % —co|€—&4|? 1
L= 0 < CreaL )7 (349
R *

Since we are dealing with R?, the reason why v > —% is the best we can obtain so

far is because whenever we want to isolate the term

| 1e2—g?
1 A =

g

2
—c _ 12
21€ f|’ (4.46)

in an integral, we need to apply Holder inequality for p = ¢ = 2 and in turn doubled the

exponents.

Now, we run through again the calculations by Chen and Hsia [7] as well as Huang
[11] to extract the logarithmic singularity. Firstly, rewrite the theorem 4.1 for & > 0 (the
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case & < 0 can be treated similarly).

Lemma 4.7. [//] Consider the stationary linearized Boltzmann equation with cutoff (as-
suming (1.3) and (1.4)) and v € (—3,1]. Let f € Ly{[0,1], L{(R*)} be a solution to the

problem (4.1) - (4.3) such that

Vef(0,6) € LE(R‘%), for some p € (1,00), (4.47)
£(0,€) € LE(R®), (4.48)
f(1,€) € LE(R*). (4.49)

Then for small x > 0, we have the formula

st == na [ [ u(@)(0.6 @)L = 0,07 6. &) déadéa + O((1)) (450

where

Lf(x = 070+7£27§3) = 5}2%+ Lf(l' = 0751762753)7 (451)
oa(x) = i Of(l”&)%(é) dg (4.52)

Proof. First we change everything into spherical coordinates

§=(£1,€2,83) = (pcos g, psinfsinp, pcosfsinp), (4.53)

then we have

%) Y S T 7S ,
sooi@) = [ [ [T R L0660 6)0u(O)sin g didsdp. (454)
z o Jo Jo PCOSY
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To simplify further, we let z = cos ¢, then

a o] 2T 1 1 o
—o, () = —e = Lf(0,&1,&,83)0a(&)p dzdbdp
o " / / / (4.55)
/ / (/ Ze = F(p,z,0) dz) e~z p dbdp,
where
F(p,z,0) = LF(0,&1, 6, €)E%(2m) 1. (4.56)

Here, Chen and Hsia [ 7] suggest that the inner most integral of (4.55) can be handled with

the following lemma.

Lemma 4.8. Define the exponential integral

1y,
E(x) ::/ —-e = dz.
0

z

As ¥ — 0T, we have the following asymptotic formula

k+1 k

Ei(x)=-" - lnx+z k: o

(4.57)

— —Inz +O(1), (4.58)

where Y is called the Euler-Mascheroni constant. Clearly, if 0 < 6 < z, then F,(z) < Cj,

since it is a decreasing function.

Now observe that, if we let

1
U

G(z,x) ::/ —e i du,
1

46

(4.59)
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the inner most integral of (4.55) becomes

1 1
/ 1e_gr%F(,o,z,Q) dz = / (;G(z,x)> F(p,z0)dz
0~ 0 \9% 1 ) (4.60)
v
= F,(=—4)F — —F ¢
(EF(.00) - [ 6o (5 (00)) a
Thus, we obtained two integrals
-9*@3—1+H (4.61)
5500 (@) = : :
where
0o 27 Ty 2
I:—/ Ei(—)F(p,0,0)e” = p didp, (4.62)
0

0 p
o0 27 1 a pg
17 ::/ / / G(z,x) (—F(p,z,@)) dze™ 2 p dfdp. (4.63)
o Jo Jo 9z

Since the first term has a singular point at p = 0, we will split the integral into two parts,
namely, /; and I which has the domain of p of (0, pg) and (po, 00), respectively. Also, po

1s defined as

po = po(x) := sup {p : %}p) > 1} . (4.64)

po exists since z is held fixed and v(p) is a bounded function. Clearly, for 0 < p < pg

ey syt (4.65)
p 41
On the other hand, for p > py we have
"o, <y, (4.66)
p
Notice that, since for p < po, Ye) y- s uniformly bounded from below and the bound is

p
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independent of x, we shall expect the singularity comes from /.

Now, we turn out attention to /5. By lemma 4.8

) 2m Ty 2
fzz/ / E\(—)F(p,0,0)e” = p didp
po YO P
00 2 2
e [ [ 0.0 pdsdp+ O
PO 0

e 27 2 PO 27 2
= —lna:/ / F(p,0,0)e”%p dep+lnx/ / F(p,0,0)e™% p dodp + O((f)).
0 0 0 0

(4.67)
Here, the second integral is bounded, because
PO 27 2
/ / F(p,0,0)e” 2 p deP‘
0o Jo
po 2w 2
< / / [F'(p,0,0)|e” = p dbdp
o Jo
PO 2 2
= Ca/ / PAHL(f)(p, 0,0)|e™ 5 dbdp
o Jo
Po 2m . 2
< Ca/ / p* v (p) f(p,0,0) + |K(f)(p, 0,0)|e” 5 dfdp
0 J0 (4.68)

VAN

PO 2m ¥ _ 3 o2
Co [* [ 5 [+ P00 + (1 ) AN e oo
0 0

po (2m o
<cul) [ [ e avap
0 0

>/0po /027T dfdp
)

S Ca<f £o-

< Colf

Therefore, from (4.67),

[ 2 2
I = —lnx/ / F(p,0,0)e™7 p dfdp + O((f)(1+ po| Inx))
0 0

_ m/ / 600, €0, &) Lf (1 = 0,07, &0, &) déads + O(LF)(1 + po| Inz)).
wE (4.69)
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Now, observe that for —3 < v <0,

Vv

1
2 i
L po S .

Similarly, for 0 < v < 1, then

< n(l+ 10())71.

£o

(By definition of py),

(By (1.13)),

(By definition of py),

(By (1.13)).

(4.70)

4.71)

Since this inequality is true for all 0 < v < 1, we can pick v = 0, so we have

%L

Thus, for small x,

po|Inz| < mzxllnz| < C.

Hence,

(4.72)

(4.73)

IQ = — lnlL’/HQ/HQQba(O,gg,fg)Lf(i’ = O, 0+, 52,53) d§2d§3 + O(<f>) (474)

For the remaining integrals, we will show that their contribution is of order O((f)).
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Firstly, by lemma 4.8 and similar calculation as presented in (4.68)

0 27 Ty 7£
I = Ei(—)F(p,0,0)e” = p dodp
0

0 P
o] 2 2
< / |[F(p,0,0)]e” 2 pdbdp (4.75)
0 0
)

J
C(f).

< C(

To estimate /1, we need the close form of %F . Clearly,

W

9 pp.2.0) = %Lf((lﬁ)éa(%)

0z
= (2m) i) g€ F0.6) + (2m) DK f0.6)  4T6)
= (2m) (o) an(€) + (2m) 4D gn(6),
where
91(§) = £71(0,¢), (4.77)
92(§) =K f(0,€). (4.78)

Therefore, we separate /[ into two integrals, namely, //; and I /5.

oo r2m ol 3 0 02
1, —/0 /0 /0 G(z,x) ((2#)_4V(p)ag1(§)> dz e” 2 pdfdp, (4.79)

00 2 1 3 a 2
112:/0 /0 /0 G(z,x) ((27r) 4&92(6)) dz e~ = p dfdp. (4.80)

It is clear that |G(z, z)| < |Inz|, and

0 0 Pz ., 0 Pz 0
82 pa—& \/1—_722511106—62 \/1—_722(30808—53, (481)
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then we have

0 2y
8_5391(5)’) dze” 5 p° dfdp

z

oo 9 K
S/O /O /01an| <’8_§191(£)‘+ T 3_52g1(§)‘+—’—1—z2

< [ (Jgzn@] +|pzmte]) e Fierac+ [° [ el

2
—ag1( )‘ dz =5 p? dodp

06,
=: 111 + I 115.
(4.82)
By the definition of ¢; () and product rule, we see that
m<c, [ (o] [Foo] v ool «
< Cap (IVef (0, )llzzeoey + 1£(0,6)llzpeosy) (4.83)

< Cap(f)-

The last inequality can be manipulated by Holder’s inequality. On the other hand, apply

Holder’s inequality again

[ [ [
<[ [ maes |
< (/Oo /2ﬂ/1|1nz|p’e—”'§2 dzdedp) (
<ca,,[/ /2/ (’a& 0.6) +1£0, §)|) — dzd@dp]

< Cay (IVe/ (0. gass) + 1F(0,€)llzze)

2
)‘ dz e 5 p* dodp

e 5 dzdfdp

_91

o edbdy)
96, P )

< Cop(f)-
(4.84)

51 doi:10.6342/NTU202202294


http://dx.doi.org/10.6342/NTU202202294

Similarly, we separate I/, into two integrals.

0 0 \5|
11, < /g ('a—&gxg)\ s ’%92( ) ) e de

L

08

= 1121 + 1122.

By the definition of g,(£) and product rule, we see that

1| < C. /5 K FO0.9]+ Ve F(0.6) e e de

\EI

C, 373 £(0, )| e )| ) e |2
<Cu | (O IDI B0+ 150,00z ) e ¥ el de
< Ca (10,6 l; + 170,612z )

< Ca(/f).

The second inequality follows from lemma 4.1 and lemma 4.2. Finally,

[ [ [l
s/ /QW/ llnz]e’%
( / / / (0 [P e~ dzded,o) (
<CQPU /%/ (’a&KfOQ +|Kf(0,§)|> - dzd@dp}

< Gy (0.1 + 170l )

2
)‘ dz e 5 p* dodp

—g2<£> e dzdfdp

551

P

< Coap(f)-

To sum up, we have

111 < Cap(f)-

—92 )' dz e 5 p? dodp  (4.85)

(4.86)

1
P

dzd@dp)

(4.87)

(4.88)
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As the proof shows, all the calculations are valid for all —3 < v < 1 except for the
parts where we need to employ the lemma 4.1 and lemma 4.2. The proof also shows that to
obtain po(x) < 14z asin (4.70) and (4.72), the idea in [ 7] can also be carried out instead of

the small adjustment by [11], although, both technique can be adopted interchangeably.
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Chapter S Conclusion and Challenges

In this survey, we revised the existence and uniqueness theorem of the infamous
Milne and Kramers problem. The proof provided by Bardos, Calflisch and Nicolaenko
[2] was carried out for the case v = 1. For the hard and soft potential model, we can refer
to the work by Golse and Poupaud [10]. Therefore, the existence and uniqueness theorem

is completed for both Milne and Kramers problems for finite interval.

On the other hand, more work has to be done to establish the formula of the derivative
of moment function for soft potential model. Although Huang’s astonishingidea[]1]have
extended the result to —% < v < 1,thecase —3 < v < —% 1s still remain unknown to us.
There are several approaches which has a high potential of tackling the problem. We can
improve the pointwise estimate for the kernels k; and ks or the estimate in lemma 4.6 by

Caflish [9] or improving Lemma 4.6 by Caflish [9] as mentioned earlier.
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