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Abstract

There are two parts in this paper. Part 1is concerned with the travelling wave
solutions for reaction-diffusion-advection equations uy—Au+g(x, y)-Veu = flu).
We consider periodic advection g(2,y) and combustion, monostable nonlinear
reaction term f. We mainly survey the results of existence, unigueness, and
monotonicity of pulsating waves from the paper by Berestyeki and Hamel [1].
Part Il deals with exact travelling wave solutions of competitive Lotka-Volterra
systems ol three species.

Keywords: pulsaling travelling wave, reaction-diffusion-advection equations,

combustion, periodic, exact solutions, Lotka-Volterra systems
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Chapter 1

Introduction

Consider the following reaction-diffusion-advection equation:

u, — O g, y) - Vj;{‘;i,lt = (), ()8R xXT

g_z =0, | i :-’, | (t4e, ) ER x 0%
| | m !

where ¥ = {(z,y) € R x 0}, Whosc;cfoss section] 0 ¢ R*: 18 a bounded, smooth and

connected open set; v = v(zy) =iv(y) 18 the Gutward unit normal to 0X = R x 9.
We assume that the nonlinearity f is of class 2 [0,1] . There are various types of f.

For example,
o KPP type (monostable type): 0 < f(u) < 1in (0,1), £(0) = f(1) =0, f(0) > 0,
e.g. f(u) =u(l —u).
e Bistable type: f(u) < 0in (0,6), f(u) > 0in (6,1),
eg fu)=u(l—u)(u—0),0<L
e Combustion type: f(u) =0 in [0,6], f(u) > 0in (8,1), f(1) = 0.

Throught this paper, we only consider the combustion and monostabel type.
The velocity field ¢(x,y) = (¢1(x,y), ¢2(2,y), ..., ¢u(z,y)) is assumed to be of class

C? and satisfies the assumptions: there exists some L > 0 such that

2



(

divg=20 mx
V(z,y) €S, q(z+ L,y) =q(z,y)
V(z.y) €, [ioryxq@(@,y)drdy =0

q-v=20 on 0%

\

The second assertion in (1.2) means that ¢ is L-periodic in the z-variable.
We are interested in travelling wave solutions of (1.1), namely, the pulsating travel-

ling wave.

(el PLEEE T
Definition 1.1. A pulsating s(valve p{og)agatmg{wﬁh the speed ¢ # 0 is a classical

==

solution u € C? (R x X) Z’i &frl

e - 1 :
ultecyy)=i1 "

uinformly with respect to y.

To sum up, a pulsating wave of (1.1) is a solution of the problem

—Au+q(z,y) - Vyyu= f(u), (t,z,y) eRxX
Gu — 0, (t,z,y) € R x 0%
Tu(t+ £ 2,y) =ult,z+ L,y), (t,x,y) ERXx X (1.3)
u(t, —o00,y) = 0, (t,y) e Rx Q
ku(zf,oo,y)zl, (t,y) e R x Q



In the case of combustion type nonlinearity, Berestycki and Hamel [1] proved the

following results:

Theorem 1.2. Let q be a velocity field satisfying (1.2). Then there erists a unique
classical solution (c,u) of (1.3) with combustion type. The function u is increasing in t

and unique up to translation in t. Moreover, ¢ > 0 and 0 < u < 1.

We will prove the properties of the pulsating travelling wave solutions and sketch
the proof of existence in Chapter 2.

If nonlinear reaction term f is monostable type, we have the results as follows:

Theorem 1.3. Let q be a velocity field satisfying (1:2). and nonlinear reaction term f

1s monostable type. Then there eriststa ¢ > 0 swel~that

there exists a classicdl golwtond (¢ k) of (1.3), if ¢ > c¢*
there is no classical s()l)htiom (c, uj) of (NS, if e<c”.

Moreover, the solution u s in_creasiifzg' in t and O § ff <Xrifie > c*.

We will sketch the proof of existence in .Chapter 3.



Chapter 2

Proof of Theorem 1.2

In this chapter, we prove thei!Theorem*1:2. First, we prove the positivity of the speed
c in section 2.1. Next, we prove thi€nhiqueness Gf the speed ¢ and monotonicity of the
solution u in section 2.2. Flnall\ we sketch the proof of the existence of the solution

in section 2.3.
We make the same change' of \flimblcg s 9(111 6], Define u(t,z,y) = ¢(s,z,y),

where s = x 4 ct. The problem 1 2] s eqmvalel t to

(¢ss + Gsw + us + Dayd — (01(7,y) +¢) 95 —q(x,y) - Vioyd + f(¢) =0, inRxX
¢s1 + Ve - v =0, onR x 0%
o(s,x,y) = (s, z + L,y), inRx %
¢(—00,z,y) =0

| #(o0,z,y) =1

(2.1)

where ¢(z,y) = (a1(2,), 4(z,9)), @(z,y) = (@2(,9), .., ¢a(z,y)) € R"™ and v is the

first component of v. Note that the equation in (2.1) is the degenerate elliptic equation.



For simplicity, define the operator

‘Cgb = Qbss + d)sx + ¢ms + Aft,yd) - (ql(xa y) + C) ¢S - q(:v, y) ’ vx,y¢- (22)

2.1 Positivity of the Speed

Theorem 2.1. Suppose that (c,u) is a classical solution of (1.3). Then we have ¢ > 0.

Proof.

—/ q-V$,y¢dsdxdy+/ f(¢) ds dx dy = 0.
(—a,a)x(0,L)xQ

(—a,a)x(0,L)x

Here we have used integration by parts and the boudary condition in (2.1). Since the

assumption of the velocity field ¢ and limiting condition, one obtains that

/ q-Vgyodsdrdy=0
(—a,a)x(0,L)xQ



and

/ Q1(l’7y) [¢(a7xay)_¢(_a7x7y)] dxdy:()
(0,L)xQ2

as a — 00. Lastly, since V,,,¢0 — 0 as s — £o00, we have

cL|Q| = / f (@) dsdx dy
Rx(0,L)x

as a — 0o. Then ¢ > 0 because fo(o L)xQ f(®) ds dx dy > 0. ]

Actually, we have the bounds for the speeds of propagation [4].

Proposition 2.2. Given M > Qgthere exist ¢, ¢ depending only on 0, f and M such
that 0 < ¢ < ¢ and ||q|| = M:  Theafor all solytion (c,u) of (1.3), we have the
estimates on the speed

Ay 35
fl

2.2 The Uniquenesgs of the Speed_and Monotonicity

| )

of the Solution

In this section, we prove the uniqueness of the speed ¢ and monotonicity of the solution
u for the problem (1.3). We mainly use sliding method in infinite cylinders developed

by Berestycki and Nirenberg [3]. We first prove the monotonicity of the solution w.

Theorem 2.3. Let (c,u) be a classical solution of (1.8). Then the function u is in-

creasing n t.
Remark. The assertion of Theorem 2.3 is equivalent to the function ¢ is increasing in
s. It turns out that this fact will be used in proving the uniqueness of the speed.

We want to use the sliding method so the following lemmas are useful. The following

lemmas are maximum principle in unbounded domain [1].



Lemma 2.4. Let f(¢) be a globally bounded and Lipschitz-continuous function defined

on R, and assume that f is nonincreasing with respect to ¢ in (—oo,d] for some & > 0.

Let h € R and define ¥, = (—oo,h) x X. Let ¢ # 0 and ¢1(s,z,y), ¢2(s,2,y) €

12 (E,:) such that

¢

L1+ f(1) >0, in%,
Loy + f(¢2) <0, in X
S
Os (01 — o) 1 + Viuy (1 — ¢2) - v <0, on(—o0,h] x 02

lim sup (@1 — &2) (sy@yy) =0,

So—>—00 SSSO
(z,y)ex

\ o)

where L is defined as (2.2). If o8 < 0 in Z—; ol o1 (hyx,y) < ¢a(h,z,y) for all

(z,y) €X, ¢1 < o mE_;

l‘rr | - ‘"‘;

a) ™ f!ﬂ,ﬁ. I

We replace s by —siin Lenmima 2.‘I4‘ Wﬂ’mﬁ a ?nmlar result as follows:
m__ |

Lemma 2.5. Let f(¢) be a glab_allylb unded-amf! #i})schitz;continuous function defined
gy | | o

I

1

on R, and assume that [ is nonincreasing with vespeci to'gb in [1—9,00) for some § > 0.
Let h € R and define f = (h, o0) >< E.:'Let c+# O and &1 (s,x,y), d2(s,z,y) € CL?®
such that

Lé1+ f(d1) > 0, in 5

Loy + f(¢2) <0, in )
83 (le - ¢2) v+ v:v,y (¢1 - ¢2) sV S 07 on [hv OO) X 82

lim sup (¢1 - ¢2) (Sw%'ay) S 07

5000 g>g
(z,y)es

\
where L is defined as (2.2). If g3 > 1 =0 in E_Z and ¢1(h, z,y) < ¢o(h,x,y) for all

(l’,y)EE, ¢1 §¢2 an_;

Now, we prove the following unique result.



Theorem 2.6. Suppose (c1,uy) and (ca,us) are two classical solution of (1.3), then
¢1 = ¢y and there exists h € R such that ui(t,x,y) = us(t + h,x,y) for all (t,z,y) €
R x .

Proof.

Let (¢1,u1) and (cq, uz) be two classical solutions of (1.3). We assume that ¢; > ¢ >

0. Let ¢1(s,z,y) = wy (%,x,y) and ¢9(s,x,y) = ug <S_m,x,y). Then the functions

c ca

¢1 and ¢y satisfy the same boundary, periodicity, and limiting condition. And ¢, is a

solution of

assqbl + achCbl + 8x5¢1 15 Ale £ (Q1 +Cl) 8S¢1 e J - V¢1 + f(¢1) =0. (23)

On the other hand, ¢, satisfies

| — R

ass¢2 + asw¢2 + aa;s(f)Qﬁi' A&Z;-:‘((]l it (:1) as¢2 14 - v¢2 + f(¢2)
= (2 —c1) 09 ’ = | 7 (2.4)
S 07 & |

the last inequality holds since 0,¢9 > 0 from Theorem 2.3.

Now, we slide the function ¢, with respect to ¢;. We use Lemma 2.4 and Lemma
2.5 to get that there exists a 7% € R such that ¢o(s + 7%, 2,y) = ¢1(s,z,y) for all
(s,2,y) € RxX. Putting that into (2.3) and (2.4) gives (cy — ¢1) Os¢o = 0. This implies
that 0,¢2 = 0 then one has reached a contradiction. Hence, ¢; = ¢y := ¢, and from

definition of ¢ and ¢9, we have u;(t,x,y) = us(t + %, x,y) for all (t,r,y) ERxX. O



2.3 Existence of the Pulsating Travelling Wave Solu-
tion

In this section, since the proof of the existence result in Berestycki and Hamel [1] is
tedious, we only give the main idea of their proof. Recently, M. Bages and P. Martinez
[4] gave the proof for the existence results by a new method.

We divide the proof into four steps:
Step 1: Elliptic regularization in finite cylinder

Recall that the first equation of (2.1) is the.degenerate elliptic equation so we use

elliptic regularization. Let & > 0'is-regularization parameter and define

Lo = €dss + Psgt Dou - Dus HALDINN (2, )\ ) Os — q(z,Y) - Viyd.

- !-"7,

‘ N
Now, we consider the problem on the finite gylinddr. Henee, the problem (2.1) becomes

|

.0 g2 i

Psv1 + Vo - v =10, on (—a,a) x O%

o(s,z,y) = ¢(s,x+ L,y), inY, (2.5)
¢(—a,z,y) =0

¢(a,z,y) =1

where ¥, = (—a,a) X X, a > 0.

From Lax-Milgram theorem, we get a weak solution ¢ for the probelm (2.5), and
then using regularity theory up to the boundary, hence the solution ¢ is a classical
solution in &, := 5, \ ({£a} x 8%). Finally, we build a supersolution (see [1, 3]) to get

the solution ¢ can be continuously extended on the corners {£a} x 9% of the closed

10



cylinder 3,. Moreover, we use sliding method to get the uniquess and monotonicity of

the solution, it’s the same as Section 2.2. Hence, we have the results as the following:

Theorem 2.7. For each ¢ € R, there emists unique solution ¢¢, € C (5,) N C? (i;)

of (2.5) and the solution is increasing in s.

For a large enough, we ensure that the existence of the nontrivial solution ¢f , and
the speed c. .. So we need bounds for the speed and the solution satisfies normalization

condition.

Proposition 2.8. There exists ag > 0 and k > 0 such that, Ya > ag and Ve € (0,1],
there exists a unique c := c., & R such:that the solution ¢¢ , € C (E_a) N C? (ia) of

(2.5) satisfies the normalization " condition

maxo: J(0, z, yy=lmayyd, (0,21 y) =1@;
¥ | =i | |

[ |
moreover, |cc .| < k. Here 07is defined in womlinedr [unction f.

Step 2: Eigenvalue problem ofelliptic problém (2:5) in the half-cylinder
[—a,0] x X

Since the function ¢¢ , satisfies the normalization condition max¢¢ , (0, z,y) = 6 and
b E b
@< , is increasing in s, ¢¢ (s, x,y) < ¢¢ (0, z,y) < maxgt , (0,z,y) = 0 for s € [—a,0].
K 9 K i b

For s € [—a, 0], we have f(¢¢,) = 0; hence we must solve the problem

;

L.p =0, in(—a,0) x X
Gsh + V- v =0, on (—a,0) x 0% - (2.6)

o(s,x,y) = o(s,x+ L,y), inl—a,0] X X

\

We want to build the solution of the exponential type ¢(s,z,y) = e*(x,y) be

L-periodic function for some A > 0. Plug ¢(s,z,y) = e**(z,y) into (2.6), we get the

11



eigenvalue problem
§

Ec,)ﬂ/} - (5)‘2> % in X

Ay + Va0 -v =0, ondx (2.7)

K@/J(fv,y) =Y(z+L,y) inY%

where »Cc,)\ = _Ax,yw - 2)‘7/):5 + q- vw,yw + ((h + C) )‘¢ - )‘2¢
For the eigenvalue problem (2.7), we have known that the existence and uniqueness

of eigenvalue correspoding to the eigenfunction from Krein-Rutman theory [5].

Theorem 2.9. For all ¢ > 0 and € > 0, there exists a winque positive A = \*° and a
positive function 1 = 1, € C? (i), unique up to_multiplication such that the eigenvalue
problem (2.7) is satisfied. JFurthermowpe: N\~ s decréasing with respect to ¢ > 0 and

increasing with respect to ¢ =0.

Remark. This theorem is helpful to pr;oxj'e;ghéi,limiting gondition ¢(—oo, x,y) = 0.
A
Step 3: Pass the limit a'— o0 in A_‘he infinite| cylinder

Letting a — oo, we need to ensure.that (he solittior o<, with the speed ¢ = ¢4,
which converges to ¢S with the speedr e up t0 extraction of some subsequence. In

order to take subsequence which converges, we have the estimates for the speed.

Proposition 2.10. There exists ag > 0 and k > 0, for all € > 0, we have

0 <c.:= liminf ¢, <k.

a—00,a>ag

Now, we consider a sequence a, — oo and let ¢, := ¢.,,, Proposition 2.10 asserts
that up to extraction of subsequence (still denoted by c.a,) Cca, — ¢- > 0. On the
other hand, up to extraction of subsequence (still denoted by ¢,) ¢, converges to a

function ¢. in CZ, (R x ) as a, — oo.

12



Theorem 2.11. (c., ¢.) is a solution of

'cg¢+f(¢)=o, inR xS

G+ Vayd - v =0, onR x 9%

O(s,z,y) = d(s,x+ L,y), mRxT - (2.8)
¢(—00,z,y) =0

¢(o0, 2,y) =1

Furthermore, ¢. 1s increasing in s and satisfies the normalization condition

o 3
4G -
w5

B e

Let u.(t,z,y) = <Z>E(a?‘-+ cet
L |

where ¢, is a solution 0:4%._.(2?8).

£,y ngtion defined forall t € R and (z,y) € X,

- A hoatl |
Proposition 2.12. For;'dny?rco ; qré"‘e’a}?&ts constant K depending
- *'; A L S
only on I', such that, for a'l.L.jgf> 05 w¢ J f_q:,.,‘ i
' I_Ip (_-,:.} i ; :1. '--:l:"u_—;-l j‘"l'
g iy L A 7\

2 -"' -’ ) - n _- __‘1_
/ [(gue) +Va yuﬂfdwd&!dg}g‘f(
rxr | \Of ’

(142
<—2 +F<1>>

where F(1) = [\' f(¢) do.
Proof.

For simplicity, we denote ¢. by ¢ in this proof.

In Theorem 2.1, we have

c.L|Q = / f (o) ds dx dy.
Rx(0,L)x

Given a > 0, we multiply the first equation of (2.8) by ¢ over (—a,a) x (0, L) x €,

and then using integration by parts and boundary condition, it follows that

13



-/ 262 + 62+ 0u6s + 020+ [Vagl'] + [
a,a)Xx(0,L)x (—a,a)x(0,L)xQ

+/ |:5¢3¢ + ¢8¢ + ¢x¢ - % (Q1 + Ce) ¢2:| =0,
(0,L)x2 —a

= ¢ (a) — ¢ (—a). Here we have used ¢ss¢ = (¢s¢), — ¢2 and ¢y 50 =

where [¢ ()],
(¢20), — P2s. Letting a — oo, we have

1
éceL |Q| * /RX(O L)><Q LE-?%—L 1% %T %Mﬂrqi‘& /RX(O,L)XQ f(¢)¢

I n."—'r

.ﬂ

-; ,f 4
—

Vszy® — 0 as s —>’3gq9 an

“'{g\-’ LT
sat ﬁgﬁ (1.2). Indeed, we have

velocity

since V

"\" 3 H
V,0|” (b HV 0> < =c.L|Q 2.9
Ammgny|§%ﬁ T ger < gl 29
.j:n “TF; Qb &S
where e = (1,0,0,..,0) € @,;.smgym%me D)0 < furonal (@) =
"'r.l...
ceL|€2]. G f-ii;fii-:":afif;-::j‘_f?‘j-

Now, we multiply the first equation of (2.8) by ¢ over (—a,a) x (0, L) x €, and
then using integration by parts, boundary condition and V,,¢ — 0 as s — $oo, we

get
3 R O R RCRTRS Or
Rx(0,L)x (0,L)xQ Rx(0,L)x

where e = (1,0,0,..,0) € R". Then

Ca/ ¢§:/ F(l)_/ Q'(¢8'e+vw,y¢)¢s
Rx(0,L)x (0,L)xQ Rx(0,L)x

14



n
<[ rme [ (o er 9,00+ Ret).
(0,L)x € Rx(0,L)xQ 2 «

We take o = Hq”°° > 0 and using (2.9), it obtains that

« SR Oy (2.10)
2 Jrx(0,0)x0 (0,1) %0
Finally, we multiply the both sides of (2.10) by 2c. > 0, one obtains that
/ (cos) & 2(35/ (Dt . L | Q| 1l ”q” (2.11)
R (0,L)x Q2 (0,L) %8

Lastly, combining (2.9) and (2.11) and using the fact, that @ is L-periodic with respect

to . For any compact subset 1" of ¥. —tli(‘ro éxisﬁ% a constant K depending only on I

\
\;

/ [<¢+WM|ﬂ | i 1—i”—“q—”ﬁwm
RXx[0,L] X2 : : 2

such that

By using the change of variables u (t; @;4) = @e(x + c.t,x,y), we can get the desired

result. O
Step 4: Regularization parameter ¢ — 0

Finally, we need regularization parameter ¢ — 0. For the speed c. := liminf c.,,

a—00,a>ag

in order to take subsequence of c. as ¢ — 0, we have the estimates as the following:

Proposition 2.13. There exists k > 0, we have 0 < lim iglfcE <k.
£E—

15



From Theorem 2.11, we know that (c., ¢.) is a solution of

L.p+ f(¢) =0, inRxY
Gt + Vayod - v =0, onR x 9%
P(s,2,9) = p(s,z+ L,y), inRxX
¢(—00,7,y) =0

P00, x,y) =1

\

Recall that u.(t,z,y) = ¢-(z + c.t, x,y), then (c.,u.) is a classical solution of

(

Sty + Dyl =Tur —@V, e f (u)= 0.8 in R x >
Vgt - =0, - “on R x 08

U (t + %, x,y) = u (t,i:l’, —{;1:'1.9) R MR x Y (2.12)
L | —-7." |

u (t, —38, 7= | & 'Tf
| :

|

1 1

u (t,00,y) = % ‘

\

and 0 < u. < 1, u. is increasing 1 #.,We observie 5 in (2.12) and from Proposition

2.13, up to extraction of subsequence such that 5 — 0 as € — 0. Then the equation
(2.12) becomes the degenerate elliptic equation as ¢ — 0.
Since the function u. satisfies the gradient estimate for all € > 0 by Proposition

2.12, there exists a function v € H}.

(R x X)) such that up tp extraction of subsequence
u. — u almost everywhere in R x 3 and u. — u, Vy; ue = Vi uin L* (R x T') for all
compact subset I' C ¥ as ¢ — 0. Moreover, we have 0 < u < 1, u;, > 0 and u satisfies
the gradient estimate

d \° )
—u| +|Vgu
/RXF [<8t ) | Y |

2

1 2
dt de dy < K <M 4 F(l))

16



for all compact subset I' C X, where F(1) = fol f(o) do

Now, we must ensure that the function w is a classical solution of

Uy — Dpyu+q-Veyu=flu), inRxX
(2.13)

Vaeyu-v =0, on R x 0%

We take any test function ¢ € C? (R x ¥), multiplying the first equation in (2.12) and

integrating by parts, we get

g Ou, Ou,
/MEW¢ o1~ a4 V) 6+ (1) =0
_1.‘3. 1!‘_- ,'.,
@ = F "",

then letting ¢ — 0, it follovs}s thﬁi

parabohc regularity theory.
r_., .f _...r"

t;on A

cor exd k) " A

| —.-"- F .8

u5< wz-’y):iuf L’x+L y)

and the gradient estimate in Proposition 2.12, we consider

I 2
/ [us (t+—,x,y> — U, (t,x—i—L,y)} dt dz dy
(—a,a)xT" ¢

for all @ > 0 and compact subset I' C ¥. Tt follows that

I 2
/ {ug (t+—,x,y> — U, (t,x—i—L,y)} dt dz dy
(—a,a)xT" ¢

17



L L 2
/ [ug (t+—,x,y>—u5 (t—i——,x,y)] dt dx dy
(—a,a)xT c Ce
2 2
(£ _ £> / (aus) dt dx dy
c  Ce rxr \ Ot
L L\* (1 2
. (_ ) _) . ( bl F(1)> |
c

Ce

IN

where F(1) = fol f(¢) do. Letting e — 0, we have u(t+ %,x,y) = u(t,x+ L,y)

since u is continuous. This shows that the function u satisfies the periodic condition.

Furthermore, from [1], the function u sat_f‘g the normalization condition
|'."'¢ @l

'«!.-

£ 4

and the limiting condit Eﬁ
&

-

r
\,é‘
EJ'-'!.
-;rr;s o I
Combining the above four sﬁé‘q@ ﬁe get th xﬁ%‘gnce of the pulsating travelling
“Fogs __;mm‘jliﬂ

wave solution of (1.3).
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Chapter 3

Proof of Theorem 1.3

In this chapter, we consider the nonlinearterm f.is monostable type. That is, f satisfies
0< f(u) <1in (0,1), f(0) = f(1Lp=0, f(0) > 0. Ficst, we prove that the solution u is
increasing with respect 60 ¢ it Section 3.1 Sefond, we dketch the proof of the existence

of travelling wave solutions® (c,u) if & > 'é‘gj';ﬁ’ia:SQ(:ti()Il 3.2. Finally, we show that there

[ | i
is no solution (¢, u) if ¢ < ¢*in Sectio+ 3.5
il

. |

A

3.1 Monotonicity of thé Solition

Proposition 3.1. Let f be a function which satisfies 0 < f(u) < 1 in (0,1), f(0) =
f(1) =0, f/(0) > 0. Suppose that (c,u) be a classical solution of (1.3). Then the

function u s increasing in t.

19



3.2 Existence of a Pulsating Travelling Wave Solution

for ¢ > ¢*

We want to use a cutoff function such that monostable nonlinear term f becomes

combustion type. We define the function y € C' (R) such that

For all 6 € (0,1

It
':chbf'."-,:_ﬁ'_ié:-} e

. P *‘h‘
Xg nonmcreasmg" w}@w,_eﬁpquﬁ%o%

Hence, we define fy(u) = f(u)xe(u), for all u € R. This function fy be a combustion
type nonlinearity.

20



Now we consider the problem

up — DNpyu+ q(2,y) - Vayu= fo(u), inRxX

Vaeyu-v =0, on R x 90X
u(t+La,y)=ult,z+L,y), inRxY - (3.1)
u(t,—oo,y) =0

u(t,00,y) =1

\

From Theorem 1.2, there exists a uinque classical solution (cg, ug) for the problem (3.1).

Furthermore, the function uy safisfies thie gradient estimate

2 2
1
RxT ot ‘ 2

o N
e

. | s |
for all compact subset [' € ¥, where fT(l)ﬁ]})l fol®) dd and K is a constant depending

only on I'. ‘ | ‘

Since the speed ¢y is nonihéreasiﬁg wath res;n)e:cp to O (see [1]) and ¢ < ¢y < € for
some 0 < ¢ < ¢ from Proposition 2.2, there exists ¢ 0 such that ¢y / ¢* as 6 \, 0.
Consider a sequence 6,, \, 0, one can assume that ug, (0, xg,yo) = %, where (z9,yo) is
an arbitrarily chosen point in ¥ since we can suitably shift in . Up to extraction of

some subsequence, the function ug, — u* locally uinformly from parabolic regularity

theory. Then the function u* is a classical solution of

/

U — Dpyu+q(z,y) - Voyu= flu), inRxX

Vaeyu-v =0, onR x 0% -

u(t+L z,y)=u(t,z+ L,y), inRxX¥

\

Furthermore, u*(0, zq, yo) = %, uy > 0 and u* satisfies the gradient estimate. In [1], we

21



can know that u*(—oo,z,y) = 0, u* (00, x,y) = 1 and u* is increasing with respect to t.
Hence, (c¢*,u*) is a classical solution of (1.3) with the monostable nonlinearity f. We

state the results as follows:

Theorem 3.2. There ezists (¢*,u*) is a classical solution of (1.3). Moreover, ¢* > 0,

0 <u* <1 and u* is increasing with respect to t.

Actually, here ¢* is the minimal speed. Berestycki, Hamel and Nadirashvili |2| give
a variational charaterization of this minimal speed ¢*. In addition, we assume that

nonlinearity f satisfies

O flu) < fFQu

for all w € (0,1). Then
— k(%

C=ymin
W0

=

(3.2)

where k() is the principal ®eigenvalue of ‘"t_ﬁﬁ"eperator
1 M

—Lrth = SOERNE + 0, Vo H(AXENES [(0)) v
acting on the set &/ = {w € C? (—E.) s pis L — periedic with respect to x and Vi) - v = 0 on 82}.
In particular, when ¥ = R™ and ¢ = 0, the formula (3.2) gives the well-known KPP

formula ¢* = 2,/ f/(0) for the minimal speed of planar fronts.

Now, we prove the existence of solutions if ¢ > ¢*.
Theorem 3.3. For each ¢ > ¢*, there exists (c,u) is a classical solution of (1.5).

Proof. The method for the proof is similar as Section 2.3 so we sketch the proof. We
only consider the case ¢ > ¢* because the case ¢ = ¢* has been done in Theorem 3.2.

We divide the proof into four steps:

Step 1: The estimate for u*

22



In [1], we have known that for all (s,z,y) € R X X, |0ss¢*(s, 7, y)| < cﬁ*@@*(s,x, Y),

where k is a constant and ¢*(s,z,y) = u* ( ==, x, y).

Recall that the operator

‘Ce(b = 8Qbss + (bss + (bsz + (bzs + A:Jc,y(z5 - (Q1 (37; y) + C) (bs - q(a:, y) : v:}c,y¢>

for any ¢ > 0. From the definition of ¢*, one has L.¢* + f(¢*) = e¢%, + (¢* — ¢) ¢*.

Since |0ss0* (s, z,y)| < cﬁ*@sqﬁ*(s, z,y) and ¢ > 0, for € small enough, we have
* * * * * k k *
L.o" + f(¢) = edl, + (@< (5;%—0 —c) ¢r <0

for all (s,z,y) € R x X.

Step 2: Solve the regularization pjjdblem,ih finite cylinder

| == | |

Let a >0, 7 € R and h, := m_inéfo (Cr s | y) — min ¢(—a + 7,2,y). Now, we
. Jil 1 i [0, E}x0

- T

consider the problem L -

, ‘ |

l |
|

Lo+ FS0, 55 . Bpin'vg

Gsn + Vb v =0, on (—a,a) X O%

o(s,z,y) = ¢(s,x+ L,y), in%, ; (3.3)
¢(—a,z,y) = h,

¢(a,z,y) = ¢"(a+T7,2,y)

\

where ¥, = (—a,a) x ¥. We can use the same method as in Section 2.3 to prove the
existence of solution for the problem (3.3). Then there exists ¢.(s,z,y) € C (5,) N
C? (f;) which is a solution of (3.3). Indeed, the function ¢, is increasing in s, and ¢,

is increasing and continuous in 7 (see [1]). Therefore, there exists unique 7(a) € R such

23



that ¢. . := ¢, solves (3.3) and satisfies the normalization condition

1
/ ¢E,a(57x>y> ds dx dy: _L’Q’
(0,1)% (0,L)xQ 2

after a suitable shift in s.
Step 3: Passage to the whole cylinder

Consider a sequence a,, — 00, up to extraction of some subsequce (still denoted by

Be.an) Pean — Ge I Cfoc (]R X i) as a, — 00. Then the function ¢. solves the problem

gt <

c¢+¢%>

‘ -‘ ™ a I.;“J.
/(0,1)>< L)xﬁ?s 3 W

':_.J e
h_ga:

Since ¢. (s, z,y) — ¢F (x,y) in C’2 E)’aé"s = ioo gbi solves the equation

loc

A$7y¢ét —q- vx,yQS;t + f(¢g:) = 0, in R x E

\ Va0 v =0, onR x 0%

o (z,y) = ¢F(z + L,y), mR xS
\

and 0 < ¢ < 1. From [1], one can obtains that ¢_ = 0 and ¢ = 1. Therefore, ¢, is a

classical solution of
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L.p+ f(o) =0, inR x 3
Gs1 + Va0 - v =0, onR x 0%
(s, z,y) = ¢(s,z + L,y), mRx2
¢(—o00,7,y) =0

P00, x,y) =1

\

and it satisfies the gradient estimate

0 2 2 1"‘”“‘1”1
) + Ve uebldatagss |~ | o) (3.4)
rxr | \ Ot ’ s 2

for all compact subset I' ‘€ i whiere' F'(1) = fol (@) do, K is a constant depending

only on I' and (¢, z,y) = & (4 + ctfx ).

—
—
=

Step 4: Regularization paramet\eﬂl &

|

From (3.4), there exists.u G_,H,l()(,;( R % E) sucfl that up,tp extraction of subsequence
u, — u almost everywhere iR &3 ;md e u, Vel — Viguin L2 (R x T) for
all compact subset I' C X as ¢ — 0. Itis.the sarhe proof as in Section 2.3 so we can get
the function w is a classical solution of (1.3).

Combining the above four steps, we prove the existence of solution for (1.3) with

KPP type nonlinearity reaction term. O

3.3 Nonexistence of Solutions for ¢ < ¢*

Recall that (cp, up) is a classical solution of (3.1) with fp for all 8 € (0,1). One knows

that wuy is increasing in ¢.

Theorem 3.4. There is no solution (c,u) of (1.3) if ¢ < c*.
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Proof. Assume by contradition that there exists a solution (c¢,u) of (1.3) for ¢ < ¢*.

Since speed ¢y is nonincreasing with respect to 6, there exists a 8 > 0 small enough so

)

that ¢ < ¢g. Theorem 2.1 asserts that the speed ¢ > 0. Let ¢y(s,x,y) = ug (

it satisfies

ass¢9 + asx¢9 + 8x8¢9 + A¢9 - (C]1 + C) 3s¢59 —q- V¢9 + f (Qbo)

= (cog — ) Ospp + [ (d0) — fo (0) (3.5)

> 0,

the last inequality holds since c A 'ce,'r 29359

y;);’lsa

: G{aqd f(9) > fo(dg). On the other

I"'“'

hand, let ¢(s,z,y) = u(

-‘.; | -i i {'f:r: “.,:J -]
= G ek T
s+ Dok Do + L Vot f
= = . B
= - <
Indeed, both function qzﬁ-anc;,qﬁ ‘ -pex‘;@ic Wi ,egt t"b x and satisfy the same
limiting condition and boudzu%yhc rdé' the funct1on ¢g with respect

R x ¥ . Putting that into (3.5) 1mp3'fe§,rthﬁtj i

(co —c) Ospg + [ (d9) — fo (¢0) =0

It contradicts to ds¢g > 0 or f (¢dg) > fo (¢s). O
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Chapter 4

Introduction

In this part, we are concerned with travelling wave solutions for the competitive Lotka-

Volterra systems of threeSpecies @ = u(z, 1), v = 0(w, t) and w = w(z,t):

(

| — R

U = diUpy o @ — G uEmes 1 W) )

o
Vs = dgvm -+ (/\2 ' CQJ{U - 1(‘3!‘2_2[' —| (523’1,0) ] L ]R, t>0 (41)

11

| We = dstoe 0 (Mg "G Lgitnay =G0 )

where u = u(z,t), v = v(z,t), and w=-w(w ) represent the density of the three
species u, v and w, respectively; d;, A, ¢; (1=1,2,3), ¢;; (1,7 =1,2,3,i % j) are
the diffusion rates, the intrinsic growth rates, the intra-specific competition rates, and
the inter-specific competition rates, which are all assumed to be positive constants,
respectively. This is a mathematical model frequently used in ecology to describe three
species moving by diffusion and competing for the same resources [1].

We want to find travelling wave solutions of the form

(u(z, 1), v(x,t), w(z, 1)) = (U(2), V(2), W(2))

29



where z = x — 0t and 0 is the wave speed. Then (U(z),V(2), W (z)) satisfies

(

dlez + HUZ + U <)\1 - CllU - C12V — ClgW) = O,

Ao Ve + 0V, +V Ay — enU — eoV —esW) =0, z€R- (4.2)
\dizz +OW, + W (A3 — c31U — 32V — e53W) =0,
In the case of the systems of two competing species,
(
Up = Ugy +u (1l —u—cv),
geR, >0 (4.3)

vt:dvm‘—{—v(a—rbu—b),
\

after a suitable transformation./whene %he coqstza-nts a, b, c';"'and d are positive. We look

|

[ i g |
for travelling wave solutions of (4.3) ol tlﬁ?rth(ﬁl,(:l', thv(x, b)) = (U(z),V(2)), where
| 1 L

z=x — 0t and 0 is the wave-speed. | hen %@(N)l V (7)) satisfies

/.
b |
1 i
|
\ { |

Usel 0T+ [ Ogr— A =0
(4.4)

dV,. + OViENVafe=bU'~"1) =0

Rodrigo and Mimura [3, 4] give many exact solutions for (4.4). Indeed, Kan-on has
proved the existence and uinqueness of the solution for (4.4) in [2]. We give an example

of exact solutions for (4.4):

Example 4.1. Suppose that d = i, b=2+ %“ —ac, 0 = ’j%c. Then exact solution
of (4.4) is of the form

DN | —

1 + tanh

N

1 — tanh
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We return to problem of the systems of three competing species. We will look for
monotonic solutions (U(z),V(z)) and a pulse solution W (z) of (4.2) satisfying U, V,

W> 0 for all z € R. In next chapter, we will show these semi-exact solutions of (4.2).
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Chapter 5

Semi-Exact Solutions

In this chapter, we show seven types of semi-exact solutions of (4.2). In order to find
these semi-exact solutions; we intzoduce some anastz.

Let T be a solution of the initial value preblem

280 - (] - ) bt W) Ber
1 | (5.1)

where T € (0,1) be a constant and @ is a determined constant. And we suppose that

travelling wave solutions are of the form

Vi(z)=ky (1=T(z2))" (5.2)

where i, m, n are positive integers, k1, ko, k3 are positive constants and 7" is the solution
of (5.1). We put (5.2) into (4.2) and use (5.1), then (4.2) becomes the polynomial of
T. In order to balance the terms of the polynomial of T, we need to choose i, m,

n appropriately. This will give a system of algebraic equations involving d;, \;, ¢
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(0=1,2,3), ¢ij (i, =1,2,3,i # j), 0, a and k; (i = 1,2,3). We use Mathematica to
solve this system of algebraic equations so that we can get the restriction of parameters

di, )\1'7 Cis (Z = 1,2,3), Cij (Z,j = 1,2,3,7; # j), 9, a and k}l (Z = 1,2,3)

5.1 Type-1 Solutions (i,m,n) = (2,4, 1)

The following restriction on parameters appearing in (4.2) is assumed so that an exact

solution is allowed.

s )
o7 + 50)d, @

A + 37 + 5ayd,

dy = ——d3 = T 0= — 5a)d 5.3
& ) %
. L
= 13 L <!
)\1 HQCl CL)( ‘|‘3‘_ e (11-1 —E.}a)j
I I -
87 , % ]
\ 7 .08 (15 +aT32 4 (: +6a))) d; (5.4)
TR N3 A LEART
T L5 - %Ll N
e i a3 N
S, = o«
o L . 1-
2(1 + a)(4 + Sa)dppe e 2(9 + 7a)d;
i = L €12 — k‘_’ 13 = 2 ) (5-5)
1 2 3
S 42+ a)(7+ 5a)(—1+ ba(2 + a))d, S 24a(7 + ba)d,
e (=2 + a(11 + a))k, 2T (24 a(11 +a))ky
44a(2 4 a)(7 + 5a)dy
_ 5.6
BT (2t a(ll +a)ks (5:6)
S (54 3a)(7+ 5a)(—=9 + a(17 + 12a))d, o — 15(—1 + 3a)(7 + ba)d,
s (—13 + 3a(8 + 3a))k 2T (2134 3a(8 + 3a) ko |

(=14 3a)(7 + 5a)(47 + 27a)d,
BT T (C13 4 3a(8 + 3a)ks (5.
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v
1.5
U
1
a.5
W,
=10 . =3 a 3 10
Figure 5.1: Profiles of U, V', W.
where k1, ko, k3 are constants.
Under the conditions (5.3)-(5.4), (+.2) adimits asolution of the form
( | p—
1l N ,
2% EIN=-"4E) (5.8)
WAl L%;))7
\

where T is the solution of (5.1). Assume Jqs ko, k3, di> 0, then the necessary and
sufficient condition for d;, \;, ¢;; (i =1,2,3), ¢;; (1,7 =1,2,3,i# j) > 0,and a ¢ [-1,0]

in (5.1) to be satisfied is given by

11+ v129 - 1 —4 + /29

5 a < 3 or a> 5
Approximately, 0.178908 < a < 0.34 or a > 0.491722.
Now, if one chooses (a, k1, k2, k3, dy) = (1,1,2,3,1) and Ty = % in (5.1), then dy = g,
d322,9:—12, )\1:28, )\2:%, )\3:14?4’ C11:28, C12:4, C13:%, 021:%,

Cog = %, Cog = %, c31 =96, c30 =9, and ¢33 = % by (5.3)-(5.7). The resulting profiles

of U, V, W and T are shown in Figure 5.1 and Figure 5.2, respectively.
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0.
0

~10 -5 | 5 10

Figure 5.2: Profile of T' with a = 1 and T = %

In particular, in the case of a = 1, we make the change of variable 72 = %(1 +v),
where 7' is the solution of (5.1) with initial condition T'(0) = ;. Then v solves the
equation

d

g, 1SS
dzv—l Do 2 € IR

It is easy to see v(z) = tanh z -+ .. Hen\cei,*%s:efhi—oxact solution (5.8) can be rewritten
g [
in terms of tanh z: \ l m 1\

\ | |
( N | 1

U(z) =k [%(1—% 2 tondg)]
V(z) = ko (1 — §53/k+ 2 tanh zj4
W(z) = ks [%\/1 +2tanhz (1 — 2v1+ 2tanhz)2}

5.2 Type-2 Solutions (i,m,n) = (3,1, 2)

The following restriction on parameters appearing in (4.2) is assumed so that an exact

solution is allowed.

(—1+4(—4 +a)a)d, 2(—=1+4(—4+ a)a)d;
dy = dy = 6 — (—1 +4(—4 d
2= a3t 20) BT 0va(—2+ioq) 0 Lo,

(5.9)
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a(3+2a(25+ a(9+ 4(=5+ a)a)))d;

A1 = 3(1 4+ 9a)dy,\p = —3+a(—3+ 2a) ’

~ 2(-1+4(—4+a)a)(9+ a4+ a(—17+ 10a)))d,
As = —9 + a(—23 + 10a) ’ (5.10)

3(1 4 9a)d 3(—1 -1 —9+4a))d 15d
C11 = w#:lQ = ( i a)( il a( i a)) 17013 = _17 (511)
kl k2 k3
S (44 5a)(—14+4(—4+ a)a)dy S a(3+2a(25+ a(9+ 4(—5+ a)a)))d;
2 (=3 +a(=3+2a)ky, 7 (=3 + a(—=3+ 2a))k, ’
& T <8
&
A nefh
. 441+ 2a)(— 1+4h@—4+;a)) )( 9+ 5a)(—1+4(—4 + a)a)d
o (=9 + a(—23+ 10a) g‘sr a(—23 + 10a)) k;
G ] (513
7_:;-5 "'&.'.' A : .t.:!"n ¥y
where ki, ko, ks are constants. . {"'-.'-F" o i;—l %ﬁl;\
-'” = -
Under the conditions (5.9 13}7_(1;3) a,ﬂnj‘lrtb- z;l solution of the form

4

U(z) = k1 T3(2)
SV = ke (1 T(2))

W (z) = ksT?(2) (1 = T(2))"

where T' is the solution of (5.1). Assume ky, ko, k3, di> 0, then the necessary and
sufficient condition for d;, \;, ¢;; (i =1,2,3), ¢;; (1,7 =1,2,3,i # j) > 0,and a ¢ [—1,0]
in (5.1) to be satisfied is given by

44 /17
5
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1.5

U

0.5

Figure 5.3: Profiles of U, V', W.

Approximately, a > 4.06155.

Now, if one chooses (a; k1, ko, kdydy) — (5, 1, 2.8, ) and Ty = % in (5.1), then dy = %,

19 3515 PEIL O R Rl _ 15 _ 551
ds = g3, 0 =19, A\ = 138 Ao =/ =332 Doy =511l = 138,C12o §324, ci3 = 3, e = 57,

i
3515 57 508 . jlcomme |l 19 :
Co2 64 Co3 = 256 C31 — 632 C3o = ‘)T'—E‘,.aﬁd Cin = 31 by (59)—(513) The resultlng

1l MW
profiles of U, V, W are shown'in Figure 9.3 and|the profile of T is similar to Figure

|

5.2.

5.3 Type-3 Solutions (z,m, 1) = (3,2,2)

The following restriction on parameters appearing in (4.2) is assumed so that an exact

solution is allowed.

24 a)(—2+(—25+a)a)d; ,  (3+2a)(-2+(-25+a)a)d; , 24
= S i@ty BT (ta(9+2a@ise 0 BTt

(5.14)
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)\1 = 3d1(1 + 9@),)\2 =

2a(—2 + (=25 + a)a)(—4 + a(—2 + 3a))d,
(—=2+a)(1+a)(4+ 5a)

Y

A3

3d1 (1 + 9&)
ka

C11 =

2(—24+ (—-25+a)a)(9+ a(13 + a(—1+6a)))d; (5.15)
(1+a)(—9+ 2a)(2 + 5a) ’ '
. 3(—1 —I—a)(—l +a(—9+4a))d1 B 15d1
,C12 = (1 T CL)I{JQ ,C13 = ,I{}_37 (516)
25 + a)a)d, 2a(—2+ (=25 + a)a)(—4 + a(—2 + 3a))d;

22+ a) (6 + 7a)(—2 + (—

o (=2+a)(1+ a)(d + Bl T ”‘3‘3%&,; (=2 + a)(1 + a)(4+ 5a)k,
4 aF B Cp
A I*= -EI o U
oy v, =
i N T
. _2%L+%X&+2X —2 #23u+2@(9+5@¢2+c45+@@m
o (1+a)(—9+ 2a) e ,:;(1+a)( 9+ 2a)(2 4 5a)k,
T o,
= | N !
EH £\
v S aya)dq
Cadm = o jkz , (5.18)
Lajh -. : ~ U '..‘I . Ve : 3
where kq, ko, k3 are constants. ’I‘:-;"j' e '} Tf::l.:li |

Under the conditions (5.14)-(5.18), (4.2) adimits a solution of the form

;

\

where T is the solution of (5.1).

sufficient condition for d;, \;,

U(z) = k,T3(2)
V(z) =k (1= T(2))°

kT2 (2) (1= T(2))°

Assume ki, ko, k3, d;> 0, then the necessary and

ci (1=1,2,3), ¢;5 (1,5 = 1,2,3,i # j) > 0,and a ¢ [—1,0]
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Figure 5.4: Profiles of U/, V', W.

in (5.1) to be satisfied is given by

20 + Y638

Approximately, a > 25.0797; -

Now, if one chooses (@, kigky, ks @) = (26.112/1071) and T, = % in (5.1), then

4 10 _ 8 3 51212 38228 _ 20575
dy = 1809’ d3 = 1161° 0 = 97 AL="105;7\s = 1809 » Ag= 1161 > €11 — 705, ¢12 = 6 7
_ 3 _ 5264 _ 25636 .28 1 11660 19822 4
C13 = 1, C21 = Tggo0 €22 = oo €23 — gorse 81 = i1, C32 = —3g7» and cs3 = g7 by

(5.14)-(5.18). The resulting profiles of U, V', W are shown in Figure 5.4 and the profile

of T' is similar to Figure 5.2.

5.4 Type-4 Solutions (i,m,n) = (3,4,1)

The following restriction on parameters appearing in (4.2) is assumed so that an exact

solution is allowed.

5 2(14 2a)(=7+ a+ 5a*)d; 4o — (14 6a)(—=7+ a+ 5a*)d; 5 —2(=7+a+ 5a*)d;
2T 3(-1+20)A+ (-1+a)a) > (4+a)(—1+2a)(—4+3a) —1+2a ’
(5.19)
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3(-1+a)1+a)(5+4a)dy | —16(1+ 2a)(—7+ a+ 5a®)d;

A = -
! —1+2a T (C1+20)(4 + (=14 a)a)

(=7 + a+ 5a%)(15 + 58a + 15a?)d,

As = (4+a)(—1+2a)(—4+3a)

(5.20)

3(=1+a)(l+a)b+4a)d; 15d,

(—1 + 2(1)[’»‘1 12 = ]{2 ’

€11 =

_ =3(6+a(l+a)(—17 4 4a))d,
C13 = (=1 1 2a)ks ; (5.21)

IR (1] I ) e
—8(2+a)(=7+a+ 5a®) (=1 5£ ) ff:'f —16(1 + 2a) (=7 + a + 5a*)d;

= 3(—1 + 2a)(4 + R AL 20)(d+ (Lt ks
Co3 = > (522)
. (5+3a)(—7+a-l£5a2?){ £;’>(I‘!+6a)( 7+ a+ 5a?)d;
s (44a)(—1+ 2a)# 5 4 fh)( 1+ 2a)(—4 + 3a)k,
?r-., a -'"w L ':-.". ’.'
(-7 +$5a2§{#92 —leﬁ’f_@f&? +36a%)d,

(5.23)

C33 =

T

Fa) (=1 + 2a) (45 3a)k ’
)' ;{_:{.:_:‘-j;._ig—ﬁ ) 3
where k1, ko, k3 are constants.

Under the conditions (5.19)-(5.23), (4.2) adimits a solution of the form

where T' is the solution of (5.1). Assume kq, ko, k3, di> 0, then the necessary and

sufficient condition for d;, \;, ¢;; (i =1,2,3), ¢;; (1,7 =1,2,3,i# j) > 0,and a ¢ [-1,0]
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Figure 5.5: Profiles of U, V., W.

in (5.1) to be satisfied is given by

, —1 4141
l Ja < T

[
—

Approximately, 1 < a < 1.08743. | | T
Now, if one chooses (a,kl,kQ,kgj:,d]) = (1.054 §, 20 1J:3 )sand T, = % in (5.1), then
dy = 0.20283, d3 = 0.676391, 8 =0:795455, A1, = 2.57182, Ay = 4.86793, \3 = 8.56492,

c11 = 2.57182, ¢y c13 = 0.87782; 693:=111.9835, coo = 2.4436, co3 = 1.52363,

_ 15
=L

c31 = 16.6737, ¢35 = 5.07293, and ¢33 = 3.4294 by (5.19)-(5.23). The resulting profiles

of U, V, W are shown in Figure 5.5 and the profile of T is similar to Figure 5.2.

5.5 Type-5 Solutions (i,m,n) = (4,1,1)

The following restriction on parameters appearing in (4.2) is assumed so that an exact

solution is allowed.

—17+a(2+5a))dy ,  3(=17+a(2 + 5a))d,
(A+a)(—14+2a) "> 4(=6 +a(8+ 3a))

dy = ( 0 = (=17 + a(2 4 5a))d;,

(5.24)
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(=17 + a(2 + 5a)) (=2 + a(1 + 2a(4 + a)))d;

A = 24dy )y =
! b (44 a)(—1 + 24) ’
(=17 + a(2 + 5a))dy
A3 = 2
° 7 4(—6+a(8+3a)) (5.25)
24 4(—1 - 11 44(—1
oy — dy ey = (—1+a)(—6 +a(1l + 5a))d17013 _ (—1+ a)dl7 (5.26)
k?l k2 k3
3(=17+ a(2 + 5a))d; (=17 +a(2+5a))(—2+ a(l + 2a(4 + a)))dy
Co1 = ,C22 = )
(44 a)(—14 2a)k, (44 a)(—14 2a)k,
1 u[ -"-[L 'E .fli.ﬂ_{
P i (34 89&3:525%@;
b. 23, (5.27)
&
& 3 : s 8
. _45(-17+a 2+5¢§ dy c' (7 ) —32 4+ 3a(37 + 12a)))d,
T 4(—6 + a(8 + 3a))ki '
P
(5.28)

where ki, ko, k3 are constants’

Under the conditions (5.24)- 5 2@ lﬂ-?):ﬁdi‘rﬂl"bsla solution of the form

(

U(z) = ki T4(2)
V() = (1~ 7(2)

W(z) = ksT(2) (1 - T(2))"

where T' is the solution of (5.1). Assume kq, ko, k3, di> 0, then the necessary and
sufficient condition for d;, A\;, ¢;; (1 =1,2,3), ¢;5 (4,5 = 1,2,3,i # j) > 0, and a ¢ [—1,0]

in (5.1) to be satisfied is given by

-1+ /86
a > T.
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Figure 5.6: Profilesof U, V., W.

Approximately, a > 1.65472.

Now, if one chooses (a. Ky5kg, kigody) — (2,1, 2. 1) and TO = m (5.1), then dy = 1—78,
7
6

d3 - 88’ 0 = 7 >\1 - 24 )\2 T 7;? )\3'%,'._22257 Cll = 247 Ci2 = 727 Ci3 = 45_47 Co1 =
Co2 — ?, Co3 — %, C31 = 8857 % — Ll End (’;;‘ = ji(l) b (5 24)—(5 28) The resulting

;-.d

70 ’
profiles of U, V', W are shown in Flgujo 5ol and the profile’of 7" is similar to Figure 5.2.

\

5.6 Type-6 Solutiohs (75 myn)=(4,2,1)

The following restriction on parameters appearing in (4.2) is assumed so that an exact

solution is allowed.

(24 a)(—23+a24a))dy ,  (5+3a)(—23+a2+a))d , 24
d2 = (I+a)(=6+5a(3+a) "> 5(1+a)(=7+a(8+3a)) 0= da—7)d
(5.29)

2(=23+a2+a)(—2+3a(l +a(4+a))))d;
(1+a)(—6+5a(3+a)) ’

A = 24d; )\ =

3(=5 + a+ 22a* + 6a*)(—23 + a(2 + a))dy
5(1+a)(=7+ a(8+ 3a)) ’

A3 = (5.30)
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924d, A(—18+a+5a* + £4)d; 44(—1+ a)d,

C11 = ]{;1 ,C19 = ]{72 ,C13 = k'—3, (531)
824 a)(-23+a2+a))dy  2(-23+a(2+a))(—2+3a(l+a(4+a)))d
AT Ut a)(—6+5aBta)k 2 (1+a)(=6 + 5a(3 + a))k, ’
224 a)(—2+T7a)(—23 + a(2+a))d,
B T 14 a) (64503 +a)ks (5:32)
~3(5+43a)(—-23+a2+a))d; (234 a(2+a))(—15+ a(—32 + 3a(37 + 12a)))d,
T Tt a)(—T+aB+3a)k 2T 5(1+ a)(—7 + a(8 + 3a))ks ’
oSO ey
(5 rc 3a) 13 5 2@{123 +::z£2 + a))dy (5.33)
" A +3a)lks '

where k1, ko, k3 are Constaq_ls.'
Under the Condltlon.g (5 29

"i.

Z)’?’[f;T/(Z_) 1‘." }T(lz

where T' is the solution of (5.1). Assume ky, ko, k3, d;> 0, then the necessary and
sufficient condition for d;, \;, ¢;; (1 =1,2,3), ¢;; (1,7 =1,2,3,i # j) > 0,and a ¢ [-1,0]

in (5.1) to be satisfied is given by

a>—1+2V6.

Approximately, a > 3.89898.
Now, if one chooses (a, k1, ko, k3,dy) = (4,1,2,10,1) and Ty = % in (5.1), then

2
_ 3 _ _ 1 _ __ 394 _ 441 o 705 66

dy = 335” dy = 18257 0 = 53 A =24, A = 3357 Ag = 3650 C11 = 24, c19 = 5 C13 = &
_ 24 _ 197 _ 18 _ 51 _ 3937 _ 323

Co1 = 535, C22 = 335, €23 = g5 C31 = 3650 C32 = Gn00 ald ¢33 = 3555 by (5.29)-(5.33).
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Figure 5.7 Profilesof U, V', W.

The resulting profiles of U, V., Wiare showil tligure.7 and the profile of T' is similar
to Figure 5.2.

| — R

i

5.7 Type-7 Solutions (Fﬁ%m @, 1)

The following restriction on paramefe‘rs appearinglin (4:2) is assumed so that an exact

solution is allowed.

24 a)(-23+a2+a))d; ,  (5+3a)(-23+a24a))d , 24
d2 = (1+a)(—6+ 7a(3 + a)) h 5(1+a)(—=7 + a(8 + 3a)) 0= 0ta—7)d
(5.34)
B ~3(-23+a2+a)(-2+a(d+4a(4+a)))d
A= 2 = 1+ a)(—6+ 7a(3 + 0)) ’
Ny — 3(=5 + a+ 22a* + 6a*)(—23 + a(2 + a))d, (5.35)

5(14a)(—=7+ a(8 + 3a)) ’

24d, A(—18 4 a+5a® + £2)d,
—C12 =

Ky ks ’

€11 =
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4(=14a)(5+ a(22 + 5a))d;

= 5.36
C13 (1 + (I)kg ) ( )
o 152+ a)(—23 4+ a(2 + a))dy o 3(=23+a2+a))(—2+a(b+4a(4+a)))d;
T (14 a)(—6+Ta(B3+a))k (14 a)(—6 + 7a(3 + a))k, ’
e — 3(=23+a2+a))(—6+a(l+a)(21 +4a))d; (5.37)
(1+a)(=6+T7a(3 + a))ks ’ '
— 3(5+3a)(—23+a(2+a))d; - (=234 a(2+a))(—15+ a(—32 4 3a(37 + 12a)))d,
Y a) (T aB 430k " e 51+ a) (=T + a8 + 30))k, ’
I
4(—235F a(2 + &) ~a(16.+ 48a + 9a?))d;
G L il , 5.38
where ky, ke, ks are congg'afi’&s. .' ol
Under the condition“g}(&34 lumo;?of the form
~ =
:I__ L i'f L, n":‘i:-
o

¥ . -
i iy 9
J < == L3,
[

where T is the solution of (5.1). Assume kq, ko, k3, di> 0, then the necessary and
sufficient condition for d;, \;, ¢;; (i =1,2,3), ¢;; (1,7 =1,2,3,i# j) > 0,and a ¢ [-1,0]

in (5.1) to be satisfied is given by

a>—-14+2V6 or a<—1—2V6.

Approximately, a > 3.89898 or a < —5.89898.

Now, if one chooses (a, k1, ko, ks, dy) = (4,1,2,10,1) and Ty = % in (5.1), then

_ 7 _ 1 _ _ 159 _ 44 _ __ 708 __ 1038
dy dz = 9—5, AL =24, Ay = Az = C11—24,C12—T,013——

= 3 A7 159 441
G 18257 95 365 25 7
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Figure 5.8: Profilesof U, V., W.

1101 _I%F =S 3937 _ 2776
17500631 =865 Co2%. 36507 and C33 = 9125 by (534)—(538)

_ 9
C21 = g5y C22 =

%7 Co3 =
The resulting profiles of U, Vi Waareshown in Figure 5.8-and the profile of T' is similar

to Figure 5.2.

| — ]

If one chooses (a, k1y ko, ks, dy) = (:»6,"-1,5‘3‘,’10‘, 1) and Ty = 2 in (5.1), then dy = =
i

‘ 2 1507
do — 13 9__1/\_24)\_'&‘1*@__9 AL B 1512 _ 742 _ 1
3= 1325 Y — T Fs N — A A2 Nl 50l )fli g C1I y C12°% —5 5 €13 = 555 C21 = 15
| |
__ 4 _ 6 _ 39 5 wdo@S . 18664 :
Co2 = 3, C23 = 7195, €31 = 5550032 = Z()J’TO’ adad £33 B 6625 by (534)—(538) The resultlng

profiles of U, V., W and T are shown in Figure 5.9 and Figure 5.10, respectively.
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Eigufe 5.9=Rrofilesrof U, T, WA

T 0.8
0.6
0.4
0.2
10 -5 5 10

Figure 5.10: Profile of T with a = —6 and T = %
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