國立臺灣大學理學院數學系碩士論文

Department of Mathematics
College of Science
National Taiwan University
Master Thesis

反應擴散對流方程的傳動波解
Travelling Wave Solutions for Reaction－Diffusion－Advection Equations

指導教授：陳俊全 教授
Advisor：Prof．Chiun－Chuan Chen

中華民國99年6月
June， 2010

國立臺灣大學（碩）博士學位論文口試委員會審定書

反應擴散對流方程的傳動波解

Travelling Wave Solutions for Reaction－Diffusion－Advection Equations

本論文係袭愉生君（R96221030）在國立臺灣大學數學學系，所完成之碩（博）士學位論文，於民國99年06月08日承下列考試委員審查通過及口試及格，特此證明

口試委員：

\qquad
\qquad

系主任，所長 （簽名）

誌謝：

最先感謝我的指導教授陳俊全老師，他對我的論文提供許多的想法及意見，感謝老師對我的指導與鼓勵。感謝博士班學長洪立昌教導我 Mathematica 的使用及找 exact solution 的方法，懷念我們共同努力找 exact solution的時光。感謝博士班學長黄志強，張覺心，碩士班同學，研究室的學弟妹，在台大求學這些年，你們對我的關心與課業的輔助。最後，要感謝我的家人給予支持，關心，我才能多到台大求學，順利完成學業。广

摘要：

本論文分成兩部份。
第一部份是關於反應擴散對流方程 $u_{t}-\Delta u+q(x, y) \cdot \nabla_{x, y} u=f(u)$ 的傳動波解。我們考慮具有週期性的對流場 $q(x, y)$ ，燃燒型態及半穩定的非線性反應項 f 。我們主要整理 Berestycki 和 Hamel 文章［1］中的脈衝波的存在性，唯一性及單調性結果。第二部份主要是處理三種競爭物種 Lotka－Volterra系統的確切傳動波解。

關鍵字：脈衝波，反應擴散對流方程，燃燒，週期，確切解，Lotka－Volterra

系統

Abstract

There are two parts in this paper. Part I is concerned with the travelling wave solutions for reaction-diffusion-advection equations $u_{t}-\Delta u+q(x, y) \cdot \nabla_{x, y} u=f(u)$. We consider periodic advection $q(x, y)$ and combustion, monostable nonlinear reaction term f. We mainly survey the results of existence, uniqueness, and monotonicity of pulsating waves from the paper by Berestycki and Hamel [1]. Part II deals with exact travelling wave solutions of competitive Lotka-Volterra systems of three species.

Keywords: pulsating travelling wave, reaction-diffusion-advection equations, combustion, periodic, exact solutions, Lotka-Volterra systems

Contents

口試委員審定書 ．i
誌謝 i i
中文摘要 iii
英文摘要 iv
I Pulsating Travelling Wave Solutions 1
1 Introduction 2
2 Proof of Theorem 1.2 5
2．1 Positivity of the Speed． 6
2．2 The Uniqueness of the Speed and Monotonicity of the Solution 7
2．3 Existence of the Palsatting Traveling Mave Solution 10
3 Proof of Theorem 1.3 19
3．1 Monotonicity of the Solution
3．2 Existence of a Pulsafing Travelling Wave Solutionfor $c \geq c^{*}$ 20
3．3 Nonexistence of Solutionfifor 25
II Semi－Exact Travelling Wave Solutions for Systems of Three
Competing Species 28
4 Introduction 29
5 Semi－Exact Solutions 32
5．1 Type－1 Solutions $(i, m, n)=(2,4,1)$ 33
5.2 Type－2 Solutions $(i, m, n)=(3,1,2)$ 35
5．3 Type－3 Solutions $(i, m, n)=(3,2,2)$ 37
5.4 Type-4 Solutions $(i, m, n)=(3,4,1)$ 39
5.5 Type-5 Solutions $(i, m, n)=(4,1,1)$ 41
5.6 Type-6 Solutions $(i, m, n)=(4,2,1)$ 43
5.7 Type-7 Solutions $(i, m, n)=(4,3,1)$ 45

List of Figures

5.1 Profiles of U, V, W. 34
5.2 Profile of T with $a=1$ and $T_{0}=\frac{1}{2}$. 35
5.3 Profiles of U, V, W. 37
5.4 Profiles of U, V, W. 39
5.5 Profiles of U, V, W. 41
5.6 Profiles of U, V, W. 43
5.7 Profiles of U, V, W. 45
5.8 Profiles of U, V, W 47
5.9 Profiles of U, V, W, \cdots 暴 48
5.10 Profile of T with $a=-6$ and $T_{0}=\frac{1}{2}$ 48

Chapter 1

Introduction

Consider the following reaction-diffusion-advection equation:

where $\Sigma=\{(x, y) \in \mathbb{R} \times \Omega\}$, whase cross section $\Omega \subset \mathbb{R}_{\&}^{n-1}$ is a bounded, smooth and connected open set; $\nu=\nu(x, y)=\nu(y)$ is the outward unit normal to $\partial \Sigma=\mathbb{R} \times \partial \Omega$. We assume that the nonlinearity f is of class $C^{2}[0,1]$. There are various types of f. For example,

- KPP type (monostable type): $0<f(u)<1$ in $(0,1), f(0)=f(1)=0, f^{\prime}(0)>0$, e.g. $f(u)=u(1-u)$.
- Bistable type: $f(u)<0$ in $(0, \theta), f(u)>0$ in $(\theta, 1)$,
e.g. $f(u)=u(1-u)(u-\theta), \theta<\frac{1}{2}$.
- Combustion type: $f(u)=0$ in $[0, \theta], f(u)>0$ in $(\theta, 1), f(1)=0$.

Throught this paper, we only consider the combustion and monostabel type.
The velocity field $q(x, y)=\left(q_{1}(x, y), q_{2}(x, y), \ldots, q_{n}(x, y)\right)$ is assumed to be of class C^{2} and satisfies the assumptions: there exists some $L>0$ such that

$$
\begin{cases}\operatorname{div} q=0 & \text { in } \bar{\Sigma} \tag{1.2}\\ \forall(x, y) \in \bar{\Sigma}, & q(x+L, y)=q(x, y) \\ \forall(x, y) \in \bar{\Sigma}, & \int_{(0, L) \times \Omega} q_{1}(x, y) d x d y=0 \\ q \cdot \nu=0 & \text { on } \partial \Sigma\end{cases}
$$

The second assertion in (1.2) means that q is L-periodic in the x-variable.
We are interested in travelling wave solutions of (1.1), namely, the pulsating travelling wave.

Definition 1.1. A pulsating waye propagating with the speed $c \neq 0$ is a classical solution $u \in C^{1,2}(\mathbb{R} \times \bar{\Sigma})$ of (1.1), if the following holds:
for all $(t, x, y) \in \mathbb{R} \times \bar{\Sigma}$, and has limiting donditions, for all $t \in \mathbb{R}$,

$$
u(t, \infty, y)=1
$$

uinformly with respect to y.

To sum up, a pulsating wave of (1.1) is a solution of the problem

$$
\begin{cases}u_{t}-\triangle u+q(x, y) \cdot \nabla_{x, y} u=f(u), & (t, x, y) \in \mathbb{R} \times \Sigma \tag{1.3}\\ \frac{\partial u}{\partial \nu}=0, & (t, x, y) \in \mathbb{R} \times \partial \Sigma \\ u\left(t+\frac{L}{c}, x, y\right)=u(t, x+L, y), & (t, x, y) \in \mathbb{R} \times \bar{\Sigma} \\ u(t,-\infty, y)=0, & (t, y) \in \mathbb{R} \times \Omega \\ u(t, \infty, y)=1, & (t, y) \in \mathbb{R} \times \Omega\end{cases}
$$

In the case of combustion type nonlinearity, Berestycki and Hamel [1] proved the following results:

Theorem 1.2. Let q be a velocity field satisfying (1.2). Then there exists a unique classical solution (c, u) of (1.3) with combustion type. The function u is increasing in t and unique up to translation in t. Moreover, $c>0$ and $0<u<1$.

We will prove the properties of the pulsating travelling wave solutions and sketch the proof of existence in Chapter 2.

If nonlinear reaction term f is monostable type, we have the results as follows:

Theorem 1.3. Let q be a velocity field satisfying (1.2) and nonlinear reaction term f is monostable type. Then there exists a $c^{*}>0$ such that

We will sketch the proof of existence in -Chapter 3.

Chapter 2

Proof of Theorem 1.2

In this chapter, we prove the Theorem 1.2. First, we prove the positivity of the speed c in section 2.1. Next, we prove the uniqueness of the speed c and monotonicity of the solution u in section 2.2. Finally, we sketch the proof of the existence of the solution in section 2.3.

We make the same change of variablesas Xin [6]. Deffine $u(t, x, y)=\phi(s, x, y)$, where $s=x+c t$. The problem (1.2) is equivalent to

$$
\begin{cases}\phi_{s s}+\phi_{s x}+\phi_{x s}+\triangle_{x, y} \phi-\left(q_{1}(x, y)+c\right) \phi_{s}-q(x, y) \cdot \nabla_{x, y} \phi+f(\phi)=0, & \text { in } \mathbb{R} \times \Sigma \\ \phi_{s} \nu_{1}+\nabla_{x, y} \phi \cdot \nu=0, & \text { on } \mathbb{R} \times \partial \Sigma \\ \phi(s, x, y)=\phi(s, x+L, y), & \text { in } \mathbb{R} \times \bar{\Sigma} \\ \phi(-\infty, x, y)=0 & \\ \phi(\infty, x, y)=1 & \end{cases}
$$

where $q(x, y)=\left(q_{1}(x, y), \widetilde{q}(x, y)\right), \widetilde{q}(x, y)=\left(q_{2}(x, y), \ldots, q_{n}(x, y)\right) \in \mathbb{R}^{n-1}$ and ν_{1} is the first component of ν. Note that the equation in (2.1) is the degenerate elliptic equation.

For simplicity, define the operator

$$
\begin{equation*}
\mathcal{L} \phi:=\phi_{s s}+\phi_{s x}+\phi_{x s}+\triangle_{x, y} \phi-\left(q_{1}(x, y)+c\right) \phi_{s}-q(x, y) \cdot \nabla_{x, y} \phi . \tag{2.2}
\end{equation*}
$$

2.1 Positivity of the Speed

Theorem 2.1. Suppose that (c, u) is a classical solution of (1.3). Then we have $c>0$.

Proof.
Integrating the first equation of (2.1) over $(-a, a) \times(0, L) \times \Omega$, for some $a>0$, it follows that

Here we have used integration by parts and the boudary condition in (2.1). Since the assumption of the velocity field q and limiting condition, one obtains that

$$
\int_{(-a, a) \times(0, L) \times \Omega} q \cdot \nabla_{x, y} \phi d s d x d y=0
$$

and

$$
\int_{(0, L) \times \Omega} q_{1}(x, y)[\phi(a, x, y)-\phi(-a, x, y)] d x d y=0
$$

as $a \rightarrow \infty$. Lastly, since $\nabla_{s, x, y} \phi \rightarrow 0$ as $s \rightarrow \pm \infty$, we have

$$
c L|\Omega|=\int_{\mathbb{R} \times(0, L) \times \Omega} f(\phi) d s d x d y
$$

as $a \rightarrow \infty$. Then $c>0$ because $\int_{\mathbb{R} \times(0, L) \times \Omega} f(\phi) d s d x d y>0$.
Actually, we have the bounds for the speeds of propagation [4].
Proposition 2.2. Given $M>0$, there exist \bar{c}, cepending only on θ, f and M such that $0<\underline{c}<\bar{c}$ and $\|q\|_{\infty} \leq M$ Then for all solution (c, u) of (1.3), we have the estimates on the speed

2.2 The Uniqueness of the Speed and Monotonicity of the Solution

In this section, we prove the uniqueness of the speed c and monotonicity of the solution u for the problem (1.3). We mainly use sliding method in infinite cylinders developed by Berestycki and Nirenberg [3]. We first prove the monotonicity of the solution u.

Theorem 2.3. Let (c, u) be a classical solution of (1.3). Then the function u is increasing in t.

Remark. The assertion of Theorem 2.3 is equivalent to the function ϕ is increasing in s. It turns out that this fact will be used in proving the uniqueness of the speed.

We want to use the sliding method so the following lemmas are useful. The following lemmas are maximum principle in unbounded domain [1].

Lemma 2.4. Let $f(\phi)$ be a globally bounded and Lipschitz-continuous function defined on \mathbb{R}, and assume that f is nonincreasing with respect to ϕ in $(-\infty, \delta]$ for some $\delta>0$. Let $h \in \mathbb{R}$ and define $\Sigma_{h}^{-}=(-\infty, h) \times \Sigma$. Let $c \neq 0$ and $\phi_{1}(s, x, y), \phi_{2}(s, x, y) \in$ $C^{1,2} \overline{\left(\Sigma_{h}^{-}\right)}$such that

$$
\begin{cases}\mathcal{L} \phi_{1}+f\left(\phi_{1}\right) \geq 0, & \text { in } \Sigma_{h}^{-} \\ \mathcal{L} \phi_{2}+f\left(\phi_{2}\right) \leq 0, & \text { in } \Sigma_{h}^{-} \\ \partial_{s}\left(\phi_{1}-\phi_{2}\right) \nu_{1}+\nabla_{x, y}\left(\phi_{1}-\phi_{2}\right) \cdot \nu \leq 0, & \text { on }(-\infty, h] \times \partial \Sigma \\ \lim _{s_{0} \rightarrow-\infty} \sup _{\substack{s \leq s_{0} \\(x, y) \in \bar{\Sigma}}}\left(\phi_{1}-\phi_{2}\right)(s, x, y) \leq 0, & \end{cases}
$$

where \mathcal{L} is defined as (2.2). If $\phi_{1} \leq \delta$ in $\overline{\Sigma_{h}^{-}}$and $\phi_{1}(h, x, y) \leq \phi_{2}(h, x, y)$ for all $(x, y) \in \bar{\Sigma}, \phi_{1} \leq \phi_{2}$ in $\overline{\Sigma_{h}}$.

We replace s by $-s$ in Lemma 2.4, we have a similar result as follows:

Lemma 2.5. Let $f(\phi)$ be a globally bounded and Lipschitz-continuous function defined on \mathbb{R}, and assume that f is nonincreasing with respect to ϕ in $[1-\delta, \infty)$ for some $\delta>0$. Let $h \in \mathbb{R}$ and define $\Sigma_{h}^{+}=(h, \infty) \times \Sigma^{\text {Let }}{ }^{*} \neq 0$ and $\phi_{1}(s, x, y), \phi_{2}(s, x, y) \in C^{1,2} \overline{\left(\Sigma_{h}^{+}\right)}$ such that

$$
\begin{cases}\mathcal{L} \phi_{1}+f\left(\phi_{1}\right) \geq 0, & \text { in } \Sigma_{h}^{+} \\ \mathcal{L} \phi_{2}+f\left(\phi_{2}\right) \leq 0, & \text { in } \Sigma_{h}^{+} \\ \partial_{s}\left(\phi_{1}-\phi_{2}\right) \nu_{1}+\nabla_{x, y}\left(\phi_{1}-\phi_{2}\right) \cdot \nu \leq 0, & \text { on }[h, \infty) \times \partial \Sigma \\ \lim _{s_{0} \rightarrow \infty} \sup _{\substack{s \geq s_{0} \\(x, y) \in \bar{\Sigma}}}\left(\phi_{1}-\phi_{2}\right)(s, x, y) \leq 0, & \end{cases}
$$

where \mathcal{L} is defined as (2.2). If $\phi_{2} \geq 1-\delta$ in $\overline{\Sigma_{h}^{+}}$and $\phi_{1}(h, x, y) \leq \phi_{2}(h, x, y)$ for all $(x, y) \in \bar{\Sigma}, \phi_{1} \leq \phi_{2}$ in $\overline{\Sigma_{h}^{+}}$.

Now, we prove the following unique result.

Theorem 2.6. Suppose $\left(c_{1}, u_{1}\right)$ and $\left(c_{2}, u_{2}\right)$ are two classical solution of (1.3), then $c_{1}=c_{2}$ and there exists $h \in \mathbb{R}$ such that $u_{1}(t, x, y)=u_{2}(t+h, x, y)$ for all $(t, x, y) \in$ $\mathbb{R} \times \bar{\Sigma}$.

Proof.

Let $\left(c_{1}, u_{1}\right)$ and $\left(c_{2}, u_{2}\right)$ be two classical solutions of (1.3). We assume that $c_{1} \geq c_{2}>$ 0 . Let $\phi_{1}(s, x, y)=u_{1}\left(\frac{s-x}{c_{1}}, x, y\right)$ and $\phi_{2}(s, x, y)=u_{2}\left(\frac{s-x}{c_{2}}, x, y\right)$. Then the functions ϕ_{1} and ϕ_{2} satisfy the same boundary, periodicity, and limiting condition. And ϕ_{1} is a solution of

$$
\begin{equation*}
\left.\partial_{s s} \phi_{1}+\partial_{s x} \phi_{1}+\partial_{x s} \phi_{1}+\triangle \phi_{1} 1\right\rangle\left(\partial^{\prime}\left(q_{1}+c_{1}\right) \partial_{s} \phi_{1}-q \cdot \nabla \phi_{1}+f\left(\phi_{1}\right)=0 .\right. \tag{2.3}
\end{equation*}
$$

On the other hand, ϕ_{2} satisfies

the last inequality holds since $\partial_{s} \phi_{2}>0$ from Theorem 2.3.
Now, we slide the function ϕ_{2} with respect to ϕ_{1}. We use Lemma 2.4 and Lemma 2.5 to get that there exists a $\tau^{*} \in \mathbb{R}$ such that $\phi_{2}\left(s+\tau^{*}, x, y\right)=\phi_{1}(s, x, y)$ for all $(s, x, y) \in \mathbb{R} \times \bar{\Sigma}$. Putting that into (2.3) and (2.4) gives $\left(c_{2}-c_{1}\right) \partial_{s} \phi_{2} \equiv 0$. This implies that $\partial_{s} \phi_{2}=0$ then one has reached a contradiction. Hence, $c_{1}=c_{2}:=c$, and from definition of ϕ_{1} and ϕ_{2}, we have $u_{1}(t, x, y)=u_{2}\left(t+\frac{\tau^{*}}{c}, x, y\right)$ for all $(t, x, y) \in \mathbb{R} \times \bar{\Sigma}$.

2.3 Existence of the Pulsating Travelling Wave Solution

In this section, since the proof of the existence result in Berestycki and Hamel [1] is tedious, we only give the main idea of their proof. Recently, M. Bages and P. Martinez [4] gave the proof for the existence results by a new method.

We divide the proof into four steps:

Step 1: Elliptic regularization in finite cylinder

Recall that the first equation of (2.1) is the degenerate elliptic equation so we use elliptic regularization. Let $\varepsilon>0$)is-regularization paràmeter and define

$$
\mathcal{L}_{\varepsilon} \phi:=\varepsilon \phi_{s s}+\phi_{s s}+\phi_{s x}+\phi_{x s}+\mathcal{L}_{, y} \phi_{4}\left(q_{1}(x, y)+c\right) \phi_{s}-q(x, y) \cdot \nabla_{x, y} \phi .
$$

Now, we consider the problem on the finitecylinder. Hence, the problem (2.1) becomes

$$
\left\{\begin{array}{l}
\mathcal{L}_{\varepsilon} \phi+f(\phi) \frac{0, y}{}, \text { on }(-a, a) \times \partial \Sigma \tag{2.5}\\
\phi_{s} \nu_{1}+\nabla_{x, y} \phi \cdot \nu=0, \\
\phi(s, x, y)=\phi(s, x+L, y), \quad \text { in } \overline{\Sigma_{a}} \\
\phi(-a, x, y)=0 \\
\phi(a, x, y)=1
\end{array}\right.
$$

where $\Sigma_{a}=(-a, a) \times \Sigma, a>0$.
From Lax-Milgram theorem, we get a weak solution ϕ for the probelm (2.5), and then using regularity theory up to the boundary, hence the solution ϕ is a classical solution in $\widetilde{\Sigma_{a}}:=\overline{\Sigma_{a}} \backslash(\{ \pm a\} \times \partial \Sigma)$. Finally, we build a supersolution (see [1, 3]) to get the solution ϕ can be continuously extended on the corners $\{ \pm a\} \times \partial \Sigma$ of the closed
cylinder $\overline{\Sigma_{a}}$. Moreover, we use sliding method to get the uniquess and monotonicity of the solution, it's the same as Section 2.2. Hence, we have the results as the following:

Theorem 2.7. For each $c \in \mathbb{R}$, there exists unique solution $\phi_{\varepsilon, a}^{c} \in C\left(\overline{\Sigma_{a}}\right) \cap C^{2}\left(\widetilde{\Sigma_{a}}\right)$ of (2.5) and the solution is increasing in s.

For a large enough, we ensure that the existence of the nontrivial solution $\phi_{\varepsilon, a}^{c}$ and the speed $c_{\varepsilon, a}$. So we need bounds for the speed and the solution satisfies normalization condition.

Proposition 2.8. There exists $a_{0}>0$ and $k>0$ such that, $\forall a \geq a_{0}$ and $\forall \varepsilon \in(0,1]$, there exists a unique $c:=c_{\varepsilon, a} \in \mathbb{R}$ such that the solution $\phi_{\varepsilon, a}^{c} \in C\left(\overline{\Sigma_{a}}\right) \cap C^{2}\left(\widetilde{\Sigma_{a}}\right)$ of (2.5) satisfies the normalization condition

Step 2: Eigenvalue problem of elliptic problem (2.5) in the half-cylinder

 $[-a, 0] \times \Sigma$Since the function $\phi_{\varepsilon, a}^{c}$ satisfies the normalization condition $\max _{\bar{\Sigma}} \phi_{\varepsilon, a}^{c}(0, x, y)=\theta$ and $\phi_{\varepsilon, a}^{c}$ is increasing in $s, \phi_{\varepsilon, a}^{c}(s, x, y)<\phi_{\varepsilon, a}^{c}(0, x, y) \leq \max _{\bar{\Sigma}} \phi_{\varepsilon, a}^{c}(0, x, y)=\theta$ for $s \in[-a, 0]$. For $s \in[-a, 0]$, we have $f\left(\phi_{\varepsilon, a}^{c}\right)=0$; hence we must solve the problem

$$
\begin{cases}\mathcal{L}_{\varepsilon} \phi=0, & \text { in }(-a, 0) \times \Sigma \tag{2.6}\\ \phi_{s} \nu_{1}+\nabla_{x, y} \phi \cdot \nu=0, & \text { on }(-a, 0) \times \partial \Sigma \\ \phi(s, x, y)=\phi(s, x+L, y), & \text { in }[-a, 0] \times \bar{\Sigma}\end{cases}
$$

We want to build the solution of the exponential type $\phi(s, x, y)=e^{\lambda s} \psi(x, y)$ be L-periodic function for some $\lambda>0$. Plug $\phi(s, x, y)=e^{\lambda s} \psi(x, y)$ into (2.6), we get the
eigenvalue problem

$$
\begin{cases}\mathcal{L}_{c, \lambda} \psi=\left(\varepsilon \lambda^{2}\right) \psi, & \text { in } \Sigma \tag{2.7}\\ \lambda \psi \nu_{1}+\nabla_{x, y} \psi \cdot \nu=0, & \text { on } \partial \Sigma \\ \psi(x, y)=\psi(x+L, y) & \text { in } \bar{\Sigma}\end{cases}
$$

where $\mathcal{L}_{c, \lambda}:=-\triangle_{x, y} \psi-2 \lambda \psi_{x}+q \cdot \nabla_{x, y} \psi+\left(q_{1}+c\right) \lambda \psi-\lambda^{2} \psi$.
For the eigenvalue problem (2.7), we have known that the existence and uniqueness of eigenvalue correspoding to the eigenfunction from Krein-Rutman theory [5].

Theorem 2.9. For all $c>0$ and $\varepsilon>0$, there exists a uinque positive $\lambda=\lambda^{\varepsilon, c}$ and a positive function $\psi=\psi_{c} \in C^{2}(\bar{\Sigma})$, unique up to multiplication such that the eigenvalue problem (2.7) is satisfied. Furthermore, $\lambda^{\varepsilon, e}$ is decreasing with respect to $\varepsilon>0$ and increasing with respect to $c>0$.

Remark. This theorem is helpful to prove the fimiting condition $\phi(-\infty, x, y)=0$.

Step 3: Pass the limit $a \rightarrow \infty$ in the infinite cylinder

Letting $a \rightarrow \infty$, we need to ensure that thesolution $\phi_{\varepsilon, a}^{c}$ with the speed $c=c_{\varepsilon, a}$, which converges to $\phi_{\varepsilon}^{c_{\varepsilon}}$ with the speed c_{ε}, up to extraction of some subsequence. In order to take subsequence which converges, we have the estimates for the speed.

Proposition 2.10. There exists $a_{0}>0$ and $k>0$, for all $\varepsilon>0$, we have

$$
0<c_{\varepsilon}:=\liminf _{a \rightarrow \infty, a \geq a_{0}} c_{\varepsilon, a} \leq k
$$

Now, we consider a sequence $a_{n} \rightarrow \infty$ and let $\phi_{n}:=\phi_{\varepsilon, a_{n}}$, Proposition 2.10 asserts that up to extraction of subsequence (still denoted by $c_{\varepsilon, a_{n}}$) $c_{\varepsilon, a_{n}} \rightarrow c_{\varepsilon}>0$. On the other hand, up to extraction of subsequence (still denoted by ϕ_{n}) ϕ_{n} converges to a function ϕ_{ε} in $C_{l o c}^{2}(\mathbb{R} \times \bar{\Sigma})$ as $a_{n} \rightarrow \infty$.

Theorem 2.11. $\left(c_{\varepsilon}, \phi_{\varepsilon}\right)$ is a solution of

$$
\begin{cases}\mathcal{L}_{\varepsilon} \phi+f(\phi)=0, & \text { in } \mathbb{R} \times \bar{\Sigma} \tag{2.8}\\ \phi_{s} \nu_{1}+\nabla_{x, y} \phi \cdot \nu=0, & \text { on } \mathbb{R} \times \partial \Sigma \\ \phi(s, x, y)=\phi(s, x+L, y), & \text { in } \mathbb{R} \times \bar{\Sigma} . \\ \phi(-\infty, x, y)=0 & \\ \phi(\infty, x, y)=1 & \end{cases}
$$

Furthermore, ϕ_{ε} is increasing in s and satisfies the normalization condition

Let $u_{\varepsilon}(t, x, y)=\phi_{\varepsilon}\left(x+c_{\varepsilon} t, x, y\right)$ be the function defined for all $t \in \mathbb{R}$ and $(x, y) \in \Sigma$, where ϕ_{ε} is a solution of (2.8). In fact, the function u_{ε} satisfies the gradient estimate: Proposition 2.12. For any compact subset 1 of $\bar{\Sigma}$, there exists constant K depending only on Γ, such that, for all $\varepsilon>0$, we have

$$
\int_{\mathbb{R} \times \Gamma}\left[\left(\frac{\partial}{\partial t} u_{\varepsilon}\right)^{2}+\left|\nabla_{x, y} u_{\varepsilon}\right|^{2}\right] d t d x d y \leq K\left(\frac{1+n\|q\|_{\infty}^{2}}{2}+F(1)\right)
$$

where $F(1)=\int_{0}^{1} f(\phi) d \phi$.
Proof.
For simplicity, we denote ϕ_{ε} by ϕ in this proof.
In Theorem 2.1, we have

$$
c_{\varepsilon} L|\Omega|=\int_{\mathbb{R} \times(0, L) \times \Omega} f(\phi) d s d x d y .
$$

Given $a>0$, we multiply the first equation of (2.8) by ϕ over $(-a, a) \times(0, L) \times \Omega$, and then using integration by parts and boundary condition, it follows that

$$
\begin{gathered}
-\int_{(-a, a) \times(0, L) \times \Omega}\left[\varepsilon \phi_{s}^{2}+\phi_{s}^{2}+\phi_{s} \phi_{x}+\phi_{x} \phi_{s}+\left|\nabla_{x, y} \phi\right|^{2}\right]+\int_{(-a, a) \times(0, L) \times \Omega} f(\phi) \phi \\
\quad+\int_{(0, L) \times \Omega}\left[\varepsilon \phi_{s} \phi+\phi_{s} \phi+\phi_{x} \phi-\frac{1}{2}\left(q_{1}+c_{\varepsilon}\right) \phi^{2}\right]_{-a}^{a}=0,
\end{gathered}
$$

where $[\phi(\cdot)]_{-a}^{a}=\phi(a)-\phi(-a)$. Here we have used $\phi_{s s} \phi=\left(\phi_{s} \phi\right)_{s}-\phi_{s}^{2}$ and $\phi_{x s} \phi=$ $\left(\phi_{x} \phi\right)_{s}-\phi_{x} \phi_{s}$. Letting $a \rightarrow \infty$, we have

$$
\frac{1}{2} c_{\varepsilon} L|\Omega|+\int_{\mathbb{R} \times(0, L) \times \Omega}\left[\varepsilon \phi_{s}^{2}+\left|\nabla_{y y} \phi\right|^{2}+\left(\phi_{x} x+\phi_{s}\right)^{2}\right]=\int_{\mathbb{R} \times(0, L) \times \Omega} f(\phi) \phi
$$

since $\nabla_{s, x, y} \phi \rightarrow 0$ as $s \rightarrow \pm \infty$ and the velocity field q satisfies (1.2). Indeed, we have
where $e=(1,0,0, \ldots, 0) \in \mathbb{R}^{n}$, since $\varepsilon_{\text {定 }} 0$ and $\int_{\mathbb{R} \times(0, L) \times \Omega} f(\phi) \phi \leq \int_{\mathbb{R} \times(0, L) \times \Omega} f(\phi)=$ $c_{\varepsilon} L|\Omega|$.

Now, we multiply the first equation of (2.8) by ϕ_{s} over $(-a, a) \times(0, L) \times \Omega$, and then using integration by parts, boundary condition and $\nabla_{s, x, y} \phi \rightarrow 0$ as $s \rightarrow \pm \infty$, we get

$$
c_{\varepsilon} \int_{\mathbb{R} \times(0, L) \times \Omega} \phi_{s}^{2}=\int_{(0, L) \times \Omega} F(1)-\int_{\mathbb{R} \times(0, L) \times \Omega} q \cdot\left(\phi_{s} \cdot e+\nabla_{x, y} \phi\right) \phi_{s}
$$

where $e=(1,0,0, . ., 0) \in \mathbb{R}^{n}$. Then

$$
c_{\varepsilon} \int_{\mathbb{R} \times(0, L) \times \Omega} \phi_{s}^{2}=\int_{(0, L) \times \Omega} F(1)-\int_{\mathbb{R} \times(0, L) \times \Omega} q \cdot\left(\phi_{s} \cdot e+\nabla_{x, y} \phi\right) \phi_{s}
$$

$$
\leq \int_{(0, L) \times \Omega} F(1)+\int_{\mathbb{R} \times(0, L) \times \Omega} \frac{\|q\|_{\infty}}{2}\left(\alpha\left|\phi_{s} \cdot e+\nabla_{x, y} \phi\right|^{2}+\frac{n}{\alpha} \phi_{s}^{2}\right) .
$$

We take $\alpha=\frac{n\|q\|_{\infty}}{c_{\varepsilon}}>0$ and using (2.9), it obtains that

$$
\begin{equation*}
\frac{c_{\varepsilon}}{2} \int_{\mathbb{R} \times(0, L) \times \Omega} \phi_{s}^{2} \leq \int_{(0, L) \times \Omega} F(1)+L|\Omega| \frac{n\|q\|_{\infty}^{2}}{4} \tag{2.10}
\end{equation*}
$$

Finally, we multiply the both sides of (2.10) by $2 c_{\varepsilon}>0$, one obtains that

$$
\begin{equation*}
\int_{\mathbb{R} \times(0, L) \times \Omega}\left(c_{\varepsilon} \phi_{s}\right)^{2} \leq 2 c_{\varepsilon} \int_{(0, L) \times \Omega} F(1)+c_{\varepsilon} L|\Omega| \frac{n\|q\|_{\infty}^{2}}{2} . \tag{2.11}
\end{equation*}
$$

Lastly, combining (2.9) and (2.11) and using the fact that ϕ is L-periodic with respect to x. For any compact subset Γ of $₹$ there exists a constant K depending only on Γ such that

$$
\begin{aligned}
& \int_{\mathbb{R} \times[0, L] \times \Omega}\left[c_{\varepsilon}^{2} \phi_{s}^{2}+\left|\nabla_{y} \phi\right|^{2}+\left(\phi_{x}+\phi_{s}\right)^{2}\right] \\
& g \text { the change of variables } u_{\varepsilon}(t, x, y)=\phi_{\varepsilon}\left(x+c_{\varepsilon} t, x, y\right) \text {, we can get the desired }
\end{aligned}
$$

By using the change of variables $u_{\varepsilon}(t, x, y)=\phi_{\varepsilon}\left(x+c_{\varepsilon} t, x, y\right)$, we can get the desired result.

Step 4: Regularization parameter $\varepsilon \rightarrow 0$

Finally, we need regularization parameter $\varepsilon \rightarrow 0$. For the speed $c_{\varepsilon}:=\liminf _{a \rightarrow \infty, a \geq a_{0}} c_{\varepsilon, a}$, in order to take subsequence of c_{ε} as $\varepsilon \rightarrow 0$, we have the estimates as the following:

Proposition 2.13. There exists $k>0$, we have $0<\liminf _{\varepsilon \rightarrow 0} c_{\varepsilon} \leq k$.

From Theorem 2.11, we know that $\left(c_{\varepsilon}, \phi_{\varepsilon}\right)$ is a solution of

$$
\begin{cases}\mathcal{L}_{\varepsilon} \phi+f(\phi)=0, & \text { in } \mathbb{R} \times \bar{\Sigma} \\ \phi_{s} \nu_{1}+\nabla_{x, y} \phi \cdot \nu=0, & \text { on } \mathbb{R} \times \partial \Sigma \\ \phi(s, x, y)=\phi(s, x+L, y), & \text { in } \mathbb{R} \times \bar{\Sigma} . \\ \phi(-\infty, x, y)=0 & \\ \phi(\infty, x, y)=1 & \end{cases}
$$

Recall that $u_{\varepsilon}(t, x, y)=\phi_{\varepsilon}\left(x+c_{\varepsilon} t, x, y\right)$, then $\left(c_{\varepsilon}, u_{\varepsilon}\right)$ is a classical solution of

and $0<u_{\varepsilon}<1, u_{\varepsilon}$ is increasing in t. We observe $\frac{\varepsilon}{c_{\varepsilon}^{2}}$ in (2.12) and from Proposition 2.13, up to extraction of subsequence such that $\frac{\varepsilon}{c_{\varepsilon}^{2}} \rightarrow 0$ as $\varepsilon \rightarrow 0$. Then the equation (2.12) becomes the degenerate elliptic equation as $\varepsilon \rightarrow 0$.

Since the function u_{ε} satisfies the gradient estimate for all $\varepsilon>0$ by Proposition 2.12, there exists a function $u \in H_{l o c}^{1}(\mathbb{R} \times \Sigma)$ such that up tp extraction of subsequence $u_{\varepsilon} \rightarrow u$ almost everywhere in $\mathbb{R} \times \Sigma$ and $u_{\varepsilon} \rightharpoonup u, \nabla_{t, x, y} u_{\varepsilon} \rightharpoonup \nabla_{t, x, y} u$ in $L^{2}(\mathbb{R} \times \Gamma)$ for all compact subset $\Gamma \subset \bar{\Sigma}$ as $\varepsilon \rightarrow 0$. Moreover, we have $0 \leq u \leq 1, u_{t} \geq 0$ and u satisfies the gradient estimate

$$
\int_{\mathbb{R} \times \Gamma}\left[\left(\frac{\partial}{\partial t} u\right)^{2}+\left|\nabla_{x, y} u\right|^{2}\right] d t d x d y \leq K\left(\frac{1+n\|q\|_{\infty}^{2}}{2}+F(1)\right)
$$

for all compact subset $\Gamma \subset \bar{\Sigma}$, where $F(1)=\int_{0}^{1} f(\phi) d \phi$.
Now, we must ensure that the function u is a classical solution of

$$
\begin{cases}u_{t}-\triangle_{x, y} u+q \cdot \nabla_{x, y} u=f(u), & \text { in } \mathbb{R} \times \bar{\Sigma} \tag{2.13}\\ \nabla_{x, y} u \cdot \nu=0, & \text { on } \mathbb{R} \times \partial \Sigma\end{cases}
$$

We take any test function $\phi \in C_{c}^{2}(\mathbb{R} \times \bar{\Sigma})$, multiplying the first equation in (2.12) and integrating by parts, we get

$$
\int_{\mathbb{R} \times \Sigma} \frac{\varepsilon}{c_{\varepsilon}^{2}} \frac{\partial u_{\varepsilon}}{\partial t} \phi_{t}-\frac{\partial u_{\varepsilon}}{\partial t} \phi-\nabla_{x, y} u_{\varepsilon} \cdot \nabla_{x, y} \phi-\left(q \cdot \nabla_{x, y} u_{\varepsilon}\right) \phi+f\left(u_{\varepsilon}\right) \phi=0
$$

then letting $\varepsilon \rightarrow 0$, it follows that

Hence, the function u is a classical solution of (2.13) by parabolic regularity theory.
Since the function u_{ε} satisfies the periodic condition

$$
u_{\varepsilon}\left(t+\frac{L}{c_{\varepsilon}}, x, y\right) \neq u_{\varepsilon}(t, x+L, y)
$$

and the gradient estimate in Proposition 2.12, we consider

$$
\int_{(-a, a) \times \Gamma}\left[u_{\varepsilon}\left(t+\frac{L}{c}, x, y\right)-u_{\varepsilon}(t, x+L, y)\right]^{2} d t d x d y
$$

for all $a>0$ and compact subset $\Gamma \subset \bar{\Sigma}$. It follows that

$$
\int_{(-a, a) \times \Gamma}\left[u_{\varepsilon}\left(t+\frac{L}{c}, x, y\right)-u_{\varepsilon}(t, x+L, y)\right]^{2} d t d x d y
$$

$$
\begin{aligned}
& =\int_{(-a, a) \times \Gamma}\left[u_{\varepsilon}\left(t+\frac{L}{c}, x, y\right)-u_{\varepsilon}\left(t+\frac{L}{c_{\varepsilon}}, x, y\right)\right]^{2} d t d x d y \\
& \leq\left(\frac{L}{c}-\frac{L}{c_{\varepsilon}}\right)^{2} \int_{\mathbb{R} \times \Gamma}\left(\frac{\partial u_{\varepsilon}}{\partial t}\right)^{2} d t d x d y \\
& \leq\left(\frac{L}{c}-\frac{L}{c_{\varepsilon}}\right)^{2} K\left(\frac{1+n\|q\|_{\infty}^{2}}{2}+F(1)\right)
\end{aligned}
$$

where $F(1)=\int_{0}^{1} f(\phi) d \phi$. Letting $\varepsilon \rightarrow 0$, we have $u\left(t+\frac{L}{c}, x, y\right)=u(t, x+L, y)$ since u is continuous. This shows that the function u satisfies the periodic condition. Furthermore, from [1], the function u satisfies the normalization condition
and the limiting condition, for all t

Combining the above four steps, we gèt the existence of the pulsating travelling wave solution of (1.3).

Chapter 3

Proof of Theorem 1.3

In this chapter, we consider the nonlinear'term f is monostable type. That is, f satisfies $0<f(u)<1$ in $(0,1), f(0)=f(1)=0, f^{\prime}(0)>0$. First, we prove that the solution u is increasing with respect to t in Section 3.1. Second, we sketch the proof of the existence of travelling wave solutions* (c, u) if $c \geq e^{*}$ in ection 3.2. Finally, we show that there is no solution (c, u) if $c<c^{*}$ in Section

3.1 Monotonicity of the Solution

Proposition 3.1. Let f be a function which satisfies $0<f(u)<1$ in $(0,1), f(0)=$ $f(1)=0, f^{\prime}(0)>0$. Suppose that (c, u) be a classical solution of (1.3). Then the function u is increasing in t.

3.2 Existence of a Pulsating Travelling Wave Solution

$$
\text { for } c \geq c^{*}
$$

We want to use a cutoff function such that monostable nonlinear term f becomes combustion type. We define the function $\chi \in C^{1}(\mathbb{R})$ such that

Hence, we define $f_{\theta}(u)=f(u) \chi_{\theta}(u)$, for all $u \in \mathbb{R}$. This function f_{θ} be a combustion type nonlinearity.

Now we consider the problem

$$
\begin{cases}u_{t}-\triangle_{x, y} u+q(x, y) \cdot \nabla_{x, y} u=f_{\theta}(u), & \text { in } \mathbb{R} \times \bar{\Sigma} \tag{3.1}\\ \nabla_{x, y} u \cdot \nu=0, & \text { on } \mathbb{R} \times \partial \Sigma \\ u\left(t+\frac{L}{c}, x, y\right)=u(t, x+L, y), & \text { in } \mathbb{R} \times \bar{\Sigma} \\ u(t,-\infty, y)=0 & \\ u(t, \infty, y)=1 & \end{cases}
$$

From Theorem 1.2, there exists a uinque classical solution $\left(c_{\theta}, u_{\theta}\right)$ for the problem (3.1). Furthermore, the function u_{θ} satisfies the gradient estimate
for all compact subset $\Gamma \subset \frac{\circ}{\Sigma}$, where $F_{\theta}(1)$ only on Γ.

Since the speed c_{θ} is nonincreasing with respect to θ (see [1]) and $\underline{c}<c_{\theta}<\bar{c}$ for some $0<\underline{c}<\bar{c}$ from Proposition 2.2, कthere exists $c^{*}>0$ such that $c_{\theta} \nearrow c^{*}$ as $\theta \searrow 0$. Consider a sequence $\theta_{n} \searrow 0$, one can assume that $u_{\theta_{n}}\left(0, x_{0}, y_{0}\right)=\frac{1}{2}$, where $\left(x_{0}, y_{0}\right)$ is an arbitrarily chosen point in $\bar{\Sigma}$ since we can suitably shift in t. Up to extraction of some subsequence, the function $u_{\theta_{n}} \rightarrow u^{*}$ locally uinformly from parabolic regularity theory. Then the function u^{*} is a classical solution of

$$
\begin{cases}u_{t}-\triangle_{x, y} u+q(x, y) \cdot \nabla_{x, y} u=f(u), & \text { in } \mathbb{R} \times \bar{\Sigma} \\ \nabla_{x, y} u \cdot \nu=0, & \text { on } \mathbb{R} \times \partial \Sigma \\ u\left(t+\frac{L}{c}, x, y\right)=u(t, x+L, y), & \text { in } \mathbb{R} \times \bar{\Sigma}\end{cases}
$$

Furthermore, $u^{*}\left(0, x_{0}, y_{0}\right)=\frac{1}{2}, u_{t}^{*} \geq 0$ and u^{*} satisfies the gradient estimate. In [1], we
can know that $u^{*}(-\infty, x, y)=0, u^{*}(\infty, x, y)=1$ and u^{*} is increasing with respect to t. Hence, $\left(c^{*}, u^{*}\right)$ is a classical solution of (1.3) with the monostable nonlinearity f. We state the results as follows:

Theorem 3.2. There exists $\left(c^{*}, u^{*}\right)$ is a classical solution of (1.3). Moreover, $c^{*}>0$, $0<u^{*}<1$ and u^{*} is increasing with respect to t.

Actually, here c^{*} is the minimal speed. Berestycki, Hamel and Nadirashvili [2] give a variational charaterization of this minimal speed c^{*}. In addition, we assume that nonlinearity f satisfies
for all $u \in(0,1)$. Then where $k(\lambda)$ is the principal eigenvalue of operator

acting on the set $E=\left\{\psi \in C^{2}(\bar{\Sigma}): \psi\right.$ is L - periodic with respect to x and $\nabla \psi \cdot \nu=0$ on $\left.\partial \Sigma\right\}$.
In particular, when $\Sigma=\mathbb{R}^{n}$ and $q=0$, the formula (3.2) gives the well-known KPP formula $c^{*}=2 \sqrt{f^{\prime}(0)}$ for the minimal speed of planar fronts.

Now, we prove the existence of solutions if $c \geq c^{*}$.

Theorem 3.3. For each $c \geq c^{*}$, there exists (c, u) is a classical solution of (1.3).

Proof. The method for the proof is similar as Section 2.3 so we sketch the proof. We only consider the case $c>c^{*}$ because the case $c=c^{*}$ has been done in Theorem 3.2. We divide the proof into four steps:

Step 1: The estimate for u^{*}

In [1], we have known that for all $(s, x, y) \in \mathbb{R} \times \bar{\Sigma},\left|\partial_{s s} \phi^{*}(s, x, y)\right| \leq \frac{k}{c^{*}} \partial_{s} \phi^{*}(s, x, y)$, where k is a constant and $\phi^{*}(s, x, y)=u^{*}\left(\frac{s-x}{c^{*}}, x, y\right)$.

Recall that the operator

$$
\mathcal{L}_{\varepsilon} \phi=\varepsilon \phi_{s s}+\phi_{s s}+\phi_{s x}+\phi_{x s}+\triangle_{x, y} \phi-\left(q_{1}(x, y)+c\right) \phi_{s}-q(x, y) \cdot \nabla_{x, y} \phi
$$

for any $\varepsilon>0$. From the definition of ϕ^{*}, one has $\mathcal{L}_{\varepsilon} \phi^{*}+f\left(\phi^{*}\right)=\varepsilon \phi_{s s}^{*}+\left(c^{*}-c\right) \phi_{s}^{*}$. Since $\left|\partial_{s s} \phi^{*}(s, x, y)\right| \leq \frac{k}{c^{*}} \partial_{s} \phi^{*}(s, x, y)$ and $\phi_{s}^{*}>0$, for ε small enough, we have
for all $(s, x, y) \in \mathbb{R} \times \Sigma$.

Step 2: Solve the regularization problem in finite cylinder

Let $a>0, \tau \in \mathbb{R}$ and $\dot{h}_{\tau}:=\min \phi^{*}($ consider the problem

$$
\begin{cases}\mathcal{L}_{\varepsilon} \phi+f(\phi)=0, \frac{\text { sin }}{} \tag{3.3}\\ \phi_{s} \nu_{1}+\nabla_{x, y} \phi \cdot \nu=0, & \text { on }(-a, a) \times \partial \Sigma \\ \phi(s, x, y)=\phi(s, x+L, y), & \text { in } \overline{\Sigma_{a}} \\ \phi(-a, x, y)=h_{\tau} \\ \phi(a, x, y)=\phi^{*}(a+\tau, x, y) & \end{cases}
$$

where $\Sigma_{a}=(-a, a) \times \Sigma$. We can use the same method as in Section 2.3 to prove the existence of solution for the problem (3.3). Then there exists $\phi_{\tau}(s, x, y) \in C\left(\overline{\Sigma_{a}}\right) \cap$ $C^{2}\left(\widetilde{\Sigma_{a}}\right)$ which is a solution of (3.3). Indeed, the function ϕ_{τ} is increasing in s, and ϕ_{τ} is increasing and continuous in τ (see [1]). Therefore, there exists unique $\tau(a) \in \mathbb{R}$ such
that $\phi_{\varepsilon, a}:=\phi_{\tau(a)}$ solves (3.3) and satisfies the normalization condition

$$
\int_{(0,1) \times(0, L) \times \Omega} \phi_{\varepsilon, a}(s, x, y) d s d x d y=\frac{1}{2} L|\Omega|
$$

after a suitable shift in s.

Step 3: Passage to the whole cylinder

Consider a sequence $a_{n} \rightarrow \infty$, up to extraction of some subsequce (still denoted by $\left.\phi_{\varepsilon, a_{n}}\right) \phi_{\varepsilon, a_{n}} \rightarrow \phi_{\varepsilon}$ in $C_{l o c}^{2}(\mathbb{R} \times \bar{\Sigma})$ as $a_{n} \rightarrow \infty$. Then the function ϕ_{ε} solves the problem
and $\frac{\partial}{\partial s} \phi_{\varepsilon} \geq 0,0 \leq \phi_{\varepsilon} \leq 1$. Furthermore, $\phi_{\text {皿 satisfies the normalization condition }}$

Since $\phi_{\varepsilon}(s, x, y) \rightarrow \phi_{\varepsilon}^{ \pm}(x, y)$ in $C_{l o c}^{2}(\bar{\Sigma})$ as $s \rightarrow \pm \infty, \phi_{\varepsilon}^{ \pm}$solves the equation

$$
\begin{cases}\triangle_{x, y} \phi_{\varepsilon}^{ \pm}-q \cdot \nabla_{x, y} \phi_{\varepsilon}^{ \pm}+f\left(\phi_{\varepsilon}^{ \pm}\right)=0, & \text { in } \mathbb{R} \times \bar{\Sigma} \\ \nabla_{x, y} \phi_{\varepsilon}^{ \pm} \cdot \nu=0, & \text { on } \mathbb{R} \times \partial \Sigma \\ \phi_{\varepsilon}^{ \pm}(x, y)=\phi_{\varepsilon}^{ \pm}(x+L, y), & \text { in } \mathbb{R} \times \bar{\Sigma}\end{cases}
$$

and $0 \leq \phi_{\varepsilon}^{ \pm} \leq 1$. From [1], one can obtains that $\phi_{\varepsilon}^{-}=0$ and $\phi_{\varepsilon}^{+}=1$. Therefore, ϕ_{ε} is a classical solution of

$$
\begin{cases}\mathcal{L}_{\varepsilon} \phi+f(\phi)=0, & \text { in } \mathbb{R} \times \bar{\Sigma} \\ \phi_{s} \nu_{1}+\nabla_{x, y} \phi \cdot \nu=0, & \text { on } \mathbb{R} \times \partial \Sigma \\ \phi(s, x, y)=\phi(s, x+L, y), & \text { in } \mathbb{R} \times \bar{\Sigma} \\ \phi(-\infty, x, y)=0 & \\ \phi(\infty, x, y)=1 & \end{cases}
$$

and it satisfies the gradient estimate

$$
\begin{equation*}
\int_{\mathbb{R} \times \Gamma}\left[\left(\frac{\partial}{\partial t} u_{\varepsilon}\right)^{2}+\left|\nabla_{x, y} u_{\varepsilon}\right|^{2}\right] d t d x d y \leq K\left(\frac{1+n\|q\|_{\infty}^{2}}{2}+F(1)\right) \tag{3.4}
\end{equation*}
$$

for all compact subset $\Gamma \subset \bar{\Sigma}$, where $F(1)=\int_{0}^{1} f(\phi) d \phi, K$ is a constant depending only on Γ and $u_{\varepsilon}(t, x, y)=\dot{\phi}_{\varepsilon}(x+c t, x, y)$.
Step 4: Regularization parameter \rightarrow_{0}^{0}

From (3.4), there exists $u \in H_{r e}^{1}(\mathbb{R} \times \Sigma)$ such that $0 p$ tp extraction of subsequence
 all compact subset $\Gamma \subset \bar{\Sigma}$ as $\varepsilon \rightarrow 0$. It is the same proof as in Section 2.3 so we can get the function u is a classical solution of (1.3).

Combining the above four steps, we prove the existence of solution for (1.3) with KPP type nonlinearity reaction term.

3.3 Nonexistence of Solutions for $c<c^{*}$

Recall that $\left(c_{\theta}, u_{\theta}\right)$ is a classical solution of (3.1) with f_{θ} for all $\theta \in(0,1)$. One knows that u_{θ} is increasing in t.

Theorem 3.4. There is no solution (c, u) of (1.3) if $c<c^{*}$.

Proof. Assume by contradition that there exists a solution (c, u) of (1.3) for $c<c^{*}$. Since speed c_{θ} is nonincreasing with respect to θ, there exists a $\theta>0$ small enough so that $c<c_{\theta}$. Theorem 2.1 asserts that the speed $c>0$. Let $\phi_{\theta}(s, x, y)=u_{\theta}\left(\frac{s-x}{c_{\theta}}, x, y\right)$, it satisfies

$$
\begin{align*}
& \partial_{s s} \phi_{\theta}+\partial_{s x} \phi_{\theta}+\partial_{x s} \phi_{\theta}+\triangle \phi_{\theta}-\left(q_{1}+c\right) \partial_{s} \phi_{\theta}-q \cdot \nabla \phi_{\theta}+f\left(\phi_{\theta}\right) \\
= & \left(c_{\theta}-c\right) \partial_{s} \phi_{\theta}+f\left(\phi_{\theta}\right)-f_{\theta}\left(\phi_{\theta}\right) \tag{3.5}\\
\geq & 0
\end{align*}
$$

the last inequality holds since $c<c_{\theta}, \partial_{s} \phi_{\theta} \geq 0$ and $f\left(\phi_{\theta}\right) \geq f_{\theta}\left(\phi_{\theta}\right)$. On the other hand, let $\phi(s, x, y)=u\left(\frac{s-x}{c}, x, y\right)$ is a solution of

Indeed, both function ϕ and ϕ_{θ} are I-perdic with respeet to x and satisfy the same limiting condition and boudarycondition. Now, we slide the function ϕ_{θ} with respect to ϕ. Then there exists a $\tau^{*} \in \mathbb{R}$ sueh that $\phi_{\theta}\left(s_{1} \tau^{*}, x, y\right)=\phi(s, x, y)$ for all $(s, x, y) \in$ $\mathbb{R} \times \bar{\Sigma}$. Putting that into (3.5) implies that

$$
\left(c_{\theta}-c\right) \partial_{s} \phi_{\theta}+f\left(\phi_{\theta}\right)-f_{\theta}\left(\phi_{\theta}\right)=0
$$

It contradicts to $\partial_{s} \phi_{\theta}>0$ or $f\left(\phi_{\theta}\right) \geq f_{\theta}\left(\phi_{\theta}\right)$.

Bibliography

[1] H. Berestycki, F. Hamel, Front propagation in periodic excitable media, Comm. Pure Appl. Math. 55 (2002), 949-1032.
[2] H. Berestycki, F. Hamel, N. Nadirashvili, The speed of propagation for KPP type problems: I-Periodic framework, J. Eur. Math. Soc. 7 (2005), 173-213.
[3] H. Berestycki, L. Nirenberg, Travelling fronts in cylinders, Ann. Inst. H. Poincaré, Anal. Non Linéaire 9 (1992), no. $5,497.572$.
[4] M. Bages, P. Martines, Existence of pulsating waves of adyection-reaction-diffusion equation of ignition type by a new method, Xonlinear Analysis (2009)
[5] P. Lax, Functional analysis, John Wiley \& Sons, Inc., New York, 2002.
[6] J. Xin, Existence of planar flame fronts in convective-diffusive periodic media, Arch. Ration. Mech. Anal. 121 (1992) 205-233.

Chapter 4

Introduction

In this part, we are concerned with travelling wave solutions for the competitive LotkaVolterra systems of three species $u=u(x, t), v=v(x, t)$ and $w=w(x, t)$:

where $u=u(x, t), v=v(x, t)$, and $w=w(x, t)$ represent the density of the three species u, v and w, respectively; $d_{i}, \lambda_{i}, c_{i i}(i=1,2,3), c_{i j}(i, j=1,2,3, i \neq j)$ are the diffusion rates, the intrinsic growth rates, the intra-specific competition rates, and the inter-specific competition rates, which are all assumed to be positive constants, respectively. This is a mathematical model frequently used in ecology to describe three species moving by diffusion and competing for the same resources [1].

We want to find travelling wave solutions of the form

$$
(u(x, t), v(x, t), w(x, t))=(U(z), V(z), W(z))
$$

where $z=x-\theta t$ and θ is the wave speed. Then $(U(z), V(z), W(z))$ satisfies

$$
\left\{\begin{array}{l}
d_{1} U_{z z}+\theta U_{z}+U\left(\lambda_{1}-c_{11} U-c_{12} V-c_{13} W\right)=0, \tag{4.2}\\
d_{2} V_{z z}+\theta V_{z}+V\left(\lambda_{2}-c_{21} U-c_{22} V-c_{23} W\right)=0, \quad z \in \mathbb{R} \\
d_{3} W_{z z}+\theta W_{z}+W\left(\lambda_{3}-c_{31} U-c_{32} V-c_{33} W\right)=0,
\end{array}\right.
$$

In the case of the systems of two competing species,

after a suitable transformation, where the constants a, b, ε, and d are positive. We look for travelling wave solutions of (4.3) of he form $(\mu(x, t), v(x, t))=(U(z), V(z))$, where $z=x-\theta t$ and θ is the wave speed. Then $(d(z), V(z))$ satisfies

$$
\left\{\begin{align*}
& U_{z z}+\theta U_{z}+U(1-U-c V)=0 \tag{4.4}\\
& \\
& d V_{z z}+\theta V_{z}+V(a-b U-V)=0
\end{align*}\right.
$$

Rodrigo and Mimura [3, 4] give many exact solutions for (4.4). Indeed, Kan-on has proved the existence and uinqueness of the solution for (4.4) in [2]. We give an example of exact solutions for (4.4):

Example 4.1. Suppose that $d=\frac{1}{3 c}, b=2+\frac{5 a}{3}-a c, \theta=\frac{-2+a c}{\sqrt{2 a c}}$. Then exact solution of (4.4) is of the form

$$
\begin{aligned}
& U(z)=\frac{1}{2}\left[1+\tanh \left(\frac{\sqrt{2 a c}}{4} z\right)\right] \\
& V(z)=\frac{1}{2}\left[1-\tanh \left(\frac{\sqrt{2 a c}}{4} z\right)\right]^{2}
\end{aligned}
$$

We return to problem of the systems of three competing species. We will look for monotonic solutions $(U(z), V(z))$ and a pulse solution $W(z)$ of (4.2) satisfying U, V, $W \geq 0$ for all $z \in \mathbb{R}$. In next chapter, we will show these semi-exact solutions of (4.2).

Chapter 5

Semi-Exact Solutions

In this chapter, we show seven types of semi-exact solutions of (4.2). In order to find these semi-exact solutions, we introduce some anastz.

Let T be a solution of the initial value problem

where $T_{0} \in(0,1)$ be a constant and a is a determined constant. And we suppose that travelling wave solutions are of the form

$$
\left\{\begin{array}{l}
U(z)=k_{1} T^{i}(z) \tag{5.2}\\
V(z)=k_{2}(1-T(z))^{m} \\
W(z)=k_{3} T^{n}(z)(1-T(z))^{2}
\end{array}\right.
$$

where i, m, n are positive integers, k_{1}, k_{2}, k_{3} are positive constants and T is the solution of (5.1). We put (5.2) into (4.2) and use (5.1), then (4.2) becomes the polynomial of T. In order to balance the terms of the polynomial of T, we need to choose i, m, n appropriately. This will give a system of algebraic equations involving $d_{i}, \lambda_{i}, c_{i i}$
$(i=1,2,3), c_{i j}(i, j=1,2,3, i \neq j), \theta, a$ and $k_{i}(i=1,2,3)$. We use Mathematica to solve this system of algebraic equations so that we can get the restriction of parameters $d_{i}, \lambda_{i}, c_{i i}(i=1,2,3), c_{i j}(i, j=1,2,3, i \neq j), \theta, a$ and $k_{i}(i=1,2,3)$.

5.1 Type-1 Solutions $(i, m, n)=(2,4,1)$

The following restriction on parameters appearing in (4.2) is assumed so that an exact solution is allowed.

$$
\begin{align*}
& d_{2}=\frac{a(7+5 a) d_{1}}{-2+a(11+a)}, d_{3}=\frac{(21+3 a)(7+5 a) d_{1}}{-13+3 a(8+3 a)}, \theta=(-7-5 a) d_{1}, \tag{5.3}
\end{align*}
$$

$$
\begin{align*}
& c_{11}=\frac{2(1+a)(4+3 a) d_{1}}{k_{1}}, c_{12}=\frac{8 d_{1}}{k_{2}}, c_{13}=\frac{2(9+7 a) d_{1}}{k_{3}}, \tag{5.5}\\
& c_{21}=\frac{4(2+a)(7+5 a)(-1+5 a(2+a)) d_{1}}{(-2+a(11+a)) k_{1}}, c_{22}=\frac{24 a(7+5 a) d_{1}}{(-2+a(11+a)) k_{2}}, \\
& c_{23}=\frac{44 a(2+a)(7+5 a) d_{1}}{(-2+a(11+a)) k_{3}}, \tag{5.6}\\
& c_{31}=\frac{(5+3 a)(7+5 a)(-9+a(17+12 a)) d_{1}}{(-13+3 a(8+3 a)) k_{1}}, c_{32}=\frac{15(-1+3 a)(7+5 a) d_{1}}{(-13+3 a(8+3 a)) k_{2}}, \\
& c_{33}=\frac{(-1+3 a)(7+5 a)(47+27 a) d_{1}}{(-13+3 a(8+3 a)) k_{3}}, \tag{5.7}
\end{align*}
$$

Figure 5.1: Profiles of U, V, W.
where k_{1}, k_{2}, k_{3} are constants,
Under the conditions (5.3)-(5.7), (4.2) adimits a solution of the form

where T is the solution of (5.1). Assume $k_{1}, k_{2}, k_{3}, d_{1}>0$, then the necessary and sufficient condition for $d_{i}, \lambda_{i}, c_{i i}(i=1,2,3), c_{i j}(i, j=1,2,3, i \neq j)>0$, and $a \notin[-1,0]$ in (5.1) to be satisfied is given by

$$
\frac{-11+\sqrt{129}}{2}<a<\frac{1}{3} \quad \text { or } \quad a>\frac{-4+\sqrt{29}}{3} .
$$

Approximately, $0.178908<a<0.34$ or $a>0.491722$.
Now, if one chooses $\left(a, k_{1}, k_{2}, k_{3}, d_{1}\right)=(1,1,2,3,1)$ and $T_{0}=\frac{1}{2}$ in (5.1), then $d_{2}=\frac{6}{5}$, $d_{3}=\frac{6}{5}, \theta=-12, \lambda_{1}=28, \lambda_{2}=\frac{144}{5}, \lambda_{3}=\frac{144}{5}, c_{11}=28, c_{12}=4, c_{13}=\frac{32}{3}, c_{21}=\frac{1008}{5}$, $c_{22}=\frac{72}{5}, c_{23}=\frac{264}{5}, c_{31}=96, c_{32}=9$, and $c_{33}=\frac{148}{5}$ by (5.3)-(5.7). The resulting profiles of U, V, W and T are shown in Figure 5.1 and Figure 5.2, respectively.

Figure 5.2: Profile of T with $a=1$ and $T_{0}=\frac{1}{2}$.

In particular, in the case of $a=1$, we make the change of variable $T^{2}=\frac{1}{2}(1+v)$, where T is the solution of (5.1) with initial condition $T(0)=\frac{1}{2}$. Then v solves the equation

It is easy to see $v(z)=\tanh _{z} z-\frac{1}{2}$. Hence, thesemi-exact solution (5.8) can be rewritten in terms of $\tanh z$:

$$
\left\{\begin{array}{l}
U(z)=k_{1}\left(\frac{1}{4}(1+2 \tanh z)\right] \\
V(z)=k_{2}\left(1-\frac{1}{2} \sqrt{1+2 \tanh z)^{4}}\right. \\
W(z)=k_{3}\left[\frac{1}{2} \sqrt{1+2 \tanh z}\left(1-\frac{1}{2} \sqrt{1+2 \tanh z}\right)^{2}\right]
\end{array}\right.
$$

5.2 Type-2 Solutions $(i, m, n)=(3,1,2)$

The following restriction on parameters appearing in (4.2) is assumed so that an exact solution is allowed.

$$
\begin{equation*}
d_{2}=\frac{(-1+4(-4+a) a) d_{1}}{-3+a(-3+2 a)}, d_{3}=\frac{2(-1+4(-4+a) a) d_{1}}{-9+a(-23+10 a)}, \theta=(-1+4(-4+a) a) d_{1} \tag{5.9}
\end{equation*}
$$

$$
\begin{align*}
& \lambda_{1}=3(1+9 a) d_{1}, \lambda_{2}=\frac{a(3+2 a(25+a(9+4(-5+a) a))) d_{1}}{-3+a(-3+2 a)}, \\
& \lambda_{3}=\frac{2(-1+4(-4+a) a)(9+a(4+a(-17+10 a))) d_{1}}{-9+a(-23+10 a)}, \\
& c_{11}=\frac{3(1+9 a) d_{1}}{k_{1}}, c_{12}=\frac{3(-1+a)(-1+a(-9+4 a)) d_{1}}{k_{2}}, c_{13}=\frac{15 d_{1}}{k_{3}}, \\
& c_{21}=\frac{(4+5 a)(-1+4(-4+a) a) d_{1}}{(-3+a(-3+2 a)) k_{1}}, c_{22}=\frac{a(3+2 a(25+a(9+4(-5+a) a))) d_{1}}{(-3+a(-3+2 a)) k_{2}}, \\
& c_{23}=\frac{3(-1+4(-4+a) a) d_{1}}{(-3+a(-3+2 a)) k_{3}} \tag{5.12}
\end{align*}
$$

$$
\begin{aligned}
& \text { where } k_{1}, k_{2}, k_{3} \text { are constants. }
\end{aligned}
$$

Under the conditions (5.9)-(5.13), (4.2) adimits a solution of the form

$$
\left\{\begin{array}{l}
U(z)=k_{1} T^{3}(z) \\
V(z)=k_{2}(1-T(z)) \\
W(z)=k_{3} T^{2}(z)(1-T(z))^{2}
\end{array}\right.
$$

where T is the solution of (5.1). Assume $k_{1}, k_{2}, k_{3}, d_{1}>0$, then the necessary and sufficient condition for $d_{i}, \lambda_{i}, c_{i i}(i=1,2,3), c_{i j}(i, j=1,2,3, i \neq j)>0$, and $a \notin[-1,0]$ in (5.1) to be satisfied is given by

$$
a>\frac{4+\sqrt{17}}{2}
$$

Figure 5.3: Profiles of U, V, W.

Approximately, $a>4.06155$.
Now, if one chooses $\left(a, k_{1}, k_{2}, k_{3}, d_{1}\right)=(5,1,2,8,1)$ and $T_{0}=\frac{1}{2}$ in (5.1), then $d_{2}=\frac{19}{32}$, $d_{3}=\frac{19}{63}, \theta=19, \lambda_{1}=138, \lambda_{2}=\frac{3515}{32}, \lambda_{3}=\frac{2318}{9}, c_{11}=138, c_{12}=324, c_{13}=\frac{15}{8}, c_{21}=\frac{551}{32}$, $c_{22}=\frac{3515}{64}, c_{23}=\frac{57}{256}, c_{31}=\frac{4598}{63}, c_{32}=\frac{1672}{7, \text { and }} c_{33}=\frac{19}{21}$ by $(5.9)-(5.13)$. The resulting profiles of U, V, W are shown in Figure 5.3 and the profile of T is similar to Figure 5.2.

.

5.3 Type-3 Solutions $(\hat{i}, m, n)=(3,2,2)$

The following restriction on parameters appearing in (4.2) is assumed so that an exact solution is allowed.

$$
\begin{equation*}
d_{2}=\frac{(2+a)(-2+(-25+a) a) d_{1}}{(-2+a)(1+a)(4+5 a)}, d_{3}=\frac{(3+2 a)(-2+(-25+a) a) d_{1}}{(1+a)(-9+2 a)(2+5 a)}, \theta=\left(-26+a+\frac{24}{1+a}\right) d_{1} \tag{5.14}
\end{equation*}
$$

$$
\begin{aligned}
& \lambda_{1}=3 d_{1}(1+9 a), \lambda_{2}=\frac{2 a(-2+(-25+a) a)(-4+a(-2+3 a)) d_{1}}{(-2+a)(1+a)(4+5 a)}, \\
& \lambda_{3}=\frac{2(-2+(-25+a) a)(9+a(13+a(-1+6 a))) d_{1}}{(1+a)(-9+2 a)(2+5 a)}, \\
& c_{11}=\frac{3 d_{1}(1+9 a)}{k_{1}}, c_{12}=\frac{3(-1+a)(-1+a(-9+4 a)) d_{1}}{(1+a) k_{2}}, c_{13}=\frac{15 d_{1}}{k_{3}}, \\
& c_{21}=\frac{2(2+a)(6+7 a)(-2+(-25+a) a) d_{1}}{(-2+a)(1+a)(4+5 a) k_{1}}, c_{22}=\frac{2 a(-2+(-25+a) a)(-4+a(-2+3 a)) d_{1}}{(-2+a)(1+a)(4+5 a) k_{2}}, \\
& c_{23}=\frac{8(2+a)(-2+(-25+a) a) d_{1}}{(-2+a)(1+a)(4+5 a) k_{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { where } k_{1}, k_{2}, k_{3} \text { are constants. }
\end{aligned}
$$

Under the conditions (5.14)-(5.18), (4.2) adimits a solution of the form

$$
\left\{\begin{array}{l}
U(z)=k_{1} T^{3}(z) \\
V(z)=k_{2}(1-T(z))^{2} \\
W(z)=k_{3} T^{2}(z)(1-T(z))^{2}
\end{array}\right.
$$

where T is the solution of (5.1). Assume $k_{1}, k_{2}, k_{3}, d_{1}>0$, then the necessary and sufficient condition for $d_{i}, \lambda_{i}, c_{i i}(i=1,2,3), c_{i j}(i, j=1,2,3, i \neq j)>0$, and $a \notin[-1,0]$

Figure 5.4: Profiles of U, V, W.
in (5.1) to be satisfied is given by

Approximately, $a>25.0797$
Now, if one chooses $\left(a, k_{1}, k_{2}, k_{3}, d_{1}\right) \Rightarrow(26,1,2,10,1)$ and $T_{0}=\frac{1}{2}$ in (5.1), then $d_{2}=\frac{14}{1809}, d_{3}=\frac{10}{1161}, \theta=\frac{8}{9}, \lambda_{1}=705, \lambda_{2}=\frac{51272}{1899}, \lambda_{3}=\frac{38228}{1161}, c_{11}=705, c_{12}=\frac{20575}{6}$, $c_{13}=\frac{3}{4}, c_{21}=\frac{5264}{1809}, c_{22}=\frac{25636}{1809}, c_{23}=\frac{28}{9045}, c_{31}=\frac{11660}{1161}, c_{32}=\frac{19822}{387}$, and $c_{33}=\frac{4}{387}$ by
(5.14)-(5.18). The resulting profiles of U, V, W are shown in Figure 5.4 and the profile of T is similar to Figure 5.2.

5.4 Type-4 Solutions $(i, m, n)=(3,4,1)$

The following restriction on parameters appearing in (4.2) is assumed so that an exact solution is allowed.
$d_{2}=\frac{2(1+2 a)\left(-7+a+5 a^{2}\right) d_{1}}{3(-1+2 a)(4+(-1+a) a)}, d_{3}=\frac{(1+6 a)\left(-7+a+5 a^{2}\right) d_{1}}{(4+a)(-1+2 a)(-4+3 a)}, \theta=\frac{-2\left(-7+a+5 a^{2}\right) d_{1}}{-1+2 a}$,

$$
\begin{align*}
& \lambda_{1}=\frac{3(-1+a)(1+a)(5+4 a) d_{1}}{-1+2 a}, \lambda_{2}=\frac{-16(1+2 a)\left(-7+a+5 a^{2}\right) d_{1}}{(-1+2 a)(4+(-1+a) a)}, \\
& \lambda_{3}=\frac{\left(-7+a+5 a^{2}\right)\left(15+58 a+15 a^{2}\right) d_{1}}{(4+a)(-1+2 a)(-4+3 a)}, \tag{5.20}\\
& c_{11}=\frac{3(-1+a)(1+a)(5+4 a) d_{1}}{(-1+2 a) k_{1}}, c_{12}=\frac{15 d_{1}}{k_{2}}, \\
& c_{13}=\frac{-3(6+a(1+a)(-17+4 a)) d_{1}}{(-1+2 a) k_{3}}, \tag{5.21}\\
& c_{21}=\frac{-8(2+a)\left(-7+a+5 a^{2}\right)(-1+5 a(2+a)) d_{1}}{3(-1+2 a)(4+(-1+a) a) k_{1}}, c_{22}=\frac{-16(1+2 a)\left(-7+a+5 a^{2}\right) d_{1}}{(-1+2 a)(4+(-1+a) a) k_{2}}, \\
& \left.c_{23}=\frac{8(2+\operatorname{ara})\left(-7+a+5 a^{2}\right)(-12+a(-12+5 a)) d_{1}}{3(-1+2 a)(4+6}(1+a) a\right) k_{3}, ~(5.22) \tag{5.22}\\
& c_{33}=\frac{-\left(-7+a+5 a^{2}\right)\left(-92-251 a-51 a^{2}+36 a^{3}\right) d_{1}}{(4+a)(-1+2 a)(-4+3 a) k_{3}}, \tag{5.23}
\end{align*}
$$

where k_{1}, k_{2}, k_{3} are constants.
Under the conditions (5.19)-(5.23), (4.2) adimits a solution of the form

$$
\left\{\begin{array}{l}
U(z)=k_{1} T^{3}(z) \\
V(z)=k_{2}(1-T(z))^{4} \\
W(z)=k_{3} T(z)(1-T(z))^{2}
\end{array}\right.
$$

where T is the solution of (5.1). Assume $k_{1}, k_{2}, k_{3}, d_{1}>0$, then the necessary and sufficient condition for $d_{i}, \lambda_{i}, c_{i i}(i=1,2,3), c_{i j}(i, j=1,2,3, i \neq j)>0$, and $a \notin[-1,0]$

Figure 5.5: Profiles of U, V, W.
in (5.1) to be satisfied is given by

Approximately, $1<a<1.08743$.
Now, if one chooses $\left(a, k_{1}, k_{2}, k_{3}, d_{1}\right)=(1.05,1,2,10,1)$ and $T_{0}=\frac{1}{2}$ in (5.1), then $d_{2}=0.20283, d_{3}=0.676391, \theta=0.795455, \lambda_{1}=2.57182, \lambda_{2}=4.86793, \lambda_{3}=8.56492$, $c_{11}=2.57182, c_{12}=\frac{15}{2}, c_{13}=5.87782, c_{21}=11.9835, c_{22}=2.4436, c_{23}=1.52363$, $c_{31}=16.6737, c_{32}=5.07293$, and $c_{33}=3.4294$ by (5.19)-(5.23). The resulting profiles of U, V, W are shown in Figure 5.5 and the profile of T is similar to Figure 5.2.

5.5 Type-5 Solutions $(i, m, n)=(4,1,1)$

The following restriction on parameters appearing in (4.2) is assumed so that an exact solution is allowed.

$$
\begin{equation*}
d_{2}=\frac{(-17+a(2+5 a)) d_{1}}{(4+a)(-1+2 a)}, d_{3}=\frac{3(-17+a(2+5 a)) d_{1}}{4(-6+a(8+3 a))}, \theta=(-17+a(2+5 a)) d_{1} \tag{5.24}
\end{equation*}
$$

$$
\begin{gather*}
\lambda_{1}=24 d_{1}, \lambda_{2}=\frac{(-17+a(2+5 a))(-2+a(1+2 a(4+a))) d_{1}}{(4+a)(-1+2 a)}, \\
\lambda_{3}=\frac{(-17+a(2+5 a)) d_{1}}{4(-6+a(8+3 a))} \\
c_{11}=\frac{24 d_{1}}{k_{1}}, c_{12}=\frac{4(-1+a)(-6+a(11+5 a)) d_{1}}{k_{2}}, c_{13}=\frac{44(-1+a) d_{1}}{k_{3}}, \tag{5.26}
\end{gather*}
$$

$$
c_{21}=\frac{3(-17+a(2+5 a)) d_{1}}{(4+a)(-1+2 a) k_{1}}, c_{22}=\frac{(-17+a(2+5 a))(-2+a(1+2 a(4+a))) d_{1}}{(4+a)(-1+2 a) k_{2}},
$$

$c_{31}=\frac{45(-17+a(2+5 a)) d_{1}}{4(-6+a(8+3 a)) k_{10}}, c_{32}=\frac{(-17+a(2+5 a))\left(-15+a(-32+3 a(37+12 a)) d_{1}\right.}{4(-6+a(8+3 a)) k_{2}}$,
$c_{33}=\frac{3(-13+27 a)(-17+a(2+5 a)) d_{1}}{4(-6+a(8+3 a)) k_{3}}$,
where k_{1}, k_{2}, k_{3} are constants.
Under the conditions (5.24)-(5.28), (4.2) adimits a solution of the form

$$
\left\{\begin{array}{l}
U(z)=k_{1} T^{4}(z) \\
V(z)=k_{2}(1-T(z)) \\
W(z)=k_{3} T(z)(1-T(z))^{2}
\end{array}\right.
$$

where T is the solution of (5.1). Assume $k_{1}, k_{2}, k_{3}, d_{1}>0$, then the necessary and sufficient condition for $d_{i}, \lambda_{i}, c_{i i}(i=1,2,3), c_{i j}(i, j=1,2,3, i \neq j)>0$, and $a \notin[-1,0]$ in (5.1) to be satisfied is given by

$$
a>\frac{-1+\sqrt{86}}{5}
$$

Figure 5.6: Profiles of U, V, W.

Approximately, $a>1.65472$.
Now, if one chooses $\left(a, k_{1}, k_{2}, k_{3}, d_{1}\right)=(2,1,2,5,1)$ and $T_{0}=\frac{1}{2}$ in (5.1), then $d_{2}=\frac{7}{18}$, $d_{3}=\frac{21}{88}, \theta=7, \lambda_{1}=24, \lambda_{2}=\frac{56}{3}, \lambda_{3} \frac{3255}{88} c_{11}=24, c_{12}=72, c_{13}=\frac{44}{5}, c_{21}=\frac{7}{6}$, $c_{22}=\frac{28}{3}, c_{23}=\frac{28}{45}, c_{31}=\frac{315}{88}, c_{32}=\frac{4571}{176}$, and $c_{33}=\frac{861}{440}$ by (5.24)-(5.28). The resulting profiles of U, V, W are shown in Figure 5:6 and the profile of T is similar to Figure 5.2.

5.6 Type-6 Solutions $\left(\frac{2}{i}, m ; n\right)=(4,2,1)$

The following restriction on parameters appearing in (4.2) is assumed so that an exact solution is allowed.

$$
\begin{equation*}
d_{2}=\frac{(2+a)(-23+a(2+a)) d_{1}}{(1+a)(-6+5 a(3+a))}, d_{3}=\frac{(5+3 a)(-23+a(2+a)) d_{1}}{5(1+a)(-7+a(8+3 a))}, \theta=\left(1+a-\frac{24}{1+a}\right) d_{1}, \tag{5.29}
\end{equation*}
$$

$$
\begin{gather*}
\lambda_{1}=24 d_{1}, \lambda_{2}=\frac{2(-23+a(2+a)(-2+3 a(1+a(4+a)))) d_{1}}{(1+a)(-6+5 a(3+a))}, \\
\lambda_{3}=\frac{3\left(-5+a+22 a^{2}+6 a^{3}\right)(-23+a(2+a)) d_{1}}{5(1+a)(-7+a(8+3 a))}, \tag{5.30}
\end{gather*}
$$

$$
\begin{align*}
& c_{11}=\frac{24 d_{1}}{k_{1}}, c_{12}=\frac{4\left(-18+a+5 a^{2}+\frac{24}{1+a}\right) d_{1}}{k_{2}}, c_{13}=\frac{44(-1+a) d_{1}}{k_{3}}, \tag{5.31}\\
& c_{21}=\frac{8(2+a)(-23+a(2+a)) d_{1}}{(1+a)(-6+5 a(3+a)) k_{1}}, c_{22}=\frac{2(-23+a(2+a))(-2+3 a(1+a(4+a))) d_{1}}{(1+a)(-6+5 a(3+a)) k_{2}}, \\
& c_{23}=\frac{2(2+a)(-2+7 a)(-23+a(2+a)) d_{1}}{(1+a)(-6+5 a(3+a)) k_{3}}, \tag{5.32}\\
& c_{31}=\frac{3(5+3 a)(-23+a(2+a)) d_{1}}{(1+a)(-7+a(8+3 a)) k_{1}}, c_{32}=\frac{(-23+a(2+a))(-15+a(-32+3 a(37+12 a))) d_{1}}{5(1+a)(-7+a(8+3 a)) k_{2}}, \\
& c_{33}=\frac{(5+3 a)(-13+27 a)(-23+a(2+a)) d_{1}}{5(1+a)(-7+a(8+3 a)) k_{3}}, \tag{5.33}\\
& \text { where } k_{1}, k_{2}, k_{3} \text { are constants, } \\
& \text { Under the conditions (5.29)-(5.33) (4.2) adimits a solution of the form }
\end{align*}
$$

where T is the solution of (5.1). Assume $k_{1}, k_{2}, k_{3}, d_{1}>0$, then the necessary and sufficient condition for $d_{i}, \lambda_{i}, c_{i i}(i=1,2,3), c_{i j}(i, j=1,2,3, i \neq j)>0$, and $a \notin[-1,0]$ in (5.1) to be satisfied is given by

$$
a>-1+2 \sqrt{6}
$$

Approximately, $a>3.89898$.
Now, if one chooses $\left(a, k_{1}, k_{2}, k_{3}, d_{1}\right)=(4,1,2,10,1)$ and $T_{0}=\frac{1}{2}$ in (5.1), then $d_{2}=\frac{3}{335}, d_{3}=\frac{17}{1825}, \theta=\frac{1}{5}, \lambda_{1}=24, \lambda_{2}=\frac{394}{335}, \lambda_{3}=\frac{441}{365}, c_{11}=24, c_{12}=\frac{705}{5}, c_{13}=\frac{66}{5}$, $c_{21}=\frac{24}{335}, c_{22}=\frac{197}{335}, c_{23}=\frac{78}{1675}, c_{31}=\frac{51}{365}, c_{32}=\frac{3937}{3650}$, and $c_{33}=\frac{323}{3650}$ by (5.29)-(5.33).

Figure 5.7: Profiles of U, V, W.

The resulting profiles of U, V, W are shown in Figure 5.7 and the profile of T is similar to Figure 5.2.

5.7 Type-7 Solutions

The following restriction on parameters appearing in (4.2) is assumed so that an exact solution is allowed.

$$
\begin{equation*}
d_{2}=\frac{(2+a)(-23+a(2+a)) d_{1}}{(1+a)(-6+7 a(3+a))}, d_{3}=\frac{(5+3 a)(-23+a(2+a)) d_{1}}{5(1+a)(-7+a(8+3 a))}, \theta=\left(1+a-\frac{24}{1+a}\right) d_{1}, \tag{5.34}
\end{equation*}
$$

$$
\begin{gather*}
\lambda_{1}=24 d_{1}, \lambda_{2}=\frac{3(-23+a(2+a)(-2+a(5+4 a(4+a)))) d_{1}}{(1+a)(-6+7 a(3+a))}, \\
\lambda_{3}=\frac{3\left(-5+a+22 a^{2}+6 a^{3}\right)(-23+a(2+a)) d_{1}}{5(1+a)(-7+a(8+3 a))}, \tag{5.35}\\
c_{11}=\frac{24 d_{1}}{k_{1}}, c_{12}=\frac{4\left(-18+a+5 a^{2}+\frac{24}{1+a}\right) d_{1}}{k_{2}}
\end{gather*}
$$

$$
\begin{gather*}
c_{13}=\frac{4(-1+a)(5+a(22+5 a)) d_{1}}{(1+a) k_{3}}, \tag{5.36}\\
c_{21}=\frac{15(2+a)(-23+a(2+a)) d_{1}}{(1+a)(-6+7 a(3+a)) k_{1}}, c_{22}=\frac{3(-23+a(2+a))(-2+a(5+4 a(4+a))) d_{1}}{(1+a)(-6+7 a(3+a)) k_{2}}, \\
c_{23}=\frac{3(-23+a(2+a))(-6+a(1+a)(21+4 a)) d_{1}}{(1+a)(-6+7 a(3+a)) k_{3}}, \tag{5.37}\\
c_{31}=\frac{3(5+3 a)(-23+a(2+a)) d_{1}}{(1+a)(-7+a(8+3 a)) k_{1}}, c_{32}=\frac{(-23+a(2+a))(-15+a(-32+3 a(37+12 a))) d_{1}}{5(1+a)(-7+a(8+3 a)) k_{2}}, \\
c_{33}=\frac{4(-23+a(2+a))\left(-20+a\left(16+48 a+9 a^{2}\right)\right) d_{1}}{5(1+a)(-7+a(8+3 a)) k_{3}}, \tag{5.38}
\end{gather*}
$$

where k_{1}, k_{2}, k_{3} are constants.
Under the conditions (5.34)-(5.38), (4.2) adimits a solution of the form
where T is the solution of (5.1). Assume $k_{1}, k_{2}, k_{3}, d_{1}>0$, then the necessary and sufficient condition for $d_{i}, \lambda_{i}, c_{i i}(i=1,2,3), c_{i j}(i, j=1,2,3, i \neq j)>0$, and $a \notin[-1,0]$ in (5.1) to be satisfied is given by

$$
a>-1+2 \sqrt{6} \quad \text { or } \quad a<-1-2 \sqrt{6} .
$$

Approximately, $a>3.89898$ or $a<-5.89898$.
Now, if one chooses $\left(a, k_{1}, k_{2}, k_{3}, d_{1}\right)=(4,1,2,10,1)$ and $T_{0}=\frac{1}{2}$ in (5.1), then $d_{2}=\frac{3}{475}, d_{3}=\frac{17}{1825}, \theta=\frac{1}{5}, \lambda_{1}=24, \lambda_{2}=\frac{159}{95}, \lambda_{3}=\frac{441}{365}, c_{11}=24, c_{12}=\frac{708}{5}, c_{13}=\frac{1038}{25}$,

Figure 5.8: Profiles of U, V, W.
$c_{21}=\frac{9}{95}, c_{22}=\frac{159}{190}, c_{23}=\frac{1101}{4750}, \ell_{31}=\frac{51}{365}, c_{32}=\frac{3937}{3650}$, and $c_{33}=\frac{2776}{9125}$ by (5.34)-(5.38). The resulting profiles of U, V, W are shown in Figure 5.8and the profile of T is similar to Figure 5.2.

If one chooses $\left(a, k_{1}, k_{2}, k_{3}, d_{1}\right)=$ $d_{3}=\frac{13}{1325}, \theta=-\frac{1}{5}, \lambda_{1}=24, \lambda_{2}=\frac{8}{5}, \lambda_{3}=\frac{309}{265}, c_{11}=24, c_{12}=\frac{1512}{5}, c_{13}=\frac{742}{25}, c_{21}=\frac{1}{10}$, $c_{22}=\frac{4}{5}, c_{23}=\frac{6}{125}, c_{31}=\frac{39}{265}, c_{32}=\frac{3603}{2650}$, and $c_{33}=\frac{664}{6625}$ by $(5.34)-(5.38)$. The resulting profiles of U, V, W and T are shown in Figure 5.9 and Figure 5.10, respectively.

Figure 5.10: Profile of T with $a=-6$ and $T_{0}=\frac{1}{2}$

Bibliography

[1] J.D. Murray, Mathematical Biology. Springer-Verlag, Berlin, 1993.
[2] Y. Kan-on, Parameter dependence of propagation speed of travelling waves for competition-diffusion equations. SIAM J. Math. Anal., 26, No. 2 (1995), 340-363.
[3] M. Rodrigo, M. Mimura, Exact solutions of a competition-diffusion system, Hiroshima Math. J., 30 (2000), 257-270.
[4] M. Rodrigo, M. Mimura, Exact solutions of reaction-diffusion systems and nonlinear wave equations, Japan J. Indust. Appl. Math., 18 (2001), 657-696.

