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摘要 

    本論文主要探討四面體雙聚體分子之量子化學計算與分子動力學模擬探討熱力

學性質。我們從最簡單的四面體甲烷分子開始研究並推廣到矽烷與四氯化碳分子。

我們首先準確的架構並計算出 12 個不同方位的能量曲線，探討方位、中間氫原子數

目對能量關係、吸引力、斥力、剛體與非剛體對能量造成的影響。 

    在量子計算方面主要使用的方法有 Hartree-Fock (HF)、Density Function Theory 

(DFT)、Second-order Møller-Plesset Perturbation Theory (MP2) 與 Single-point Coupled 

Cluster with Single and Double and Perturbative Triple Excitations CCSD(T) 等計算方

法。基底方面使用 Pople 的方法從小的基底到 6-311++G (3df, 3pd)，並使用 Dunning

的基底 [cc-pVXZ 與 aug-cc-pVXZ，其中 X = D、T、Q、5] 進行一連串完整的計算

並探討能量收斂狀況。計算時中心原子距離從 3.0 Å 到 9.0 Å，並使用四種近似法 

(Extrapolation methods) 與完整基底極限展開法 (Complete Basis set limit) 得到鍵結

最低能量極限值，與目前光譜實驗量測所可以測得的容許差值約在 0.03 kcal/mol 之

內。 

    而在分子動力學模擬方面主要是利用 Lennard-Jones (L-J) potential function 去做

擬合並建構力場，先分別探討 4-site 與 5-site 的影響。4-site 需要決定四個擬合參數

16 條方程式，5-site 需要決定六個擬合參數 25 條方程式。利用得到的擬合參數去模

擬在不同溫度、密度與壓力下 Radial Distribution Function (RDF) 的平衡性質並探討

溫度效應與實驗值做比較。而動態性質方面主要是研究沿著汽化線做 Velocity 

Autocorrelation Function (VAF) 的模擬，求得擴散係數 (Diffusion Coefficient) 並與文

獻上既有的實驗值做比較。最後做 X-ray 散射 與 Neutron 散射模擬研究皆與真實文
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獻上實驗吻合。由上述結果可知，就我們目前所做的量子化學勢能曲線 (Potential 

Energy Surface) 理論計算結果與所得到的 5-site 理論擬合參數值皆可精準與實驗相

驗證。 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

關鍵字：Hartree-Fock (HF)， Density Function Theory(密度泛函理論)，Second-order 

Møller-Plesset Perturbation Theory (二階 Møller-Plesset 微擾理論 ) ，Single-point 

Coupled Cluster with Single and Double and Perturbative Triple Excitations CCSD(T)，

Radial Distribution Function (徑向分布函數)， Velocity Autocorrelation Function (速度

自相關函數)，Diffusion Coefficient (擴散係數)，X-ray 散射與 Neutron 散射。 
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Abstract 

 

In this study, intermolecular interaction energy data for the tetrahedral molecule dimers 

have been calculated at a spectroscopic accuracy and employed to construct an ab initio 

potential energy surface (PES) for molecular dynamics (MD) simulations of tetrahedral 

molecule properties. The full potential curves of the tetrahedral molecule dimers at 12 

symmetric conformations were calculated by the supermolecule counterpoise-corrected 

Hartree-Fock (HF), Density Function Theory (DFT), second-order Møller-Plesset (MP2) 

perturbation theory and single-point coupled cluster with single and double and 

perturbative triple excitations [CCSD(T)] calculations were also carried out to calibrate the 

MP2 potentials. We employed Pople’s medium size basis sets [up to 6-311++G (3df, 3pd)] 

and Dunning’s correlation consistent basis sets (cc-pVXZ and aug-cc-pVXZ, X = D, T, Q, 

5). For each conformer, the intermolecular carbon–carbon separation was sampled in a 

step 0.1 Å for a range of 3.0 ~ 9.0 Å. The MP2 binding curves display significant 

anisotropy with respect to the relative orientations of the dimer. The potential curves at the 

complete basis set (CBS) limit were estimated using well-established analytical 

extrapolation schemes and while a large basis set (aug-cc-pVTZ) is required to converge 

the binding energy at a chemical accuracy (~0.03 kcal/mol). A 4-site and 5-site potential 

models were used to fit the ab initio potential data. We performed molecular dynamics 
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simulations using the ab initio force field and compared the simulation results to 

experiments. Quantitative agreements for the atomwise radial distribution functions, the 

self-diffusion coefficients, and the X-ray and Neutron diffraction scattering functions over 

a wide range of experimental conditions can be obtained, thus validating the ab initio force 

field without using experimental data a priori. 

 

 

 

 

 

 

 

 

 

 

 

 

Keyword ： Hartree-Fock (HF), Density Function Theory (DFT), Second-order 

Møller-Plesset Perturbation Theory(MP2), Single-point Coupled Cluster with Single and 

Double and Perturbative Triple Excitations CCSD(T),Radial Distribution Function (RDF), 

Velocity Autocorrelation Function (VAF), Diffusion Coefficient, X-ray and Neutron 

diffraction scattering function. 
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Chapter 0 General Introduction 

 

We performed refined quantum chemistry calculations of the intermolecular 

interactions for dimers of methane, silane, and tetrachloromethane in Fig.0.0-1. For 

arbitrary molecule in quantum chemistry calculations, the energy can be expansion in 

Hamiltonian formula,  

 

for total energy (Born-Oppenheimer energy) 

      

Our ab initio calculations focused on the minimum energy curves for a specific 

relative configuration of the dimers considered. We performed at the HF, DFT, MP2 

and CCSD(T) theory  
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and higher level ab initio calculations for other relative configurations to model the 

anisotropy of intermolecular interactions of the chosen functional groups. We also 

perform a nonlinear modeling using force matching and other minimization schemes. 

The liquid methane, silane, and tetrachloromethane properties, structural and 

dynamical, can be well reproduced via molecular dynamics simulations in Fig.0.0-2 ~ 

Fig. 0.0-6. 

 

 

 

                                                      Fig. 0.0-1 
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Standard operating procedure (SOP)  

 

 

Fig. 0.0-2 
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Fig. 0.0-3 

 

 

Fig. 0.0-4 
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Fig. 0.0-5 

 

 

 

Fig. 0.0-6 
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Chapter 1 Theoretical Studies on the Methane Dimers 

 

1.1 Intermolecular Interaction Potentials of Dispersion-Bound 

Methane Dimer From Coupled Cluster Method at Complete 

Basis Set Limit 

 

1. Introduction 

The hydrocarbon interactions are very crucial in determining the packing morphology 

of molecular solids and soft matters such as lipid bi-layer assembly of membranes and 

active conformation of proteins [1-3]. The potential energy functions are also 

requested for mesoscale modeling of macromolecules [4] because the hydrocarbon 

interactions dominate the surface energies, from which many important properties 

relevant to organic nanostructures can be derived. Determining intermolecular 

interactions among dispersion-bound complexes from solely experimental 

measurements is a notoriously challenging task [5-7], mainly due to limited sampling 

of the potential energy surface. One alternative is to use first-principles electronic 

structure calculations, at least for small molecular systems [8-10].  

 

Methane molecular interactions can be regarded as a prototype system of any 

hydrocarbon interactions or of any segment containing hydrocarbons and thus have 

been intensely studied [11-23]. Jurecka et al. [21] have obtained the CCSD(T) binding 
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energies of the methane dimer at the complete basis set (CBS) limit using an 

approximation scheme (see Eq. (1) below). Tsuzuki et al. [22] have estimated the 

CCSD(T)/CBS binding energies using the method of Halgaker et al. [32] and the 

method of Feller [34]. Previous CCSD(T) studies on the methane dimer mainly 

focused on the equilibrium region of the potentials with relatively few discussion on 

the full potential curve. Nevertheless, to construct a reliable force field model for 

molecular simulations, the full intermolecular potential surfaces are required. 

Recently, Takatani et al. [24] have obtained a CCSD(T)/CBS potential curve for the 

methane dimer using a specific extrapolation scheme. However, the basis set effects 

using the CCSD(T) method and the performance of various extrapolation methods to 

obtain the CBS data have not been systematically investigated. Therefore, in this 

paper we perform a comprehensive study on interaction potentials of the prototype 

methane dimer in terms of the CCSD(T) method at the complete basis set limit. The 

relative performance of several extrapolation methods to obtain the CBS values is 

thoroughly discussed. The full potential curves are presented to see the overall scope 

of the interactions.  

 

2. Methods and Calculations 

Supermolecular approach has been taken to calculate the interaction energy in which 
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the intermolecular potential is defined as the total energy difference between the 

supermolecule and the isolated subsystems. The calculation of electron correlation 

energies depends on the level of the correlation method, the size of the basis set, and 

the correction of the BSSE. State-of-the-art choice of the correlation method is the 

coupled cluster method with iterative single and double substitutions and with 

noniterative triple excitations [CCSD(T)] method [26]. It has been widely recognized 

that the CCSD(T) results with large basis sets are close to the results at the complete 

basis set limit [27]. To study the basis set effects, we have employed a wide range of 

basis sets from the Slater-type orbitals fitted with Gaussian functions (STO-nG, n=3~6) 

[28], Pople’s medium size basis sets [up to 6-311++G (3df, 3pd)] [29] to Dunning’s 

correlation consistent basis sets (cc-pVXZ and aug-cc-pVXZ, X=D, T, Q) [30]. The 

basis set superposition error (BSSE) was corrected by the counterpoise (CP) method 

of Boys and Bernardi [31]. The CCSD(T) binding energy at the complete basis set 

limit has been estimated using the methods of Helgaker et al. [32], Martin [33], Feller 

[34], and a numerical extrapolation method based on the 3-term Lagrangian formula 

[35]. The analytic extrapolation formulas are summarized as follows. 

 

Helgaker et al.:  
3

XE E bX 
   
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     Martin:    

4 4

14 4 4 4

3 1( ) ( )2 2
3 31 1( ) ( ) ( ) ( )2 2 2 2

X X

X X
E E E

X X X X
 

 
 

     
 

     Feller:    e cX
XE E b 

   

 

All the calculations are performed using the Gaussian 03 program package [36] on a 

single node 1-processor IBM 1350 PC cluster with distributed memory. To obtain the 

most stable intermolecular geometry, the methane molecule was first optimized at the 

CCSD(T)/aug-cc-pVTZ and the obtained C-H bond length is 1.085 Å. Next we 

calculated the binding energies of the 12 symmetric dimer conformers such as those 

considered by Tsuzuki et al. [15] using MP2/aug-cc-pVTZ and found the 

minimum-energy conformation corresponds to the D3d symmetry conformer. This 

optimized conformer has been explained in terms of the interplay of the steric 

stabilization of repulsive hydrogen in opposite monomers [11]. Subsequently the C-C 

distance was sampled for a quite large range of intermolecular separation (normally 

3~9 Å), resulting in a total of 11 configuration points for each basis set. During the 

scan we first fix the monomer geometry (rigid monomer assumption) and the 

conformer symmetry. Next, because inclusion of the intramolecular vibrational 

relaxation could be relevant to molecular dynamics simulations using flexible models 

[37], validity of the rigid monomer assumption should be checked. We repeat the 
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above procedure while allowing the C-H bonds to relax during the scan. We found 

little effect (normally within 0.01 kcal/mol in energy difference) when including the 

vibrational relaxation. Therefore, in this paper we present the potential data under the 

rigid monomer assumption in order to compare them with previous studies. 

  

3. Results and Discussions 

In Fig. 1.1-1 we compare the BSSE corrected HF, MP2, and CCSD(T) potentials of 

the methane dimer using the aug-cc-pVQZ basis set. The HF and MP2 potentials are 

obtained from our previous calculations [23]. It is seen that the HF potential is purely 

repulsive while the MP2 and CCSD(T) potentials display potential wells. The 

CCSD(T) potential shown in Fig. 1.1-1 displays a clear minimum and a long range 

attractive potential tail. Because the contributions from the electrostatic and induction 

energies are small [11], the dispersion energy is mainly responsible for the attractions. 

The sharp difference between the HF calculations and the CCSD(T) calculations 

indicates the importance of including the correlation corrections in the wave function 

calculations. The MP2 potential is close to the CCSD(T) potential in this case. We 

also find very strong dependence of the interaction potentials on the BSSE corrections, 

even using the aug-cc-pVTZ basis set. Only the BSSE corrected potential curves bear 

the proper trend of systematic convergence. This is similar to our previous studies 
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using the MP2 method [23]. 

 

In Table 1.1-1 we provide a detailed editing of the basis set effects on the equilibrium 

bond length, the binding energy, and the harmonic frequency. R0 is the distance at 

which the potential is zero and can be obtained from a two point interpolation of the 

calculated data. The bond length Rm, the binding energy Eb and the intermolecular 

vibration frequency  can be obtained through a harmonic modeling of the three 

lowest potential data near the equilibrium regions. It is seen that the interaction energy 

becomes deeper with more polarization and diffuse functions added. Small cc-pVDZ 

and cc-pVTZ basis sets lead to underestimation of the binding energy but 

augmentation of the diffuse functions improves much on the binding energy. The 

basis set effects presented here are qualitatively similar to previous studies on 

methane and silane dimers using the MP2 method [23, 38-39]. These observations are 

expected to apply to other dispersion-bound systems also. 

 

The strong basis set dependence and the slow convergence on the dispersion energy 

call for an estimation of the important potential features at the complete basis set limit 

in a calculated potential. Complete basis set limit of the binding energy can be 

estimated using Dunning’s basis sets with an extrapolation method. We consider three 
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analytical methods [32-34] and a numerical method [35] and the results are shown in 

Table 1.1-2. The binding energies obtained at the complete basis set limit (using the 

potential data calculated at Dunning’s basis sets, aug-cc-pVXZ, X=D, T, Q) are -0.509, 

-0.512, -0.507, and -0.510 kcal/mol using the methods of Helgaker et al. [32], Martin 

[33], Feller [34] and the numerical method [35], respectively. These values are very 

close to the results obtained by Tsuzuki et al. [22] (-0.500 kcal/mol) and Zhao et al. 

[25] (-0.510 kcal/mol), while a little smaller (in absolute magnitudes) than those 

obtained by Jurecka et al. [21] (-0.530 kcal/mol) and Takatani et al. [24] (-0.541 

kcal/mol). Notice that the estimated binding energies using the data calculated at the 

cc-pVXZ basis sets exhibit large deviation among the extrapolation methods. In 

particular, using the method of Feller with the cc-pVDZ data overestimates much of 

the energy. This latter observation is at variance with the results of Tsuzuki et al. [22] 

while is more in line with other criticisms on using Feller’s method with the cc-pVDZ 

potential data to obtain the complete basis set limit binding energy [40]. For the other 

potential parameters, we used the numerical extrapolation based on the vanishing 

inverse of the number of basis function [35]. We note that the large vibration 

frequency, or equivalently the zero point energy correction to the binding energy, 

indicates that the anharmonicity of the dispersion potential well should be considered 

for comparison with spectroscopic measurements. 
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Using the above extrapolation methods, the CCSD(T)/CBS binding energies can be 

estimated. However, our ultimate objective is to obtain the full potential curve. 

Because we have obtained the potential curve at each basis set, we can use a direct 

extrapolation scheme where for each sampled C-C distance the potential data 

calculated at a series of basis sets are used to extrapolate to the CBS potential energy. 

We can then evaluate the effects of the potential data quality and the extrapolation 

methods on the CCSD(T)/CBS potential curves. In Fig. 1.1-2 and Fig. 1.1-3 we 

present the CBS potential curves obtained from the above four extrapolation methods 

[32-35], using the cc-pVXZ and aug-cc-pVXZ potential data, respectively. In Fig. 

1.1-2 we see that using the cc-pVXZ data, the estimated CCSD(T)/CBS potential 

curves exhibit large deviation among the extrapolation methods. On the other hand, as 

shown in Fig. 3, using the aug-cc-pVXZ data, the CBS potential curves are all close to 

each other except for that obtained by Feller’s method, which exhibits spurious 

long-range behavior. It is thus clear that the estimated potential curve depends 

sensitively on the quality of the calculated potential data which in turn depends on the 

basis sets used and the precision of the extrapolation methods. By all means one 

should check the consistency of using the extrapolation methods to obtain the CBS 

potential curve before any definite conclusion can be made. In the present case, the 
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CBS potential curves obtained by the methods of Helgaker et al. [32], Martin [33] are 

more self-consistent than those using the method of Feller [34], in particular if the 

potential data calculated at small basis sets were used to perform extrapolations. Our 

potential curve using the method of Helgaker et al. [32] is very close to that of 

Takatani et al. [24], although they did not compare the results using different 

extrapolation methods. Therefore, we believe that these data are reliable and serve as 

an operational standard for further experimental verifications and theoretical 

calibrations of other lower level ab initio or semi-empirical methods. 

 

In the literature there appears a proposal to obtain the CCSD(T)/CBS potential energy 

by an approximate formula [39] 

 

( ) 2

( ) 2

CBS CBS
CCSD T MP

small basis small basis
CCSD T MP

E E E

E E E 

  

  
                                             (1) 

 

Underlying this formula is the assumption that E  is relatively basis set 

independent. We would like to check this assumption more quantitatively by 

examining the basis set dependence of E . Using the CCSD(T) data in Table 1.1-1 

and our previous MP2 data [23] we can estimate the CCSD(T)/CBS binding energy 

with Eq. (1) for each basis set we employed. In this way we can determine the 
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applicability of the above approximation more quantitatively. The results are shown in 

Table III, where our previous MP2 results are also presented as a reference. We see 

that using the aug-cc-pVDZ is good enough to obtain a binding energy within a 0.01 

kcal/mol error with respect to the CBS energy. It is also interesting to study how far 

this idea can be applied to estimate the CBS values for other potential quantities; 

namely, we propose the formula 

 

( ) 2

( ) 2

CBS CBS
CCSD T MP

small basis small basis
CCSD T MP

Q Q Q

Q Q Q 

  

  
                                             (2) 

 

where Q= R0, Rm, , etc. To estimate the CBS values for the bond distance and 

harmonic frequency. The results are shown in Table III. We see that the estimation is 

surprisingly good. Using even the 6-31G* basis set we have obtained an estimation of 

the CBS bond distance within a 0.05 Å precision and of the CBS frequency within a 

15 cm-1 precision. Using the aug-cc-pVDZ data almost all the potential quantities can 

be obtained exactly. It remains to be seen whether this kind of good agreement can be 

extended to other systems. 

 

In passing we would like to comment on comparison of the calculated potential 

energy with the “empirical” or “semi-empirical” one. Actually the potential energy 
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itself is not a direct observable in experiments while it depends on auxiliary 

theoretical modeling. Experimental potentials are often isotropic and depend on 

thermodynamic conditions so the consistency with the potential retrieved from 

experiments does not guarantee the correctness and accuracy of the calculated 

potential. It is highly possible to obtain a potential curve using smaller basis sets 

(and/or without the BSSE correction) which incidentally is close to the “empirical” 

potential. However, this kind of agreement is largely accidental and should not be 

taken too seriously. Error cancelation can happen from many sources including 

correlation energy corrections, basis truncation errors, BSSE, and extrapolation 

approximations. This precaution should also be taken while using lower-level 

correlation methods or density functional theory using semi-local functionals to obtain 

the dispersion energies [42-43]. In case of lacking direct experimental verification, a 

benchmark study like the present one is ultimately required to unambiguously 

determine the ab initio intermolecular potential.  

 

4. Conclusion 

In this paper we have calculated intermolecular potentials of the methane dimer at the 

most stable D3d conformation using the CCSD(T) method at complete basis set (CBS) 

limit. With Dunning’s correlation-consistent polarized valence basis sets, we 
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estimated the CCSD(T)/CBS potential curve using the extrapolation methods of 

Helgaker et al. [32], Martin [33], Feller [34] and a numerical method [35] on the 

potential data over the entire potential curve. The relative performance of these 

extrapolation methods has been carefully evaluated. Depending on the basis set 

quality, the CBS potential curves obtained by the methods of Helgaker et al. [32] and 

Martin [33] are more self-consistent than those using the method of Feller [34], in 

particular if the potential data calculated at small basis sets were used to perform 

extrapolations. An approximation scheme to obtain the CCSD(T)/CBS binding energy 

utilizing the MP2 energies has also been studied and extended to estimate other 

potential quantities. Using our previous MP2 data, we obtained an estimated binding 

energy within a 0.01 kcal/mol error with the aug-cc-pVDZ basis set. 
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Basis set 
Number of basis 

functions 
DISK (GB) R0 (Å) Rm (Å) Eb (kcal/mol) ω (cm-1) 

cc-pVDZ   68 0.16 3.62 4.06 -0.146 216.52 

6-311G**  84 0.39 3.59 4.03 -0.167 232.08 

6-311++G** 100 0.79 3.59 4.02 -0.180 228.87 

aug-cc-pVDZ 118 1.49 3.37 3.75 -0.418 314.69 

cc-pVTZ 172 6.91 3.39 3.81 -0.319 310.23 

6-311++G(2df,2pd) 188 9.92 3.38 3.80 -0.335 303.47 

6-311++G(3df,3pd) 222 19.45 3.35 3.73 -0.441 300.74 

aug-cc-pVTZ 276 46.90 3.34 3.67 -0.491 362.35 

cc-pVQZ 350 149.41 3.34 3.70 -0.433 355.73 

aug-cc-pVQZ 528 781.98 3.31 3.65 -0.504 361.23 

Complete basis set limita   3.27 3.63 -0.510 349.08 

a Basis set limit values obtained by the numerical method [40] with the aug-cc-pVXZ (X=D, T, Q) potential data, shown in boldface. 

 

Table 1.1-1. The basis set dependence of important potential parameters of the BSSE corrected CCSD(T) intermolecular potentials. R0 is the 

distance at which the potential is zero and is obtained from a two point interpolation of the calculated data. The bond length Rm, the binding 

energy Eb and the intermolecular vibration frequency  are obtained from an analysis using a quadratic polynomial function form to model 

the equilibrium potential well. The disk space requirements (DISK) of the CCSD(T) calculation were recorded on a single node 1-processor 

IBM 1350 PC cluster with distributed memory.  

Table 1.1-1 
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Extrapolation 
methods 

DTa TQb DTQc aDTd aTQe aDTQf 

Helgaker et al. -0.392(-0.387) -0.516(-0.480) ¥NA -0.522(-0.477) -0.509(-0.472) ¥NA 

Martin -0.380(-0.376) -0.499(-0.465) ¥NA -0.517(-0.473) -0.512(-0.470) ¥NA 

Feller ¥NA ¥NA -0.654(-0.532) ¥NA ¥NA -0.507(-0.467) 

Numerical ¥NA ¥NA -0.570(-0.520) ¥NA ¥NA -0.510(-0.470) 

aBasis set limit estimation with the cc-pVXZ(X=D and T). 
bBasis set limit estimation with the cc-pVXZ(X=T and Q). 
cBasis set limit estimation with the cc-pVXZ(X=D, T, and Q). 
dBasis set limit estimation with the aug-cc-pVXZ(X=D and T). 
eBasis set limit estimation with the aug-cc-pVXZ(X=T and Q). 
fBasis set limit estimation with the aug-cc-pVXZ(X=D, T, and Q). 
¥ Not available. 

 

Table 1.1-2. Comparison the estimated CCSD(T) and MP2 (numbers in parenthesis) binding energies at the complete basis set 

limit using the four extrapolation methods. The unit is kcal/mol. 

Table 1.1-2 
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 CCSD(T) / MP2a / CCSD(T)/CBSb 

Basis set R0 (Å) Rm (Å) Eb (kcal/mol) ω (cm-1) 

6-311G** 3.59/(3.59)/3.25 4.03/(4.02)/3.67 -0.167/(-0.165)/-0.472 232.08/(228.01)/366.87 

6-311++G** 3.59/(3.57)/3.27 4.02/(4.01)/3.67 -0.180/(-0.176)/-0.474 228.87/(225.42)/366.25 

aug-cc-pVDZ 3.37/(3.35)/3.27 3.75/(3.78)/3.63 -0.418/(-0.395)/-0.493 314.69/(323.88)/353.61 

cc-pVTZ 3.39/(3.37)/3.27 3.81/(3.80)/3.67 -0.319/(-0.317)/-0.472 310.23/(304.65)/368.38 

6-311++G(2df,2pd) 3.38/(3.36)/3.27 3.80/(3.78)/3.68 -0.335/(-0.331)/-0.474 303.47/(297.27)/369.00 

6-311++G(3df,3pd) 3.35/(3.30)/3.30 3.73/(3.73)/3.66 -0.441/(-0.415)/-0.496 300.74/(383.20)/280.34 

aug-cc-pVTZ 3.34/(3.27)/3.32 3.67/(3.70)/3.63 -0.491/(-0.453)/-0.508 362.35/(367.15)/358.00 

cc-pVQZ 3.34/(3.31)/3.28 3.70/(3.71)/3.65 -0.433/(-0.411)/-0.492 355.73/(360.46)/358.07 

aug-cc-pVQZ 3.31/(3.26)/3.30 3.65/(3.68)/3.63 -0.504/(-0.464)/-0.510 361.23/(356.38)/367.65 

Complete basis set limit 3.27/(3.25)/3.27 3.63/(3.66)/3.63 -0.510/(-0.470)/-0.510 349.08/(362.80)/349.08 

a The MP2 binding energy from Ref. [26]. 
b The estimated CCSD(T) basis set limit binding energy using the Eq.(1).  
c A missing factor 2  to account for the reduced mass in calculating the frequency from our previous MP2 calculations [26] is included. 

 

 

Table 1.1-3. Basis set dependence of the estimated potential parameters of the CCSD(T)/CBS potential using Eqs. (1) and (2). 

Table 1.1-3 
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FIG. 1.1-1. The BSSE corrected HF, MP2, and CCSD(T) interaction potentials of the 

methane dimer using the aug-cc-pVQZ basis set. 

 

FIG. 1.1-2. The estimated CCSD(T)/CBS potential curves using the direct 

extrapolation scheme with the four extrapolation methods on the cc-pVXZ potential 

data. 

Fig. 1.1-1 

Fig. 1.1-2 
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FIG. 1.1-3. The estimated CCSD(T)/CBS potential curves using the direct 

extrapolation scheme with the four extrapolation methods on the aug-cc-pVXZ 

potential data. 

 

 

 

 

Fig. 1.1-3 
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1.2 Intermolecular Potentials of the Methane Dimer Calculated with 

Møller-Plesset Perturbation Theory and Density Functional Theory and 

Comment on "Intermolecular Interaction Potential of the Methane Dimer 

From the Local Density Approximation” 

 

1. Introduction 

To verify the recently calculated intermolecular interaction potentials of the methane 

dimer within the density functional theory using the (Perdew) local density 

approximation (LDA) [Chen et al., Phys. Rev. A 69, 034701 (2004)], we have 

performed a parallel series of calculations using the LDA/6-311++G (3df, 3pd) level 

of theory with selected exchange functionals (B, G96, MPW, O, PBE, PW91, S, and 

XA). None of the above calculated intermolecular interaction potentials from the local 

density approximation reproduce the results reported in the commented paper. In 

addition, we point out the inappropriateness of using the Lennard-Jones function to 

model the long-range parts of the calculated intermolecular interaction potentials, as 

suggested positively by Chen et al. 

 

   Chen et al. [1] recently reported the intermolecular interaction potentials of the 

methane dimer (CH4)2 within the standard density functional theory (DFT) scheme [2] 

using the (Perdew) local density approximation (LDA) [3], the pseudopotential [4,5], 

and the plane-wave expansion [6]. Their results agreed surprisingly well with those 
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obtained by the correlation-corrected Møller-Plesset (MP2, MP3) [7] and coupled 

cluster (CCSD(T)) [8] methods using a large basis set [9]. Because it has been known 

for some time that the usual DFT based approaches, using either the LDA or the 

generalized gradient approximation (GGA), can not calculate the intermolecular 

interaction potentials of molecular dimers to such a high level of accuracy [10-12], it 

is important to perform a parallel series of calculations using the available 

implementations of commonly used exchange-correlation functionals to verify the 

proposed results by Chen et al. 

 

Intermolecular interaction potentials, or van der Waals interactions, or 

non-covalent-bonded interactions, play an essential role in condensed matter physics, 

materials chemistry and structural biology. While these interactions are normally one 

or two orders of magnitude weaker than typical covalent bonds, they are crucial in 

determining the thermodynamic properties of molecular liquids and solids [13], the 

energy transfers among molecular complexes [14], and the conformational tertiary 

structures of macromolecules such as protein and DNA [15]. Unlike intramolecular 

covalent bonds, intermolecular bonds do not originate from sharing of electrons but 

rather arise from simultaneous electron correlation of the separated subsystems [16]. 

Different from stiff covalent bonds, they are relatively soft and non-rigid. Early 

studies of intermolecular interactions can be traced back to one century ago [17], 
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while measurements of these interactions are still challenging in the present time [18]. 

The main difficulty in determining intermolecular interactions experimentally resides 

at limited samplings of the potential energy surface. For example, experiments using 

the X-ray crystallography or the laser spectroscopy mainly explore the equilibrium 

regions of the potential, while thermodynamic measurements in the gas or liquid 

phase often yield isotropic potential data without the desired stereo-chemical 

responses. In addition, the measured potentials sensitively depend on the 

thermodynamic conditions. Usually two measurements carried out in different 

conditions cannot be compared directly but rely on auxiliary theoretical modeling. 

 

Alternatively intermolecular potentials can be calculated in terms of 

correlation-corrected quantum chemistry methods [19-21] or density functional theory 

(DFT) [22-23]. These quantum mechanics based potentials are requested by ab initio 

molecular dynamics simulations [24] and by classical molecular simulations using 

force field constructions [25]. Among the components of an intermolecular interaction, 

the London dispersion force is the most difficult to calculate. The reason is that 

dispersion interactions arise from the non-local “dynamic” correlations [26]. This 

non-locality demands full exploration of the time-dependent perspective of quantum 

mechanics. Often an electron correlation-corrected method and a large basis set are 
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required to obtain accurate dispersion forces [27]. Also a technical note is in order. 

Most present implementations of quantum chemistry programs utilize Gaussian type 

functions to fasten the calculations of Coulomb repulsion integrals. Because Gaussian 

type functions are local functions, a large basis set is indispensable to perform a 

correlation energy calculation. Moreover, these functions do not have the correct 

asymptotic behavior as the intermolecular separation becomes large. Therefore, the 

basis set limit of the calculated potential must be estimated so as to be consistent with 

the conventional perturbation theory.  

 

For general polar molecular systems, the relatively weak dispersion energy is masked 

by the competing electrostatic energies and hydrogen bond interactions. Nonpolar 

atomic and molecular dimers are usually taken as a prototype case to study the 

dispersion energy. Many previous studies on dispersion forces have focused on atomic 

inert gas dimers and several important conclusions have been drawn from the 

calculations [28]. There are, however, comparatively fewer detailed studies on 

whether similar conclusions can be applied to molecular dimers. Because of the extra 

degrees of freedom and the stereo-chemical responses, the conclusions about atomic 

dimers may need to be extended or modified in dealing with molecular dimers. 

Methane is a non-polar molecule with vanishing dipole and quadrupole moments and 
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the first nonvanishing electrostatic interaction is the octopole-octopole interaction. 

The higher order electrostatic interactions are rather weak and decay fast at large 

intermolecular separation. The dominant long-range attraction for the methane dimer 

is thus due to the London dispersion force. On the other hand, the strong repulsive 

force almost comes from the exchange-repulsion interaction due to the overlapping of 

electron clouds. Because the exchange-repulsion interactions have been incorporated 

in the Hatree-Fock (HF) self-consistent theory, post-HF methods such as the 

Møller-Plesset (MP) perturbation theory and the coupled cluster (CC) theory are often 

used to calculate the correlation effect. Contrasting both sets of calculation helps to 

delineate the relative importance of the dispersion energy in the overall intermolecular 

interaction. In addition, the interaction potentials of alkanes, among them methane 

being the smallest model, is very crucial in determining the packing morphology in 

solids and liquids and in lipid bilayers [29-31]. The potentials are also requested for 

mesoscale simulations for macromolecules [32] because many polymers contain alkyl 

groups as their backbone units or side chains. Therefore, the calculation of 

intermolecular interactions of the methane dimer is a “must” and serves as a prototype 

example to start to investigate the various factors affecting the calculations of these 

interactions.  
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There have been many quantum chemistry studies of intermolecular potentials of the 

methane dimer using correlation-corrected methods [33-44]. Szczesniak et al. [33] 

have used the MP2 method with the Sadlej basis to calculate the interaction energies 

for the six conformers of the methane dimer. They found that the minimum-energy 

conformation is the D3d conformer and the dimer structure is determined by 

minimizing the steric repulsion between hydrogen atoms belonging to opposite 

subsystems. Tsuzuki et al. [36] have studied the basis set effects using basis sets from 

6-31G* to 6-311++G (2d,2p) to calculate the interaction energies for two conformers 

of the methane dimer (but none of them is the D3d conformer). They observed little 

basis set effect on the HF calculations as long as one uses a basis set larger than the 

6-31G* one. The basis set effect is significant for the MP2 interaction energies and 

the basis set superposition error (BSSE). The dispersion energy can be seriously 

underestimated if a smaller (than 6-31G*) basis set has been used. They found that the 

BSSE uncorrected interaction energies do not systematically converge to a destined 

value, in contrast to those with BSSE corrections. Tsuzuki et al. [39, 43] studied 

twelve conformers and verified that the D3d conformer corresponds to the 

minimum-energy geometry. They observed that a large basis set with multiple 

polarization functions is necessary to evaluate the dispersion energy accurately. They 

found that augmentation of the diffuse d and p functions to the 6-311G** basis set 
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more efficiently yields the dispersion energy. Tsuzuki et al. [40, 43] explored the 

effect of the choice of the correlation-correction methods on the calculations of 

intermolecular interactions. They demonstrated that the MP2 and MP3 energies are 

not too far away from the higher level MP4 (SDTQ) calculations, while the latter is 

not less expensive than the CCSD(T) calculation. They tested the DFT using the 

BLYP, BPW91 and B3LYP functionals but found unbound interactions while the 

PW91 functional underestimates only 8% of the potential well depth. They suggest 

that DFT with the PW91 functional could be an alternative to the ab initio methods. 

Recently, Tsuzuki et al. [44] have estimated the MP2 and CCSD(T) interaction 

energies of the n-alkane dimers at the basis set limit using Dunning’s correlation 

consistent basis sets.  

 

Many previous studies mainly focused on the equilibrium region of the potentials with 

relatively few discussions of the full potential curves. Nevertheless, to construct a 

reliable force field model for molecular simulations, the full intermolecular potential 

surfaces are required. In this paper we perform a comprehensive up-to-date study on 

interaction potentials of the prototype methane dimer in terms of the HF, MP2 and 

DFT methods to gain more understanding of this system. With current computational 

powers, a detailed editing of the potential data base can be obtained for small size 



 

 49

molecular clusters. It is thus so important to obtain general features of the calculations 

that we can follow to explore large scale molecular simulations via similar procedures. 

The purpose of this paper is twofold. First, we use the state-of-the-art methodology to 

obtain accurate potential energies for the methane dimer. We would like to verify or 

modify the previous conclusions about the basis set effects and the effect of including 

the BSSE on the calculation details of the intermolecular interactions. The basis set 

effects on repulsion exponents, equilibrium bond lengths, binding energies, and 

asymptotic coefficients of the calculated intermolecular potentials are thoroughly 

studied. This is achieved using basis sets from STO-3G [45] to aug-cc-pVQZ [46]. 

The full potential curves are presented in order to see the overall scope of the 

potential. In particular, both the BSSE corrected and uncorrected results are presented 

to emphasize the importance of these corrections. Second, this paper attempts to 

re-assess the utilities of using the available implementation of the density functional 

theory in determining the intermolecular interactions. From the studies of atomic 

dimers, it has been found that conventional DFT based on the local density 

approximation (LDA) and generalized gradient approximation (GGA) cannot 

calculate the intermolecular interactions to a satisfying level of accuracy [47]. To 

address the title issue, we carry out a systematic DFT study of the equilibrium binding 

energies and bond lengths of the methane dimer using 90 functionals. Methane is a 
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non-polar molecule with vanishing dipole and quadrupole moments. The first 

nonvanishing electrostatic interaction is the octopole-octopole interaction and all 

higher order interactions are weak and decay fast at large intermolecular separation. 

The dominant attraction for the methane dimer is thus due to the van der Waals force. 

Therefore, the calculation of van der Waals interactions of the methane dimer serves 

as a prototype study to investigate the various factors affecting the calculations of 

these interactions. 

 

2. Methods and Calculations 

All the calculations were performed using the Gaussian03 package suite [48] and 

followed a theoretical procedure similar to that employed by Tsuzuki et al. [9] Fig. 

1.1-1 shows the calculated interaction potentials of (CH4)2 with a set of selected 

exchange functionals (B, G96, MPW, O, PBE, PW91, S, and XA) [49], together with 

the Perdew correlation functional dubbed as PL (Perdew local) [3]. Although we have 

used a pretty large basis set, 6-311++G (3df, 3pd), which has been shown to lead to 

convergent results for (CH4)2 at a chemical accuracy [50], none of the calculated 

intermolecular interaction potentials reproduce the results of Chen et. al. A puzzling 

point in the commented paper is that there are two sets of data, one reported in their 

Fig. 1.2-1 and the other as numerical data in the text [1], while the latter is twice the 

former. Because there was no further clarification on this apparent inconsistency in 
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the commented paper, we present both data for comparison in Fig. 1.2-1 (open 

symbol-lines). Restated, neither of them can be reproduced in the present calculations. 

 

In the case of methane dimers, a large part of the exchange-repulsion interactions can 

be calculated by the HF method. The calculation of electron correlation energies 

depends on the level of the correlation-corrected method, the size of the basis set, and 

the correction of the BSSE. The state-of-the-art choice of the correlation-corrected 

method is either the Møller-Plesset (MPx, x=2, 3, 4) perturbation method [51] or the 

coupled cluster method with iterative single and double substitutions and with 

noniterative triple excitations [CCSD(T)] method [52]. It has been found that the MP2 

results for the methane dimer are not too much different from those calculated by the 

much more expensive CCSD(T) as long as a large basis set has been used [43]. To 

study the basis set effects, we have employed comprehensive basis sets from the 

Slater-type orbitals fitted with Gaussian functions (STO-nG, n=3~6) [45], Pople’s 

medium size basis sets [up to 6-311++G (3df, 3pd)] [53] to Dunning’s correlation 

consistent basis sets (aug-cc-pVXZ, X=D, T, Q) [46]. The basis set superposition 

error (BSSE) was corrected by the counterpoise (CP) method of Boys and Bernardi 

[54]. The MP2 interaction potentials at the basis set limit have been estimated using 

the methods of Helgaker et al. [55] and Feller [56] and a numerical extrapolation 

scheme based on the Lagrangian formula [57]. 
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All the HF, MP2 and DFT calculations are performed using the Gaussian 03 program 

package [58] on a single node 2-processor AMD 250 PC cluster with distributed 

memory. The equilibrium geometry of a single methane molecule was first optimized 

at the MP2/6-31G* level of theory. To obtain the most stable intermolecular geometry, 

the methane dimer has been modeled by first fixing the carbon-carbon (C-C) distance 

while letting the two monomers to rotate freely. By approaching the monomers from 

the far side with several initial choices of mutual orientation, we found the 

minimum-energy conformation corresponds to the D3d symmetry conformer. This 

optimized conformer has been reached through the interplay of the steric stabilization 

of repulsive hydrogens in opposite monomers [33]. Subsequently the C-C distance 

was sampled in step 0.1 Å for a quite large range of intermolecular separation 

(normally 3~9 Å). During the scan we allow the individual methane molecule to be 

fully relaxed. This means that we do not fix the monomer geometry and the methane 

molecule is not assumed to be rigid. Although it is not expected to see much deviation 

from the rigid molecule approximation, in the real condensed phase environment, 

stretching, bending and torsional relaxations could be important for many subtle 

thermodynamic properties. The inclusion of intramolecular relaxation is especially 

relevant to the construction of force fields for use in molecular dynamics simulations 
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where flexible models often work better than rigid models [59]. 

 

The density functionals used in the present work include the 90 combinations chosen 

among 9 exchange (B88 [60], OPTX [61], MPW [62], PBE [63], PW91 [64], TPSS 

[65] , Slater [66], HCTH [67], XAlpha [68]) and 10 correlation (TPSS [65], PBE [63], 

PW91 [64], P86 [69], HCTH [67], VWN5 [70], PL [71], VWN [70], LYP [72]) 

functionals. We also consider several hybrid functionals of B971 [73], BB98 [74], 

BHandH [75], O3LYP [76], B3PW91 [77], PBE1PBE [63], MPW1PW91 [78]. The 

chosen functionals are selective representations of the most commonly used density 

functionals for van der Waals interactions in current literature. Recent studies showed 

that the PW91PW91 functional could yield reasonable binding energy of the methane 

dimer interaction [79] but the relative performance of the exchange and correlation 

functionals has not been systematically studied.  

 

3. Results and Discussions 

(a) Chen et al. also concluded that through a nonlinear fitting their calculated 

intermolecular potentials can be well described by the Lennard-Jones (L-J) 

potential function 

612)(
R

b

R

a
RV                                                   (1) 

Because this conclusion is contrary to what has been believed that results based on the 
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LDA can not be used to model the long-range dispersion interaction well [16-18], the 

determined accuracy from their calculations remains to be verified. For the sake of 

comparison, in Fig. 1.2-2 we present the calculated raw data and the claimed fitting 

curve by Chen et al. using their fitting values of a and b [1]. To our great surprise, the 

fitting curve is anything but like the calculated raw data. To clarify this point, we 

perform a nonlinear fitting of their calculated data to the L-J function and obtain 

a=2.09106 Å12 kcal/mol, b=1.84103 Å6kcal/mol, and the fitting is shown in Fig. 

1.1-2 As expected, although the L-J function can model the strong repulsive part quite 

well, there is a significant discrepancy from the calculated data for the long-range 

interaction part (R > 4 Å). The calculated data using the LDA often decays faster than 

-1/R6 for the long-range part, due to the local nature of the functionals used. To 

demonstrate this point, we perform another nonlinear fitting using the exponential 

function 

RR BeAeRV   )(                                                  (2)  

and obtain A=1.14106 kcal/mol, α=4.23 Å-1, B=3.33102 kcal/mol, β=1.71 Å-1. As 

can be seen in Fig. 1.2-2, the long-range part of the calculated data is well modeled by 

the fast-decaying exponential function, but not the L-J function. 

 

(b) The intermolecular interaction potentials of the D3d conformer of the methane 
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dimer have been calculated with the HF, the MP2 and the DFT methods. We 

present the respective results along with discussions and make comparisons 

among the results. 

 

A. Hartree-Fock self-consistent field calculations 

The BSSE corrected HF interaction potentials of the methane dimer using several 

basis sets are shown in Fig. 1.2-3. All the HF calculations yield purely repulsive 

potentials without minima for all the basis sets used. This can be attributed to the 

rather weak electrostatic interaction for the methane dimer. In the short range, the 

strong exchange-repulsion interaction dominates with little alternation from 

electrostatic and induction attractions. The HF potential is insensitive to the basis size 

as long as the 6-31G** basis set has been used. We can model the HF potential using 

the repulsive Buckingham function [80] 

R
HF AeRV )(                                          (1) 

where R is the C-C distance, A and α (the repulsion exponent) are the fitting 

parameters. The dependence of the repulsion exponent on the basis size is shown in 

Table 1.2-1. It is seen that the repulsion exponent converges quickly after the 6-31G** 

basis set being used.  
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B. MP2 calculations 

Unlike the HF potentials, the MP2 potentials shown in Fig. 1.2-4 display clear minima 

and long range attractive potential tails. Because the contributions from the 

octopole-octople interactions are small, the dispersion energy is mainly responsible 

for the attractions. Sharp differences between the HF calculations and the MP2 

calculations indicate the importance of including the correlation corrections in the 

wave function calculations. The HF method in principle does not include the 

correlation effect so the attraction forces are due exclusively to the correlation effect.  

 

In Fig. 1.2-4, we compare the MP2 potentials with and without the BSSE corrections 

(denoted as CP and NCP, respectively). We see very strong dependence of the 

interaction potentials on the BSSE corrections. The potentials without the BSSE 

corrections fluctuate with increasing basis size and do not systematically converge to 

the destined curve at the basis set limit. On the contrary, the BSSE corrected 

potentials systematically approach to the destined curve with increasing basis size. 

Therefore, it is important to consider the BSSE correction in calculating the 

intermolecular interactions, in particular for small basis sets. 

 

As shown in Table 1.2-1, the basis set effect on the BSSE corrected interaction 
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potentials is significant. The STO-3G basis set yields very small binding energy. The 

interaction energy becomes more accurate as one adds polarization functions and 

augments diffuse functions in the Pople’s basis sets. Small cc-pVDZ and cc-pVTZ 

basis sets lead to underestimated binding energies and it requires cc-pVQZ to saturate 

the result. Augmentation of the diffuse functions has significant effect on optimizing 

the binding energy. The cc-pVTZ basis set underestimates the energy by 30%, while 

the aug-cc-pVTZ basis set underestimates only 5% of the binding energy. Some subtle 

basis set features can also be observed. For small basis sets, adding polarization 

functions to the basis set does not significantly change the potential. On the other 

hand, augmentation of the diffuse functions has pretty significant effect. For example, 

the aug-cc-pVDZ energy is very close to the high level 6-311++G (3df, 3pd) and the 

cc-pVQZ results. These paraphrase Tsuzuki et al. [43] to construct a 

diffuse-function-augmented medium size 6-311G** basis set in their calculations. 

Together with diffuse functions, adding more polarization functions also improve the 

accuracy of the calculated potential. For example, the 6-311++G** underestimates the 

binding energy by 60%, while the 6-311++G (3df, 3pd) yields a binding energy by 

12% lower than the MP2 energy at the basis set limit. It is understood that dispersion 

interactions arise from the nonlocal electron correlation effect so adding functions of 

extensive range help to optimize the potentials.  
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With the wide span of the basis sets used, the basis set dependence of important 

potential parameters can now be fully studied. In Table 1.2-1 we present the BSSE 

corrected data for the equilibrium bond length, the binding energy, and the asymptotic 

behavior. R0 is the distance at which the potential is zero and can be obtained from a 

two point interpolation of the calculated data. The bond length Rm, the binding energy 

Eb and the intermolecular vibration frequency can be obtained through a harmonic 

modeling of the three lowest potential data near the equilibrium regions. C6 and C8 are 

the dispersion coefficients and can be obtained through a nonlinear fitting of the 

long-range potential data. With increasing basis size, the equilibrium bond length 

converges at the 6-311++G (2d,2p) basis set to a 0.1 Å accuracy, while a pretty large 

basis set (aug-cc-pVTZ) is required to converge the binding energy at a chemical 

accuracy (~0.01 kcal/mol). On the other hand, up to the largest basis set used, the 

asymptotic behavior has not yet converged to the destined C6 value from the 

calculated monomer polarizability (~ 1784 kcal/mol Å 6) [81-83]. Inclusion of the C8 

term is important if shorter range data were used for the modeling. As shown in Fig. 

1.2-5, the long-range curve can be reproduced better when including the C8 term. The 

slow convergence could be an indication of the inefficacy of using the MP2 method 

with Gaussian functions to calculate long-range interactions. Because Gaussian type 
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functions are local functions, a large basis set is required to obtain converged 

correlation energy calculations. Therefore, the basis set limit of the calculated 

potential must be estimated so as to be consistent with the conventional perturbation 

theory. Together with the nonlinear scaling of the computational cost with respect to 

the basis size, this is actually the main practical reason for the difficulty of obtaining 

dispersion interactions through ab initio molecular orbital methods. 

 

The strong basis set dependence and the slow convergence on the dispersion 

coefficients call for an estimation of the important potential features at the basis set 

limit in a calculated potential. Basis set limit of the binding energy can be approached 

using Dunning’s basis sets with an extrapolation scheme. We consider two analytical 

schemes [55, 56] and a numerical scheme [57] while the results are similar. The 

binding energies obtained at the basis set limits (using Dunning’s basis sets, 

aug-cc-pVXZ, X=D, T, Q) are 0.472, 0.467, and 0.470 kcal/mol using the methods of 

Helgaker et al. [55], Feller [56] and the numerical method [57], respectively. These 

values are very close to the results obtained by Tsuzuki et al. [44]. For the other 

potential parameters, we used the numerical extrapolation based on the vanishing 

inverse of the number of basis function [57]. These results are shown in Table 1.2-1 

for comparison. 
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C. Density functional theory 

The density functionals used in the present work include two sets. The first set fixes 

the exchange functional as the PW91 and changes the correlation functionals. The 

correlation functionals include PL [84], VWN5 [85], VWN [85], TPSS [86], PBE [87], 

PW91 [88], VP86 [89], P86 [89], V5LYP [90], LYP [90], HCTH93 and HCTH407 

[91-93]. The second set fixes the correlation functional as the PW91 and changes the 

exchange functionals. The exchange functionals include HCTH93, HCTH147, 

HCTH407 [91-93], MPW [94], MPW1 [94], OPTX or O [95], B88 or B [96], PBE 

[87], Slater or S [97], and X or XA [97]. The choice of these combinations is 

motivated by a recent suggestion that the PW91PW91 functional yield good binding 

energy of the methane dimer interaction [40]. However, the role of the PW91 as an 

exchange versus a correlation functional has not been systematically studied. 

Moreover, it is not clear if the functional is reliable for use in determining other 

potential parameters. 

 

Fig. 1.2-6 presents the calculated intermolecular potential curves using the PW91 as 

the exchange or the correlation functional. We see that the DFT calculations generally 

generate a diverse range of potential curves from purely unbound (BPW91) to 
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strongly bound (XAPW91). In Table 1.2-2 we compare the bond lengths and the 

binding energies calculated using the several exchange-correlation functionals with 

the MP2 results. We see that the PW91PW91 combination produces reasonable 

potential well depth while the bond length is estimated too long. The PW91VP86 

functional yields good bond length and captures the attraction effect quite well, 

although it overestimates the binding energy by 20%. It is promising that available 

functionals do capture partly the correlation effects which are essential in calculating 

the dispersion forces. 

 

The results shown in Table 1.2-2 clearly demonstrate the relative roles played by the 

exchange and correlation functionals in the DFT calculations. By fixing the PW91 as 

the exchange functional, most correlation functionals yield bound potentials and the 

binding energies are around the MP2 result (except the HCTH correlation functionals, 

which yield seriously overbound potentials). On the other hand, by fixing the PW91 

as the correlation functional, the varying exchange functionals either overestimate (S, 

XA) or underestimate (HCTH, MPW, O, B, PBE) the binding energy. Previous studies 

on van der Waals systems [98, 99] have shown that the exchange functional plays an 

essential role in determining the dispersion energy while the correlation part of a 

density functional does not significantly affect the DFT calculations. Our results are 
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basically consistent with these observations, although we see appreciable effects due 

to the choice of the correlation functional. The performance of varying exchange 

functionals for a fixed correlation functional can be understood in terms of the 

behavior of the GGA enhancement factor F(s) of the exchange functional at the large 

gradient-to-density ratio, denoted as s, region [100]. Following Lacks and Gordon 

[101], we plot the F(s) versus s curve in Fig. 1.2-7. We see in Fig. 1.2-7 that the order 

of the magnitude of F(s) at large s is B88>HCTH>OPTX>PBE>MPW>PW91. This 

order is essentially the order of the binding energies calculated by the corresponding 

functionals in Table 1.2-2. This correlation has been found in previous studies on van 

der Waals systems [98, 99] and serves as a useful tool in analyzing the DFT 

calculations. Another criterion for F(s) to be satisfied is the Lieb-Oxford condition 

[102] which requires that 273.2)( sF . From Fig. 1.2-7 we see that the PBE, MPW 

and PW91 exchange functionals obey this condition. The above analyses, together 

with Perdew’s suggestion that the PW91 exchange functional should be used with the 

corresponding PW91 correlation functional [103], explain why the PW91PW91 

functional outperforms other combinations of the exchange and correlation 

functionals in the calculations of dispersion interactions. 

 

(c) In Table 1.2-3 we show the bond lengths using the 90 exchange-correlation 
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functions, displayed as the row and the column items, respectively. Roughly the bond 

lengths descend across the row and down the column. Compared with the MP2 result 

(3.73
o

 ), we find the PW91VP86 function yield a value (3.73
o

 ) same as the MP2 

result. Table 1.2-4 presents the calculated binding energies using the 90 

exchange-correlation functionals. These data are organized in a particular order as 

shown in Table 1.2-4. In this order, the (negative) DFT potentials descend across the 

row and down the column. The results clearly demonstrate the relative performance of 

the exchange and the correlation functionals in the DFT calculations. By fixing the 

PW91 as the exchange functional, for example, all correlation functionals yield bound 

potentials. On the other hand, by fixing the PW91 as the correlation functional, the 

varying exchange functionals much underestimate or overestimate the binding energy 

except the PW91 exchange functional. One of the combinations, PW91PW91, yields a 

binding energy (-0.418 kcal/mol) close to the MP2 result (-0.415 kcal/mol). Previous 

studies on van der Waals systems [51] have shown that the exchange functional plays 

an essential role in determining the binding energy while the correlation part of a 

density functional does not significantly affect the DFT calculations. Our results are 

consistent with the former observation, while we see appreciable effects due to the 

choice of the correlation functional. To further analyze the results, we examine the 

large s behavior of the GGA enhancement factors at the asymptotically low density 
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region. 

 

The performance of varying the GGA exchange functionals for a fixed correlation 

functional can be understood in terms of the behavior of the GGA enhancement factor 

FX(s) of the exchange functional for the large reduced density gradient region. The 

exchange enhancement factor is defined by 

LDA
X

GGA
X

X sF



)(                                                   (1) 

where GGA
X and LDA

X  are the exchange potentials for the GGA and the LDA energy 

functionals, respectively. We plot the FX(s) versus s curve in Fig. 1.2-7. We see in Fig. 

1.2-7 that the order of the magnitude of FX(s) at large s is B88 > OPTX > MPW > 

PBE > PW91. This order is essentially the order of the binding energies calculated by 

the corresponding functionals down the column in Table 1.2-4. This connection has 

been found in previous studies on van der Waals systems and serves as a useful tool in 

analyzing the DFT calculations. In the present work, we verify and extend the utilities 

of previous conclusions. Notice that the HCTH functional is an outlier to the previous 

trend. This could be due to the fact that the original set up of using an HCTH 

exchange functional should always work with its correlation counterpart [51]. 

 

On the other hand, the performance of varying the GGA correlation functionals for a 
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fixed exchange functional has not been thoroughly studied before. In calculations for 

chemically bonded systems or hydrogen bonded systems, the contribution of a 

correlation functional is often small. However, for low density and large s, the 

contribution of correlation energy becomes more significant [41]. In Table 1.2.4 we 

see that for a fixed exchange functional, it may amounts to a wide range of binding 

energies by varying the correlation functional. Because most GGA correlation 

functionals use the LDA correlation as an additive ingredient in the definition, to 

clearly show the nonlocal effect, an enhancement factor is defined by 

LDA
C

GGA
C

sC rsF



1),(                                              (2) 

where GGA
C and LDA

C  are the correlation potentials for the GGA and the LDA energy 

functionals, respectively. The correlation enhancement factor depends on s and rs, 

where   3/14/3 sr is the Wigner-Seitz radius. For van der Waals interactions, rs 

falls in the range of 5~20. By fixing rs =10, we plot the enhancement factor FC(s) as a 

function of s in Fig. 1.2-8. We see in Fig. 1.2-8 that the order of the magnitude of FC(s) 

at medium s is TPSS > PBE > PW91 > P86 > HCTH. Interestingly, this order is 

essentially the order of the binding energies calculated by the corresponding 

functionals across the row in Table 1.2-4. These observations clearly show that the 

DFT potentials are correlated to the exchange and the correlation enhancement factors 

at the asymptotically low density region. It requires the proper match of an exchange 
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functional and a correlation functional to yield reasonable results. Most correlation 

functionals are not sensitive to the rs for medium s range, except the P86 correlation 

functional. In Fig. 1.2-9, we plot the rs dependence of the correlation enhancement 

factor for the P86 functional as a function of s. We see that there is a significant effect 

of varying rs on the P86 functional. Therefore, one has to be more careful in making 

conclusions with the P86 correlation functional. 

 

Figs. 1.2-10(a)-10(e) present the calculated potential curves by fixing 5 correlation 

functionals and varying the exchange functions used in this paper. Fig. 1.2-11 presents 

the potential curves using some hybrid functionals. We see that the DFT calculations 

generate a wide range of potential patterns. Some are purely repulsive (such as 

B88PBE), while others could be over-bounded (such as SlaterVWN). There patterns 

have been found before and have often been termed “unsystematic”. From our 

analysis, it is clear that some compensation among the respective exchange and 

correlation functions at the large s range of the enhancement factors must occur to 

yield reasonable potential well depth close to the MP2 result. For the methane case, 

PW91PW91 seems to achieve such appropriate compensation and thus yields a better 

result. Just exactly which combination should be used for a specific system is 

unknown a priori. Nevertheless, our Table 1.2-4 does show the interesting correlation 
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between the calculated results and the chosen functionals and should provide a useful 

reference for choosing such a combination. 

 

Next we would like to discuss the asymptotic behaviors of some selective DFT 

potentials and compare them with those obtained from the MP2 reference potential. It 

is well known that a DFT potential cannot be used to model the long range tail of the 

van der Waals interaction. However, exactly how bad the situation is has not been 

systematically studied. Fig. 1.2-12 displays the linear analysis of the potential curves 

by plotting ln(-V) versus ln(R-1); namely, 

                          6ln ln( )V R                       (3) 

where V  is the (negative) potential energy by subtracting the HF potential (which is 

purely repulsive) from the DFT potential and R  is the C-C distance. The data for 

R>5
o

  has been used to perform this analysis. Notice that the MP2 potential yields a 

reasonably straight line. Generally DFT potentials yield erratic long range behaviors. 

The deviation from the straight (MP2) line indicates the inefficacy of the DFT 

potentials. This verifies that DFT potentials cannot be used to model the dispersion 

interactions, in particular at long range regions.  

 

4. Conclusion 

(a) To sum up this comment, the proposed calculated intermolecular interaction 
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potentials of the methane dimer by Chen et al. can not be reproduced using the 

available implementations of the LDA functionals. The calculated data can not be 

used to model long-range dispersion interactions of the methane dimer either. We 

call for a careful examination and cautious usage of the calculated potentials by 

Chen et al. 

 

(b) We have systematically studied the calculated intermolecular potentials of the 

methane dimer at the most stable D3d conformation using the HF, MP2 and DFT 

methods. A wide selection of basis sets has been employed in order to determine 

the basis set effects on the repulsion exponent, the binding energy, the equilibrium 

bond length and the asymptotic behavior of the intermolecular potentials. BSSE 

corrections are considered as an important factor affecting the quality of the 

calculated potentials. 

From this study we can draw several important conclusions about using the 

current theoretical methods to generate the intermolecular potentials. Although 

only the methane dimer has been studied, these conclusions should also be useful 

to other molecular dimers. 

(1) The HF calculations yield purely repulsive potentials for nonpolar molecular 

dimers. The basis size effect of the HF calculations is very small as long as the 
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6-31G** basis set has been used. 

(2) The van der Waals bond of the methane dimer is well produced using the MP2 

method. BSSE corrections must be considered to yield systematic results. Basis 

set effects are significant for many important parameters such as bond lengths, 

binding energies and dispersion coefficients. Small basis sets, especially without 

the augmentation of diffuse functions, could produce severe underestimation of 

the binding energy and overestimation of the bond length. Addition of diffuse 

functions and polarization functions leads to reliable binding curves. 

(3) The DFT potentials display a wide range of patterns of binding curves, 

underestimating or overestimating the binding energy. The binding energy 

calculated using the PW91PW91 functional and the equilibrium bond length 

calculated using the PW91VP86 functional are close to the MP2 results.  

From the present study we see very clearly that the HF method captures the 

exchange-repulsion interaction and saturates the potential curves at small basis set. 

Inclusion of the correlation corrections using ab initio molecular orbital methods 

makes the calculations computationally demanding (CPU time ~ N4, where N is 

the number of basis function). The DFT calculations are comparatively cheaper 

but the results are not systematic. Some functionals do capture partly the 

correlation effects. These observations justify the recent efforts in improving the 
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calculations of the intermolecular interactions using the HF or the DFT method by 

including explicit empirical or nonempirical dispersion energy corrections [62-78]. 

More works are definitely required to make the two ends (accuracy versus 

efficiency) meet. 

 

(c) We have studied the DFT potentials for van der Waals interactions of the methane 

dimer. Weak interactions of van der Waals systems have been widely studied and 

discussed in various contexts and the DFT results were often termed 

“unsystematic”. Definitely part of the reasons can be attributed to the error 

cancellation between the exchange and the correlation functionals. To study their 

relative performance, we analyze the exchange and the correlation enhancement 

factors in the asymptotically low density region. Our objective is to make these 

results more “systematic” so that the calculated DFT potentials can be better 

understood. Similar to the exchange enhancement factor, the correlation 

enhancement factor, being useful for choosing a specific functional, should also be 

useful for constructing more exact functionals by “more constraint satisfaction 

with fewer fits”. 
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Table captions 

TABLE 1.2-1. The basis set dependence of important potential parameters using the 

BSSE corrected HF and MP2 intermolecular potentials. R0 is the distance at which the 

potential is zero and Rm is the equilibrium bond length. The CPU time of the MP2 

calculation was recorded on a single node 2-processor AMD 250 PC cluster with 

distributed memory. 

 

TABLE 1.2-2. Comparison of the bond lengths and the binding energies calculated 

using the several exchange-correlation functionals with the MP2 results using the 

6-311++G (3df,3pd) basis set.
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 MP2 HF MP2 

Basis set 

Number 

of basis 

function 

CPU Time

(hour) 

Aa  

(kcal/mol) 

a  

(Å -1) 

R0 

(Å) 

Rm 

(Å) 

Eb 

(kcal/mol)

ω 

(cm-1
) 

1 termb 2 terms 
c 

C6 C6 C8 

STO-3G 9 0.25 219400 3.62 4.36 4.75 -0.009 42.99 189.03 136.04 1596.61 

3-21G 34 0.28  83319 3.29 4.05 4.50 -0.047 78.39 641.57 419.58 6477.70 

6-31G 34 0.28 104302 3.36 3.99 4.45 -0.053 73.33 676.57 438.12 6957.93 

6-311G 50 0.37 113764 3.39 3.91 4.36 -0.064 83.45 747.23 486.94 8437.88 

3-21G** 58 0.38  83602 3.30 3.85 4.31 -0.078 101.15 832.07 556.44 10586.51 

6-311G* 60 0.48 115208 3.40 3.73 4.16 -0.104 108.73 951.51 454.57 8356.77 

cc-pVDZ 68 0.68 120594 3.41 3.63 4.05 -0.150 130.17 1174.71 684.90 11986.23 

6-31G** 70 0.57 108646 3.39 3.73 4.19 -0.101 108.73 941.68 544.89 11028.72 

6-311G** 84 1.17 115208 3.40 3.59 4.02 -0.165 161.64 1207.04 640.12 14790.89 

6-311+G** 92 1.57 115057 3.40 3.58 4.01 -0.174 159.31 1245.15 673.37 15081.38 

6-311++G** 100 2.42 115298 3.40 3.57 4.01 -0.176 159.31 1259.19 671.72 15584.98 

aug-cc-pVDZ 118 3.22 123739 3.42 3.35 3.78 -0.395 369.19 1995.05 764.34 22587.36 

6-311++G(2d,2p) 134 5.62 114025 3.40 3.38 3.80 -0.315 217.47 1674.00 812.170 21662.07 

6-311++G(3d,3p) 168 12.22 112605 3.40 3.33 3.75 -0.401 278.15 1964.62 1456.53 9860.58 

cc-pVTZ 172 13.35 113006 3.40 3.37 3.80 -0.317 215.83 1880.25 1446.17 10119.20 

6-311++G(2df,2pd) 188 20.35 113940 3.40 3.36 3.78 -0.331 209.88 1697.49 1437.55 10518.06 

6-311++G(3df,3pd) 222 22.63 112373 3.40 3.30 3.73 -0.415 270.57 1979.52 1593.49 7987.79 

aug-cc-pVTZ 276 82.70 112320 3.40 3.27 3.70 -0.453 260.45 2048.04 1442.32 11755.28 

aug-cc-pVQZ 528 941.83 111828 3.40 3.26 3.68 -0.464 250.34 2029.20 1053.08 18021.33 

Basis set limit   113458 3.40 3.25 3.66 -0.470 256.54 --- --- --- 
a Fit to the formula R

HF AeRV )( . 

b Fit to the formula 
6
6)(

R

C
RVdisp  , C6 in unit (kcal/mol Å 6), using data R>5.0 Å. 

c Fit to the formula 
8
8

6
6)(

R

C

R

C
RVdisp  , C8 in unit (kcal/mol Å 8), using data R>4.0 Å.                                               TABLE 1.2-1 
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Functional 

6-311++G(3df,3pd) 

Bond length  

(Å) 

Binding Energy  

(kcal/mol) 
PW91PL 4.19 -0.360 

PW91VWN5 4.19 -0.358 

PW91VWN 4.14 -0.387 

PW91TPSS 4.05 -0.376 

PW91PBE 4.04 -0.379 

PW91PW91 3.99 -0.418 

PW91VP86 3.73 -0.572 

PW91P86 3.72 -0.577 

PW91V5LYP 3.80 -0.669 

PW91LYP 3.80 -0.669 

PW91HCTH93 3.56 -1.444 

PW91HCTH407 3.52 -3.367 

HCTH93PW91 5.93 -0.003 

HCTH147PW91 5.82 -0.006 

HCTH407PW91 5.93 -0.004 

MPWPW91 4.83 -0.071 

MPW1PW91 4.80 -0.050 

OPW91 5.23 -0.021 

BPW91 Unbound --- 

PBEPW91 4.04 -0.167 

SPW91 3.08 -2.483 

XAPW91 2.97 -2.671 

MP2 3.73 -0.415 

Table 1.2-2 
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TABLE 1.2-3 Comparison of the bond lengths ( in
o

 ) calculated with the 90 

exchange-correlation functionals using the 6-311++G (3df, 3pd) basis set. As a 

reference, the MP2 bond length calculated at this basis set is 3.73
o

 [22]. The better 

DFT results of errors within 10% as compared to the MP2 result are marked in black 

boldface. 

 

 

 

 

 

Correlation functional 

VWN5 PL TPSS PBE PW91 VWN P86 VP86 LYP HCTH

E
xc

ha
ng

e 
fu

nc
tio

na
l 

B88 U U U U U U U U U 3.62 

HCTH 5.85 5.85 5.93 5.93 5.93 5.83 6.14 6.14 5.90 3.92 

OPTX 5.20 5.20 5.24 5.23 5.24 4.93 5.30 5.30 4.83 3.81 

MPW 4.77 4.77 4.84 4.84 4.83 4.73 4.69 4.69 4.26 3.57 

TPSS 4.40 4.40 4.42 4.41 4.40 4.35 4.03 4.03 3.98 3.52 

PBE 4.26 4.25 4.08 4.06 4.04 4.21 3.72 3.72 3.79 3.53 

PW91 4.19 4.19 4.05 4.04 3.99 4.14 3.72 3.73 3.80 3.52 

Slater 3.33 3.99 3.10 3.07 3.08 3.31 2.99 3.00 3.13 NA¥ 

XAlpha 3.26 3.26 3.54 3.52 2.97 3.24 3.49 3.00 3.07 3.15 

¥ Not available Table 1.2-3 
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TABLE 1.2-4 Comparison of the binding energies (in kcal/mol) calculated with the 90 

exchange-correlation functionals using the 6-311++G (3df, 3pd) basis set. As a 

reference, the MP2 binding energy calculated at this basis set is -0.415 kcal/mol [22]. 

Positive values represent unbound dimer structures and the energies are calculated at 

R=3.73
o

 . The better DFT results of errors within 10% as compared to the MP2 result 

are marked in black boldface. 

 

 

 

Correlation functional 

VWN5 PL TPSS PBE PW91 VWN P86 VP86 LYP HCTH

E
xc

ha
ng

e 
fu

nc
tio

na
l 

B88 1.206 1.206 1.090 1.075 1.054 1.130 0.802 0.801 0.718 -1.749

HCTH -0.007 -0.007 -0.003 -0.003 -0.004 -0.008 0.000 0.000 -0.006 -0.668

OPTX -0.030 -0.030 -0.020 -0.020 -0.021 -0.032 -0.007 -0.006 -0.039 -1.582

MPW -0.085 -0.085 -0.070 -0.070 -0.071 -0.096 -0.057 -0.056 -0.150 -2.559

TPSS -0.087 -0.087 -0.074 -0.074 -0.077 -0.105 -0.118 -0.116 -0.250 -2.753

PBE -0.149 -0.150 -0.157 -0.158 -0.167 -0.174 -0.358 -0.353 -0.457 -3.174

PW91 -0.358 -0.360 -0.376 -0.379 -0.418 -0.387 -0.577 -0.572 -0.669 -3.367

Slater -1.173 -1.184 -2.330 -2.445 -2.483 -1.287 -3.436 -3.416 -2.884 NA¥

XAlpha -1.290 -1.302 -2.500 -2.634 -2.671 -1.415 -3.702 -0.364 -3.119 -5.838

¥ Not available Table 1.2-4 
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FIG. 1.2-1. The calculated intermolecular interaction potentials using a series of 

exchange-correlation functionals. The open symbol-lines are the two sets of data 

taken from Fig. 1.2-1 and the text of Ref. [1], respectively. The filled symbol-lines are 

calculated in the present work using a combination of the selected exchange 

functionals with the Perdew correlation functional.  

Fig. 1.2-1 



 

85 
 

 

FIG. 1.2-2 Comparison of the calculated data in Ref. [1] with the fittings using the L-J 

function and the exponential function. The original fitting by Chen et al. is also 

presented for comparison. 

 

 

Fig. 1.2-2 
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FIG. 1.2-3. The BSSE corrected HF interaction potentials of the methane dimer using 

several basis sets. 

 
FIG. 1.2-4. The BSSE corrected (CP) and uncorrected (NCP) MP2 potentials of the 

methane dimer using a series of basis sets. 

Fig. 1.2-3 

Fig. 1.2-4 
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FIG. 1.2-5. Comparison of the BSSE corrected MP2 potential curve calculated at the 

aug-cc-pVQZ basis set and the sum of the HF potential and the long range dispersion 

potentials. 

 
FIG. 1.2-6. The BSSE corrected DFT intermolecular potential curves using the PW91 

as the exchange or correlation functional. 

Fig. 1.2-5 

Fig. 1.2-6 
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FIG. 1.2-7 The GGA exchange enhancement factor as a function of s for the B88, 

HCTH, OPTX, MPW, PBE, and PW91 exchange functionals. 

 

FIG. 1.2-8 The GGA correlation enhancement factor as a function of s for the TPSS, 

PBE, PW91, P86, and HCTH correlation functionals. Here rs =10. 

Fig. 1.2-7 

Fig. 1.2-8 
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FIG. 1.2-9 The rs dependence of the GGA correlation enhancement factor as a 

function of s for the P86 correlation functional. 

 

 

Fig. 1.2-9 

Fig. 1.2-10(a) 
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Fig. 1.2-10(b) 

Fig. 1.2-10(c) 
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FIG. 1.2-10 The BSSE corrected potential curves with varying exchange functionals 

by fixing (a) PBE, (b) PW91, (c) VWN, (d) VP86 and (e) LYP correlation functionals, 

respectively. The MP2 potential curve is also shown as a reference. 

Fig. 1.2-10(d) 

Fig. 1.2-10(e) 
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FIG. 1.2-11 The BSSE corrected potential curves selective using several hybrid 

functionals. 

 

FIG. 1.2-12 The asymptotic behavior of selective DFT potentials versus the MP2 

potential via a analysis of the long-range data. 

Fig. 1.2-11 

Fig. 1.2-12 
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1.3 Molecular Dynamics Simulations of Fluid Methane 
Properties Using Ab Initio Intermolecular Interaction 
Potentials 

 

1. Introduction 

The interaction potentials of hydrocarbons are crucial in determining the packing 

stability in solids and fluids and in biological soft matters [1-4]. Methane is a 

prototype system of hydrocarbon interactions and thus has attracted intense theoretical 

studies on the interaction potentials of the methane dimer [5-20, 22-23]. These 

potentials are required in a molecular simulation to calculate bulk properties of fluids 

[21]. Most previous investigations of fluid methane properties used empirical force 

fields together with molecular dynamics (MD) or Monte Carlo simulations. However, 

none of them can be universally applied to reproducing experiments quantitatively. 

For recent reviews on the performance of several popular empirical force fields, see 

Nagy et al. [22] and Hayes et al. [23].  

 

Recently, intermolecular potential energy surfaces (PESs) from first-principles 

calculations, or ab initio force fields, have been developed to simulate fluid methane 

properties [23-27]. Gay et al. [24] obtained the PES using the Møller-Plesset (MPx, 

x=2-4) perturbation theory with the Sadlej basis set for six conformers and a 5-site (at 

the carbon and the hydrogen positions) potential function was used to fit the 
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calculated data. Using the PES they could reproduce the experimental second virial 

coefficients for the temperature range of 110-623 K. Palmer and Anchelll [25] 

obtained the PES using the MP2/6-31+G* theory for 7 conformers and a 5-site 

potential function was used in the data fitting. Their MD simulations using the PES 

reproduced some experimental thermodynamic properties (pressure, enthalpy etc.) at 

a single state point. In a series of papers, Tsuzuki et al. [9, 26] have calculated the 

interaction energies for 12 conformers using up to the MP3/aug (df, pd) 6-311G** 

level of theory with a total of 132 configuration points calculated. They used a 5-site 

model to fit the potential data where the four hydrogen sites were relocated toward the 

carbon atom. Their MD simulations reproduced some thermodynamic properties and 

the self-diffusion coefficient at a single state point. Rowley and Pakkanen [27] have 

used the MP2/6-311+G (2df, 2pd) theory to calculate the potential energies for 11 

conformers and their PES was based on a 5-site model. They further improved the 

accuracy of the PES by including some potential data calculated at the MP4/6-311+G 

(2df, 2pd) theory in the fitting procedure. However, no simulation results compared 

with experiments were provided in this work. Hayes et al. [23] have calculated the 

interaction energies for 10 conformers at the MP2/aug (df, pd)-6-311G** level of 

theory, resulting in a total of 130 configuration points calculated. They further 

improved the accuracy of the PES by including 78 potential data calculated at the 



 

95 
 

MP4/aug (df, pd) 6-311G** theory for selected conformers. They used a 5-site model, 

where the four hydrogen sites were relocated toward the carbon atom, to fit the 

potential data. Their MD simulations reproduced some thermodynamic properties at 

more than a single state point.  

 

These previous works are either inaccurate enough in the potential data or are not 

validated against a wider enough range of experimental data. Currently, no ab initio 

PES so far has been calculated at a spectroscopic accuracy while at the same time can 

reproduce the structural and transport properties of fluid methane. Moreover, previous 

modeling procedures used brute-force fittings without utilizing the physical 

understanding of the potential anisotropy. Our data modeling is based on an analyzed 

hydrogen-hydrogen repulsion mechanism to explain the relative stability of different 

conformers [6]. In this paper we construct an ab initio PES using a high level theory, 

up to MP2/aug-cc-pVQZ, for 12 conformers. Using well-establish extrapolation 

formulas the potential data at the complete basis set (CBS) limit can achieve a 

CCSD(T)/aug-cc-pVQZ level of quality. We determine the accuracy of the 

constructed ab initio PES using MD simulations and the results are compared with 

experiments. Quantitative agreements with the measured radial distribution functions 

(RDFs) and the self-diffusion coefficients for a wide range of thermodynamic 
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conditions provide proper justification on the validity of this PES. 

 

The paper is organized as follows. In Section II, we describe the details of these 

calculations. In Section III the results are presented and discussed. A summary and a 

brief perspective are given in Section IV. 

 

2. Methods and Calculations 

All the calculations were performed using the Gaussian 03 program package [28] on a 

single node AMD PC cluster with distributed memory. The isolated methane molecule 

was first optimized at the CCSD(T)/aug-cc-pVTZ theory and was found to be at the 

tetrahedral configuration (Td symmetry) with the C-H bond length of 1.085 Å. The 12 

symmetric conformers chosen to sample the orientational response are depicted in Fig. 

1.3-1. Because of the high symmetry of the dimer configuration, the angular sampling 

should be wide enough to model the rotational dynamics in normal thermodynamic 

conditions. The MP2 method [29] has been used to treat the correlation effect. Pople’s 

medium size basis sets [up to 6-311++G (3df, 3pd)] [30] and Dunning’s correlation 

consistent basis sets (cc-pVXZ and aug-cc-pVXZ, X=D, T, Q) [31] were employed in 

the calculations. The basis set superposition errors (BSSEs) were corrected by the 

counterpoise (CP) method of Boys and Bernardi [32]. Subsequently the 
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carbon-carbon (C-C) distance, denoted as R, was sampled for a large range of 3~9 Å, 

with 61 configuration points for each conformer. A total of 732 configuration points 

were actually sampled and the energies calculated. During the scan we first fixed the 

monomer geometry (rigid monomer assumption) and the conformer symmetry. Next, 

to check the validity of the rigid monomer assumption, we repeat the above procedure 

while allowing the monomer carbon-hydrogen (C-H) bonds to relax during the scan. 

However, we found very little effect (normally less than 0.01 kcal/mol in the energy 

difference, see Fig. 1.3-2) by including the bond deformation. Therefore, in the 

following discussions we present the potential data under the rigid monomer 

assumption in order to compare the results with those in previous studies. Single point 

CCSD(T) [33] calculations were also carried out to calibrate the MP2 potentials. 

 

The MD simulations were performed in a rectangular cell with the periodic boundary 

conditions imposed on the three coordinate directions. A total of 256 methane 

molecules were initially arranged in a face-centered-cubic lattice with a relative 

configuration like the E conformer. A canonical ensemble (NVT) was used with the 

temperature control by rescaling the center-of-mass velocities every 1000 time steps. 

Equations of motion were solved using the velocity-Verlet algorithm with the time 

step of 1 fs. The system was checked equilibrium after running 20 ps and another 200 
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ps period (the longest run being up to 1 ns) was allowed for data collection. The 

cut-off radius was set to be half of the box size to avoid long range correlations. The 

simulated thermodynamic conditions cover a density range of 10-28 mol/L and a 

temperature range of 112-525 K, where the experimental data are available. 

   

3.Results and Discussions 

A. Ab initio calculations 

In Fig. 1.3-3 we show the MP2 potentials for the twelve conformers using the 

aug-cc-pVQZ basis set. We see that the potentials become deeper when there are more 

inner hydrogen atom contacts between the monomers. It is found that the 

minimum-energy conformation corresponds to the D3d symmetry configuration (the J 

conformer), which is consistent with most previous studies. This optimized conformer 

has been explained in terms of the interplay of the steric stabilization of repulsive 

hydrogen atoms in opposite monomers [6]. It is interesting to analyze the oriental 

responses from the repulsive and the attractive components of the potentials 

separately. Methane is a non-polar molecule and the first nonvanishing electrostatic 

interaction is the octopole-octopole interaction, which is rather weak and decays fast 

at large intermolecular separation. The dominant long-range attraction for the methane 

dimer is thus due to the London dispersion force. On the other hand, the strong 
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repulsive force almost comes from the exchange-repulsion interaction which can be 

calculated by the Hatree-Fock (HF) self-consistent theory [34]. Contrasting the HF 

and the MP2 potentials thus helps to delineate the relative importance of the 

dispersion energy in the overall intermolecular interactions. In Fig. 1.3-4 we show the 

HF potentials and the MP2 potentials subtracting the corresponding HF potentials, 

dubbed as MP2-HF, for the twelve conformers. All the HF potentials are repulsive due 

to the exchange-repulsion interactions [18]. The MP2-HF potentials largely represent 

the dispersion curves which are purely attractive. We see larger variations for the 

repulsive components as compared to the attractive components. For example, at 

R=3.8 Å, the HF potentials (MP2-HF potentials) vary from 0.274 kcal/mol (-0.722 

kcal/mol) for the J conformer to 4.405 kcal/mol (-1.992 kcal/mol) for the A conformer. 

That is to say, compared to the others, the J conformer has actually the weakest 

attractive but also the weakest repulsive parts. Therefore, it is actually due to the 

stronger variation in the repulsive interactions, but not due to the stronger attraction as 

would be intuitively expected, that the J conformer is the most stable methane dimer. 

 

In Table 1.3-1 we present the basis set dependence of several important potential 

quantities extracted from the MP2 potentials at a series of basis sets. R0 is the distance 

at which the potential is zero and can be obtained from a two point interpolation of the 
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calculated data. The bond length Rm, the binding energy Eb and the intermolecular 

vibration frequency  can be obtained through a harmonic modeling of the three 

lowest potential data near the equilibrium regions. With increasing basis size, the 

equilibrium bond length converges at the aug-cc-pVDZ basis set to a 0.1 Å accuracy, 

while a pretty large basis set, aug-cc-pVTZ, is required to converge the binding 

energy at a spectroscopic accuracy (~0.01 kcal/mol). The strong basis set dependence 

and the slow convergence on the binding energy call for an estimation of the potential 

features at the complete basis set (CBS) limit. The CBS binding energies can be 

obtained by an extrapolation scheme with Dunning’s basis sets. We consider the 

methods of Helgaker et al. [35], Martin [36], Feller [37] and a numerical extrapolation 

scheme based on the 3-term Lagrange formula [38] and the MP2/CBS results are 

listed in Table 1.3-2. We see that using the aug-cc-pVXZ data, the four extrapolation 

methods yield similar CBS values. 

 

To calibrate the MP2 potentials, we perform single point CCSD(T) calculations at 

several key structures using the aug-cc-pVQZ basis set. In Table 1.3-3 we show the 

MP2 and the CCSD(T) potentials of the methane dimer using the aug-cc-pVQZ basis 

set for the J conformer. The MP2 potential energies near the potential minimum are 

generally accurate up to 0.05 kcal/mol, as compared to the CCSD(T) energies. The 
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MP2 interaction potentials at the complete basis set (CBS) limit were estimated using 

the above four extrapolation methods [35-38] and are shown in Table 1.3-3. We see 

that the MP2/CBS potential data are very close to (namely, within 0.05 kcal/mol) the 

CCSD(T) potential data. 

 

The full CBS potential curves can also be obtained using a direct extrapolation on the 

potential data calculated at a series of basis sets for each sampled C-C distance. It is 

found that the CBS potential curves obtained by the methods of Helgaker et al. [35] 

and Martin [36] are more self-consistent than those using the method of Feller [37], in 

particular if the cc-pVXZ potential data were used to perform extrapolation. In Fig. 

1.3-5 we present the CBS potential curves obtained from the extrapolation method of 

Helgaker et al. [35], using the aug-cc-pVXZ (X=T, Q) potential data. 

 

B. Analytical site-site pair potential model 

Representing the potential data by an analytical PES is a not a trivial task but requires 

the physical understanding of the potential anisotropy. In Fig. 1.3-3 we see strong 

orientation dependence of the calculated potentials. The high anisotropy of the 

methane interactions was often ignored in simplified empirical force fields [12]. A 

closer look at the potential curves reveals interesting interplay among the contact 
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atoms of methane dimer. First we notice that for the A~F conformers, the A and B, the 

C and D, and the E and F potential curves are numerically identical, respectively 

(hence we show only one respective curve of them in Fig. 1.3-3). This indicates that 

the inner hydrogen-hydrogen (H-H) interactions play a major role, as compared with 

the outer H-H interactions, in determining the overall interaction energies. Next we 

observe that the G and H potential curves are almost identical (see Table 1.3-1), which 

indicates that some compensation among the inner 3-2 hydrogen atoms occurs to 

allow possible binding configurations. The inner H-H interactions contribute largely 

the overall binding energies and allow two degenerate 3-2 configurations; namely, the 

G and H conformers. Due to the large carbon-carbon (C-C) bond distances for these 

conformers and the possible shielding from the hydrogen atoms, the C-C interactions 

should play a relatively minor role also, which echoes previous studies [6, 8, 12, 27]. 

The same reasoning can be used to comprehend the relative stability of the I and J 

conformers. For the J conformer, the inner 3-3 hydrogen atoms manage to “avoid” 

each other to reach a more favorable stabilization over the I conformer where the 

hydrogen atoms “head on”. Similar arguments apply to the K and L conformers also. 

We see that the energy curve for the E/F conformer is a little bit lower than what we 

expected from the above simple model. This is because the E/F conformer is a 

favorable configuration for the electrostatic octopole-octopole interactions. Therefore, 
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we conclude that the inner H-H interactions are the major components contributing to 

the potential anisotropy. 

 

Based on the above observations, an analytical 4-site model was proposed to represent 

the ab initio data. The sites are associated with the hydrogen atoms and this model 

uses only two parameters. The 4-site model is schematically depicted in Fig. 1.3-6. 

This model is very simple and is more suitable for the development of coarse-grained 

potentials [39-40]. The site-site interaction is represented by a Lennard-Jones (L-J) 

function. 

 

 
12 6

4ij
ij ij

U r
r r

 
    
             

                                           (1) 

where the indices i and j denote the hydrogen atoms in separated monomers, 

respectively, and rij represents the hydrogen-hydrogen distance for a pair of i and j 

hygrogens. In this model only  and  are the potential parameters to be determined. 

The total dimer energy is thus 

 

 
12 6

; 4total
i j ij ij

U R
r r

 
    
              

                                   (2) 
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The total energy as a function of R for different conformer designated by  is used to 

fit the calculated potential data through a nonlinear fitting using the normal 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) procedure [38]. No bias weights were put 

on specific configurations except that we excluded the largest repulsive energy points 

in the regression to prevent their dominance in the least-squares cost function [23]. 

However, this latter constraint could effectively put more weight on deeper wells. The 

fitting parameters we obtained are =2.67Å and =0.054 kcal/mol. In Fig. 1.3-7 we 

present the fitting curves and the ab initio data. The ab initio data used in the fitting 

and the fit data are presented in Table 1.3-4. The deviation of the fit data from the ab 

initio data ABSper and ABSerr represent the root mean square errors in Table 1.3-5. 

Notice that the order of the potential data has been correctly represented by the fitting 

curves, which reflects the above physical arguments. Using Eq. (2) we can generate 

the six-dimension PES as shown in Fig. 1.3-8. It is seen that the PES reproduces the 

global features of the ab initio potential data reasonably well. 

 

C. Molecular dynamics simulations 

We evaluate the PES by running molecular dynamics simulations on it. We calculate 

the atom-atom radial distribution functions (RDFs) at a specific experimental 

condition, which is a phase point far from the triple point but close to the melting line. 
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The RDFs are given by the definition [41-42] 

 

   
24

n r
g r

r r  



                                                   (3) 

 

where  g r  is the radial distribution function for the - atom pair,  n r  is the 

mean number of atoms in a shell of radius r  and thickness r  surrounding the 

atom, and   is the mean density for total system. The calculation of  g r  

consists of about 10000 trials, with each by selecting an  atom as the origin and 

counting the  atoms within the spherical shells of thickness r =0.02 using the 

histogram method. Fig. 1.3-9 presents the simulated atom-atom radial distribution 

functions for temperature T=150 K and density = 28.06 mol/L (0.449 g/cm3). As we 

can see from the comparison with the experimental data [43], the overall agreement is 

satisfactory. The peak and valley positions are accurately reproduced for the three 

RDFs. The peak heights are systematically overestimated partly due to the PES being 

modeled too deep. On the other hand the close-contact distances are perfectly 

reproduced which verifies the proper modeling of the strong repulsion parts of the 

PES. 

 

We have also calculated the self-diffusion coefficients with a wide range of 
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thermodynamic conditions. The self-diffusion coefficients can be calculated using the 

Green-Kubo formula [41] 

 

   
0

1
0

3

N

i i
i

D v t v dt
N


 

 

                                         (4)
 

where iv


 is the velocity vector of particle i and the statistical average is the velocity 

autocorrelation functions (VAFs). In Fig. 1.3-10 we show the VAFs for several phase 

conditions considered in this paper. We see that the VAFs exhibit both gaseous and 

liquid behaviors. In Table 1.3-4 and in Fig. 1.3-11 we present the comparison of the 

calculated self-diffusion coefficients with experiments from different research groups 

[44-45]. In Fig. 1.3-12 and Fig. 1.3-13, we see that to a very wide range of 

thermodynamic conditions, MD simulations with the ab initio PES are capable of 

reproducing the experimental data within the estimated experimental uncertainties.  

 

4. Conclusion 

To simulate fluid methane properties, we have constructed an ab initio PES based on 

a high level, MP2/aug-cc-pVQZ, quantum chemistry calculation of the potential data. 

The potential data achieve a CCSD(T)/aug-cc-pVQZ level of quality by extrapolating 

them to the complete basis set (CBS) limit values. The potentials exhibit significant 

anisotropy, which is analyzed and considered in the 4-site model used to fit the 
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potential data. We determine the accuracy of the constructed ab initio PES using MD 

simulations and the results are compared with experiments. Quantitative agreements 

with the observed radial distribution functions (RDFs) and the self-diffusion 

coefficients have been obtained for a wide range of thermodynamic conditions. 

 

The main source of errors of the constructed PES comes from the analytical 

representation of the ab initio potential data. Our 4-site model is so far the simplest 

one which is based on the analysis of the strong anisotropy of the calculated potential 

data. The potential curves for the 12 conformers are treated equally without bias. 

Certainly this model can be improved in many ways such as by including the C-C and 

C-H interactions, possibly in combination with rescaled hydrogen sites. The 

electrostatic terms can also be included for better modeling the E and F conformers. 

However, these possible extensions should keep the total number of the adjustable 

parameters as low as possible. Overdosed potential parameters might pose implicit 

overweight on a particular configuration and thus yield a high sensitivity on the 

choice of the conformers included in the fitting. Because of the simplicity of the 

current model, one should be cautious in extending its application to larger alkanes 

before a better modeling is obtained. 
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TABLE 1.3-1 

 

 

 

 

 

 

 

 

 

 

 

 
Basis set R0 (Å) Rm (Å) Eb(kcal/mol) ω(cm-1

) 

A 

6-311++G(3df,3pd) 4.43 4.86 -0.135 178.54 
aug-cc-pVDZ 4.48 4.92 -0.128 197.40 
aug-cc-pVTZ 4.40 4.84 -0.143 223.21 
aug-cc-pVQZ 4.40 4.85 -0.143 223.87 

B 

6-311++G(3df,3pd) 4.43 4.86 -0.135 178.46 
aug-cc-pVDZ 4.48 4.92 -0.128 197.32 
aug-cc-pVTZ 4.40 4.84 -0.143 223.16 
aug-cc-pVQZ 4.40 4.85 -0.143 223.83 

C 

6-311++G(3df,3pd) 3.94 4.38 -0.260 258.46 
aug-cc-pVDZ 3.99 4.44 -0.236 281.74 
aug-cc-pVTZ 3.91 4.35 -0.279 316.21 
aug-cc-pVQZ 3.91 4.35 -0.284 246.51 

D 

6-311++G(3df,3pd) 3.94 4.39 -0.260 258.38 
aug-cc-pVDZ 3.99 4.44 -0.236 281.65 
aug-cc-pVTZ 3.91 4.35 -0.279 316.11 
aug-cc-pVQZ 3.91 4.35 -0.285 246.42 

E 

6-311++G(3df,3pd) 3.72 4.16 -0.332 278.14 
aug-cc-pVDZ 3.78 4.22 -0.298 302.45 
aug-cc-pVTZ 3.68 4.12 -0.361 339.23 
aug-cc-pVQZ 3.69 4.10 -0.369 261.31 

F 

6-311++G(3df,3pd) 3.72 4.16 -0.333 277.85 
aug-cc-pVDZ 3.78 4.22 -0.298 302.28 
aug-cc-pVTZ 3.68 4.12 -0.362 338.75 
aug-cc-pVQZ 3.69 4.10 -0.369 260.90 
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TABLE 1.3-1 (Cont.) 

 

Table 1.3-1. The basis set dependence of important potential quantities extracted from 

the MP2 potentials for the 12 conformers. R0 is the distance at which the potential is 

zero, Rm is the equilibrium bond length, Eb is the binding energy, and  is the 

harmonic frequency. 

 

 
Basis set R0 (Å) Rm (Å) Eb(kcal/mol) ω( cm-1

)

G 

6-311++G(3df,3pd) 3.49 3.93 -0.343 336.05 
aug-cc-pVDZ 3.54 3.98 -0.315 281.42 
aug-cc-pVTZ 3.46 3.89 -0.373 321.83 
aug-cc-pVQZ 3.45 3.88 -0.392 409.38 

H 

6-311++G(3df,3pd) 3.49 3.93 -0.341 337.19 
aug-cc-pVDZ 3.54 3.98 -0.314 282.51 
aug-cc-pVTZ 3.46 3.89 -0.371 322.99 
aug-cc-pVQZ 3.46 3.88 -0.390 410.82 

I 

6-311++G(3df,3pd) 3.36 3.78 -0.375 320.17 
aug-cc-pVDZ 3.40 3.83 -0.351 344.56 
aug-cc-pVTZ 3.32 3.74 -0.411 393.15 
aug-cc-pVQZ 3.32 3.74 -0.424 302.08 

J 

6-311++G(3df,3pd) 3.31 3.73 -0.414 383.78 
aug-cc-pVDZ 3.35 3.78 -0.395 323.88 
aug-cc-pVTZ 3.27 3.70 -0.453 367.15 
aug-cc-pVQZ 3.26 3.68 -0.464 356.38 

K 

6-311++G(3df,3pd) 3.77 4.21 -0.241 264.72 
aug-cc-pVDZ 3.81 4.25 -0.224 223.25 
aug-cc-pVTZ 3.74 4.17 -0.262 254.58 
aug-cc-pVQZ 3.74 4.15 -0.272 318.44 

L 

6-311++G(3df,3pd) 3.61 4.06 -0.319 268.66 
aug-cc-pVDZ 3.66 4.11 -0.294 289.26 
aug-cc-pVTZ 3.58 4.03 -0.345 328.33 
aug-cc-pVQZ 3.56 4.01 -0.357 319.84 
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TABLE 1.3-2 

                                      

Extrapolation 
methods 

DTa TQb DTQc aDTd aTQc aDTQf 

Helgaker et al. -0.387 -0.480 ¥NA -0.477 -0.472 ¥NA 

Martin -0.376 -0.465 ¥NA -0.473 -0.470 ¥NA 

Feller ¥NA ¥NA -0.532 ¥NA ¥NA -0.467 

Numerical ¥NA ¥NA -0.520 ¥NA ¥NA -0.470 

aBasis set limit estimation with the cc-pVXZ(X=D and T). 
bBasis set limit estimation with the cc-pVXZ(X=T and Q). 
cBasis set limit estimation with the cc-pVXZ(X=D, T, and Q). 
dBasis set limit estimation with the aug-cc-pVXZ(X=D and T). 
eBasis set limit estimation with the aug-cc-pVXZ(X=T and Q). 
fBasis set limit estimation with the aug-cc-pVXZ(X=D, T, and Q). 
¥ Not available. 

 

Table 1.3-2. The MP2/CBS binding energies using the four extrapolation methods. 
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TABLE 1.3-3 

  

                                    

R(Å) MP2 (kcal/mol)
MP2CBS(kcal/mol) 

CCSD(T)(kcal/mol) 
Helgaker et al. Martin Feller Numerical 

3.0 1.444 1.351 1.370 1.397 1.329 1.386 

3.4 -0.318 -0.344 -0.339 -0.329 -0.345 -0.376 

3.6 -0.458 -0.472 -0.469 -0.463 -0.470 -0.502 

3.7 -0.464 -0.473 -0.472 -0.470 -0.471 -0.502 

3.8 -0.448 -0.455 -0.453 -0.450 -0.452 -0.480 

3.9 -0.419 -0.423 -0.422 -0.420 -0.419 -0.448 

4.0 -0.384 -0.385 -0.385 -0.384 -0.381 -0.410 
4.2 -0.311 -0.310 -0.310 -0.311 -0.305 -0.342 

5.0 -0.110 -0.105 -0.106 -0.114 -0.097 -0.130 

6.5 -0.012 -0.006 -0.007 -0.019 -0.002 -0.014 

9.0 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 

Table 1.3-3. Comparison of the MP2/aug-cc-pVQZ and MP2/CBS potential data with the 

CCSD(T)/aug-cc-pVQZ data for the J conformer. 
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Density 

(mol/L)  

Temperture 

(K)  
D (EXP)

 a
 

(10
-9 

m
2
/s) 

D (MD)  

(10
-9 

m
2
/s) 

10  207  68±7      58.8 

10  279  87±9  76.8    

10  360  100±10  90.0    

10  525  ---  112.4    

18.5  183  27±3  22.4    

18.5  225  32±3  25.7    

18.5  306  45±5  31.8    

18.5  381  53±5  37.0    

 25.27  124  7.6±1 6.50   

 23.26 145  12.1±1 10.17   

 20.88  162  19±2 15.3    

26.5 112   5.4±0.5
b

4.76   

TABLE 1.3-4 

a. Experimental data from Ref. [ 43] 

b. Experimental data from Ref. [ 44,45] 

 

Table 1.3-4 Comparison of the experimental (EXP) and molecular 

dynamics (MD) self-diffusion coefficients for a wide range of 

thermodynamic conditions. 
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FF ai

i ai

E E
ABSper

N E


 

1

1 N

FF ai
i

ABSerr E E
N 

 

TABLE 1.3-5 

Table 1.3-5. The deviation of the fit data from the ab initio data. ABSper 

and ABSerr represent the root mean square errors. 
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Chao et al.  Fig. 1 

FIG. 1.3-1. The twelve symmetric conformers of the methane dimer considered 

in this paper. We designate each conformer by a representative capital letter 

from A~L. 

Fig. 1.3-1 
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FIG. 1.3-2. Comparison of the potentials with (rigid) and without (non-rigid) the rigid 

monomer assumption for the J conformer. Basis set dependence is also shown as a 

reference. 

 

 

 

 

 

 

Fig. 1.3-2 
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FIG. 1.3-3. The MP2/aug-cc-pVQZ potentials of the methane dimer for the 12 

conformers. The A and B, the C and D, the E and F, and the G and H potential curves 

are numerically identical, respectively, so we show only one respective curve of them; 

A/B, C/D, E/F and G/H, respectively. 

 

Fig. 1.3-3 
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FIG. 1.3-4. Comparison of the HF (repulsive) and MP2-HF (attractive) potentials for 

the 12 conformers. 

 

 

FIG. 1.3-5. The MP2/CBS potential curves using the extrapolation method of 

Halgaker et al. [35]. 

Fig. 1.3-4 

Fig. 1.3-5 
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FIG. 1.3-6. A schematic plot of the 4-site model where the sites are located at the 

hydrogen positions only. 

 

 

 

 

 

 

 

 

 

Fig. 1.3-6 
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FIG. 1.3-7. Comparison of the fitting curves and the calculated potential data. 

Fig. 1.3-7 

 



 

 124

 

 

 

FIG. 1.3-8. The six-dimension PES. (a) The PES as a function of R and the rotation 

angle with respect to the Z axis. (a) The PES as a function of R and the rotation 

angle with respect to the Y axis. 

 

Z 

R 

Φ 

Y 

R 

θ 

Fig. 1.3-8 
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FIG. 1.3-9. Comparison of the experimental (EXP) and the molecular dynamics (MD) 

radial distribution functions (RDFs) as a function of R. (a) The carbon-carbon RDFs 

gCC. (b) The carbon-hydrogen RDFs gCH. (c) The hydrogen-hydrogen RDFs gHH. (d) 

The RDFs g(r) of CH4 and CD4 in different rcut. 

Fig. 1.3-9 
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FIG. 1.3-10. Velocity autocorrelation functions as a function of time for several 

experimental conditions. Here T denotes the temperature and  denotes the number 

density. 

 

  

Fig. 1.3-10 
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Fig. 1.3-11 

 

 

 

FIG. 1.3-11. The diffusion coefficient as a function of temperature for different 

cell sizes and rcut. 
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Fig. 1.3-12 

FIG. 1.3-12. Comparison of the experimental (EXP) and the molecular 

dynamics (MD) X-ray scattering as a function of K. 
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FIG. 1.3-13. Comparison of the experimental (EXP) and the molecular 

dynamics (MD) thermal effect as a function of K. 

Fig. 1.3-13 
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Chapter 2 Theoretical Studies on the Silane Dimers 

 

2.1 Intermolecular Potentials of the Silane Dimer Calculated with 
Hartree-Fock Theory, Møller-Plesset Perturbation Theory, 
and Density Functional Theory 

 

1. Introduction 

Accurate determination of intermolecular interaction potentials, or van der Waals 

interactions, is important in the studies of condensed matter physics, materials 

chemistry, and structural biology. These interactions are crucial in understanding and 

predicting the thermodynamic properties of molecular liquids and solids [1], the 

energy and charge transfers among molecular complexes [2], and the conformational 

tertiary structures of macromolecules such as protein and DNA [3]. Intermolecular 

bonds do not originate from sharing of electrons but rather arise from simultaneous 

electron correlation of the separated subsystems [4] and they are relatively soft and 

non-rigid as compared to intramolecular covalent bonds. Studies of intermolecular 

interactions abound [5], but measurements of these interactions are still challenging 

now [6]. The main difficulty in determining intermolecular interactions 

experimentally resides at limited samplings of the potential energy surface. For 

example, experiments using the X-ray crystallography or the laser luminescence 

spectroscopy mainly explore the equilibrium regions of the potential surface, while 

thermodynamic measurements in the fluid or solid phase often yield isotropic 
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potential data without the desired stereo-chemical responses. Moreover, the extracted 

potentials from experiments sensitively depend on the thermodynamic conditions 

such as temperature and pressure. Usually two measurements carried out in different 

conditions cannot be compared directly but rely on auxiliary theoretical modeling. 

 

It is now well recognized that intermolecular potentials can be calculated in terms of 

correlation-corrected quantum chemistry methods [7-9] or density functional theory 

(DFT) [10-11] with improved generalized gradient approximation (GGA) functionals. 

These calculations are normally done with the supermolecular scheme in which the 

intermolecular potential is defined as the total energy difference between the 

supermolecule and the isolated subsystems. In practice, the London dispersion force is 

the most difficult to calculate due partly to its small magnitude. Because the 

Hartree-Fock (HF) self-consistent method cannot calculate the dispersion force, an 

electron correlation-corrected method and a large basis set are required to obtain 

accurate dispersion forces [12]. We note that many computational chemistry programs 

utilize Gaussian type functions to fasten the calculations of Coulomb repulsion 

integrals. Because Gaussian type functions are local functions, a large basis set is 

indispensable to calculate the correlation energy. Moreover, these functions do not 

have the correct asymptotic behavior of the atomic orbitals. Therefore, the basis set 
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limit of the calculated potential must be estimated so as to be consistent with the 

conventional perturbation theory based on separated molecules.  

 

Because the dispersion energy is relatively weak, nonpolar atomic and molecular 

dimers are usually taken as a prototype case to study the dispersion energy. There 

have been many studies on atomic inert gas dimers which serve as a stepstone to 

study more complex potential landscapes of molecular dimers [13]. However, there 

are comparatively fewer studies on molecular dimer systems. Thanks to the extra 

degrees of freedom and the stereo-chemical responses, new insights may need to be 

developed in dealing with molecular dimers. In a previous study [14], we have 

thoroughly calculated the interaction potentials of the methane dimer. Methane is a 

non-polar molecule with a leading nonvanishing octopole-octopole interaction and the 

dominant long-range attraction is thus due to the London dispersion force. Therefore, 

the study of the methane dimer is a good starting point to investigate the various 

factors affecting the calculations of the dispersion force, such as the level of the theory, 

the basis set dependence, and the inclusion of the basis set superposition error (BSSE) 

corrections. Silane, due to its structural similarity to the methane, is another candidate 

to perform a prototype study. Besides, silane is a commonly used chemical in 

semi-conductor engineering processes such as the low-pressure vapor deposed 
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thin-film fabrication process in a microelectromechanical system (MEMS) [49]. High 

pressure silane crystals could be a good system to demonstrate the insulator-conductor 

transition in modern solid state physics [15]. Although the interaction potentials of the 

methane dimer have been studied extensively, there have been relatively few ab initio 

studies on the interaction potentials of the structurally similar silane dimer. In fact, it 

is the case that only until very recently a reasonably well designed quantum chemistry 

study of the intermolecular interactions of the silane dimer was reported [16].  

 

In this paper we perform a comprehensive study on interaction potentials of the 

prototype silane dimer in terms of the HF, MP2, and DFT methods to gain better 

understanding of this system. We also perform single point CCSD(T) calculations for 

the key structures calculated at the MP2 level of theory to calibrate the correlation 

effect. The purpose of this paper is to use the state-of-the-art methodology to obtain 

accurate potential energies for the silane dimer. We would like to study the effect of 

including the BSSE on the calculated intermolecular interactions. The basis set effects 

on repulsion exponents, equilibrium bond lengths, binding energies, and asymptotic 

coefficients of the calculated intermolecular potentials are thoroughly studied. This is 

achieved using basis sets from STO-3G [17] to aug-cc-pVQZ [19] with the basis 

number from 26 to 536, respectively. The full potential curves are presented in order 
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to see the overall scope of the potential. In particular, both the BSSE corrected and 

uncorrected results are presented to emphasize the importance of these corrections. 

Moreover, in this paper we will assess the utilities of using the available 

implementation of the density functional theory in determining the intermolecular 

interactions. From the studies of atomic dimers, it has been found that conventional 

exchange-correlation functionals based on the local density approximation (LDA) and 

generalized gradient approximation (GGA) cannot calculate the intermolecular 

interactions to a satisfying level of accuracy [55]. It is thus desirable to investigate 

that to what extent the DFT calculations using available functionals can serve as an 

alternative for ab initio molecular orbital calculations. 

 

The paper is organized as follows. In Section II, we describe the details of these 

calculations. In Section III, the results are presented and discussed. A summary is 

given in Section IV. 

 

2. Methods and Calculations 

Similar to the methane dimer, a large part of the exchange-repulsion interactions of 

the silane dimer can be calculated by the HF method. The calculation of electron 

correlation energies depends on the level of the correlation-corrected method, the size 
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of the basis set, and the correction of the BSSE. The state-of-the-art choice of the 

correlation-corrected method is either the Møller-Plesset (MPx, x=2,3,4) perturbation 

method [20] or the coupled cluster method with iterative single and double 

substitutions and with noniterative triple excitations [CCSD(T)] method [21]. Many 

studies showed that the MP2 results for alkane dimers would not be too much 

different from those calculated by the much more expensive CCSD(T) method as long 

as a large basis set has been used [22]. To calibrate the correlation effect, several 

single point CCSD(T) calculations for the key structures calculated at the MP2 level 

of theory have been performed. To study the basis set effects, we have employed 

comprehensive basis sets from the Slater-type orbitals fitted with Gaussian functions 

(STO-nG, n=3~6) [17], Pople’s medium size basis sets [up to 6-311++G (3df, 3pd)] 

[18] to Dunning’s correlation consistent basis sets (aug-cc-pVXZ, X=D, T, Q) [19]. 

The basis set superposition error (BSSE) was corrected by the counterpoise (CP) 

method of Boys and Bernardi [23]. The MP2 interaction potentials at the basis set 

limit have been estimated using the methods of Martin [56], Helgaker et al. [24] and 

Feller [25] and a numerical extrapolation scheme based on the Lagrangian formula 

[26]. The other potentials parameters at the basis set limit are estimated using the 

numerical extrapolation. 
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All the HF, MP2, and DFT calculations are performed using the Gaussian 03 program 

package [27] on a single node two-processor AMD 250 PC cluster with distributed 

memory. The equilibrium geometry of a single silane molecule was first optimized at 

the MP2/6-311++G (3df,3pd) level of theory. Subsequently the Si-Si distance was 

sampled in a step of 0.1 Å for a quite large range of intermolecular separation 

(normally 3~9 Å), resulting in a total of 61 configuration points. During the scan we 

allow the individual silane molecule to be fully relaxed. This means that we do not fix 

the monomer geometry and the silane molecule is not assumed to be rigid. Although it 

is not expected to see much deviation from the rigid molecule approximation, 

inclusion of the intramolecular relaxation could be relevant to molecular dynamics 

simulations using flexible models [28]. 

 

From a previous energy dissection method [57], it is found that for a general 

tetrahedral molecule (such as methane and silane) either the D3d or the C3v conformer 

would be possibly the most stable conformer. We have thus first calculated the 

potential interaction energies for these two conformers at the MP2/aug-cc-pVTZ level 

of theory. In Fig. 2.1-1 we show the comparison of the potential curves for the D3d 

and the C3v conformers. As can be seen, the D3d conformer is more stable than the C3v 

one. Therefore, we will focus on the D3d conformer in this paper. 
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3. Results and Discussions 

The intermolecular interaction potentials of the D3d conformer of the silane dimer 

have been calculated with the HF, MP2, and DFT methods. We present the results 

respectively along with discussions and make comparisons among the results. 

 

A. Hartree-Fock self-consistent field calculations 

The BSSE corrected HF interaction potentials of the silane dimer using several basis 

sets are shown in Fig. 2.1-2. The HF calculations yield purely repulsive potentials 

without minima for all the basis sets used. This can be attributed to the rather weak 

electrostatic interaction for the silane dimer. In the short range, the strong 

exchange-repulsion interaction dominates with little alternation from the electrostatic 

and induction attractions. The HF potential is insensitive to the basis size as long as 

the 6-31G** basis set has been used. We can model the HF potential using the 

repulsive Buckingham function [29] 

R
HF AeRV )(                                          (1) 

where R is the Si-Si distance, A and  (the repulsion exponent) are the fitting 

parameters. The dependence of the repulsion exponent on the basis size is shown in 

Table 2.1-1. It is seen that the repulsion exponent converges quickly after the 6-31G** 
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basis set being used.  

 

B. MP2 calculations 

Unlike the HF potentials, the MP2 potentials shown in Fig. 2.1-3 display clear minima 

and long-range attractive potential tails. Because the contributions from the 

electrostatic interactions are small, the dispersion energy is mainly responsible for the 

attractions. The sharp differences between the HF calculations and the MP2 

calculations indicate the importance of including the correlation corrections in the 

wave function calculations. The HF method in principle does not include the 

correlation effect so the attraction forces are due exclusively to the correlation effect.  

 

In Fig. 2.1-3, we compare the MP2 potentials with and without the BSSE corrections 

(denoted as CP and NCP, respectively). We see very strong dependence of the 

interaction potentials on the BSSE corrections. The potentials without the BSSE 

corrections fluctuate with increasing basis size and do not systematically converge to 

the expected curve at the basis set limit. On the contrary, the BSSE corrected 

potentials systematically approach to the expected curve with increasing basis size. 

Therefore, the BSSE correction must be considered in calculating the intermolecular 

interactions, in particular for small basis sets. 
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The strong basis set dependence and the slow convergence on the dispersion 

coefficients require an estimation of the important potential features at the basis set 

limit in a calculated potential. Basis set limit of the binding energy can be approached 

using Dunning’s basis sets with an extrapolation scheme. We consider three analytical 

schemes [56, 24, 25] and a numerical scheme [26] while the results are similar. The 

binding energies obtained at the basis set limit (using Dunning’s basis sets, 

aug-cc-pVXZ, X=D, T, Q) are 0.597, 0.601, 0.590, and 0.603kcal/mol using the 

methods of Martin [56], Helgaker et al. [24] and Feller [25] and the numerical method 

[26], respectively. For the other potential parameters, we used the numerical 

extrapolation based on the vanishing inverse of the number of basis function [26]. 

These results are shown in Table I for comparison. 

 

As shown in Table 2.1-1, the basis set effect on the BSSE corrected interaction 

potentials is significant. The STO-3G basis set yields a very small binding energy. The 

interaction energy becomes more accurate as one adds polarization functions and 

augments diffuse functions in the Pople’s basis sets. Small cc-pVDZ and cc-pVTZ 

basis sets lead to underestimated binding energies and it requires cc-pVQZ to obtain a 

result with an accuracy of 0.1 kcal/mol. Augmentation of the diffuse functions has 
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significant effect on optimizing the binding energy. The cc-pVTZ basis set 

underestimates the energy by 40%, while the aug-cc-pVTZ basis set underestimates 

only 9% of the binding energy. Some subtle basis set features can also be observed. 

For small basis sets, adding polarization functions to the basis set does not 

significantly change the potential. On the other hand, augmentation of the diffuse 

functions has pretty significant effect. For example, the aug-cc-pVDZ energy is very 

close to the high level 6-311++G (3df, 3pd) and the cc-pVQZ results. Together with 

the diffuse functions, adding more polarization functions also improve the accuracy of 

the calculated potential. For example, the 6-311++G (2d,2p) underestimates the 

binding energy by 50%, while the 6-311++G(3df, 3pd) yields a binding energy by 

25% lower than the MP2 energy at the basis set limit. 

  

With the wide span of the basis sets used, the basis set dependence of important 

potential parameters can now be fully studied. In Table 2.1-1 we present the BSSE 

corrected data for the equilibrium bond length, the binding energy, and the asymptotic 

behavior. R0 is the distance at which the potential is zero and can be obtained from a 

two point interpolation of the calculated data. The bond length Rm, the binding energy 

Eb and the intermolecular vibration frequency  can be obtained through a harmonic 

modeling of the three lowest potential data near the equilibrium regions. C6 and C8 are 
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the dispersion coefficients and can be obtained through a nonlinear fitting of the 

long-range potential data. With increasing basis size, the equilibrium bond length 

converges at the 6-311++G(3d,3p) basis set to a 0.2 Å accuracy, while a pretty large 

basis set (aug-cc-pVTZ) is required to converge the binding energy at a chemical 

accuracy (~0.05 kcal/mol). On the other hand, up to the largest basis set used, the 

asymptotic behavior has not yet converged to the expected C6 value from the 

calculated monomer polarizability (~ 4734.47 kcal/mol Å 6) [30-32]. It is well known 

that the long range interactions can be represented by an infinite series involving 

higher order terms C8, C10, etc. Inclusion of the higher order term is important if 

shorter range data were used for the modeling. For example, as shown in Fig. 2.1-4, 

the long-range curve can be reproduced better by including the C8 term. Similar to our 

previous study on the methane dimer [14], we attribute the slow convergence partly to 

the inefficacy of using the MP2 method with Gaussian functions to calculate 

long-range interactions. Therefore, the basis set limit of the calculated potential must 

be estimated so as to be consistent with the conventional perturbation theory. Together 

with the nonlinear scaling of the computational cost with respect to the basis size, this 

is actually the main practical reason for the difficulty of obtaining dispersion 

interactions through ab initio molecular orbital methods. Also notice that the 

magnitude of the vibration frequency (~294 cm-1 calculated with MP2/aug-cc-pVQZ) 
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can contribute significantly to the zero-point-energy correction of the binding energy. 

This anharmonicity in the intermolecular vibrational motion should be taken into 

account in analyzing spectra involving van der Waals complexes [58]. 

 

To calibrate the correlation effect, we perform single point CCSD(T) calculations at 

several key structures (one at the repulsion region, three at the minimum region, and 

one at the asymptotic long range region) using the basis set up to aug-cc-pVTZ. As 

shown in Table 2.1-2, the MP2 results are generally accurate up to 0.1 kcal/mol, as 

compared to those calculated with the CCSD(T) method. The basis set limits of the 

binding energy have also been obtained using several analytical and numerical 

extrapolation methods. The results using different extrapolation methods are close to 

each other within the 0.1 kcal/mol accuracy. The same level of accuracy has also been 

found before for the methane dimer case [22]. 

 

C. Density functional theory 

We have examined the basis set effect on the DFT potentials in a similar manner as in 

the HF and MP2 calculations (see Fig. 2.1-5). We found that in general the DFT 

potentials converge at a larger basis set than the HF potentials but at a smaller basis 

set than the MP2 potentials. Therefore, only the 6-311++G (3df,3pd) basis set is used 
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to obtain the DFT potentials which are compared to the MP2 potentials calculated at 

the same basis set. 

 

The density functionals used in the present work include the 108 combinations chosen 

among 9 exchange (B88 [33], OPTX [34], MPW [35], PBE [36], PW91 [37], TPSS 

[38] , Slater [39], HCTH [40], and XAlpha [41]) and 12 correlation (TPSS [38], PBE 

[36], PW91 [37], P86 [42], HCTH [40], VWN5 [43], PL [44], VWN [43], LYP [45], 

HCTH93 [46], and HCTH147 [46]) functionals. We intend to examine the relative 

performance of the chosen exchange and correlation functionals in determining the 

interaction potentials for the silane dimer. The chosen functionals are selective 

representations of the most commonly used density functionals for van der Waals 

interactions in current literature. Our previous studies showed that several functionals 

could yield reasonable binding energies of the methane dimer interaction [14]. In this 

study we would like to check the applicability of these functionals for the silane 

dimer.  

 

In Table 2.1-3 we show the bond lengths from the calculated DFT potentials using the 

108 exchange-correlation functionals, displayed as the row and the column items, 

respectively. Roughly the bond lengths descend across the row and down the column. 
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Compared with the MP2 result (4.25 Å), we find the TPSSHCTH and MPWHCTH93 

functionals yield a value (4.22 Å) close to the MP2 result. Other candidates are 

marked in boldface in Table III. Table IV presents the calculated binding energies 

using the 108 exchange-correlation functionals in a particular order. In this order, the 

(negative) DFT potentials descend across the row and down the column. The results 

clearly demonstrate the relative performance of the exchange and the correlation 

functionals in the DFT calculations. By fixing the PW91 as the exchange functional, 

for example, all correlation functionals yield bound potentials. On the other hand, by 

fixing the PW91 as the correlation functional, the varying exchange functionals much 

underestimate or overestimate the binding energy. One of the combinations, 

OPTXHCTH147, yields a binding energy (-0.443 kcal/mol) close to the MP2 result 

(-0.454 kcal/mol). Other candidates yielding better results include the PBEVP86, 

PBEP86, PW91TPSS, PW91PBE, and PW91PW91 functionals. Previous studies on 

van der Waals systems [47] have shown that the exchange functional plays an 

essential role in determining the binding energy while the correlation part of a density 

functional does not significantly affect the DFT calculations. Our results are 

consistent with the former observation, while we see appreciable effects due to the 

choice of the correlation functional. It is also found that the calculated binding 

energies are related to the large reduced density gradient, 
3/43/1)3(2 


s ,   
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being the density, of the GGA enhancement factor [47]. However, for dispersion 

interactions, a large s actually means a low density because the electron overlapping is 

relatively small. To further analyze the calculated results, we examine the large s 

behavior of the GGA enhancement factors at the low density region. 

 

The performance of varying the GGA exchange functionals for a fixed correlation 

functional has been related to the behavior of the GGA enhancement factor FX(s) of 

the exchange functional for the large reduced density gradient region [47]. On the 

other hand, the performance of varying the GGA correlation functionals for a fixed 

exchange functional has not been well recognized. For low density and large s, the 

contribution of correlation energy becomes significant [36]. In Table IV we see that 

for a fixed exchange functional, it may amounts to a wide range of binding energies 

by varying the correlation functional. Because most GGA correlation functionals use 

the LDA correlation as an additive ingredient in the definition, to clearly show the 

nonlocal effect, an enhancement factor is defined by 

LDA
C

GGA
C

sC rsF



1),(                                              (2) 

where GGA
C and LDA

C  are the correlation potentials for the GGA and the LDA energy 

functionals, respectively. The correlation enhancement factor depends on s and rs, 

where   3/14/3 sr is the Wigner-Seitz radius. For van der Waals interactions, rs 
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falls in the range of 5~20. By fixing rs =10, we plot the enhancement factor FC(s) as a 

function of s in Fig. 2.1-6. We see in Fig. 2.1-6 that the order of the magnitude of FC(s) 

at medium s is TPSS > PBE > PW91 > P86 > HCTH. Interestingly, this order is 

essentially the order of the binding energies calculated by the corresponding 

functionals across the row in Table 2.1-4 These observations clearly show that the 

DFT binding energies are correlated to the exchange and the correlation enhancement 

factors at the low density region.  

 

Figs. 2.1-7(a)-7(e) present the calculated DFT potential curves by fixing 5 correlation 

functionals, respectively, and varying the exchange functions used in this paper. Fig. 

2.1-7(f) presents the potential curves using several hybrid functionals. We see that the 

DFT calculations generate a wide range of potential patterns. Some are purely 

repulsive (such as B88PBE), while others could be over-bounded (such as 

XAlphaVP86). These diverse patterns have been found before and have often been 

termed “unsystematic”. From our analysis, it is clear that some compensation among 

the respective exchange and correlation functions must occur to yield a reasonable 

potential well depth close to the MP2 result. For the silane case, OPTXHCTH147 

seems to achieve such appropriate compensation and thus yields a better result. 

However, exactly which combination should be used for a specific system is unknown 
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a priori. It is hoped that the interesting correlation between the calculated results and 

the exchange and the correlation enhancement factors shown in Table 2.1-4 can 

provide a useful reference for choosing such a combination. 

 

Finally we would like to discuss the asymptotic behaviors of some selective DFT 

potentials and compare them with those obtained from the MP2 reference potential. It 

is often iterated that a DFT potential cannot be used to model the long-range tail of 

the van der Waals interaction. However, exactly how bad the situation is for a specific 

DFT potential has not been systematically studied due partly to insufficient 

long-range potential data. Fig. 8 displays the linear analysis of the potential curves by 

plotting ln(-V) versus ln(R), where V  is the (negative) potential energy by 

subtracting the HF potential (which is purely repulsive) from the DFT potential and 

R  is the Si-Si distance. The data for R > 5Å have been used to perform this analysis. 

Notice that the MP2 potential yields a straight line. Generally the DFT potentials yield 

erratic long-range behaviors. The deviation from the straight (MP2) line indicates the 

inefficacy of the DFT potentials. This verifies that DFT potentials calculated using 

most of the LDA and GGA functionals cannot be used to model the dispersion 

interactions, in particular at long-range regions [48]. In this regard, one might resort to 

other recent approaches to calculate the long-range dispersion interactions [50-54]. 



 

 149

 

4. Conclusion 

In this paper we have systematically studied the calculated intermolecular potentials 

of the silane dimer at D3d conformation using the HF, MP2, and DFT methods. A wide 

selection of basis sets has been employed in order to determine the basis set effects on 

the repulsion exponent, the binding energy, the equilibrium bond length, and the 

asymptotic behavior of the intermolecular potentials. BSSE corrections are considered 

as an important factor affecting the quality of the calculated potentials. 

 

From this study and our previous studies [14, 48] we can draw several useful 

conclusions about using the current theoretical methods to generate the intermolecular 

potentials of nonpolar molecular dimers.  

(4) The HF calculations yield purely repulsive potentials for nonpolar molecular 

dimers. This is due to the small electrostatic interactions. The basis size effect of 

the HF calculations is very small as long as the 6-31G** basis set has been used. 

The HF method can be used to calculate the exchange-repulsion interactions. 

(5) The potential energy minima can be well produced using the MP2 method. The 

BSSE corrections must be considered to yield systematic results. Basis set effects 

are significant for many important potential parameters such as bond lengths, 
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binding energies, and dispersion coefficients. Small basis sets, especially without 

the augmentation of diffuse functions, could produce a severe underestimation of 

the binding energy and an overestimation of the bond length.  

(6) The DFT potentials display a diverse range of patterns of potential curves, 

underestimating or overestimating the binding energy. Some functionals do 

capture partly the correlation effects. For the silane dimer, the binding energies 

calculated using the OPTXHCTH147, PBEVP86, PBEP86, PW91TPSS, 

PW91PBE, and PW91PW91 functionals and the equilibrium bond lengths 

calculated using the MPWHCTH93, TPSSHCTH, PBEVP86, PBEP86, 

PW91TPSS, PW91PBE, and PW91PW91 functionals are close to the respective 

MP2 results. The calculated binding energies can be correlated to the asymptotic 

behaviors of the exchange and the correlation enhancement factors at the low 

density region. The long-range DFT potential data cannot be used to model 

dispersion interaction. 
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Table captions 

TABLE 2.1-1. The basis set dependence of important potential parameters using the 

BSSE corrected HF and MP2 intermolecular potentials. R0 is the distance at which the 

potential is zero and Rm is the equilibrium bond length. The CPU time of the MP2 

calculation was recorded on a single node two-processor AMD 250 PC cluster with 

distributed memory. 

 

TABLE 2.1-2. Comparison of the binding energies using the BSSE corrected MP2 

and CCSD(T) intermolecular potentials calculated at several basis sets. The basis set 

limits of the binding energies using the extrapolation methods of Helgaker et al. [24], 

Martin [56], and a numerical method [26] are shown for comparison. 

 

TABLE 2.1-3. Comparison of the bond lengths (in Å) calculated with the 108 

exchange-correlation functionals using the 6-311++G (3df,3pd) basis set. As a 

reference, the MP2 bond length calculated at this basis set is 4.25Å. The better DFT 

results of errors within 10% as compared to the MP2 result are marked in black 

boldface. 

 

TABLE 2.1-4. Comparison of the binding energies (in kcal/mol) calculated with the 
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108 exchange-correlation functionals using the 6-311++G (3df, 3pd) basis set. As a 

reference, the MP2 binding energy calculated at this basis set is -0.454 kcal/mol. 

Positive values represent unbound dimer structures and the energies are calculated at 

R = 4.25
o

 . The better DFT results of errors within 10% as compared to the MP2 

result are marked in black boldface. 
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 MP2 HF MP2 

Basis set 

Number 

of basis 

function 

CPU 

Time 

(h) 

Aa 

(kcal/mol) 

αa 

(Å -1)

R0 

(Å) 

Rm 

(Å) 

Eb 

(kcal/mol)

ω 

(cm -1)

1 termb 2 terms 
c 

C6 C6 C8 

STO-3G 26 1.55 122104.69 2.94 5.98 6.73 -0.001 5.18 317.02 448.94 3203.81 

3-21G 42 1.42 58783.30 2.66 4.75 5.22 -0.037 69.61 1941.38 628.66 54171.60 

6-31G 42 1.49 54009.26 2.64 4.67 5.14 -0.050 87.08 1908.43 660.34 49972.43 

3-21G* 54 1.50 55908.20 2.69 4.55 5.05 -0.058 88.28 2108.34 848.16 49176.41 

6-31G* 54 1.57 53175.77 2.68 4.55 5.04 -0.062 90.25 2062.71 833.95 47916.34 

6-311G* 76 1.56 55354.29 2.67 4.51 5.02 -0.060 81.01 2207.05 930.44 49690.29 

cc-pVDZ 76 2.12 49043.50 2.65 4.17 4.66 -0.166 122.98 3351.38 1728.99 55937.64 

6-31G** 78 1.78 52290.93 2.68 4.45 4.94 -0.077 101.20 2223.41 964.67 47740.30 

6-311G** 100 1.92 53132.34 2.68 4.31 4.80 -0.100 104.08 2685.28 1324.22 49936.37 

6-311++G** 116 2.98 51820.70 2.67 4.29 4.79 -0.105 103.66 2763.58 1297.37 53976.66 

aug-cc-pVDZ 126 4.97 51371.83 2.67 3.83 4.32 -0.435 232.04 5246.08 3221.51 63124.55 

6-311++G(2d,2p) 150 5.41 49711.75 2.67 3.91 4.40 -0.285 180.64 4077.60 2292.74 57950.76 

cc-pVTZ 180 15.86 48247.93 2.66 3.84 4.31 -0.353 212.96 4516.86 2598.04 60292.92 

6-311++G(3d,3p) 184 14.08 49624.69 2.67 3.82 4.30 -0.410 222.38 4869.69 2797.09 65087.98 

6-311++G(2df,2pd) 204 21.20 48903.09 2.67 3.86 4.33 -0.320 208.82 4248.72 2419.41 57507.36 

6-311++G(3df,3pd) 238 43.37 51326.84 2.68 3.77 4.25 -0.454 260.87 5074.31 2956.27 64289.42 

aug-cc-pVTZ 284 137.05 50474.57 2.68 3.70 4.17 -0.551 244.49 5529.30 3291.79 65493.19 

cc-pVQZ 358 232.25 48247.94 2.66 3.72 4.19 -0.489 241.42 5119.50 2688.24 71369.18 

aug-cc-pVQZ 536 1167.03 49979.36 2.68 3.67 4.14 -0.580 293.89 5556.37 3266.28 67621.33 

basis set limit 49317.50 2.68 3.65 4.12 -0.603 378.80   ---   ---   --- 

a Fit to the formula 
R

HF AeRV )( .    ,   b Fit to the formula 
6
6)(

R

C
RVdisp  , C6 in unit (kcal/mol Å 6), using data R> 4.6Å. 

c Fit to the formula 
8
8

6
6)(

R

C

R

C
RVdisp  , C8 in unit (kcal/mol Å 8), using data R> 5Å. 

 Table 2.1-1 
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Binding Energies 

 cc-pVDZ(76)a cc-pVTZ(180) cc-pVQZ(358) aug-cc-pVDZ(126) aug-cc-pVTZ(284) aug-cc-pVQZ(536) 

MP2 -0.166  -0.353 -0.489  -0.435  -0.551  -0.580  

CCSD(T) -0.170 -0.378 -0.559 -0.480 -0.632 NA¥ 

 Basis set limit estimation 

Method DTd TQe DTQf aDTg aTQh aDTQi 

Helgaker et al. -0.432b (-0.466)c -0.588 (-0.691) NA -0.543 (-0.696) -0.601 NA 

Martin -0.419 (-0.451) -0.567 (-0.663) NA -0.592 (-0.685) -0.597 NA 

Numerical -0.490 (-0.530) -0.627 (-0.742) -0.663 (-0.799) -0.644 (-0.753) -0.613 -0.603 

Table 2.1-2 

a Number of basis function in parentheses. 
b MP2 basis set limit estimation. 
c CCSD(T) basis set limit estimation in parentheses. 
dBasis set limit estimation with the cc-pVXZ(X=D and T). 
eBasis set limit estimation with the cc-pVXZ(X=T and Q). 
fBasis set limit estimation with the cc-pVXZ(X=D, T, and Q). 
gBasis set limit estimation with the aug-cc-pVXZ(X=D and T). 
hBasis set limit estimation with the aug-cc-pVXZ(X=T and Q). 
iBasis set limit estimation with the aug-cc-pVXZ(X=D, T, and Q). 
¥ Not available. 
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Correlation functional 

VWN5 PL TPSS PBE PW91 VWN VP86 P86 LYP HCTH93 HCTH HCTH147 

E
xc

ha
ng

e 
fu

nc
tio

na
l 

B88 U U U U U U U U U 4.41 4.19 4.10 

HCTH 6.75 6.75 6.79 6.84 6.84 6.73 7.58 7.58 6.79 6.73 4.51 6.04 

OPTX 5.57 5.57 5.64 5.63 5.63 5.52 5.65 5.65 5.52 4.90 4.37 4.56 

MPW 5.48 5.48 5.57 5.56 5.55 5.44 5.43 5.42 5.03 4.22 4.12 4.01 

TPSS 5.04 5.15 5.03 5.00 4.96 4.95 4.55 4.55 4.63 4.14 4.22 3.96 

PBE 4.87 4.87 4.57 4.55 4.51 4.81 4.14 4.14 4.39 4.08 4.06 3.96 

PW91 4.81 4.81 4.59 4.57 4.54 4.75 4.14 4.14 4.41 4.07 4.05 3.95 

Slater 3.64 3.64 3.30 3.28 3.29 3.61 3.29 3.29 3.44 NA¥ NA¥ NA¥ 

XAlpha 3.56 3.56 3.24 3.23 3.23 3.53 3.23 3.23 3.38 3.50 3.58 3.44 

 

Table 2.1-3 
¥ Not available 
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Correlation functional 

VWN5 PL TPSS PBE PW91 VWN VP86 P86 LYP HCTH93 HCTH HCTH147 

E
xc

ha
ng

e 
fu

nc
tio

na
l 

B88 1.342 1.341 1.132 1.111 1.092 1.250 0.821 0.817 0.900 -0.018 -1.994 -0.602 

HCTH -0.004 -0.004 -0.003 -0.003 -0.003 -0.005 -0.001 -0.001 -0.002 -0.002 -0.837 -0.010 

OPTX -0.015 -0.016 -0.015 -0.015 -0.015 -0.027 -0.006 -0.006 -0.025 -0.169 -1.803 -0.443 

MPW -0.063 -0.063 -0.059 -0.060 -0.060 -0.075 -0.045 -0.045 -0.080 -0.756 -2.818 -1.500 

TPSS -0.057 -0.133 -0.066 -0.066 -0.067 -0.078 -0.121 -0.124 -0.175 -0.889 -3.248 -1.625 

PBE -0.129 -0.130 -0.188 -0.191 -0.200 -0.156 -0.492 -0.499 -0.387 -1.391 -3.465 -2.226 

PW91 -0.347 -0.349 -0.411 -0.415 -0.424 -0.382 -0.693 -0.700 -0.591 -1.584 -3.659 -2.428 

Slater -1.871 -1.886 -4.865 -5.120 -5.062 -2.070 -5.989 -6.014 -4.035 NA¥ NA¥ NA¥ 

XAlpha -2.126 -2.143 -5.403 -5.671 -5.601 -2.344 -6.580 -6.580 -4.484 -5.501 -7.012 -7.100 

Table 2.1-4 

¥ Not available 
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FIG. 2.1-1. The BSSE corrected MP2 potentials using the aug-cc-pVTZ basis set for 

the D3d and C3v conformers of the silane dimer. 

 

FIG. 2.1-2. The BSSE corrected HF interaction potentials of the silane dimer using 

several basis sets. 

Fig. 2.1-1 

Fig. 2.1-2 
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FIG. 2.1-3. The BSSE corrected (CP) and uncorrected (NCP) MP2 potentials of the 

silane dimer using a series of basis sets. 

 

FIG. 2.1-4. Comparison of the BSSE corrected MP2 potential curve calculated at the 

aug-cc-pVQZ basis set and the sum of the HF potential and the long-range dispersion 

potentials. 

Fig. 2.1-3 

Fig. 2.1-4 
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FIG. 2.1-5. The basis set dependence of the DFT potentials calculated with the 

PW91PW91 functional (left panel). As a reference, the basis set dependence of the 

MP2 potentials is shown in the right panel. 

 

 

FIG. 2.1-6. The GGA correlation enhancement factor as a function of s for the TPSS, 

PBE, PW91, P86, and HCTH correlation functionals. Here rs =10. 

Fig. 2.1-5 

Fig. 2.1-6 
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Fig. 2.1-7(a) 

Fig. 2.1-7(b) 
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Fig. 2.1-7(c) 

Fig. 2.1-7(d) 
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FIG. 2.1-7. The BSSE corrected DFT potential curves with varying exchange 

functionals by fixing (a) PBE, (b) PW91, (c) VWN, (d) VP86, and (e) LYP correlation 

functionals, respectively. (f) The DFT potentials using several hybrid functionals 

(B3LYP, B3P86, BHandH, MPW1PW91, O3LYP, and PBE1PBE) [59]. The MP2 

potential curve is also shown as a reference. 

Fig. 2.1-7(e) 

Fig. 2.1-7(f) 
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FIG. 2.1-8. The asymptotic behaviors of selective DFT potentials versus the MP2 

potential via an analysis of the long-range data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1-8 
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2.2 Determination of a silane intermolecular force field potential 
model from an ab initio calculation 

 

1. Introduction 

Accurate determination of intermolecular interaction potentials or the van der Waals 

interactions has become much more important in the studies of materials chemistry 

and in optoelectronic or semiconductor industry. These interactions are crucial for 

understanding and predicting the thermodynamic properties of molecular liquids and 

solids [1], the energy and charge transfers among molecular complexes [2], and the 

conformational tertiary structures of nanostructure such as semiconductor 

manufacturing processes, aerospace engineering and MEMS [3-6]. For example, in 

semiconductor and optoelectronic industry, silane is widely used for the chemical 

vapor deposition of silicon and silicon dioxide thin layers. There were great interest in 

the downscaling of optoelectronic devices and the structural properties. However 

most of the studies have focused on the intramolecular potential energies, but only a 

few studies have been calculated the intermolecular potential energies of silane dimer 

in the recent past [7-10]. M. G. Govender et al. [7] has calculated single point 

geometry optimization at MP2/6-311++G (d, p) level. Y. Sakiyama et al. [8] have 

calculated the interaction energies of the silane dimer for nine relative orientations at 

the MP2/aug-cc-pVTZ level. Y. Sakiyama et al. [9] were done using the 
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MP2/aug-cc-pVTZ level with 162 different spatial configurations. Silane (SiH4) 

structure is similar to the methane and it is another candidate to perform a prototype 

study. In previous studies, we have thoroughly calculated the interaction potentials of 

the methane and carbon tetrachloride dimers [11-16] and studied the dispersion 

energy. From our previous can be seen that the low level basis sets did not 

systematically converge to the expected potential curve. It is a good starting point to 

investigate the various factors affecting the contributions to the interaction energy, 

such as electrostatic, dispersion and exchange terms. Although the interaction 

potentials of the methane dimer have been studied extensively, there have been 

relatively few ab initio studies on the interaction potentials of the structurally similar 

silane dimer. In this paper, we perform high level calculation result on ab initio 

potential energies of the silane dimer in terms of the HF and MP2 methods, up to 

aug-cc-pV5Z and we also construct full intermolecular potential curves and potential 

energy surfaces. For understanding this system, the aim of the present study is to 

determine on Si-Si, Si-H and H-H force filed parameters from ab initio potential 

energies to obtain an accurate representation of minimum structures. The 

Lennard-Jones potential is the most famous one with pair interaction [17]. Therefore, 

we show that Lennard-Jones 5-site potential can be parameterized to give excellent 

fits to both the repulsive and attractive regions of the potential energy curves. In this 



 

 171

paper, we are organized as follows. In Section II, we have shown details of the 

calculations. In Section III the results are presented and discussed. In Section IV, the 

summary and a brief perspective are given. 

 

2. Methods and Calculations 

All the quantum chemistry calculations have been performed by using the Gaussian 

03 program package [18]. Similar to the methane dimer, a large part of the exchange 

repulsion interactions of the silane dimer can be calculated by the HF method. The 

calculation of electron correlation energies depends on the level of the 

correlation-corrected method, the size of the basis set, and the correction of the 

BSSE.(You did not introduce it before) The state-of-the-art choice of the 

correlation-corrected method is the Møller-Plesset (MPx, x = 2-4) perturbation 

method [19]. The isolated silane molecule was first optimized at the MP2/6-311++G 

(3df, 3pd) theory and was found to be at the tetrahedral configuration (Td symmetry) 

with the Si-H bond length of 1.47 Å which is consistent with the experimental data by 

Kattenberg and Oskam (Si-H bond length = 1.4806 ± 0.0008 Å) [20] and by Willetts 

et al. (Si-H bond length = 1.482 Å) [21] and average value by Duncan (Si-H bond 

length = 1.4813 ± 0.0006 Å) [22] and  linear fitting prediction data by Duncan et al. 

(Si-H bond length = 1.479 ± 0.003 Å) [23]. The 12 symmetric conformers chosen to 
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sample the orientational dependence are depicted in Fig. 2.1-1. Because of the high 

symmetry of the dimer configuration, the angular sampling should be wide enough to 

model the rotational dynamics in normal thermodynamic conditions. The MP2 

method [19] has been used to treat the correlation effect. Pople’s medium size basis 

sets [up to 6-311++G (3df, 3pd)] [24] and Dunning’s correlation consistent basis sets 

(aug-cc-pVXZ, X=D, T, Q, 5) [25] were employed in the calculations. The basis set 

superposition errors (BSSEs) were corrected by the counterpoise method of Boys and 

Bernardi [26]. Subsequently the Si-Si distance, denoted as R, was sampled for a large 

range of 3.0 ~ 9.0 Å, with 31 configuration points for each conformer. A total of 372 

configuration points were actually sampled and the energies calculated. During the 

scan we used rigid and symmetric conformer assumptions. The MP2 interaction 

energies at the basis set limit have been estimated using the methods of Martin [27] 

and Helgaker et al. [28] and a numerical extrapolation scheme based on the Lagrange 

formula [29]. The G and H conformer potential data with some basis sets are shown in 

Table I. 

 

3. Results and Discussions 

A. Hartree-Fock self-consistent field calculations 

The BSSE corrected HF interaction potentials of the silane dimer in 12 symmetric 
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conformers are shown in Fig. 2.2-2. The HF calculations for all conformers yield 

purely repulsive potentials without minima for all the basis sets used. This can be 

attributed to the rather weak electrostatic interactions for the silane dimer. In the short 

range, the strong exchange-repulsion interaction dominates with little alternation from 

the electrostatic and induction attractions.  

 

B. MP2 calculations 

In Fig. 2.2-3 we show the MP2 potentials for the twelve conformers using high level 

aug-cc-pV5Z basis set. We see that the potentials become deeper when there are more 

inner hydrogen atoms and more close on distance contacts between the monomers. It 

has been found that the minimum-energy conformation corresponds to the Cs 

symmetry configuration (the G and H conformers). It is interesting to analyze the 

orientational dependence from the repulsive and the attractive components of the 

potentials separately. SiH4 is a non-polar molecule and the dominant long-range 

attraction is thus due to the London dispersion force. On the other hand, the strong 

repulsive force almost comes from the exchange-repulsion interaction. Contrasting the 

HF and the MP2 potentials thus helps to delineate the relative importance of the 

dispersion energy in the overall intermolecular interactions. In Fig. 2.2-4 we show the 

MP2 potentials subtracting the corresponding HF potentials, dubbed as MP2-HF, for 
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the twelve conformers. The MP2-HF potentials largely represent the dispersion curves 

which are purely attractive. The dispersion interaction between molecules is a weak 

attraction due to an instantaneous dipole moment in one molecule inducing a dipole 

moment in another molecule. The dispersion energy (Vdisp) of the form [30] 

                           6
6disp

C
V

R
                                (1) 

where the dispersion coefficient C6 is a constant depending on the molecules in Fig. 

2.2-5. The fitting C6 values of Eq. (1) is compared to accurate literature values [31]. 

Up to the largest basis set used, the value of our calculation (C6≒342.35 eVÅ) has 

converged to the expected value from the literature (C6 ≒ 343.0 eVÅ) [31] and the 

calculation (C6 ≒ 343.9 eVÅ) [32] and (C6 ≒ 356.1 eVÅ) [33]. In our calculation, 

the aug-cc-pV5Z basis set underestimates only 0.19% for G conformer of the 

literature value (see Table II). 

 

In Table 2.2-1 we present the G and H conformers of several basis sets with the MP2 

method. R0 is the distance at which the potential is zero and can be obtained from a 

two point interpolation of the calculated data. The bond length Rm and the binding 

energy Eb can be obtained through a harmonic modeling of the three lowest potential 

data near equilibrium regions. With increasing basis size, the equilibrium bond length 

converges at the aug-cc-pVTZ basis set to a 0.02Å accuracy, while a pretty large basis 
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set, aug-cc-pV5Z, is required to converge the binding energy at a chemical accuracy 

(~0.03 kcal/mol). It is clear from Table 2.2-1 that the aug-cc-pVTZ basis set still 

underestimates the binding energy by about 33% and consistent with previous papers 

[8-9] . The strong basis set dependence and the slow convergence on the binding 

energy call for an estimation of the potential features at the complete basis set (CBS) 

limit. The CBS binding energies can be obtained by an extrapolation scheme with 

Dunning’s basis sets. We consider the methods of Martin [27] and Helgaker et al. [28] 

and a numerical extrapolation scheme based on the 3-term Lagrange formula [29] and 

the MP2/CBS results are listed in Table 2.2-3. We see that using the aug-cc-pVXZ 

data, the three extrapolation methods yield similar CBS values.  

 

C. Analytical site-site pair potential model 

Unlike the methane dimer [11-15], in Fig. 2.2-3, we see that the twelve orientation 

potential energy curves of silane dimer are not systematically arranged in order. The 

configurations of I and J conformer energies are relative lower than G and H 

conformers. This indicates that not only the inner silicon-silicon interactions play a 

major role but also the interchange of influence of silicon-hydrogen interactions was 

very important. Besides, the centrical silicon atom size is larger and electronegativity 

is smaller than carbon atom. For those reasons, the calculation results shown the G 
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and H potential curves maybe more favorable stabilization than others. Therefore, we 

conclude that the inner silicon interactions and interplay silicon-hydrogen interactions 

are also the major components contributing to the potential anisotropy. 

 

Based on these observations, an analytical 5-site model was proposed to represent the 

MP2/aug-cc-pV5Z potential data. The site-site interaction is represented by a 

Lennard-Jones (L-J) function [33]. 

 

                  
12 6

4 ij ij
ij ij

ij ij

U r
r r

 


    
             

                        (2) 

where the indices i and j denote the atoms in separated monomers, respectively, and rij 

represent the silicon - silicon distance for a pair of monomer. In this model ij and ij 

are the potential parameters to be determined in the non-linear regression. No bias 

weights were put on specific configurations except that we excluded from the 

non-linear fitting some largest repulsive energy points in the regression to prevent 

their dominance in the least-squares cost function [43]. However, this latter constraint 

could effectively put more weight on deeper wells. For the 5-site model, the best 

fitting parameters we obtained are =2.754 Å, =0.100 kcal/mol, SiH=3.070 Å, 

SiH=0.006 kcal/mol, SiSi=4.150 Å, SiSi=0.072 kcal/mol. In Fig. 2.2-7(a) and Fig. 

2.2-7(b) we present the fitting curves and the ab initio data..  
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4. Conclusion 

The present work extends our previous work [11-16] for calculating intermolecular 

potential energies to state-of-the-art methodology. We have systemically analyzed the 

intermolecular potential of silane dimer in twelve conformers. We also employed high 

level quantum chemistry calculation to obtain the potential data and consistent with 

previous literatures. The potentials exhibit significant anisotropy, which is analyzed 

and considered in the 5-site force field model used to fit the potential data and 

determine the accuracy of the potential curves fitting parameters. 
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Table 2.2-1. The basis set dependence of MP2 potentials for the G and H conformers 

 

 

 

 

 

 MP2 

Basis set 
G conformer H conformer 

R0 (Å) Rm (Å) Eb (kcal/mol) R0 (Å) Rm (Å) Eb (kcal/mol)
aug-cc-pVDZ 3.98 4.45 -0.484 3.98 4.46 -0.482 

aug-cc-pVTZ 3.86 4.33 -0.594 3.87 4.34 -0.590 

aug-cc-pVQZ 3.84 4.31 -0.622 3.85 4.31 -0.622 

aug-cc-pV5Z 3.82 4.30 -0.651 3.83 4.30 -0.646 

basis set limit 3.78 4.28 -0.712 3.79 4.29 -0.692 

Table 2.2-1 
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a Ref. [31-33] 

 

 

Table 2.2-2. Predicted C6 coefficient value with literature in twelve conformers. 

 

 

 

 

 

 

Conformer Prediction (eVÅ6) Error (%) aLiterature (eVÅ6) 

A 1507.75 339.57 

343.0 

B 1507.97 339.64 

C 641.75 87.10 

D 641.66 87.07 

E 497.82 45.14 

F 495.39 44.43 

G 342.35 0.19 

H 341.21 0.52 

I 301.10 12.22 

J 283.73 17.28 

K 480.63 40.12 

L 355.94 3.77 

Table 2.2-2 



 

 182

 

 

 

 

 

 

 

 

 

 

 aDZa aTZa aQZa a5Za 
Number of basis 

function 
126 284 536 902 

Extrapolation 

methods aDTb aTQc aQ5d aDTQe aTQ5f 
Martin -0.633 -0.638 -0.675 NAg NAg 

Helgaker -0.640 -0.642 -0.681 NAg NAg 
Numerical -0.682 -0.654 -0.693 -0.645 -0.712 

Table 2.2-3 

aNumber of basis function with the MP2/aug-cc-pVXZ (X=D, T, Q and 5). 
bBasis set limit estimation with the aug-cc-pVXZ (X=D and T). 
cBasis set limit estimation with the aug-cc-pVXZ (X=T and Q). 
dBasis set limit estimation with the aug-cc-pVXZ (X=Q and 5). 
eBasis set limit estimation with the aug-cc-pVXZ (X=D, T and Q). 
fBasis set limit estimation with the aug-cc-pVXZ (X=T, Q and 5). 
gNot available. 

 

 

Table 2.2-3. The estimated MP2/CBS binding energies for the G conformer 

using the three extrapolation methods described in the text.  
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FIG. 2.2-1. The twelve symmetric conformers of the silane dimer. We designate each 

conformer by a representative capital letter from A to L.  

R = 3 ~ 9 Å 

r  = 1.470 Å 

Fig. 2.2-1 
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FIG. 2.2-2. The HF potentials for the 12 orientations using the aug-cc-pV5Z basis set. 

 

 

FIG. 2.2-3. The MP2 potentials for the 12 orientations using the aug-cc-pV5Z basis 

set. 

Fig. 2.2-2 

Fig. 2.2-3 
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FIG. 2.2-4. The MP2-HF potentials for the 12 orientations using the aug-cc-pV5Z 

basis set. 

 

FIG. 2.2-5. The C6 coefficient value has been obtained by fitting to intermolecular 

potential energy from ab initio calculation. 

Fig. 2.2-4 

Fig. 2.2-5 
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FIG 2.2-6(a)-6(b). Comparison of the fitting curves (line) and the potential data 

(symbol). 

Fig. 2.2-6(a) 

Fig. 2.2-6(b) 
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Chapter 3 Theoretical Studies on the Carbon Tetrachloride Dimers 
 
 

3.1 Ab initio force field modeling and molecular dynamics 
simulation of liquid carbon tetrachloride 

 

1. Introduction 

Carbon tetrachloride (CCl4) has been widely used as solvents in many industrial 

processing procedures such as petroleum separation processes or spectroscopic 

analyses [1-2]. CCl4 is also one of the earliest systems exhibiting the plastic crystal 

phase behavior [3-8]. Therefore, the structural and thermodynamic properties of CCl4 

have long been intensely studied by experimental means, such as X-ray and neutron 

diffraction [9-13]. Despite of these valuable experimental data accumulated for 

decades, the issue of thermodynamic state dependence of the CCl4 dimer structure in 

liquid or solid phase is still debating in recent literature [14-18]. Part of the reasons 

involved is due to the incompleteness of experimental sampling. For example, 

experiments using the X-ray crystallography or the laser luminescence spectroscopy 

mainly explore the equilibrium regions of the potential surface, while thermodynamic 

measurements in the fluid or solid phase often yield isotropic potential data without 

the desired stereochemical responses.  
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Computer simulations, such as molecular dynamics (MD) or Monte Carlo (MC) 

simulation can complement experiments in providing predictions await laboratory 

verification. However, most previous simulations used empirical force fields which 

were themselves not validated over extensive enough thermodynamic conditions, thus 

rendering great ambiguity in interpreting the simulation results. Because the efficacy 

of a simulation ultimately depends on the quality of the force field used, recent 

attention has been drawn to constructing the force field based on only quantum 

chemistry calculation, or the ab initio force field, without experimental data input. 

Chang et al. [19] has constructed a polarizable potential model and calibrated it with 

the CCl4 dimer interaction potential calculated at the MP2/aug-cc-pVDZ level of 

theory. Soetens et al. [20] have calculated the interaction energies of the CCl4 dimer 

for 6 relative orientations at the MP2/aug-cc-pVDZ level and used the data to 

construct a 5-site model. Their MD simulations by and large reproduced the 

experimental data while some significant discrepancy was observed. They attributed 

the discrepancy to the inefficacy of their force field modeling, being too shallow. 

Mahlanen et al. [21] calculated the dimer interaction for 11 orientations at the 

MP2/aug(df)-6-311G* level, resulting in 355 data points, and a 5-site potential 

functions were used to fit the ab initio data. However, there was no simulation result 

presented for comparison to experiments. Krongsuk et al. [14] have calculated the 
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interaction energies of the CCl4 dimer for 800 configuration points at the 

MP2/6-31G** level and used the data to construct a 5-site model. Their MC 

simulations could well reproduce the experimental radial distribution functions. 

 

These previous works are either inaccurate enough in the ab initio potential data or 

are not validated against a wider enough range of experimental data. Currently, no ab 

initio force fields so far have been calculated at a spectroscopic accuracy level while 

at the same time can be used to reproduce the structural and transport properties of 

liquid CCl4. In previous studies [22-27], we have calculated the interaction potentials 

of the methane and silane dimers. Because of the similarity in structures, carbon 

tetrachloride is expected to have similar radial responses for the dimer potentials as 

methane and silane. However, because the disparity in the relative electronegativity 

and the apparent larger bond polarizability, the orientational response of the 

intermolecular interaction would be subtly different from that for the methane case.  

 

In this paper we construct an ab initio force field using a high level theory, up to 

MP2/aug-cc-pVTZ, for 12 conformers of CCl4. We determine the accuracy of the 

constructed ab initio force field using MD simulations and the results are compared 

with experiments. Quantitative agreements with the measured radial distribution 



 

 190

functions, the self-diffusion coefficients, and the neutron and X-ray diffraction 

scattering functions for a wide range of thermodynamic conditions provide a proper 

justification on the validity of this force field. 

 

The paper is organized as follows. In Section II, we describe the details of these 

calculations. In Section III the results are presented and discussed. A summary and a 

brief perspective are given in Section IV. 

 

2. Methods and Calculations 

All the quantum chemistry calculations were performed using the Gaussian 03 

program package [28] and molecular dynamics simulations were performed by the 

Materials Studio package [29]. The isolated CCl4 molecule was first optimized at the 

MP2/6-311++G (3d, 3p) theory and was found to be at the tetrahedral configuration 

(Td symmetry) with the C-Cl bond length of 1.768 Å which is consistent with the 

experimental data 1.769 Å [30]. The 12 symmetric conformers chosen to sample the 

orientational response are depicted in Fig. 3.1-1. Because of the high symmetry of the 

dimer configuration, the angular sampling should be wide enough to model the 

rotational dynamics in normal thermodynamic conditions. The MP2 method [31] has 

been used to treat the correlation effect. Pople’s medium size basis sets [up to 
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6-311++G (3df, 3pd)] [32] and Dunning’s correlation consistent basis sets (cc-pVXZ 

and aug-cc-pVXZ, X=D, T, Q) [33] were employed in the calculations. The basis set 

superposition errors were corrected by the counterpoise method of Boys and Bernardi 

[34]. Subsequently the carbon-carbon (C-C) distance, denoted as R, was sampled for a 

large range of 4~10 Å, with 31 configuration points for each conformer. A total of 372 

configuration points were actually sampled and the energies calculated. During the 

scan we fixed the monomer geometry (rigid monomer assumption) and the conformer 

symmetry. The MP2 interaction energies at the basis set limit have been estimated 

using the methods of Martin [35], Helgaker et al. [36] and Feller [37] and a numerical 

extrapolation scheme based on the Lagrangian formula [38]. The other potential 

parameters at the basis set limit are estimated using the numerical extrapolation (see 

Table 3.1-1). 

 

The MD simulations were performed in a rectangular cell with the periodic boundary 

conditions imposed on the three coordinate directions. A total of 500 carbon 

tetrachloride molecules were initially arranged in random configuration. An isobaric- 

isothermal (constant-NPT) ensemble was used with the temperature control by 

rescaling the center-of-mass velocities every 500 time steps. Equations of motion 

were solved using the velocity-Verlet algorithm with the time step of 1 fs. The system 
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was checked equilibrium after running 20 ps and allowed 200 ps for data collection. 

The cut-off radius was set to be half of the box size to avoid long range correlations. 

The simulated thermodynamic conditions cover a density range of 0.557~1.660 g/cm3 

and a temperature range of 250.0 ~ 556.5 K, where the experimental data are 

available. 

 

3. Results and Discussions 

A. Hartree-Fock self-consistent field calculations 

The BSSE corrected HF interaction potentials of the carbon tetrachloride dimer in 12 

symmetric conformers are shown in Fig. 3.1-2. The HF calculations for most 

conformers yield purely repulsive potentials without minima for all the basis sets used 

except the C, D, E and F conformers. The C and D potentials have attractive wells. 

This might be due to the large bond polarizability. The E and F potentials exhibit 

weak wells. This can be attributed to the electrostatic attraction because the E and F 

orientations are favored by the multipole interactions. In the short range, the strong 

exchange-repulsion interaction dominates with little alternation from the electrostatic 

and induction attractions. We can model the HF potential for the J conformer using 

the repulsive Buckingham function [39] 

R
HF AeRV )(                                          (1) 
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where R is the C-C distance, A and  (the repulsion exponent) are the fitting 

parameters. The fitting parameters are listed in Table 3.1-1. It is seen that the 

repulsion exponent converges quickly after the 6-31G** basis set being used.  

 

B. MP2 calculations 

In Fig. 3.1-3 we show the MP2 potentials for the twelve conformers using the 

aug-cc-pVTZ basis set. We see that the potentials become deeper when there are more 

inner chlorine atom contacts between the monomers. It is found that the 

minimum-energy conformation corresponds to the D3d symmetry configuration (the J 

conformer), which is consistent with a previous energy dissection method [40]. It is 

interesting to analyze the orientational responses from the repulsive and the attractive 

components of the potentials separately. CCl4 is a non-polar molecule and the 

dominant long-range attraction is thus due to the London dispersion force. On the 

other hand, the strong repulsive force almost comes from the exchange-repulsion 

interaction. Contrasting the HF and the MP2 potentials thus helps to delineate the 

relative importance of the dispersion energy in the overall intermolecular interactions. 

In Fig. 3.1-4 we show the MP2 potentials subtracting the corresponding HF potentials, 

dubbed as MP2-HF, for the twelve conformers. The MP2-HF potentials largely 

represent the dispersion curves which are purely attractive. We see larger variations 
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for the repulsive components as compared to the attractive components. For example, 

at R=6.00Å, the HF potentials (MP2-HF potentials) vary from 0.066 kcal/mol 

(-1.101kcal/mol) for the J conformer to 20.215 kcal/mol (-9.553 kcal/mol) for the A 

conformer. That is to say, compared to the others, the J conformer has actually the 

weakest attractive but also the weakest repulsive parts. Therefore, it is actually due to 

the stronger variation in the repulsive interactions, but not due to the stronger 

attraction as would be intuitively expected, that the J conformer is the most stable 

carbon tetrachloride dimer. 

 

In Table 3.1-1 we present the basis set dependence of several important potential 

quantities extracted from the MP2 potentials at a series of basis sets. R0 is the distance 

at which the potential is zero and can be obtained from a two point interpolation of the 

calculated data. The bond length Rm and the binding energy Eb can be obtained 

through a harmonic modeling of the three lowest potential data near equilibrium 

regions. With increasing basis size, the equilibrium bond length converges at the 

aug-cc-pVDZ basis set to a 0.1 Å accuracy, while a pretty large basis set, 

aug-cc-pVTZ, is required to converge the binding energy at a spectroscopic accuracy 

(~0.1 kcal/mol). This explains the inefficacy of the potential calculated by Soetons et 

al. [20] using the aug-cc-pVDZ basis set. The strong basis set dependence and the 
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slow convergence on the binding energy call for an estimation of the potential features 

at the complete basis set (CBS) limit. The CBS binding energies can be obtained by 

an extrapolation scheme with Dunning’s basis sets. We consider the methods of 

Martin [35], Helgaker et al. [36], Feller [37] and a numerical extrapolation scheme 

based on the 3-term Lagrange formula [38] and the MP2/CBS results are listed in 

Table II. We see that using the aug-cc-pVXZ data, instead of the cc-pVXZ data, the 

four extrapolation methods yield similar CBS values. This shows clearly that the 

quality of the extrapolation critically depends on the basis set functions used. 

 

C. Analytical site-site pair potential model 

Figure 3.1-3 shows interesting interplay among the contact atoms of CCl4 dimer. First 

we notice that for the A~F conformers, the A and B, the C and D, and the E and F 

potential curves are numerically identical, respectively (hence we show only one 

respective curve of them in Fig. 3.1-3). This indicates that the inner chlorine-chlorine 

interactions play a major role, as compared with the outer chlorine-chlorine 

interactions, in determining the overall interaction energies. Next we observe that the 

G and H potential curves are almost identical, which indicates that some 

compensation among the inner chlorine atoms occurs to allow two possible 

degenerate 3-2 configurations. The same reasoning can be used to rationalize the 
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relative stability of the I and J conformers. For the J conformer, the inner 3-3 chlorine 

atoms manage to “avoid” each other to reach a more favorable stabilization over the I 

conformer where the chlorine atoms “head on”. Similar arguments apply to the K and 

L conformers also. Therefore, we conclude that the inner chlorine interactions are the 

major components contributing to the potential anisotropy. 

 

Based on these observations, an analytical 4-site model was proposed to represent the 

MP2/aug-cc-pVTZ potential data. The sites are associated with the chlorine atoms and 

this model is very simple and suitable for the development of coarse-grained 

potentials [41-42]. The site-site interaction is represented by a Lennard-Jones (L-J) 

function. 

 

                   
12 6

4ij
ij ij

U r
r r

 
    
             

                        (2) 

where the indices i and j denote the chlorine atoms in separated monomers, 

respectively, and rij represent the chlorine - chlorine distance for a pair of i and j 

chlorine atoms. In this model  and  are the potential parameters to be determined in 

the non-linear regression. No bias weights were put on specific configurations except 

that we excluded from the non-linear fitting some largest repulsive energy points in 

the regression to prevent their dominance in the least-squares cost function [43]. 
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However, this latter constraint could effectively put more weight on deeper wells. The 

fitting parameters we obtained are =3.45 Å and =0.387 kcal/mol. In Fig. 3.1-5 we 

present the fitting curves and the ab initio data. Notice that the order of the potential 

data has been correctly represented by the fitting curves, which echoes the above 

physical arguments.  

 

D. Molecular dynamics 

We evaluate the force field model by running molecular dynamics simulations [29] on 

it. We calculate the atom(α)-atom(β) radial distribution functions (RDFs) by the 

definition [44-45] 

 

   
24

n r
g r

r r  



                           (3) 

 

where  g r  is the radial distribution function for the - atom pair,  n r  is the 

mean number of atoms in a shell of radius r  and thickness r  surrounding the 

atom, and   is the mean density for total system. The calculation of  g r  

consists of about 10000 trials, with each by selecting an  atom as the origin and 

counting the  atoms within the spherical shells of thickness r =0.02 using the 

histogram method. Fig. 3.1-6(a) ~ 6(c) present the simulated atom-atom radial 
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distribution functions for temperature from T=260.0 K to T=556.5 K and density 

=1.660 g/cm3 to =0.557 g/cm3. The path is roughly from the triple point to the 

critical point along the condensation line on the phase diagram. As we can see from 

the comparison of the calculated peak positions with the experimental data [3-5] as 

shown in Table 3.1-3, the overall agreement is satisfactory. The peak and valley 

positions are well reproduced for the RDF. We have also simulated the scattering 

functions from neutron and X-ray diffraction and compared with experiments at 

temperature 293 K in Fig. 3.1-7 and Fig. 3.1-8 respectively. The (not normalized) 

scattering functions 

 

                ( ) * exp( )j k jk
j k

I K f f i  r K                       (4) 

where fj,k are the scattering lengths,. can thus be obtained from the RDFs through a 

Fourier transform [20]. The simulated results from this model are in good quantitative 

agreement with the curves derived from our data.  

 

Next, we have calculated the self-diffusion coefficients using the Green-Kubo formula 

[46-48], 

   
0

1
0

3

N

i i
i

D v t v dt
N


 

 

                       (5) 

where iv


 is the velocity vector of particle i and the statistical average is the velocity 



 

 199

autocorrelation functions (VAFs). In Table 3.1-4, we present the comparison of the 

calculated self-diffusion coefficients with experiments from different research groups 

[49-50]. We see the results are generally in good agreement with the experiments. At 

lower temperature, the calculated D is higher than the experimental value. This is a 

characteristic feature that as the liquid freezes, it would approach first to the plastic 

crystal phase Ia, but not directly to the ordered phase II [6]. 

 

4. Conclusion 

To simulate liquid carbon tetrachloride properties, we have employed quantum 

chemistry calculation to obtain the potential data. The potentials exhibit significant 

anisotropy, which is analyzed and considered in the 4-site force field model used to fit 

the potential data. We determine the accuracy of the constructed ab initio force field 

using MD simulations and the results are compared with experiments. Quantitative 

agreements with the observed radial distribution functions (RDFs), the self-diffusion 

coefficients and the scattering functions have been obtained for a wide range of 

thermodynamic conditions. 
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 MP2 HF MP2 

Basis set 
Number of 

basis function
A (kcal/mol) α (Å-1) R0 (Å) Rm (Å) Eb (kcal/mol)

STO-3G 82 48397683 3.75 5.66 6.29 -0.010 

3-21G 122 1299506 2.79 5.49 6.03 -0.123 

6-31G 122 1617627 2.84 5.43 6.00 -0.135 

3-21G** 170 1046010 2.75 4.98 5.57 -0.397 

cc-pVDZ 172 1243814 2.79 4.78 5.36 -0.581 

6-31G** 182 1422093 2.81 4.87 5.43 -0.473 

aug-cc-pVDZ 262 1347998 2.81 4.28 4.81 -2.310 

cc-pVTZ 332 1440544 2.82 4.36 4.87 -1.722 

6-311++G(3df,3pd) 454 2401632 2.93 4.24 4.77 -2.609 

aug-cc-pVTZ 492 1314163 2.79 4.17 4.70 -2.968 

cc‐pVQZ  582  1269782  2.78  4.20  4.72  ‐2.581 

aug‐cc‐pVQZ  832  1266359  2.78  4.13  4.65  ‐3.220 

Basis set limit  1161130  2.76  4.08  4.58  ‐3.523 

Table 3.1-1. 

Table 3.1-1.  The basis set dependence of some potential parameters of the HF and MP2 potentials for the J conformer. 
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 DTa TQb DTQc aDTd aTQe aDTQf 

Martin -2.123 -3.076 NAg -3.200 -3.365 NAg 

Helgaker -2.020 -3.207 NAg -3.245 -3.326 NAg 

Feller NAg NAg -2.684 NAg NAg -3.376 

Numerical -2.949 -3.721 -4.045 -3.718 -3.585 -3.523 

aBasis set limit estimation with the cc-pVXZ(X=D and T). 
bBasis set limit estimation with the cc-pVXZ(X=T and Q). 
cBasis set limit estimation with the cc-pVXZ(X=D, T, and Q). 
dBasis set limit estimation with the aug-cc-pVXZ(X=D and T). 
eBasis set limit estimation with the aug-cc-pVXZ(X=T and Q). 
fBasis set limit estimation with the aug-cc-pVXZ(X=D, T, and Q). 
g Not available. 

 

Table 3.1-2. The estimated MP2/CBS binding energies for the J conformer. using the four extrapolation methods 

described in the text.  

Table 3.1-2 
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gCCl gClCl 

EXP 4 sites Error (%) EXP 4 sites Error (%) 

1st peak 4.91 5.09 3.54 3.80 3.76 1.06 

1st valley 5.95 6.17 3.57 4.79 4.90 2.24 

2nd peak 7.06 6.99 1.00 6.07 6.23 2.57 

2nd valley 8.71 8.70 0.11 7.49 7.62 1.71 

 

 

 

 

Table 3.1-3. Comparison of the calculated peak and valley positions of the RDF with 

the experiment [5]. 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1-3 
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Table 3.1-4. The self-diffusion coefficients using the Green-Kubo formula [46-48] as 

compared to the available experimental data [7]. 

 

 

 

 

 

T (K) ρ(g/cm3) 
D-Theory 

  (10-9 m2/s)

D-Exp. 

(10-9 m2/s) 

260 1.66 0.706 0.300 

293 1.58 1.306 1.284 

328 1.53 1.801 NAa 

453.2 1.25 6.638 NAa 

556.5 0.56 40.040 NAa 

Table 3.1-4 
a Not available 
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FIG. 3.1-1. The twelve symmetric conformers of the carbon tetrachloride dimer. We 

designate each conformer by a representative capital letter from A to L. 

Fig. 3.1-1 
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FIG. 3.1-2. The HF potentials for the 12 orientations using the aug-cc-pVTZ basis set. 

 

FIG. 3.1-3. The MP2 potentials for the 12 orientations using the aug-cc-pVTZ basis  

set. 

Fig. 3.1-2 

Fig. 3.1-3 
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FIG. 3.1-4. The MP2-HF potentials for the 12 orientations using the aug-cc-pVTZ  

basis  set. 

 

FIG. 3.1-5. Comparison of the fitting curves (line) and the potential data (symbol). 

Fig. 3.1-4 

Fig. 3.1-5 
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FIG. 3.1-6(a) ~ 6(c).  The calculated C-C, C-Cl and Cl-Cl radial distribution function 

gCC, gCCl, gClCl for a range of thermodynamic conditions.  

Fig. 3.1-6(a) 

Fig. 3.1-6(b) 

Fig. 3.1-6(c) 
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FIG. 3.1-7. Comparison of theory curve (line) and neutron scattering functions 

(symbol). 

 

FIG. 3.1-8. Comparison of theory curve (line) and X-ray scattering functions 

(symbol). 

Fig. 3.1-7 

Fig. 3.1-8 
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3.2 Intermolecular potentials of the carbon tetrachloride dimer 
calculated with Møller-Plesset perturbation theory and 
density functional theory 

 

1. Introduction 

Carbon tetrachloride (CCl4) has been widely used as solvents in many industrial 

processing procedures such as petroleum separation processes or spectroscopic 

analyses [1-2]. CCl4 is also one of the earliest system exhibiting the plastic crystal 

phase behavior [3-8]. Therefore, the structural and thermodynamic properties of CCl4 

have long been intensely studied by experimental means, such as X-ray and neutron 

diffraction [9-13]. Despite of these valuable experimental data accumulated for 

decades, the issue of thermodynamic state dependence of the CCl4 dimer structure in 

liquid or solid phase is still debating in recent literature [14-18].  

 

It is now well recognized that intermolecular potentials can be calculated in terms of 

correlation-corrected quantum chemistry methods [19-21] or density functional theory 

(DFT) [22-23] with improved generalized gradient approximation (GGA) functionals. 

These calculations are normally done with the supermolecular scheme in which the 

intermolecular potential is defined as the total energy difference between the 

supermolecule and the isolated subsystems. Chang et al. [24] has constructed a 

polarizable potential model and calibrated it with the CCl4 dimer interaction potential 
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calculated at the MP2/aug-cc-pVDZ level of theory. Soetens et al. [25] have 

calculated the interaction energies of the CCl4 dimer for 6 relative orientations at the 

MP2/aug-cc-pVDZ level. Mahlanen et al. [26] calculated the dimer interaction for 11 

orientations at the MP2/aug(df)-6-311G* level, resulting in 355 data points. However, 

there was no simulation result presented for comparison to experiments. Krongsuk et 

al. [14] have calculated the interaction energies of the CCl4 dimer for 800 

configuration points at the MP2/6-31G** level. 

 

These previous works are either inaccurate enough in the ab initio potential data or 

are not validated against a wider enough range of experimental data. In previous 

studies [27-32], we have calculated the interaction potentials of the methane and 

silane dimers. Because of the similarity in structures, carbon tetrachloride is expected 

to have similar radial responses for the dimer potentials as methane and silane. 

However, because the disparity in the relative electronegativity and the apparent 

larger bond polarity, the orientational dependence of the intermolecular interaction 

would be subtly different from that for the methane case.  

 

In this paper, we perform a comprehensive study on interaction potentials of the CCl4 

dimer in terms of the HF, MP2, and DFT methods to gain better understanding of this 
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system for D3d conformers of CCl4. Moreover, in this paper we will assess the utilities 

of using the available implementation of the density functional theory in determining 

the intermolecular interactions. From the studies of atomic dimers, it has been found 

that conventional exchange-correlation functionals based on the local density 

approximation (LDA) and generalized gradient approximation (GGA) cannot 

calculate the intermolecular interactions to a satisfying level of accuracy [33]. It is 

thus desirable to investigate to what extent the DFT calculations using available 

functionals can serve as an alternative for ab initio molecular orbital calculations. 

 

The paper is organized as follows. In Section 2, we describe the details of these 

calculations. In Section 3 the results are presented and discussed. A summary and a 

brief perspective are given in Section 4. 

 

2. Methods and Calculations 

All the HF, MP2 and DFT calculations are performed using the Gaussian 03 program 

package [34] on a single-node two processor AMD 250 PC cluster with distributed 

memory. The isolated CCl4 molecule was first optimized at the MP2/6-311++G (3d, 

3p) theory and was found to be at the tetrahedral configuration (Td symmetry) with the 

C-Cl bond length of 1.768 Å which is consistent with the experimental data 1.769 Å 
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[35]. Because of the high symmetry of the dimer configuration, the angular sampling 

should be wide enough to model the rotational dynamics in normal thermodynamic 

conditions. The MP2 method [36] has been used to treat the correlation effect. Pople’s 

medium size basis sets [up to 6-311++G (3df, 3pd)] [37] and Dunning’s correlation 

consistent basis sets (cc-pVXZ and aug-cc-pVXZ, X=D, T, Q) [38] were employed in 

the calculations. The basis set superposition errors were corrected by the counterpoise 

method of Boys and Bernardi [39]. Subsequently the carbon-carbon (C-C) distance, 

denoted as R, was sampled for a large range of 4~10 Å, with 61 configuration points 

for each conformer. A total of 732 configuration points were actually sampled and the 

energies calculated. During the scan we fixed the monomer geometry (rigid monomer 

assumption) and the conformer symmetry. From a previous energy dissection method, 

[40] it is found that for a general tetrahedral molecule either the D3d or the C3v 

conformer would be possibly the most stable conformer. We have thus first calculated 

the potential interaction energies for these two conformers at the MP2/aug-cc-pVTZ 

level of theory. In Figure 3.2-1, we show the comparison of the potential curves for 

the D3d and the C3v conformers. As can be seen, the D3d conformer is more stable than 

the D3v one. Therefore, we will focus on the D3d conformer in this paper. 

 

3. Results and Discussions 
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A. Hartree-Fock self-consistent field calculations 

The BSSE corrected HF interaction potentials of the carbon tetrachloride dimer in D3d 

conformer using several basis sets are shown in Fig. 3.2-2. The HF calculations for 

D3d conformer yield purely repulsive potentials without minima for all the basis sets 

used. In the short range, the strong exchange-repulsion interaction dominates with 

little alternation from the electrostatic and induction attractions. We can model the HF 

potential for the J conformer using the repulsive Buckingham function [41] 

R
HF AeRV )(      

where R is the C-C distance, A and  (the repulsion exponent) are the fitting 

parameters. The fitting parameters are listed in Table 3.2-1. It is seen that the 

repulsion exponent converges quickly after the 6-31G** basis set being used.  

 

B. MP2 calculations 

In Figure 3.2-3, we compare the MP2 potentials with and without the BSSE 

corrections (denoted as CP and NCP, respectively). We see very strong dependence of 

the interaction potentials on the BSSE corrections. The potentials without the BSSE 

corrections fluctuate with increasing basis size and do not systematically converge to 

the expected curve at the basis set limit. On the contrary, the BSSE corrected 

potentials systematically approach the expected curve with increasing basis size. 
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Therefore, the BSSE correction must be considered in calculating the intermolecular 

interactions, in particular for small basis sets. 

 

In Table 3.2-1 we present the basis set dependence of several important potential 

quantities extracted from the MP2 potentials at a series of basis sets. R0 is the distance 

at which the potential is zero and can be obtained from a two point interpolation of the 

calculated data. The bond length Rm and the binding energy Eb can be obtained 

through a harmonic modeling of the three lowest potential data near equilibrium 

regions. With increasing basis size, the equilibrium bond length converges at the 

aug-cc-pVDZ basis set to a 0.1 Å accuracy, while a pretty large basis set, 

aug-cc-pVTZ, is required to converge the binding energy at a spectroscopic accuracy 

(~0.1 kcal/mol). This explains the inefficacy of the potential calculated by Soetons et 

al. [25] using the aug-cc-pVDZ basis set.  

 

C. Density functional theory 

We have examined the basis set effect on the DFT potentials in a similar manner as in 

the HF and MP2 calculations. We found that in general the DFT potentials converge at 

a larger basis set than the HF potentials but at a smaller basis set than the MP2 

potentials. Therefore, only the aug-cc-pVTZ basis set is used to obtain the DFT 
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potentials which are compared to the MP2 potentials calculated at the same basis set. 

 

The density functionals used in the present work include the 80 combinations chosen 

among 8 exchange (B88 [42], MPW [43], PBE [44], PW91 [45], TPSS [46] , Slater 

[47], HCTH [48], and XAlpha [49]) and 10 correlation (TPSS [46], PBE [44], PW91 

[45], P86 [50], HCTH [48], VWN5 [51], PL [52], VWN [51], and LYP [53]) 

functionals. We intend to examine the relative performance of the chosen exchange 

and correlation functionals in determining the interaction potentials for the CCl4 dimer. 

The chosen functionals are selective representations among the most commonly used 

density functionals employed in current literature.  

 

In Table 3.2-2 we show the bond lengths of the calculated DFT potentials using the 80 

exchange-correlation functionals, displayed as the row and the column items, 

respectively. Roughly the bond lengths descend across the row and down the column. 

We find that the SVWN5 and SPL functionals yield a value (4.49 Å) close to the MP2 

result (4.70 Å). Table 3.2-3 presents the calculated binding energies using the 80 

exchange-correlation functionals in a particular order in which the (negative) DFT 

potentials descend across the row and down the column. The results clearly 

demonstrate the relative performance of the exchange and the correlation functionals 
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in the DFT calculations. In Fig. 3.2-5 and Fig. 3.2-6, we also find that the SVWN5 

and SPL functions yield a value (-3.063 and - 3.088 kcal/mol, respectively) close to 

the MP2 result (-2.968 kcal/mol). 

 

4. Conclusion 

In this paper, we have systematically studied the calculated intermolecular potentials 

of the carbon tetrachloride dimer at D3d conformation using the HF, MP2, and DFT 

methods. A wide selection of basis sets has been employed to determine the basis set 

effects on the repulsion exponent, the binding energy, the equilibrium bond length, 

and the asymptotic behavior of the intermolecular potentials. BSSE corrections are 

considered as an important factor affecting the quality of the calculated potentials. 
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Table captions 

Table 3.2-1. The basis set dependence of some potential parameters for the HF and  

MP2 potentials. 

Table 3.2-2. Comparison of the bond lengths (in Å) of the interaction potential  

calculated with the 80 exchange-correlation functionals using the 

aug-cc-pVTZ basis set. 

Table 3.2-3. Comparison of the binding energies (in kcal/mol) of the potential 

calculated with the 80 exchange-correlation functionals using the 

aug-cc-pVTZ basis set. Positive values denote unbound structure. 
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 HF MP2 

Basis set A (kcal/mol) α (Å-1) Rm (Å) Eb (kcal/mol) 

STO-3G 48397683 3.75 6.29 -0.010 

3-21G 1299506 2.79 6.03 -0.123 

6-31G 1617627 2.84 6.00 -0.135 

3-21G** 1046010 2.75 5.57 -0.397 

cc-pVDZ 1243814 2.79 5.36 -0.581 

6-31G** 1422093 2.81 5.43 -0.473 

aug-cc-pVDZ 1347998 2.81 4.81 -2.310 

cc-pVTZ 1440544 2.82 4.87 -1.722 

6-311++G(3df,3pd) 2401632 2.93 4.77 -2.609 

aug-cc-pVTZ 1314163 2.79 4.70 -2.968 

cc‐pVQZ  1269782  2.78  4.72  ‐2.581 

aug‐cc‐pVQZ  1266359  2.78  4.65  ‐3.220 

Basis set limit 1161130  2.76  4.58  ‐3.523 

Table 3.2-1 
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Correlation functional 

VWN5 PL VWN TPSS PBE PW91 LYP P86 VP86 HCTH 

E
xc

ha
ng

e 
fu

nc
tio

na
l 

HCTH 7.19 7.24 7.09 Ua 7.20 7.20 Ua 7.76 Ua 5.45 

B U U 7.59 Ua Ua Ua Ua Ua Ua 5.05 

MPW 6.43 6.42 6.37 6.49 6.48 6.47 6.25 6.34 6.34 4.99 

TPSS 6.19 6.19 6.14 6.02 6.02 6.01 5.59 5.41 5.41 4.94 

PBE 5.68 5.68 5.66 5.48 5.46 5.44 5.20 5.01 5.01 4.91 

PW91 5.68 5.68 5.65 5.52 5.50 5.48 5.24 5.03 5.04 4.91 

S 4.49 4.49 4.47 4.15 4.11 4.12 4.24 4.00 4.00 NAb 

XA 4.42 4.42 4.39 4.00 4.00 4.00 4.17 4.00 4.00 4.37 

a Unbound 

b Not available 

Table 3.2-2 
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Correlation functional 

VWN5 PL VWN TPSS PBE PW91 LYP P86 VP86 HCTH 

E
xc

ha
ng

e 
fu

nc
tio

na
l 

HCTH -0.003 -0.009 -0.012 0.007 -0.017 -0.016 0.003 -0.012 0.002 -1.225 

B 0.001 0.000 -0.004 0.020 0.029 0.018 0.010 0.017 0.017 -3.383 

MPW -0.085 -0.085 -0.102 -0.081 -0.080 -0.079 -0.126 -0.051 -0.051 -4.613 

TPSS -0.132 -0.133 -0.154 -0.111 -0.112 -0.115 -0.291 -0.237 -0.232 -5.039 

PBE -0.239 -0.242 -0.298 -0.283 -0.291 -0.307 -0.671 -0.854 -0.842 -5.753 

PW91 -0.548 -0.552 -0.610 -0.586 -0.591 -0.611 -0.934 -1.100 -1.089 -5.992 

S -3.063 -3.088 -3.367 -6.828 -7.235 -7.303 -7.305 -9.740 -9.698 NAa 

XA -3.441 -3.468 -3.758 -7.518 -8.036 -8.086 -8.079 -10.753 -10.709 -12.513 

a Not available Table 3.2-3 
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FIG. 3.2-1. The BSSE corrected MP2 potentials using the aug-cc-pVTZ basis set for  

the D3d and C3V conformers of the carbon tetrachloride dimer.  

 

 
 
FIG. 3.2-2. The BSSE corrected HF interaction potentials of the carbon tetrachloride  

dimer using several basis sets. 

Fig. 3.2-1 

Fig. 3.2-2 
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FIG. 3.2-3. The BSSE corrected (CP) and uncorrected (NCP) MP2 interaction potentials  

of the carbon tetrachloride dimer using a series of basis sets. 

 

 
FIG. 3.2-4. The BSSE corrected DFT potential curves with varying exchange functional  

by fixing VWN5 correlation functionals. The MP2 potential curve is also shown as a  

reference. 

Fig. 3.2-3 

Fig. 3.2-4 
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FIG. 3.2-5. The BSSE corrected DFT potential curves with varying exchange functional  

by fixing PL correlation functionals. The MP2 potential curve is also shown as a  

reference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2-5 
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Chapter 4 Conclusion 
 

We have calculated the intermolecular potentials of dimers of methane, silane and 

carbon tetrachloride using quantum chemistry HF, DFT, MP2 and CCSD(T) methods. 

The fitted parameters are then used to examine the thermodynamics properties, 

molecular dynamics simulations and perform theoretical analysis on the simulation 

results. All the simulations are compared to their corresponding finer simulations to 

check convergence and accuracy. One of the distinguishing points from most other 

united-atom simulation schemes is that our theory considers properly the actual 

molecular shape effect on the interaction and would capture the main microscopic 

features of macromolecular interactions. 

 

(1) Ab initio Calculations 

We performed ab initio calculations on dimers of methane, silane and carbon 

tetrachloride at several relative configurations, using the Gaussian 03 and Gaussian 09 

package. The calculations of those dimers were performed at the HF, DFT, MP2 and 

CCSD(T) theory using the STO-3G ~ aug-cc-pV5Z basis set level for twelve different 

orientations. The basis set is pretty large and has been used to calibrate empirical force 

fields for liquid alkane in the literature. The energy scans were performed for a quite 

dense grid of spatial points for each definite configuration. Counterpoise corrections 

(CPC) to the basis set superposition error were performed using the new counterpoise 

feature in Gaussian 03 and Gaussian 09. 

 

(2) Molecular Dynamics Simulations 

We performed a molecular dynamics simulation for a system of model CH4, SiH4 and 

CCl4 dimers using both the constructed 4-site and 5-site models. We show the simulated 
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radial distribution functions and velocity autocorrelation functions using our 4-site and 

5-site models at phase points along the gasification line and melting line from the triple 

point to the critical point. We compare the simulated diffusion constants in different 

conditions with the experimental results. We see the theoretical results are in agreement 

with those from X-ray scattering and Neutron scattering factor experiments. 

 

 

 

 

 


