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Abstract

In this review, we would concentrate on two main results ”Short-time ex-
istence of Ricci flow” and ”Local existence of metrics with prescribed Ricci
curvature”. All of these materials could be found in the original papers
by D.M. Deturck.([2],[3]) Both proofs depended on whether they’re strictly
parabolic and elliptic, resp. Because %: -2Ricc(g) and Ricc'(g)h are not
strictly parabolic and elliptic, we must modify the equations (i.e. adding
some terms) to make them to satisfy the requirements. Without complete
proofs we would just point out the key steps in Chapter 3 after giving some

preliminaries.

Keywords: Ricci flow, Ricci curvature, strictly parabolic, elliptic, local solv-
ability



1 Introduction

In 1982, R.S. Hamilton proved that if M? is a compact three-dimensional
Riemannian manifold which admits a Riemannian metric with strictly pos-
itive Ricci curvature, then M also admits a metric of constant positive sec-
tional curvature. Hamilton used the Nash-Moser implicit-function theorem
to prove the local existence of Ricci flow.([4]) Later, in 1983, D.M. Deturck
found out that this local existence cound be deduced from the classical ex-
istence and uniqueness theorems for initial-value problems for quasilinear
parabolic systems and for systems of ODE. So Deturck improved the proof
of Hamilton in [3].

In [2], Deturck showed that local existence of metrics with prescribed
Ricci curvature. He used the similar method to show the local existence.
(i.e. adding some terms to the original equation such that the new one be-
comes an elliptic equation) And then, by performing the usual contracting
mapping iteration to prove the modified equation, it could give a solution to

the original one.

2 Preliminaries

2.1 Some equalities

In this section, we would derive some equalities which will be useful in
Chapter 3. The method of proof of the propositions is mostly deduced by
local coordinate method due to [1],[3]. So we provide another path. (Main

proofs here followed [7])

Let (M, g) be a Riemannian manifold, g = ¢(t) € T'(S?*T*M) defined on

an open interval in R and h := %.
Notations:
1 1, oy
G(T):=T- itr(T)g =T, — 59 (¢°Ts) (Gravitation operator)



for T € T(S*T*M).
1
(6h); == (divh); == —g""Vshy == —g" hy, (div*v);; = 5(1)@]» +vj)
for h € T(S2T*M),v € D(T*M).
(ALh) (X, W) : = (Ah) (X, W) + 2trh(R(X, )W, ) — h(X, Ricc(W)) — h(W, Ricc(X))
= hy;. 0 + 2R;th™ — Rishj — Rjsh] (Lichnerowicz — Laplacian)

for h € T'(S?T*M), Ricc(W) := (Ricc(W,))*.

Firstly, we give the linearization of Ricci curvature :
Proposition 1. (Variation of Ricci formula) %Rz’ccg = —2[ALh+Lisgm)9)-
We need some lemmas as follows:

Lemma 1. <H(X7 Y),Z> = %[(VYh>(X7 Z) T (th)(Ya Z) L (th)(X7 Y)]
where II(X,Y) := 2(VxY), (-, 1) = g(, ).

proof.
(II(X,Y), Z) = %NXY, Z) & h(VxY, Z)
= XY 2) Y Vx 2] - (@30 2)
=[XhY,Z) = h(Y,VxZ)—g(Y, 2VXZ)] —h(VxY,Z)

ot
= (th)(}/v Z) - <H(Z7 X)7Y>

By this identity, we have

(I(X,Y), Z) = (Vxh)(Y, 2) = [(Vzh)(X,Y) = (II(Y, Z), X)]
= (Vxh)(Y, Z2) = (Vzh)(X,Y) + (Vyh)(Z, X) = (II(X,Y), Z)

— (I(X, ), 2) = 5[(Vyh)(X, Z) + (Vxh)(Y, Z) — (Vh)(X, V)]
O

Lemma 2. 2R(X,Y)W = (VyII)(X, W) — (VxII)(Y,W).

6



proof. By Lemma 1, we have

gR(X Y)W = a—(vyvxw VxVyW + VixyW)

= [[I(Y,VxW) + Vy(II(X, W))] = TI(X, VyW) + Vx(II(Y, W))]
+II([X, Y], W)

— (VY I(X, W) — (V5T (Y, W) + T(T(X, Y), W)

= (VyI)(X, W) — (VxII)(Y, W) where T : torsion in (M,g).

]

Lemma 3. 2Rm(X,Y,W,Z) = Lh(R(X,Y)W,Z) — h(R(X,Y)Z,W) +

2

V2h(X, Z) = Vi h(Y, Z2) + Vi ,h(Y, W) — V5h(X, W)].

proof. WLOG, may assume VX = 0 = VY = VZ = VIV at a time t, at
pe M.

By Lemma 2,
;(R(X YW, Z) = h(R(X, Y)W, Z) + <%(R(X, Y)W, Z)

— h(RX, Y)W, Z) + (VyII) (X, W) — VxI)(Y, W), Z).
By Lemma 1,
(Vy (X, W), 2) = (V3 (X, 1)), 2)
= SY(Vwh)(X. 2) 4 (Vxh)(W. Z)  (Vh)(X, W)
= %[(Vvah) (X, Z) + (VyVxh) (W, Z) — (VyVzh) (X, W)]
= S(Vharh) (X, 2) + (VExh) (W, Z) — (V3 h) (X, )]

Hence

9 Rm(X, Y, W, 2) = i(R(X, Y)WV, 2)

4 S[T3h) (X, 2) — (T h) (Y, 2) + (V)W 2)
— (T3 MW, 2) — (T3 Ah) (X W) + (3 ) (Y, W)



By Ricci identity
we obtain the result. O]
Lemma 4. 2 (tra) = —(h,a) + tr(22) where a(t) € T(@>T*M).
proof. Using the local coordinate, let

o= aijdxi ® da’ .
So
0 0, i Xy 00 oo
&(troz) = a(g]aij) = %0, +gja—t] = —(h,a) + tr(g).
Let us complete the proof of Proposition 1 as follows:

proof. By Lemma 4,

%Ricc(X, W) ==(Rm(X, \W,-),h) + tr[%Rm(X, S W)

By Lemma 3 and Ricci identity, we have

%Rm(X, YW, Z) = %[h(R(X, YW, Z) — h(R(X,Y)Z, W) + h(R(Y, W)X, Z)
BB, W)Z, X))+ 3 [(Var WX, 2) — (V) (Y. 2)
F (T3 )Y W) = (Vh) (X, W)

We could observe that

tr(V?Xy_h(-, W)) = —(Véh)(X, W), tr(V%cWh(, ) = Vg(,w(trh) = Hess(trh)(X, W)

and

tr(V%,h(X, W)) = (Ah)(X,W).



Substituting these into the preceding equation, and use

tr(h(R(W,-)-, X)) = —h(X, RicW), tr(h(R(X, )W,-)) = (Rm(X,-,W,-), h).

We have
J . 1
achc(X, W) = —§tr[h(R(X, IW, ) + hR(X, ), W)
+h(R(W, )X, )+ h(R(W,-)-, X)]
— %[(Véh) (X, W) + Hess(trh)(X, W)
+ (V6h)(W, X) + (Ah) (X, W)].
Because
Lg(X, W) = Vw(X, W) + Vu(W, X)
and
Lcmy):9 = Lsnug + Hess(trh),
by Ligyg = Livpg = 2Hess(f), we obtain the proof! O

And then it’s sufficient to obtain the linearization of Bian(g, R) which
will be used in Chapter 3.

Proposition 2. If T' € T'(S?T*M) is independent of t, then (206G(T))Z =
_T((éG(h))ﬁa Z) + <h7 VT(a ) Z) - %VZT>

Before doing the linearization, we also need some Lemmas.
Lemma 5. 2R = —(Ricc, h) + §*h — A(trh).

proof. By Lemma 4,

OR , o .
Erl —(h, Ricc) + tT(ERZCC)'

Then, by Proposition 1, we have

0 1
tr(aRicc) = —étr[ALh + Lispyrg + Hess(trh)].



h(X, Ricc(W)) = —=tr(h(R(W,-)-, X)) = (h(X, ), Ricc(W, "))
which could be proved by orthonormal frame, and
tr(h(R(X,-)W,-)) = (Rm(X, -, W,-), h),
then
tr(Aph) = A(trh).

We also know tr(Lspy:g) = —20°h and tr(Hess) = A | so

R

3 —(h, Ricc) + 6°h — A(trh).

[
Lemma 6. If w(t) € I(T*M), then 2 (6w) = 6(%) + (h, Vw) — (6G(h), w).
proof. Because (da)dV = +d(xa) and o(fa) = —(df,a) + f(éa) for f :
(M,9) — R,
/ (df dydV = / F(5a)dV,

S0
/(%(&u))fdv = —/h(dfw)dVJr /(df, %‘;)czv — /[(5w)f — (df, w>]%(trh)dv.

The last term on the RHS is derived from Lemma 7.
We have

/ h(w, df)dV — / (df, h(w, ))dV — / F5(h(w,))dV — / (0B, w) — (b, Ve fdV.

The last equality of integrand is proved by local coordinate.

Let o = w in §(fa) = —(df,a) + f(0a), a = 22 in [(df,a)dV = [ f(6a)dV
and a = fw, f =" in [(df, a)dV = [ f(6a)dV.

So it follows that

[0+ 0h,) — (0,90) 6% 4 g™ il av =0,

10



Therefore, we have

0 ow
a(éw) = (55 + (h,Vw) — (0G(h),w).
O
Lemma 7. 2dV = L(trh)dV.
proof. This follows from
d _1d(gi; (1))
g Llog det(gi; ()] = tr{(gi; (1) 1#]
and
8 — a %log(det(gij))
ot det(gm) il 8t(€ )
O
Now we can complete the proof of Proposition 2 as follows:
proof. Firstly, we have
1

for S € T(S*T*M), proved by local coordinate. And 2(Lzg)(X,Y) =
MV xZ,Y)+hX,VyZ)+(Vzh)(X,Y) by Lemma 1. By (1), set S = G(T),

(5G(1))Z = SHGT)( 2)) + 5 oHG(T), Lzg).

Let us deal with the first term on the RHS.
Because G(T) :=T — £ (¢rT)g, by Lemma 4,

9G(T)
ot

= Sl{h.Thg — (#T)R] )

11



Then, by Lemma 6, §(fa) = —(df,«) + f(da) for a 1-form,
and Liscny:g = Lsnyeg + Hess(trh),

%&G(T)(', Z)) = 5%(G(T)(-, 2)) + (b, V(G(T)(-, 2))) = (0G(h), G(T)(-, Z))

= d15((h Thg — (rTIR)( 2)] + (b (VG 2)
+ {0, GT)(,¥.2)) = (6G(), T(,2) = 5 (6 T)g(, 2)
). 2) = S TIR, 2)

(0 VT(, 2) + (h—sd(0rT) © g, 2)

= 2 Z(hT) + (. T)O(g( 2)) + (Y

+ (h, G(T)(-,V.2)) — T((6G(h)*, Z) + %(trT)(éG(h))Z.

Using (1) with S = g, h, we then have

0 1 1 1
5:0(C(D)( 2)) = =5(Vzh, T) =5 (V2 Tih) — 7k, Titr(Lzg)

— S T)(OR)Z ~ 5l L)) + (. VT (. 2) + (h, G, V. 2))
_ T((5G (), Z) + %(w)(ah)z i i(trT)Z(trh)

= [-T@EGN, 2) + (0, VT, 2= 3{h, VoT)] — 3 (V2h, G(T))
_ im, TV(L g i(trT)(h, Lr9) + (h, G(T)(-, V.2)).

Using the similar method in Lemma 4, we have

S GAT), Log) = (S G(T), Lag) + 5(G(T), & Lzg)

- <h7G(T)(’ VZ)) - <G(T)7 h(,VZ)>,

then, by (2) and 2(Lzg) = h(VxZ,Y)+h(VyZ, X) + (Vzh)(X,Y),

S DAGIT), Log) = 5{(3 (b, T)g — 5(rT)h). Lg) + {G(T), (2N(V.Z,") + Vb))
~ (h.G(T)(.V.2)) ~ (G(T). h( V.2))
= Jb T (Lzg) = ST Lzg)

(G(T),Vzh) = (h, G(T)(-,V.2)).

DO |

+

12



Combining two formulas, we conclude that

(%6G(T))Z = —T((6G(h)*, Z) + (h,VT(-,-, Z)) — %(h, v ,T).

2.2 The principal symbol on vector bundle

In this section, we give the generalization of notion of principle symbol
in PDE. So we also have similar results, such as existence and uniqueness of
solution of strictly parabolic equations. Then applying these to the problems:

Short-time existence of Ricci flow.
Definition 1. E: vector bundle over closed manifold M, v := v%e, € I'(E)

for local frame {e,} on E,

ov
s Sl
5 = L)
where L is a linear second order differential operator. (i.e.
L:T(E)—T(E)
V= [agﬁaiajvﬁ - bgﬁ@vﬁ + capv’eq.

in local coordinates {z'} and local frames {e,} on F)

o(L) : I"YE) — I '(E)
(x,&)v— o(L)(z,&)v = (agﬁﬁifjvﬁ)ea

where II : T*M — M, is called the principal symbol on vector bundle E
over M. The definition is equivalent to the condition: V(z,&) € T*M,v €
['(E),¢: M — R with do(x) =&,
o(L)(z,&)v = lim s 2e*%@ L(e*%)(z).

S—00

Definition 2. % = L(v) is called strictly parabolic if there exists A > 0 s.t.
(o(L)(x, &)v,v) > NP |vf?

for all (z,&) €e T*"M,v € I'(E).

13



Definition 3. Let P : I'(E) — I'(F) be a quasilinear second order differ-

ential operator.

ov

T _p

5 — L)

is called parabolic at w € T'(E) if % = [DP(w)]v is parabolic.
Example: o(A)(x, &) = [£]%id.

Remark: From PDE, we know that if % = P(v) is strictly parabolic at w,
then there exists e > 0,v(t) € I(E) for t € [0,¢€] s.t. 2 = P(v),v(0) = w.

2.3 Local solvability

In the last section, we have introduced some convection of strictly parabolic
equations on manifold which would be applied in the first topic (Theorem 1).
And then we developed some notion of elliptic equation to solve the second

topic as follows (Theorem 2).

Consider

F(x, D*u) = 0 (+)

for jeI,:={1,2.p} |a| <ru= (u'(z),.. ,ul(r)),z € R"
where Fj € C"7 0N Oy,

Definition 4. (x) is called elliptic at zq for ug if

OF; :
Ljw = Z anguk(xU?DaW)Dﬁwk = Z cigeDPw for j e,

|B|=rk<q |8|=rk<q
is elliptic. (This means that V& € R™\{0}, [07;] : principal symbol of {L;}
has maximal rank, where Ujl-'k =" Z\m:r cippéP j e I,k € 1,)

Definition 5. (x) is called determined/overdetermined /underdetermined el-
liptic if its principal symbol is bijective/injective/surjective. wug(z) is called

an infinitesimal solution of (x) at xz if

Fi(x, D%ugp)|y=uy = 0 Vj € I,

14



To note the later description of preceding definition, this just means the

infinitesimal solution of (%) at x( is "very local” solution.

Lemma 8. (Local solvability) If ug is an infinitesimal solution of a deter-
mined or underdetermined elliptic system (x) at zo, then for p sufficiently

small, there exists u € C™*"7 which is a solution of (x) for |z — xo| < p.

Remark: We would modify the context of the following proof to achieve proof
of Theorem 2 !

proof. Firstly, assume Fj(z, D%u) is determined. WLOG., may assume g =
0,20 = 0. Let v(y) be a function on By(0), p € R,

: R x Cptito(RY) — Cta (RY)

(o, v) . py, PR DS ),

We just claim: ®(p,v) = 0 for some p > 0. Because

on B,(0) gives a solution of Fj(z, D%u) = 0.
0P 5 :
5.(0,0) :=5(0,0) = L; = > D’ for jel,
|8l=rk<q

As such it admits a continuous linear right inverse(see[5,Lemma 9.5]):
S C’glJ(r(%(Rp) — CEJES;F”(Rq).

By the implicit function theorem(see[6,Theorem 6.1.1}), we know that for p

sufficiently small,
vi— v — S(P(p,v))

is a strict contraction for v near zero. The fixed point of this mapping is what
we want. Secondly, for Fj(x, D*u) : underdetermined. Notice that the LL* :
determined elliptic, so the above proof could be applied to F;(z, D*L*u). [

15



2.4 Banach submanifold of solutions of F(xz, D“u) =0

We adapted notations in [8] and assumed L is underdetermined. By some
deduction, ® (given in the preceding Lemma) is really a submersion, so we

can write
® : R x ker®,(0,0) x Im(L*S) — Cpte (R?)

(intersection with C ("™ (RY) is understood on the left), and then by the

implicit function theorem in [6], there is
¢ :[0,€) X ker®,(0,0) — Im(L*S) € C*™

that yields solutions of Fj(x, D*u) = 0.
The submersion mapping ¢ satisfies F'(z, Dgp"[k(3) + ¢(p, k)(7)]) = 0 for
z € B,(0), k € ker(®2(0,0)) near 0.

Conclude it as follows:

Lemma 9. If L := ®,(0,0) is the highest-order constant coefficient part of
the underdetermined elliptic system (x) at xo and the infinitesimal solution
ug, then for p sufficiently small, there is a Banach submanifold of solutions
of Fj(z, D*u) = 0, parametrized by functions in ker(®2(0,0)). ©

Lemma 10. If R is nonsingular, then Bian(g,R) is an underdetermined el-

liptic operator.

Notation:
Bian(g, R) := —div(G(R)).

proof.

Because Bian'(g, R)h = R (div(G(h)))s — T hys
OR,, 1 Ry 5 o
we only prove the principal symbol of div(G-) is surjective. (i.e. V¢ €

T*M,v € T*M, we should solve

where T4 = g% ¢!

1
gSt(gsptm - Egmpst) = Um

16



for p) So we just choose
Dr = Ekvr + § ok
W= i e
gStgsgt
O

We would assume two facts as follows: (Because these two facts are not
the main results in this review, we skip their proofs, but their deduction
could be referred to [2])

Fact 1. If R is nonsingular, then the infinitesimal solution of Bian(g, R) =0

er1sts.
So we have the following lemma, by Lemma 9.

Lemma 11. If R-Y0) exzists, then for sufficiently small p > 0, the solu-
tions of Bian(g,R)=0 on B,(0) near a given infinitesimal solution gy form a

submanifold of the Banach manifold of metrics on B,(0). ©

3 Proofs

This chapter is dedicated to the two theorems as promised in Introduction.

3.1 Short-time existence of Ricci flow

: : 0
First, by some calculation and Chapter 2.1, we know 37 = Q(g) =

—2Ricc(g) on E := S*T*M isn’t strictly parabolic. For if, we have
a(L)(z,)h = |EPh — €@ h(EF, ) — h(€,-) @ €+ (E@Etrh

Let h:= £ ®¢&, = o(L)(x,§)h = 0 where 2 = Lh := [DQ(g)|h = Aph +

Liscny)g-

Theorem 1. (Short-time existence)If go is a smooth metric on a closed Rie-
mannian manifold M, then there exists a smooth solution g(t) to the Ricci
flow defined on some small time interval with g(0) = go. (i.e. Je > 0, g(t)
on [0,€), s.t. % = —2Rice(g), g(0) = go on [0,¢€))

17



Remark: We just focus on the existence rather than uniqueness, so the

proof of uniqueness can be referred to [1,P.113~P.116].

proof. Let T € T'(S?*T*M) be fixed, positve definite. Denote by T' the invert-
ible map I'(T*M) — I'(T*M) which is induced by T'. Let

P(g) = —2Ricc(g) + Lir-156(1)):9-

By some calculations, we have

0

= Lir-15cr):9 = —Leaer):g + A(h, Vh)
ot

where h := 2. (That’s why we choose P(g) !)

[DP(g)]h = Ah+ A(h, Vh) = a(DP(9))(x,E)h = []*h
dg

= B P(g) : strictly parabolic.

There exists a family of diffeomorphisms v, : M — M corresponding to
(—=T~10G(T))*.
Set
g(t) = (¥rg).
We have that for all go: smooth, Je > 0,3 g(¢): solution of g—g = —2Rice(g),g(0) =
go- u
3.2 Local existence of metrics with prescribed Ricci

curvature

In this section, we may omit several steps of proofs of lemmas or even
not give their proofs. (It will be better to grip the main idea without tedious
deduction or details)

By observing

Ricd (g)h = —[%ALh + div*(div(G(h)))],

Bian'(g, R)h = R, (div(G(h)))s — T3 hqs

18



OR, 1R
s .__ gk sl im kl
where TE = g?%¢”| 5oh 355

— T4 Rin]  for h e S*T*M,
we’ll consider the equation

Rice(g) + div*(R™' Bian(g, R)) = R. (%)
It’s elliptic !

Fact 2. If R is invertible s.t. R(0) is diagonal and all first partial deriva-
tives of R vanish at 0, then we can choose a metric gy of form (go)i; = 0ij +
O(2?) s.t. Rice(go)|emo = R(0), Bian(go, R)|s—0 = 0, and 9;Bian(go, R)|s—=0 =
0 foralliel,.

This result would reduce some tedious calculations in latter work.

Theorem 2. If R;; is a C™*%(resp. C*,C¥) tensor field(m > 2) in a
neighborhood of p on M™ (n > 3) and R™'(p) exists, then there exists a met-
ric g with prescribed R as its Ricci curvature tensor locally. (More precisely,
there exists g € C™ 7 (resp. C*,C¥) : Riemann metric s.t. Ricc(g) = R
in some neighborhood of p)

proof. Because this proof is more complicated than previous ones, we divide

it into several steps and lemmas.

Outlines of the proof

Considering
Bian(go + h, R) = 0,

we set X to be the submanifold of solutions of Bian(go + h, R) = 0. By the
Lemma 11, we know that X is parametrized by p, k(€ kernel of the highest-
order constant-coefficient part of the linearization of the Bianchi identity
about go at 0). Denote the constant-coefficient operator by

diUOGo.

Let hg := ¢(p,0) be the point of X corresponding to our chosen small value
of p where ¢ is defined in section 2.4 .

19



Stepl: Given h; for j € N := N [J{0}, perform the contracting iteration to
form h;.

Step2: Let h;y1 € X be the projection of Ej onto X by ¢ and the decom-
position

C™ 247 (S2T* M) = ker(divgGo) @ Im(divgS).

Firstly, we pick the special continuous linear right inverses of Bianchi op-
erator Bian(g, R) and (s*) operator.

Let
F(x, D%h) := Bian(go + h, R)

for h € S?T*M (defined near 0).

Let
O(p,v) = Flpy, p'~*' Dyv) on By(0),
we obtain
D5 (0,0)w = R(0)divgGo(w).
Choose S s.t.
SS(R(0))
solves the Dirichlet problem for Ay :=—3", d7 as a right inverse of

(I)Q (0, O)d’ﬂ)g .

Notice that why we not select S as a right inverse of ®5(0,0)®5(0,0)*, it’s
due to

1
R(O)dl’l)gGodZ’US(’U) = QR(O)Al (U)
By the implicit function theorem, there exists

¢ : R x ker®,(0,0) — Im(P2(0,0)*S)

s.t. ®(p,k+ o(p, k) =0 for p> 0, k € ker®,(0,0): sufficiently small.
We have the property of ¢ :

20



Lemma 12. ¢(0,0) =0 = ¢1(0,0) = ¢2(0,0). ©

Its proof could be deduced from ®(p, k + ¢(p, k)) = 0.

Because
C™ro(S*T* M) = ker(diveGo) © Im(divS),
we have that both equations

Py : C™(SPT* M) — ker(divgG)
Py : C"™7(S*T* M) — Im(divgS)

are canonical projections.
So the above discussion could be concluded with a sequence :

P(p,—),R(0)divgG
(p,—),R(0)divgGo

C’m+1+J(T*M) dﬁ)g Cm+J(S2T*M) Cm—1+U(T*M) i C«m-‘rl-‘ra (T*M)

From definition, we have
®5(0,0) : Im(divgS)y = C™ T (T*M).

So these imply

Pyh = divg S(R(0)divgGo(h)) for h € C™F°(S*T*M). (3)
Let
H(z, D*h) := Ricc(go + h) + div* R~ (Bian(go + h, R)) — R
and
U(p,v):= H(py,p2_|a‘D;‘v) on B1(0).
We obtain

1
Uy (0,0)h = §A2h
where A, is the standard Laplacian operating componentwise on h € S?T* M.

Let T be a right inverse of W5(0,0) chosen as follows :

21



Lemma 13. If m > 1, then for any continuous linear right inverse S
of ®5(0,0)divg, there exists T : C™ 7 (S2T*M) — C™2T9(S*T*M) is a
bounded linear mapping s.t. for h € C™T7(S*T*M),

P(T'(h)) = T (P (h))

1

§A2(T(h)) =h. o

proof. (Sketch of proof of Lemma 13)
1. Let h € Im(div}S). We set Th := divgS(R(0)S(P2(0,0)h)).

2. Let h € ker(divgGy). Let N be the fundamental solution right inverse of
%Ag. This means that

o, .
N (h)ig iZ/ ”_(f)dV&
Bi(0) "%
where r := |x — &|. Let N; be the inverse for the (n — 1)-variable scalar

Laplacians on By(0) (!, ...,z 0,27 ... ™).
Set
Q: Cpia(T"M) — nggﬁ(S?T*M)
v Q)& .. a") = diag{—/ vidad 4 Ny(Dyg)(z!, .. 210,240 2™},
0

So we set

Th:= N(h) — Gy 'Q(divgGoN (h))

where Gy (h) = h — Z(_hz,)go.
3. Combine 1 and 2 , we have that T is well-defined on C™"7 (S?*T*M). [
For all p > 0,h € C3 () (S*T* M), we define
Bp(z, D*R) := —div(G(R))
where divergence and gravitational operators are those of metric

T

go(z) + pzh(p)

22



for z € B,(0) , and let

np(h)(r) == By(py, p1*' Do)

for r € CEJE(‘]’)(SQT*M).
Note that

1n,(h) + divgGo|| — 0 as p — 0, HhHCQRg)(SQT*M) — 0.

and
if Bian(g,R)=0 for p>0, g(x)=go(z)+ PQh(%)> then n,(h)(¥(p,h)) = 0.

Let

oK) == <o k) for p>0

and X be the submanifold of R x C (& (S*T* M) consisting of points of the
form

(b, k + ¢(p, k)

for p > 0,k € ker(®,(0,0)). We use this smooth submanifold X instead of

using the submanifold X in the outlines of the proof. And we set X, =
X|{p}xcgl+<g)(s2T*M)-

Let us complete the issues of convergence of iterates and verification that
the limit is what we want !

Because we are looking for a solution of ¥(p,v) = 0 for some p > 0, that
lies on X, all of the iterates will be required to lie in Yp.

Set

k’o = 0,
kiv1 = Ny(k) = ki — Pu(T%(p, ki + 6(p, k:))).

It’s clear that {k;} C ImT ) kerdivyGo.
Let EP(O) be the ball of radius p centered at 0 in ker(divgGo) (\Im T

Secondly, we show that the convergence of {k;} is hold.
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Choose € < 1 s.t.
AN 01ITIAI < ¢ and | T|R] < 7
We obtain that
|Wo(0,0)(u—v) —W(p,u)+ ¥Y(p,v)| < e€lu—o| if uve CEIJ(“(‘)’)(SQT*M)
with |ul, |v| < ¢ for sufficiently small p,é" > 0 by MVT. ([6])

Because

lim 3(p, k) = 0 and 5(0,0) =0
p—

by Lemma 12, we have
|k + d(p, k)| <0 and [|gy(p, k)] < €
if k € ker(divgGy), |k| < ¢ for p, o sufficiently small.

These imply the following equations

[6(p, k) = b(p,1)| < ek =1| for kL€ Bs(0),

Np(k> - NP(Z) = PlT[\IJZ(Ov 0)(E - Z) T \If(p,E) + \I/(pj)] i Pl[T\IJQ(Ov 0)(5(@ k) - 5(/% l))]
where k, 1 € Bs(0),k =k + @(p k), 1 ==L+ d(p,1).

So we have |N,(k) — N,(1)| < 3|k =1
May decrease p s.t.

T(P(W (0. 0, 0))] < 5.

We obtain the proof of {k;};en: converges in EP(O) for p sufficiently small.
Finally, we want to show that, for p, § sufficiently small, if £ € B;(0), and

N,(k) = k, then ¥(p, k) = 0.
Because
T is a bounded isomorphism

and

||77p(E) + divgGo|| — 0 as p ™\, 0, ||E||cgl+(g)(s2T*M) N0,
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SO
- — ) 1
|R(0)]? - |divgSS(n,(k) + divgGp) (k)| < §\Tk\
for all k, |k| < 6, for p,§ sufficiently small.

This follows from that |Tk| > A|k| for some A, so if p, § sufficiently small,
then

- A
k) + di <
17k + diveGol| < 2||divgSS| - | R(0))2

for |k| < 6.

It’s clear that

By (3), Lemma 13 and the paragraph below it,

|PT(¥ (p, k)| = |divg S(R(0)diveGoT ¥ (p, k)
= |divg SSR(0)*[ns(k) + divoGo] ¥ (p, k)|

< (o R
So
TU(p, k) =0 == U(p,k)=0.
Hence we complete the proof of Theorem 2. n
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