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摘要

由於區塊鏈的不可更改性，智能合約一旦發布後，開發者便無法修正含有漏

洞的智能合約，為了能夠讓開發者修正已經發布的智能合約，因此而產生了代理

模式的開發方式。代理合約負責儲存一個智能合約的地址，而實際上執行的程式

邏輯都在這一個智能合約中，當我們要修正智能合約時，我們只要更改代理合約

儲存的地址，即可讓代理合約執行另一個智能合約的程式邏輯，達到修正漏洞的

效果。然而，這樣的開發方式也帶來了新的安全問題，分別是函數名稱衝突以及

儲存位置衝突。為了探討代理合約在以太坊上面的影響，我們製作了一個分析代

理合約的工具 ProxyChecker。我們使用 ProxyChecker分析六段時間的智能合約，

並發現代理合約有越來越多的趨勢，從 2017年的 1%到 2022年的 88%。在這些

代理合約中，大部分都有函數名稱衝突的問題，另外有 0到 3%有儲存位置衝突

的問題。在論文最後，我們提出一些針對代理合約建議的使用方式給開發者和使

用者。我們認為使用代理合約最安全的方式是建立自己的代理合約，像是建立自

己的代理合約錢包，但是這與代理合約想要升級有問題的合約這個初衷不符。我

們認為透過延遲升級的方式可以達到安全和使用性上的平衡。

關鍵字：代理合約、邏輯合約、可升級性、安全、區塊鏈
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Abstract

The immutable feature of blockchains prevents developers from fixing buggy smart

contracts. Consequently, the concept of proxy pattern has emerged to support upgradabil-

ity. By putting the actual program logic into a secondary contract called a logic contract,

a proxy contract can be upgraded by switching to a different logic contract. However, the

proxy pattern also brings two security issues, function collisions and storage collisions. To

examine the effect of proxy contracts on the Ethereum mainnet, we created a tool named

ProxyChecker for analyzing proxy contracts. Using ProxyChecker, we analyzed contracts

within six block ranges and found that proxy contracts have become more prevalent, from

1% in 2017 to 88% in 2022. Among these proxy contracts we found, the majority have

function collisions, and about 0-3% have storage collisions. Lastly, we provide sugges-

tions for developers and users. Although the most secure way to use proxy contracts is

for personal use only, such as constructing wallet contracts, this contradicts the original

motivation of introducing them, that is, for upgrading and fixing buggy contracts. We
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concluded that a delayed upgrade might provide a good balance between security and

functionality.

Keywords: proxy contract, logic contract, upgradability, security, blockchain

v doi:10.6342/NTU202203210



Contents

Page

Verification Letter from the Oral Examination Committee i

致謝 ii

摘要 iii

Abstract iv

Contents vi

List of Figures ix

List of Tables x

List of Algorithms xi

Chapter 1 Introduction 1

Chapter 2 Background 6

2.1 EVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 EVM Opcode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 EVM Storage Layout . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Function Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Fallback Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 Ethereum Improvement Proposals . . . . . . . . . . . . . . . . . . . 9

vi doi:10.6342/NTU202203210



Chapter 3 Related Work 12

3.1 Smart Contract Analysis Tools . . . . . . . . . . . . . . . . . . . . . 12

3.2 Ethereum Virtual Machine Emulator . . . . . . . . . . . . . . . . . . 13

3.2.1 Go-Ethereum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.2 E-EVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Proxy Contract Related . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 4 Security Issues 15

4.1 Definition of Proxy Contracts . . . . . . . . . . . . . . . . . . . . . 15

4.2 Function Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3 Storage Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 5 PROXYCHECKER: Design and Implementation 21

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2 Delegatecall Detector . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.3 Dynamic Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3.1 Create a Calldata . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3.2 Dynamically Analyze and Extract the Parameters . . . . . . . . . . 26

5.3.3 Compare the Calldata . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.4 Contract Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Chapter 6 Data Collection and Analysis Result 34

Chapter 7 In-depth Analysis 41

7.1 Logic Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.2 Proxy Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.3 Other Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vii doi:10.6342/NTU202203210



Chapter 8 DISCUSSION 50

8.1 Mitigation for Security Issues . . . . . . . . . . . . . . . . . . . . . 50

8.2 Proxy Contract Usage . . . . . . . . . . . . . . . . . . . . . . . . . 52

8.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Chapter 9 CONCLUSION 55

References 57

viii doi:10.6342/NTU202203210



List of Figures

2.1 EVM components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5.1 ProxyChecker overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2 Delegatecall Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3 Dynamic Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.4 Contract Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.1 The query we used in BigQuery . . . . . . . . . . . . . . . . . . . . . . 35

6.2 Result of Dynamic Analyzer . . . . . . . . . . . . . . . . . . . . . . . . 37

ix doi:10.6342/NTU202203210



List of Tables

5.1 Values for block opcodes . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.1 Dataset information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2 Number and percentage of contracts of each type in different datasets. . . 36

6.3 The number of contracts classified by where logic contract address is stored 38

6.4 Number of contracts is verified among EIP-1822, EIP-1967 and Others . 39

6.5 Number of contracts of collision issues among verified contracts . . . . . 39

7.1 The top 5 most pointed logic contracts (part 1). . . . . . . . . . . . . . . 41

7.2 The top 5 most pointed logic contracts (part 2). . . . . . . . . . . . . . . 41

7.3 The name of logic contracts in Table 7.1 and Table 7.2 with source code. . 42

7.4 The function prototypes of logic contracts in Table 7.1 and Table 7.2 with-

out source code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.5 The number of distinct logic contract addresses in two datasets. . . . . . . 45

7.6 The top 5 proxy contracts with the same bytecode and their contract name.

(part 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.7 The top 5 proxy contracts with the same bytecode and their contract name.

(part 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.8 Proxy contract names and their logic contract addresses. . . . . . . . . . 47

7.9 Upgrade events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

x doi:10.6342/NTU202203210



List of Algorithms

1 Binary search pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . 31

xi doi:10.6342/NTU202203210



Chapter 1 Introduction

Decentralized Finance (DeFi) allows everyone to deploy smart contracts on a public

blockchain, such as Ethereum, for providing various financial services. As smart contracts

are code written by human developers, they may contain bugs. Many of these bugs have

been exploited and have caused DeFi users and developers significant money loss. For

example, in 2016, the DAO attack [9] exploited a reentrancy vulnerability [20] in a smart

contract to steal the equivalent of $70 million. Unfortunately, unlike directly changing

code when patching other software systems, developers cannot fix buggy code in a de-

ployed smart contract because of the immutable feature of blockchains.

The concept of the proxy contract has emerged recently as a remedy to immutable

buggy contracts. By putting the actual program logic into a secondary contract called a

logic contract, a proxy contract can “upgrade” by switching to a different logic contract.

In other words, a proxy contract can upgrade its program logic by modifying its storage

(which stores the address of the logic contract) without modifying its code.

In this work, we focus on investigating the proxy contracts on Ethereum because it is

the most popular public blockchain (by market capitalization) supporting smart contract

functionality. In Ethereum, proxy contracts can be implemented using the delegatecall

opcode. The delegatecall opcode is similar to call, but with one distinction: when called
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using the delegatecall opcode, the function runs in the context of the caller contract rather

than the callee contract.1 Therefore, the delegatecall opcode is suitable for implementing

proxy contracts because the function in the logic (callee) contract can modify the proxy

(caller) contract’s Ethereum virtual machine (EVM) storage, and the proxy contract can

update to a new logic contract while preserving its storage information. Moreover, a logic

contract can be used by multiple proxy contracts simultaneously without interfering with

each other’s storage.

On the one hand, using proxy contracts enables upgradability and fixes smart contract

bugs. On the other hand, misuse of proxy contracts may introduce new attack vectors.

Particularly, when implemented using Ethereum’s delegatecall opcode, a proxy contract

may encounter function collisions and storage collisions, whose exploitation can deceive

users into invoking unintended code or manipulate the EVM storage. For example, an

attacker[4] exploited storage collisions and stole $1.1 millions of AUDIO [3] tokens. This

attack is listed in Rekt [30], a website listing all blockchain attacks. Briefly speaking,

a function collision occurs when the proxy contract contains a function whose function

signature2 is the same as a function in the logic contract. A storage collision occurs when

variables of proxy contracts or logic contracts conflict. It is because both proxy contracts

and their logic contracts use the same storage. Thus, it is imperative to investigate the

prevalence of proxy contacts and whether they are vulnerable.

However, to our knowledge, no prior studies have thoroughly analyzed proxy con-

tracts’ prevalence and whether they are vulnerable to function collisions and storage col-

lisions. The tool Slither [16] can detect function and storage collisions if users specify

the proxy contract and all its corresponding logic contracts. However, it is challenging
1By contrast, when called using the call opcode, the function runs in the context of the callee contract.
2A function signature is the first four bytes of the hash value of a function prototype.
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for users to identify all previous logic contracts of a proxy contract; the user may have to

examine all transactions so far. In contrast, in this work, we propose an efficient method

to automate this search of logic contracts. Several works [19, 38] discuss how to write

a proxy contract and maintain its storage. However, they do not consider security issues

caused by the proxy contract’s upgradability. Worse yet, many did not provide a concrete

definition of proxy contracts, making it difficult to reproduce and compare against their

results.

To address these limitations of prior studies, in this work, we first survey related EIPs

and formulate an actionable definition of a proxy contract. We define a proxy contract as

a contract whose fallback function uses the delegatecall opcode to forward the received

calldata3 to a logic contract.

Based on this definition, we develop a tool called ProxyChecker to determine (1)

whether a contract is a proxy contract and (2) whether the proxy contract is safe to use. One

can use ProxyChecker by just giving a smart contract address without any other input so it

is easy to use. ProxyChecker contains three components, Delegatecall Detector, Dynamic

Analyzer, and Contract Checker. Delegatecall Detector checks if a contract contains any

delegatecall and passes the result to Dynamic Analyzer. Dynamic Analyzer emulates an

EVM with a custom input to check if the contract meets our proxy contract definition. To

implement Dynamic Analyzer, we extend an open source project, Octopus [28], to support

the latest opcodes. Given a detected proxy contract, Contract Checker runs an efficient

method for crawling all its logic contracts. It then crawls the source code of the proxy con-

tract and logic contracts and leverages Slither for identifying potential function or storage

collisions. We also discuss several implementation challenges, such as preventing com-
3A calldata is an input of a transaction. It contains the function signature and parameters of the function

to be executed.
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pilation errors and ensuring a consistent inheritance order when a contract inherits from

multiple contracts.

Our research questions are the following:

1. How widely are proxy contracts used?

2. What are the common usages of logic contracts?

3. What are the common usages of proxy contracts?

4. How frequently does a proxy contract upgrade?

5. How many proxy contracts contain function collisions or storage collisions?

To answer these questions, we sampled contracts from the transactions within six

block ranges: 100000 blocks each February between 2017 to 2022. We analyzed the

sampled contracts using ProxyChecker and found that the percentage of proxy contracts

increased from 1% in 2017 to 88% in 2022. The increase is reasonable as proxy contracts

were first proposed in 2018 and refined by several EIPs later. Our manual inspection sug-

gests that the increase is also due to the NFT trend. As for the proxy contract type and

its relationship with logic contracts, our analysis revealed that the most common type of

proxy contract is the minimal proxy contract4, and most proxy contracts are pointing to

a wallet contract [10]. Also, a logic contract may be pointed by several proxy contracts,

but these proxy contracts usually have the same bytecodes. We also analyzed the upgrade

events in proxy contracts and found that only 1139 proxy contracts have been upgraded

for fixing bugs or supporting new features, and the average blocks between upgrades in
4The term is introduced in the 1167th Ethereum Improvement Proposals (EIP-1167).
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each dataset range from 33529 to 11895666. For security issues, we found function colli-

sions are easy to create, and most of the security issues in our dataset belong to function

collisions. Moreover, all of the function collisions in our dataset are because of the same

function name in both proxy contracts and logic contracts. The reason is that both proxy

contracts and logic contracts are inherited from the same smart contracts for managing

storage in EVM. Besides, we found that storage collisions are easy to exploit by the proxy

owner.

We provide some suggestions for users and developers to avoid triggering the two

main security issues. We also show several suggested usages of proxy contracts and their

advantages and disadvantages. We conclude that the best usage of proxy contracts is for

personal usage, like creating one’s proxy contract for a wallet contract. As a result, there

is no need to worry about malicious proxy owners. This usage is also the primary usage

in our dataset.

Our main contributions are the following:

• Build an easy-to-use ProxyChecker.

• Present a systematic result of proxy contracts with three block ranges.

• Provide security suggestions for users and developers.

• Give some suggested usages of proxy contracts.

• We show that a proxy owner can manipulate the proxy contract storage.

5 doi:10.6342/NTU202203210



Chapter 2 Background

Since the delegatecall opcode and fallback function are the core of a proxy contract,

we need to know how opcodes and fallback function work in Ethereum virtual machine

(EVM). Moreover, the two main security issues of a proxy contract, namely, function

collision and storage collision, are related to the storage layout and the function signature

of a contract. We will explain these in the following sections.

2.1 EVM

EVM is a stackmachine that executes sequences of bytecodes. Themain components

in the EVM are shown in Figure 2.1, and we will explain each of them in turn below.

Figure 2.1: EVM components

The EVM code is the bytecode of a smart contract and is stored on the Ethereum

6 doi:10.6342/NTU202203210



blockchain. The bytecodes are usually compiled from two compilers, Solidity [31] and

Vyper [35]. The program counter (PC) variable indicates the location of the EVM code

that the EVM is executing. Executing the EVM code costs the gas and the Gas variable

stores the remaining gas. If the EVM runs out of gas, the EVM will halt and revert. The

stack contains at most 1024 items, each of which is 256 bits. The memory is a word-

addressed byte array. Each smart contract maintains its storage to store data, and the

storage can theoretically contain up to 2256 slots if we ignore the cost of gas. Each storage

slot is 256 bits. All smart contract storage is persistent in the Ethereum blockchain. At the

beginning of the EVM execution, both stack and memory are empty, but the storage may

contain data from previous transactions.

2.2 EVM Opcode

The opcodes to the EVM [13] are the same as instructions to the CPU. The program

code of a smart contract is called bytecode. It is composed of a bunch of opcodes that

smart contracts will execute. Since the EVM is executed on the blockchain, users may

need to pay the miner different amounts of gas to execute different opcodes.

Proxy contracts are based on the delegatecall opcode. The delegatecall opcode can

execute functions of other contracts but modify the storage in proxy contracts. This is the

root cause of storage collisions mentioned in Section 4.

7 doi:10.6342/NTU202203210



2.3 EVM Storage Layout

In EVM, each global variable, called state variable, defined in a smart contract has

its storage slot. The order of declaration of the variables is the same as the index of that

variable in the storage. For example, the first global variable in a contract is stored at

storage slot 0, while the second global variable is stored at storage slot 1. However, dif-

ferent types of global variables may have different storage layouts [31]. For some base

types of global variables, such as uint, the variable’s value is stored at its storage slot.

For dynamic array or string, the value stored at its storage slot is the size of the array,

and the storage location of the array is at storage slot keccak256(index of array in the

contract) + offset. For mapping, there is no value stored in its storage slot, the storage

location of the data in the mapping is at storage slot keccak256(the key of the data, index

of mapping in the contract).

2.4 Function Signature

In Ethereum, a function is identified by its signature, which is the first four bytes from

hashing the prototype string of a function using the keccak256 hash function. A prototype

string of a function is a string concatenating the function name and the type of function

parameters. For example, the prototype string of a function test(address a, address b) is

test(address,address), and the value of hashing test(address,address) is 0x2b6d0cebcc14bc

50c4c35dd046aed41466c895d3f0b39f6f60d1f2fd199c5ad3. Thus, the function signature

of the function test(address a, address b) is 0x2b6d0ceb.

If the receiver of a transaction is a smart contract, the EVM will treat the first four

8 doi:10.6342/NTU202203210



bytes of the calldata as a function signature and execute the corresponding function inside

the smart contract. The calldata is a byte-addressable data field inside a transaction. One

can send any calldata along with a transaction.

2.5 Fallback Function

If the function signature within a calldata does not match any function in a contract,

then the contract will execute the fallback function as the default. The name of the fallback

function may be different in different compilers. For example, the fallback function is

called fallback function in Solidity but called default function in Vyper.

2.6 Ethereum Improvement Proposals

Ethereum Improvement Proposals (EIP) are the suggested improvements for devel-

oping a smart contract. Although EIPs can be proposed by anyone and may not be adopted

by Ethereum officially, developers often regard EIPs as a reference when creating con-

tracts.

We searched among existing EIPs using the keyword “proxy” and found that the

ideas of proxy contracts have been proposed or discussed in EIP-897, EIP-1167, EIP-

1822, EIP-1538, EIP-1967, and EIP-2535. All of them used the term proxy contract, but

only EIP-1822 defined a proxy contract: “The contract A which stores data, but uses the

logic of external contract B by way of delegatecall()”.

As wewill explain later, the definition in EIP-1822 is loose andmay include contracts

that use delegatecall for other purposes, such as making calls to library functions. We will

9 doi:10.6342/NTU202203210



present a precise definition suitable for measurements and security analysis in Section 4.

EIP-897 (titled “DelegateProxy”) is the first EIP touching upon the concept of proxy

contracts and trying to standardize the proxy contract interface. However, there is no

definition or explanation of what a proxy contract is.

EIP-1167 (titled “Minimal Proxy Contract”) aims to minimize the cost of deploying

a contract that was deployed before. What a minimal proxy contract does is using del-

egatecall to call another contract with all calldata the minimal proxy contract received.

The cost of deploying a smart contract is the size of the code, and minimal proxy contract

only contains indispensable opcodes for using delegatecall instead of the same smart con-

tract. Thus, the cost of deploying a minimal proxy contract is much less than deploying a

copy of a smart contract but their functionality are the same. In EIP-1167, the length of a

proxy contract’s bytecode is usually less than 100 bytes, and the logic contract address is

hardcoded in the bytecode of proxy contract. However, EIP-1167 does not provide a clear

definition of the minimal proxy contract.

EIP-1822 (titled “Upgradeable Proxy Standard”) proposes a standard upgradeable

proxy contract that can be compatible with all contracts. It uses a specific storage slot

at the value of keccak256(“PROXIABLE”) to store the logic contract address. EIP-1822

contains terminology “Proxy Contract” and gives the definition. However, this definition

means any contract using delegatecall is a proxy contract. We argue against this definition

in Section 4.

EIP-1538 (titled “Transparent Contract Standard”) is replaced by EIP-1967 (titled

“Standard Proxy Storage Slots”) by the same proposer. The main goal of EIP-1967 is to

save the specific data in a specific storage slot to avoid storage collisions. The logic con-
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tract address is saved at storage slot at the value of keccak256(“eip1967.proxy.implement-

ation”) - 1.

It also defines a special form of logic contract called beacon contract, which is usu-

ally used for keeping the logic address for multiple proxy contracts in a single location.

The beacon contract address is saved at the storage slot indexed by keccak256(“eip1967-

.proxy.beacon”) - 1 of the proxy contract. The administrator of the proxy contract, which is

the proxy owner, is saved at the storage slot indexed by keccak256(“eip1967.proxy.admin”)

- 1.

The maximum size of a smart contract is 24KB, so every smart contract can only

contain a limited number of functions. Nevertheless, EIP-2535 (titled “Diamonds, Multi-

Facet Proxy”) wants to make a proxy contract that can contain more functions regardless

of the 24KB size limit. For simplicity, we will call this kind of proxy contract as diamond

contract. A diamond contract uses the mapping type to map a function signature to a logic

contract address. Theoretically, a diamond contract owner can register up to 2256 number

of function signatures to different logic contracts. The delegatecall will only be triggered

if the function signature is registered in the proxy contract; otherwise, it will revert.
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Chapter 3 Related Work

3.1 Smart Contract Analysis Tools

Although there are many smart contract analysis tools, to our knowledge, only Slither

supports security checks on proxy contracts. Slither [16] is an open-source static analy-

sis framework for smart contracts. It contains many detectors for detecting vulnerabil-

ities. Among these detectors, one detector is for proxy contracts, called slither-check-

upgradeability. This detector can help developers review proxy contracts to prevent bugs

inside the smart contracts.

Though the detector can perform security analysis on proxy contracts, it needs the

source code of both proxy contracts and their logic contracts. Users can extract the logic

contract addresses from previous transactions. However, a smart contract may have thou-

sands of previous transactions so it is hard for users to examine all these transactions. To

address the problem, we provide a method to collect all of the logic contracts a proxy

contract used before in our tool. We explain the details in Section 5.

Mythril [8], Manticore [21], rattle [34] and ConFuzzius [33] are smart contract anal-

ysis tools, but none of them include security check on proxy contracts. For example, rattle

generates control-flow graphs of smart contracts, and Mythril performs security analysis
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on smart contracts. However, it is hard to extend these tools to identify proxy contracts

and detect their security issues because these tools focus on analyzing individual contracts.

In contrast, we need to consider both proxy contracts and logic contracts at the same time.

3.2 Ethereum Virtual Machine Emulator

Based on the definition in Chapter 4.1, we need to know each state of the stack when

executing the EVM to verify a smart contract is a proxy contract. Thus, an EVM emulator

is needed and we create an EVM emulator component in our ProxyChecker. Several ex-

isting tools have similar functionality and may replace our emulator component but with

some constraints. We briefly review these emulation tools in the following sections.

3.2.1 Go-Ethereum

Go-Ethereum [32] is an official implementation of the Ethereum protocol by Golang.

One can use it to interact with the Ethereum blockchain. In Go-Ethereum, a command

called evm can execute the bytecode and output the state of stack and memory at each

opcode execution. This command is useful for finding a proxy contract because it can

display the state of stack, memory, and storage of each opcode operation. We do not adopt

Go-Ethereum in our tool because it requires information about the current Ethereum state,

and the information is too large to be handled efficiently.

Go-Ethereum also provides JSON-RPC APIs. These APIs are used to connect to an

Ethereum JSON-RPC node like Infura [18] or QuickNode[29]. One of the APIs is called

debug_tracecall, which can emulate the transaction by providing input and returning all

information of the transaction, such as every state of stack, memory, and storage of EVM.
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This API can replace our EVM-emulator component of our tool. However, Infura does

not support this API, and QuickNode needs to pay for using the API. One can also build

a JSON-RPC node of Ethereum, but it costs a lot of time and a lot of storage space.

3.2.2 E-EVM

E-EVM[24] is a tool that emulates the bytecode of Ethereum and visualizes the

control-flow graph with the state of the stack. Initially, we think the tool may help us to

find proxy contracts. However, we cannot reproduce the result by the source code which

is provided on Github. As a result, we decide not to choose this tool as our component.

3.3 Proxy Contract Related

Several studies [19, 38] focus on how to write a proxy contract and show different

concepts of how to maintain the storage in a proxy contract to prevent the storage collision

problem.

Etherscan [14] is a website that provides information about Ethereum, such as every

transaction and contract’s bytecode. It also keeps upgrading to provide more features. To

our knowledge, only Etherscan supports the functionality of detecting proxy contracts.

Proxy contract detection is one of their nearly-introduced features. However, there is no

document about it, so we do not know how it works. In comparison, in this work, we

provide our definition of proxy contracts and how to detect them.
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Chapter 4 Security Issues

We first define what a proxy contract is, then discuss the two security issues of proxy

contracts in this section.

4.1 Definition of Proxy Contracts

Since there is no general definition of proxy contracts, we first formulate our defi-

nition of proxy contracts. We deem a contract a proxy contract if it uses delegatecall in

its fallback function to forward the calldata it received to another contract. The contract

receiving the forwarded calldata is defined as a logic contract of the proxy contract.

Our definition is compatible with the usage of all known proxy-related EIPs. More-

over, the calldata forwarding condition excludes the use of calling a library contract. A

library contract is a smart contract that contains reusable code for general usage. For

example, SafeMath [26] is a library for overflow prevention during math calculation.

4.2 Function Collisions

A function collision is when a proxy contract contains some functions whose function

signatures are the same as some functions in logic contracts. In this situation, a user may
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expect to execute a function in a logic contract but execute another function in the proxy

contract instead.

Code 4.1 is an example of a function collision. There is a proxy contract and its

logic contract is contract A. The function signatures of the proxyOwner() function and the

clash550254402() function are the same. Therefore, if a user wants to execute clash55025-

4402(), he will send the function signature of clash550254402() to the proxy contract.

However, the proxy contract will execute proxyOwner() instead of the fallback function

because its function signature is matched, which is not what the user expected.

A malicious proxy contract may leverage function collisions to deceive the user into

executing the malicious code. Besides, it is easy to find two functions with different names

with the same function signature if one does not restrict the function name’s format and

the function signature’s value. For example, creating two different functions with the

same function signature takes around 1 second on a laptop with an i7-7700HQ CPU. It is

slightly difficult to find a function whose function signature is a specific value, and it takes

several hours to find one on the same laptop, but it is arguably affordable for a dedicated,

monetary-driven attacker.

1 pragma solidity ^0.4.23;

2

3 contract Proxy {

4 function proxyOwner() public returns (address) {

5 return msg.sender;

6 }

7 function implementation() public view returns (address);

8 function () payable public {

9 address _impl = implementation();

10

11 assembly {

12 calldatacopy(0, 0, calldatasize)
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13 let result := delegatecall(gas, _impl , 0, calldatasize , 0,

0)

14 returndatacopy(0, 0, returndatasize)

15

16 switch result

17 case 0 { revert(0, returndatasize) }

18 default { return(0, returndatasize) }

19 }

20 }

21 }

22

23 contract A {

24 function clash550254402() public view returns (address){

25 return address(this);

26 }

27 function test() public view returns (address){

28 return msg.sender;

29 }

30 }

Listing 4.1: Function collision example

It is worth noting that some design patterns for storage management mentioned in

[38] will result in function collisions. In these design patterns, both the proxy and logic

contracts inherit from a contract that stores all variables. The contract may contain some

functions for accessing the variables. However, it causes a function collision because both

proxy contracts and logic contracts contain the same function. We do not consider this a

false positive of function collisions because users will not know whether the logic in the

functions is the same unless checking the source code.

17 doi:10.6342/NTU202203210



4.3 Storage Collisions

A storage collision is an issue in storage slots. Since a proxy contract uses the dele-

gatecall opcode to forward calldata to a logic contract, the logic contract can modify the

storage of the proxy contract. We know the variable is stored at the index of the storage

slot according to the variables’ order. However, if the variables’ order in the logic contract

differs from the proxy contract, some unexpected results may occur.

Code 4.2 is an example of a storage collision. If users want to execute the add()

function in a logic contract by calling a proxy contract, they may expect the return value

is 3 because the “b+c” is written in the function. However, the return value is 1 because

the add() function returns the sum of values in storage slot 0 and storage slot 1. Thus, the

add() function will add the first variable and second variable in the smart contract, which

are a and b, and return.

1 contract proxy{

2 uint a = 0;

3 uint b = 1;

4 uint c = 2;

5

6 function (){

7 assembly {

8 let result := delegatecall(gas(), "logic's address", 0,

calldatasize(), 0, 0)

9 returndatacopy(0, 0, returndatasize())

10 switch result

11 case 0 { revert(0, returndatasize()) }

12 default { return(0, returndatasize()) }

13 }

14 }

15 }
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16

17 contract logic{

18 uint b;

19 uint c;

20

21 function add() public returns (uint){

22 return b+c;

23 }

24 }

Listing 4.2: Storage collisions example 1

A storage collision will also happen at upgrading a proxy contract to a new logic

contract. If the order of variables in the new logic contract differs from the old logic

contract, values in those variables may be different.

Code 4.3 is another example of a storage collision. Usually, a logic contract contains

an initialize() function to initialize the proxy contract’s storage. The initialize() function is

expected to be called only once after the proxy contract is created. By checking the value

of initialized variable, we can prevent the function from executing again. However, if an

initialized proxy contract is upgraded to the new logic contract called newInitialOnce, the

initialize() function can be executed again because the value of the initialized variable is

changed to False. Thus, it is important to ensure the variables’ order should be the same

between the old logic contract and the new logic contract when developers upgrade a proxy

contract.

1 contract InitialOnce{

2 bool private initialized;

3 bool private boolean;

4

5 function initialize(){

6 require(!initialized);

7 boolean = false;
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8 initialized = true;

9 }

10 }

11

12 contract newInitialOnce{

13 bool private boolean;

14 bool private initialized;

15

16 function initialize(){

17 require(!initialized);

18 boolean = false;

19 initialized = true;

20 }

21 }

Listing 4.3: Storage collisions example 2

Nevertheless, if a proxy contract is upgradable and has a storage collision, amalicious

proxy contract owner can deliberately manipulate the storage of the proxy contract. For

example, a new logic contract may contain a function that can change any storage slot to

any value. As a result, if a token smart contract, such as YLD token [37], is deployed by

an upgradable proxy contract, the owner of the proxy contract can manipulate the number

of tokens or the ownership of the token by upgrading to a malicious logic contract that can

modify any storage value.
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Chapter 5 PROXYCHECKER:

Design and Implementation

This section presents the design and implementation of our tool, ProxyChecker. Prox-

yChecker is a tool for checking whether a smart contract address is a proxy contract or

not. If it is a proxy contract, ProxyChecker will try to get the source code of both the

proxy contract and its logic contracts. After that, it will do a security analysis on those

with source code to check if there are any security issues and output the result.

It is worth noting that our ProxyChecker implementation currently supports analysis

on Ethereum, but our idea and design apply to other smart contract platforms.

5.1 Overview

ProxyChecker contains three components, Delegatecall Detector, DynamicAnalyzer,

and Contract Checker. The purpose of Delegatecall Detector is to filter out smart contracts

containing no delegatecalls. The purpose of Dynamic Analyzer is to verify whether the

calldata is forwarded by delegatecall in the fallback function. The purpose of Contract

Checker is to check if there are any function collisions or storage collisions in a proxy

contract.
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Figure 5.1: ProxyChecker overview

ProxyChecker only needs a smart contract address as input. First, Delegatecall De-

tector will check whether it is a contract and if there are any delegatecall in the smart

contract. Then, it will forward contracts containing delegatecalls to Dynamic Analyzer.

Dynamic Analyzer will construct a calldata and emulate the execution of the smart con-

tract.

After the emulation, Dynamic Analyzer can verify whether the smart contract is a

proxy contract or not. If the smart contract is a proxy contract, Dynamic Analyzer will

pass the storage slot which stores the logic contract address to Contract Checker. Contract

Checker will check the historical values of this storage slot and take these values as old

logic contracts’ addresses. Then, it will crawl the source code of the proxy contract and

logic contracts from Etherscan, and merge them into a single file for the input of Slither.

Last, we use slither-check-upgradeability from Slither to check if there are any function

collisions or storage collisions. We will explain all the components in the following sec-
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tions.

While developing ProxyChecker, we met the following challenges:

1. Some opcodes depend on the current state of Ethereum but the state of Ethereum

changes at every new block creation.

2. Old logic contracts can be found in transactions but the number of transactions may

be too large to search one by one.

3. Because of inheritance, we cannot simply merge multiple source code files into one

file in any order.

To deal with the first challenge, we use the latest value or a reasonable fixed value for these

opcodes. For the second challenge, we propose a binary search method to find, which will

be explained later. For the third challenge, we get the inheritance of each contract before

merging them, or it will cause a compilation error.

5.2 Delegatecall Detector

Fig. 5.2 shows the workflow of Delegatecall Detector.

Since the key opcode of a proxy contract is the delegatecall opcode, if a smart contract

does not contain any delegatecall opcodes, it must not be a proxy contract. Thus, we need

a smart contract disassembler, which can decompile Ethereum bytecode into a sequence

of opcodes. We use the disassembler from the open-source project Octopus [28] to extract

the opcode from the bytecode of the contract and check if it contains any delegatecall

opcodes. We only proceed to the next component if it contains any delegatecall opcodes.
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Figure 5.2: Delegatecall Detector

Otherwise, we stop ProxyChecker.

5.3 Dynamic Analyzer

Fig. 5.3 shows the workflow of Dynamic Analyzer. Though delegatecall opcodes are

in the contract, they may in other functions rather than in the fallback function. Even if a

contract contains delegatecall opcodes in the fallback function, it is still possible that it is

not a proxy contract but for making library calls or other purposes. Therefore, we need to

get the parameters of the delegatecall when executing the fallback function to ensure the

smart contract meets our definition of the proxy contract.

Dynamic Analyzer is based on Octopus and it will do the following step by step.

1. Construct a calldata to trigger the fallback function.

2. Dynamically analyze and extract the parameters.
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Figure 5.3: Dynamic Analyzer

3. Compare whether the calldata is passed to the fallback function

5.3.1 Create a Calldata

To check whether a contract matches our definition of proxy contracts, we first con-

struct a calldata such that the execution of a smart contract will trigger the fallback func-

tion. The contract will execute its fallback function if the first four bytes of calldata do

not match any function signature of functions. Thus, for making a smart contract to ex-

ecute the fallback function, we can leverage this property by creating a custom calldata.

Furthermore, according to the supplement documentation of [7], both Solidity and Vyper

will compile all function signatures following a PUSH4 opcode. Thus, we extract all 4

bytes of data following a PUSH4 opcode as function signatures and avoid using them as

our custom calldata. These function signatures may contain some false positives, such as

some four-byte constant variables defined in the smart contract. However, these false pos-

25 doi:10.6342/NTU202203210



itives will not affect our goal of making a smart contract to trigger the fallback function.

As a result, we construct a calldata whose first four bytes are not the same as any function

signatures extracted from a contract, thereby ensuring that this calldata will trigger the

contract’s fallback function.

5.3.2 Dynamically Analyze and Extract the Parameters

In the second step, we dynamically analyze the smart contract with the calldata from

step 1. We need to get the calldata passed by delegatecalls so we can compare it with the

calldata created from step 1 in step 3. The calldata is one of the parameters of delegate-

calls. Since EVM is a stack machine, all opcode parameters are stored in the EVM stack.

Moreover, the stack is also affected by the EVM’s memory and storage so we emulate the

EVM to collect the parameters.

Due to some limitations of the existing emulator tool as we mentioned in Section 3,

we build our EVM emulator component based on Octopus. Octopus is an open-source

security analysis framework for WebAssembly and smart contracts. Moreover, it also

supports different types of smart contracts, such as Ethereum smart contracts, EOS [11]

smart contracts, and NEO [23] smart contracts. For Ethereum smart contracts, Octopus

provides many modules to analyze the bytecode of Ethereum smart contracts. Although

the project’s last update was two years ago, and Ethereum had introduced more opcodes,

we chose it as our base because the framework of Octopus is easy to extend. Since the com-

ponents of Octopus are too many, we only focus on the components related to Ethereum

and add some functionalities for our needs.

We modified the source code of Octopus to support the new opcodes introduced after
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the last update of Octopus. We also add a Python [1] list as the stack, a Python bytes

array as the memory, and a Python dictionary as the storage. Moreover, before we start

the analysis, we need to set some parameters, such as the caller address and the contract

address. We use a Python dictionary to record these parameters before emulation.

Octopus does not handle some opcodes whose values depend on the state of the

global environment, such as the number opcode, which pushes the latest block number

of Ethereum into the stack. We call them block opcodes because they depend on the block

state of Ethereum. Our goal is to emulate a transaction and a transaction can be initiated

by anyone at any time. Thus, for these block opcodes, we use possible values to emulate.

All values are set by checking the latest value of Ethereum or a reasonable fixed value,

so all of them are possible values that may be used in some transactions. The value of

coinbase can be replaced by another value because anyone can be the miner of a block.

The value of basefee can also be replaced by any other value, but it is more likely be-

tween the highest value and lowest value in history. However, this method still adds some

uncertainty to our result. For example, a smart contract may be designed to execute only

under a specific miner by leveraging coinbase opcode. Thus, if we meet these kinds of

opcodes in our analysis, we put an uncertainty label in the result to notify the users. In

our dataset, none of the contracts contains these kinds of opcodes and delegatecall at the

same time, which means it does not affect our result. These block opcodes and values are

listed in Table 5.1.

For some opcodes like call or delegatecall, which Octopus does not implement,

they need to call another contract and get the execution result to push into the stack. To

get the result of these kinds of opcodes, we create another EVM-emulator instance and

execute it. After that, we put the result back into the stack of the original EVM-emulator
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Table 5.1: Values for block opcodes

opcode value
blockhash latest value of block
difficulty latest value of block
chainid 1
gaslimit latest value of block
basefee 50000000000
timestamp latest value of block

coinbase 0xbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbbb

number latest value of block
gasprice latest value of block

to keep emulating. For some opcodes like CREATE or CREATE2, they will put the bytecode

on Ethereum at a smart contract address. Since we cannot know the exact contract address

of the newly created one, we use a fixed address instead. If the emulator encounters this

address, we treat it like a normal smart contract. The method is acceptable because the

probability of address collision in Ethereum is low. Besides, no smart contract encounters

the CREATE or CREATE2 opcode during emulation in our dataset.

After the emulation, if we encounter any delegatecall, we pass the calldata it brings

and the information of the contract storage slot to step 3. Otherwise, we halt the Proxy-

Checker.

5.3.3 Compare the Calldata

By our definition of a proxy contract, a proxy contract must forward the same calldata

it received to a logic contract. Thus, we need to compare the calldata we constructed in

step 1 and the parameters of delegatecall in step 2. If they are the same, then the contract

is a proxy contract. Otherwise, the contract is not a proxy contract but a smart contract

doing a library call.
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5.4 Contract Checker

Figure 5.4: Contract Checker

Fig. 5.4 shows the workflow of Contract Checker. Contract Checker is for checking

the security of proxy contracts. Our current implementation focuses on detecting function

and storage collisions, as introduced in Section 4.

Moreover, we want to check whether the source code of contracts are provided be-

cause users should only interact with smart contracts with source code provided, or they

cannot know what the contracts will do.

From Section 4, we know that all logic contracts used by the proxy contract before

may affect the security of the proxy contract. As a result, we need to crawl all the logic

contracts used by the proxy contract.

First, we try to find where the address of the logic contract is stored. The address of

the logic contract must be stored in the following three places:

1. bytecode of the proxy contract.
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2. specific storage slot.

3. another smart contract.

We first check if the address of the logic contract matches the value of any storage

slot we stored in step 2. If they are matched, the storage slot is where the logic contract

is stored. Otherwise, we check if the logic contract address appears in the bytecode of the

proxy contract. If the logic contract address does not appear in the bytecode of the proxy

contract, the logic contract address is stored in another contract.

Suppose the logic contract address is stored in the bytecode of the proxy contract. In

that case, this logic contract is the only one the proxy contract uses because it is impossible

to change the deployed bytecode. If the logic contract address is stored at a specific storage

slot, then all values stored in this storage slot before are the all logic contract addresses used

by the proxy contract. However, in Ethereum, there is no API for getting all values that had

been stored in a storage slot but an API called web3.eth.getStorageAt to get the value of a

storage slot of an address at a specific block number. A naive solution is to access a storage

slot from block 1 to the latest block. However, the current block number is more than

14000000, so it needs to call the web3.eth.getStorageAt API more than 14000000 times

for a proxy contract, which is not practical. Thus, we apply a binary search to locate all

logic contract addresses from block 1 to block 14800000 (the latest block number during

our experiment). This method is based on the assumption that proxy contracts would

not use the same logic contract twice. We consider it acceptable because an upgradable

proxy contract is upgraded if the old logic contract contains loopholes or some deprecated

functions. It is unreasonable to upgrade to an old logic contract. Nevertheless, by this

method, we only need to call the web3.eth.getStorageAt API 26 times per proxy contract
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on average rather than 14800000 times in the naive method.

Algorithm 1 is the pseudocode of the binary search. The function BinarySearch needs

four parameters, the first one is the left bound of the block range, the second one is the

right bound of the block range, the third one is a set storing all logic contract addresses, and

the last one is the storage slot for the logic contract address. The algorithm first checks

the values in the slot of the left and right bounds of the block range. If the values are

different, we check the value of the storage slot from the middle of the block range. If the

left and middle ones are different, it calls itself again with the range l to mid. Similar to

the middle and the right bound. Last, the function returns S, which contains all the logic

contract addresses.

ALGORITHM 1
Binary search pseudocode
l,r are the left and right boundary of a block range.
S is a set for storing value we get from the getStorageAt.
slot is the storage slot position.
function BINARYSEARCH(l, r, S, slot)

lv ← getStorageAt(slot, l)
rv ← getStorageAt(slot, r)
S ← S ∪ {lv, rv}
if lv ̸= rv then

mid← (l + r)/2
midv ← getStorageAt(slot,mid)
if lv ̸= midv then

S ← S ∪ BinarySearch(l,mid, S, slot)
end if
if midv ̸= rv then

S ← S ∪ BinarySearch(mid+ 1, r, S, slot)
end if

end if
return S

end function

If the logic contract address is stored at another contract, we currently are not able to

get all logic contracts the proxy contract used before. The reason is that the contract which

stored the logic contract address may be changed, and for different contracts, the ways they
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stored the logic contract address may be different. In our experiments, we exclude these

proxy contracts for further analysis. The solution for this kind of proxy contract is our

future work.

After collecting all logic contracts, we check if the source codes of the proxy contract

and logic contracts are provided. Since Etherscan is the most popular platform to get

information about Ethereum, we chose it to check whether a smart contract is provided

with the source code. We call these smart contracts verified contracts. If the proxy contract

or one of its logic contracts is not a verified contract, we consider the proxy contract to

be insecure. If all contracts are verified contracts, we check if there are any function or

storage collisions issues. From Section 2, we know slither-check-upgradeability can check

both issues with source code, so we need to get the source code first.

We use an API from Etherscan to get the source code of these verified contracts.

However, the format of the source code return from the API is not consistent. Some return

a dictionary format of source code, while others return an array of source code. Moreover,

a smart contract may inherit from other smart contracts. Each smart contract may have

a single source code file. To prevent compilation errors, we need to put these files into

one file and ensure their order corresponds to the inheritance. We create our format parser

to get the inheritance of all smart contracts. We first put the smart contracts that do not

inherit from any contracts, then put other contracts one by one if their inherited contracts

are put above. Last, we apply these contracts on the slither-check-upgradeability to check

if there are any function or storage collisions.

The output of ProxyChecker includes whether the smart contract is a proxy contract,

all logic contract addresses, all available source code and if there are any function colli-
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sions or storage collisions.
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Chapter 6 Data Collection and

Analysis Result

We use ProxyChecker to examine smart contracts on the Ethereum mainnet. In this

section, we report on our data collection and findings.

Due to the limited time and computing resources, we cannot analyze all smart con-

tracts. Instead, we sample smart contracts from six block ranges to observe the trend of

proxy contract usage. The resulting datasets are SC17, SC18, SC19, SC20, SC21, and

SC22. Table 6.1 summarizes their block ranges, the date these blocks were added, and the

number of contracts we sampled. Each block range has 100,000 blocks. Since there are

too many smart contracts except for the first range, we sample at most two contracts from

each block.

We need to collect the contract addresses fromEthereummainnet. Fortunately, Google

provides a BigQuery service for developers to query various kinds of data. One is a SQL

database table that stores Ethereum mainnet data and updates to the latest block every few

seconds in this service. We can query the information of smart contracts, such as the block

number and block hash of the block that created this contract. We collected all the smart

contract addresses for the block range 3140000 to 3240000 as SC17 because the number

of smart contracts is only 6416.
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Block range Date # of samples
SC17 3140000 Feb-07-2017 6416

3240000 Feb-24-2017
SC18 5040000 Feb-06-2018 113281

5140000 Feb-23-2018
SC19 7180000 Feb-05-2019 91940

7280000 Feb-28-2019
SC20 9430000 Feb-06-2020 82218

9530000 Feb-22-2020
SC21 11800000 Feb-06-2021 91586

11900000 Feb-21-2021
SC22 14160000 Feb-07-2022 114301

14260000 Feb-23-2022
Table 6.1: Dataset information

The numbers of contracts in the rest of the block ranges are more than 250000. For

these block ranges, we fetch at most two contract addresses from each block for sampling

because the number of smart contract addresses is too large. Since we are doing sampling,

any two smart contracts from a block are acceptable. Thus, we pick the first two smart

contract addresses from each block. We use the query shown in Fig. 6.1 to fetch at most

two contract addresses from each block in the desired range. We collected 113281, 91940,

82218, 91586 and 114301 smart contract addresses from block range in 2018, 2019, 2020,

2021 and 2022 respectively. These datasets are denoted as SC18, SC19, SC20, SC21 and

SC22. Some blocks may contain fewer than two smart contract addresses. However, we

think it is acceptable because we are doing sampling in a period.

Figure 6.1: The query we used in BigQuery
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We apply our ProxyChecker to every contract address in the collected datasets.

Dataset
Types SC17 SC18 SC19 SC20 SC21 SC22
proxy 80 (1.25%) 1936 (1.71%) 1062 (1.16%) 13548 (16.48%) 31560 (34.46%) 101398 (88.71%)

Not proxy
no delegatecall 6335 (98.74%) 110684 (97.7%) 90762 (98.72%) 68328 (83.1%) 59698 (65.18%) 12775 (11.18%)
library call 0 (0%) 655 (0.58%) 106 (0.11%) 319 (0.39%) 309 (0.34%) 112 (0.1%)

contract error 1 (0.01%) 6 (0.01%) 10 (0.01%) 23 (0.03%) 19 (0.02%) 16 (0.01%)
Total 6416 113281 91940 82218 91586 114301

Table 6.2: Number and percentage of contracts of each type in different datasets.

Table 6.2 shows the result of applying the first two components, Delegatecall De-

tector and Dynamic Analyzer. The proxy type means the smart contract meets our proxy

contract definition. Inside the not proxy type, we can classify them into three categories:

no delegatecall, library call, and contract error. The no delegatecall type means the execu-

tion of the fallback function in a smart contract did not encounter any delegatecalls. The

reason may be that the delegatecall is contained in other functions, or the smart contract

does not contain any delegatecall. The library call type is the smart contract that executes

the delegatecall in the fallback function, but the calldata we created is not forwarded into

delegatecall. The contract error type is the smart contract that contains an invalid bytecode

sequence such as popping from an empty stack or the smart contract that uses delegatecall

or call opcode to call an invalid contract address such as address “0”. Besides, no smart

contract encounters block opcodes mentioned in Table 5.1. Though it may be lost from

sampling, it also means block opcodes are rare to be used in proxy contracts.

In dataset SC17, only 80 smart contracts belong to the proxy type, and most smart

contracts belong to the no delegatecall type. It is reasonable because the proxy pattern had

not been invented then. In datasets, SC18 and SC19, only around 1% of smart contracts

are proxy contracts, which shows that proxy contracts were not popular at that time rather

than other kinds of smart contracts. In dataset SC20, most smart contracts belong to the

no delegatecall type either, but 13548 smart contracts belong to the proxy type, which
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Figure 6.2: Result of Dynamic Analyzer
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accounts for 16.48%. In dataset SC21, most smart contracts belong to the no delegate-

call type either, but 31560 smart contracts belong to the proxy type, which accounts for

34.46%. In dataset SC22, most smart contracts belong to the proxy type, which accounts

for 88.71%, and only 12775 contracts belong to the no delegatecall type, which accounts

for 11%. Figure 6.2 shows the percentage histogram of each block range. From the fig-

ure, we notice that the use of proxy contracts are increasing from 2020 to 2022. The result

answers our first research question.

For proxy contracts, we apply Contract Checker. After the first step of Contract

Checker, which is collecting all logic contracts of the proxy contract, we can categorize

these proxy contracts into different types of EIPs.

For those proxy contracts whose logic contract addresses are stored in bytecode, we

classify them as EIP-1167 (minimal proxy contract). For those contracts whose logic

contract addresses are stored at the keccak256(“PROXIABLE”) storage slot, we classify

them as EIP-1822. For those contracts whose logic contract addresses are stored in kec-

cak256(“eip1967.proxy.implementation”) storage slot, we classify them as EIP-1967. For

those contracts whose logic contract addresses are not stored in bytecode or any storage

slot, they must be stored in another smart contract, we give them a single type. For the

rest of the proxy contracts whose logic contract addresses are stored in other storage slots,

we classify them as the “others” type. The result is shown in Table 6.3.

Types\Dataset SC17 SC18 SC19 SC20 SC21 SC22
EIP-1167 79 1924 317 7648 25802 51804
EIP-1822 0 0 0 0 207 0
EIP-1967 0 0 0 1068 876 244

another contract 0 7 4 909 418 1230
Others 1 5 741 3923 4257 48120

Table 6.3: The number of contracts classified by where logic contract address is stored
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The two security issues we want to analyze will not happen on minimal proxy con-

tracts because no variables or functions are defined in minimal proxy contracts. It also

means minimal proxy contracts can not be upgraded. Currently, the “another contract”

type is excluded because we do not know where the logic contract is stored. We will in-

clude it in our future work. Thus, we only move the type EIP-1822, EIP-1967, and others

into the next stage of the security check, which is to get all logic contracts by the binary

search method.

Types\Dataset SC17 SC18 SC19 SC20 SC21 SC22
Verified 0 0 679 4398 5010 46890

Unverified 1 5 62 593 330 1474
(EIP-1822 & EIP-1967 & Others) 1 5 741 4991 5340 48364
Table 6.4: Number of contracts is verified among EIP-1822, EIP-1967 and Others

After collecting the logic contract addresses of proxy contracts, we check whether

both proxy contracts and logic contracts are verified contracts in the third component of

ProxyChecker. Otherwise, we cannot apply the slither-check-upgradeability. Table 6.4

shows the number of proxy contracts and logic contracts that belong to verified contracts.

Types\Dataset SC17 SC18 SC19 SC20 SC21 SC22
No collisions 0 0 102 2688 1086 900

function collisions 0 0 575 657 3835 44407
storage collisions 0 0 2 4 46 1269

function & storage collisions 0 0 0 1 28 13
error 0 0 0 1048 15 301

Verified 0 0 679 4398 5010 46890
Table 6.5: Number of contracts of collision issues among verified contracts

We apply the slither-check-upgradeability on these verified contracts and get the re-

sult shown in Table 6.5. The result answers our fifth research question. All function colli-

sion issues in the Table 6.5 are because of the same function name. They inherit from the

same smart contract for maintaining storage layout, as wementioned in Section 4. Many of

the storage collisions may be false positives because the implementation of slither-check-
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upgradeability recognizes immutable variables as state variables. However, immutable

variables are stored in bytecode, not in storage, so it will not cause any storage collisions.

Thus, if the output of ProxyChecker contains any storage collision issues, one should

check if it is a false positive. Slither is an open-source project so anyone can propose a fix

to it. Thus, fixing the false positive is our future work. The “error” type is because of the

implementation of the switching compiler in slither-check-upgradeability. If the Solidity

version differs between the proxy contract and logic contract, the error will occur during

executing slither-check-upgradeability. The results show that most proxy contracts man-

age storage by inheritance storage contracts. Moreover, it is rare to see a function collision

issue with a different function name in practice, at least not in our dataset.
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Chapter 7 In-depth Analysis

Rank\Dataset SC17 SC18 SC19
Top 1 79 times 712 times 524 times

0x6ab9dd83108698b9ca8d03af3c7eb91c0e54c3fc 0x0f32732e4885f0dd61b64eef144329eb809a96e1 0xf9e266af4bca5890e2781812cc6a6e89495a79f2
Top 2 1 times 311 times 88 times

0xc48717aefbd7fbbb081c48b5abdadc6a30368e75 0x072461a5e18f444b1cf2e8dde6dfb1af39197316 0x4e201a5a5534bb334a3d7df4c82cd5db3bd82f29
Top 3 0 times 299 times 54 times

0xc3b2ae46792547a96b9f84405e36d0e07edcd05c 0xb1dd690cc9af7bb1a906a9b5a94f94191cc553ce
Top 4 0 times 274 times 47 times

0x837e85498f90f9320273d2a328b5ab402b24eed6 0x4a6ce97a84178a84c1cee46a763db619d0e6e413
Top 5 0 times 169 times 35 times

0xc89327da549c6eb96c59764b13013467d17c7c79 0xf98ee39029c0f57b7d1d85be0b5579f813a58308

Table 7.1: The top 5 most pointed logic contracts (part 1).

Rank\Dataset SC20 SC21 SC22
Top 1 1764 times 6552 times 44934 times

0x989a2ad9acaa8c4e50b2fc6b650d6e1809b9195b 0x39778bc77bd7a9456655b19fd4c5d0bf2071104e 0xf9e266af4bca5890e2781812cc6a6e89495a79f2
Top 2 1644 times 3251 times 21411 times

0xef004d954999eb9162aeb3989279eff2161d5095 0x7186123dd9140555d0c2384b36f5773ddd7cde31 0x059ffafdc6ef594230de44f824e2bd0a51ca5ded
Top 3 992 times 2701 times 3823 times

0x20af9e54a3670ef6a601bca1f1ec22b1f93cbe23 0xf9e266af4bca5890e2781812cc6a6e89495a79f2 0xe38f942db7a1b4213d6213f70c499b59287b01f1
Top 4 864 times 1915 times 3317 times

0xb1dd690cc9af7bb1a906a9b5a94f94191cc553ce 0x83b76b11257c4ece35370b6152f1946d49479e89 0x63730a73f5eb2b5e10486d20c10a451aa3c1c6dd
Top 5 685 times 1115 times 2929 times

0x2fcf5eddf53a33f9665d226f239d29eff3921bf7 0x29b94b045a0b828d9eb99136a16d97c7ff3d2600 0x39778bc77bd7a9456655b19fd4c5d0bf2071104e

Table 7.2: The top 5 most pointed logic contracts (part 2).

In this section, we want to find the reason or meanings behind the result from the

previous section.

From Table 6.2, we observe that the percentage of proxy contracts increases over

time, from 16.48% in 2020 to 88.71% in 2022. Thus, we can see the usage of proxy con-

tracts getting more widespread. Our first thought is that the increase in proxy contracts is

because many new projects use proxy contracts as their services for upgradability. How-

ever, it contradicts the result in Table 6.3, which shows that most of the proxy contracts

belong to minimal proxy contracts, and it is not upgradable proxy contracts.

As a result, we want to know what caused the increasing number of proxy contracts.
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In the following sections, we first analyze the logic contracts and find that lots of logic

contracts are wallet contracts. A wallet contract [34] is a contract that manages assets like

ERC20 tokens. Usually, a proxy contract of a wallet contract is created by a smart contract

named factory contract, which contains a clone function for creating proxy contracts of

a wallet contract [34]. Then, based on our analysis of logic contracts, we examine their

proxy contracts.

7.1 Logic Contracts

Weexamine all logic contract addresses and identify the top 5 logic contract addresses

according to the number of associated proxy contracts. The result is shown in Table 7.1

and Table 7.2.

Name Address

Wallet contract

AuthenticatedProxy 0xf9e266af4bca5890e2781812cc6a6e89495a79f2
CollectionContract 0xe38f942db7a1b4213d6213f70c499b59287b01f1

Forwarder 0x059ffafdc6ef594230de44f824e2bd0a51ca5ded
BaseWallet 0x29b94b045a0b828d9eb99136a16d97c7ff3d2600

CloneableWallet 0x989a2ad9acaa8c4e50b2fc6b650d6e1809b9195b
Account 0xef004d954999eb9162aeb3989279eff2161d5095

AuthereumAccount 0x20af9e54a3670ef6a601bca1f1ec22b1f93cbe23
BaseWallet 0xb1dd690cc9af7bb1a906a9b5a94f94191cc553ce

Unknown TransactionRequestCore 0x4e201a5a5534bb334a3d7df4c82cd5db3bd82f29
Kernel 0x4a6ce97a84178a84c1cee46a763db619d0e6e413

Table 7.3: The name of logic contracts in Table 7.1 and Table 7.2 with source code.

If a logic contract is provided with source code, we can know the name of the logic

contract and its program logic.

First, we examine the contracts with source code. Table 7.3 shows the name and ad-

dress of the logic contracts with the source code. The name “AuthenticatedProxy” looks

like a proxy contract, but it does not fulfill our definition of proxy contracts because there

is no delegatecall in its fallback function. We also find that this smart contract is from
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Wyvern [36], an open-sourced decentralized exchange protocol. Moreover, this protocol

is also applied by Opensea [27], an NFT trading platform. The trend of NFT on Opensea

explains why the rank of the logic contract increased from the top 3 in dataset SC21 to

the top 1 in dataset SC22. CollectionContract is a smart contract from Foundation open

source project, which is an NFT-related project also applied by the Foundation NFT mar-

ketplace [17]. For the above two smart contracts, we also regard them as a kind of wallet

contract because they both contain the logic for tradingNFT assets, which acts like a wallet

contract for NFT.

Forwarder is a smart contract from the open-source project EthereumMultiSigWallet

Contract [6], which is a project for creating multi-signature wallet smart contracts. Both

BaseWallet and CloneableWallet are a kind of wallet contract. Account is a smart contract

fromMYKEYLab [22], which is a company for smart wallets in blockchains, but the com-

pany stopped supporting it. AuthereumAccount is a smart contract from Authereum [5]

which is a company for Ethereum wallets.

TransactionRequestCore is a smart contract from Ethereum Alarm Clock [12]. Ker-

nel is a smart contract from Aragon [2]. Except TransactionRequestCore and Kernel are

not wallet contracts related, other contracts are all wallet contract related.

While the rest of the logic contracts are not provided with source code, we use an

online decompiler [15] to decompile them. The table 7.4 shows the function name of

the logic contract if the online decompiler recognized it, otherwise, we show the function

signature instead.

If the function names of the logic contract are as same as some functions in wallet

contracts mentioned in [34], we classify them as wallet contracts. In case the logic may be
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Type address function prototypes

Wallet contract

flushETH(), destination(),
0x63730a73f5eb2b5e10486d20c10a451aa3c1c6dd feeDestination(),

init(address,address)
sweeper(),

0x39778bc77bd7a9456655b19fd4c5d0bf2071104e sweepERC20(address),
unknown(0xdfd1fb7a)

0x7186123dd9140555d0c2384b36f5773ddd7cde31 flushERC20(address),
0x2fcf5eddf53a33f9665d226f239d29eff3921bf7 flushETH(), destination()

0x6ab9dd83108698b9ca8d03af3c7eb91c0e54c3fc

removeOwner(address),
isOwner(address),
m_numOwners(),
resetSpentToday(),
addOwner(address),
m_required(),
confirm(bytes32),
setDailyLimit(uint256),
execute(address,uint256,bytes),
revoke(bytes32),
changeRequirement(uint256),
hasConfirmed(bytes32,address),
kill(address),
changeOwner(address,address),
m_dailyLimit()

Unknown

0x83b76b11257c4ece35370b6152f1946d49479e89 unknown(0xcd6f5dcd),
unknown(0xc658695c)

0xf98ee39029c0f57b7d1d85be0b5579f813a58308 init(address), isCosignerSet()
0x837e85498f90f9320273d2a328b5ab402b24eed6 initInsecure(address) ......
0x0f32732e4885f0dd61b64eef144329eb809a96e1
0x072461a5e18f444b1cf2e8dde6dfb1af39197316 claimContractOwnership()
0xc89327da549c6eb96c59764b13013467d17c7c79 pendingContractOwner() ......

0xc3b2ae46792547a96b9f84405e36d0e07edcd05c grantAccess(address)
isCosignerSet() ......

0xc48717aefbd7fbbb081c48b5abdadc6a30368e75 seriesFactory(), owner(),
unknown(0x95f770fd)

Table 7.4: The function prototypes of logic contracts in Table 7.1 and Table 7.2 without
source code.
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different but with the same function name, we also compare their logic in bytecode man-

ually. Eight smart contracts can not be classified as wallet contracts because the function

name is unknown or does not match any known function in wallet contracts.

After our examination of the top 5 most pointed logic contracts, we find that in the

most recent datasets SC20, SC21 and SC22, only one logic contract is not a wallet contract.

In dataset SC17, there are 90% of logic contracts is wallet contract. While, in datasets

SC18 and SC19, we do not find any specific kind of smart contract containing the most.

This result answers our second research question.

Types\Dataset SC20 SC21 SC22
Same bytecode 502 (80.45%) 1140 (81.2%) 1614 (81.2%)

Others 122 (19.55%) 264 (18.8%) 374 (18.8%)
Total 624 1404 1988

Table 7.5: The number of distinct logic contract addresses in two datasets.

We also analyze the number of distinct logic contracts. The numbers of distinct logic

contract address in SC17, SC18, and SC19 are 2, 17, and 70 respectively. Only a few

of them contain exactly the same bytecode in these three datasets. While for the datasets

SC20, SC21, and SC22, the numbers of distinct logic contract addresses are 624, 1404,

and 1988, respectively. Moreover, up to 80% of distinct logic contracts contain exactly

the same bytecode in these three datasets. The result shows in Table 7.5. From this result,

we can know that most logic contracts are exactly the same in the recent three years and

that there are many duplicated wallet contracts.
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7.2 Proxy Contracts

In this section, we focus on the proxy contracts themselves. As we did on logic

contracts, we identify the top 5 proxy contracts in each dataset. Contracts with the same

bytecode are counted together. We also analyze their bytecode or source code if provided.

The result is shown in Table 7.6 and Table 7.7. They answer our third research question.

Rank\Dataset SC17 SC18 SC19
Top 1 79 contracts 712 contracts 524 contracts

minimal proxy minimal proxy OwnableDelegateProxy
Top 2 1 contracts 311 contracts 88 contracts

unknown proxy minimal proxy minimal proxy
Top 3 0 contracts 299 contracts 59 contracts

minimal proxy Proxy
Top 4 0 contracts 274 contracts 47 contracts

minimal proxy KernelProxy
Top 5 0 contracts 169 contracts 40 contracts

minimal proxy PayingProxy
Table 7.6: The top 5 proxy contracts with the same bytecode and their contract name.

(part 1)

Rank\Dataset SC20 SC21 SC22
Top 1 1764 contracts 6552 contracts 44934 contracts

minimal proxy minimal proxy OwnableDelegateProxy
Top 2 1651 contracts 3251 contracts 21411 contracts

AccountProxy minimal proxy minimal proxy
Top 3 1045 contracts 2701 contracts 3823 contracts

AuthereumProxy OwnableDelegateProxy minimal proxy
Top 4 866 contracts 1915 contracts 3317 contracts

Proxy minimal proxy minimal proxy
Top 5 685 contracts 1033 contracts 2929 contracts

minimal proxy Proxy minimal proxy
Table 7.7: The top 5 proxy contracts with the same bytecode and their contract name.

(part 2)

Surprisingly, almost every cell in Table 7.6 and Table 7.7 can match the cell in the

same position of Table 7.1 and Table 7.2, which is a one on one relationship. It shows that

a logic contract is usually pointed by identical proxy contracts. The result supports that
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the wallet contracts are usually created by a factory contract [10]. Thus, their bytecodes

are the same. For the inconsistent cells, it means that other proxy contracts are pointing

to the same logic contract or the proxy contract was upgraded to a new logic contract.

Proxy Contract Name logic contract address

OwnableDelegateProxy 0xf9e266af4bca5890e2781812cc6a6e89495a79f2
(AuthenticatedProxy)

No Name

0x059ffafdc6ef594230de44f824e2bd0a51ca5ded
(Forwarder)

0xe38f942db7a1b4213d6213f70c499b59287b01f1
(CollectionContract)

0x63730a73f5eb2b5e10486d20c10a451aa3c1c6dd
0x39778bc77bd7a9456655b19fd4c5d0bf2071104e
0x7186123dd9140555d0c2384b36f5773ddd7cde31

(Minimal Proxy) 0x83b76b11257c4ece35370b6152f1946d49479e89
0x989a2ad9acaa8c4e50b2fc6b650d6e1809b9195b
0x2fcf5eddf53a33f9665d226f239d29eff3921bf7
0x4e201a5a5534bb334a3d7df4c82cd5db3bd82f29

(TransactionRequestCore)
0x0f32732e4885f0dd61b64eef144329eb809a96e1
0x072461a5e18f444b1cf2e8dde6dfb1af39197316
0xc3b2ae46792547a96b9f84405e36d0e07edcd05c
0x837e85498f90f9320273d2a328b5ab402b24eed6
0xc89327da549c6eb96c59764b13013467d17c7c79
0x6ab9dd83108698b9ca8d03af3c7eb91c0e54c3fc

Proxy

0x29b94b045a0b828d9eb99136a16d97c7ff3d2600
(BaseWallet)

0xb1dd690cc9af7bb1a906a9b5a94f94191cc553ce
(BaseWallet)

AccountProxy 0x29b94b045a0b828d9eb99136a16d97c7ff3d2600
(Account)

AuthereumProxy 0x20af9e54a3670ef6a601bca1f1ec22b1f93cbe23
(AuthereumAccount)

KernelProxy 0x4a6ce97a84178a84c1cee46a763db619d0e6e413
(Kernel)

PayingProxy 0xf98ee39029c0f57b7d1d85be0b5579f813a5830
Table 7.8: Proxy contract names and their logic contract addresses.

We combine the proxy types in Table 7.6 and Table 7.7 with the logic contract ad-

dresses in Table 7.1 and Table 7.2 into Table 7.8. Most of the logic contracts in Table 7.8

are pointed by minimal proxy contracts. The result is reasonable because the minimal

proxy contracts account for the majority of proxy contracts in Table 6.3. Minimal proxy
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contracts are free to function or storage collisions, and their bytecode is short and simple.

We think it may be why people widely use this proxy contract.

7.3 Other Findings

In our experiment, minimal proxy contracts were also found in February 2017, the

time before EIP-1167 was proposed. We think it is because someone found a gas-saving

method to deploy a contract but was lazy to purpose an EIP.

From Table 6.3, we can observe that the number of proxy contracts following EIP-

1822 or EIP-1967 is small. We think it is because the user does not need a specific storage

slot to store the logic contract address but a state variable instead, which is much simpler.

Though it is easy to use, one needs to worry about storage collisions if they change the

order of state variables.

Dataset avg # of blocks avg times of upgrades # of upgraded contracts
SC17 33529.0 2 1
SC18 0 0 0
SC19 11895666.79 1.36 14
SC20 149963.69 1.07 999
SC21 431435.68 2.04 96
SC22 187287.03 1.34 29

Table 7.9: Upgrade events.

We also investigate the upgrade events of proxy contracts. The result is shown in

Table 7.9 and answers our fourth research question. Among our datasets, only 1139 proxy

contracts have been upgraded. In addition, the proxy contracts in SC20 contain the most

upgraded contracts, we think it is because the proxy contracts created in SC20 are still

used. Thus, the proxy owners still upgrade them to support new features.

We notice that the average times of upgrades in all datasets are less than three times.
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This result shows the upgraded event does not happen frequently. Since security issues of

proxy contracts usually happen at an upgrade, the less frequent upgrade of a proxy contract

also means the proxy contract is more resistant to storage collisions.
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Chapter 8 DISCUSSION

In this section, we first discuss the mitigation for the two main security issues. Then

we discuss how to use a proxy contract based on our findings. Lastly, we discuss the

limitations of our work.

8.1 Mitigation for Security Issues

In the following two sections, we will discuss how to prevent function collisions and

storage collisions from the perspectives of developers and users, respectively.

For developers, we discuss how to prevent these two types of issues when developing

a proxy contract. To address the function collision problem, OpenZepplin [25] proposes

a solution called TransparentUpgradeableProxy. It applies a modifier1 that checks if the

caller of the transaction is the proxy contract owner or not on functions defined in the proxy

contract. If the caller is not the proxy contract owner, it executes the fallback function

instead of the current function. A developer can safely design a proxy contract without

worrying about function collisions. Specifically, this kind of proxy contract only allows

the owner of the proxy contract to execute functions defined in the proxy contract, but the

owner of the proxy contract can not execute the fallback function of the proxy contract.
1A decorator applies on functions in Solidity.
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On the other hand, everyone can only execute the fallback function of the proxy contract

except the owner of the proxy contract. Thus, even if there is a function collision between

the proxy contract and the logic contract, a caller of a transaction who is not the proxy

owner can expect to execute the function defined in the logic contract correctly.

However, some developers do not want to redesign the proxy contracts, or the proxy

contracts have been deployed, so the above solution can not be applied. As a result, for

those proxy contracts, we suggest that developers should run the slither-check-upgradeability

tool mentioned in Section 2. The tool can check if any function collisions happen between

the proxy contract and the logic contract so the developers can fix the logic contract or the

proxy contract. If the proxy contracts are already deployed, developers can also use our

tool by giving the proxy contract address.

Currently, the way to address storage collisions is to rely on proxy developers and

proxy owners. The developers have to ensure the order of variables in the proxy contract

is consistent with the logic contract. When upgrading the proxy contract, proxy owners

should also ensure that the order of variables in the old logic contract is consistent with

the new one. The slither-check-upgradeability tool can help developers and proxy owners

check if there is any storage collision problem before deploying or upgrading a proxy

contract.

Two design patterns for storagemanagementmotioned in [19], which areUnstructured

Storage and Eternal Storage. Unstructured Storage uses a random storage slot to store each

variable. EIP-1822, EIP-1967, and EIP-2535 apply this pattern to store some variables like

a logic contract address. Eternal Storage uses another contract to store variables, making

it easy for developers to maintain the order of variables.
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For users who want to interact with a smart contract should check the source code

of the smart contract before sending a transaction. Otherwise, something unexpected may

happen, like losing Ether or other tokens. Likewise, users should examine the source code

of the proxy contract before interacting with it. Moreover, because of the two main issues

mentioned above, users should not only examine the proxy contract but also the current

logic contract and every logic contract the proxy contract used before.

Verifying every logic contract the proxy contract used before may be challenging for

users. Thus, we suggest that users can apply our tool to the proxy contract before they

interact. Users only need to input the address of a proxy contract, and the tool will output

if there is any security issue in the proxy contract and the source code if provided.

Attackers who want to leverage our tools may find some function or storage colli-

sions, but they still have to analyze the source code to check if proxy contracts are ex-

ploitable.

8.2 Proxy Contract Usage

This section suggests the usage of proxy contracts from the security perspective.

As we mentioned in Section 4, the owner of the upgradable proxy contract can ma-

nipulate the storage of the proxy contract by upgrading a new logic contract. Thus, users

should prevent interacting with proxy contracts not owned by themselves but holding their

property, such as the ERC20Upgradeable token contract. Users should only interact with

it if they trust the owner of the proxy contract. A way to improve the security of these

kinds of proxy contracts is to add a time gap after the transaction of upgrading the proxy

contract to a new logic contract is sent. The old logic contract is used inside the time gap,
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and the new logic contract will be used after the time gap. A time gap allows users inter-

acting with the proxy contract to examine the new logic contract. If a new logic contract

is malicious, the users can react before it is effective, like withdrawing their assets. How-

ever, it is still dangerous for users if they do not keep an eye on the proxy contract and

miss the time gap. Thus, we still do not recommend this kind of proxy contract usage.

Another way to use a proxy properly is to treat a proxy contract as a testing smart

contract. Developers can deploy a proxy contract for an under-developing logic contract.

Instead of deploying a logic contract on the testnet, an Ethereum-like environment, de-

velopers can test and interact with the logic contract on the mainnet. A testnet is an

Ethereum-like environment, but its state is not the same as the Ethereum mainnet. For

example, an address may be a smart contract address in the testnet but not in the mainnet.

Thus, deploying a proxy contract on the mainnet for testing logic contracts can get more

accurate results than on the testnet. Moreover, because of storage collisions, the proxy

owner can initialize the storage without deploying a new smart contract to get new stor-

age. Unfortunately, this method still needs to spend the gas for deploying a new logic

contract.

The best usage of a proxy contract is to create one’s proxy contract for personal use,

such as a proxy contract for a wallet contract, so there is no need to worry about amalicious

proxy contract owner. Based on our investigations, this kind of usage is the most common

way to use a proxy contract. The advantage of a proxy contract is that one can save the cost

of deploying a new logic contract and enable upgradeability for future needs. Moreover,

if users use it as a proxy contract for wallet contracts, they can save their assets in it, and

no need to transfer them after upgrading the proxy contracts.
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8.3 Limitations

As we explained earlier, some opcodes (block opcodes) take parameters from the

blockchain state. ProxyChecker uses fixed values listed in Table 5.1 as their parameters,

so the emulation result may differ from the actual one if it encounters block opcodes.

ProxyChecker may fail to detect some types of proxy contracts, such as the diamond

contract introduced in EIP-2535. Although the diamond contract satisfies our proxy con-

tract definition, ProxyChecker cannot detect diamond contracts because it cannot create a

calldata that can successfully execute the delegatecall opcode in the fallback function. In

the design of the diamond contract, only the function registered by the diamond contract

owner can execute the delegatecall in the fallback function, or the transaction will revert.

Currently, ProxyChecker leverages the slither-check-upgradeability tool for some se-

curity checks. Thus limited by this tool, ProxyChecker can only check function and stor-

age collisions on the proxy contract with the source code in Solidity. We may support

proxy contracts without source code in our future work.

The output of ProxyChecker may contain some false positives because of the imple-

mentation of slither-check-upgradeability. Nevertheless, we think it is acceptable because

the harm of false negatives is much higher than false positives.

We believe ProxyChecker can complement other smart contract analysis tools.
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Chapter 9 CONCLUSION

Proxy contracts enable upgradeability, but they also bring some uncertainty for their

users. Though proxy contracts are a way for smart contract developers to upgrade their

vulnerable contracts, two main security issues come behind them: function collisions and

storage collisions.

We introduce ProxyChecker, which is a dynamic analysis tool for smart contracts.

One can use it to detect if a smart contract is a proxy contract and get a security analysis

of a proxy contract by just inputting a smart contract address. However, an attacker can

also use it to detect if there are any chances to attack a proxy contract.

We use ProxyChecker to compare six block ranges to show how widely proxy con-

tracts are used. Finally, we discuss the security issues in proxy-related EIPs and give

recommendations. We found that the proxy contract is a big part of all deployed smart

contracts. After we categorized them, we found that the minimal proxy contracts are the

most widely used. We also find that the trend of NFT creates a large number of proxy

contracts. Though our ProxyChecker is an easy-to-use tool for detecting or doing a secu-

rity check on proxy contracts, there still have some limitations mentioned in Section 8.3,

which will be our future work.

In conclusion, if a proxy contract is upgradeable, the proxy owner can manipulate
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the storage value in the proxy contract to any other value. Thus, a proxy contract is not

suitable for providing a smart contract service like an ERC20Upgradeable token contract.

We conclude that a proxy contract is more suitable for personal use, like a proxy contract

for a wallet contract.

56 doi:10.6342/NTU202203210



References

[1] Python Software Foundation. Python. https://www.python.org/.

[2] Aragon Association. Aragon. https://aragon.org/.

[3] Audius Inc. Audius. https://audius.co/.

[4] Audius Inc. Audius governance takeover post-

mortem 7/23/22. https://blog.audius.co/article/

audius-governance-takeover-post-mortem-7-23-22.

[5] Authereum Inc. Authereum. https://authereum.com/.

[6] BitGo Inc. Ethereum multisig wallet contract. https://github.com/BitGo/

eth-multisig-v2.

[7] T. Chen, Z. Li, X. Luo, X. Wang, T. Wang, Z. He, K. Fang, Y. Zhang, H. Zhu, H. Li,

Y. Cheng, and X.-s. Zhang. Sigrec: Automatic recovery of function signatures in

smart contracts. IEEE Transactions on Software Engineering, pages 1–1, 2021.

[8] Consensys Inc. Mythril. https://github.com/ConsenSys/mythril.

[9] David, S. Understanding the dao attack. https://www.coindesk.com/learn/

2016/06/25/understanding-the-dao-attack/.

57 doi:10.6342/NTU202203210

https://www.python.org/
https://aragon.org/
https://audius.co/
https://blog.audius.co/article/audius-governance-takeover-post-mortem-7-23-22
https://blog.audius.co/article/audius-governance-takeover-post-mortem-7-23-22
https://authereum.com/
https://github.com/BitGo/eth-multisig-v2
https://github.com/BitGo/eth-multisig-v2
https://github.com/ConsenSys/mythril
https://www.coindesk.com/learn/2016/06/25/understanding-the-dao-attack/
https://www.coindesk.com/learn/2016/06/25/understanding-the-dao-attack/


[10] M. di Angelo and G. Slazer. Wallet contracts on ethereum. In 2020 IEEE

International Conference on Blockchain and Cryptocurrency (ICBC), pages 1–2,

2020.

[11] EOSIO Inc. Eos. https://eos.io/.

[12] Ethereum Alarm Clock. Ethereum alarm clock. https://www.

ethereum-alarm-clock.com/.

[13] Ethereum community. Opcodes for the evm. https://ethereum.org/en/

developers/docs/evm/opcodes/.

[14] EtherScan Team. Etherscan. https://etherscan.io/.

[15] ethervm@gmail.com. Online solidity decompiler. https://ethervm.io/

decompile.

[16] J. Feist, G. Greico, and A. Groce. Slither: A static analysis framework for smart

contracts. In Proceedings of the 2nd International Workshop on Emerging Trends in

Software Engineering for Blockchain, WETSEB ’19, page 8–15. IEEE Press, 2019.

[17] foundation Inc. Foundation. https://foundation.app/.

[18] Infura Inc. Infura. https://infura.io/.

[19] P. Klinger, L. Nguyen, and F. Bodendorf. Upgradeability concept for collabo-

rative blockchain-based business process execution framework. In International

Conference on Blockchain, pages 127–141. Springer, 2020.

[20] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe. Reguard: Finding reen-

trancy bugs in smart contracts. In Proceedings of the 40th International Conference

58 doi:10.6342/NTU202203210

https://eos.io/
https://www.ethereum-alarm-clock.com/
https://www.ethereum-alarm-clock.com/
https://ethereum.org/en/developers/docs/evm/opcodes/
https://ethereum.org/en/developers/docs/evm/opcodes/
https://etherscan.io/
https://ethervm.io/decompile
https://ethervm.io/decompile
https://foundation.app/
https://infura.io/


on Software Engineering: Companion Proceeedings, ICSE ’18, page 65–68, New

York, NY, USA, 2018. Association for Computing Machinery.

[21] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist, T. Brunson,

and A. Dinaburg. Manticore: A user-friendly symbolic execution framework for

binaries and smart contracts. In 2019 34th IEEE/ACM International Conference on

Automated Software Engineering (ASE), pages 1186–1189, 2019.

[22] MYKEY Lab. Mykey lab. https://mykey.org/.

[23] Neo Inc. Neo. https://neo.org/.

[24] R. Norvill, B. B. F. Pontiveros, R. State, and A. Cullen. Visual emulation for

ethereum’s virtual machine. In NOMS 2018 - 2018 IEEE/IFIP Network Operations

and Management Symposium, pages 1–4, 2018.

[25] OpenZeppelin Inc. Proxy upgrade pattern. https://docs.openzeppelin.com/

upgrades-plugins/1.x/proxies.

[26] OpenZeppelin Inc. Safemath. https://github.com/OpenZeppelin/

openzeppelin-contracts/blob/master/contracts/utils/math/

SafeMath.sol.

[27] Ozone Networks Inc. Opensea. https://opensea.io/.

[28] P. Ventuzelo. Octopus. https://github.com/pventuzelo/octopus.

[29] QuickNode Inc. Quicknode. https://www.quicknode.com/.

[30] Rekt DAO. Rekt. https://rekt.news/.

59 doi:10.6342/NTU202203210

https://mykey.org/
https://neo.org/
https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies
https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/SafeMath.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/SafeMath.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/SafeMath.sol
https://opensea.io/
https://github.com/pventuzelo/octopus
https://www.quicknode.com/
https://rekt.news/


[31] Solidity community. Solidity official document. https://docs.soliditylang.

org/.

[32] The go-ethereum Authors. Go ethereum. https://geth.ethereum.org/.

[33] C. F. Torres, A. K. Iannillo, A. Gervais, and R. State. Confuzzius: A data

dependency-aware hybrid fuzzer for smart contracts. In 2021 IEEE European

Symposium on Security and Privacy (EuroS&P), pages 103–119, 2021.

[34] Trail of Bits Inc. rattle. https://github.com/crytic/rattle.

[35] Vyper community. Vyper official document. https://vyper.readthedocs.io/

en/stable/.

[36] Wyvern Protocol team. Wyvern protocol. https://wyvernprotocol.com/.

[37] Yiedld App Inc. Yield. https://www.yield.app/.

[38] G. Zheng, L. Gao, L. Huang, and J. Guan. Upgradable contract. In Ethereum Smart

Contract Development in Solidity, pages 197–213. Springer, 2021.

60 doi:10.6342/NTU202203210

https://docs.soliditylang.org/
https://docs.soliditylang.org/
https://geth.ethereum.org/
https://github.com/crytic/rattle
https://vyper.readthedocs.io/en/stable/
https://vyper.readthedocs.io/en/stable/
https://wyvernprotocol.com/
https://www.yield.app/

	Verification Letter from the Oral Examination Committee
	致謝
	摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Background
	EVM
	EVM Opcode
	EVM Storage Layout
	Function Signature
	Fallback Function
	Ethereum Improvement Proposals

	Related Work
	Smart Contract Analysis Tools
	Ethereum Virtual Machine Emulator
	Go-Ethereum
	E-EVM

	Proxy Contract Related

	Security Issues
	Definition of Proxy Contracts
	Function Collisions
	Storage Collisions

	PROXYCHECKER: Design and Implementation
	Overview
	Delegatecall Detector
	Dynamic Analyzer
	Create a Calldata
	Dynamically Analyze and Extract the Parameters
	Compare the Calldata

	Contract Checker

	Data Collection and Analysis Result
	In-depth Analysis
	Logic Contracts
	Proxy Contracts
	Other Findings

	DISCUSSION
	Mitigation for Security Issues
	Proxy Contract Usage
	Limitations

	CONCLUSION
	References

