B2 2B FLPTAERT AP T 7
A~
Department of Computer Science & Information Engineering

College of Electrical Engineering and Computer Science
National Taiwan University

Master Thesis

Fet R RIRE Geral g et 2L

Investigating New Security Issues Introduced by Ethereum

Proxy Contracts

A 2
Wen-Yi Chu

R et B
Advisor: Hsu-Chun Hsiao, Ph.D.

PEAR LI &9

September, 2022

doi:10.6342/NTU202203210

R Y- R Y VA
DHEREELE
FHURIRELS A3 SRR

Investigating New Security Issues Introduced by
Ethereum Proxy Contracts

WX AALBUEE (£3E R09922070) AR E2ME AL EM T
+%~3’aﬁkzzéécﬁim AX 0 HRE 111 &8 A 2 BATHERELE
FERBR IR RAE 0 4FLEA

==V o = ﬁr’/@f—
’?%\—%J’\ (#‘éi%g?ii#%))%_(ﬂ,ig
Fptesy

R e 2 }%J"ﬁﬁ\

doi:10.6342/NTU202203210

W

£

Thwmr s g AL HNLH BT g ok G P s R

P RE Rk B Thh e READ -

BHEQL L/ Ay QP BEAS 3 THRBARNT K2 2

a—

Fo HOTAG T AR L L LG BT R R 0 B R

O EHRY AT FERF AT RAF ARARLA T BRI B

T
B

RIS T AR duE o RA ST R G LR o B R R L A en

g

B B awT g oA o

RHTHRETRFP - Bt e & At 3 g a0 BT Rekirdts
Al E AR YR ERELT ARR BNATE LY BNNE BT FT
Fon X FGRRFH LT AR 0 E b gk o

B REHAORA 0 - E RN LI EERA R BN BT DR EAY

ML adp it d s B o

i doi:10.6342/NTU202203210

BT R HANT TORE FR LN - LET G BE S URESBD A
WAL 3 IRARRFE B EFFHFR LN A As 1 AL

PR R N o BRI ENE F R - BN SN A E RS

A

BIEF LG BFRLEY? FAPRBIFREGE S AP RR R Y
R g TP RN GRF Y - BTN L 9t 3R E T 1 EF O
Yok oo ARa 0 HHRB S N F R AT 2R A N A Sk L ALIRR 2

R R HER o T HFHAEE NN P e DR APRET - BT

R

® & §ena E ProxyChecker o 2% i

-

i * ProxyChecker 4 17 = B P ehdF it &

FFRAILL G AR KA S Al E > K 2017 # 1% T 2022 £ 188% o hipd
RIL LGP > SR SBLETRONI TG 03] 3% F e R R
SIRAE o i il 0 AR - LEFRDE BRI S N LEF F R
FE o APRART AL EYEL 2 S22 p e R LY G A2
SR EEr > EEEEARENEE A G FHESDE QTR BT oA

PR BB B T L FF 2 e P T g

MSEE : SIL L4 BIEL K T ABM T D RS

it doi:10.6342/NTU202203210

Abstract

The immutable feature of blockchains prevents developers from fixing buggy smart
contracts. Consequently, the concept of proxy pattern has emerged to support upgradabil-
ity. By putting the actual program logic into a secondary contract called a logic contract,
a proxy contract can be upgraded by switching to a different logic contract. However, the
proxy pattern also brings two security issues, function collisions and storage collisions. To
examine the effect of proxy contracts on the Ethereum mainnet, we created a tool named
ProxyChecker for analyzing proxy contracts. Using ProxyChecker, we analyzed contracts
within six block ranges and found that proxy contracts have become more prevalent, from
1% in 2017 to 88% in 2022. Among these proxy contracts we found, the majority have
function collisions, and about 0-3% have storage collisions. Lastly, we provide sugges-
tions for developers and users. Although the most secure way to use proxy contracts is
for personal use only, such as constructing wallet contracts, this contradicts the original

motivation of introducing them, that is, for upgrading and fixing buggy contracts. We

iv doi:10.6342/NTU202203210

concluded that a delayed upgrade might provide a good balance between security and

functionality.

Keywords: proxy contract, logic contract, upgradability, security, blockchain

doi:10.6342/NTU202203210

Contents

Verification Letter from the Oral Examination Committee
W

Abstract

Contents

List of Figures

List of Tables

List of Algorithms

Chapter 1 Introduction

Chapter 2 Background

2.1 EVM . ..
2.2 EVMOpcode
2.3 EVM Storage Layout
2.4 Function Signature
2.5 Fallback Function.

2.6 Ethereum Improvement Proposals

vi

Page

ii
iii
iv
vi

ix

xi

doi:10.6342/NTU202203210

Chapter 3 Related Work 12

3.1 Smart Contract Analysis Tools 12

3.2 Ethereum Virtual Machine Emulator 18

32.1 Go-Ethereum 13

322 E-EVM . . . e 14

33 Proxy ContractRelated 14
Chapter 4 Security Issues 15
4.1 Definition of Proxy Contracts 15

4.2 Function Collisions 15

4.3 Storage Collisions 18
Chapter 5 PROXYCHECKER: Design and Implementation 21
5.1 OVerview o e 21

5.2 Delegatecall Detector 23

53 Dynamic Analyzer 24

53.1 CreateaCalldata 25

5.3.2 Dynamically Analyze and Extract the Parameters 26

5.3.3 Comparethe Calldata 28

54 ContractChecker 29
Chapter 6 Data Collection and Analysis Result 34
Chapter 7 In-depth Analysis 41
7.1 LogicContracts 42

7.2 Proxy Contracts 46

7.3 Other Findings 48

vii doi:10.6342/NTU202203210

Chapter 8 DISCUSSION 50

8.1 Mitigation for Security Issues 50
82 ProxyContractUsage 52
8.3 Limitations 54
Chapter 9 CONCLUSION 55
References 57

doi:10.6342/NTU202203210

viil

2.1

5.1
5.2
53
54

6.1
6.2

List of Figures

EVMcomponents 6
ProxyCheckeroverview 22
Delegatecall Detector 24
Dynamic Analyzer 25
Contract Checker 29
The query we used in BigQuery 35
Result of Dynamic Analyzer 37

X

doi:10.6342/NTU202203210

5.1

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
7.4

7.5
7.6

7.7

7.8
7.9

List of Tables

Values for blockopcodes 28
Dataset information Lo 35
Number and percentage of contracts of each type in different datasets. . . 36
The number of contracts classified by where logic contract address is stored 38
Number of contracts is verified among EIP-1822, EIP-1967 and Others . 39

Number of contracts of collision issues among verified contracts 39
The top 5 most pointed logic contracts (part 1). 41
The top 5 most pointed logic contracts (part2). 41
The name of logic contracts in Table 7.1 and Table 7.2 with source code. . 42
The function prototypes of logic contracts in Table 7.1 and Table 7.2 with-

outsource code.ol 44
The number of distinct logic contract addresses in two datasets. 45
The top 5 proxy contracts with the same bytecode and their contract name.

(part 1) . . o e 46
The top 5 proxy contracts with the same bytecode and their contract name.

(part2) . . e 46
Proxy contract names and their logic contract addresses. 47
Upgradeevents. 48

doi:10.6342/NTU202203210

List of Algorithms

1 Binary search pseudocode oL oL 31

doi:10.6342/NTU202203210

X1

Chapter 1 Introduction

Decentralized Finance (DeFi) allows everyone to deploy smart contracts on a public
blockchain, such as Ethereum, for providing various financial services. As smart contracts
are code written by human developers, they may contain bugs. Many of these bugs have
been exploited and have caused DeFi users and developers significant money loss. For
example, in 2016, the DAO attack [9] exploited a reentrancy vulnerability [20] in a smart
contract to steal the equivalent of $70 million. Unfortunately, unlike directly changing
code when patching other software systems, developers cannot fix buggy code in a de-

ployed smart contract because of the immutable feature of blockchains.

The concept of the proxy contract has emerged recently as a remedy to immutable
buggy contracts. By putting the actual program logic into a secondary contract called a
logic contract, a proxy contract can “upgrade” by switching to a different logic contract.
In other words, a proxy contract can upgrade its program logic by modifying its storage

(which stores the address of the logic contract) without modifying its code.

In this work, we focus on investigating the proxy contracts on Ethereum because it is
the most popular public blockchain (by market capitalization) supporting smart contract
functionality. In Ethereum, proxy contracts can be implemented using the delegatecall

opcode. The delegatecall opcode is similar to call, but with one distinction: when called

1 doi:10.6342/NTU202203210

using the delegatecall opcode, the function runs in the context of the caller contract rather
than the callee contract.! Therefore, the delegatecall opcode is suitable for implementing
proxy contracts because the function in the logic (callee) contract can modify the proxy
(caller) contract’s Ethereum virtual machine (EVM) storage, and the proxy contract can
update to a new logic contract while preserving its storage information. Moreover, a logic
contract can be used by multiple proxy contracts simultaneously without interfering with

each other’s storage.

On the one hand, using proxy contracts enables upgradability and fixes smart contract
bugs. On the other hand, misuse of proxy contracts may introduce new attack vectors.
Particularly, when implemented using Ethereum’s delegatecall opcode, a proxy contract

may encounter function collisions and storage collisions, whose exploitation can deceive

users into invoking unintended code or manipulate the EVM storage. For example, an
attacker[4] exploited storage collisions and stole $1.1 millions of AUDIO [3] tokens. This
attack is listed in Rekt [30], a website listing all blockchain attacks. Briefly speaking,
a function collision occurs when the proxy contract contains a function whose function
signature? is the same as a function in the logic contract. A storage collision occurs when
variables of proxy contracts or logic contracts conflict. It is because both proxy contracts
and their logic contracts use the same storage. Thus, it is imperative to investigate the

prevalence of proxy contacts and whether they are vulnerable.

However, to our knowledge, no prior studies have thoroughly analyzed proxy con-
tracts’ prevalence and whether they are vulnerable to function collisions and storage col-
lisions. The tool Slither [16] can detect function and storage collisions if users specify

the proxy contract and all its corresponding logic contracts. However, it is challenging

!By contrast, when called using the call opcode, the function runs in the context of the callee contract.
2A function signature is the first four bytes of the hash value of a function prototype.

7 doi:10.6342/NTU202203210

for users to identify all previous logic contracts of a proxy contract; the user may have to
examine all transactions so far. In contrast, in this work, we propose an efficient method
to automate this search of logic contracts. Several works [19, 38] discuss how to write
a proxy contract and maintain its storage. However, they do not consider security issues
caused by the proxy contract’s upgradability. Worse yet, many did not provide a concrete
definition of proxy contracts, making it difficult to reproduce and compare against their

results.

To address these limitations of prior studies, in this work, we first survey related EIPs
and formulate an actionable definition of a proxy contract. We define a proxy contract as
a contract whose fallback function uses the delegatecall opcode to forward the received

calldata® to a logic contract.

Based on this definition, we develop a tool called ProxyChecker to determine (1)
whether a contract is a proxy contract and (2) whether the proxy contract is safe to use. One
can use ProxyChecker by just giving a smart contract address without any other input so it
is easy to use. ProxyChecker contains three components, Delegatecall Detector, Dynamic
Analyzer, and Contract Checker. Delegatecall Detector checks if a contract contains any
delegatecall and passes the result to Dynamic Analyzer. Dynamic Analyzer emulates an
EVM with a custom input to check if the contract meets our proxy contract definition. To
implement Dynamic Analyzer, we extend an open source project, Octopus [2£], to support
the latest opcodes. Given a detected proxy contract, Contract Checker runs an efficient
method for crawling all its logic contracts. It then crawls the source code of the proxy con-
tract and logic contracts and leverages Slither for identifying potential function or storage

collisions. We also discuss several implementation challenges, such as preventing com-

3A calldata is an input of a transaction. It contains the function signature and parameters of the function
to be executed.

3 doi:10.6342/NTU202203210

pilation errors and ensuring a consistent inheritance order when a contract inherits from

multiple contracts.

Our research questions are the following:

1. How widely are proxy contracts used?

2. What are the common usages of logic contracts?

3. What are the common usages of proxy contracts?

4. How frequently does a proxy contract upgrade?

5. How many proxy contracts contain function collisions or storage collisions?

To answer these questions, we sampled contracts from the transactions within six
block ranges: 100000 blocks each February between 2017 to 2022. We analyzed the
sampled contracts using ProxyChecker and found that the percentage of proxy contracts
increased from 1% in 2017 to 88% in 2022. The increase is reasonable as proxy contracts
were first proposed in 2018 and refined by several EIPs later. Our manual inspection sug-
gests that the increase is also due to the NFT trend. As for the proxy contract type and
its relationship with logic contracts, our analysis revealed that the most common type of

proxy contract is the minimal proxy contract*, and most proxy contracts are pointing to

a wallet contract [10]. Also, a logic contract may be pointed by several proxy contracts,
but these proxy contracts usually have the same bytecodes. We also analyzed the upgrade
events in proxy contracts and found that only 1139 proxy contracts have been upgraded

for fixing bugs or supporting new features, and the average blocks between upgrades in

4The term is introduced in the 1167th Ethereum Improvement Proposals (EIP-1167).

4 doi:10.6342/NTU202203210

each dataset range from 33529 to 11895666. For security issues, we found function colli-
sions are easy to create, and most of the security issues in our dataset belong to function
collisions. Moreover, all of the function collisions in our dataset are because of the same
function name in both proxy contracts and logic contracts. The reason is that both proxy
contracts and logic contracts are inherited from the same smart contracts for managing
storage in EVM. Besides, we found that storage collisions are easy to exploit by the proxy

Oowner.

We provide some suggestions for users and developers to avoid triggering the two
main security issues. We also show several suggested usages of proxy contracts and their
advantages and disadvantages. We conclude that the best usage of proxy contracts is for
personal usage, like creating one’s proxy contract for a wallet contract. As a result, there
is no need to worry about malicious proxy owners. This usage is also the primary usage

in our dataset.

Our main contributions are the following:

* Build an easy-to-use ProxyChecker.

* Present a systematic result of proxy contracts with three block ranges.

* Provide security suggestions for users and developers.

* Give some suggested usages of proxy contracts.

* We show that a proxy owner can manipulate the proxy contract storage.

5 doi:10.6342/NTU202203210

Chapter 2 Background

Since the delegatecall opcode and fallback function are the core of a proxy contract,

we need to know how opcodes and fallback function work in Ethereum virtual machine
(EVM). Moreover, the two main security issues of a proxy contract, namely, function
collision and storage collision, are related to the storage layout and the function signature

of a contract. We will explain these in the following sections.

21 EVM

EVM is a stack machine that executes sequences of bytecodes. The main components

in the EVM are shown in Figure 2.1, and we will explain each of them in turn below.

Ethereum Virtual Machine (EVM)
EVM code
Machine State (volatile) '
Program Counter (immutable)
(PC)
Stack || Memory Storage
]
world state
(persistent)

Figure 2.1: EVM components

The EVM code is the bytecode of a smart contract and is stored on the Ethereum

6 doi:10.6342/NTU202203210

blockchain. The bytecodes are usually compiled from two compilers, Solidity [3] and
Vyper [35]. The program counter (PC) variable indicates the location of the EVM code
that the EVM is executing. Executing the EVM code costs the gas and the Gas variable
stores the remaining gas. If the EVM runs out of gas, the EVM will halt and revert. The
stack contains at most 1024 items, each of which is 256 bits. The memory is a word-
addressed byte array. Each smart contract maintains its storage to store data, and the
storage can theoretically contain up to 2% slots if we ignore the cost of gas. Each storage
slot is 256 bits. All smart contract storage is persistent in the Ethereum blockchain. At the
beginning of the EVM execution, both stack and memory are empty, but the storage may

contain data from previous transactions.

2.2 EVM Opcode

The opcodes to the EVM [13] are the same as instructions to the CPU. The program
code of a smart contract is called bytecode. It is composed of a bunch of opcodes that
smart contracts will execute. Since the EVM is executed on the blockchain, users may

need to pay the miner different amounts of gas to execute different opcodes.

Proxy contracts are based on the delegatecall opcode. The delegatecall opcode can
execute functions of other contracts but modify the storage in proxy contracts. This is the

root cause of storage collisions mentioned in Section 4.

7 doi:10.6342/NTU202203210

2.3 EVM Storage Layout

In EVM, each global variable, called state variable, defined in a smart contract has
its storage slot. The order of declaration of the variables is the same as the index of that
variable in the storage. For example, the first global variable in a contract is stored at
storage slot 0, while the second global variable is stored at storage slot 1. However, dif-
ferent types of global variables may have different storage layouts [31]. For some base
types of global variables, such as uint, the variable’s value is stored at its storage slot.
For dynamic array or string, the value stored at its storage slot is the size of the array,
and the storage location of the array is at storage slot keccak256(index of array in the
contract) + offset. For mapping, there is no value stored in its storage slot, the storage
location of the data in the mapping is at storage slot keccak256(the key of the data, index

of mapping in the contract).

2.4 Function Signature

In Ethereum, a function is identified by its signature, which is the first four bytes from
hashing the prototype string of a function using the keccak256 hash function. A prototype
string of a function is a string concatenating the function name and the type of function

parameters. For example, the prototype string of a function test(address a, address b) is

test(address,address), and the value of hashing test(address,address) is 0x2b6d0cebcc14be

50c4c35dd046aed41466c895d3f0b3916f60d112fd199c5ad3. Thus, the function signature

of the function test(address a, address b) is 0x2b6d0ceb.

If the receiver of a transaction is a smart contract, the EVM will treat the first four

8 doi:10.6342/NTU202203210

bytes of the calldata as a function signature and execute the corresponding function inside
the smart contract. The calldata is a byte-addressable data field inside a transaction. One

can send any calldata along with a transaction.

2.5 Fallback Function

If the function signature within a calldata does not match any function in a contract,
then the contract will execute the fallback function as the default. The name of the fallback
function may be different in different compilers. For example, the fallback function is

called fallback function in Solidity but called default function in Vyper.

2.6 Ethereum Improvement Proposals

Ethereum Improvement Proposals (EIP) are the suggested improvements for devel-
oping a smart contract. Although EIPs can be proposed by anyone and may not be adopted
by Ethereum officially, developers often regard EIPs as a reference when creating con-

tracts.

We searched among existing EIPs using the keyword “proxy” and found that the
ideas of proxy contracts have been proposed or discussed in EIP-897, EIP-1167, EIP-
1822, EIP-1538, EIP-1967, and EIP-2535. All of them used the term proxy contract, but
only EIP-1822 defined a proxy contract: “The contract A which stores data, but uses the

logic of external contract B by way of delegatecall()”.

As we will explain later, the definition in EIP-1822 is loose and may include contracts

that use delegatecall for other purposes, such as making calls to library functions. We will

9 doi:10.6342/NTU202203210

present a precise definition suitable for measurements and security analysis in Section 4.

EIP-897 (titled “DelegateProxy”) is the first EIP touching upon the concept of proxy
contracts and trying to standardize the proxy contract interface. However, there is no

definition or explanation of what a proxy contract is.

EIP-1167 (titled “Minimal Proxy Contract”) aims to minimize the cost of deploying
a contract that was deployed before. What a minimal proxy contract does is using del-
egatecall to call another contract with all calldata the minimal proxy contract received.
The cost of deploying a smart contract is the size of the code, and minimal proxy contract
only contains indispensable opcodes for using delegatecall instead of the same smart con-
tract. Thus, the cost of deploying a minimal proxy contract is much less than deploying a
copy of a smart contract but their functionality are the same. In EIP-1167, the length of a
proxy contract’s bytecode is usually less than 100 bytes, and the logic contract address is
hardcoded in the bytecode of proxy contract. However, EIP-1167 does not provide a clear

definition of the minimal proxy contract.

EIP-1822 (titled “Upgradeable Proxy Standard) proposes a standard upgradeable
proxy contract that can be compatible with all contracts. It uses a specific storage slot
at the value of keccak256(“PROXIABLE”) to store the logic contract address. EIP-1822
contains terminology “Proxy Contract” and gives the definition. However, this definition
means any contract using delegatecall is a proxy contract. We argue against this definition

in Section 4.

EIP-1538 (titled “Transparent Contract Standard”) is replaced by EIP-1967 (titled
“Standard Proxy Storage Slots) by the same proposer. The main goal of EIP-1967 is to

save the specific data in a specific storage slot to avoid storage collisions. The logic con-

10 doi:10.6342/NTU202203210

tract address is saved at storage slot at the value of keccak256(*“‘eip1967.proxy.implement-

ation”) - 1.

It also defines a special form of logic contract called beacon contract, which is usu-
ally used for keeping the logic address for multiple proxy contracts in a single location.
The beacon contract address is saved at the storage slot indexed by keccak256(“eip1967-
.proxy.beacon”) - 1 of the proxy contract. The administrator of the proxy contract, which is
the proxy owner, is saved at the storage slot indexed by keccak256(*“eip1967.proxy.admin”)

- 1.

The maximum size of a smart contract is 24KB, so every smart contract can only
contain a limited number of functions. Nevertheless, EIP-2535 (titled “Diamonds, Multi-
Facet Proxy”’) wants to make a proxy contract that can contain more functions regardless
of the 24KB size limit. For simplicity, we will call this kind of proxy contract as diamond

contract. A diamond contract uses the mapping type to map a function signature to a logic

contract address. Theoretically, a diamond contract owner can register up to 22° number
of function signatures to different logic contracts. The delegatecall will only be triggered

if the function signature is registered in the proxy contract; otherwise, it will revert.

11 doi:10.6342/NTU202203210

Chapter 3 Related Work

3.1 Smart Contract Analysis Tools

Although there are many smart contract analysis tools, to our knowledge, only Slither
supports security checks on proxy contracts. Slither [16] is an open-source static analy-
sis framework for smart contracts. It contains many detectors for detecting vulnerabil-
ities. Among these detectors, one detector is for proxy contracts, called slither-check-
upgradeability. This detector can help developers review proxy contracts to prevent bugs

inside the smart contracts.

Though the detector can perform security analysis on proxy contracts, it needs the
source code of both proxy contracts and their logic contracts. Users can extract the logic
contract addresses from previous transactions. However, a smart contract may have thou-
sands of previous transactions so it is hard for users to examine all these transactions. To
address the problem, we provide a method to collect all of the logic contracts a proxy

contract used before in our tool. We explain the details in Section 5.

Mythril [8], Manticore [2 1], rattle [34] and ConFuzzius [33] are smart contract anal-
ysis tools, but none of them include security check on proxy contracts. For example, rattle

generates control-flow graphs of smart contracts, and Mythril performs security analysis

12 doi:10.6342/NTU202203210

on smart contracts. However, it is hard to extend these tools to identify proxy contracts
and detect their security issues because these tools focus on analyzing individual contracts.

In contrast, we need to consider both proxy contracts and logic contracts at the same time.

3.2 Ethereum Virtual Machine Emulator

Based on the definition in Chapter 4.1, we need to know each state of the stack when
executing the EVM to verify a smart contract is a proxy contract. Thus, an EVM emulator
is needed and we create an EVM emulator component in our ProxyChecker. Several ex-
isting tools have similar functionality and may replace our emulator component but with

some constraints. We briefly review these emulation tools in the following sections.

3.2.1 Go-Ethereum

Go-Ethereum [32] is an official implementation of the Ethereum protocol by Golang.
One can use it to interact with the Ethereum blockchain. In Go-Ethereum, a command
called evm can execute the bytecode and output the state of stack and memory at each
opcode execution. This command is useful for finding a proxy contract because it can
display the state of stack, memory, and storage of each opcode operation. We do not adopt
Go-Ethereum in our tool because it requires information about the current Ethereum state,

and the information is too large to be handled efficiently.

Go-Ethereum also provides JSON-RPC APIs. These APIs are used to connect to an
Ethereum JSON-RPC node like Infura [18] or QuickNode[29]. One of the APIs is called

debug tracecall, which can emulate the transaction by providing input and returning all

information of the transaction, such as every state of stack, memory, and storage of EVM.

13 doi:10.6342/NTU202203210

This API can replace our EVM-emulator component of our tool. However, Infura does
not support this API, and QuickNode needs to pay for using the API. One can also build

a JSON-RPC node of Ethereum, but it costs a lot of time and a lot of storage space.

3.2.2 E-EVM

E-EVM[24] is a tool that emulates the bytecode of Ethereum and visualizes the
control-flow graph with the state of the stack. Initially, we think the tool may help us to
find proxy contracts. However, we cannot reproduce the result by the source code which

is provided on Github. As a result, we decide not to choose this tool as our component.

3.3 Proxy Contract Related

Several studies [19, 38] focus on how to write a proxy contract and show different
concepts of how to maintain the storage in a proxy contract to prevent the storage collision

problem.

Etherscan [14] is a website that provides information about Ethereum, such as every
transaction and contract’s bytecode. It also keeps upgrading to provide more features. To
our knowledge, only Etherscan supports the functionality of detecting proxy contracts.
Proxy contract detection is one of their nearly-introduced features. However, there is no
document about it, so we do not know how it works. In comparison, in this work, we

provide our definition of proxy contracts and how to detect them.

14 doi:10.6342/NTU202203210

Chapter 4 Security Issues

We first define what a proxy contract is, then discuss the two security issues of proxy

contracts in this section.

4.1 Definition of Proxy Contracts

Since there is no general definition of proxy contracts, we first formulate our defi-
nition of proxy contracts. We deem a contract a proxy contract if it uses delegatecall in
its fallback function to forward the calldata it received to another contract. The contract

receiving the forwarded calldata is defined as a logic contract of the proxy contract.

Our definition is compatible with the usage of all known proxy-related EIPs. More-
over, the calldata forwarding condition excludes the use of calling a library contract. A
library contract is a smart contract that contains reusable code for general usage. For

example, SafeMath [26] is a library for overflow prevention during math calculation.

4.2 Function Collisions

A function collision is when a proxy contract contains some functions whose function

signatures are the same as some functions in logic contracts. In this situation, a user may

15 doi:10.6342/NTU202203210

O 0 9 N Bk~ WD =

—_ = =
N = O

expect to execute a function in a logic contract but execute another function in the proxy

contract instead.

Code 4.1 is an example of a function collision. There is a proxy contract and its
logic contract is contract A. The function signatures of the proxyOwner() function and the
clash550254402() function are the same. Therefore, if a user wants to execute clash55025-
4402(), he will send the function signature of clash550254402() to the proxy contract.
However, the proxy contract will execute proxyOwner() instead of the fallback function

because its function signature is matched, which is not what the user expected.

A malicious proxy contract may leverage function collisions to deceive the user into
executing the malicious code. Besides, it is easy to find two functions with different names
with the same function signature if one does not restrict the function name’s format and
the function signature’s value. For example, creating two different functions with the
same function signature takes around 1 second on a laptop with an 17-7700HQ CPU. It is
slightly difficult to find a function whose function signature is a specific value, and it takes
several hours to find one on the same laptop, but it is arguably affordable for a dedicated,

monetary-driven attacker.

pragma solidity ~0.4.23;

contract Proxy {
function proxyOwner () public returns (address) {
return msg.sender;
}
function implementation() public view returns (address);
function () payable public {

address _impl = implementation() ;

assembly {

calldatacopy (0, O, calldatasize)

16 doi:10.6342/NTU202203210

13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

let result := delegatecall(gas, _impl, O, calldatasize, O,
0)

returndatacopy (0, O, returndatasize)

switch result
case 0 { revert(0, returndatasize) }

default { return(0, returndatasize) 7}

contract A {
function clash550254402() public view returns (address){
return address(this);
}
function test() public view returns (address){

return msg.sender;

Listing 4.1: Function collision example

It is worth noting that some design patterns for storage management mentioned in
[38] will result in function collisions. In these design patterns, both the proxy and logic
contracts inherit from a contract that stores all variables. The contract may contain some
functions for accessing the variables. However, it causes a function collision because both
proxy contracts and logic contracts contain the same function. We do not consider this a
false positive of function collisions because users will not know whether the logic in the

functions is the same unless checking the source code.

17 doi:10.6342/NTU202203210

(e S =) TV, B N VS I \)

10
11
12
13
14
15

4.3 Storage Collisions

A storage collision is an issue in storage slots. Since a proxy contract uses the dele-
gatecall opcode to forward calldata to a logic contract, the logic contract can modify the
storage of the proxy contract. We know the variable is stored at the index of the storage
slot according to the variables’ order. However, if the variables’ order in the logic contract

differs from the proxy contract, some unexpected results may occur.

Code 4.2 is an example of a storage collision. If users want to execute the add()
function in a logic contract by calling a proxy contract, they may expect the return value
is 3 because the “b+c” is written in the function. However, the return value is 1 because
the add() function returns the sum of values in storage slot 0 and storage slot 1. Thus, the
add() function will add the first variable and second variable in the smart contract, which

are a and b, and return.

contract proxy{

uint a = 0;
uint b = 1;
uint ¢ = 2;

function (){
assembly {
let result := delegatecall(gas(), "logic's address", O,
calldatasize(), 0, 0)
returndatacopy (0, 0, returndatasize())
switch result
case 0 { revert(0, returndatasize()) }

default { return(0, returndatasize()) }

18 doi:10.6342/NTU202203210

16
17
18
19
20
21
22
23
24

~N O L AW

contract logicq
uint b;

uint c;

function add() public returns (uint){

return b+c;

Listing 4.2: Storage collisions example 1

A storage collision will also happen at upgrading a proxy contract to a new logic
contract. If the order of variables in the new logic contract differs from the old logic

contract, values in those variables may be different.

Code 4.3 is another example of a storage collision. Usually, a logic contract contains
an initialize() function to initialize the proxy contract’s storage. The initialize() function is
expected to be called only once after the proxy contract is created. By checking the value
of initialized variable, we can prevent the function from executing again. However, if an
initialized proxy contract is upgraded to the new logic contract called newlInitialOnce, the
initialize() function can be executed again because the value of the initialized variable is
changed to False. Thus, it is important to ensure the variables’ order should be the same
between the old logic contract and the new logic contract when developers upgrade a proxy

contract.
contract InitialOnceq{

bool private initialized;

bool private boolean;

function initialize (){
require(!initialized);

boolean = false;

19 doi:10.6342/NTU202203210

initialized = true;

contract newInitialOnce{
bool private boolean;

bool private initialized;

function initialize(){
require(!initialized);
boolean = false;

initialized = true;

Listing 4.3: Storage collisions example 2

Nevertheless, if a proxy contract is upgradable and has a storage collision, a malicious
proxy contract owner can deliberately manipulate the storage of the proxy contract. For
example, a new logic contract may contain a function that can change any storage slot to
any value. As a result, if a token smart contract, such as YLD token [37], is deployed by
an upgradable proxy contract, the owner of the proxy contract can manipulate the number
of tokens or the ownership of the token by upgrading to a malicious logic contract that can

modify any storage value.

20 doi:10.6342/NTU202203210

Chapter 5 PROXYCHECKER:

Design and Implementation

This section presents the design and implementation of our tool, ProxyChecker. Prox-
yChecker is a tool for checking whether a smart contract address is a proxy contract or
not. If it is a proxy contract, ProxyChecker will try to get the source code of both the
proxy contract and its logic contracts. After that, it will do a security analysis on those

with source code to check if there are any security issues and output the result.

It is worth noting that our ProxyChecker implementation currently supports analysis

on Ethereum, but our idea and design apply to other smart contract platforms.

5.1 Overview

ProxyChecker contains three components, Delegatecall Detector, Dynamic Analyzer,
and Contract Checker. The purpose of Delegatecall Detector is to filter out smart contracts
containing no delegatecalls. The purpose of Dynamic Analyzer is to verify whether the
calldata is forwarded by delegatecall in the fallback function. The purpose of Contract
Checker is to check if there are any function collisions or storage collisions in a proxy

contract.

71 doi:10.6342/NTU202203210

ProxyChecker

(T N

» Delegatecall Detector

bytecode

Y

address » Dynamic Analyzer

output

storage slots

Y

» Contract Checker

\ /

Figure 5.1: ProxyChecker overview

ProxyChecker only needs a smart contract address as input. First, Delegatecall De-
tector will check whether it is a contract and if there are any delegatecall in the smart
contract. Then, it will forward contracts containing delegatecalls to Dynamic Analyzer.
Dynamic Analyzer will construct a calldata and emulate the execution of the smart con-

tract.

After the emulation, Dynamic Analyzer can verify whether the smart contract is a
proxy contract or not. If the smart contract is a proxy contract, Dynamic Analyzer will
pass the storage slot which stores the logic contract address to Contract Checker. Contract
Checker will check the historical values of this storage slot and take these values as old
logic contracts’ addresses. Then, it will crawl the source code of the proxy contract and
logic contracts from Etherscan, and merge them into a single file for the input of Slither.
Last, we use slither-check-upgradeability from Slither to check if there are any function

collisions or storage collisions. We will explain all the components in the following sec-

27 doi:10.6342/NTU202203210

tions.

While developing ProxyChecker, we met the following challenges:

1. Some opcodes depend on the current state of Ethereum but the state of Ethereum

changes at every new block creation.

2. Old logic contracts can be found in transactions but the number of transactions may

be too large to search one by one.

3. Because of inheritance, we cannot simply merge multiple source code files into one

file in any order.

To deal with the first challenge, we use the latest value or a reasonable fixed value for these
opcodes. For the second challenge, we propose a binary search method to find, which will
be explained later. For the third challenge, we get the inheritance of each contract before

merging them, or it will cause a compilation error.

5.2 Delegatecall Detector

Fig. 5.2 shows the workflow of Delegatecall Detector.

Since the key opcode of a proxy contract is the delegatecall opcode, if a smart contract
does not contain any delegatecall opcodes, it must not be a proxy contract. Thus, we need
a smart contract disassembler, which can decompile Ethereum bytecode into a sequence
of opcodes. We use the disassembler from the open-source project Octopus [2&] to extract
the opcode from the bytecode of the contract and check if it contains any delegatecall

opcodes. We only proceed to the next component if it contains any delegatecall opcodes.

23 doi:10.6342/NTU202203210

Delegatecall Detector

Transform bytecode to opcodes

opcodes opcodes &

contains delegatecall?

address v

Detect delegatecall

Figure 5.2: Delegatecall Detector

Otherwise, we stop ProxyChecker.

5.3 Dynamic Analyzer

Fig. 5.3 shows the workflow of Dynamic Analyzer. Though delegatecall opcodes are
in the contract, they may in other functions rather than in the fallback function. Even if a
contract contains delegatecall opcodes in the fallback function, it is still possible that it is
not a proxy contract but for making library calls or other purposes. Therefore, we need to
get the parameters of the delegatecall when executing the fallback function to ensure the

smart contract meets our definition of the proxy contract.

Dynamic Analyzer is based on Octopus and it will do the following step by step.

1. Construct a calldata to trigger the fallback function.

2. Dynamically analyze and extract the parameters.

24 doi:10.6342/NTU202203210

opcodes,
address

Dynamic Analyzer

Generate Calldata

calldata

Emulate EVM

B

storage slots &
delegatecall’'s|parameters

A

Compare Calldata

Figure 5.3: Dynamic Analyzer

Is proxy contract?
& storage slots

3. Compare whether the calldata is passed to the fallback function

5.3.1 Create a Calldata

To check whether a contract matches our definition of proxy contracts, we first con-

struct a calldata such that the execution of a smart contract will trigger the fallback func-

tion. The contract will execute its fallback function if the first four bytes of calldata do

not match any function signature of functions. Thus, for making a smart contract to ex-

ecute the fallback function, we can leverage this property by creating a custom calldata.

Furthermore, according to the supplement documentation of [7], both Solidity and Vyper

will compile all function signatures following a PUSH4 opcode. Thus, we extract all 4

bytes of data following a PUSH4 opcode as function signatures and avoid using them as

our custom calldata. These function signatures may contain some false positives, such as

some four-byte constant variables defined in the smart contract. However, these false pos-

25

doi:10.6342/NTU202203210

itives will not affect our goal of making a smart contract to trigger the fallback function.
As aresult, we construct a calldata whose first four bytes are not the same as any function
signatures extracted from a contract, thereby ensuring that this calldata will trigger the

contract’s fallback function.

5.3.2 Dynamically Analyze and Extract the Parameters

In the second step, we dynamically analyze the smart contract with the calldata from
step 1. We need to get the calldata passed by delegatecalls so we can compare it with the
calldata created from step 1 in step 3. The calldata is one of the parameters of delegate-
calls. Since EVM is a stack machine, all opcode parameters are stored in the EVM stack.
Moreover, the stack is also affected by the EVM’s memory and storage so we emulate the

EVM to collect the parameters.

Due to some limitations of the existing emulator tool as we mentioned in Section 3,
we build our EVM emulator component based on Octopus. Octopus is an open-source
security analysis framework for WebAssembly and smart contracts. Moreover, it also
supports different types of smart contracts, such as Ethereum smart contracts, EOS [11]
smart contracts, and NEO [23] smart contracts. For Ethereum smart contracts, Octopus
provides many modules to analyze the bytecode of Ethereum smart contracts. Although
the project’s last update was two years ago, and Ethereum had introduced more opcodes,
we chose it as our base because the framework of Octopus is easy to extend. Since the com-
ponents of Octopus are too many, we only focus on the components related to Ethereum

and add some functionalities for our needs.

We modified the source code of Octopus to support the new opcodes introduced after

26 doi:10.6342/NTU202203210

the last update of Octopus. We also add a Python [!] list as the stack, a Python bytes
array as the memory, and a Python dictionary as the storage. Moreover, before we start
the analysis, we need to set some parameters, such as the caller address and the contract

address. We use a Python dictionary to record these parameters before emulation.

Octopus does not handle some opcodes whose values depend on the state of the
global environment, such as the number opcode, which pushes the latest block number
of Ethereum into the stack. We call them block opcodes because they depend on the block
state of Ethereum. Our goal is to emulate a transaction and a transaction can be initiated
by anyone at any time. Thus, for these block opcodes, we use possible values to emulate.
All values are set by checking the latest value of Ethereum or a reasonable fixed value,
so all of them are possible values that may be used in some transactions. The value of
coinbase can be replaced by another value because anyone can be the miner of a block.
The value of basefee can also be replaced by any other value, but it is more likely be-
tween the highest value and lowest value in history. However, this method still adds some
uncertainty to our result. For example, a smart contract may be designed to execute only
under a specific miner by leveraging coinbase opcode. Thus, if we meet these kinds of
opcodes in our analysis, we put an uncertainty label in the result to notify the users. In
our dataset, none of the contracts contains these kinds of opcodes and delegatecall at the
same time, which means it does not affect our result. These block opcodes and values are

listed in Table 5.1.

For some opcodes like call or delegatecall, which Octopus does not implement,
they need to call another contract and get the execution result to push into the stack. To
get the result of these kinds of opcodes, we create another EVM-emulator instance and

execute it. After that, we put the result back into the stack of the original EVM-emulator

27 doi:10.6342/NTU202203210

Table 5.1: Values for block opcodes

opcode | value |

blockhash | latest value of block
difficulty | latest value of block
chainid 1

gaslimit latest value of block
basefee 50000000000

timestamp | latest value of block
0xbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbbb
number latest value of block
gasprice latest value of block

coinbase

to keep emulating. For some opcodes like CREATE or CREATEZ2, they will put the bytecode
on Ethereum at a smart contract address. Since we cannot know the exact contract address
of the newly created one, we use a fixed address instead. If the emulator encounters this
address, we treat it like a normal smart contract. The method is acceptable because the
probability of address collision in Ethereum is low. Besides, no smart contract encounters

the CREATE or CREATE2 opcode during emulation in our dataset.

After the emulation, if we encounter any delegatecall, we pass the calldata it brings
and the information of the contract storage slot to step 3. Otherwise, we halt the Proxy-

Checker.

5.3.3 Compare the Calldata

By our definition of a proxy contract, a proxy contract must forward the same calldata
it received to a logic contract. Thus, we need to compare the calldata we constructed in
step 1 and the parameters of delegatecall in step 2. If they are the same, then the contract
is a proxy contract. Otherwise, the contract is not a proxy contract but a smart contract

doing a library call.

28 doi:10.6342/NTU202203210

5.4 Contract Checker

address,
storage slots

Contract Checker

\ 4

Collect all logic contracts

\

/

address,
logic contracts

Do security check

Figure 5.4: Contract Checker

Fig. 5.4 shows the workflow of Contract Checker. Contract Checker is for checking

the security of proxy contracts. Our current implementation focuses on detecting function

and storage collisions, as introduced in Section 4.

Moreover, we want to check whether the source code of contracts are provided be-

cause users should only interact with smart contracts with source code provided, or they

cannot know what the contracts will do.

From Section 4, we know that all logic contracts used by the proxy contract before

may affect the security of the proxy contract. As a result, we need to crawl all the logic

contracts used by the proxy contract.

First, we try to find where the address of the logic contract is stored. The address of

the logic contract must be stored in the following three places:

1. bytecode of the proxy contract.

29

doi:10.6342/NTU202203210

2. specific storage slot.

3. another smart contract.

We first check if the address of the logic contract matches the value of any storage
slot we stored in step 2. If they are matched, the storage slot is where the logic contract
is stored. Otherwise, we check if the logic contract address appears in the bytecode of the
proxy contract. If the logic contract address does not appear in the bytecode of the proxy

contract, the logic contract address is stored in another contract.

Suppose the logic contract address is stored in the bytecode of the proxy contract. In
that case, this logic contract is the only one the proxy contract uses because it is impossible
to change the deployed bytecode. If the logic contract address is stored at a specific storage
slot, then all values stored in this storage slot before are the all logic contract addresses used
by the proxy contract. However, in Ethereum, there is no API for getting all values that had

been stored in a storage slot but an API called web3.eth.getStorageAt to get the value of a

storage slot of an address at a specific block number. A naive solution is to access a storage
slot from block 1 to the latest block. However, the current block number is more than
14000000, so it needs to call the web3.eth.getStorageAt API more than 14000000 times
for a proxy contract, which is not practical. Thus, we apply a binary search to locate all
logic contract addresses from block 1 to block 14800000 (the latest block number during
our experiment). This method is based on the assumption that proxy contracts would
not use the same logic contract twice. We consider it acceptable because an upgradable
proxy contract is upgraded if the old logic contract contains loopholes or some deprecated
functions. It is unreasonable to upgrade to an old logic contract. Nevertheless, by this

method, we only need to call the web3.eth.getStorageAt API 26 times per proxy contract

30 doi:10.6342/NTU202203210

on average rather than 14800000 times in the naive method.

Algorithm 1 is the pseudocode of the binary search. The function BinarySearch needs
four parameters, the first one is the left bound of the block range, the second one is the
right bound of the block range, the third one is a set storing all logic contract addresses, and
the last one is the storage slot for the logic contract address. The algorithm first checks
the values in the slot of the left and right bounds of the block range. If the values are
different, we check the value of the storage slot from the middle of the block range. If the
left and middle ones are different, it calls itself again with the range 1 to mid. Similar to
the middle and the right bound. Last, the function returns S, which contains all the logic

contract addresses.

ALGORITHM 1

Binary search pseudocode

L,r are the left and right boundary of a block range.

S is a set for storing value we get from the getStorageAt.
slot is the storage slot position.

function BINARYSEARCH(/, 1, S, slot)
l, < getStorageAt(slot,l)
Ty < getStorageAt(slot,)
S« SU{ly,r,}
if [, # r, then
mid <« (I +71)/2
mid, < getStorageAt(slot, mid)
if [, # mud, then
S < S U BinarySearch(l,mid, S, slot)
end if
if mid, # r, then
S < S U BinarySearch(mid + 1,r, S, slot)
end if
end if
return S
end function

If the logic contract address is stored at another contract, we currently are not able to
get all logic contracts the proxy contract used before. The reason is that the contract which

stored the logic contract address may be changed, and for different contracts, the ways they

31 doi:10.6342/NTU202203210

stored the logic contract address may be different. In our experiments, we exclude these
proxy contracts for further analysis. The solution for this kind of proxy contract is our

future work.

After collecting all logic contracts, we check if the source codes of the proxy contract
and logic contracts are provided. Since Etherscan is the most popular platform to get
information about Ethereum, we chose it to check whether a smart contract is provided
with the source code. We call these smart contracts verified contracts. If the proxy contract
or one of its logic contracts is not a verified contract, we consider the proxy contract to
be insecure. If all contracts are verified contracts, we check if there are any function or
storage collisions issues. From Section 2, we know slither-check-upgradeability can check

both issues with source code, so we need to get the source code first.

We use an API from Etherscan to get the source code of these verified contracts.
However, the format of the source code return from the API is not consistent. Some return
a dictionary format of source code, while others return an array of source code. Moreover,
a smart contract may inherit from other smart contracts. Each smart contract may have
a single source code file. To prevent compilation errors, we need to put these files into
one file and ensure their order corresponds to the inheritance. We create our format parser
to get the inheritance of all smart contracts. We first put the smart contracts that do not
inherit from any contracts, then put other contracts one by one if their inherited contracts
are put above. Last, we apply these contracts on the slither-check-upgradeability to check

if there are any function or storage collisions.

The output of ProxyChecker includes whether the smart contract is a proxy contract,

all logic contract addresses, all available source code and if there are any function colli-

32 doi:10.6342/NTU202203210

sions or storage collisions.

33 doi:10.6342/NTU202203210

Chapter 6 Data Collection and

Analysis Result

We use ProxyChecker to examine smart contracts on the Ethereum mainnet. In this

section, we report on our data collection and findings.

Due to the limited time and computing resources, we cannot analyze all smart con-
tracts. Instead, we sample smart contracts from six block ranges to observe the trend of
proxy contract usage. The resulting datasets are SC17, SC18, SC19, SC20, SC21, and
SC22. Table 6.1 summarizes their block ranges, the date these blocks were added, and the
number of contracts we sampled. Each block range has 100,000 blocks. Since there are

too many smart contracts except for the first range, we sample at most two contracts from

each block.

We need to collect the contract addresses from Ethereum mainnet. Fortunately, Google
provides a BigQuery service for developers to query various kinds of data. One is a SQL
database table that stores Ethereum mainnet data and updates to the latest block every few
seconds in this service. We can query the information of smart contracts, such as the block
number and block hash of the block that created this contract. We collected all the smart
contract addresses for the block range 3140000 to 3240000 as SC17 because the number

of smart contracts is only 6416.

34 doi:10.6342/NTU202203210

Block range | Date # of samples

SC17 | 3140000 Feb-07-2017 | 6416
3240000 Feb-24-2017

SC18 | 5040000 Feb-06-2018 | 113281
5140000 Feb-23-2018

SC19 | 7180000 Feb-05-2019 | 91940
7280000 Feb-28-2019

SC20 | 9430000 Feb-06-2020 | 82218
9530000 Feb-22-2020

SC21 | 11800000 Feb-06-2021 | 91586
11900000 Feb-21-2021

SC22 | 14160000 Feb-07-2022 | 114301
14260000 Feb-23-2022

Table 6.1: Dataset information

The numbers of contracts in the rest of the block ranges are more than 250000. For

these block ranges, we fetch at most two contract addresses from each block for sampling

because the number of smart contract addresses is too large. Since we are doing sampling,

any two smart contracts from a block are acceptable. Thus, we pick the first two smart

contract addresses from each block. We use the query shown in Fig. 6.1 to fetch at most

two contract addresses from each block in the desired range. We collected 113281, 91940,

82218, 91586 and 114301 smart contract addresses from block range in 2018, 2019, 2020,

2021 and 2022 respectively. These datasets are denoted as SC18, SC19, SC20, SC21 and

SC22. Some blocks may contain fewer than two smart contract addresses. However, we

think it is acceptable because we are doing sampling in a period.

select *

FROM

(

SELECT address,
ARRAY_TO_STRING(function_sighashes, ', '), block_number,
ROW_NUMBER() OVER (PARTITION BY block_number) AS

row_n

FROM “bigquery-public-data.crypto_ethereum.contracts’
ORDER BY block_number DESC

)

WHERE

row_n < 3

ORDER BY block_number DESC, row_n

Figure 6.1: The query we used in BigQuery

35

doi:10.6342/NTU202203210

We apply our ProxyChecker to every contract address in the collected datasets.

Dataset
Types SC17 SC18 SC19 SC20 SC21 SC22
proxy 80 (1.25%) 1936 (1.71%) 1062 (1.16%) | 13548 (16.48%) | 31560 (34.46%) | 101398 (88.71%)
no delegatecall | 6335 (98.74%) | 110684 (97.7%) | 90762 (98.72%) | 68328 (83.1%) | 59698 (65.18%) | 12775 (11.18%)
Not proxy library call 0 (0%) 655 (0.58%) 106 (0.11%) 319 (0.39%) 309 (0.34%) 112 (0.1%)
contract error 1(0.01%) 6 (0.01%) 10 (0.01%) 23 (0.03%) 19 (0.02%) 16 (0.01%)
‘ Total ‘ 6416 ‘ 113281 ‘ 91940 ‘ 82218 ‘ 91586 ‘ 114301 ‘

Table 6.2: Number and percentage of contracts of each type in different datasets.

Table 6.2 shows the result of applying the first two components, Delegatecall De-
tector and Dynamic Analyzer. The proxy type means the smart contract meets our proxy
contract definition. Inside the not proxy type, we can classify them into three categories:
no delegatecall, library call, and contract error. The no delegatecall type means the execu-
tion of the fallback function in a smart contract did not encounter any delegatecalls. The
reason may be that the delegatecall is contained in other functions, or the smart contract
does not contain any delegatecall. The library call type is the smart contract that executes
the delegatecall in the fallback function, but the calldata we created is not forwarded into
delegatecall. The contract error type is the smart contract that contains an invalid bytecode
sequence such as popping from an empty stack or the smart contract that uses delegatecall
or call opcode to call an invalid contract address such as address “0”. Besides, no smart
contract encounters block opcodes mentioned in Table 5.1. Though it may be lost from

sampling, it also means block opcodes are rare to be used in proxy contracts.

In dataset SC17, only 80 smart contracts belong to the proxy type, and most smart
contracts belong to the no delegatecall type. It is reasonable because the proxy pattern had
not been invented then. In datasets, SC18 and SC19, only around 1% of smart contracts
are proxy contracts, which shows that proxy contracts were not popular at that time rather
than other kinds of smart contracts. In dataset SC20, most smart contracts belong to the

no delegatecall type either, but 13548 smart contracts belong to the proxy type, which

36 doi:10.6342/NTU202203210

percentage(%)

110

100

90

80

70

60

50

40

30

20

10

—10

<t [a\]
= I i~
o0 o o0
2 > =28 _ B
I~
o0
- ~ oo} 1
o
0
[00]
—
B = |
o
LO
| ! N
<t
jark
o0
!
L o) 0 |
— —
—
) q q q i — 9
sl 2rllz2sl =2l z2 xS S
=l o=l Sl is -l IS LS Ll S —
T T T T T T
SC17 SC18 SC19 SC20 SC21 SC22
dataset

loproxyllino delegatecalll Ulibrary call Il contract error

Figure 6.2: Result of Dynamic Analyzer

37 doi:10.6342/NTU202203210

accounts for 16.48%. In dataset SC21, most smart contracts belong to the no delegate-
call type either, but 31560 smart contracts belong to the proxy type, which accounts for
34.46%. In dataset SC22, most smart contracts belong to the proxy type, which accounts
for 88.71%, and only 12775 contracts belong to the no delegatecall type, which accounts
for 11%. Figure 6.2 shows the percentage histogram of each block range. From the fig-
ure, we notice that the use of proxy contracts are increasing from 2020 to 2022. The result

answers our first research question.

For proxy contracts, we apply Contract Checker. After the first step of Contract
Checker, which is collecting all logic contracts of the proxy contract, we can categorize

these proxy contracts into different types of EIPs.

For those proxy contracts whose logic contract addresses are stored in bytecode, we
classify them as EIP-1167 (minimal proxy contract). For those contracts whose logic
contract addresses are stored at the keccak256(“PROXIABLE”) storage slot, we classify
them as EIP-1822. For those contracts whose logic contract addresses are stored in kec-
cak256(“eip1967.proxy.implementation”) storage slot, we classify them as EIP-1967. For
those contracts whose logic contract addresses are not stored in bytecode or any storage
slot, they must be stored in another smart contract, we give them a single type. For the
rest of the proxy contracts whose logic contract addresses are stored in other storage slots,

we classify them as the “others” type. The result is shown in Table 6.3.

Types\Dataset | SC17 | SC18 | SC19 | SC20 | SC21 | SC22
EIP-1167 79 1924 | 317 | 7648 | 25802 | 51804
EIP-1822 0 0 0 0 207 0
EIP-1967 0 0 0 1068 876 244

another contract 0 7 4 909 418 1230
Others 1 5 741 | 3923 | 4257 | 48120

Table 6.3: The number of contracts classified by where logic contract address is stored

38 doi:10.6342/NTU202203210

The two security issues we want to analyze will not happen on minimal proxy con-
tracts because no variables or functions are defined in minimal proxy contracts. It also
means minimal proxy contracts can not be upgraded. Currently, the “another contract”
type is excluded because we do not know where the logic contract is stored. We will in-
clude it in our future work. Thus, we only move the type EIP-1822, EIP-1967, and others
into the next stage of the security check, which is to get all logic contracts by the binary

search method.

Types\Dataset SC17 | SC18 | SC19 | SC20 | SC21 | SC22
Verified 0 0 679 | 4398 | 5010 | 46890

Unverified 1 5 62 | 593 | 330 | 1474
(EIP-1822 & EIP-1967 & Others) | 1 | 5 | 741 | 4991 | 5340 | 48364

Table 6.4: Number of contracts is verified among EIP-1822, EIP-1967 and Others

After collecting the logic contract addresses of proxy contracts, we check whether
both proxy contracts and logic contracts are verified contracts in the third component of
ProxyChecker. Otherwise, we cannot apply the slither-check-upgradeability. Table 6.4

shows the number of proxy contracts and logic contracts that belong to verified contracts.

Types\Dataset SC17 | SC18 | SC19 | SC20 | SC21 | SC22
No collisions 0 0 102 | 2688 | 1086 | 900
function collisions 0 0 575 657 | 3835 | 44407
storage collisions 0 0 2 4 46 1269
function & storage collisions 0 0 0 1 28 13
error 0 0 0 1048 15 301
Verified |0 | 0 | 679 | 4398 | 5010 | 46890

Table 6.5: Number of contracts of collision issues among verified contracts

We apply the slither-check-upgradeability on these verified contracts and get the re-
sult shown in Table 6.5. The result answers our fifth research question. All function colli-
sion issues in the Table 6.5 are because of the same function name. They inherit from the
same smart contract for maintaining storage layout, as we mentioned in Section 4. Many of

the storage collisions may be false positives because the implementation of slither-check-

39 doi:10.6342/NTU202203210

upgradeability recognizes immutable variables as state variables. However, immutable
variables are stored in bytecode, not in storage, so it will not cause any storage collisions.
Thus, if the output of ProxyChecker contains any storage collision issues, one should
check ifit is a false positive. Slither is an open-source project so anyone can propose a fix
to it. Thus, fixing the false positive is our future work. The “error” type is because of the
implementation of the switching compiler in slither-check-upgradeability. If the Solidity
version differs between the proxy contract and logic contract, the error will occur during
executing slither-check-upgradeability. The results show that most proxy contracts man-
age storage by inheritance storage contracts. Moreover, it is rare to see a function collision

issue with a different function name in practice, at least not in our dataset.

40 doi:10.6342/NTU202203210

Chapter 7 In-depth Analysis

Rank\Dataset SC17 SC18 SC19
Top 1 79 times 712 times 524 times
0x6ab9dd83108698b9ca8d03af3c7eb91c0e54c3fe | 0x0f32732e4885f0dd61b64eef144329¢b809a96el | 0xfYe266af4bca5890e2781812cc6a6e89495a79f2
Top 2 1 times 311 times 88 times
0xc48717aefbd7fbbb081c48b5abdadc6a30368¢75 | 0x072461a5¢18f444bl1cf2e8dde6dfblaf39197316 | 0x4e201a5a5534bb334a3d7df4c82cd5db3bd82129
Top 3 0 times 299 times 54 times
0xc3b2ae46792547a96b9184405¢36d0e07edcd05c | 0xb1dd690cc9af7bb1a906a9b5a94f94191cc553ce
Top 4 0 times 274 times 47 times
0x837e8549819019320273d2a328b5ab402b24eed6 | Ox4ab6ce97a84178a84c1ceed6a763db619d0e6e4 13
Top 5 0 times 169 times 35 times
0xc89327da549c6eb96c59764b13013467d17¢7c79 | 0xf98e39029¢0f57b7d1d85be0b5579£813a58308
Table 7.1: The top 5 most pointed logic contracts (part 1).
Rank\Dataset SC20 SC21 SC22
Top 1 1764 times 6552 times 44934 times
0x989a2ad9acaa8c4e50b2fc6b650d6e1809b9195b | 0x39778bc77bd7a9456655b19fd4c5d0bf2071104e | 0xfIe266af4bca5890e2781812cc6a6e89495a792
Top 2 1644 times 3251 times 21411 times
0xef004d954999¢b9162acb3989279¢ff2161d5095 | 0x7186123dd9140555d0c2384b36f5773ddd7cde31 | 0x059ffafdc6ef594230de44f824¢2bd0a51caSded
Top 3 992 times 2701 times 3823 times
0x20af9e54a3670ef6a601bcalflec22b1f93cbe23 0xf9e266af4bca5890e2781812cc6a6e89495a79f2 | 0xe38f942db7alb4213d6213f70c499b59287b01f1
Top 4 864 times 1915 times 3317 times
0xb1dd690cc9af7bb1a906a9b5a94f94191cc553ce | 0x83b76b11257c4ece35370b6152f1946d49479e89 | 0x63730a73f5eb2b5e10486d20c10a451aa3clc6dd
Top 5 685 times 1115 times 2929 times

0x2fcfSeddf53a3319665d226239d29eff3921bf7

0x29b94b04520b828d9eb99136a16d97c¢7{t3d2600

0x39778bc77bd7a9456655b19fd4c5d0bf2071104e

Table 7.2: The top 5 most pointed logic contracts (part 2).

In this section, we want to find the reason or meanings behind the result from the

previous section.

From Table 6.2, we observe that the percentage of proxy contracts increases over

time, from 16.48% in 2020 to 88.71% in 2022. Thus, we can see the usage of proxy con-

tracts getting more widespread. Our first thought is that the increase in proxy contracts is

because many new projects use proxy contracts as their services for upgradability. How-

ever, it contradicts the result in Table 6.3, which shows that most of the proxy contracts

belong to minimal proxy contracts, and it is not upgradable proxy contracts.

As aresult, we want to know what caused the increasing number of proxy contracts.

41

doi:10.6342/NTU202203210

In the following sections, we first analyze the logic contracts and find that lots of logic
contracts are wallet contracts. A wallet contract [34] is a contract that manages assets like
ERC20 tokens. Usually, a proxy contract of a wallet contract is created by a smart contract
named factory contract, which contains a clone function for creating proxy contracts of
a wallet contract [34]. Then, based on our analysis of logic contracts, we examine their

proxy contracts.

7.1 Logic Contracts

We examine all logic contract addresses and identify the top 5 logic contract addresses

according to the number of associated proxy contracts. The result is shown in Table 7.1

and Table 7.2.
Name Address

AuthenticatedProxy 0xf9e266af4bca5890e2781812cc6a6€89495a7912

CollectionContract 0xe38f942db7a1b4213d6213f70c499b59287b01f1

Forwarder 0x059ffafdc6ef594230ded441824e2bd0a51ca5ded
Wallet contract BaseWallet 0x29b94b045a0b828d9eb99136a16d97¢7ff3d2600
CloneableWallet 0x989a2ad9acaa8c4e50b2fc6b650d6e1809b9195b

Account 0xef004d954999eb9162aeb3989279¢ff2161d5095

AuthereumA ccount 0x20af9e54a3670ef6a601bcalflec22b1f93cbe23

BaseWallet 0xb1dd690cc9af7bb1a906a9b5a94194191cc553ce
Unknown TransactionRequestCore | Ox4e201a5a5534bb334a3d7df4c82cd5db3bd82129
Kernel 0x4a6ce97a84178a84clcee46a763db619d0e6ed13

Table 7.3: The name of logic contracts in Table 7.1 and Table 7.2 with source code.

If a logic contract is provided with source code, we can know the name of the logic

contract and its program logic.

First, we examine the contracts with source code. Table 7.3 shows the name and ad-
dress of the logic contracts with the source code. The name “AuthenticatedProxy” looks
like a proxy contract, but it does not fulfill our definition of proxy contracts because there

is no delegatecall in its fallback function. We also find that this smart contract is from

42 doi:10.6342/NTU202203210

Wyvern [36], an open-sourced decentralized exchange protocol. Moreover, this protocol
is also applied by Opensea [27], an NFT trading platform. The trend of NFT on Opensea
explains why the rank of the logic contract increased from the top 3 in dataset SC21 to
the top 1 in dataset SC22. CollectionContract is a smart contract from Foundation open
source project, which is an NFT-related project also applied by the Foundation NFT mar-
ketplace [17]. For the above two smart contracts, we also regard them as a kind of wallet
contract because they both contain the logic for trading NFT assets, which acts like a wallet

contract for NFT.

Forwarder is a smart contract from the open-source project Ethereum MultiSig Wallet
Contract [6], which is a project for creating multi-signature wallet smart contracts. Both
BaseWallet and CloneableWallet are a kind of wallet contract. Account is a smart contract
from MYKEY Lab [22], which is a company for smart wallets in blockchains, but the com-
pany stopped supporting it. AuthereumAccount is a smart contract from Authereum [5]

which is a company for Ethereum wallets.

TransactionRequestCore is a smart contract from Ethereum Alarm Clock [12]. Ker-
nel is a smart contract from Aragon [2]. Except TransactionRequestCore and Kernel are

not wallet contracts related, other contracts are all wallet contract related.

While the rest of the logic contracts are not provided with source code, we use an
online decompiler [15] to decompile them. The table 7.4 shows the function name of
the logic contract if the online decompiler recognized it, otherwise, we show the function

signature instead.

If the function names of the logic contract are as same as some functions in wallet

contracts mentioned in [34], we classify them as wallet contracts. In case the logic may be

43 doi:10.6342/NTU202203210

Type

address

function prototypes

Wallet contract

0x63730a73f5eb2b5e10486d20c10a451aa3clcodd

flushETH(), destination(),
feeDestination(),
init(address,address)

0x39778bc77bd7a9456655b19fd4c5d0bf2071104e

sweeper(),
sweepERC20(address),
unknown(0xdfd1{b7a)

0x7186123dd9140555d0c2384b36f5773ddd7cde31
0x2fcf5eddf53a33f9665d226£239d29eff392 1bf7

flushERC20(address),
flushETH(), destination()

0x6ab9dd83108698b9ca8d03af3c7eb91c0e54c3fec

removeOwner(address),
isOwner(address),
m_numOwners(),
resetSpentToday(),
addOwner(address),
m_required(),
confirm(bytes32),
setDailyLimit(uint256),
execute(address,uint256,bytes),
revoke(bytes32),
changeRequirement(uint256),
hasConfirmed(bytes32,address),
kill(address),
changeOwner(address,address),
m_dailyLimit()

Unknown

0x83b76b11257c4ece35370b6152f1946d49479e89

unknown(0xcd6f5dcd),
unknown(0xc658695c¢)

0xf98e€39029c0f57b7d1d85be0b5579f813a58308
0x837e8549819019320273d2a328b5ab402b24eed6

init(address), isCosignerSet()
initInsecure(address)

0x0132732e4885f0dd61b64eef144329eb809a96¢e1

0x072461a5e18f444b1cf2e8dde6dfb1af39197316
0xc89327da549c6eb96¢59764b13013467d17c¢7c79

claimContractOwnership()
pendingContractOwner()

0xc3b2ae46792547a96b9184405e36d0e07edcd05¢c

grantAccess(address)
isCosignerSet()

0xc48717aefbd7fbbb081c48b5abdadc6a30368e75

seriesFactory(), owner(),
unknown(0x95f770fd)

Table 7.4: The function prototypes of logic contracts in Table 7.1 and Table 7.2 without

source code.

44

doi:10.6342/NTU202203210

different but with the same function name, we also compare their logic in bytecode man-
ually. Eight smart contracts can not be classified as wallet contracts because the function

name is unknown or does not match any known function in wallet contracts.

After our examination of the top 5 most pointed logic contracts, we find that in the
most recent datasets SC20, SC21 and SC22, only one logic contract is not a wallet contract.
In dataset SC17, there are 90% of logic contracts is wallet contract. While, in datasets
SC18 and SC19, we do not find any specific kind of smart contract containing the most.

This result answers our second research question.

Types\Dataset SC20 SC21 SC22

Same bytecode | 502 (80.45%) | 1140 (81.2%) | 1614 (81.2%)
Others 122 (19.55%) | 264 (18.8%) | 374 (18.8%)
Total 624 1404 1988

Table 7.5: The number of distinct logic contract addresses in two datasets.

We also analyze the number of distinct logic contracts. The numbers of distinct logic
contract address in SC17, SC18, and SC19 are 2, 17, and 70 respectively. Only a few
of them contain exactly the same bytecode in these three datasets. While for the datasets
SC20, SC21, and SC22, the numbers of distinct logic contract addresses are 624, 1404,
and 1988, respectively. Moreover, up to 80% of distinct logic contracts contain exactly
the same bytecode in these three datasets. The result shows in Table 7.5. From this result,
we can know that most logic contracts are exactly the same in the recent three years and

that there are many duplicated wallet contracts.

45 doi:10.6342/NTU202203210

7.2 Proxy Contracts

In this section, we focus on the proxy contracts themselves. As we did on logic

contracts, we identify the top 5 proxy contracts in each dataset. Contracts with the same

bytecode are counted together. We also analyze their bytecode or source code if provided.

The result is shown in Table 7.6 and Table 7.7. They answer our third research question.

Rank\Dataset SC17 SC18 SC19
Top 1 79 contracts 712 contracts 524 contracts
minimal proxy | minimal proxy | OwnableDelegateProxy
Top 2 1 contracts 311 contracts 88 contracts
unknown proxy | minimal proxy minimal proxy
Top 3 0 contracts 299 contracts 59 contracts
minimal proxy Proxy
Top 4 0 contracts 274 contracts 47 contracts
minimal proxy KernelProxy
Top 5 0 contracts 169 contracts 40 contracts
minimal proxy PayingProxy

Table 7.6: The top 5 proxy contracts with the same bytecode and their contract name.

(part 1)
Rank\Dataset SC20 SC21 SC22
Top 1 1764 contracts 6552 contracts 44934 contracts
minimal proxy minimal proxy OwnableDelegateProxy
Top 2 1651 contracts 3251 contracts 21411 contracts
AccountProxy minimal proxy minimal proxy
Top 3 1045 contracts 2701 contracts 3823 contracts
AuthereumProxy | OwnableDelegateProxy minimal proxy
Top 4 866 contracts 1915 contracts 3317 contracts
Proxy minimal proxy minimal proxy
Top 5 685 contracts 1033 contracts 2929 contracts

minimal proxy

Proxy

minimal proxy

Table 7.7: The top 5 proxy contracts with the same bytecode and their contract name.

(part 2)

Surprisingly, almost every cell in Table 7.6 and Table 7.7 can match the cell in the

same position of Table 7.1 and Table 7.2, which is a one on one relationship. It shows that

a logic contract is usually pointed by identical proxy contracts. The result supports that

46

doi:10.6342/NTU202203210

the wallet contracts are usually created by a factory contract [10]. Thus, their bytecodes
are the same. For the inconsistent cells, it means that other proxy contracts are pointing

to the same logic contract or the proxy contract was upgraded to a new logic contract.

Proxy Contract Name logic contract address
0xf9e266af4bca5890e2781812cc6a6e89495a7912
(AuthenticatedProxy)
0x059ffaftdc6et594230de441824e2bd0asS1caSded
(Forwarder)
0xe38f942db7a1b4213d6213170c499b59287b01f1
(CollectionContract)
0x63730a73f5eb2b5e10486d20c10a451aa3clcodd
0x39778bc77bd7a9456655b19fd4c5d0bf2071104¢
0x7186123dd9140555d0c2384b36f5773ddd7cde3 1
(Minimal Proxy) 0x83b76b11257c4ece35370b6152£1946d49479¢89
0x989a2ad9acaa8c4e50b2fc6b650d6e1809b9195b
0x2fcfSeddf53a33f9665d226239d29¢f13921bf7
0x4e201a5a5534bb334a3d7df4c82cd5db3bd82129
(TransactionRequestCore)
0x0132732e4885f0dd6 1b64eef144329eb809a96¢1
0x072461a5¢18f444b1cf2e8dde6dtb1af39197316
0xc3b2ae46792547a96b9184405e36d0e07edcd05c
0x837e8549819019320273d2a328b5ab402b24eed6
0xc89327da549c6eb96¢59764b13013467d17¢7¢79
0x6ab9dd83108698b9ca8d03af3c7eb91cOe54c3fc
0x29b94b045a0b828d9eb99136a16d97c7{t3d2600
(BaseWallet)
0xb1dd690cc9af7bb1a906a9b5a941t94191cc553ce
(BaseWallet)
0x29b94b045a0b828d9eb99136a16d97c7{f3d2600
(Account)
0x20af9e54a3670ef6a601bcalflec22b1193cbe23
(AuthereumA ccount)
0x4a6ce97a84178a84c1ceed46a763db619d0ebe4 13
(Kernel)

PayingProxy 0xf98ee39029c0f57b7d1d85be0b5579f813a5830

Table 7.8: Proxy contract names and their logic contract addresses.

OwnableDelegateProxy

No Name

Proxy

AccountProxy

AuthereumProxy

KernelProxy

We combine the proxy types in Table 7.6 and Table 7.7 with the logic contract ad-
dresses in Table 7.1 and Table 7.2 into Table 7.8. Most of the logic contracts in Table 7.8
are pointed by minimal proxy contracts. The result is reasonable because the minimal

proxy contracts account for the majority of proxy contracts in Table 6.3. Minimal proxy

47 doi:10.6342/NTU202203210

contracts are free to function or storage collisions, and their bytecode is short and simple.

We think it may be why people widely use this proxy contract.

7.3 Other Findings

In our experiment, minimal proxy contracts were also found in February 2017, the
time before EIP-1167 was proposed. We think it is because someone found a gas-saving

method to deploy a contract but was lazy to purpose an EIP.

From Table 6.3, we can observe that the number of proxy contracts following EIP-
1822 or EIP-1967 is small. We think it is because the user does not need a specific storage
slot to store the logic contract address but a state variable instead, which is much simpler.
Though it is easy to use, one needs to worry about storage collisions if they change the

order of state variables.

Dataset | avg # of blocks | avg times of upgrades | # of upgraded contracts
SC17 33529.0 2 1
SCI18 0 0 0
SC19 11895666.79 1.36 14
SC20 149963.69 1.07 999
SC21 431435.68 2.04 96
SC22 187287.03 1.34 29

Table 7.9: Upgrade events.

We also investigate the upgrade events of proxy contracts. The result is shown in
Table 7.9 and answers our fourth research question. Among our datasets, only 1139 proxy
contracts have been upgraded. In addition, the proxy contracts in SC20 contain the most
upgraded contracts, we think it is because the proxy contracts created in SC20 are still

used. Thus, the proxy owners still upgrade them to support new features.

We notice that the average times of upgrades in all datasets are less than three times.

48 doi:10.6342/NTU202203210

This result shows the upgraded event does not happen frequently. Since security issues of
proxy contracts usually happen at an upgrade, the less frequent upgrade of a proxy contract

also means the proxy contract is more resistant to storage collisions.

49 doi:10.6342/NTU202203210

Chapter 8 DISCUSSION

In this section, we first discuss the mitigation for the two main security issues. Then
we discuss how to use a proxy contract based on our findings. Lastly, we discuss the

limitations of our work.

8.1 Mitigation for Security Issues

In the following two sections, we will discuss how to prevent function collisions and

storage collisions from the perspectives of developers and users, respectively.

For developers, we discuss how to prevent these two types of issues when developing
a proxy contract. To address the function collision problem, OpenZepplin [25] proposes
a solution called TransparentUpgradeableProxy. It applies a modifier' that checks if the
caller of the transaction is the proxy contract owner or not on functions defined in the proxy
contract. If the caller is not the proxy contract owner, it executes the fallback function
instead of the current function. A developer can safely design a proxy contract without
worrying about function collisions. Specifically, this kind of proxy contract only allows
the owner of the proxy contract to execute functions defined in the proxy contract, but the

owner of the proxy contract can not execute the fallback function of the proxy contract.

'A decorator applies on functions in Solidity.

50 doi:10.6342/NTU202203210

On the other hand, everyone can only execute the fallback function of the proxy contract
except the owner of the proxy contract. Thus, even if there is a function collision between
the proxy contract and the logic contract, a caller of a transaction who is not the proxy

owner can expect to execute the function defined in the logic contract correctly.

However, some developers do not want to redesign the proxy contracts, or the proxy
contracts have been deployed, so the above solution can not be applied. As a result, for
those proxy contracts, we suggest that developers should run the slither-check-upgradeability
tool mentioned in Section 2. The tool can check if any function collisions happen between
the proxy contract and the logic contract so the developers can fix the logic contract or the
proxy contract. If the proxy contracts are already deployed, developers can also use our

tool by giving the proxy contract address.

Currently, the way to address storage collisions is to rely on proxy developers and
proxy owners. The developers have to ensure the order of variables in the proxy contract
is consistent with the logic contract. When upgrading the proxy contract, proxy owners
should also ensure that the order of variables in the old logic contract is consistent with
the new one. The slither-check-upgradeability tool can help developers and proxy owners
check if there is any storage collision problem before deploying or upgrading a proxy

contract.

Two design patterns for storage management motioned in [| 9], which are Unstructured

Storage and Eternal Storage. Unstructured Storage uses a random storage slot to store each

variable. EIP-1822, EIP-1967, and EIP-2535 apply this pattern to store some variables like
a logic contract address. Eternal Storage uses another contract to store variables, making

it easy for developers to maintain the order of variables.

51 doi:10.6342/NTU202203210

For users who want to interact with a smart contract should check the source code
of the smart contract before sending a transaction. Otherwise, something unexpected may
happen, like losing Ether or other tokens. Likewise, users should examine the source code
of the proxy contract before interacting with it. Moreover, because of the two main issues
mentioned above, users should not only examine the proxy contract but also the current

logic contract and every logic contract the proxy contract used before.

Verifying every logic contract the proxy contract used before may be challenging for
users. Thus, we suggest that users can apply our tool to the proxy contract before they
interact. Users only need to input the address of a proxy contract, and the tool will output

if there is any security issue in the proxy contract and the source code if provided.

Attackers who want to leverage our tools may find some function or storage colli-
sions, but they still have to analyze the source code to check if proxy contracts are ex-

ploitable.

8.2 Proxy Contract Usage

This section suggests the usage of proxy contracts from the security perspective.

As we mentioned in Section 4, the owner of the upgradable proxy contract can ma-
nipulate the storage of the proxy contract by upgrading a new logic contract. Thus, users
should prevent interacting with proxy contracts not owned by themselves but holding their
property, such as the ERC20Upgradeable token contract. Users should only interact with
it if they trust the owner of the proxy contract. A way to improve the security of these
kinds of proxy contracts is to add a time gap after the transaction of upgrading the proxy

contract to a new logic contract is sent. The old logic contract is used inside the time gap,

52 doi:10.6342/NTU202203210

and the new logic contract will be used after the time gap. A time gap allows users inter-
acting with the proxy contract to examine the new logic contract. If a new logic contract
is malicious, the users can react before it is effective, like withdrawing their assets. How-
ever, it is still dangerous for users if they do not keep an eye on the proxy contract and

miss the time gap. Thus, we still do not recommend this kind of proxy contract usage.

Another way to use a proxy properly is to treat a proxy contract as a testing smart
contract. Developers can deploy a proxy contract for an under-developing logic contract.
Instead of deploying a logic contract on the testnet, an Ethereum-like environment, de-
velopers can test and interact with the logic contract on the mainnet. A testnet is an
Ethereum-like environment, but its state is not the same as the Ethereum mainnet. For
example, an address may be a smart contract address in the testnet but not in the mainnet.
Thus, deploying a proxy contract on the mainnet for testing logic contracts can get more
accurate results than on the testnet. Moreover, because of storage collisions, the proxy
owner can initialize the storage without deploying a new smart contract to get new stor-
age. Unfortunately, this method still needs to spend the gas for deploying a new logic

contract.

The best usage of a proxy contract is to create one’s proxy contract for personal use,
such as a proxy contract for a wallet contract, so there is no need to worry about a malicious
proxy contract owner. Based on our investigations, this kind of usage is the most common
way to use a proxy contract. The advantage of a proxy contract is that one can save the cost
of deploying a new logic contract and enable upgradeability for future needs. Moreover,
if users use it as a proxy contract for wallet contracts, they can save their assets in it, and

no need to transfer them after upgrading the proxy contracts.

53 doi:10.6342/NTU202203210

8.3 Limitations

As we explained earlier, some opcodes (block opcodes) take parameters from the
blockchain state. ProxyChecker uses fixed values listed in Table 5.1 as their parameters,

so the emulation result may differ from the actual one if it encounters block opcodes.

ProxyChecker may fail to detect some types of proxy contracts, such as the diamond
contract introduced in EIP-2535. Although the diamond contract satisfies our proxy con-
tract definition, ProxyChecker cannot detect diamond contracts because it cannot create a
calldata that can successfully execute the delegatecall opcode in the fallback function. In
the design of the diamond contract, only the function registered by the diamond contract

owner can execute the delegatecall in the fallback function, or the transaction will revert.

Currently, ProxyChecker leverages the slither-check-upgradeability tool for some se-
curity checks. Thus limited by this tool, ProxyChecker can only check function and stor-
age collisions on the proxy contract with the source code in Solidity. We may support

proxy contracts without source code in our future work.

The output of ProxyChecker may contain some false positives because of the imple-
mentation of slither-check-upgradeability. Nevertheless, we think it is acceptable because

the harm of false negatives is much higher than false positives.

We believe ProxyChecker can complement other smart contract analysis tools.

54 doi:10.6342/NTU202203210

Chapter 9 CONCLUSION

Proxy contracts enable upgradeability, but they also bring some uncertainty for their
users. Though proxy contracts are a way for smart contract developers to upgrade their
vulnerable contracts, two main security issues come behind them: function collisions and

storage collisions.

We introduce ProxyChecker, which is a dynamic analysis tool for smart contracts.
One can use it to detect if a smart contract is a proxy contract and get a security analysis
of a proxy contract by just inputting a smart contract address. However, an attacker can

also use it to detect if there are any chances to attack a proxy contract.

We use ProxyChecker to compare six block ranges to show how widely proxy con-
tracts are used. Finally, we discuss the security issues in proxy-related EIPs and give
recommendations. We found that the proxy contract is a big part of all deployed smart
contracts. After we categorized them, we found that the minimal proxy contracts are the
most widely used. We also find that the trend of NFT creates a large number of proxy
contracts. Though our ProxyChecker is an easy-to-use tool for detecting or doing a secu-
rity check on proxy contracts, there still have some limitations mentioned in Section 8.3,

which will be our future work.
In conclusion, if a proxy contract is upgradeable, the proxy owner can manipulate

55 doi:10.6342/NTU202203210

the storage value in the proxy contract to any other value. Thus, a proxy contract is not
suitable for providing a smart contract service like an ERC20Upgradeable token contract.
We conclude that a proxy contract is more suitable for personal use, like a proxy contract

for a wallet contract.

56 doi:10.6342/NTU202203210

References

[1] Python Software Foundation. Python. https://www.python.org/.
[2] Aragon Association. Aragon. https://aragon.org/.
[3] Audius Inc. Audius. https://audius.co/.

[4] Audius Inc. Audius governance takeover post-
mortem 7/23/22. https://blog.audius.co/article/

audius-governance-takeover-post-mortem-7-23-22.
[5] Authereum Inc. Authereum. https://authereum.com/.

[6] BitGo Inc. Ethereum multisig wallet contract. https://github.com/BitGo/

eth-multisig-v2.

[7] T. Chen, Z. Li, X. Luo, X. Wang, T. Wang, Z. He, K. Fang, Y. Zhang, H. Zhu, H. Li,
Y. Cheng, and X.-s. Zhang. Sigrec: Automatic recovery of function signatures in

smart contracts. IEEE Transactions on Software Engineering, pages 1-1, 2021.

[8] Consensys Inc. Mythril. https://github.com/ConsenSys/mythril.

[9] David, S. Understanding the dao attack. https://www.coindesk.com/learn/

2016/06/25/understanding-the-dao-attack/.

57 doi:10.6342/NTU202203210

https://www.python.org/
https://aragon.org/
https://audius.co/
https://blog.audius.co/article/audius-governance-takeover-post-mortem-7-23-22
https://blog.audius.co/article/audius-governance-takeover-post-mortem-7-23-22
https://authereum.com/
https://github.com/BitGo/eth-multisig-v2
https://github.com/BitGo/eth-multisig-v2
https://github.com/ConsenSys/mythril
https://www.coindesk.com/learn/2016/06/25/understanding-the-dao-attack/
https://www.coindesk.com/learn/2016/06/25/understanding-the-dao-attack/

[10] M. di Angelo and G. Slazer. Wallet contracts on ethereum. In 2020 IEEE

International Conference on Blockchain and Cryptocurrency (ICBC), pages 1-2,

2020.

[11] EOSIO Inc. Eos. https://eos.io/.

[12] Ethereum Alarm Clock. Ethereum alarm clock. https://www.

ethereum-alarm-clock.com/.

[13] Ethereum community. Opcodes for the evm. https://ethereum.org/en/

developers/docs/evm/opcodes/.

[14] EtherScan Team. Etherscan. https://etherscan.io/.

[15] ethervm@gmail.com. Online solidity decompiler. https://ethervm.io/

decompile.

[16] J. Feist, G. Greico, and A. Groce. Slither: A static analysis framework for smart

contracts. In Proceedings of the 2nd International Workshop on Emerging Trends in

Software Engineering for Blockchain, WETSEB 19, page 8-15. IEEE Press, 2019.

[17] foundation Inc. Foundation. https://foundation.app/.

[18] Infura Inc. Infura. https://infura.io/.

[19] P. Klinger, L. Nguyen, and F. Bodendorf. Upgradeability concept for collabo-
rative blockchain-based business process execution framework. In International

Conference on Blockchain, pages 127—-141. Springer, 2020.

[20] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe. Reguard: Finding reen-

trancy bugs in smart contracts. In Proceedings of the 40th International Conference

58 doi:10.6342/NTU202203210

https://eos.io/
https://www.ethereum-alarm-clock.com/
https://www.ethereum-alarm-clock.com/
https://ethereum.org/en/developers/docs/evm/opcodes/
https://ethereum.org/en/developers/docs/evm/opcodes/
https://etherscan.io/
https://ethervm.io/decompile
https://ethervm.io/decompile
https://foundation.app/
https://infura.io/

on Software Engineering: Companion Proceeedings, ICSE ’18, page 65- 68, New

York, NY, USA, 2018. Association for Computing Machinery.

[21] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist, T. Brunson,
and A. Dinaburg. Manticore: A user-friendly symbolic execution framework for

binaries and smart contracts. In 2019 34th IEEE/ACM International Conference on

Automated Software Engineering (ASE), pages 1186—1189, 2019.

[22] MYKEY Lab. Mykey lab. https://mykey.org/.

[23] Neo Inc. Neo. https://neo.org/.

[24] R. Norvill, B. B. F. Pontiveros, R. State, and A. Cullen. Visual emulation for

ethereum’s virtual machine. In NOMS 2018 - 2018 IEEE/IFIP Network Operations

and Management Symposium, pages 14, 2018.

[25] OpenZeppelin Inc. Proxy upgrade pattern. https://docs.openzeppelin.com/

upgrades-plugins/1.x/proxies.

[26] OpenZeppelin Inc. Safemath. https://github.com/OpenZeppelin/
openzeppelin-contracts/blob/master/contracts/utils/math/

SafeMath.sol.
[27] Ozone Networks Inc. Opensea. https://opensea.io/.
[28] P. Ventuzelo. Octopus. https://github.com/pventuzelo/octopus.
[29] QuickNode Inc. Quicknode. https://www.quicknode.com/.

[30] Rekt DAO. Rekt. https://rekt.news/.

59 doi:10.6342/NTU202203210

https://mykey.org/
https://neo.org/
https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies
https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/SafeMath.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/SafeMath.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/SafeMath.sol
https://opensea.io/
https://github.com/pventuzelo/octopus
https://www.quicknode.com/
https://rekt.news/

[31] Solidity community. Solidity official document. https://docs.soliditylang.

org/.

[32] The go-ethereum Authors. Go ethereum. https://geth.ethereum.org/.

[33] C. F. Torres, A. K. Iannillo, A. Gervais, and R. State. Confuzzius: A data

dependency-aware hybrid fuzzer for smart contracts. In 2021 IEEE European

Symposium on Security and Privacy (EuroS&P), pages 103119, 2021.

[34] Trail of Bits Inc. rattle. https://github.com/crytic/rattle.

[35] Vyper community. Vyper official document. https://vyper.readthedocs.io/

en/stable/.

[36] Wyvern Protocol team. Wyvern protocol. https://wyvernprotocol.com/.

[37] Yiedld App Inc. Yield. https://www.yield.app/.

[38] G. Zheng, L. Gao, L. Huang, and J. Guan. Upgradable contract. In Ethereum Smart

Contract Development in Solidity, pages 197-213. Springer, 2021.

60 doi:10.6342/NTU202203210

https://docs.soliditylang.org/
https://docs.soliditylang.org/
https://geth.ethereum.org/
https://github.com/crytic/rattle
https://vyper.readthedocs.io/en/stable/
https://vyper.readthedocs.io/en/stable/
https://wyvernprotocol.com/
https://www.yield.app/

	Verification Letter from the Oral Examination Committee
	致謝
	摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Background
	EVM
	EVM Opcode
	EVM Storage Layout
	Function Signature
	Fallback Function
	Ethereum Improvement Proposals

	Related Work
	Smart Contract Analysis Tools
	Ethereum Virtual Machine Emulator
	Go-Ethereum
	E-EVM

	Proxy Contract Related

	Security Issues
	Definition of Proxy Contracts
	Function Collisions
	Storage Collisions

	PROXYCHECKER: Design and Implementation
	Overview
	Delegatecall Detector
	Dynamic Analyzer
	Create a Calldata
	Dynamically Analyze and Extract the Parameters
	Compare the Calldata

	Contract Checker

	Data Collection and Analysis Result
	In-depth Analysis
	Logic Contracts
	Proxy Contracts
	Other Findings

	DISCUSSION
	Mitigation for Security Issues
	Proxy Contract Usage
	Limitations

	CONCLUSION
	References

